

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MECÁNICA DEPARTAMENTO DE INGENIERÍA DE LOS MATERIALES

COMPORTAMIENTO MECÁNICO EN COMPRESIÓN EN CALIENTE Y CREEP DE LA ALEACIÓN Cu - 2,5 %v TiC - 2,5 %v VC.

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MECÁNICO E INGENIERO CIVIL EN MATERIALES

HÉCTOR IVÁN ARAVENA ORTIZ

PROFESOR GUÍA: SR. RODRIGO PALMA HILLERNS

MIEMBROS DE LA COMISIÓN: SR. EDUARDO DONOSO CATALÁN SR. AQUILES SEPÚLVEDA OSSES

> SANTIAGO DE CHILE OCTUBRE 2008

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MECÁNICA DEPARTAMENTO DE INGENIERÍA DE LOS MATERIALES

COMPORTAMIENTO MECÁNICO EN COMPRESIÓN EN CALIENTE Y CREEP DE LA ALEACIÓN Cu - 2,5 %v TiC - 2,5 %v VC.

HÉCTOR IVÁN ARAVENA ORTIZ

COMISIÓN EXAMINADORA			CALIFICACIONES	
		NOTA (N°)	(Letras)	FIRMA
PROFESOR GUÍA:				
SR. RODRIGO PALMA HILLERNS	:			
PROFESOR CO-GUÍA:				
SR. EDUARDO DONOSO CATALÁN	:			
PROFESOR INTEGRANTE:				
SR. AQUILES SEPÚLVEDA OSSES	:			
NOTA FINAL				
EXAMEN DE TÍTULO	:			

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MECÁNICO E INGENIERO CIVIL EN MATERIALES

> SANTIAGO DE CHILE OCTUBRE 2008

Primero que todo agradecimientos a los miembros de la comisión examinadora: Profesor Rodrigo Palma por su constante guía y por la oportunidad de realizar este trabajo. A los profesores Eduardo Donoso y Aquiles Sepúlveda por su siempre amable disposición para cualquier situación. Rodrigo Espinoza por su conocimiento y su ayuda en los inicios, Christian Ramírez por su inestimable ayuda y paciencia con los ensayos finales de compresión y creep, el profesor Gerardo Díaz y al profesor Alejandro Zúñiga por su constante apoyo. A José y la Sra. Jacqueline del Departamento de Materiales, a María Eugenia y Maricarmen del Departamento de Mecánica, al personal completo del taller de molina y a Andrés del laboratorio de física, por a ayuda brindada.

Agradecimientos a mi familia que siempre estuvo, están y estarán en los momentos difíciles. Mis padres Natividad y Héctor, porque soy como soy por ellos, mis hermanos Sebastián y Diego por que hacen mi vida más fácil y alegre. A Claudia Moreno, que sin ella me pierdo. Por que son lo más preciado que tengo.

A los miembros del 'team': Roberto Estay, Cristian Egaña, Sebastián Franjola, Felipe Figueroa, Serguey Maximov, Claudio Rivas, Wilson Carrasco que gracias a su esfuerzo las cosas salieron mucho mejor. A Juan Pablo Lozano, mi 'partner' de memoria, que anduvimos de a poco por el mismo camino tropezándonos y levantándonos. Mis compañeros de carrera de materiales y de mecánica. Mi familia completa, primos, tíos, abuelos, no pude tener mayor suerte. Mis amigos de la vida Juan Pablo Araya, Gonzalo Navarrete, Paulo Fuentes, Mario Ortiz, Carlos Aravena, Eduardo Rubio, José Soto, Sebastián Maldonado, Isabel Ordóñez, Rodrigo Illesca, Christian Jamasmie, Daniel Hernández, Senén Gonzalez, Consuelo Sepúlveda, Daniela Peñailillo, Carolina Guzmán, Pamela Mora, Claudio Parragué, Felipe Manzur, Juan E. Castellón, Sebastián Bassa.

COMPORTAMIENTO MECÁNICO EN COMPRESIÓN EN CALIENTE Y CREEP DE LA ALEACIÓN Cu - 2,5% v TiC - 2,5% v VC

El cobre se utiliza para aplicaciones que buscan una buena conductividad eléctrica y térmica, pero el problema radica en su resistencia mecánica a altas temperaturas, esta se puede mejorar al endurecer el material con una dispersión de elementos cerámicos, así la resistencia mecánica disminuye poco a altas temperaturas y no afecta de sobremanera la conductividad ni térmica ni eléctrica.

Este trabajo tiene por objetivo fabricar una aleación con dispersión de carburos de titanio y vanadio, en particular (Cu - 2,5% vTiC - 2,5% vVC, determinar como afecta esta composición en la compresión en caliente y creep y compararla con otras aleaciones anteriormente investigadas, además de su textura en la molienda y la variación de la microdureza con la temperatura de recocido y de extrusión.

La dispersión se puede lograr a través de la molienda reactiva que consiste en someter al polvo a grades deformaciones plásticas para lograr la formación *in situ* de carburos. El proceso se inicia llenando el molino atritor con bolas de acero, el líquido de molienda (en este caso tolueno) y los polvos homogenizados. Luego se consolidan en caliente extruyéndolos a dos temperaturas diferentes: 750 y 850 °C.

La caracterización de la aleación es a través de difracción de rayos X, de microscopía electrónica de transmisión y microdureza. Las probetas son recocidas una hora a rangos de temperaturas establecidos entre 400 y 900 °C, son medidas sus resistencias al ablandamiento en función de la temperatura de recocido y determinado microdureza Vickers para una carga de 100 [gr]. El ensayo de termofluencia se realiza para un rango entre 500 y 850 °C y las cargas aplicadas, de los 60 a los 100 [MPa].

Índice General

1	Intr	oduccióı	n 1
	1.1	Objetiv	os2
		1.1.1	Objetivo General
		1.1.2	Objetivos Específicos
2	Ant	ecedent	es 3
	2.1	Aleació	n Mecánica
		2.1.1	Molienda Reactiva
		2.1.2	Molino Atritor
	2.2	Mecani	smo de Endurecimiento
		2.2.1	Endurecimiento por Dispersión
	2.3	Partícu	las dispersoides
		2.3.1	Carburo de Titanio (TiC)
		2.3.2	Carburo de Vanadio (VC)
	2.4	Termof	luencia (Creep)
		2.4.1	Mecanismos de Creep
			2.4.1.1 Creep por dislocaciones
			2.4.1.2 Creep por difusión
		2.4.2	Creep en materiales endurecidos por dispersión
	2.5	Caracte	rización de materiales
		2.5.1	Difracción de rayos X (DRX) [6]
			2.5.1.1 Análisis de perfil de DRX
			2.5.1.2 Determinación del tamaño medio de cristalita y la microdeformación . 21
			2.5.1.3 Densidad de dislocaciones [7]
			2.5.1.4 Textura [8]
		2.5.2	Dureza y microdureza [8]
		2.5.3	Densidad de material extruído
3	Met	odología	a 27
	3.1	Paráme	tros
		3.1.1	Parámetros de molienda
		3.1.2	Parámetros de extrusión

		3.1.3	Parámetros de recocido	29
		3.1.4	Parámetros de compresión en caliente	29
		3.1.5	Parámetros de creep	29
	3.2	Respue	estas	30
	3.3	Caracte	erización	30
		3.3.1	Microdureza	30
		3.3.2	Difracción de Rayos X	30
		3.3.3	Microscopía de Transmisión (TEM)	30
	3.4	Análisis	s Químicos	30
		3.4.1	Análisis de V y Ti	30
			3.4.1.1 Análisis de O, N y C \ldots	30
		3.4.2	Equipos	31
Л	Proc	odimio	nto Experimental	32
4	4 1	Materi		32
	7.1	411		32
		412	Polyos de titanio	32
		413	Polyos de vanadio	32
		414		33
	42	Prenara	ación de los polyos	33
		ricpun	4.2.0.1 Aumento de la concentración nominal	34
	4.3	Molien	da Reactiva	35
	4.4	Compa	ctación y encapsulamiento de polvos	36
	4.5	Extrusi	ón en caliente	36
	4.6	Recoci	do	37
	4.7	Ensayo	s de compresión en caliente	37
	4.8	Ensayo	s de creep	37
	4.9	Caracte	erización	38
		4.9.1	Difracción de Rayos X	38
		4.9.2	Microscopía de Transmisión (TEM)	39
			4.9.2.1 Identificación de elementos a través de difracción de electrones	39
		4.9.3	Microdureza	39
		4.9.4	Análisis Químicos	40
			4.9.4.1 Análisis de V y Ti	40
			4.9.4.2 Análisis de O, N y C \ldots	40
F	Dee	و - او حوار		Л1
J	Rest	Compo	scición química de polyos	41 ∕11
	5.1 5.0	Difrace	sicion quinnea de poivos	41 10
	J.Z			42 10
		J.Z.I		42

		5.2.2	Polvos de Cu-Ti-V
	5.3	Densid	ad post-extrusión
	5.4	Resiste	ncia al ablandamiento
	5.5	Compr	esión en caliente
		5.5.1	CuTiV (<i>T_e</i> 750)
		5.5.2	CuTiV ($T_e 850$)
	5.6	Creep .	
6	Aná	lisis y d	iscusión 50
	6.1	Compo	sición química de polvos
	6.2	Difraco	ión de Rayos X
		6.2.1	Textura
		6.2.2	Tamaño de cristalita y microdeformación
		6.2.3	Densidad de dislocaciones
	6.3	Densid	ad post-extrusión
	6.4	Resiste	ncia al ablandamiento
		6.4.1	Micrografías
			6.4.1.1 CuTiV (p750)
			6.4.1.2 CuTiV (p850)
	6.5	Micros	copía electrónica de transmisión de alta resolución
		6.5.1	Polvos de CuTiV
			6.5.1.1 Estructuras de grano
			$6.5.1.2 \text{Difracción de electrones (DE)} \ldots \ldots \ldots \ldots \ldots \ldots 61$
			$6.5.1.3 {\sf Detección \ de \ partículas} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
		6.5.2	Aleación extruída a 850°C (T_e 850)
			6.5.2.1 Estructuras de grano
			6.5.2.2 Difracción de electrones (DE)
			6.5.2.3 Detección de partículas
	6.6	Compr	esión en caliente
		6.6.1	Influencia de los elementos aleantes
		6.6.2	Influencia de la velocidad de deformación
		6.6.3	Influencia de la temperatura de extrusión de la aleación
	6.7	Creep .	
		6.7.1	CuTiV ($T_e 850$)
		6.7.2	CuTiV $(T_e 850)$
		6.7.3	Resumen comparativo
			6.7.3.1 Exponente de esfuerzo aparente
			6.7.3.2 Energía de activación
			6.7.3.3 Efecto de la temperatura de extrusión en el exponente de esfuerzo
			aparente <i>n</i>

		6.7.3.4	Efecto de la temperatura de extrusión en la energía de activación \mathcal{Q}_{ap} .	78
7	Conclusion	es		79
Α	Ángulos de	e difracció	n de los compuestos	84
В	Diagramas	de fases		95
С	Diagrama	de Ellingh	nam	97

Índice de Figuras

2.1	Imágen, obtenida con SEM, de la morfología en forma de hojuela (laminar) de los polvos molidos de Cu-2,5 %v Al_2O_3 -2,5 %v TiC [9]	4
2.2	Evolución del tamaño de los polvos en función del tiempo. [9]	4
2.3	Esquema del contenedor del molino atritor. [9]	5
2.4	Obstaculización del movimiento de dislocaciones [12]	7
2.5	Dureza a temperatura ambiente en Cu y aleaciones de Cu, medida después de 1 h. de recocido a diferentes temperaturas.	9
2.6	Curva de creep.	11
2.7	Variación-esfuerzo	12
2.8	Gráfico de la variación del logaritmo natural de la tasa de deformación con el recíproco de la temperatura absoluta	13
2.9	Gráfico del daño acumulado en el creep por medio de cavidades en los bordes de grano.	14
2.10	Ilustración del mecanismo de creep por dislocaciones	15
2.11	Ilustración del mecanismo de creep por difusión	15
2.12	Interferencia constructiva (izquierda) y interferencia destructiva (derecha)	18
2.13	Patrón de análisis de DRX	19
2.14	Aporte de diferentes fuentes al ensanchamiento del peak de difracción. Maximov [7].	20

2.15	Esquema de la evolución microestructural durante la aleación mecánica. La figura (a) muestra una distribución homogénea de dislocaciones, (b) formación de la celda alargada de dislocaciones, (c) bloqueo de dislocaciones por los bordes de subgrano, (d) rompimiento del subgrano alargado y (e) reorientación de los bordes de subgrano.	24
2.16	Figura esquemática de los distintos tipos de impacto durante la aleación mecánica, donde (a) es un impacto directo, (b) es un impacto oblicuo y (c) un impacto múltiple	24
3.1	Esquema del flujo de la metodología	28
4.1	Gráfico comparativo entre el creep escalonado y el creep continuo	38
5.1	Patrón de difracción de rayos x de polvos Cu-Tolueno. Moliendas de 10, 20 y 30 horas. Se normalizaron las intensidades para una mejor comparación.	42
5.2	Patrón de difracción de rayos X de $Cu-2,5\% vTiC-2,5\% vVC$. Molienda de 30 horas.	43
5.3	Evolución de la microdureza de la aleación extruída a 750 °C y a 850 °C, versus la temperatura de recocido, junto a sus respectivos errores.	44
5.4	Compresión en caliente de T_e 750 diferentes temperaturas de ensayo, a una velocidad de compresión de $\dot{\epsilon} = 6 \times 10^{-5}$.	46
5.5	Compresión en caliente de T_e 750 diferentes temperaturas de ensayo, a una velocidad de compresión de $\dot{\epsilon} = 2 \times 10^{-4}$.	47
5.6	Compresión en caliente de $T_e 850$ diferentes temperaturas de ensayo, a una velocidad de compresión de $\dot{\epsilon} = 6 \times 10^{-5}$.	48
5.7	Compresión en caliente de $T_e 850$ diferentes temperaturas de ensayo. A una velocidad de compresión de $\dot{\epsilon} = 2 \times 10^{-4}$.	49
6.1	Patrón normalizado de difracción de rayos × de polvos Cu-Tolueno. Moliendas de 10, 20 y 30 horas	53
6.2	Patrón normalizado de difracción de rayos \times de Egaña [4]. Moliendas de 10, 20 y 30 horas.	54
6.3	Comparación de la evolución de la microdureza de <i>p750</i> y <i>p850</i> a diferentes temperaturas de extrusión.	56
6.4	Micrografía de p750 recocida a 673 K (400 °C). Zoom de 500x	57

6.5	Micrografía de p 750 recocida a 773 K (500 °C). Zoom de 500x. \ldots \ldots \ldots \ldots \ldots	57
6.6	Micrografía de p750 recocida a 773 K (500 °C). Zoom de 500x. Detalle de una fase presente.	57
6.7	Micrografía de p750 recocida a 1173 K (900 °C). Zoom de 500x	57
6.8	Micrografía de p850 recocida a 673 K (400 $^{\circ}$ C)	58
6.9	Micrografía de p850 recocida a 773 K (500 °C)	58
6.10	Micrografía de p850 recocida a 873 K (600 °C). Zoom de 500x. Detalle de una fase presente.	58
6.11	Micrografía de p850 recocida a 1173 K (900 °C). Zoom de 500x	58
6.12	Comparación de la evolución de la microdureza de <i>p</i> 750 y <i>p</i> 850 a diferentes temperaturas de extrusión. Se diferencian las aleaciones que involucran VC y TiC	59
6.13	Campo Claro global de granos de cobre. Molienda de CuTiV de 30 horas	60
6.14	Campo Oscuro global de granos de cobre. Molienda de CuTiV de 30 horas	60
6.15	Campo Claro localizado de granos de cobre	61
6.16	Campo Oscuro localizado de granos de cobre. Se destacan granos que miden entre 50 y 100 <i>nm</i> de diámetro.	61
6.17	Patrón de difracción de polvos de molienda de CuTiV de 30 horas	62
6.18	Identificación de los anillos del patrón de difracción de polvos de molienda de CuTiV de 30 horas.	62
6.19	Campo Claro de polvos	62
6.20	Campo Oscuro de la zona observada	62
6.21	Imágen de la interfaz entre las partículas. Se puede ver una macla en el cobre	63
6.22	Campo Oscuro de una zona localizada. Se pueden ver granos alargados uniaxiales	63
6.23	Campo Claro global de granos de cobre. Zoom de 7k X	64
6.24	Campo Claro global de granos de cobre. Zoom de 17k X	64
6.25	Campo Claro localizado de granos de cobre. Zoom de 19,5k X	64

6.26	Campo Oscuro localizado de granos de cobre. Zoom de 19,5k X	64
6.27	Patrón de difracción de polvos de la zona de la figura 6.26	65
6.28	Identificación de los anillos del patrón de difracción de polvos.	65
6.29	Campo Claro de una partícula. Zoom de 86k X	65
6.30	Campo Oscuro de partícula observada. Zoom de 86k X	65
6.31	Granos de cobre con partículas en su interior. Zoom de 86k X	66
6.32	Imágen de Alta Resolución de las partículas observadas. Zoom de 450k X	66
6.33	Comparación de la compresión a temperatura ambiente (293 K, 20 °C) de la aleación p750 con respecto al cobre puro	67
6.34	Comparación, a diferentes temperaturas de ensayo, del efecto de la velocidad de compresión ($\dot{\epsilon} = 6 \times 10^{-5}$ y $\dot{\epsilon} = 2 \times 10^{-4}$) de la aleación p750	68
6.35	Comparación, a diferentes temperaturas, de las aleaciones p750 y p850 a una velocidad de compresión de $\dot{\varepsilon} = 2x10^{-4}$.	69
6.36	Datos y exponente de esfuerzo n para la aleación T_e750 realizado a 673 K (400 °C)	72
6.37	Datos y exponente de esfuerzo n para la aleación T_e750 realizado a 773 K (500 °C)	73
6.38	Datos y exponente de esfuerzo n para la aleación $T_e 850$ realizado a 673 K (400 °C)	74
6.39	Datos y exponente de esfuerzo n para la aleación $T_e 850$ realizado a 773 K (500 °C)	75
6.40	Gráfico comparativo de creep de las probetas ensayadas. Presentadas tanto continuo como escalonado para ambas temperaturas de extrusión.	76

Índice de Tablas

2.1	Dureza nominal de la aleación	25
2.2	Densidades teóricas de elemento o compuestos involucrados [4]	26
3.1	Ensayo de creep a temperaturas y cargas constantes.	29
4.1	Distribución de tamaño del polvo de cobre.	32
4.2	Ensayo de creep a temperaturas y cargas constantes.	35
4.3	Densidades teóricas de elemento o compuestos involucrados [4]	35
5.1	Composición química de la molienda de polvos de $Cu - 2,5\% v TiC - 2,5\% v VC.$	41
5.2	Densidades relativas obtenidas post-extrusión	43
5.3	Microdureza de los polvos molidos pre-extrusión.	44
5.4	Valores de microdurezas en el recocido para T_e750 y T_e850 . Los valores están en Vickers.	45
5.5	Datos de los ensayos de compresión para la aleación $T_e750.$	45
5.6	Datos de los ensayos de compresión para la aleación $T_e 850$	48
6.1	Composición química de la molienda de polvos de concentración nominal $Cu-2,5\% vTiC-2,5\% vVC$	50
6.2	Intensidades relativas de la difracción de rayos x	51
6.3	Tamaño de cristalita <i>D</i> y microdeformación <i>e</i>	54
6.4	Densidad de dislocaciones en la aleación	55

6.5	Densidades relativas obtenidas post-extrusión	55
6.6	Resumen de esfuerzos y velocidades de los ensayos de creep	70
6.7	Datos del exponente de esfuerzo aparente	76
6.8	Datos de la energía de activación según el esfuerzo	77

Capítulo 1

Introducción

Las aleaciones de cobre con dispersión de materiales cerámicos son cada vez mas estudiadas por su buena conductividad térmica y eléctrica sumada con una adecuada resistencia mecánica a altas temperaturas. Una de las aplicaciones actuales para estos materiales podría ser como electrodos de soldadura por resistencia eléctrica [1], interruptores de alto rendimiento, intercambiadores de calor, cables y alambres magnéticos.

El cobre es uno de los materiales que cumplen con el requisito necesario para las anteriores aplicaciones dado su bajo módulo elástico el cual minimiza los esfuerzos térmicos en estructuras refrigeradas activamente [2]. No obstante, se debe mejorar la resistencia mecánica a altas temperaturas ya que los métodos de endurecimiento convencionales pierden efectividad a temperaturas demasiado altas por la recristalización de los granos de cobre y la disolución del precipitado. Para esto, la inclusión de partículas cerámicas, específicamente óxidos y carburos nanométricos, en una matriz de cobre aumenta la resistencia mecánica de ésta en desmedro de la capacidad de conducción eléctrica y térmica.

El estudio que se llevará a cabo en esta memoria consiste en analizar el comportamiento de estos materiales, en particular de la aleación Cu - 2,5% v TiC - 2,5% v VC para dos temperaturas de extrusión, para una posterior comparación. Se consideró que la aleación $Cu - 2,5\% v TiC - 2,5\% v Al_2O_3$ exhibe alta resistencia al creep y se espera que los carburos de vanadio, VC, sean mejores que los óxidos de aluminio debido a su baja solubilidad en la matriz de cobre, lo que provocaría un no engrosamiento de las partículas.

Para lo anterior, la aleación se fabricará con molienda reactiva, que es una manera de producir partículas nanométricas insolubles en la matriz de cobre. Este método permite la creación *in-situ* de los dispersoides debido a la alta energía del choque de las bolas y los polvos, la cual produce una reacción química entre estos y los aditivos de la molienda. Luego, las probetas se consolidarán por extrusión a dos temperaturas, para posteriormente realizarles ensayos de creep y compresión en caliente. Las dos temperaturas de extrusión se consideran ya que la solubilidad del titanio en el cobre aumenta con la temperatura. Por esto se quiere estudiar si al extruir a una mayor temperatura (850 °C), que la

normalmente usada (750°C), el titanio entra en solución sólida en un mayor porcentaje, el cual podría precipitar en una mayor cantidad de TiC, aumentando la resistencia al creep de la aleación.

Este tema esta enmarcado en el proyecto FONDECYT N° 1070294, de donde se obtendrán fondos para los materiales necesarios para desarrollar la presente memoria.

1.1 Objetivos

1.1.1 Objetivo General

 Estudiar el comportamiento mecánico, a través de ensayos de compresión en caliente y creep, de la aleación Cu-2,5%vTiC-2,5%vVC.

1.1.2 Objetivos Específicos

- Mejorar el procedimiento de fabricación de la aleación por el método de pulvimetalurgia.
- Comparar el comportamiento en compresión en caliente y creep como métodos de evaluación de la deformación en caliente.
- Comparar el ensayo de creep continuo con respecto al creep escalonado como métodos de evaluación de la deformación en caliente.
- Estudiar el efecto de la adición de los elementos aleantes: Ti y V, a los polvos de cobre en la textura de la aleación Cu 2.5 % v TiC 2.5 % v VC fabricada por el método de pulvimetalurgia.
- Comparar el efecto de diferentes temperaturas de extrusión de la aleación Cu 2,5 % v TiC 2,5 % v VC sobre su respuesta en la compresión en caliente y en creep.

Capítulo 2

Antecedentes

Una alta conductividad eléctrica para una aleación de base cobre se logra al ingresar partículas insolubles en la matriz, es decir, que no entren en solución [11]. Esto se debe a que los átomos que entren en solución con la matriz actuarán como concentradores de defectos que interrumpirán el desplazamiento de electrones. La actual manera de lograr la inclusión de estos dispersoides es la aleación mecánica.

2.1 Aleación Mecánica

La aleación mecánica es el proceso consistente en mezclar polvos en cierta proporción, colocar la mezcla dentro de un molino junto con un medio de atrición (generalmente bolas) y comenzar esta atrición por un período de tiempo determinado. El comportamiento dúctil inicial de los polvos provoca que el impacto a alta energía de las bolas los deforme plásticamente compactando y endureciéndolos, aumentando su tamaño y superficie, a través de microsoldaduras en frío. En esta etapa se forman compuestos de forma laminar que favorecen la difusión. Luego, dado su endurecimiento, se fragilizan y fracturan por los impactos y lafatiga, fragmentándose y reduciendo nuevamente su tamaño. De este proceso se obtienen soluciones sólidas, fases amorfas o compuestos intermetálicos [4], [8].

El constante impacto continuo de las bolas refina el tamaño de grano, el espaciamiento entre capas disminuye y el número de capas que componen la partícula aumenta. Después de un cierto número de horas de molienda se alcanza un estado de equilibrio entre la soldadura y la fractura, obteniéndose una distribución angosta de tamaño de partículas micrométricas y un tamaño de grano nanométrico.

Figura 2.1: Imágen, obtenida con SEM, de la morfología en forma de hojuela (laminar) de los polvos molidos de Cu-2,5 %v *Al*₂*O*₃-2,5 %v TiC [9].

La evolución del proceso se ilustra en la figura 2.2.

Figura 2.2: Evolución del tamaño de los polvos en función del tiempo. [9]

2.1.1 Molienda Reactiva

La molienda reactiva es un caso particular de la aleación mecánica, ya que se forman dispersoides *in situ* provocada por la reacción en estado sólido de los polvos con un elemento reactivo.

Esta molienda permite obtener una microestructura refinada y la obtención de compuestos como

óxidos, nitruros y carburos dependiendo del elemento reactivo utilizado [9]. Esto ocurre introduciendo en la matriz de cobre átomos de Ti, V y C en solución sólida para que los carburos precipiten en la extrusión en caliente.

La molienda reactiva ha sido utilizada exitosamente para la inclusión de dispersoides en matrices metálicas [14].

2.1.2 Molino Atritor

Un molino convencional de bolas consiste en un tambor horizontal, lleno hasta la mitad con bolas de acero. Al rotar el tambor, las bolas golpean los polvos contra el contenedor y contra las demás bolas. El grado de atrición aumenta con la velocidad de rotación, pero a altas velocidades la fuerza centrífuga excede a la gravedad y las bolas se pegan a las paredes del tambor [8].

El molino atritor, en cambio, consiste en un tambor contenedor vertical con un eje de aspas perpendiculares en el centro. El tambor contiene los polvos, los elementos reactivos y las bolas las cuales son impulsadas por las aspas para que se golpeen entre si y contra los polvos. Esto permite altos niveles de energía en la molienda. El molino atritor es capaz de procesar grandes cantidades de polvos (entre 0,5 a 40 kg) de una sola vez, para velocidades de rotación superiores a 250 rpm. [9].

El esquema de un molino atritor típico se muestra en la figura 2.3.

Figura 2.3: Esquema del contenedor del molino atritor. [9]

2.2 Mecanismo de Endurecimiento

El principal mecanismo de deformación plástica a bajas temperaturas es el movimiento de dislocaciones dentro de la red cristalina. Al dificultar este movimiento de dislocaciones se aumenta la dureza y la resistencia a la deformación plástica, que es el objetivo de esta investigación. Dentro de los principales mecánismos de endurecimiento se encuentran el refinamiento del tamaño de grano, solución sólida, dispersión, precipitación y deformación plástica [16]. Se profundizará el mecanismo de dispersión que es el que se está investigando.

2.2.1 Endurecimiento por Dispersión

El endurecimiento por dispersión consiste en introducir pequeñas partículas indisolubles de alta dureza en el material matriz para obstaculizar el movimiento de las dislocaciones, anclar los bordes de grano e inhibir el proceso de recristalización.

El mecanismo actúa de dos formas diferentes según la interfase de la partícula dispersoide con la matriz. Las dislocaciones cortarán a la partícula coherente.

Las dislocaciones se arquearán con respecto a las incoherentes, para evitar el obstáculo, dejando un anillo de dislocación alrededor de la partícula dispersoide. En este mecanismo, el esfuerzo τ debe empujar a la dislocación entre de los obstáculos que forman las partículas. Una vez que la dislocación ha avanzado lo suficiente, la fuerza necesaria para superar el obstáculo disminuye y ésta puede escapar. La configuración crítica ocurre en la forma semicircular 2.4, en donde la fuerza τbL del segmento entre los dos obstáculos se iguala a la fuerza 2T debido a la tensión de la línea, actuando en ambos lados del avance [12]. La dislocación escapa (y hay fluencia) cuando:

$$\tau_y = \frac{2T}{bL} \tag{2.1}$$

El obstáculo genera una resistencia de $f_0 = 2T/L$. Se puede apreciar que mientras las partículas estén mas cercanas entre si, se produce mayor endurecimiento.

Se tiene una mejor aproximación en la ecuación de Orowan:

$$\sigma_{Orowan} = \frac{MGb}{1,18 \cdot 2\pi\sqrt{1-v}} \ln(\frac{r}{b}) \frac{1}{\lambda}$$
(2.2)

Donde M es el factor de Taylor, G es el módulo de rigidez, b es el vector de Burgers y n es la razón de Poisson; todos estos parámetros pertenecen a la matriz. El radio de la partícula es r y el espaciamiento entre ellas es l. Este modelo se acepta como el predominante a bajas temperaturas en aleaciones endurecidas por dispersión, sin embargo a altas temperaturas su relevancia es menor [8].

(a) Etapa de aproximación

(c) Etapa crítica

(d) Etapa de escape

Figura 2.4: Obstaculización del movimiento de dislocaciones [12].

Además, las partículas también sirven como obstáculos para el crecimiento de los bordes de grano. Esto ayuda a mantener la dureza del material en situaciones de altas temperaturas en donde la difusión atómica es más fuerte y el grano tiende a crecer (asumiendo que dichas partículas son termodinámicamente estables a dichas temperaturas). Zenner modeló la influencia de pequeñas partículas esféricas de radio r y con una fracción volumétrica en el material F_v , concluyendo que la presión que se generaba por estos agregados P_s , que corresponde a la resistencia al crecimiento del grano, está dada por [6]:

$$P_s = \frac{3F_v\gamma}{2r} \tag{2.3}$$

De esto se concluye que para aumentar la resistencia al crecimiento de grano por este mecanismo se debe aumentar la fracción volumétrica de partículas y/o disminuir su tamaño.

2.3 Partículas dispersoides

En el proceso de aleado se aplican diferentes mecanismos de endurecimiento como la inclusión de dislocaciones a través de deformación plástica y refinamiento de grano por fractura. Sin embargo estos mecanismos se pierden a altas temperaturas dada la recristalización del cobre.

Es por esto que el mecanismo de endurecimiento por dispersión contempla la inclusión de partículas que deben poseer propiedades mecánicas adecuadas [13]:

- Estabilidad termodinámica: las partículas deben ser estables a altas temperaturas, sin transformaciones de fase hasta 1300 K y deben ser compatibles con la matriz. Contempla, además, que no aumenten su tamaño debido a la difusión de átomos de la matriz hacia ellas que puedan formar compuestos más estables que las partículas iniciales y que sean indisolubles.
- Resistencia mecánica: las partículas deben maximizar el esfuerzo a la deformación. Para esto su tamaño debe ser nanométrico, deben estar dispersas uniformemente y su solubilidad y difusividad en el cobre deben ser bajas.
- *Bajo efecto sobre la conductividad:* las partículas no deben permanecer en solución sólida después del tratamiento térmico, ya que esto afecta la conductividad térmica y/o eléctrica de la aleación.
- Disponibilidad: se debe considerar la disponibilidad de las materias primas.

Las horas de molienda, una de las variables a controlar en el diseño de la experiencia, apuntarán a las 30 horas. Trabajos anteriores [5][4] han mostrado que la inclusión de titanio y vanadio necesarios para una formación teórica de los carburos necesarios se alcanza a lograr en un 80% su formación.

2.3.1 Carburo de Titanio (TiC)

Los TiC son muy útiles para estas aplicaciones ya que no se disuelven en la matriz ni presentan crecimiento a altas temperaturas, por lo que son altamente estables bajo estas condiciones [6]. Se ha encontrado que durante el proceso de molienda reactiva de polvos de Cu, Ti y C no se logran formar TiC. Se ve que éstos se forman durante el proceso de extrusión en caliente [3], o de recocido en el caso del segundo [17]. Esto implicaría que el Ti entra en solución sólida dentro del Cu durante el proceso de extrusión y precipitaría como TiC durante el posterior enfriamiento. Se han analizado en detalle el proceso de formación de TiC en una matriz de Cu mediante molienda reactiva, revenido de los polvos y posterior extrusión en caliente [17].

Se observó que que durante la molienda las partículas de grafito sólo formaron pequeñas nanoinclusiones amorfas en la matriz de CuTi. Se propuso que la formación de los TiC se debe a la nucleación heterogénea de estas partículas en la interfaz Cu/C(Ti), en donde la difusión de Ti desde la matriz hacia las partículas de grafito es el proceso principal de transporte y formación de ellas. Se encontró que las partículas se encuentran distribuidas tanto en el borde de grano como en el grano mismo, encontrándose las más pequeñas (5nm) dentro del grano y las más grandes (60nm) en el borde de grano. Más importante, se encontró que las partículas de TiC (tanto en el grano como en sus bordes) adoptan una orientación preferente dentro de la matriz, generando una interfaz semi-coherente con ésta. Esta semi-coherencia permite que las partículas impiden con gran efectividad el avance del borde de grano [18].

Espinoza *et al.* [14] fabricaron aleaciones de composición nominal $Cu - 2,5\% vTiC - 2,5\% vAl_2O_3$ por este método y comparó el efecto de utilizar dos líquidos de molienda, metanol (CH_3OH) y hexano (C_6H_14). Se concluyó que era recomendando utilizar el último, debido a que la presencia de oxígeno en el primero genera demasiados óxidos de Ti en el proceso de molienda, los cuáles son muy estables incluso en la extrusión en caliente. Estos óxidos dificultan la formación de TiC, ya que ocupan el Ti presente orginalmente en los polvos.

Figura 2.5: Dureza a temperatura ambiente en Cu y aleaciones de Cu, medida después de 1 h. de recocido a diferentes temperaturas.

Luego de una molienda de 20 horas de duración se detectaron partículas de TiC al interior del cobre extruído, observándose un crecimiento totalmente coherente con la red de Cu. Otras partículas observadas estaban formadas por C,Ti y O, además de la existencia de partículas de Cu y partículas de Fe con Cu cuya existencia es atribuida a una contaminación proveniente del molino atritor durante el proceso de molienda. Dentro de ésta experiencia, se ha podido verificar que efectivamente las partículas

precipitadas ejercen un efecto positivo sobre la resistencia al ablandamiento por recocido (mediante ensayos de microdureza). Además un resultado importante es que en este caso se observó que la adición de dispersoides coherentes TiC (supuestos coherentes con la matriz de cobre) y dispersoides de Al_2O_3 (supuestos incoherentes con la matris de cobre), redunda en una mayor dureza y resistencia al ablandamiento que en los casos donde se aplicaban iguales concentraciones en volumen, pero de un solo tipo de dispersoide. Posteriormente, Figueroa [6] demostró que el $Al_2O_3 - \alpha$ es coherente con la matriz de cobre. Así también Sauer *et al.* encontró que el TiC es semicoherente con la matriz de cobre.

En las últimas experiencias, Egaña [4] no encontró presencia de carburos después de la molienda, se presume que estos se formarían después de la extrusión.

2.3.2 Carburo de Vanadio (VC)

Las experiencias con carburos de vanadio no son tan amplias como las del carburo de titanio.

Existe una experiencia anterior de Zamorano [15], donde se apuntaba a la obtención de una aleación Cu - 5 % vVC mediante molienda reactiva. Los resultados obtenidos corresponden a una aleación mecánica realizado en un molino atritor durante 20 horas. En éstos resultados se presentan evidencias que demuestran que se logra una admisión de átomos de vanadio en la red de cobre. Sin embargo, ensayos de resistencia al ablandamiento denotan que no existen partículas de carburo de vanadio presentes en la red de las partículas de Cu, al observarse un brusco descenso en la dureza de recocido a 900°C durante 1 hora; no observándose el efecto esperado en la retención del tamaño de grano si es que existieran partículas de VC. En este mismo trabajo, mediante ánalisis EDS se logra identificar que existe una distribución homogénea de vanadio en las partículas de cobre, logrando un 4.94 %v de inclusión de vanadio en cobre.

Así también en las últimas experiencias con carburos de vanadio [4], [5] no se encontraron indicios definitivos de la presencia de carburos posteriores a la molienda. Sin embargo, se encontraron resultados de difracciones que muestran probables presencias, además de un alza en la microdureza de las probetas extruídas.

En las últimas experiencias [5] se encontró presencia de carburos después de la molienda. Estos carburos se encontraron en forma indirecta por medio de la difracción en el TEM.

2.4 Termofluencia (Creep)

El fenómeno de termofluencia en la deformación plástica de un material sometido a una carga constante, menor al límite de fluencia, en el tiempo y a altas temperaturas, mayores a 0,3 veces la temperatura de fusión. Por lo tanto, la deformación deja de depender sólo del esfuerzo y pasa a ser una función dependiente del esfuerzo, tiempo y temperatura [9]. La curva de creep de la figura 2.6 muestra las tres zonas de evolución del creep en el tiempo:

- 1. Zona primaria: zona poco relevante. Aquí la deformación puede suponerse elástica.
- 2. Zona secundaria: zona de mayor importancia debido a que se mantien por largo tiempo.
- 3. *Zona terciaria:* zona donde se producen cavidades en los bordes de grano, que terminan causando la fractura.

Figura 2.6: Curva de creep.

La zona secundaria de la curva del creep es la más interesante de estudiar. Durante el estado estacionario la curva puede ser descrita por la ecuación 2.4, el gráfico en escala logarítmica se muestra en la figura 2.7:

$$\dot{\varepsilon} = B\sigma^n$$
 (2.4)

Donde $\dot{\varepsilon}$ es la tasa de deformación, *B* es una constante, σ es el esfuerzo y *n* es el exponente de esfuerzo.

Figura 2.7: Variación-esfuerzo.

Al graficar el logaritmo natural de $\dot{\varepsilon}$ versus el recíproco de la temperatura absoluta, presente en la figura 2.8, se puede deducir la ley de Arrhenius que se expresa por la ecuación 2.5, que describe la naturaleza difusional de esta zona.

$$\dot{\varepsilon} = C e^{-Q/RT} \tag{2.5}$$

Donde C es una constante, Q es la energía de activación del creep y R es la constante de los gases.

Figura 2.8: Gráfico de la variación del logaritmo natural de la tasa de deformación con el recíproco de la temperatura absoluta.

Combinando las ecuaciones anteriores se obtiene la ecuación 2.6 y que describe la tasa de deformación del creep en la zona secuandaria.

$$\dot{\varepsilon} = A\sigma^n e^{-Q/RT} \tag{2.6}$$

Donde A es una constante.

El daño que produce el creep es acumulativo y se origina mediante cavidades en los bordes de grano. El inicio de este proceso empieza en el creep terciario y va aumentando hasta la fractura final como se aprecia en la figura 2.9 [9]:

Figura 2.9: Gráfico del daño acumulado en el creep por medio de cavidades en los bordes de grano.

2.4.1 Mecanismos de Creep

Existen dos mecanismos de creep: por dislocaciones y por difusión. Ambos están controlados por la difusión, por ende siguen la ley de Arrhenius.

2.4.1.1 Creep por dislocaciones

El creep por dislocaciones ocurre por la difusión de átomos de los planos superiores (o inferiores) al plano de deslizamiento, que al moverse permiten el ascenso de la dislocación. Cuando el átomo difunde, la dislocación puede ascender debido al esfuerzo de reacción que le ejerce el precipitado. Si una dislocación es bloqueada por un precipitado es muy poco probable que la dislocación lo impacte en la mitad (lo que balancearía la fuerza de corte con la reacción del precipitado), por lo que existe una componente de la reacción que empuja la dislocación fuera del plano de deslizamiento. AL aumentar la temperatura aumenta la cantidad de vacancias, que permiten que los átomos difundan, y se generan los espacios necesarios para el ascenso de dislocaciones. La dependencia con el esfuerzo se explica por su relación con la componente de la reacción del precipitado que fuerza el ascenso de la dislocación. Es decir, si la fuerza es grande, entonces aumenta la velocidad de las dislocaciones para sobrepasar los precipitados. El esquema de la interacción de la dislocación con el precipitado y las fuerzas que se generan aparecen ilustradas en la figura 2.10.

Figura 2.10: Ilustración del mecanismo de creep por dislocaciones.

Para que la dislocación pueda ascender debe producirse una diferencia de concentración que incite la difusión atómica (ley de Fick), para así producir vacancias y la dislocación podrá esquivar el precipitado. El coeficiente de difusión de vacancias se puede calcular con la ecuación 2.7.

$$D = D_0 e^{-Q/RT} \tag{2.7}$$

2.4.1.2 Creep por difusión

Al reducirse el esfuerzo, el creep por dislocaciones decrece rápidamente (disminuye el valor de n) y un nuevo mecanismo comienza a operar, el creep por difusión. Cuando el grano se deforma por un esfuerzo aplicado, se produce una difusión atómica dentro del cristal hacia las caras traccionadas[9].

Figura 2.11: Ilustración del mecanismo de creep por difusión.

La tasa de creep depende del coeficiente de difusión D y del esfuerzo σ , que actúa como la fuerza impulsora de la difusión. También depende del tamaño del grano d, ya que en un grano mayor los

átomos tienen que difundir más. La tasa de deformación queda descrita por la ecuación 2.8:

$$\dot{\varepsilon} = C \frac{D\sigma}{d^2} = \frac{C'\sigma e^{Q/RT}}{d^2}$$
(2.8)

Donde *C* y $C' = CD_0$ son constantes.

2.4.2 Creep en materiales endurecidos por dispersión

Si sólo ocurre el proceso de Orowan, el esfuerzo para mover dislocaciones es afectado levemente por la temperatura. La primera teoría al respecto [10] asumía que el ascenso local de dislocaciones ocurría en precipitados de forma cúbica, mientras que la línea de dislocación de mantenía en el plano de deslizamiento. Un efecto importante que fue descubierto por Nardone et al. [11] es la interacción atractiva de una partícula y una dislocación. Mediante microscopia electrónica se pudo observar que las dislocaciones se mantenían adheridas a las partículas incoherentes, y que la dislocación necesitaba de un esfuerzo umbral para separarse del dispersoide. El problema se analizó por muchos autores [13] mediante el planteamiento de un factor k, definido como la razón entre la energía lineal de un segmento de dislocación en la interfase (T_p) y su energía lineal en la matriz (T_L) quedando la expresión 2.9.

$$T_p = k T_L \tag{2.9}$$

Donde k = 1 representa el caso en que la partícula no atrae ni repele a la dislocación, mientras que k = 0 se aproxima al caso en que la partícula ha sido desprendida de la matriz y se comporta como cavidad.

Los cálculos fueron refinados posteriormente considerando una partícula esférica [12], lo que redujo la energía de activación. El modelo obtenido queda expresado por la ecuación 2.10.

$$\dot{\varepsilon} = CDexp\left(\frac{-\mu b^2 r}{k_B T} \left((1-k)(1-\frac{\sigma}{\sigma_d})\right)^{3/2}\right)$$
(2.10)

Donde $C = 6\lambda \rho I/b$, ρ es la densidad de dislocaciones y 2λ representa el camino libre promedio de un segmento de dislocación que ha sobrepasado un obstáculo. El coeficiente de autodifusión es D, r es el radio de las partículas, y $\sigma_d = \sigma_{Orowan} \cdot \sqrt{1-k^2}$.

A partir de la ecuación 2.10 se pueden obtener las expresiones que permiten calcular el parámetro k y evaluar la interacción de los dispersoides con las dislocaciones para un sistema particular. De este modo el valor del exponente de esfuerzo aparente nap se obtiene derivando la expresión 2.11:

$$n_{ap} = \frac{d \ln(\dot{\varepsilon})}{d \ln(\dot{\sigma})} = \frac{3Gb^2r}{ek_BT}(1-k)^{3/2}(1-\frac{\sigma}{\sigma_d})^{1/2}\frac{\sigma}{\sigma_d}$$
(2.11)

De forma similar al derivar la ecuación 2.11 con respecto a la temperatura se obtiene:

$$\frac{\sigma}{\sigma_d} = \left(\frac{3(Q_{ap} - Q_v)}{2RTn_{ap}(1 - \frac{dG}{dT}\frac{T}{G})} + 1\right)^{-1}$$
(2.12)

Donde Q_v es la energía de activación para la difusión de vacancias y $Q_{ap} = (d \ln(\dot{\epsilon})/dT)\sigma/GRT^2$ es la energía de activación aparente evaluada en el esfuerzo normalizado. La expresión para k se obtiene despejando la ecuación 2.12:

$$k = 1 - \left(\frac{2k_B T n_{ap}}{3Gb^2 r_d (1 - \frac{\sigma}{\sigma_d})^{1/2} (\frac{\sigma}{\sigma_d})}\right)$$
(2.13)

Reemplazando las ecuaciones anteriores se obtiene una expresión para calcular k en función de dos valores experimentales, n_{ap} y Q_{ap} . El deslizamiento de límites de grano es un mecanismo que puede ser controlado por el creep difusional.

Este mecanismo produce una disminución en el exponente esfuerzo. La generación y aniquilación de vacancias requiere de movimiento de dislocaciones de bordes de grano las que tendrían que superar los dispersoides de los bordes de grano [9]. Para considerar este efecto se propone un modelo alternativo que considere el anclaje que producen los dispersoides en los bordes de grano, descrito por la ecuación 2.15.

$$\dot{\varepsilon} = \frac{4D_v L\rho_{bg}}{d_g b_{bg}} \cdot exp\left(\left(\frac{G b_{bg}^2 r}{k_B T} \left((1-k)(1-\frac{\sigma}{\sigma_d})\right)^{3/2}\right)\right)$$
(2.14)

Donde ρ_{bg} es la densidad de dislocaciones en los bordes de grano y b_{bg} es el vector de Burgers de las dislocaciones de bordes de grano ($b_{bg} = 0.5b$ a 0.3b).

Se ha demostrado en investigaciones recientes [14, 15] que la molienda reactiva es capaz de producir dispersoides que efectivamente aumentan la dureza del material. Introduciendo dos tipos de dispersoides en la matriz de cobre, uno de interfase semicoherente, y el otro de interfase incoherente. Se analizó el efecto sobre la microdureza y la compresión en caliente para el cobre endurecido con cada dispersoide por separado y el efecto de ambos. Los resultados obtenidos indican que el mecanismo de refuerzo es más efectivo cuando ambos dispersoides actúan simultáneamente, ya que así dificultan el creep por

dislocaciones y por difusión[15].

2.5 Caracterización de materiales

2.5.1 Difracción de rayos X (DRX) [6]

La difracción de rayos-x (DRX) es uno de los principales y más antiguos mecanismos para el estudio detallado de la estructura de materiales cristalinos. El procedimiento consiste en irradiar rayos-x sobre la muestra en un rango angular de incidencia y recolectando la información de la radiación refractada por la muestra.

Figura 2.12: Interferencia constructiva (izquierda) y interferencia destructiva (derecha).

La ecuación que explica este fenómeno es la llamada Ley de Bragg, que indica a que ángulo la estructura cristalina creará interferencia constructiva en la señal recibida. Esto ocurrirá cuando la ondas emitida por los átomos de una red cristalina estén en fase, creando interferencia constructiva y generando un peak en la señal. La ley de Bragg indica cuándo ocurre este peak en la señal.

$$n\lambda = 2dsen(\theta) \tag{2.15}$$

En donde *n* es un enterno positivo, λ es la longitud de onda, *d* es la distancia interplanar y θ es el ángulo incidente de la radiación.

2.5.1.1 Análisis de perfil de DRX

Los perfiles de difracción presentan formade peaks ubicados en los ángulos que predecide la ley de Bragg (por la geometría del experimento, los resultados se muestran en función del ángulo 2θ), los

cuáles varían en posición, intensidad y ancho dependiendo de lamuestra analizada [6].

Figura 2.13: Patrón de análisis de DRX.

Un corrimiento del centro de los peaks en al ángulo θ indica que las distancias interplanares d se han modificado. En el caso de este estudio, dicho fenómeno se atribuiría principalmente a la inserción de particulas en solución sólida a la matriz de Cu, lo que generaría una distorsión en la red cristalina.

El ancho de dichos peaks provee lamayoría de la información acerca de la estructura cristalina de la muestra, ya que se ve afectado tanto por el tamaño de cristalita promedio L, como la microdeformación de las distancias interplanares, $e \approx \Delta d/\bar{d}$. El ancho de los peaks se mide (en radianes y en la escala 2 θ) como el ancho equivalente de un triángulo isóceles a media altura, cuyo centro corresponde al centro del peak y cuya área sea igual a la integral de éste. Esta medida se conoce como el ancho integral o *Integral Breadth* (IB) y es la que predice de mejor forma la contribución de los distintos anchos de los perfiles.

Antes de analizar la contribución de ambos factores al ancho del peak, es muy importante notar que el ancho medido directamente de los resultados está afectado por un error experimental, ya que inevitablemente el equipo aporta a dicho parámetro, dándole un tamaño más alto del esperado. Para detectar este error se realiza primero un análisis de DRX a una muestra patrón (en este caso, una muestra de Cu recocido), y luego el ancho medido de ésta B_{ins} es restado del valor medido de las demás muestras $B_{e\times p}$, para obtener el ancho "'verdadero"' de la muestra a analizar β . Sin embargo, la manera en que ambas contribuciones afectan al resultado final no es necesariamente una lineal, ya que depende de que curva se asume representa el perfil de difracción.

Figura 2.14: Aporte de diferentes fuentes al ensanchamiento del peak de difracción. Maximov [7].

Existen 3 tipos de distribuciones asumidas comunmente para describir estos perfiles, cada uno de los cuáles se han derivado de la manera en que distintos fenómenos afectan el ensanchamiento, como el ensanchamiento por efecto Doppler y por colisión, entre otros. Dichas distribuciones son (con su función de distribución de probabilidades o PDF):

Gaussiana o normal:

$$f(x, x_0, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(\frac{-(x - x_0)^2}{2\sigma^2}\right)$$
(2.16)

En donde x_0 corresponde al centro del peak (promedio) y σ^2 a la varianza.

Lorentziana o Cauchy:

$$f(x, x_0, \gamma) = \frac{1}{\pi} \left(\frac{\gamma}{(x - x_0)^2 + \gamma^2} \right)$$
(2.17)

En donde x_0 corresponde al centro del peak y γ al ancho del peak a la mitad de su altura total (FWHM).

Pseudo-Voigt: Esta distribución es una simplificación de la distribución de Voigt, cuya PDF es la convolución de una curva Gaussiana y una Lorentziana. Esta distribución asume entonces que el ancho del perfil total está compuesto por una combinación de dos aportes, cada uno con su distribución correspondiente. Debido a que esta distribución queda definida con una integral complicada de computar

rápidamente, es poco práctica a la hora de manipular datos, por lo que se definió a la pseudo-Voigt simplemente como una combinación lineal de ambas distribuciones:

$$f(x, x_0, \sigma) = \eta \frac{1}{\sigma \sqrt{2\pi}} exp\left(\frac{-(x - x_0)^2}{2\sigma^2}\right) + (1 - \eta) \frac{1}{\pi} \left(\frac{\gamma}{(x - x_0)^2 + \gamma^2}\right)$$
(2.18)

 ${
m con}\; 0 < \eta \leq 1$

Asumiendo estas distribuciones, las contribuciones del ancho de cada término a la hora de corregir el error instrumental quedan como:

 Tanto β como B_{ins} siguen una distribución de Cauchy, por lo que Bexp también se debe parametrizar mediante esta distribución (caso CC):

$$B_{exp} = \beta + B_{ins} \tag{2.19}$$

 Tanto β como B_{ins} siguen una distribución de Gauss, por lo que Bexp también se debe parametrizar mediante esta distribución (caso GG):

$$B_{exp}^2 = \beta^2 + B_{ins}^2$$
 (2.20)

 β sigue una Gaussiana y B_{ins} sigue una distribución de Cauchy (caso CG), por lo que B_{exp} se debe parametrizar mediante una distribución pseudo-Voigt:

$$\frac{\beta}{B_{exp}} = 1 - \left(\frac{B_{ins}}{B_{exp}}\right)^2 \tag{2.21}$$

2.5.1.2 Determinación del tamaño medio de cristalita y la microdeformación

Una vez obtenido el valor de β , se pueden determinar las contribuciones a éste por parte del tamaño de cristalita L y por la microdeformación de la distancias interplanares e. El primer factor influye ya que a menor tamaño de cristalita hay una mayor dispersión en el ángulo de difracción, lo que genera un ensanchamiento de los peaks correspondientes. La contribución de dicho factor al ensanchamiento es la llamada ecuación de Scherrer:

$$B_{S} = \frac{K\lambda}{Lcos(\theta_{b})}$$
(2.22)

En donde K es un factor de forma, que en el cobre alcanza un valor de 0,9 y θb corresponde al ángulo de difracción del peak correspondiente o ángulo de Bragg.

Por otra parte, el aporte de la microdeformación es:

$$B_D = 4etan(\theta_b) \tag{2.23}$$

En donde $e \approx \Delta d/\bar{d}$ es un límite superior aproximado para la distorción de las distancias interplanares. Este valor se relaciona con el módulo raíz del promedio de la deformación como:

$$e = 1,25 < \varepsilon^2 > \tag{2.24}$$

Método de Williamson-Hall La metodología de Williamson-Hall asume que ambas contribuciones siguen una distribución de Cauchy y que existe un ensanchamiento de los peaks que es independiente del tamaño de cristalita y de la microdeformación [7] por lo que el ancho total queda simplemente determinado por:

$$\beta \cos(\theta_b) = \frac{\kappa \lambda}{L} + 4 esen(\theta_b)$$
(2.25)

Luego, mediante una regresión lineal, tomando $Y = \beta cos(\theta)$ y $X = cos(\theta)$ se pueden obtener los valores de *L* y *e* a partir de la pendiente de la recta y su interesección con el eje Y.

Método de Klug-Alexander Similarmente, la metodología propuesta por Klug y Alexander asume que β_S y β_D siguen una distribución de Gauss y Cauchy respectivamente. El valor resultante de β queda entonces determinado por:

$$\frac{\beta^2}{\tan^2(\theta_b)} = \frac{\kappa\lambda}{L} \left(\frac{\beta}{\tan(\theta_b) \operatorname{sen}(\theta_b)}\right) + 16e^2$$
(2.26)

El cambio de variables correspondiente para este caso es $Y = (\beta/tan(\theta))^2$ y $X = (\beta/tan(\theta)sen(\theta))$.

Se ha estudiado la correspondencia entre el tamaño de cristalita predecido por estos dos métodos con los valores medidos mediante observaciones en TEM de muestras de polvos de Al molidos criogénicamente [19]. Dichos polvos resultaron tener tamaños de cristalita nanométricos, y se encontró que el método que tenía mejor correspondencia con las observaciones por TEM era el método de Klug y Alexander.
2.5.1.3 Densidad de dislocaciones [7]

Un metodo sencillo para evaluar la densidad de dislocaciones es el mostrado en la ecuacióna 2.27. Cabe señalar que para utilizar este método, se debe contar con un valor de $i \varepsilon^2 i$.

$$\rho = \frac{\kappa_{hkl} < (\varepsilon_L^2)}{a_0^2} \tag{2.27}$$

donde: a_0 es el parámetro de red $(a_0(Cu) = 3,615[A^\circ])$ y K_{hkl} una constante $(K_{hkl}(Cu) = 40)$

2.5.1.4 Textura [8]

Fetch [27] estudió los cambios de fase y la evolución del tamaño de grano mediante difracción de rayos X, y logró identificar tres etapas en la formación de nanoestructuras a partir de polvos micrométricos durante la aleación mecánica, como se ve en la figura 2.15:

- 1. La deformación se localiza en bandas de corte que consisten en arreglos de dislocaciones de alta densidad distribuidos dentro de la muestra.
- 2. Las dislocaciones se recombinan y eliminan para formar subgranos de bajo ángulo dentro del grano individual. Durante esta etapa se logra una estabilización en la densidad de dislocaciones y la deformación empieza a depender del deslizamiento de los bordes de grano. Los subgranos alcanzan tamaños del orden nanométrico y se extienden a toda la muestra al continuar la molienda.
- 3. La orientación de los cristales se vuelve aleatoria con respecto a los vecinos.

Este comportamiento es típico de los cristales b.c.c., donde las primeras dos etapas producen una rápida disminución del tamaño de grano hasta alcanzar un valor entre 30 y 20 nm, mientras que en la tercera el tamaño decrece mucho más lento hasta los 10 nm.

Figura 2.15: Esquema de la evolución microestructural durante la aleación mecánica. La figura (a) muestra una distribución homogénea de dislocaciones, (b) formación de la celda alargada de dislocaciones, (c) bloqueo de dislocaciones por los bordes de subgrano, (d) rompimiento del subgrano alargado y (e) reorientación de los bordes de subgrano.

Predecir la formación de textura es un proceso extremadamente complejo que depende del material, del proceso de deformación y del cambio geométrico que se produce en la forma. Por ello existe una lista en que la formación de textura se ha categorizado de acuerdo al estado final y proceso de deformación involucrado, por ejemplo, laminado, tracción, compresión y deposición. El caso particular de la aleación mecánica puede considerarse como la suma de dos procesos básicos: compresión y laminado, como se puede apreciar en la figura 2.16.

Figura 2.16: Figura esquemática de los distintos tipos de impacto durante la aleación mecánica, donde (a) es un impacto directo, (b) es un impacto oblicuo y (c) un impacto múltiple.

2.5.2 Dureza y microdureza [8]

La dureza de un material es la resistencia a la deformación plástica localizada. Existen distintas formas de medir la dureza, los métodos se distinguen básicamente por: la forma de la herramienta empleada

(indentador), las condiciones de aplicación de la carga y la manera de calcularla o definirla. La elección del método para determinar la dureza depende del tipo, dimensiones y espesor de la muestra.

Microdureza Vickers En el ensayo de microdureza Vickers se emplea una pirámide de diamante de base cuadrada como indentador. Las caras opuestas de la pirámide forman un ángulo de 136°, que corresponde a la relación óptima de diámetro de huella del ensayo Brinell. La microdureza Vickers se define como la relación entre la carga y el área de la superficie de la huella. En la práctica el área se calcula a partir de medidas microscópicas de la longitud de las diagonales de la huella. La ecuación 2.28 define la microdureza Vickers como:

$$HV = \frac{2Psen(\theta/2)}{L^2}$$
(2.28)

Donde *P* es la carga, θ es el ángulo que forman las caras opuestas de la pirámida y *L* es la distancia diagonal.

La literatura nos muestra las durezas de los diferentes compuestos a utilizar en la aleación.

Compuesto	Dureza Vickers
Cu	87
TiC	3200
VC	2800

 Compuesto
 Dureza Vickers

2.5.3 Densidad de material extruído

El material, al ser extruído y consolidado podría presentar porosidades no deseadas, por lo tanto es necesario llevar un control de esta porosidad. Para esto se debe calcular la densidad posterior a la consolidación y compararla con la densidad teórica del material. En este caso se considera la densidad del material considerando las partículas de TiC y VC y sus respectivas densidades:

$$\rho_{teorica} = \sum_{i} \alpha_{i} \rho_{i} \tag{2.29}$$

Donde α_i es la fracción en volumen del compuesto o elemento *i* y ρ_i es su densidad teórica. Las densidades teóricas se muestran en la tabla 5.2:

Elemento	Densidad teórica $[g/ml]$
Cu	8.96
VC	5.77
TiC	4.93

Tabla 2.2: Densidades teóricas de elemento o compuestos involucrados [4].

Se deberá considerar cierto número de probetas donde se mida densidad para disminuir el error asociado a la dispersión de los datos.

Capítulo 3

Metodología

La metodología específica que se siguió fue la presentada a través de las distintas experiencias en memorias anteriores. Su procedimiento se siguió según la planificación propuesta en ellas y en los antecedentes recopilados.

Se procederá a realizar una molienda de alta energía de 30 h. en el molino atritor con los polvos de cobre respectivos y una relación de bolas de 20:1. Se utilizará polvo de cobre obtenido de la cámara de guantes donde se preservan en una atmósfera inerte. Estos polvos se obtendrán en la relación necesaria para obtener la proporción específica de Cu - 2,5% v TiC - 2,5% vVC y se homogeneizarán. Para la formación de carburo de titanio (TiC) y carburo de vanadio (VC) se realizará la molienda con tolueno, aportando, éste último, la cantidad de carbono necesaria.

Los polvos secos de la aleación serán compactados de forma uniaxial (en frío), al interior de cápsulas que alimentarán la etapa de extrusión en caliente para la conformación de las probetas. La aleación será finalmente consolidada a través de ésta extrusión, la cual se realizará a 1023 K (750 °C) y a 1123 K (850 °C) y que servirá para comparar el efecto de las temperaturas de extrusión en el posterior análisis de deformación en caliente y creep.

Luego de evaluar las propiedades mecánicas y microestructurales de las diferentes probetas, se realizarán ensayos de creep y compresión en caliente. Las temperaturas y las cargas variarán registrando las diferentes curvas de creep.

La figura 3.1 muestra un esquema de la metodología a utilizar, la cual se explicará a continuación.

Figura 3.1: Esquema del flujo de la metodología.

3.1 Parámetros

3.1.1 Parámetros de molienda

- Razón de pesos bolas/polvos: 20:1
- Bolas de acero al carbono de 4.76 mm de diámetro (3/16")
- Líquido de molienda: tolueno
- Velocidad de molienda: 500 rpm (molino atritor).
- Atmósfera de molienda: Nitrógeno.
- Composición inicial de la aleación:
 - -Cu-3,2% vTiC-2,9% vVC

Dado que en trabajos anteriores no se lograron las adiciones de un 100 %, se estimaron las pérdidas de los elementos aleantes del trabajo de Egaña [4]. De esta manera se modificaron

las composiciones iniciales para que espués se tuviera en polvos la cantidad de elementos aleantes necesarios para la formación de los 2,5 % v de cada dispersoide.

• Tiempo de molienda = 30h.

3.1.2 Parámetros de extrusión

- 1. Razón de área de extrusión: 10:1
- 2. Temperatura de extrusión: 1023 K (750 °C) y 1123 K (850 °C).
- 3. Temperaturas y tiempos de calentamiento para las piezas utilizadas en la extrusión:
 - (a) Cápsula: 1023 K (750 °C) y 1023 K (850 °C) por 20 minutos.
 - (b) Matriz: 923 K (650 °C)por 60 minutos.
 - (c) Guía y punzón: 423 K (150 °C)por 60 minutos.

3.1.3 Parámetros de recocido

Temperaturas de recocido: T = 673K(400°C), 773K(500°C), 873K(600°C), 973K(700°C), 1073K(800°C) y 1173K(900°C),

por 1 hora. Luego, enfriamiento al aire a temperatura ambiente.

El recocido se efectuará para medir la estabilidad de los dispersoides formados *in situ* ante altas temperaturas.

3.1.4 Parámetros de compresión en caliente

- Velocidades de deformación: $\dot{\varepsilon} = 2x10^{-4}$ y $6x10^{-5}$
- Temperaturas de deformación: $T = 673K(400^{\circ}C), T = 773K(500^{\circ}C) \times 973K(700^{\circ}C)$

3.1.5 Parámetros de creep

Temperaturas	673 K (400 °C)	773 K (500 °C)
Carga 1 [<i>MPa</i>]	40	40
Carga 2 [<i>MPa</i>]	60	60
Carga 3 [<i>MPa</i>]	80	80
Carga 4 [<i>MPa</i>]	100	100

Tabla 3.1: Ensayo de creep a temperaturas y cargas constantes.

3.2 Respuestas

A lo largo de la investigación se controlarán las siguientes variables:

- Tamaño de cristalita de los polvos.
- Composición química de los polvos.
- Fases, tanto en polvos como en muestras extruídas.
- Microdureza de polvos y probetas extruídas sometidas a recocido.

3.3 Caracterización

3.3.1 Microdureza

Se realizan mediciones de dureza a los polvos molidos y a las probetas extruídas y recocidas.

3.3.2 Difracción de Rayos X

Se realizan análisis de difracción de rayos X (DRX) a los polvos después de la molienda y a las probetas extruídas para analizar las fases presentes en las muestras y determinar cualitativamente evolución del tamaño de grano y la inserción de partículas en solución sólida dentro de la matriz de Cu.

3.3.3 Microscopía de Transmisión (TEM)

Se realizan análisis de microscopía de transmisión a los polvos y a las probetas extruídas, para obtener micrografías. Luego se realiza una Difracción de Electrones (ED) para identificar fases en una pequeña área de la muestra y poder identificar mejor pequeñas partículas nanométricas.

3.4 Análisis Químicos

3.4.1 Análisis de V y Ti

Plasma por acoplamiento inductivo y espectrometría de emisiones ópticas, para determina el contenido de elementos pesados, Ti y Cu.

3.4.1.1 Análisis de O, N y C

Espectrografía Infraroja, para determinar el contenido de O, N y C (realizado por la empresa MOLYMET).

3.4.2 Equipos

Los equipos utilizados durante el desarrollo de la experiencia fueron los siguientes:

- Para la conservación de los polvos se utilizó una cámara de guantes con atmósfera de nitrógeno.
- Para transporte se utilizaron envases plásticos de doble tapa.
- Para homogeneización de polvos se uso un torno.
- Para la molienda se utilizó un molino atritor basado en el modelo Szegvari Attritor Grinding Mill de 350cc, 500 rpm y razón de bolas/mezcla = 20:1.
- Para la compactación y encapsulamiento se usó una prensa hidráulica de 8000 psi de capacidad y soldadura TIG.
- Para la extrusión se usó un horno tubular Adamel T2HT de resistencia eléctrica, un horno eléctrico Brasimet Platinum, un horno eléctrico Nobertherm N21/H, un variac Manutanga modelo MFG y una prensa hidráulica con bomba de 23 MPa (3400 psi ó 100 Ton) de capacidad.
- Para la caracterización se recurrió a un microdurómetro Leitz Weitzlar del departamento de materiales, al DRX del departamento de física y análisis químico en el departamento de geología y la empresa Molymet.

Capítulo 4

Procedimiento Experimental

A continuación se detalla el procedimiento y los materiales a utilizar para la realización de la experiencia.

4.1 Materiales utilizados

4.1.1 Polvos de cobre

Polvos de morfología dendrítica producidos por la empresa Ecka Granules. Las características entregadas por el fabricante son:

• Granulometría se muestra en la tabla 4.1.

Malla	Porcentaje
$> 80 \ \mu m$	0,0%
$> 63 \ \mu m$	0,8%
$>40 \ \mu m$	14,0%
$< 40 \ \mu$ m	85,2%

Tabla 4.1: Distribución de tamaño del polvo de cobre.

- Contenido de oxígeno: 0,07 %
- Densidad aparente: 1,86 g/ml
- Pureza: 99%

4.1.2 Polvos de titanio

Los polvos fueron producidos por la empresa Alfa Aesar. Las características entregadas por el fabricante son:

- Granulometría: bajo malla 325 (< 45 μ m)
- Pureza: 99,5%

4.1.3 Polvos de vanadio

Los polvos fueron producidos por la empresa Alfa Aesar. Las características entregadas por el fabricante son:

- Granulometría: bajo malla 325 (< 45 μ m)
- Pureza: 99,5%

4.1.4 Líquidos y gases

Tolueno (C_7H_8): tolueno de *grado análisis* adquirido en Arquimed S.A. Utilizado como líquido de molienda.

Alcohol Metílico o Metanol: alcohol de *grado técnico* provisto por Distribuidora Científica S.A. Utilizado como líquido de limpieza.

Nitrógeno: provisto por INDURA, con pureza del 99%

4.2 Preparación de los polvos

Para comenzar la molienda es necesario obtener las cantidades exactas de polvos, que se determinan a través de las proporciones volumétricas de la aleación. Las cantidades másicas exactas de polvos que se deben utilizar, dependen del volumen anteriormente determinado.

Las siguientes ecuaciones determinan éstas cantidades [13]:

$$X_{Cu} = \frac{(\rho \cdot \alpha)_{Cu}}{(\rho \cdot \alpha)_{Total}}$$
(4.1)

$$X_{C} = \frac{(\rho \cdot \alpha)_{TiC}}{(\rho \cdot \alpha)_{Total}} \cdot \frac{1}{a+1}$$
(4.2)

$$X_{Ti} = \frac{(\rho \cdot \alpha)_{TiC}}{(\rho \cdot \alpha)_{Total}} \cdot \frac{a}{a+1}$$
(4.3)

$$X_{C} = \frac{(\rho \cdot \alpha)_{VC}}{(\rho \cdot \alpha)_{Total}} \cdot \frac{1}{b+1}$$
(4.4)

$$X_{V} = \frac{(\rho \cdot \alpha)_{VC}}{(\rho \cdot \alpha)_{Total}} \cdot \frac{b}{b+1}$$
(4.5)

$$a = \frac{PA_{Ti}}{PA_C} \tag{4.6}$$

$$b = \frac{PA_V}{PA_C} \tag{4.7}$$

$$(\rho \cdot \alpha)_{Total} = (\rho_{Cu} \cdot \alpha_{Cu}) + (\rho_{TiC} \cdot \alpha_{TiC}) + (\rho_{VC} \cdot \alpha_{VC})$$
(4.8)

$$M_i = X_i \cdot M_{Total} \tag{4.9}$$

donde:

 X_i :Fracción en peso del elemento i. ρ_i :Densidad del elemento i en [g/ml]. α_i :Fracción volumétrica del elemento i. Pa_i : Peso atómico del elemento i en [g/mol]. M_{Total} : Masa total de la mezcla de polvos en [g]. M_i : Masa del elemento i en [g].

4.2.0.1 Aumento de la concentración nominal

Cabe señalar que en una experiencia anterior de Egaña [4], se logró incluir cerca de un 80 % de TiC y 75 % VC de la composición teórica necesaria para la formación nominal requerida en la molienda de 30 horas. En este caso se realizará la misma cantidad de horas de molienda por lo cual se agregó una mayor cantidad de la teórica considerando las concentraciones utilizadas en las pasadas experiencias. Este aumento de proporción de los elementos para lograr un acercamiento a la composición nominal está determinado por regla de proporciones.

La tabla 4.2 muestra la cantidad de gramos de polvos corregidos, que se determinaron aumentando la composición 1,25 veces, para compensar las pérdidas.

Elemento	Cantidad teórica [gr]	Cantidad corregida [gr]	
Cu	145,4	144,3	
Ti	1,7	2,12	
V	2	2,5	

Tabla 4.2: Ensayo de creep a temperaturas y cargas constantes.

Tabla 4.3: Densidades teóricas de elemento o compuestos involucrados [4].

Compuesto	Densidad teórica $[g/ml]$
Cu	8.96
VC	5.77
TiC	4.93

La obtención de los polvos se realiza desde la cámara de guantes ubicada en el Laboratorio de Superficies del Departamento de Física. Todo el procedimiento debe ser al interior de la cámara de guantes que protege los polvos de la oxidación a través de su atmósfera de nitrógeno.

Se introducen los frascos destapados en la antecámara de la cámara de guantes y se sella ésta. Se purga tres veces su atmósfera vaciando el aire con la bomba e introduciendo el gas inerte intermitentemente. Los polvos son pesados en una balanza digital e introducidos en frascos dentro de la cámara de guantes, etiquetándolos para su posterior uso.

La homogeneización de estos polvos se realiza en un torno haciendo girar el envase plástico de doble tapa a 50 rpm y en un ángulo de 45° con respecto al eje del frasco durante 30 min.

4.3 Molienda Reactiva

La molienda reactiva se realiza en un molino atritor, cuyo contenedor es de acero inoxidable. Antes del llenado del molino con los polvos y la molienda definitiva, se realiza el proceso de limpieza del contenedor y las bolas de molienda. Esto tiene como fin retirar el óxido, suciedad y restos de impurezas que se puedan encontrar de la molienda anterior. Para esto se llena el contenedor con un litro de alcohol metílico y la totalidad de las bolas de molienda y se hace funcionar el molino por una hora a velocidad constante. El contenedor debe quedar visiblemente limpio.

Luego se monta el eje dentro del contenedor y se ensambla al motor regulando la altura variable calculando que el eje y las aspas estén levemente por sobre el fondo del contenedor para no dejar espacios sin moler. Se aprietan los pernos cuidando que el contenedor quede bien sellado. Utilizando la apertura de la tapa del contenedor, se llena con la mitad de las bolas, se agrega la mitad del líquido de molienda y luego la totalidad de los polvos homogeneizados, se termina de llenar la otra mitad de bolas y la otra mitad del líquido. Se regula el caudal del gas inerte de argón dentro del contenedor a 500 ml/min, para

que se produzca una sobrepresión y no ingrese aire, que puede contaminar los polvos. Finalmente se acciona el sistema de refrigeración que consiste en un circuito de agua externo a la molienda.

Al finalizar la molienda se retira el contenedor y se procede a vaciar el contenido en un colador para separar las bolas del polvo molido. El proceso se realiza con el mismo líquido de molienda hasta que las bolas estén visiblemente limpias. Luego se secan los polvos evaporando el líquido bajo una luz alógena por dos horas procurando que la temperatura no sobrepase los 40°C y se introduce posteriormente dos horas más a un horno a una temperatura de 40°C.

4.4 Compactación y encapsulamiento de polvos

Se fabrica un cápsula a partir de un trozo cañería de cobre de 19.05 mm de diámetro interior (cañería de 3/4"') y 35 mm de largo, a la cual se le suelda una tapa de cobre de 1.5 mm de espesor en uno de los extremos, utilizando soldadura TIG. La tapa que cerrará la cápsula es de 1.5 mm de espesor, a la cual se le realiza una perforación de 6.4 mm. (1/4"') de diámetro y se le suelda un vástago fabricado a partir de una cañería de cobre de la misma medida y 100 mm. de largo.

La cápsula se debe limpiar sumergiéndola en una solución de ácido clorhídrico diluido al 30 % durante 5 min. Esto se debe a que la cápsula se oxida en el proceso de soldadura y se deben remover todos los restos indeseados.

Se pesa la cantidad necesaria de polvos que permita llenar la cápsula luego de una compactación a 7000 psi. Esta cantidad de polvo es cercana a los 50 gr. determinado en forma empírica.

Se monta la cápsula, los polvos y el punzón dentro de la matriz y se coloca todo el conjunto en una prensa hidráulica Buehler de 5 Ton de capacidad. Se compactan los polvos hasta alcanzar una presión máxima de 7000 psi. Debido a la alta presión, la cápsula se expande dentro de la matriz, quedando atascada. Para sacarla se ubica la matriz sobre una sufridera y nuevamente se monta en la prensa.

Finalmente se cierra la cápsula por medio de la soldadura TIG de la tapa que tiene el vástago. Los gases atrapados al interior de la cápsula se extraen usando una bomba de vacío Edwards RV3 conectada al mismo vástago. La cápsula se ubica sobre una placa calefactora Nuova Thermolyne a 80°C y se aplica vacío durante una hora o hasta alcanzar una presión inferior a 2 Pa. Finalmente se estrangula el vástago para mantener el vacío al interior de la cápsula.

4.5 Extrusión en caliente

El proceso de extrusión se realiza usando un nuevo diseño ideado por la empresa 3CIngenieros. Este nuevo sistema asegura que las matrices no queden atoradas en el momento de aplicar la presión y posterior enfriamiento de las piezas. Para esto hay un sistema de remoción del punzón desde la matriz.

Primero se baña la cápsula, la matriz y el punzón en grafito y se colocan en hornos. La cápsula a 750 °C por 20 min., la matriz a 650 °C por una hora y el punzón y la guía a 150 °C por una hora. La presión máxima de la prensa se fija en 1500 psi y la velocidad del pistón en 5 mm/s. La segunda extrusión se realiza de igual manera salvo la variación a 850 °C de la cápsula.

Para dar inicio a la extrusión se sacan todas las piezas de los hornos y se realiza el montaje lo más rápido posible para evitar el enfriamiento. Dentro de la matriz se vierte una cucharada de grafito y se coloca la cápsula dentro, luego se posiciona la guía y el punzón sobre la matriz y se ubica todo el conjunto en la prensa hidráulica sobre la guía de extrusión. Se acciona la prensa, deteniéndola cuando el borde inferior de la cabeza del punzón toca la guía. Se lleva el conjunto atascado (matriz, guía y punzón) con la barra extruída colgando a una prensa de tornillo, donde se corta la barra de material con una sierra.

El conjunto atascado se posiciona nuevamente en la prensa sobre la sufridera y se instala el conjunto botador, previamente lubricado con grafito. Se acciona la prensa hasta que el conjunto botador separa el punzón de la matriz.

4.6 Recocido

El recocido se hará en un horno de resistencias a las temperaturas indicadas por 1 hora en todas las muestras extruídas. Los polvos sin consolidar no serán recocidos.

4.7 Ensayos de compresión en caliente

Los ensayos de compresión en caliente se realizan para determinar el esfuerzo máximo a aplicar en los posteriores ensayos de creep. Se fabrican las probetas a ensayar procurando tornear cada una, extrayendo los bordes que son esencialmente parte de las cápsulas de cobre puro. Luego esta probeta moja completa y se introduce en grafito en polvo, procurando que las dos caras de la probeta queden embarradas de grafito. Posteriormente se coloca dentro de la máquina Instron, la cual ha sido calentada previamente a la temperatura necesaria y se procede a bajar el punzón en forma automática.

Al bajar el punzón debe estar configurada la velocidad de descenso de éste y el gráfico de esfuerzo vs deformación entregará los valores de esfuerzos máximos. El criterio utilizado para determinar el esfuerzo máximo es el del 0,2 % de la deformación.

4.8 Ensayos de creep

Lo ensayos de creep se realizaron para el rango de temperaturas y velocidades definidos. Los ensayos se efectuaron en forma escalonada y continua para una posterior comparación de estos dos procedimientos experimentales. La figura 4.1 muestra un gráfico esquemático comparativo entre estos dos procedimientos.

Figura 4.1: Gráfico comparativo entre el creep escalonado y el creep continuo.

La probeta se prepara al igual que el ensayo de compresión, pero esta vez la velocidad se deja variable y el esfuerzo se configura como 0,8 veces el esfuerzo máximo determinado anteriormente en el ensayo de compresión. Se procede a comprimir para obtener el gráfico de deformación versus tiempo, el cual entregará la pendiente de la curva y la velocidad de deformación media, para el posterior análisis.

4.9 Caracterización

4.9.1 Difracción de Rayos X

La difracción se realiza en el Departamento de Física de la Universidad de Chile, usando un equipo Siemens D5000 de geometría Bragg-Vrentano, el cual posee un detector puntual. El haz generado a partir del ánodo de cobre tiene una longitud de onda de 1,5405 A° , producido por un voltaje de 40 kV e intensidad de 30 mA. Los parámetros usados en el ensayo abarcan una temperatura de 25 °C, un ángulo inicial de 40° y final de 100°, paso de 0,02° y un tiempo de paso de 2 s. La muestra a analizar se compara con una análisis patrón de cobre puro.

El análisis de los datos se realiza con el software Fityk 0.8.6 que permite ajustar una curva al patrón de difracción y poder determinar fácilmente los datos necesarios para los cálculos: el ancho a la mitad de la intensidad máxima (FWHM), el ancho integral (IB), la intensidad máxima, y la ubicación angular de los picos.

4.9.2 Microscopía de Transmisión (TEM)

Se realizan las caracterizaciones en el Microscopio de Transmisión de la Red Nacional de Programas de Doctorado en Ciencias de los Materiales.

Dentro de los análisis que se realiza está la difracción de electrones, medición del tamaño de grano y detección de partículas.

4.9.2.1 Identificación de elementos a través de difracción de electrones

A través de las imágenes de difracción de electrones podemos identificar las partículas presentes en la aleación.

Se debe obtener la imagen de la difracción lo más contrastada posible. Luego se determina el radio de cada uno de los anillos que se deseen analizar, esto se realiza a través de cualquier programa de dibujo con la opción necesaria o con el programa *ImageJ* (http://rsb.info.nih.gov/ij/). Este radio que está en la unidad de la imagen de difracción, generalmente 1/nm, se debe invertir para obtener una medida en nm, el cual se compara con una base de datos de cada uno de los elementos. Esta distancia es la distancia entre planos que a través de la relación de la ecuación 4.10 se relaciona con los planos de difracción del elemento.

$$d = \frac{a}{\sqrt{h^2 + l^2 + k^2}}$$
(4.10)

donde a es el parámetro de red y h, l y k índice de miller.

Así se pueden determinar los diferentes elementos según el anillo difractado y su radio. Cabe señalar que si el análisis de un anillo entrega mas de un posible resultado para las distancias el elemento se puede determinar según la intensidad para cada plano presente en la base de datos. A medida que el anillo tenga un mayor brillo, mayor será su intensidad teórica.

4.9.3 Microdureza

Se realizan mediciones de dureza a los polvos molidos y a las probetas extruídas y recocidas. Para esto se utiliza un equipo de microdureza Vickers, marca Struers modelo Duramin, perteneciente al departamento de ingeniería en materiales para determinar la dureza de todas las muestras consolidadas. Se realizan

10 ensayos en cada muestra y se toma el promedio. La carga es de 100[g] por 10[s] en cada identación.

4.9.4 Análisis Químicos

4.9.4.1 Análisis de V y Ti

Para cuantificar el contenido de V y Ti de las muestras se empleó un equipo Perkin Elmer P-400 Secuencial perteneciente al departamento de Geología de la Universidad de Chile [4]. La técnica usada se denomina espectroscopía de emisión atómica por plasma acoplado inductivamente (ICP-AES) y permite determinar la concentración de los elementos presentes.

La preparación de la muestra consistió en diluir la mezcla de polvos metálicos en una solución de agua, ácido nítrico (1%) y ácido clorhídrico (3%). Después se agregó 1 g. de fundente (tetraborato de litio $Li_2B_4O_7$ y carbonato de sodio Na_2CO_3 en proporción 1 : 2) en un crisol de platino, se fundió, y para finalizar, se incorporaron 20 ml de agua y 3 ml de ácido nítrico.

La muestra diluida se ingresó al equipo, capaz de fundirla mediante una antorcha de plasma. Esto elevó a un estado excitado los átomos de las partículas microscópicas en la muestra, y a medida que los átomos excitados retornaron a su estado natural, la energía absorbida se libera como radiación. Un procesador comparó la longitud de onda con una base de datos para determinar los elementos presentes, y la intensidad para calcular la concentración cuantitativamente.

4.9.4.2 Análisis de O, N y C

Espectrografía Infraroja, para determinar el contenido de O, N y C (realizado por la empresa MOLYMET).

Capítulo 5

Resultados

En este capítulo se presentan los resultados obtenidos con las técnicas de caracterización utilizadas para las aleaciones fabricadas.

Los resultados presentes consideran dos tipos de probetas diferentes después de la extrusión. Para la simplicidad en la presentación de éstos resultados se ha adoptado la siguiente nomenclatura, la cual se usará indistintamente: a la aleación extruída a 1023 K (750 °*C*) se le llamara T_e 750 y a la aleación extruída a 850 °*C* se le llamará *p850*.

5.1 Composición química de polvos

Se realizaron dos moliendas iniciales para la composición nominal de la aleación Cu - 2,5% v TiC - 2,5% v VC. Las moliendas se efectuaron en un molino atritor por un tiempo de 30h. Estas moliendas se mezclaron y se analizaron químicamente, para determinar la concentración de los elementos aleantes V y Ti y de elementos que ingresaron en forma líquida o gaseosa N, O y C, arrojando como resultados las concentraciones que se muestran en la tabla 5.1.

Elemento	% <i>p</i> en el
presente	presente trabajo
V	1,55
Ti	1,5
C	1,05
N	0,03
0	1,5

Tabla 5.1: Composición química de la molienda de polvos de Cu - 2,5% v TiC - 2,5% v VC.

5.2 Difracción de Rayos X

A través de la caracterización por medio de difracción de rayos x se busca detectar o no, la presencia de dispersoides que se puedan haber producido en la fase de molienda. Además, es posible estudiar texturas, tamaño y refinamiento de los granos a través del ensanchamiento, desplazamiento e intensidad relativa de los máximos de difracción.

Para el análisis de las texturas se comparó con un patrón de cobre molido durante 10, 20 y 30 horas, bajo un líquido de molienda compuesto por tolueno, sin elementos aleantes, para así determinar la incidencia del estos elementos aleantes en la textura de los polvos molidos.

5.2.1 Polvos de Cu-Tolueno

Los resultados del patrón de difracción de rayos x de las moliendas de cobre con tolueno se presentan en la figura 5.1, para diferentes horas de molienda, mostrando una fuerte textura del plano 220 del cobre.

Figura 5.1: Patrón de difracción de rayos x de polvos Cu-Tolueno. Moliendas de 10, 20 y 30 horas. Se normalizaron las intensidades para una mejor comparación.

5.2.2 Polvos de Cu-Ti-V

Los resultados del patrón de difracción de rayos x, obtenidos de la molienda de 30 horas de la aleación Cu-2,5% vTiC-2,5% vVC en forma de polvos, se presentan en la figura 5.2, para la molienda de 30 horas.

Figura 5.2: Patrón de difracción de rayos X de Cu - 2,5% v TiC - 2,5% v VC. Molienda de 30 horas.

5.3 Densidad post-extrusión

La densidad teórica corresponde a la densidad de la aleación Cu - 2,5 % v TiC - 2,5 % v VC con sus respectivos porcentajes en volumen. Las densidades relativas de la aleación se presentan en la tabla 5.2.

Temperatura de extrusión (°C)	Densidad teórica	Densidad media	Densidad relativa	
	g/cm ³	g/cm ³	%	
750	8,78	8,1	92	
850	8,78	8,46	96	

Tabla 5.2: Densidades relativas obtenidas post-extrusión.

5.4 Resistencia al ablandamiento

Se realizó la medición de microdurezas de los polvos de las moliendas, los cuales son presentados en la tabla 5.3, para la cual se realizaron 20 mediciones. Además se presentan las mediciones en frío de microdurezas a distintas temperaturas de recocido en la tabla 5.4, de las cuales se tomaron 10 mediciones de cada probeta. Los errores mostrados corresponden a un intervalo de confianza del 95 %.

Probeta	Dureza Vickers	Error
Polvos	123	13.5

Tabla 5.3: Microdureza de los polvos molidos pre-extrusión.

Figura 5.3: Evolución de la microdureza de la aleación extruída a 750 °C y a 850 °C, versus la temperatura de recocido, junto a sus respectivos errores.

En la figura 5.3 se puede ver la evolución de la microdureza de las probetas T_e750 y T_e850 extruídas y recocidas a diferentes temperaturas, y sus respectivos errores.

Temperatura de recocido [°C]	25	400	500	600	700	800	900
Microdureza T_e750 [HV]	188	185	201	199	161	164	169
Error T_e750 [HV]	10,1	20,4	30,9	26,3	9,4	12,8	17,5
Microdureza $T_e 850$ [HV]	198	182	178	190	179	183	162
Error $T_e 850$ [HV]	27,8	10,4	12,3	22,9	14,2	18,7	17,5

Tabla 5.4: Valores de microdurezas en el recocido para T_e750 y T_e850 . Los valores están en Vickers.

5.5 Compresión en caliente

Las pruebas de creep se realizaron en dependencias del taller de Molina ¹. El rango de error del equipo variaba cercano a los 40 *MPa*. Como se verá más adelante, las compresiones a mayores temperaturas de 973 K arrojaban resultados de esfuerzos bajo los 40 MPa, por lo cual el procedimiento de compresión fue realizado en un rango de temperaturas hasta los 973 K (700 °C).

La compresión en caliente se realizó para poder determinar el esfuerzo de fluencia a diferentes temperaturas de cada aleación en un posterior ensayo de creep. El esfuerzo de fluencia σ_f se determina con el criterio del 0,2% de la deformación y es el máximo esfuerzo permitido para el posterior ensayo de creep. Se debe considerar un esfuerzo menor al de fluencia para que el material no entre en el estado plástico. Se consideró un factor de 0,8 σ_f .

5.5.1 CuTiV (T_e750)

Se realizaron compresiones en caliente a la aleación T_e750 . Las compresiones se realizaron a tres diferentes temperaturas: 673 K (400 °C), 773 K (500 °C) y 773 K (700 °C), y a dos velocidades de compresión: $\dot{\epsilon} = 2 \times 10^{-4}$ y $\dot{\epsilon} = 6 \times 10^{-5}$. Se presentan los siguientes resultados en la figura 5.4 y 5.5.

Los datos importantes se presentan en la tabla 5.5.

Temperatura de compresión	Velocidad de compresión	Esfuerzo de fluencia	Esfuerzo máximo
$K(^{\circ}C)$	s^{-1}	MPa	MPa
293 (20)	$2x10^{-4}$	148	616
673 (400)	$6x10^{-5}$	110	131
673 (400)	$2x10^{-4}$	130	138
773 (500)	$6x10^{-5}$	106	110
773 (500)	$2x10^{-4}$	111	114
973 (700)	$6x10^{-5}$	65	65
973 (700)	2×10^{-4}	53	59

Tabla 5.5: Datos de los ensayos de compresión para la aleación T_e750 .

¹Laboratorio de Pulvimetalurgia, perteneciente al Departamento de Ingeniería Mecánica de la Universidad de Chile

Figura 5.4: Compresión en caliente de T_e750 diferentes temperaturas de ensayo, a una velocidad de compresión de $\dot{\epsilon} = 6 \times 10^{-5}$.

Figura 5.5: Compresión en caliente de T_e 750 diferentes temperaturas de ensayo, a una velocidad de compresión de $\dot{\epsilon} = 2 \times 10^{-4}$.

5.5.2 CuTiV (T_e850)

Se realizaron compresiones en caliente a la aleación $T_e 850$. Las compresiones se realizaron a tres diferentes temperaturas: 673 K (400 °C), 773 K (500 °C) y 773 K (700 °C), y a dos velocidades de compresión: $\dot{\varepsilon} = 2 \times 10^{-4}$ y $\dot{\varepsilon} = 6 \times 10^{-5}$. Se presentan los siguientes resultados en la figura 5.6 y 5.7.

Figura 5.6: Compresión en caliente de $T_e 850$ diferentes temperaturas de ensayo, a una velocidad de compresión de $\dot{\epsilon} = 6 \times 10^{-5}$.

Los datos importantes se presentan en la tabla 5.6

Temperatura de compresión	Velocidad de compresión	Esfuerzo de fluencia	Esfuerzo máximo
К(°С)	s ⁻¹		
293 (20)	$2x10^{-4}$	291	453
673 (400)	$6x10^{-5}$	100	139
673 (400)	$2x10^{-4}$	128	160
773 (500)	$6x10^{-5}$	118	122
773 (500)	$2x10^{-4}$	88	98
973 (700)	$6x10^{-5}$	-	-
973 (700)	$2x10^{-4}$	56	58

Tabla 5.6: Datos de los ensayos de compresión para la aleación $T_e 850$.

Figura 5.7: Compresión en caliente de $T_e 850$ diferentes temperaturas de ensayo. A una velocidad de compresión de $\dot{\epsilon} = 2 \times 10^{-4}$.

5.6 Creep

Los ensayos de fluencia lenta o creep fueron realizados a dos temperaturas diferentes: 673 K (400 $^{\circ}$ C) y 773 K (500 $^{\circ}$ C), de dos formas diferentes: completo y escalón, para su posterior comparación. Los gráficos de los ensayos de creep se muestran en el capítulo de análisis.

Capítulo 6

Análisis y discusión

A continuación se presenta el análisis y las discusiones de los resultados obtenidos en el presente informe.

6.1 Composición química de polvos

En la tabla 6.1 se presentan la composición obtenida, comparada con la nominal que se buscaba. Además, se muestra el porcentaje en volumen teórico de los carburos, calculados a partir del porcentaje en peso del elemento metálico (Ti o V) y del no metálico (C).

Tabla 6.1: Composición química de la molienda de polvos de concentración nominal Cu - 2,5 % v TiC - 2,5 % v VC.

Elemento	%p Requerido para	%p del elemento	%v teórico de Carburos	%p del elemento	%v teóricos de
	composición nominal	obtenido	obtenidos	en el presente	carburos en el
		por Egaña	por Egaña	trabajo	presente trabajo
V	1,34	1	1,87	1,55	2,9
Ti	1,13	0,91	2	1,44	3,2
C	0,6	0,52	-	1,05	6
N	0	0,02	-	0,03	-
0	0	0,27	-	0,5	-

Teóricamente se logró obtener una composición máxima presente de TiC de un 116 %v y de VC de un 128 %v de la nominal. Esto se considera suficiente para estudiar los efectos microestructurales de la molienda de alta energía. Además se obtiene un porcentaje volumétrico alto, comparable con aleaciones ternarias vistas en trabajos anteriores [4, 5, 6, 8].

El porcentaje de carbono necesario para formar 2,9 %v de VC y 3,2 %v TiC es de 0,7 %p aproximado. Dado que se detectó un 1,05 %p en los polvos, el carbono no es limitante para la formación de los carburos teóricos. La cantidad de carbono detectado sobrepasa la cantidad nominal, lo que no produce limitantes en la formación de carburos para los elementos aleantes. En cuanto a las cantidades encontradas de N, no hay una inclusión importante, sólo lo esperado por el procedimiento de atmósfera de nitrógeno. Los valores de O presentes doblan en cantidad a los encontrados anteriormente por Egaña. Un alto valor de oxígeno podría provocar la aparición de óxidos en la aleación en desmedro de los posibles carburos.

6.2 Difracción de Rayos X

6.2.1 Textura

La determinación de la textura de los polvos está definida por la orientación por parte de los granos dentro de los planos cristalinos de la aleación. Los picos del difractograma indican la intensidad de estas orientaciones según cada uno de los planos. A su vez, la razón entre estas intensidades indica la proporción de granos en determinadas orientaciones. La variación de esta razón indica el cambio en el plano preferencial de orientación.

La tabla 6.2 nos muestra las intensidades relativas con respecto al pico más grande de cada uno de los difractogramas en las moliendas caracterizadas. Estas corresponden a la de cobre puro ¹; cobre con tolueno de 10, 20 y 30 horas de molienda; CuTiV de un trabajo anterior de Egaña [4] para 10, 20 y 30 horas y a los polvos de CuTiV molidos por 30 horas del presente trabajo. Así se pudo comparar el efecto del elemento aleante en la texturización de la aleación.

Aleación	Planos Cristalinos				
	111	200	220	311	222
Cu puro recocido	1	0,427	0,171	0,156	0
Cu-Tolueno 10 h	0,279	0,122	1	0,206	0,0556
Cu-Tolueno 20 h	0,496	0,171	1	0,264	0,102
Cu-Tolueno 30 h	0,954	0,247	1	0,316	0,157
CuTiV-Tolueno 10 h [4]	1	0,281	0,467	0,206	0,079
CuTiV-Tolueno 20 h [4]	0,835	0,25	1	0,256	0,076
CuTiV-Tolueno 30 h [4]	1	0,238	0,351	0,163	0,064
CuTiV-Tolueno 30 h presente trabajo	1	0,267	0,206	0,15	0,085

Tabla 6.2: Intensidades relativas de la difracción de rayos x.

Tanto en la tabla 6.2 como en las figuras 6.1 y 6.2, se puede ver como las intensidades difractadas de la aleación CuTiV varían con respecto al patrón de cobre puro. La molienda con tolueno para 10 horas muestra que la orientación preferente es en el plano (220) la cual cambia hacia el (111) a medida que aumenta el número de horas de molienda. Esta orientación posee otro plano preferente al del cobre puro, que es el (111). Al término de las 10 horas de molienda los granos se han orientado hacia el plano

¹obtenido de la base de datos del International Centre for Diffraction Data, 2002 JCPDS.

(220) casi en su totalidad y hacia el (222) levemente en desmedro de los otros planos, desde el (111). Esto nos indica un texturizado de los planos (111) y (220) de la molienda con tolueno. A medida que las horas de molienda aumentan, los granos comienzan a orientarse hacia los demás planos cristalinos, preferentemente de vuelta al (111), el cual, a las 30 horas de molienda, posee ya casi la misma intensidad relativa del cobre puro.

Por otra parte, se puede ver que la aleación presentada en el trabajo de Egaña [4] de molienda de 30 horas presenta una distribución relativa muy similar a la del presente trabajo. Con respecto a esta evolución y su efecto en las horas de molienda, se puede apreciar que se texturiza al cabo de 20 horas de molienda. Los granos comienzan a orientarse según el plano (220). Se puede ver además como la intensidad relativa de los polvos a las 10 y 30 horas son muy similares entre ellos, no así, se diferencian ampliamente de las obtenidas a 20 horas. Se ve entonces un proceso de texturización de la molienda con elementos aleantes con un comportamiento que atiende a lo propuesto por Fetch [27], analizado en los antecedentes. En el proceso, se cumplen tres etapas en la formación de nanoestructuras: la deformación, donde aumenta la densidad de dislocaciones debido a los impactos de las bolas con los polvos (molienda de 10 horas); la reorientación, donde los granos se reorientan hacia otro pico aumentando su intensidad teórica relativa (molienda de 20 horas), donde se presenta la textura; por última la orientación aleatoria donde no se aprecia textura con respecto a la disposición original, acá la deformación depende del deslizamiento de los bordes de grano. Con esto se puede ver un efecto de texturizador del tolueno y los elementos aleantes en los planos (111) y (220).

Figura 6.1: Patrón normalizado de difracción de rayos \times de polvos Cu-Tolueno. Moliendas de 10, 20 y 30 horas.

Figura 6.2: Patrón normalizado de difracción de rayos x de Egaña [4]. Moliendas de 10, 20 y 30 horas.

6.2.2 Tamaño de cristalita y microdeformación

El tamaño de la cristalita y la microdeformación se calcularon acorde con los parámetros del patrón de difracción, realizando un análisis microestructural. La tabla 6.3 muestra los resultados por los métodos de Williamson-Hall (WH) y Klug-Alexander (KA), además se muestran los valores relativos en comparación con los valores encontrados en el trabajo de Egaña [4] con la misma aleación. El patrón de comparación se utilizó el de difracción de rayos x de cobre recocido.

	Egaña	Presente trabajo			
	[4]	WH	Valor relativo	KA	Valor relativo a Egaña [4]
D (nm)	18	84	467 %	17	94 %
e (%)	0.24	0.58	241 %	0.33	138 %

Tabla 6.3: Tamaño de cristalita D y microdeformación e.

6.2.3 Densidad de dislocaciones

La tabla **??** presenta la la cantidad de dislocaciones calculada a partir de la microdeformación y las constantes mostradas en la ecuación 2.27

Tabla 6.4: Densidad de dislocaciones en la aleación.
--

	Valor		
$\rho \ [m/m^3]$	1.01×10^{16}		

6.3 Densidad post-extrusión

Las densidades relativas se calcularon desde una serie de probetas, determinándose su media. Éstos cálculos son mostrados en la tabla 5.2 muestran que a una mayor temperatura de extrusión, la densidad es mas cercana a la teórica. Esto se podría deber a la eliminación más rápida, debido a la mayor temperatura, de posibles poros en el interior del material en el mismo proceso de extrusión. La densidad relativa de las probetas superaron el 92%, lo que significa una satisfactoria consolidación del material.

En anteriores trabajos se han obtenido densidades relativas similares en el caso de aleaciones binarias y ternarias. La tabla 6.5 muestra algunas densidades relativas de distintos trabajos. La compresión depende de la morfología de los polvos, los cuales para 30 horas presentan menor tamaño y una mayor facilidad en la compresión que para 20 horas, lo que elimina la cantidad de poros presentes en al aleación, dejando ésta de una mejor calidad.

Aleación	Autor	Densidad relativa	
		%	
p750	presente trabajo	92	
p850	presente trabajo	96	
Cu-2,5%vTiC	Franjola [8]	96	
Cu-2,5%vTiC-2,5%vVC	Egaña [4]	97	
$Cu - 2,5\% vVC - 2,5\% vAl_2O_3$	Estay [5]	95	
Cu-5%vTiC	Egaña [4]	97	
<i>Cu</i> -5%vVC	Estay [5]	88	
<i>Cu</i> -5%vVC	Zamorano [15]	96	
$Cu-5\% vTiC-5\% vAl_2O_3$	Zamorano [15]	88	
Cu-10%vTiC	Zamorano [15]	90	

Tabla 6.5: Densidades relativas obtenidas post-extrusión.

Cabe señalar que los resultados presentados de Zamorano y Franjola corresponden a moliendas de 20 horas.

6.4 Resistencia al ablandamiento

Las microdurezas vickers de 100 g medidas en frío a cada uno de los recocidos. Los recocidos se realizaron a 673 K (400 °C), 773 K (500 °C), 873 K (600 °C), 973 K (700 °C), 1073 K (800 °C), 1173 K (900 °C). Este recocido provoca una recristalización del grano, por lo que este crece y baja la dureza del material. Además se compararon los resultados con la resistencia al ablandamiento a temperatura ambiente.

Figura 6.3: Comparación de la evolución de la microdureza de p750 y p850 a diferentes temperaturas de extrusión.

En la figura 6.3 se puede ver el efecto de la temperatura de extrusión en la evolución de la microdureza de las probetas T_e750 y T_e850 , recocidas a diferentes temperaturas. Se puede apreciar que la microdureza es similar, sin embargo la aleación T_e750 posee un pico de 200 HV cercano a los 550 °C para luego caer a los 700 °C y mantenerse similar a temperaturas más altas. En cambio la aleación T_e850 si bien tiene un pico cercano a los 550 °C, no cae tan abruptamente y mantiene una dureza hasta los 800 °C donde recién comienza a caer hasta equipararse a la T_e750 . Los resultados muestran que la aleación T_e750 tiene un aumento de dureza a temperaturas cercanas a los 550 °C, y la de T_e850 cae constantemente. Las micrografías de las figuras 6.4 de las respectivas aleaciones no muestran presencia de poros provocados por gases liberados en los recocidos. Además la constancia, dentro del error, de la dureza de la aleación, a altas temperaturas, nos indicaría que el tamaño de grano no creció, provocando el ablandamiento del material. Esto sería debido a la no recristalización de estos granos por la inclusión de partículas, lo que podría indicar que se han formado los dispersoides buscados.

6.4.1 Micrografías

6.4.1.1 CuTiV (p750)

Figura 6.4: Micrografía de p750 recocida a 673 K (400 $^{\circ}$ C). Zoom de 500x.

Figura 6.5: Micrografía de p750 recocida a 773 K (500 $^{\circ}$ C). Zoom de 500x.

Figura 6.6: Micrografía de p750 recocida a 773 K (500 °C). Zoom de 500x. Detalle de una fase presente.

Figura 6.7: Micrografía de p750 recocida a 1173 K (900 °C). Zoom de 500x.

6.4.1.2 CuTiV (p850)

Figura 6.8: Micrografía de p850 recocida a 673 K (400 $^{\circ}$ C)..

Figura 6.9: Micrografía de p850 recocida a 773 K (500 $^{\circ}$ C).

Figura 6.10: Micrografía de p850 recocida a 873 K (600 °C). Zoom de 500x. Detalle de una fase presente.

Figura 6.11: Micrografía de p850 recocida a 1173 K (900 °C). Zoom de 500x.

Los resultados obtenidos están dentro del rango esperado. Sin embargo los valores son más bajos que los obtenidos por Egaña [4] y Estay [5]. En la figura 6.12 se han comparado solamente las moliendas de 30 horas, que deberían presentar una morfología y una dureza comparables con el presente trabajo.

La microdureza presente en la aleación ternaria de Estay, que presenta el mayor valor, presenta aluminio en su composición. Esta aleación cae abruptamente a altas temperaturas, lo que no ocurre con las aleaciones con titanio. Estay atribuye esta caída de dureza a la alta porosidad presente en la aleación después del recocido, por un problema de fabricación. Franjola [8] en su medida binaria con
titanio, experimentó una caída similar a la de Estay y a la de Zamorano. La revisión de las aleaciones por microscopía dieron como resultado una formación de poros de casi un 20 %v debido a la liberación de gases después de los 750 °C, por problemas de fabricación en el sellado de las cápsulas antes de la extrusión. Por otra parte, el presente trabajo y Lozano [?] logra mantener una dureza mas estable a altas temperaturas, contemplando, este último, aún uno de los mayores valores de dureza de los analizados anteriormente. Cabe señalar que los últimos trabajos muestran una baja notable en la cantidad de poros post-extrusión y recocidos.

Además se puede apreciar que la mayor dureza se debe a la mezcla ternaria, ya que como se aprecia en las evoluciones de estas microdurezas de la figura 6.12, las aleaciones binarias presentan una caída que se ve reducida en las ternarias gracias a la acción de reforzamiento de la matriz por diferentes sistemas.

Por otra parte las aleaciones ternarias que incluyen titanio tienden a mantener su dureza incluso a altas temperaturas. A excepción de lo mostrado por Egaña y el presente trabajo en sus aleaciones, todos los resultados anteriores muestran una caída de la dureza del material cerca de los 700 °C de recocido.

Figura 6.12: Comparación de la evolución de la microdureza de *p750* y *p850* a diferentes temperaturas de extrusión. Se diferencian las aleaciones que involucran VC y TiC.

6.5 Microscopía electrónica de transmisión de alta resolución

La caracterización por microscopía electrónica de transmisión se realizó a tres muestras estudiadas: polvos de Cu-2,5% v TiC-2,5% v VC, aleación T_e750 y aleación T_e850 .

6.5.1 Polvos de CuTiV

6.5.1.1 Estructuras de grano

En las figura 6.13 y 6.14 se puede ver presencia de partículas dispersas. En las figuras 6.15 y 6.16 se aprecian los granos de un tamaño medio de 79 *nm* de diámetro. Este tamaño medio es coherente con los resultados obtenidos por Williamson-Hall, que predicen diámetros de 84 *nm*.

Figura 6.13: Campo Claro global de granos de cobre. Molienda de CuTiV de 30 horas.

Figura 6.14: Campo Oscuro global de granos de cobre. Molienda de CuTiV de 30 horas.

Figura 6.15: Campo Claro localizado de granos de cobre.

Figura 6.16: Campo Oscuro localizado de granos de cobre. Se destacan granos que miden entre 50 y 100 *nm* de diámetro.

6.5.1.2 Difracción de electrones (DE)

Los patrones de difracción indican la distancia interplanar del plano refractante como una serie de puntos, en el caso de los monocristales, a una distancia fija del centro del análisis. Para los policristales, se presenta como un anillo continuo. Se determinaron partículas presentes a través de los anillos de difracción. La figura 6.17 muestra los anillos de difracción de la partícula vista en la figura 6.16, mientras que la figura 6.18 identifica sus correspondientes anillos.

En estos anillos se pueden identificar lo que probablemente sean partículas de CuO, VO_2 , VC, V_2C_2 y TiO_2 . Esto nos indicaría la presencia de carburos de vanadio en varias de sus formas. Además muestra la presencia de distintos óxidos los cuales su formación se trató de evitar con la atmósfera de nitrógeno.

Figura 6.17: Patrón de difracción de polvos de molienda de CuTiV de 30 horas.

Figura 6.18: Identificación de los anillos del patrón de difracción de polvos de molienda de CuTiV de 30 horas.

6.5.1.3 Detección de partículas

En las figuras 6.19 y 6.20 se pueden ver partículas de cobre de la matriz. La figura 6.21 muestra una macla en el cobre; se descartó que fuese una interfaz de la partícula en el análisis de la imagen. La figura 6.22 muestra la forma alargada de algunos granos de cobre, que poseen una forma uniaxial.

Figura 6.19: Campo Claro de polvos.

Figura 6.20: Campo Oscuro de la zona observada.

Figura 6.21: Imágen de la interfaz entre las partículas. Se puede ver una macla en el cobre.

Figura 6.22: Campo Oscuro de una zona localizada. Se pueden ver granos alargados uniaxiales.

6.5.2 Aleación extruída a 850°C (T_e 850)

6.5.2.1 Estructuras de grano

Las figuras 6.23 y 6.24 muestran la estructura general de los granos de cobre mientras que las figuras 6.25 y 6.26 muestran la presencia de partículas en los bordes de los granos. Estas partículas son analizadas en la posterior difracción de electrones.

Figura 6.23: Campo Claro global de granos de cobre. Zoom de 7k X.

Figura 6.24: Campo Claro global de granos de cobre. Zoom de 17k X.

Figura 6.25: Campo Claro localizado de granos de cobre. Zoom de 19,5k X.

Figura 6.26: Campo Oscuro localizado de granos de cobre. Zoom de 19,5k X.

6.5.2.2 Difracción de electrones (DE)

La figura 6.28 identifica los patrones de difracción de electrones de las partículas de la figura 6.26. Las partículas identificadas corresponden probablemente a los elementos V_2O_2 , CuO y TiO. Estos óxidos se producirían principalmente en el proceso de extrusión. Cabe señalar que la determinación de los elementos podrían indicar anillos muy contiguos, lo que se explica en el apartado del proceso experimental.

Figura 6.27: Patrón de difracción de polvos de la zona de la figura 6.26.

Figura 6.28: Identificación de los anillos del patrón de difracción de polvos.

6.5.2.3 Detección de partículas

Figura 6.29: Campo Claro de una partícula. Zoom de 86k X.

Figura 6.30: Campo Oscuro de partícula observada. Zoom de 86k X.

Figura 6.31: Granos de cobre con partículas en su interior. Zoom de 86k X

Figura 6.32: Imágen de Alta Resolución de las partículas observadas. Zoom de 450k X

6.6 Compresión en caliente

La compresión en caliente nos permite analizar los mismos mecanismos presentes en el creep. Además, determinar los rangos de esfuerzos a los cuales el material se mantiene en la zona elástica, para el desarrollo de los ensayos.

6.6.1 Influencia de los elementos aleantes

La figura 6.33 nos muestra la influencia de los elementos aleantes en la compresión en caliente. Se realizó la compresión a temperatura ambiente y a una velocidad de $\dot{\varepsilon} = 2 \times 10^{-4}$, de una probeta de la aleación T_e750 .

Los resultados obtenidos en este ensayo de compresión son los esperados. El esfuerzo de fluencia teórico al 0,2% del cobre puro es de 60 *MPa* [12]. Se puede ver además que el esfuerzo máximo de la aleación supera en casi en 10 veces al del cobre puro, llegando a los 610 *MPa* de esfuerzo máximo. Esto se debe esencialmente a los elementos aleantes que obstaculizan el movimiento de dislocaciones.

Figura 6.33: Comparación de la compresión a temperatura ambiente (293 K, 20 $^{\circ}$ C) de la aleación p750 con respecto al cobre puro.

6.6.2 Influencia de la velocidad de deformación

La figura 6.34 nos muestra la influencia de la velocidad de deformación en el ensayo de compresión para la aleación T_e750 . Si bien los esfuerzos obtenidos son muy similares y están dentro del error de medición del equipo, se puede ver que a menores temperaturas, la velocidad mayor ($\dot{\varepsilon} = 2x10^{-4}$), entrega mayores valores de esfuerzos que la velocidad menor ($\dot{\varepsilon} = 6x10^{-5}$). Esto es debido a que a mayor velocidad, el tiempo de recristalización, procesos de difusión y ascenso de dislocaciones es menor, lo que provoca que los esfuerzos necesarios para deformar el material sean mayores, y viceversa.

A la temperatura de 973 K (700 °C), sin embargo, ocurre lo contrario. Este dato es un dato anormal dentro del análisis, sin embargo se podría deber al movimiento de dislocaciones en el borde de grano.

Figura 6.34: Comparación, a diferentes temperaturas de ensayo, del efecto de la velocidad de compresión $(\dot{\epsilon} = 6 \times 10^{-5} \text{ y} \dot{\epsilon} = 2 \times 10^{-4})$ de la aleación p750.

6.6.3 Influencia de la temperatura de extrusión de la aleación

La figura 6.35 nos muestra la influencia de la temperatura de extrusión en el ensayo de compresión, para una misma velocidad, a diferentes temperaturas de compresión. A temperatura ambiente se ve una clara diferencia de esfuerzos, diferencia, que se va acortando a medida que la temperatura de compresión va aumentando. Además se ve que a menores temperaturas de extrusión se obtienen mayores esfuerzos y viceversa. Esto nos podría dar indicios que hay un engrosamiento de partículas y crecimiento de grano en el caso de la temperatura de extrusión a 850 °C. Sin embargo, si se solubiliza el titanio debería precipitar en el enfriamiento durante el ensayo. Este efecto desaparecería al aumentar la temperatura tendiendo a una misma microestructura.

Figura 6.35: Comparación, a diferentes temperaturas, de las aleaciones p750 y p850 a una velocidad de compresión de $\dot{\varepsilon} = 2 \times 10^{-4}$.

6.7 Creep

Los ensayos de fluencia lenta o creep, se realizaron de dos formas diferentes para las temperaturas nominales. Se realizaron en forma completa, considerando para cada temperatura, una probeta para cada uno de los esfuerzos constantes de compresión. El otro procedimiento es el de creep escalonado. Se carga la probeta, para cada temperatura, con el mínimo esfuerzo nominal, luego se aumenta la carga con los demás esfuerzos en forma ascendente una vez que la deformación se vuelva estacionaria. Los posteriores análisis de creep, y energía de activación incluirán la comparación de estos dos procedimientos (continuo y escalonado, respectivamente).

Aleación	Ensayo	Esfuerzo	Velocidad
		MPa	s^{-1}
850	Creep escalón a 673 K (400 $^{\circ}$ C)	60	$5,87 \times 10^{-09}$
		80	$3,86 \times 10^{-06}$
		100	$1,36 \times 10^{-06}$
		120	$6,38 \times 10^{-06}$
	Creep a 673 K (400 $^{\circ}$ C)	60	$5,87 \times 10^{-09}$
		80	$3,23 \times 10^{-07}$
		100	$1,69 \times 10^{-06}$
		40	$1,83 \times 10^{-07}$
	Creep escalón a 773 K (500 $^\circ$ C)	60	$1,97 \times 10^{-07}$
		80	$2,13 \times 10^{-06}$
		80	$3,93 \times 10^{-06}$
		100	$9,59 \times 10^{-06}$
	Creep a 773 K (500 $^\circ$ C)	40	$1,83 \times 10^{-07}$
		60	$2,00 \times 10^{-06}$
		80	$4,70 \times 10^{-06}$
		100	$2,52 \times 10^{-06}$
750	Creep escalón a 673 K (400 $^\circ$ C)	60	$1,12 \times 10^{-07}$
		80	$5,05 \times 10^{-06}$
		100	$1,11 \times 10^{-06}$
		120	$6,13 \times 10^{-06}$
	Creep a 673 K (400 $^\circ$ C)	60	$1,12 \times 10^{-07}$
		80	$5,07 \times 10^{-07}$
		100	$3,24 \times 10^{-06}$
	Creep escalón a 773 K (500 $^\circ$ C)	40	$4,48 \times 10^{-07}$
		60	$2,30 \times 10^{-06}$
		80	$2,89 \times 10^{-06}$
		100	$1,94 \times 10^{-05}$
	Creep a 773 K (500 $^\circ$ C)	40	$4,48 \times 10^{-07}$
		60	$3,07 \times 10^{-06}$
		80	$1,13 \times 10^{-07}$
		100	$4,88 \times 10^{-06}$

Tabla 6.6: Resumen de esfuerzos y velocidades de los ensayos de creep.

Según Norton y Arrhenius, la velocidad de deformación en la etapa estacionaria se rige por la siguiente ecuación:

$$\dot{\varepsilon} = A\sigma^{n_{ap}} exp\left(\frac{-Q_a}{RT}\right) \tag{6.1}$$

donde: $\dot{\epsilon}$: Velocidad de deformación en estado estacionario A: Constante dependiente del material

 σ : Esfuerzo aplicado durante el ensayo n_{ap} : Exponente del esfuerzo aparente Q_a : Energía de activación aparente para creep R : Consante universal de los gases T : Temperatura del ensayo

Para determinar los parámetros de esta ecuación se determinaron los exponentes de esfuerzo aparente a través de los datos linealizados del creep. El esfuerzo aparente viene dado por la ecuación:

$$\dot{\varepsilon} = A \sigma^{n_{ap}} \tag{6.2}$$

Despejando n:

$$n_{ap} = \frac{d\ln(\dot{\varepsilon})}{d\ln(\sigma)} \tag{6.3}$$

Para determinar el exponente de esfuerzo aparente se linealizaron los resultados graficando $ln\dot{\epsilon}$ vs $ln\sigma$. Luego se determinó la mejor recta representativa a través de una regresión lineal y se determinaron las pendientes de esta rectas como los exponentes de esfuerzo n. Así se determinaron los exponentes para cada una de las temperaturas de creep (400°C y 500°C).

Luego se procede a determinar el coeficiente A que se desprende de la ecuación 6.2 al reemplazar los valores obtenidos experimentalmente de $\dot{\epsilon}$ y σ . En este caso se tomó un promedio del valor de A para cada una de las temperaturas.

La energía de activación aparente Q_{ap} para creep, se describe en el modelo de Rözler-Arzt como:

$$Q_{ap} = \left(\frac{\partial In(\dot{\varepsilon})}{\partial In(T)}\right)_{\frac{\sigma}{G}} R T^2$$
(6.4)

donde R corresponde a la constante de los gases. La variación del exponente n_{ap} en función de la temperatura, por lo que el valor Q_{ap} se determina en forma separada para cada una de las temperaturas. Para esto se considera un valor de esfuerzo normalizado por el módulo de corte para todo el rango de temperaturas.

La relación entre el módulo de corte y la temperatura esta dado por:

$$G = G_0 \left(1 - 0.54 \cdot \frac{T - 300}{T_f} \right)$$
(6.5)

donde $G_0 = 42, 1 GPa$ es el modulo de corte del cobre a temperatura ambiente y $T_f = 1320K$ su temperatura de fusión. Luego se calculan los esfuerzos normalizados para cada una de las temperaturas. Con este valor se puede, entonces, obtener los valores de Q_{ap} para cada temperatura.

6.7.1 CuTiV (*T*_e850)

La figura 6.36 y 6.37 presenta los datos en escala logarítmica y los respectivos exponentes de esfuerzo aparente para el creep de 400 °C y 500 °C de la aleación T_e750 .

Figura 6.36: Datos y exponente de esfuerzo *n* para la aleación T_e750 realizado a 673 K (400 °C).

Figura 6.37: Datos y exponente de esfuerzo *n* para la aleación T_e750 realizado a 773 K (500 °C).

6.7.2 CuTiV (T_e850)

La figura 6.38 y 6.39 presenta los datos en escala logarítmica y los respectivos exponentes de esfuerzo aparente para el creep de 400 °C y 500 °C de la aleación T_e850 .

Figura 6.38: Datos y exponente de esfuerzo *n* para la aleación T_e 850 realizado a 673 K (400 °C).

Figura 6.39: Datos y exponente de esfuerzo *n* para la aleación $T_e 850$ realizado a 773 K (500 °C).

6.7.3 Resumen comparativo

6.7.3.1 Exponente de esfuerzo aparente

La tabla 6.7 muestra un resumen de los datos obtenidos para cada una de las aleaciones. Se presentan las aleaciones con sus temperaturas de extrusión y sus temperaturas de compresión mas el procedimiento en escalón o continuo, se determinó a través de lo anterior el exponente de esfuerzo aparente n, la constante promedio A y la energía de activación Q_{ap} .

(1	1	
Aleación	Temperatura	Exponente de esfuerzo aparente <i>n</i>	Constante A
	$K(^{\circ}C)$		
$T_{e}750$	400 continuo	6,5	$2,7x10^{-19}$
	400 escalón	5,5	$7x10^{-17}$
	500 continuo	2,5	$6,1x10^{-11}$
	500 escalón	3,8	$3,7x10^{-13}$
<i>T_e</i> 850	400 continuo	11,2	$9,8x10^{-29}$
	400 escalón	10,2	$7,8x10^{-27}$
	500 continuo	4,8	$3,3x10^{-15}$
	500 escalón	4,4	$1,7x10^{-14}$

Tabla 6.7: Datos del exponente de esfuerzo aparente.

Los esfuerzos aparentes gráficamente muestran una diferencia máxima de 10 MPa, lo que no tendría implicancias prácticas para los cálculos que involucren este parámetro en cuanto a una comparación entre el creep escalonado y el completo.

Figura 6.40: Gráfico comparativo de creep de las probetas ensayadas. Presentadas tanto continuo como escalonado para ambas temperaturas de extrusión.

6.7.3.2 Energía de activación

La tabla 6.8 muestra las energías de activación para cada uno de los esfuerzos de cada aleación. Estas energías fueron calculadas según el método referente a Ashby [12]. Se deben considerar los parámetros de energías de activación de autodifusión de 197 $\frac{kJ}{molK}$, de ascenso de dislocaciones de 147 $\frac{kJ}{molK}$ y de bordes de grano de 134 $\frac{kJ}{molK}$. Con esto, podemos ver que las energías presentadas están dentro del rango general.

Aleación	Creep	Esfuerzo	Energía de activación
		MPa	<u>kJ</u> molK
$T_{e}750$	continuo	60	143
		80	-
		100	17
	escalonado	60	130
		80	-
		100	123
$T_{e}850$	continuo	60	252
		80	115
		100	17
	escalonado	60	252
		80	115
		100	17

Tabla 6.8: Datos de la energía de activación según el esfuerzo.

6.7.3.3 Efecto de la temperatura de extrusión en el exponente de esfuerzo aparente n

Los valores de *n* para los creep escalonados presentan valores muy similares, estando, a excepción de T_e750 a 500 °C, siempre por bajo el valor del creep completo. Esto se debe a tiempo expuesto a la temperatura de compresión. En el creep escalonado los tiempos de compresión están cercanos a los 30 *min* para cada escalón, por lo cual el tiempo que la probeta permanece calentándose produce una recristalización de ésta, lo que hace bajar su resistencia mecánica. Así los valores de velocidades, posteriores al primer escalón, se alejan de los valores completos, ya que su tiempo de exposición a la alta temperatura fue mucho más prolongado. Por lo tanto es de esperarse que los valores escalonados sean un poco más bajos que los valores completos. Sin embargo, para efectos de cálculo, estos valores son muy similares y están dentro de los errores esperados, no llevando a conclusiones erróneas posteriores.

En la tabla 6.7 se puede ver una comparación entre los valores obtenidos para los creep escalonados y los creep completos. Los valores para la aleación T_e850 del exponente de esfuerzo aparente *n* escalonada en comparación con los completos, entregan resultados con un 91 % y un 92 % para 400 y 500 °C respectivamente. En cuanto a la aleación T_e750 , el valor escalonado para 400 °C alcanza un 85 %, mientras que para los 500 °C alcanza un 156 %.

6.7.3.4 Efecto de la temperatura de extrusión en la energía de activación Q_{ap}

Así también se puede ver que los valores de la energía de activación difieren un poco más. Es complicado determinar claramente las tendencias, ya que los resultados según el método de Ashby entregan valores muy distintos. Sin embargo se puede apreciar que los valores para las energías de activación aumentan con la temperatura de extrusión.

Capítulo 7

Conclusiones

Las principales conclusiones son:

- Se logró incorporar titanio, vanadio y carbono a la matriz de cobre, logrando una composición teórica de Cu-3,2%vTiC-2,9%vVC.
- En relación a la textura de los polvos de cobre: tanto el líquido de molienda como los elementos aleantes modifican la textura que se produce durante la molienda del cobre. La mayor texturización se produce a las 20 horas debido a la laminación y las deformaciones mecánicas producidas. Las influencias se presentan de mayor manera en los planos (111) y (220), en la molienda con tolueno. Esto se debería principalmente a los cambios en el modo de deformación de los polvos en procesos de laminación y forja.
- Los granos de los polvos molidos por 30 horas presentan tamaños cercanos a 80 nm. El método de Williamson-Hall predice en forma más certera estos tamaños.
- En relación con el aumento de la temperatura de extrusión de 750°C a 850°C:
 - No produce grandes variaciones de la dureza tras los recocidos entre 400 y 900°C.
 - Disminuye la resistencia a la compresión en caliente, probablemente por un predominio del engrosamiento de partículas y crecimiento de grano a temperaturas bajas.
 - No hay influencia de la temperatura de extrusión sobre la resistencia a la compresión a 700°C, posiblemente porque la microestructura evoluciona en ambos casos hacia el mismo estado.
 - Aumenta el exponente de esfuerzo n creando dos zonas en términos de esfuerzo. Por debajo de cierto esfuerzo crítico, el material extruído a 850°C exhibe mayor resistencia al creep.
- El creep en escalón presenta, ligeramente, menores coeficientes de esfuerzo aparente *n* que el creep continuo. Esto se podría deber la recristalización, donde el material tiene mas tiempo expuesto a cambios difusionales.

- El creep escalón se presenta como una alternativa válida para análisis de creep si la cantidad de material o el tiempo disponible es bajo. La determinación de parámetros a través del creep escalón llega a valores con una diferencia de no más del 10 % para la aleación T_e850. Los valores de T_e750 difieren más, pero aún así los valores de n pueden determinar el mecanismo predominante en el creep del material.
- En la molienda de polvos se han encontrado partículas de carburos de vanadio, y posiblemente óxidos de vanadio, óxidos de titanio y óxidos de cobre. Estos óxidos podrían haber afectado la resistencia mecánica del material ensayado.

Bibliografía

- [1] Rodrigo Palma, et al. Performance of Cu-TiC alloy electrodes developed by reaction milling for electric-resistance welding. Journal of Materials Processing Technology vol. 169, pp. 62-66 (2005).
- [2] I. Anzel, A. Kneissl, L. Kosec. Metallkd. vol 90, pp. 621-635.
- [3] Rodrigo Palma, et al. Propuesta proyecto fondecyt 1070294, 2007.
- [4] Cristián Egaña. Estudio de la evolución de la microestructura y dureza de aleaciones Cu-Ti y Cu-Ti-V durante su fabricación por molienda reactiva y extrusión. Memoria para optar al título de Ingeniero Civil Mecánico, Universidad de Chile. Marzo 2008.
- [5] Roberto Estay. Estudio de la evolución de la microestructura y dureza de aleaciones Cu-V y Cu-V-Al durante su fabricación por molienda reactiva y extrusión. Memoria para optar al título de Ingeniero Civil Mecánico, Universidad de Chile. Marzo 2008.
- [6] Felipe Figueroa. Estudio de la evolución de la microestructura y dureza de Aleaciones Cu-Al y Cu-Al-Ti durante su fabricación por molienda reactiva y extrusión. Memoria para optar al título de Ingeniero Civil Mecánico, Universidad de Chile. Marzo 2008.
- [7] Serguey Maximov. Análisis calorimétrico y de difracción de raxos x de aleaciones base cobre, obtenidas por aleado mecánico. Memoria para optar al título de Ingeniero Civil Mecánico, Universidad de Chile. Marzo 2008.
- [8] Sebastián Franjola. *Molienda reactiva de aleaciones Cu-Nb-C y Cu-Ti-C.* Memoria para optar al título de Ingeniero Civil Mecánico, Universidad de Chile. Octubre 2007.
- [9] C. Suryanarayana. Mechanical Alloying and milling. Progress Materials Science vol. 46 (2001), pp. 1-184.
- [10] R. Espinoza, R. Palma, A. Sepúlveda, A. Zúñiga. *Creep behavior of a dispersion-strengthened Cu-Ti-Al alloy obtained by reaction milling.*
- [11] Gao Haiyan et al. Effect of Ag on the microstructure and properties of Cu-Fe in situ composites. Scripta Materialia vol. 53 (2005), pp. 1105-1109.

- [12] M. Ashby, D. Jones. Engineering Materials 1: An Introduction to their Properties and Applications, Segunda Edición, Editorial BH. Capítulos 17, 18 y 19.
- [13] R. Espinoza. Comportamiento mecánico a alta temperatura de aleaciones de cobre endurecidas por dispersión, Tesis para optar al grado de doctor en ciencia de la ingeniería mención ciencia de los materiales, Universidad de Chile (2006).
- [14] R. Espinoza, R. Palma, A. Sepúlveda, V. Fuenzalida, G. Solórzano, A. Craievich, D. Smith, T. Fujita, M. López. *Microstructural characterization of dispersion-strengthened Cu-Ti-Al alloys obtained by reaction milling, Materials Science and Engineering A (2007)*, pp. 454-455.
- [15] S. Zamorano. Fluencia lenta de aleaciones en base cobre endurecidas por dispersión, obtenidas por molienda reactiva. Memoria para optar al título de Ingeniero Civil Mecánico e Ingeniero Civil en Materiales, Universidad de Chile. 2006.
- [16] W. Callister. Introducción a la Ciencia e Ingeniería en Materiales, Tercera Edición, Editorial Reverté. Capítulo 7.
- [17] Gerhard Dehm, J. Thomas, Joachim Mayer, Thomas Weißgärber, Wolfgang Püsche y Christa Sauer. Formation and interfacte structure of TiC particles in dispersion-strengthened Cu alloy. Philosophical Magazine, 77(6): 1531, 1998.
- [18] R. Palma, A. Sepúlveda, R. Espinoza, A. Zúñiga, M. Diánez, J. Criado, M. Sayáguéz. High temperature mechanical behavior of Cu-Ti-C, Cu-Al and Cu-TI-Al-C alloys obtained by reaction milling, Materials Science and Engineering A 384 (2004), pp. 262-269.
- [19] Z. Zhang, F. Zhou, y E.J. Lavernia. On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction, Metallurgical andMaterials Transactions A, 34A, June 2003.
- [20] J.R. Groza, J.C. Gibeling. Principles of particle selection for dispersion-strengthened copper. Materials Science and Engineering A. vol. 171, 1 November 1993, 115-125.
- [21] R Shewfelt y Brown. Philosophical Magazine vol. 35 (1997), pp.947.
- [22] V. Nardone, J. Tien Pinning of Dislocations on the departure side of strengthening dispersoids, Scripta Metallurgica, vol 17, Issue 4, (April 1983), pp.467-470.
- [23] J. Rosler, E. Arzt. A new model-based creep equation for dispersion strengthened materials. Acta metallurgica et Materialia, vol. 38, Issue 4, (April 1990), pp.671-683.
- [24] R. Gonzales. Comportamiento mecánico a alta temperatura de aleaciones de cobre endurecidas por dispersión, Tesis para optar al grado de Doctor de Ciencia de la Ingeniería mención Ciencia de los Materiales, Universidad de Chile, 2006.
- [25] D. Pincheira. Deformación en caliente de aleaciones de Cu endurecidas por dispersión de TiC y ZrO₂, Memoria para optar al título de Ingeniero Civil Mecánico, Universidad de Chile (2003).

- [26]] H. Fecht NanoStructured Materials vol. 6 33-42 (1995).
- [27]] J. P. Lozano *Comportamiento mecánico en compresión en caliente y creep de aleaciones Cu-V-C y V-Al-C*, Memoria para optar al título de Ingeniero Civil Mecánico, Universidad de Chile (2008).

Apéndice A

Ángulos de difracción de los compuestos

85-1326				Vav	elength= 1.54056	С				
Cu					2 0	Int	\mathbf{h}	k	1	
Copper					43.316 50.448 74.124	999 * 427 171	1 2 2	1 0 2	1 0 0	
Copper Ded a Callor	1 5 40 80	1214		. Colordatad	89.935	156	3	1	1	
Cut off: 17.7 Ref: Calculate Ref: Swanson, 539, 359, 1 (19	Int.: Calcu ed from ICSD H.E., Tatge, I 953)	ulated using POWD-12 S., Natl. Bur. St	I/Icor.: 8.80 2++, (1997) tand. (U.S.), Ci	irc.						
Sys.: Cubic		S.G.: Fr	n 3 m (225)							
a: 3.615	b:	c:	A:	C:						
α: Dof: Ibid	β:	γ:	Z: 4	mp:						
Kel: Ibid.										
Dx: 8.935	Dm: 8.9	60 ICSD #	: 064699							
Peak height in value given. At 47.24.	itensity. Cu t t least one Ti	ype. PSC: cF4. F missing. Mwt:	See PDF 4–83 : 63.55. Volum	6. No R e[CD]:						

88-2321								Wav	elength= 1.608	С
Ti					2 e	Int	h	k	1	
Titanium					40.119 46.664 68.127 82.111	999* 442 202 193	1 2 2 3	1 0 2 1	1 0 0 1	
Rad.: CuKa1	λ.: 1.54060	Filter:	d-s	p: Calculated	00.020	53	2	2	2	
Ref: Calcula Ref: Haglund 11685 (1993) Sys.: Cubic	ted from ICSD , J et al., Phys	using POWD-1 s. Rev. B: Cond S.G.: F	2++ ens. Matter, 48	3.						
a: 4.06	b:	e:	Α:	C:						
α:	β:	γ :	Z: 4	mp:						
Ref: Ibid.										
Dx: 4.754	Dm:	ICSD	# : 041503		_					

Peak height intensity. PSC: cF4. No R value given. At least one TF missing. Mwt: 47.90. Volume[CD]: 66.92.

• 2002 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.3

00-006								Wavelength			308	 C
V					2 e	Int	\mathbf{h}	k	1			
Vanadium	anadium ad.: CuKa1 2: 1.54060 Filter: d-sp: Calculated					999* 436 188 179	12232	1 0 2 1	1 0 0 1			
Rad.: CuKa1	λ: 1.54060	Filter:	d-s	p: Calculated	94.091	49	6	4	6			
Ref: Calcula	ated from ICSD	using POWD-12	2++									
Ref: Calcula Ref: Haglund 11685 (1993) Sys.: Cubic	ated from ICSD i, J et al., Phys)	using POWD-13 s. Rev. B: Conde S.G.: Fn	2++ ens. Matter, 44 	В,								
Ref: Calcula Ref: Haglund 11685 (1993) Sys.: Cubic a: 3.79	ated from ICSD 1, J et al., Phys) b:	using POWD-1: s. Rev. B: Conde S.G.: Fn c:	2++ ens. Matter, 40 n3m (225) A:	B. C:	_							
Ref: Calcula Ref: Haglund 11685 (1993) Sys.: Cubic a: 3.79 α:	ated from ICSD l, J et al., Phys) b: β:) using POWD-1; s. Rev. B: Conde S.G.: Fn c: ?:	2++ ens. Matter, 44 n3m (225) A: Z: 4	в, С: mp:	_							
Ref: Calcula Ref: Haglund 11685 (1993) Sys.: Cubic a: 3.79 α: Ref: Ibid.	ated from ICSD l, J et al., Phys) b: β:) using POWD-1; s. Rev. B: Conde S.G.: Fn c: γ:	2++ ens. Matter, 44 n3m (225) A: Z: 4	8. C: mp:								

Peak height intensity. PSC: cF4. No R value given. At least one TF missing. Mwt: 50.94. Volume[CD]: 54.44.

51-0626									Vav	elength=	1.608	0
CuC8						2 e	Int	h	k	1		
Copper Carbid	e					10.160 11.727 16.689 17.858	50 50 50 10	0 0	0 0	4 6		
Rad.: FeKa	λ: 1.9373	Filter:	d-s	p: Deby	ye-S.	20.356 22.674	80 10	0	0	7		
Cut off:	Int.: Estin	nation I/	lcor.:			29.575	100	0	0	10		
Ref: Braga, D	et al., J. Che	m. Soc., Dalton Tr	rans., 2026	(1979)		30.880 33.872 37.992	10 80 50					
Sys.: Hexagona	al	S.G.: P				44.135	50					
a: 2.14	b:	e: 31.29	A:		C: 14.6215							
α:	β:	25	Z: [2]	mp:	:							
Ref: Ibid.												
Dx: 4.272	Dm:	SS/FOM:	$F_4 = 2(0.$	232 ,	9)							
A solution of dropwise to a tetrahydrofura analysis (wt.%	Cu Cl2 Å2 H2 suspension o an. The mixtu): C 79.7. Inte	0 in tetrahydrof of potassium grap ure was stirred fo ercalate.	uran was ac hite (K C8 or 10 hours.	lded) in Chem	ical							

PSC: hP18. Mwt: 159.63. Volume[CD]: 124.10.

^{© 2002} JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.3

85-2084								lav	elength= 1.54056	С
TiO					2 e	Int	\mathbf{h}	k	1	
Titanium Oxic	le				27.526 34.129 44.392 56.825	233 623 999* 85	0 1 1 0	00000	1 0 1 2	
Rad.: CuKa1 λ : 1.54060Filter:d-sp: CalculatedCut off:17.7Int.: CalculatedI/Icor.:4.15Ref:Calculatedfrom ICSD using POWD-12++Ref: Moehr, S et al., Z. Anorg. Allg. Chem., 622, 1035 (1996)				67.978 68.276 71.874 78.585 88.252	193 113 83 45 118 102	1 1 2 2 1	1 0 1 0 0 1	2 1 0 1 2		
Sys.: Hexagon	al	S.G.: P6/mi	mm (191))						
a: 3.031(6)	b:	c: 3.2377(9)	A:	C: 1.0682						
α: Ref: Ibid.	β:	γ:	Z: 1	mp:						
Dx: 4.119	Dm:	ICSD # : 0'	78848		-					

Peak height intensity. R-factor: 0.040. PSC: hP2. Mwt: 63.90. Volume[CD]: 25.76.

82-1123	3-1123							Wav	elen	gth= 1.54056			С	
Ti02					2 e	\mathbf{Int}	h	k	1	2 0	Int	\mathbf{h}	k]
Titanium Oxide					18.747	33	0	2	0	61.761	6	1	6	C
					20.388	999*	1	1	0	61.907	33	2	5	C
					26.160	194	1	2	0	62.762	61	0	0	2
					33.772	254	1	3	0	62.955	33	2	4	1
Ded. Co.V.1		14	d	Calandadad	35.408	42	1	0	1	64.137	7	3	3	0
Rad.: Cukal	λ: 1. 34000 ΓΙ	itter:	a-sp:	calculated	35.770	236	0	2	1	65.165	65	3	0	1
Cut off: 17.7	Int.: Calculate	ed I/Ic	or.: 3.11		36.699	150	1	1	1	65.999	22	3	1	1
Ref: Calculated	d from ICSD usi	ng POWD-12++,	(1997)		37.887	19	2	1	0	66.131	12	0	2	2
Ref: Akimoto, J	et al., J. Solid	State Chem., 11	3, 27 (1994	l)	38.020	28	0	4	0	66.731	36	1	1	2
					40.360	186	1	2	1	67.234	63	0	6	1
					41.459	25	2	2	0	68.472	1	3	2	1
Sys.: Orthorhor	nbic	S.G.: Pbnm	(62)		42.403	8	1	4	0	69.191	13	1	2	2
a: 4 9022(14)	b: 9.459(14)	c: 2,9585(12)	A: 0.5183	C: 0.3128	45.919	131	1	3	1	69.917	4	3	4	0
u. 1.0000(11)	0. 0.100(11)	0. 0.0000(10)	n. 0.0100	0. 0.0100	46.912	86	2	3	0	70.270	2	1	6	1
α:	β:	γ:	Z: 4	mp:	49.183	30	2	1	1	70.407	4	2	5	1
Ref: Ibid.					49.291	31	0	4	1	71.033	1	2	6	0
					51.753	6	1	5	0	72.498	17	1	~	
					52.131	117	2	2	1	72.498	~ 1	3	3	1
Dx: 3.868	Dm: 3.800	ICSD # : 07	75179		52.927	30	1	4	1	73.205	31	1	3	2
					53.823	68	2	4	0	74.920	4	2	0	2
					50.802	95	2	3	1	75.705	5	2	1	6
Peak height int	tensity. R-facto	or: 0.049. PSC: o	P12. See PD)F	50.497	4	0	0	0	10.789	7	0	4	6
49-1433. Calc.	density unusua	d but tolerable.	Mwt: 79.90.		09.832	100	3	2	0	77.000	3	3	0	
Volume[CD]: 13	7.19				01.008	122	1	Э	1	78.007	10	3	4	1

20	Int	h	k	1
78.007		2	2	2
78.658	12	4	1	0
78.658		1	4	2
79.080	6	2	6	1
80.493	1	1	7	1
80.974	3	4	2	0
81.304	10	0	8	0
81.905	18	2	3	2
84.158	6	1	8	0
84.804	2	4	3	0
85.519	17	3	6	0
86.498	20	4	1	1
87.250	21	2	4	2
89.025	7	2	7	1

85-0868								1	av	eleng	th= 1.608			С	
Ti203						20	Int	h	k	1	2 e	Int	h	k]
Rad.: CuKa1 Cut off: 17.7 Ref: Calculat Ref: Shirane, Solids, 13, 16	de 2: 1.54060 2: Int.: Calcu ted from ICSD G., Pickart, S 3: 6 (1960)	Filter: nated I using POWD-12- J., Newnham, R.,	d-s /Icor.: 1.8 +-, (1997) , J. Phys. Ch	ep: Calculat 2 .em.	ed	24.886 34.547 36.398 41.448 42.072 44.597 51.055 56.326 57.463 58.871	929 999* 971 64 410 83 337 958 6 38	$1 \frac{1}{12} 1 \frac{1}{12} \frac{1}{102} \frac{2}{11} \frac{1}{11}$	112222322	0 2 0 2 0 0 0 1 0 1	87.517 87.517 90.101 91.105 91.764 93.915	92 21 1 130 12	4 3 4 1 2 2	$\frac{42}{24442}$	2 1 4 0 2
Sys.: Rhombo	hedral	S.G.: R3e	(167)			64.310	246	1	3	0					
a: 5.43	b:	e:	A:	C:	1.0000	68.230	410	2	3	0					
α: 56.600	β:	7:	Z: 2	mp:		72.863	ĩ	2	2	4					
Ref: Ibid.						76.030	40	3	4	2					
Dx: 4.578	Dm:	ICSD # :	029286			78.234 80.543	67 1 48	2223	4 2 4 3	0 1 0					
Peak height i c=13.632, c/a given. At leas	intensity. Al2 a=2.6478, S.G. st one TF miss	03 type. C.D. Cel =R-3c(167). PSC sing. Mwt: 143.80	l: a=5.149, : hR10. No J . Volume[CD	R value]: 312.95.		80.964 81.508 82.715 84.285	12 1 30 1	$\frac{1}{2}$ $\frac{1}{3}$	3 2 3 4	1 1 0 1					

© 2002 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.3

82-1138				av	elenį	gth= 1.608			С	
Ti305	20	Int	h	k	1	2 e	Int	h	k	1
Titanium Oxide Rad.: CuKa1 2: 1.54060 Filter: d-sp: Calculated Cut off: 17.7 Int.: Calculated I/Icor.: 1.97 Ref: Calculated from ICSD using POWD-12++, (1997) Ref: Grey, I.E., Li, C., Madsen, I.C., J. Solid State Chem., 113, 62 (1994)	9.776 18.979 19.625 21.628 26.245 27.053 27.808 27.975 28.160 29.622 32.823	69 37 36 267 999* 67 96 99 97 282 47	02021221101	0 0 0 1 0 0 1 0 0 1	$1 \\ 0 \\ 2 \\ 1 \\ 0 \\ 2 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	43.999 44.078 44.991 48.118 48.583 48.583 48.583 49.408 50.058 50.058 51.134 53.830	7 6 402 20 5 349 2	$\frac{2}{4}$ $\frac{2}{1}$ $\frac{1}{4}$ $\frac{3}{4}$ $\frac{4}{0}$ $\frac{0}{2}$	000110220	42444333015
Sys.: Monoclinic S.G.: C2/m (12) a: 9.7568(2) b: 3.80077(9) c: 9.4389(1) A: 2.5671 C: 2.4834 a: β: 91.547(1) γ: Z: 4 mp: Ref: Ibid. TCSD # : 075194 Image: 0.1111 Image: 0.1111	32.823 34.966 35.866 37.984 38.506 39.109 39.521 39.521 39.521 39.781 40.094	47 122 71 22 5 16 114 140 128	122343341	1 0 0 1 0 1 0 1 0 1 0 1 0	2 3 0 1 1 1 3 1	53.650 54.272 54.900 55.137 55.137 55.601 55.782 55.944	10 7 3 9 28 28 20 10	22022501415	220221101	5025110441
Peak height intensity. R-factor: 0.055. 05 Ti3 type. PSC: mC32. At least one TF implausible. Mwt: 223.70. Volume[CD]: 349.90.	40.187 42.722 43.069 43.485	77 28 479 13	$\frac{1}{3}$ $\frac{3}{4}$ 3	1 1 0 1	3222	56.467 56.857 57.475 57.475	17 187 4	5 3 4 1	1 1 0 1	1 4 4 5

32-1383	-1383							Wav	elength= 1.54056	*
TiC		2 e	\mathbf{Int}	\mathbf{h}	k	1				
Titanium Ca Khamrabaev	'itanium Carbide Chamrabaevite, syn Rad.: CuKa1 2: 1.540598 Filter: Mono d-sp:							1 0 2 1	1 0 0 1	
Rad.: CuKa1	ad.: CuKa1 λ: 1.540598 Filter: Mono d-sp:						24	2	2	
Cut off:	ut off: Int.: Diffract. I/Icor.:						3	3	1	
Ref: Natl. B	Cut off: Int.: Diffract. I/lcor.: Ref: Natl. Bur. Stand. (U.S.) Monogr. 25, 18, 73 (1981)						4 4 5	2 2 1	0 2 1	
Sys.: Cubic		S.G.: F	m 3 m (225)							
a: 4.3274	b :	c:	A :	C:						
α:	β:	γ:	Z: 4	mp:						
Ref: Ibid.										
Dx: 4.911	Dm:	SS/F0	$M: F_{10} = 98(.0)$	103 , 10)						
Color: Dark gray Pattern taken at 25 C. The sample was obtained from Kennametal, Latrobe, Pennsylvania, USA. CAS #: $12070-08-5.$ $_{\rm G}(I_{\rm ObS})=\pm0.03.$ Cl Na type. Halite Group, carbide Subgroup. Also called: hongquiite.Tungsten used as an internal stand. PSC: cF8. To replace 6-614 and 31-1400. See ICSD 22259 (PDF 73-472); See ICSD 26952 (PDF 74-1219); See ICSD 1546 (PDF 71-298). Mwt: 59.91. Volume[CD]: 81.04.										

-ICDD^{OL} © 2002 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.3 d₩

74-1219								lav	elength= 1.54056	С
TiC					2 e	Int	\mathbf{h}	k	1	
Titanium Carbio	de				33.720 39.133	900 999 *	122	1	1 0	
Khamrabaevite,	syn				67.473	228	ŝ	1	1	
Rad.: CuKa1	λ: 1.54060 Fil	ter:	d-sp:	Calculated	- 70.911 84 105	126 49	2	2	2	
Cut off: 17.7 Ref: Calculated Ref: Becker, K.,	Int.: Calculate I from ICSD usin Ebert, F., Z. Ph	d I/Icor.: ng POWD-12++ ys., 31, 268 (1925)	3.98		_		-	Ū	-	
Sys.: Cubic		S.G.: F23 (196)								
a: 4.6	b:	c: A:		C:						
α:	β:	γ: Ζ:	4	mp:						
Ref: Ibid.										
Dx: 4.088	Dm: 4.100	ICSD # : 02695	2		_					

Peak height intensity. PSC: cF8. See PDF 32-1383. No R value given. At least one TF missing. Calc. density unusual but tolerable. Mwt: 59.91. Volume[CD]: 97.34.

51-0622			1	Wavelength=	1.608	0
TiC8	2 0	Int	h	k l		
Titanium Carbide	17.7(29.8(33.6) 42.6(89 5 56 100 21 5 58 50	0 0 0	0 6 0 10 0 14		
Rad.: CuKa x: 1.5418 Filter:	d-sp: Debye-S. 44.3	53 100				
Cut off: Int.: Estimation I/Icor.:						
Ref: Braga, D et al., J. Chem. Soc., Dalton Trans.,	2026 (1979)					
Sys.: Hexagonal S.G.: P						
a 0.10 by a 01.00 by	C. 14 6954					

a: 2.13	b:	c: 31.28	C: 14.6854	
α:	β:	n:	Z: [1.9]	mp:
Ref: Ibid.				
Dx: 3.696	Dm:	SS/FOM:	$F_3 = (0.1)$	94 , 14)

A solution of titanium isopropoxide in tetrahydrofuran was added dropwise to a suspension of potassium graphite (K C8) in tetrahydrofuran. The mixture was stirred for 10 hours. Chemical analysis (wt.%): C 91.5. Intercalate. * Incommenserate. PSC: hP17.10. Mwt: 143.99. Volume[CD]: 122.90.

72-2496	2-2496							Wav	eleng	th= 1.608			С	
Ti8C5					20	Int	h	k	1	2 e	Int	h	k	1
Titanium Carbide Rad.: CuKa1 x: 1.54060 Filter: d-sp: Calculated Cut off: 17.7 Int.: Calculated I/Icor.: 3.58 Ref: Calculated from ICSD using POWD-12++, (1997) Ref: Khaenko, B.V., Golub, S.Ya., Arbuzov, M.P., Kristallografiya, 25, 112 (1980)					18.632 21.470 30.492 30.602 35.925 35.925 36.068 37.598 37.781 43.744	99 7 2 3 8 6 997 422 999*	0 0 1 1 0 1 0 2 0 0	0 1 1 0 2 1 1 0 2 2	3 2 0 4 1 3 5 2 6 4	66.923 67.826 67.947 68.187 72.089 72.265 75.132 75.219 76.219 76.280	3 1 1 1 1 1 90 153	2 3 1 1 4 3 0 2	$ \begin{array}{c} 1 \\ 1 \\ 3 \\ 0 \\ 2 \\ 0 \\ 1 \\ 4 \\ 2 \end{array} $	7 6 10 4 8 1 5 2 6
Sys.: Rhombo	ohedral	S.G.: R3r	n (166)		47.818	1	2	1	1 5	76.510 80.256	143 89	04	2	10
a: 6.115	b:	c: 14.9	A:	C: 2.4366	48.044 49.155	1	1	2	ź	80.709 83.291	30	0	4	12
α:	β:	2:	Z: 3	mp:	49.303	1	1	1	6	83.628	6	2	0	11
Ref: Ibid.					54.258	1	2	1	4	84.213	1	2	3	.2
					54.464 57 977	14	0	1	87	84.550	1	2	1	10
Dx: 4.576	Dm:	ICSD #	: 020822		58.108 63.460	9 241	0 2	õ 2	9 0	88.170 88.394	1	3	2	4
Peak height i hR13. Mwt: 4-	intensity. R-f 43.26. Volume	actor: 0.060. C5 [CD]: 482.51.	Tið type. PS	C:	63.710 66.771 66.771	260 6	212	0 3 2	8 1 3	88.674 91.313 91.425	1 2 2	1 4 2	1 0 2	12 7 9

2₀ Int h k l 91.565 1 1 2 11 91.733 1 1 0 13

 \pm 2002 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.3

73-0470						Wave	eleng	th=	1.608	С		
VC					2 e	Int	h	k	1			
Vanadium Ca	rbide				39.066 45.421 66.185 79.619	991 999* 449 216	1 2 3	1 0 2 1	1 0 0 1			
Rad.: CuKa1	λ: 1.54060	Filter:	d-s	p: Calculated	- 83.934	115	2	2	2			
Cut off: 17. Ref: Calcula	ted from ICSD	using POWD-1	2++, (1997)	•								
Cut off: 17.' Ref: Calcula Ref: Nowotny Sys.: Cubic	ted from ICSD H., Kieffer, R	using POWD-1 L., Metallforschu S.G.: Fr	2^{++} , (1997) ung, 2, 257 (1	947)								
Cut off: 17.' Ref: Calcula Ref: Nowotny Sys.: Cubic a: 4.165	b:	using POWD-1 a., Metallforschu S.G.: Fr c:	n3m (225)	947) C:	_							
Cut off: 17.' Ref: Calcula Ref: Nowotny Sys.: Cubic a: 4.165 α:	b: β:	S.G.: Fr c: 7:	2++, (1997) ung, 2, 257 (1 m3m (225) A: Z: 4	947) C: mp:	_							
Cut off: 17.' Ref: Calcula Ref: Nowotny Sys.: Cubic a: 4.165 α: Ref: Ibid.	b: β:	s.g. Fr S.G.: Fr c: 7:	Arrow (1997) 2++, (1997) ung, 2, 257 (1 m3m (225) A: Z: 4	947) C: mp:								

Peak height intensity. Cl Na type. PSC: cF8. No R value given. At least one TF missing. Mwt: 62.95. Volume[CD]: 72.25.

V2C 2 0 Int h k l	
Vanadium Carbida 97 284 186 1 0 0	
41.115 208 0 2 42.778 999* 1 0 56.699 163 1 0	
Rad.: CuKa1 λ : 1.54060 Filter: d-sp: Calculated 07.257 140 1 1 0 Cut off: 17.7 Int.: Calculated I/lcor.: 5.99 79.481 11 2 0 Ref: Calculated from ICSD using POWD-12++, (1997) 81.934 91 1 1 2	
Ref: Bowman, A.L., Wallace, T.C., Yarnell, J.L., Wenzel, R.G., 83.056 78 2 0 1 Storms, E.K., Acta Crystallogr., 19, 6 (1965) 89.223 15 0 0 4	
Sys.: Hexagonal S.G.: P63/mmc (194) 93.672 23 2 0 2	
a: 2.9043(2) b: c: 4.5793(2) A: C: 1.5767	
α: β: γ: Ζ: 1 mp :	
Ref: Ibid.	
Dx: 5.654 Dm: ICSD # : 023797	

Peak height intensity. R-factor: 0.048. As Ni type. PSC: hP3. Mwt: 113.89. Volume[CD]: 33.45.

CCDD^{©1} © 2002 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.3

73-0394				Vav	eleng	gth= 1.608			С	
V8C7	2 0	Int	h	k	1	2 e	Int	h	k	1
Vanadium Carbide	15.689 19.246 24.925	8 3 8	1 1 2	1 1 1	0 1 0	73.015 77.432 79.610	1 215	5 5 6	3 4 2	2 1 2
Rad.: CuKa1 λ : 1.54060Filter:d-sp: CalculatedCut off:17.7Int.: CalculatedI/Icor.:4.09Ref:Calculated from ICSD using POWD-12++, (1997)Ref:Henfrey, A.W., Fender, B.E.F., Acta Crystallogr., Sec. B,26, 1882 (1970)	27.349 	3 1 1 999* 2 1	22332233	1211222	1 0 1 2 0 1	80.693 81.774 83.925 86.068 87.137 89.273 90.341	1 106 1 1 1 1	5647567	4 3 4 1 5 4 2	2 1 4 0 1 1 1
Sys.: Cubic S.G.: P4332 (212) a: 8.3307(9) b: c: A: C:	45.417 48.342 49.755	904 1 1	4 4 3	0 1 3	0 1 1	94.615	1	7	3	0
α: β: γ: Z: 4 mp: Ref: Ibid. Dx: 5.648 Dm: 5.570 ICSD # : 022177	52.497 53.831 56.433 58.959 60.197 62.628	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4345555	2 3 2 1 1 2 2	1 2 2 0 1 0					
Peak height intensity. R-factor: 0.034. C7 V8 type. PSC: cP60. Calc. density unusual but tolerable. At least one TF missing. Mwt: 491.61. Volume[CD]: 578.16.	63.823 66.179 68.492 69.635 71.896	1 410 1 1 1	5 4 5 5 6	2 4 3 3 1	0 0 1 0					

77-2173				Vav	elength= 1.608	С				
vo					2 e	Int	\mathbf{h}	k	1	
Vanadium Oxid	e				40.088 46.628 68.070 82.037 86.548	608 999* 433 141 108	12232	1 0 2 1 2	1 0 0 1 2	
Rad.: CuKa1	λ: 1.54060	Filter:	d-sj	p: Calculated	00.040	100	~	~	2	
Cut off: 17.7 Ref: Calculated Ref: Loehman, 73, 1781 (1969)	Int.: Calcu d from ICSD R.E., Rao, C.I)	llated using POWD-1 N.R., Honig, J.M	I/lcor.: 4.37 2++, (1997) 4., J. Phys. Che	·m.,						
Sys.: Cubic		S.G.: F)	m 3 m (225)							
a: 4.063	b:	e:	A:	C:						
α:	β:	n:	Z: 4	mp:						
Ref: Ibid.										
Dx: 6.629	Dm:	ICSD ;	¥:060486		_					

Peak height intensity. Cl Na type. PSC: cF8. No R value given. At least one TF missing. Mwt: 66.94. Volume[CD]: 67.07.

^{© 2002} JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.3

82-1074								Vav	eleng	th= 1.608			С	
V02					2 0	Int	h	k	1	2 e	Int	h	k	1
Vanadium Ox	ide				15.406	999 * 1	1	1	0	49.132	1 184	3	3	1
					21.854	31	2	Ô	Ô	50.157	116	4	2	ō
Rad : CuKa1	3: 1.54060	Filter	d-sn	. Calculated	- 26.765	452	1	0	2	51.293	2	4	0	42
Cut off: 17.7	Int.: Calcu	lated I/Ic	cor.: 2.50	. outoutatou	27.392 28.968	8 2	2 1	$^{1}_{1}$	1 2	51.706 51.801	5 3	3 4	$^{1}_{2}$	3
Ref: Calculat Ref: Yao, T., (ed from ICSD Oka, Y., Yama	using POWD-12++ moto, N., J. Solid S	, (1997) tate Chem.	, 112,	31.099 32.969	556 1	2 2	2 0	0 2	52.600 52.742	46 29	1 4	1 1	42
196 (1994)					33.490	7 428	22	2	1	54.024 55.149	2	32	3 0	2
Sys.: Tetragor	nal	S.G.: P42/1	ıcm (138)		34.815	150	ã	î	õ	56.394	6	ž	1	4
a: 8.483(6)	b:	c: 7.6152(5)	A:	C: 0.8977	37.056	5	3	12	$\frac{1}{2}$	56.529	4 110	4 5	2	0
α:	β:	n:	Z: 16	mp:	40.233 41.485	6 72	1 3	1 0	3 2	59.296 60.028	4 105	5 2	12	1
ker: Ibid.					41.914 43.016	2	3	2	1	60.400 61.209	5	4	1	3
Dx: 4.021	Dm:	ICSD # : 0	75129		44.557	30	42	Ô	õ	62.504	113	4	3	2
					47.420	406	ã	2	2	63.893	ĩ	4	2	ã
Peak height i At least one	ntensity. R–fa IF missing. My	actor: 0.136. 02 V f wt: 82.94. Volume[(type. PSC: t [D]: 548.00.	P48.	47.420 49.032	1	3	3	3	66.000	1	4	4 1	5

84-0319	34-0319							Vav	elengt	h= 1.608			С	
V203					2 0	Int	h	k	1	2 e	Int	h	k	1
Vanadium Oxi Rad.: CuKa1 Cut off: 17.7 Ref: Calculat Ref: Finger, L	λ: 1.54060 Int.: Calc ed from ICSE W., Hazen, R	Filter: ulated I/H using POWD-12++ M., J. Appl. Phys., (d-: cor.: 2.2 , (1997) 51, 5362 (sp: Calculated 3 1980)	25.610 34.689 38.30 40.405 43.519 46.644 52.625 56.889 59.720 60.582	656 999* 68 296 74 294 858 6 1	0 1 1 0 1 2 0 1 0 2	1 0 1 0 2 1 1 1	2 4 0 6 3 2 4 6 8 1	87.106 87.367 87.659 92.214	70 57 34 66	0 0 3 1	2 0 1 3	10 12 2 4
Sys.: Rhombol	hedral	S.G.: R3e (167)		61.881 66.933	62 226	1 2	2 1	2 4					
a: 4.9018(2)	b:	c: 13.969(4)	A:	C: 2.8498	69.248 70.599	326	3	02	0 5					
α:	β:	η‡	Z: 6	mp:	73.202	î	2	õ	8					
Ref: Ibid.					74.590 75.634 80.028	127 26 1	1 1 2	0 1 1	10 9 7					
Dx: 5.137	Dm:	ICSD # : 2	01109		82.004	65 53	2	2	0					
Peak height i hR10. Mwt: 14	ntensity. R-f	actor: 0.034. Al2 03 [CD]: 290.67.	3 type. PS	C:	85.441 85.769 86.518	15 9 1	2 1 1	223	3 8 1					

85-2422		Wavelength= 1.608							с	
V205	2 ₀	Int	\mathbf{h}	k	1	2 e	Int	h	k	1
Vanadium Oxide Rad.: CuKa1 λ: 1.54060 Filter: d-sp: Calculated Cut off: 17.7 Int.: Calculated I/icor.: 1.86 Ref: Calculated from ICSD using POWD-12++, (1997) Ref: Cocciantelli, J.M et al., J. Solid State Chem., 93, 497	13.066 18.428 18.608 20.666 20.787 26.305 27.551 29.128 29.360	4 999* 326 315 175 21 224 673 247	$ \begin{array}{c} 1 \\ 0 \\ 2 \\ 1 \\ 2 \\ 2 \\ 0 \\ 1 \\ 1 \\ 1 \\ $	0 0 0 0 0 0 1 1 0	1 2 0 2 1 2 1 3	43.070 46.345 47.060 47.370 47.370 47.505 48.207 48.207 50.057	8 72 6 97 75 91 144	3 4 1 4 3 4 1 3 2	1 1 1 0 0 0 1 1	2041435345
Sys.: Orthorhombic S.G.: Pnma (62) a: 9.9461(3) b: 3.5852(1) c: 10.0423(4) A: 2.7742 C: 2.8010 α: β: γ: Z: 4 mp: Ref: Ibid. Dx: 3.374 Dm: ICSD # : 080594	29.592 32.098 33.377 33.455 33.659 33.788 37.263 37.263 37.355 37.730 38.368 38.573	209 27 220 211 70 240 121 73 14 19 32	32122320401	1 1 1 0 0 1 0 0 1 0	1 0 2 1 3 2 2 4 0 3 4	51.154 51.538 53.296 54.142 54.782 54.905 55.538 55.813 55.953 56.089 56.880	13 37 160 21 8 26 2 3 7 26 51	25043413550	0201110102	0 2 0 4 4 3 5 5 1 3 2
Peak height intensity. R-factor: 0.070. C.D. Cell: a=9.946, b=10.042, c=3.585, a/b=0.9904, c/b=0.3570, S.G.=Pnam(62). PSC: oP28. Mwt: 181.88. Volume[CD]: 358.10.	38.915 39.738 42.046 42.301	17 58 23 143	4 3 2 4	0 1 0 0	1 1 4 2	56.880 57.419 57.769 57.769	1 23	2 0 1 2	2022	0 6 2 1
Apéndice B

Diagramas de fases

J.F. Smith and O.N. Carlson, 1989

Phase	Composition, wt% Cu	Pearson symbol	Space group
(V)	0 to 9.2	cI2 cF4	Im3m Fm3m
(Cu)	99.9 10 100	CF 4	1 11.511

J.L. Murray, 1987

Phase	Composition, wt% Cu	Pearson symbol	Space group
(aTi)	0 to 2.1	hP2	P63/mmc
(BTi)	0 to 17.2	c12	Im3m
Ti ₂ Cu	39.9	1/6	I4/mmm
TiCu	55 to 59	tP4	P4/nmm
Ti ₃ Cu ₄	63.9	1/14	I4/mmm
Ti ₂ Cu ₃	67	<i>tP</i> 10	P4/nmm
TiCu ₂	72.7	oC12	Amm2
TiCu ₄	83 to 84.9	oP20	Pnma
αTiCu ₄	~83 to 84.9	<i>tl</i> 10	I4/m
(Cu)	94 to 100	cF4	Fm3m
Metastable phases			
TiCu ₃		oP8	Pmnm
β″		tP2	P4/mmm

Apéndice C

Diagrama de Ellingham

Delta G (Ellingham)