

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA CIVIL

EVALUACIÓN DE PARÁMETROS SÍSMICOS PARA EDIFICIOS DE MARCOS DE ACERO

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL

MAURICIO ANTONIO PEÑA Y LILLO ARAYA

PROFESOR GUÍA

RICARDO HERRERA MARDONES

MIEMBROS DE LA COMISIÓN

ALEJANDRO VERDUGO PALMA CARLOS AGUIRRE AHUMADA

> SANTIAGO DE CHILE SEPTIEMBRE 2010

Resumen

Este trabajo consiste en el estudio de un edificio real, estructurado en base a marcos de acero, que resistió el terremoto de 1985, y de tres edificios ficticios de diferentes alturas con el mismo tipo de estructuración.

Primero, se revisan antecedentes generales del edificio real relativos a estructuración y evaluación de daños posteriores al terremoto de 1985. Luego, se analizan aspectos teóricos referentes a los factores de modificación de la respuesta estructural y de la metodología involucrada en su determinación.

Posteriormente, se procede a realizar la modelación computacional del edificio real, revisando el cumplimiento de las normas vigentes, tales como la NCh 433 Of. 96, AISC/2005 "Specification for Structural Steel Buildings" y AISC/2005 "Seismic Provisions".

Luego, se analiza el comportamiento del modelo frente al registro de aceleraciones del sismo del 3 de marzo de 1985. Después, se procede a determinar el factor de modificación de la respuesta estructural para este edificio. Esto involucra la determinación de la capacidad y la demanda sísmica de la estructura. Para el caso de la capacidad, se tendrán dos alternativas de evaluación: Análisis no lineal estático (*Pushover*) y análisis no lineal dinámico, mediante el uso de registros escalados. Para evaluar la demanda sísmica se compararán los valores del análisis lineal con registros escalados y los que resultan del análisis con el espectro de aceleraciones de la norma NCh 2745 Of. 2003 "Análisis y diseño de edificios con aislación sísmica".

Con estos valores establecidos, se procede a determinar el factor de modificación de la respuesta para el edificio real y se compara con el valor expuesto en la NCh 433 "Diseño sísmico de edificios".

Finalmente, se realiza el diseño de edificios ficticios de distintas alturas, según la normativa vigente, para posteriormente determinar sus factores de modificación de la respuesta, utilizando la metodología del capítulo anterior. Luego, al igual que para el edificio real, se comparan estos valores con los de la NCh 433, considerando todos los aspectos referentes a los códigos de diseño.

ii

Los resultados obtenidos en este trabajo indican que los factores de modificación de la respuesta de la NCh 433 Of. 96 resultan ser conservadores en relación a los valores obtenidos con la metodología aplicada, para el rango de períodos entre 0.89 y 1.25 segundos.

Queda en evidencia que el criterio que controla el diseño en edificios de marcos de acero es el de desplazamientos, lo que se traduce en un sobredimensionamiento de los elementos estructurales.

Estos resultados pueden utilizarse como precedente para futuros estudios de edificios de marcos de acero que puedan realizarse, a medida que existan mayores antecedentes del comportamiento real de este tipo de estructuras ante eventos sísmicos, pudiendo complementarse con estudios realizados para otros tipos de estructuraciones, de tal manera de tener un conocimiento acabado del diseño sísmico en acero.

Índice de contenidos

1	Intro	oduc	ción	1
	1.1	Mot	ivación	1
	1.2	Obj	etivos	2
	1.3	Met	odología	2
2	Ante	eced	entes generales	4
	2.1	Alca	ances	4
	2.2	Ante	ecedentes de la estructura a analizar	4
	2.2.	1	Consideraciones generales y estructuración	4
	2.2.	2	Comportamiento de los edificios durante el sismo del 3 de marzo de 1985	5
	2.3	Sist	emas de marcos de acero	8
	2.3.	1	Introducción	8
	2.3.	2	Clasificación	9
3	Cor	side	raciones generales de la evaluación de los parámetros sísmicos	11
	3.1	Ante	ecedentes generales	11
	3.2	Met	odología para la determinación del factor de modificación de la respuesta R	12
	3.2.	1	Caracterización del comportamiento de la estructura	13
	3.2.	2	Desarrollo de la modelación no lineal	13
	3.2.	3	Determinación de los factores de modificación de la respuesta	15
4	Мос	delac	sión estructural edificio real	18
	4.1	Alca	ances	18
	4.2	Moc	delación de la estructura real (4 pisos)	18
	4.2.	1	Descripción del modelo	18
	4.2.	2	Verificación de las esbelteces de los perfiles	23
	4.3	Nor	mativa aplicable a solicitaciones	26
	4.3.	1	Diseño estructural- Cargas permanentes y sobrecargas de uso	26
	4.3.	2	Diseño sísmico	26
	4.4	Dete	erminación de las solicitaciones	29
	4.4.	1	Cargas permanentes y sobrecargas de uso	29
	4.5	Veri	ificación del modelo ante la norma sísmica	32
	4.5.	1	Verificación de los desplazamientos máximos	33
	4.5.	2	Verificación de los factores de utilización de los elementos estructurales	34

	4.6	Ver	ificación viga débil - columna fuerte	. 35
5	Fac	tor d	e modificación de la respuesta para estructura real	. 37
	5.1	Alca	ances	. 37
	5.2	Aná	Ilisis no lineal estático	. 37
	5.2.	1	Implementación computacional	. 37
	5.2.	2	Desarrollo del análisis no lineal estático	. 43
	5.3	Aná	Ilisis no lineal dinámico	. 47
	5.3.	1	Criterios de discretización y elección de las rótulas plásticas	. 47
	5.3.	2	Elección del registro de aceleraciones	. 47
	5.3.	3	Respuesta del modelo ante el registro de aceleraciones	. 50
	5.4	Det	erminación del corte elástico	. 56
	5.4.	1	Determinación del corte elástico mediante el uso de registros escalados	. 56
	5.4. nor	2 ma N	Determinación del corte elástico mediante el espectro de aceleraciones de la ICh 2745 Of. 2003	. 62
	5.5	Det	erminación del factor de modificación de la respuesta "R"	. 64
	5.6	Cor	nparación y análisis de resultados	. 65
6	Fac	tor d	e modificación de la respuesta estructural para modelos ficticios	. 67
	6.1	Alca	ances	. 67
	6.2	Dise	eño de las estructuras	. 67
	6.2	1	Bases de diseño	. 67
	6.2	2	Descripción de los edificios	. 67
	6.3	Det	erminación de las solicitaciones	. 82
	6.3	1	Cargas permanentes y sobrecargas de uso	. 82
	6.3	2	Cargas sísmicas	. 82
	6.4	Ver	ificación del diseño	. 87
	6.4	1	Corte basal	. 87
	6.4	2	Verificación de los desplazamientos.	. 87
	6.4	3	Verificación de los factores de utilización de los elementos estructurales	. 91
	6.4	4	Verificación viga débil - columna fuerte	. 93
	6.5	Aná	Ilisis no lineal elástico	. 93
	6.5.	1	Modelo 6 pisos	. 93
	6.5.	2	Modelo 8 pisos	. 96
	6.5	3	Modelo 10 pisos	. 98
	6.6	Det	erminación del corte elástico	101
	6.6	1	Determinación del corte elástico mediante el uso de registros escalados	101

	6.6 nor	.2 ma N	Determinación del corte elástico mediante el espectro de aceleraciones de la ICh 2745 Of. 2003	. 112
	6.7	Det	erminación del factor de modificación de la respuesta "R"	. 112
	6.8	Con	nparación y análisis de resultados	. 115
7	Cor	nclus	iones	117
	7.1	Res	sumen	117
	7.2	Cor	clusiones generales	. 117
	7.2	.1	Cumplimiento de la normativa vigente del edificio real de 4 pisos	. 117
	7.2	.2	Diseño de los edificios de 6, 8 y 10 pisos.	118
	7.2	.3	Escalamiento de registros	118
	7.2	.4	Factores de modificación de la respuesta	119
	7.3	Futu	uros trabajos	. 120
В	ibliogra	afía	y Referencias	. 121
A	nexos.			. 123

Índice de figuras

Figura 2.1: Mapa general Viña del Mar (sectores cercanos a la Población República Popular	
China)	6
Figura 2.2: Mapa satelital Población República Popular China	6
Figura 2.3: Edificio Rep. Popular China I	7
Figura 2.4: Edificio Rep. Popular China II	7
Figura 2.5: Conexiones Edificio Rep. Popular China I	7
Figura 2.6: Conexiones Edificio Rep. Popular China II	7
Figura 2.7: Detalles conexiones viga-columna	8
Figura 3.1: Resumen metodología para la determinación de los parámetros sísmicos	13
Figura 3.2: Curva idealizada Pushover	15
Figura 4.1: Planta y detalles 2º, 3º y 4º piso	18
Figura 4.2: Cielo 4º piso	19
Figura 4.3: Planta techo	19
Figura 4.4: Elevación ejes B, C y D	19
Figura 4.6: Modelo 3D Edificio República Popular China	20
Figura 4.5: Elevaciones ejes 1 @ 11	20
Figura 4.8: Detalle sección VAR2	21
Figura 4.7: Detalle sección VAR1	21
Figura 4.9: Detalle sección 30H22	22
Figura 4.10: Dimensiones de las secciones	22
Figura 4.11: Tributación mediante el método de las franjas	30
Figura 5.1: Curva carga-deformación elementos estructurales	38
Figura 5.2: Criterios de aceptación de deformaciones	39
Figura 5.3: Disposición rótulas plásticas columnas ejes B, C y D	41
Figura 5.4: Disposición rótulas plásticas columnas ejes 1@11	41
Figura 5.6: Disposición rótulas plásticas vigas ejes 1@11	42
Figura 5.5: Disposición rótulas plásticas vigas ejes B, C y D	42
Figura 5.7: Mecanismo de falla Pushover dirección X (Paso 1)	44
Figura 5.8: Mecanismo de falla Pushover dirección X (Paso 2)	44
Figura 5.9: Mecanismo de falla Pushover dirección Y (Paso 1)	44
Figura 5.10: Mecanismo de falla Pushover dirección Y (Paso 2)	45
Figura 5.11: Curva Pushover edificio real 4 pisos dirección X	45
Figura 5.12: Curva Pushover edificio real 4 pisos dirección Y	46
Figura 5.13: Acelerograma Viña N70W	48
Figura 5.14: Acelerograma Viña S20W	48
Figura 5.15: Acelerograma U.T.F.S.M N70E	49
Figura 5.16: Acelerograma U.T.F.S.M S20E	49
Figura 5.17: Espectros de respuesta elástica	49
Figura 5.18: Emplazamiento bloques B1@ B4	50
Figura 5.19: Representación Proyecciones N70E y S20E registro U.T.F.S.M	51
Figura 5.20: Corte basal eje X caso 1	52

Figura 5.21: Corte basal eje X caso 2	. 52
Figura 5.22: Corte basal eje Y caso 1	. 53
Figura 5.23: Corte basal eje Y caso 2	. 53
Figura 5.24: Corte basal vs desplazamiento eje X caso 1	. 54
Figura 5.25: Corte basal vs desplazamiento eje X caso 2	. 54
Figura 5.26: Corte basal vs desplazamiento eje Y caso 1	. 54
Figura 5.27: Corte basal vs desplazamiento eje Y caso 2	. 55
Figura 5.28: Qi vs desplazamiento eje X (Edificio real, registros escalados)	. 57
Figura 5.29: Qi vs desplazamiento eje Y (Edificio real, registros escalados)	. 58
Figura 5.30: Envolvente desplazamientos (Edificio real 4 pisos, registros escalados)	. 58
Figura 5.31: Envolvente derivas (Edificio real 4 pisos, registros escalados)	. 59
Figura 5.32: Envolvente esfuerzo de corte (Edificio real 4 pisos, registros escalados)	. 59
Figura 5.33: Q _{oe} vs desplazamiento eje X (Edificio real, registros escalados)	. 60
Figura 5.34: Q _{oe} vs desplazamiento eje Y (Edificio real, registros escalados)	. 61
Figura 5.35: Espectro base de diseño NCh 2745 para distintos tipos de suelo (β=0.05)	. 62
Figura 5.36: Comparación espectros elásticos NCh 433 y NCh 2745	. 63
Figura 6.1: Planta y detalles 2º @ 6º piso	. 70
Figura 6.2: Cielo 6º piso	. 71
Figura 6.3: Planta techo	. 71
Figura 6.4: Elevación ejes B, C y D	. 71
Figura 6.5: Elevaciones ejes 1 @ 11 (6 pisos)	. 72
Figura 6.6: Detalle sección VAR3	. 72
Figura 6.7: Modelo 3D edificio 6 pisos.	. 73
Figura 6.8: Planta y detalles 2º @ 7º piso	. 74
Figura 6.9: Cielo 8º piso	. 74
Figura 6.10: Planta techo	. 75
Figura 6.11: Elevación ejes B, C y D	. 75
Figura 6.12: Elevaciones ejes 1 @ 11 (8 pisos).	. 76
Figura 6.14: Modelo 3D edificio 8 pisos	. 77
Figura 6.13: Detalle sección VAR4	. 77
Figura 6.15: Planta y detalles 2º @ 10º piso	. 78
Figura 6.16: Cielo 10º piso	. 78
Figura 6.17: Planta techo	. 79
Figura 6.18: Elevación ejes B, C y D	. 79
Figura 6.19: Elevaciones ejes 1 @ 11 (10 pisos)	. 80
Figura 6.21: Modelo 3D edificio 10 pisos	. 81
Figura 6.20: Detalle sección VAR5	. 81
Figura 6.22: Espectro elástico NCh 433 (Sin reducción).	. 85
Figura 6.23: Curva <i>Pushover</i> dirección X edificio 6 pisos	. 94
Figura 6.24: Curva <i>Pushover</i> dirección Y edificio 6 pisos	. 94
Figura 6.25: Mecanismo de colapso <i>Pushover</i> dir. X (Edificio 6 pisos)	. 95
Figura 6.26: Mecanismo de colapso <i>Pushover</i> dir. Y (Edificio 6 pisos)	. 95
Figura 6.27: Curva <i>Pushover</i> dirección X edificio 8 pisos	. 96
Figura 6.28: Curva <i>Pushover</i> dirección Y edificio 8 pisos	. 97
Figura 6.29: Mecanismo de colapso <i>Pushover</i> dir. X (Edificio 8 pisos)	. 97
Figura 6.30: Mecanismo de colapso <i>Pushover</i> dir. Y (Edificio 8 pisos)	. 98

Figura 6.31:	Curva Pushover dirección X edificio 10 pisos	99
Figura 6.32:	Curva Pushover dirección Y edificio 10 pisos	99
Figura 6.33:	Mecanismo de colapso Pushover dir. X (Edificio 10 pisos)	100
Figura 6.34:	Mecanismo de colapso Pushover dir. Y (Edificio 10 pisos)	100
Figura 6.35:	Q _i vs desplazamiento eje X (Edificio 6 pisos, registros escalados)	102
Figura 6.36:	Qi vs desplazamiento eje Y (Edificio 6 pisos, registros escalados)	102
Figura 6.37:	Qi vs desplazamiento eje X (Edificio 8 pisos, registros escalados)	103
Figura 6.38:	Qi vs desplazamiento eje Y (Edificio 8 pisos, registros escalados)	103
Figura 6.39:	Q _i vs desplazamiento eje X (Edificio 10 pisos, registros escalados)	104
Figura 6.40:	Q _i vs desplazamiento eje Y (Edificio 10 pisos, registros escalados)	104
Figura 6.41:	Envolvente desplazamientos (Edificio 6 pisos, registros escalados)	105
Figura 6.42:	Envolvente derivas (Edificio 6 pisos, registros escalados)	105
Figura 6.43:	Envolvente esfuerzo de corte (Edificio 6 pisos, registros escalados)	106
Figura 6.44:	Envolvente desplazamientos (Edificio 8 pisos, registros escalados)	106
Figura 6.45:	Envolvente derivas (Edificio 8 pisos, registros escalados)	107
Figura 6.46:	Envolvente esfuerzo de corte (Edificio 8 pisos, registros escalados)	107
Figura 6.47:	Envolvente desplazamientos (Edificio 10 pisos, registros escalados)	108
Figura 6.48:	Envolvente derivas (Edificio 10 pisos, registros escalados)	108
Figura 6.49:	Envolvente esfuerzo de corte (Edificio 10 pisos, registros escalados)	109
Figura 6.50:	Qoe vs desplazamiento eje X (Edificio 6 pisos, registros escalados)	110
Figura 6.51:	Qoe vs desplazamiento eje Y (Edificio 6 pisos, registros escalados)	110
Figura 6.52:	Qoe vs desplazamiento eje X (Edificio 8 pisos, registros escalados)	111
Figura 6.53:	Qoe vs desplazamiento eje Y (Edificio 8 pisos, registros escalados)	111
Figura 6.54:	Qoe vs desplazamiento eje X (Edificio 10 pisos, registros escalados)	111
Figura 6.55:	Q_{oe} vs desplazamiento eje Y (Edificio 10 pisos, registros escalados)	112

Tabla 4.1: Perfiles tipo H	23
Tabla 4.2: Perfiles tipo []	23
Tabla 4.3: Perfiles tipo C	23
Tabla 4.4: Perfiles sección L	23
Tabla 4.5: Perfiles sección variable	23
Tabla 4.6: Expresiones para esbeltez sísmica según AISC 2005 Seismic Provisions [12]	24
Tabla 4.7: Expresiones para esbeltez según AISC 2005 [8]	24
Tabla 4.8: Esbeltez perfiles H	25
Tabla 4.9: Esbeltez perfiles []	25
Tabla 4.10: Esbeltez perfiles C	25
Tabla 4.11: Esbeltez perfiles L	25
Tabla 4.12: Cargas permanentes	29
Tabla 4.13: Sobrecargas de uso	29
Tabla 4.14: Períodos obtenidos del análisis modal (Estructura 4 pisos)	30
Tabla 4.15: Parámetros de suelo tipo II NCh 433 Of. 96	31
Tabla 4.16: Parámetros según estructuración, uso y zona sísmica NCh 433 Of. 96	31
Tabla 4.17: Distribución fuerzas en altura método estático	32
Tabla 4.18: Excentricidades por piso método estático	32
Tabla 4.19: Desplazamientos relativos entre centros de masa de cada piso	33
Tabla 4.20: Desplazamientos relativos máximos entre pisos	33
Tabla 4.21: Factores de utilización máximos modelo real estructura 4 pisos	34
Tabla 5.1: Puntos curva Pushover dirección X (Edificio real 4 pisos)	46
Tabla 5.2: Puntos curva Pushover dirección Y (Edificio real 4 pisos)	46
Tabla 5.3: Análisis no lineal dinámico con registros escalados	57
Tabla 5.4: Corte elástico último (registros escalados).	60
Tabla 5.5: Definición del espectro de diseño (NCh 2745, Suelo Tipo II)	63
Tabla 5.6: Corte elástico último (Espectro NCh 2745)	64
Tabla 5.7: Factores de sobre – resistencia (Edificio 4 pisos)	64
Tabla 5.8: Factores de reducción por ductilidad (Edificio 4 pisos)	64
Tabla 5.9: Factores de modificación de la respuesta (Edificio 4 pisos)	65
Tabla 5.10: Factor de reducción efectivo (Edificio 4 pisos)	66
Tabla 6.1: Perfiles tipo H	68
Tabla 6.2: Perfiles tipo []	68
Tabla 6.3: Perfiles tipo C	68
Tabla 6.4: Perfiles sección L	68
Tabla 6.5: Perfiles sección variable	68
Tabla 6.6: Esbeltez perfiles H	69
Tabla 6.7: Esbeltez perfiles []	69
Tabla 6.8: Esbeltez perfiles C	69
Tabla 6.9: Esbeltez perfiles L	69
Tabla 6.10: Cargas permanentes y sobrecargas de uso modelos ficticios	82
Tabla 6.11: Períodos obtenidos del análisis modal (Estructura 6 pisos)	82

Tabla 6.12: Períodos obtenidos del análisis modal (Estructura 8 pisos)	83
Tabla 6.13: Períodos obtenidos del análisis modal (Estructura 10 pisos)	83
Tabla 6.14: Valores del coeficiente sísmico	83
Tabla 6.15: Corte basal edificios ficticios	86
Tabla 6.16: Fuerzas y momentos torsores por piso (modelo 6 pisos)	86
Tabla 6.17: Fuerzas y momentos torsores por piso (modelo 8 pisos)	86
Tabla 6.18: Fuerzas y momentos torsores por piso (modelo 10 pisos)	87
Tabla 6.19: Corte basal de diseño (Edificios ficticios)	87
Tabla 6.20: Desplazamientos relativos centros de masa de cada piso (6 pisos)	88
Tabla 6.21: Desplazamientos relativos máximos entre pisos (6 pisos)	88
Tabla 6.22: Desplazamientos relativos centros de masa de cada piso (8 pisos)	89
Tabla 6.23: Desplazamientos relativos máximos entre pisos (8 pisos)	89
Tabla 6.24: Desplazamientos relativos centros de masa de cada piso (10 pisos)	90
Tabla 6.25: Desplazamientos relativos máximos entre pisos (10 pisos)	90
Tabla 6.26: Factores de utilización máximos modelo 6 pisos	91
Tabla 6.27: Factores de utilización máximos modelo 8 pisos	92
Tabla 6.28: Factores de utilización máximos modelo 10 pisos	92
Tabla 6.29: Puntos curvas Pushover (Edificio 6 pisos)	96
Tabla 6.30: Puntos curvas Pushover (Edificio 8 pisos)	98
Tabla 6.31: Puntos curvas Pushover (Edificio 10 pisos)	101
Tabla 6.32: Análisis no lineal dinámico con registros escalados (Edificios ficticios)	102
Tabla 6.33: Corte elástico último registros escalados (Edificios ficticios).	109
Tabla 6.34: Corte elástico último espectro NCh 2745 (Edificios ficticios).	112
Tabla 6.35: Factores de sobre – resistencia (Edificio 6 pisos)	113
Tabla 6.36: Factores de sobre – resistencia (Edificio 8 pisos)	113
Tabla 6.37: Factores de sobre – resistencia (Edificio 10 pisos)	113
Tabla 6.38: Factores de reducción por ductilidad (Edificio 6 pisos)	113
Tabla 6.39: Factores de reducción por ductilidad (Edificio 8 pisos)	113
Tabla 6.40: Factores de reducción por ductilidad (Edificio 10 pisos)	113
Tabla 6.41: Factores de modificación de la respuesta (Edificio 6 pisos)	114
Tabla 6.42: Factores de modificación de la respuesta (Edificio 8 pisos)	114
Tabla 6.43: Factores de modificación de la respuesta (Edificio 10 pisos)	114
Tabla 6.44: Factores de reducción efectivos NCh 433 (Edificios ficticios)	115

1 Introducción

1.1 Motivación

El acero, como material estructural, posee una serie de ventajas que hacen muy interesante su uso. Posee una alta resistencia y elasticidad, además de permitir una velocidad en la construcción muy superior al resto de los materiales comúnmente utilizados. En Chile, se utiliza principalmente en el sector industrial, por las propiedades anteriormente señaladas. En la construcción de edificios urbanos, sin embargo, su uso está más limitado. La necesidad de contar con mano de obra calificada para las labores de montaje y la falta de experiencia que se tiene en relación al comportamiento sísmico de este tipo de edificaciones urbanas, hace que se privilegien otro tipo de soluciones.

La experiencia referente al comportamiento sísmico se ve reflejada, por ejemplo, en la determinación de los parámetros utilizados en la norma sísmica chilena. Uno de estos parámetros es el factor de modificación de la respuesta estructural. Dado el exitoso comportamiento que tuvieron los edificios de muros de hormigón armado para el sismo del 3 de marzo de 1985, los factores de modificación de la respuesta de la NCh 433 Of. 96 para este tipo de estructuras se calibraron para entregar el mismo corte basal que la versión anterior de la norma (NCh 433 Of. 72) para edificios de 12 pisos. Para el resto de los materiales, particularmente el acero, los valores fueron calculados tomando como referencia los factores obtenidos para el hormigón.

Por lo tanto, para aprovechar todas las ventajas que proveen las estructuras de acero tanto en la parte de diseño como en lo relacionado con la construcción, es necesario tener mayor certidumbre del comportamiento de este tipo de edificios ante diversas solicitaciones. En este trabajo, se aplicará una metodología que permita calcular los valores de los parámetros de reducción de respuesta indicados en la norma NCh 433 Of. 96 para estructuras de marcos de acero, basándose en el comportamiento de un edificio de este tipo durante el sismo del 3 de marzo de 1985.

1.2 Objetivos

Objetivos generales:

- Revisar los factores de reducción de respuesta de la norma NCh 433 Of. 96 para edificios estructurados en base a marcos de acero.

Objetivos específicos:

- Analizar las variables que influyen en la determinación de los factores de modificación de la respuesta.
- Estimar los valores de los factores de reducción para edificios de marcos de acero basados en el comportamiento observado en un edificio de este tipo durante el sismo de 1985.
- Revisar el efecto de las consideraciones en el diseño sísmico expuestas en la normativa vigente para las estructuras de marcos de acero.

1.3 Metodología

- Revisar el comportamiento de un edificio de marcos de acero de la población "República Popular China", ubicada en Viña del Mar, durante el sismo de 1985.
- Realizar un análisis no lineal dinámico mediante el software de elementos finitos SAP2000 v.14, sometiendo al modelo de este edificio al registro de aceleraciones, obtenido en la ciudad de Viña del Mar para este evento sísmico.
- Obtener la respuesta de la estructura ante estas solicitaciones.
- Comparar el resultado obtenido con el comportamiento real de la estructura.
- Comparar el espectro elástico de la norma NCh. 433 Of. 96 con la respuesta de la estructura ante el registro de aceleraciones.
- Realizar un análisis no lineal estático (*Pushover*) para determinar la capacidad del edificio.
- Realizar un análisis no lineal dinámico y un análisis modal espectral para determinar la demanda sísmica de la estructura sometida a un sismo severo.

- A partir de los resultados de los dos puntos anteriores, obtener el valor del factor de modificación de la respuesta.
- Comparar los valores de la norma con los valores estimados.
- Finalmente, después de obtener los valores de factores de reducción de la respuesta, proceder a verificarlos para edificios de más pisos, replicando el modelo original a 6, 8 y 10 pisos, utilizando los pasos mostrados previamente.

2.1 Alcances

En este capítulo se presentarán los antecedentes generales a considerar en el presente trabajo de título.

2.2 Antecedentes de la estructura a analizar

2.2.1 Consideraciones generales y estructuración

El edificio tipo que se analizará pertenece a la Población República Popular China, ubicada en Viña del Mar, específicamente en el barrio Miraflores Alto. Ésta se compone de siete edificios habitacionales de cuatro pisos, construidos en acero, cada uno con dimensiones en planta de 46 por 10.6 metros. Este conjunto habitacional fue construido en la década de los setenta. Las figuras 2.1 y 2.2 muestran la ubicación geográfica de los edificios a analizar. Las figuras 2.3 y 2.4 muestran esquemas generales.

Cada bloque se encuentra estructurado en base a marcos rígidos de acero en las dos direcciones principales, con losas de hormigón armado de 11 cm. de espesor en los entrepisos, exceptuando la techumbre.

Los edificios tienen diez vanos de 4.6 metros. La zona de pasillos corresponde a un volado de 1.6 m.

Las divisiones interiores en los edificios son paneles de madera y volcanita. En las paredes que dan al exterior, el panel está revestido por Steel Panel. En los frentes se adosa una estructura secundaria de acero para puertas y ventanas.

Los marcos se materializan con columnas de sección cajón cuadrada, con espesor variable por piso y por vigas doble te de altura variable. Las conexiones de taller y terreno son soldadas, exceptuando las costaneras de techo que tienen conexiones apernadas en sus extremos (figuras 2.5 y 2.6). Cada tramo de las columnas tiene altura igual a un piso y en su extremo superior van soldados de taller los arranques para las vigas de marco en las dos direcciones principales. Este detalle se muestra en la figura 2.7, que es parte del plano original

de detalles de la estructura. De esta manera, se induce un punto débil y se desplaza el punto de máxima solicitación.

Las columnas de los marcos de los edificios están empotradas en la base en las dos direcciones principales, materializándose mediante una placa base de 400 x 400 x 16 mm. con atiesadores, conectada a la fundación con cuatro pernos de anclaje de 7/8". Estos pernos de anclaje están colocados dentro de tubos de 2 ½" de diámetro y tienen un largo de 300 mm, apretados contra la base de estos tubos. Esta disposición permite que el perno de anclaje quede libre dentro del tubo y, por ende, pueda deformarse axialmente bajo esfuerzos sísmicos [1].

2.2.2 Comportamiento de los edificios durante el sismo del 3 de marzo de 1985

Como resultado de la inspección realizada a este conjunto de edificios posterior al sismo del 3 de marzo de 1985, se apreció que no hubo daños de tipo estructural. Sólo se observaron daños menores en algunas tabiquerías interiores producidas por desplazamientos con respecto a la estructura resistente. Estos efectos fueron mínimos y no afectaron el funcionamiento de las viviendas. Según la microzonificación sísmica realizada en la ciudad de Viña del Mar [2], en el sector donde se ubica el conjunto de edificios, la intensidad del sismo del 3 de marzo de 1985 fue normal, con una razón espectral entre 1.0 y 1.2. Dado que en el sector no existe una capa de relleno importante, como en los sectores planos de la ciudad, el movimiento no amplificó en gran medida.

En las zonas próximas a los apoyos no se apreciaron desplazamientos o grietas perceptibles en los elementos de la estructura secundaria de relleno, por lo que se puede suponer que las deformaciones de los pernos de anclaje se mantuvieron en el rango elástico.

Es posible concluir que los edificios tuvieron un muy buen comportamiento sísmico. Las deficiencias encontradas no guardan relación con disposiciones estructurales [1].

5

Figura 2.1: Mapa general Viña del Mar (sectores cercanos a la Población República Popular China)

Figura 2.2: Mapa satelital Población República Popular China

Figura 2.3: Edificio Rep. Popular China

Figura 2.4: Edificio Rep. Popular China II

Figura 2.5: Conexiones Edificio Rep. Popular China I

Figura 2.6: Conexiones Edificio Rep. Popular China II

Figura 2.7: Detalles conexiones viga-columna

2.3 Sistemas de marcos de acero

2.3.1 Introducción

La estructuración predominante en este edificio, como se mencionó anteriormente, es la de marcos de acero. Este tipo de sistema estructural presenta importantes ventajas arquitectónicas debido a las grandes luces que permite y al manejo del espacio interior que esto provoca. Desde el punto de vista ingenieril, una de las ventajas de este tipo de estructuración es que se disminuyen los esfuerzos en las fundaciones, lo que implicaría menores costos en su construcción.

Sin embargo, los edificios de marcos de acero pueden alcanzar grades deformaciones debido a su baja rigidez lateral, llevando a un aumento considerable en los costos de diseño en zonas de alta sismicidad. Para controlar el problema de desplazamiento en condiciones de servicio, las soluciones se traducen en columnas y vigas con grandes secciones.

En la zona panel (zona de conexión entre vigas y columnas) se producen grandes distorsiones debido a la transmisión de fuerzas de corte, provocando fallas frágiles en muchos casos si no se dispone de un adecuado detallamiento de las uniones.

2.3.2 Clasificación

Los edificios de marcos de acero se clasifican principalmente en tres tipos, según los estándares sísmicos que deban cumplir [3]. Los marcos corrientes (OMF, Ordinary Moment Frames) se utilizan en zonas con baja sismicidad y su comportamiento se espera elástico bajo condiciones normales. Los marcos intermedios (IMF, Intermediate Moment Frames) se utilizan en zonas de mediana sismicidad y deben resistir desplazamientos entre pisos moderados. Finalmente, los marcos especiales (SMF, Special Moment Frames) son usados en zonas de mediana y alta sismicidad, siendo diseñados para resistir grandes solicitaciones y desplazamientos entre pisos.

2.3.2.1 SMF (Marco Especial)

El diseño de este tipo de sistemas tiene por objetivo que los elementos estructurales desarrollen una gran cantidad de deformación inelástica al considerar el sismo de diseño. Esta deformación tiene lugar en las vigas a través de la formación de rótulas plásticas. Se espera que las vigas estén sometidas a grandes rotaciones inelásticas en estos puntos, que pueden estar ubicados en los extremos de los elementos, debido a los esfuerzos que generan las cargas sísmicas (esfuerzo de flexión mayor en los extremos de las vigas), o bien pueden producirse en cualquier punto de la luz, si es que los momentos generados por las cargas gravitacionales son importantes. Además, se espera que las conexiones sean capaces de desarrollar una rotación, debido al desplazamiento entre pisos, de al menos 0.04 radianes.

2.3.2.2 IMF (Marco Intermedio)

Se espera que un marco tipo IMF desarrolle, en sus miembros y conexiones, una cantidad limitada de deformación inelástica al ser sometido a las solicitaciones sísmicas. Se

9

espera que las conexiones sean capaces de desarrollar una rotación, debido al desplazamiento entre pisos, de al menos 0.02 radianes.

2.3.2.3 OMF (Marco Común)

Se espera que un marco tipo OMF desarrolle, en sus miembros y conexiones, una cantidad mínima de deformación inelástica al ser sometido a fuerzas que resultan al considerar el sismo de diseño.

3.1 Antecedentes generales

El espectro de diseño es la forma usual de definir las solicitaciones para el diseño sísmico de edificios. A partir de esto, se puede realizar un análisis estático mediante fuerzas laterales equivalentes o recurrir a un análisis dinámico, basándose en la superposición modal.

En la mayor parte de los códigos, se especifica un espectro basado en el comportamiento lineal elástico de la estructura para el movimiento del suelo de diseño. Para incluir la capacidad de disipación de energía de la estructura al incursionar en el rango inelástico, se especifica un factor de modificación de la respuesta definido por el tipo de material y estructuración del edificio.

En las estructuras con períodos largos, la reducción se puede aproximar a dividir por μ el espectro elástico, donde μ es el factor de ductilidad global para un sistema de un grado de libertad equivalente. La aproximación utilizada para edificios con períodos intermedios es el factor $\sqrt{2\mu - 1}$ propuesto originalmente por Newmark [4]. Para los edificios de períodos cortos, la relación entre el espectro elástico e inelástico no es constante y es dependiente del período de la estructura.

Un aspecto que es importante señalar, es la forma en que se decidieron fijar los valores de reducción R y Ro para los diferentes materiales y estructuraciones en la NCh 433 Of. 96. Utilizando como referencia algún tipo de estructura con nivel de solicitación sísmica conocida, se determinó el resto de los valores en forma relativa a los datos conocidos. Se disponía de dos estructuras que podían servir de base para el procedimiento. La primera opción era utilizar los edificios de hormigón armado de 10 a 12 pisos ubicados en Santiago, estructurados en base a muros, que mostraron un comportamiento satisfactorio en el sismo de marzo de 1985; la segunda opción era el caso de los edificios de albañilería armada de 4 pisos para los cuales se había desarrollado una investigación durante el estudio de la norma NCh 1928.

Se optó por utilizar como referencia los edificios de hormigón armado, de forma tal que el esfuerzo de corte basal para dichas estructuras construidas en Santiago fuera el mismo de la norma NCh 433 Of. 72. Mediante estas consideraciones, se obtuvo que el factor de modificación de la respuesta estructural aumenta a medida que el período de la estructura también lo hace. Esto se traduce, por ejemplo, en que los edificios de más de 15 pisos, de

hormigón armado o de acero, estructurados en base a marcos o a muros, quedan diseñados para el esfuerzo de corte basal mínimo. Por otro lado, los edificios de 4 o menos pisos se consideran mayormente solicitados debido a que el factor de reducción que es posible considerar es menor [5].

La fijación de los niveles de solicitación sísmica analizados se basa en la experiencia de un tipo de edificio que ha mostrado buen comportamiento sísmico. Por un lado, esto es de gran ayuda para obtener niveles de protección sísmica aceptables, asegurando en gran medida que si se continúa con las estructuraciones hasta ahora utilizadas, la protección sísmica está garantizada. Pero por otra parte, si se conociese el nivel de solicitación sísmica para otros tipos de estructuraciones, se podría aplicar la misma metodología para la determinación de los factores de reducción de cada tipo de estructura de forma independiente. De esta forma, se podrían utilizar de mejor manera las características de cada tipo de material y estructuración

3.2 Metodología para la determinación del factor de modificación de la respuesta R

La metodología a emplear se basa en el documento FEMA P695: "Quantification of Buildings Seismic Performance Factors" [6] y en el trabajo de Fernández [7], basado en los procedimientos de Uang [8]. Los pasos de la metodología se resumen en la figura 3.1.

Figura 3.1: Resumen metodología para la determinación de los parámetros sísmicos.

3.2.1 Caracterización del comportamiento de la estructura

Se trata de modelar la estructura como un sistema resistente a fuerzas sísmicas. En función de esto, es posible fijar los rangos de los parámetros de diseño y atributos del sistema que sean representaciones razonables de la estructura y que permitan obtener un impacto cuantificable en el modelo.

3.2.2 Desarrollo de la modelación no lineal

Las consideraciones tomadas en el punto anterior proveen la base para la modelación no lineal que represente adecuadamente los rangos de aplicación a un determinado sistema. Se utilizarán dos tipos de análisis: Análisis estático (*Pushover*) y el análisis dinámico (análisis tiempo – historia).

3.2.2.1 Análisis no lineal estático (Pushover)

La metodología propuesta por Uang [8] consiste en establecer relaciones entre la respuesta elástica y la inelástica, la que para efectos de análisis es idealizada por una curva elasto – plástica con capacidad de corte de fluencia Q_f y desplazamiento $\Delta_{máx}$. En la figura 3.2 se muestra una curva típica de comportamiento estructural no lineal y la curva teórica de respuesta elástica.

Algunos documentos tales como el FEMA 356 (2000) [9] y su antecesor, el FEMA 273 (1997) [10], establecen procedimientos de modelación, análisis y aceptación para el *Pushover*. En el caso de este trabajo de título, el documento base será el FEMA 356.

El procedimiento de análisis consiste en suponer que las cargas gravitacionales no varían y que se presentan como condición inicial a la acción de "empujar" el edificio mediante fuerzas estáticas (dado que no existen fuerzas inerciales generadas por las aceleraciones) que van aumentando monotónica (siempre apuntan en el mismo sentido) y proporcionalmente (se mantiene la relación entre ellas).

Aun cuando las hipótesis básicas del análisis no lineal estático descritas en el párrafo anterior se alejan de la realidad a medida que el edificio es más flexible, debido a que el patrón de fuerzas puede excluir formas de vibrar de orden superior que afecten en las zonas altas de los edificios, el mecanismo de degradación que propone el método es bastante razonable, dado que retiene la hiperestaticidad intrínseca de la estructura.

3.2.2.2 Análisis no lineal dinámico (Tiempo- historia)

Esta metodología es similar a la anterior, con la diferencia de que las demandas sísmicas de los elementos son obtenidas al someter a la estructura al registro de aceleraciones del terremoto a analizar, o del mismo escalado hasta obtener comportamientos no lineales en la estructura. Uno de los objetivos de utilizar este análisis en el presente trabajo de título es comparar la respuesta real de la estructura con la del modelo.

El análisis dinámico permite, además, establecer el margen de colapso de una estructura, esto es, la relación entre la respuesta elástica e inelástica. Los valores de los factores de modificación de la respuesta son función de este margen de colapso.

14

3.2.3 Determinación de los factores de modificación de la respuesta

Para determinar el factor de modificación de la respuesta estructural R, es necesario obtener la curva capacidad – demanda, que proviene del análisis no lineal estático indicado en el punto 3.2.2.1. Esta curva se muestra en la figura 3.2.

Adicionalmente, se debe realizar el análisis no lineal dinámico mediante registros escalados para determinar el corte basal máximo en el rango lineal elástico. Este esfuerzo, indicado en la figura 3.2, se obtiene analizando la estructura considerando en un primer caso un comportamiento no lineal (análisis no lineal dinámico) y, posteriormente, suponiendo una respuesta lineal elástica de ésta al someterla a los registros de aceleraciones escalados.

Figura 3.2: Curva idealizada Pushover.

Donde:

- Q_{oe}: Resistencia elástica última, que corresponde al corte basal máximo en el rango elástico
- Q_f: Capacidad de corte idealizada de la estructura con comportamiento no lineal

- Q_p: Corte basal de la primera fluencia significativa
- Q_d: Corte basal de diseño, según NCh 433 Of. 96
- Δ_d: Desplazamiento obtenido con las cargas de diseño
- Δ_{p} : Desplazamiento de la primera fluencia significativa
- Δ_{f} : Desplazamiento de fluencia general en la curva de respuesta idealizada
- Δ_{max} : Desplazamiento máximo real de la estructura

Una vez identificados estos valores, se calculan diversos parámetros. Uno de ellos es la razón de ductilidad μ_s que viene dada por:

$$\mu_{s} = \frac{\Delta_{\max}}{\Delta_{f}} \tag{3.1}$$

Este valor entrega una idea del grado de comportamiento inelástico requerido, si es que Δ_{max} corresponde el desplazamiento demandado por un sismo. Si Δ_{max} corresponde a la capacidad de desplazamiento que la estructura suministra antes del colapso, la razón de ductilidad indica la capacidad de disipar la energía a través de deformaciones plásticas.

Además, se define el factor de reducción por ductilidad R_µ como:

$$R_{\mu} = \frac{Q_{oe}}{Q_f} \tag{3.2}$$

que indica la posibilidad de reducir la fuerza de diseño elástica debido a la capacidad de disipar energía de la estructura.

La reserva de resistencia que existe entre el nivel de corte de diseño y el corte nominal de fluencia Q_f , se puede definir en función del factor de sobre–resistencia Ω :

$$\Omega = \frac{Q_f}{Q_d} \tag{3.3}$$

La sobre-resistencia Ω puede generarse por una mayor resistencia de los materiales en relación a sus valores nominales, elementos sobredimensionados en la etapa de diseño, efectos de elementos no-estructurales, requerimientos mínimos de esbeltez, entre otros.

Finalmente, el factor de modificación de la respuesta estructural propuesto por Uang [8] se define mediante la siguiente expresión:

$$R = \frac{Q_{oe}}{Q_d} = \frac{Q_{oe}}{Q_f} \cdot \frac{Q_f}{Q_d} = R_\mu \cdot \Omega$$
(3.4)

Se observa que el factor de reducción de la respuesta R es función del factor de reducción de ductilidad y del factor de reducción por sobre-resistencia.

4.1 Alcances

En el presente capítulo, se muestran las consideraciones realizadas para efectuar la modelación del edificio "República Popular China".

4.2 Modelación de la estructura real (4 pisos)

Como se mencionó en el capítulo I, la modelación se realizó en el programa SAP2000 v.14 dadas las diversas alternativas y simplicidad que otorgaba para realizar la modelación.

4.2.1 Descripción del modelo

Utilizando los planos estructurales originales, se procedió a efectuar la modelación. En las figuras 4.1, 4.2, 4.3, 4.4, 4.5 y 4.6 se muestran las plantas, elevaciones y modelo 3D del edificio.

Figura 4.1: Planta y detalles 2°, 3° y 4° piso.

Figura 4.2: Cielo 4º piso.

Figura 4.3: Planta techo

Figura 4.4: Elevación ejes B, C y D

Figura 4.6: Modelo 3D Edificio República Popular China

En las figuras 4.7, 4.8 y 4.9 se muestran los detalles de las secciones variables utilizadas en el modelo. Las dimensiones están en mm.

Figura 4.7: Detalle sección VAR1.

Figura 4.8: Detalle sección VAR2.

Figura 4.9: Detalle sección 30H22

En las tablas 4.1, 4.2, 4.3, 4.4 y 4.5 se indican las dimensiones de cada uno de los perfiles utilizados, cuya nomenclatura se muestra en la figura 4.10. El acero utilizado en la construcción fue A42-27ES (nomenclatura de la época), con una tensión de fluencia de 270 [MPa].

Figura 4.10: Dimensiones de las secciones

Tabla 4.1: Perfiles tipo H

Perfil	В	Н	t _w	t _f	Peso
	[mm]	[mm]	[mm]	[mm]	[kgf/m]
20H17	100	200	5	6	17.0
25H15	70	250	7	5	15.0
30H20 ⁸	100	300	6	5	20.8

Tabla 4.2: Perfiles tipo []

Perfil	Ancho (B)	Alto(H)	Espesor (t)	Peso
	[mm]	[mm]	[mm]	[kgf/m]
[]200x200x6	200	200	6	36.5
[]200x200x5	200	200	5	30.6
[]200x200x4	200	200	4	24.6

Tabla 4.3: Perfiles tipo C

Perfil	В	Н	Т	f	Peso
	[mm]	[mm]	[mm]	[mm]	[kgf/m]
250C17	75	250	6	20	18.3
C200x75x20x3	75	200	3	20	8.1
C150x65x20x3	75	150	3	20	6.5

Tabla 4.4: Perfiles sección L

Perfil	В	Н	t	Peso
	[mm]	[mm]	[mm]	[kgf/m]
L65x65x5	65	65	5	4.9

Tabla 4.5: Perfiles sección variable

Perfil	Altura	Altura	Ancho	Ancho	Espesor	Espesor	Largo
	Inicial	Final	Inicial	final	alma	ala	[mm]
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
30H22	300	170	100	100	5	8	1600
VAR1	300	300	200	100	5	6	500
VAR2	200	200	200	100	5	6	500

4.2.2 Verificación de las esbelteces de los perfiles

La norma AISC 2005 [11] y el documento AISC 2005 Seismic Provisions [12], tabla I-8-1, establecen los valores de las esbelteces límite que se deben cumplir para los distintos casos de análisis. Las ecuaciones para calcular estos valores se muestran en las tablas 4.6 y 4.7. El uso

de perfiles compactos busca que las fallas de los elementos se produzcan por la plastificación de éstos, antes que se produzca pandeo local en el ala o en el alma de los perfiles.

Elemento	λ _{ps}		
	(Sísmicamente compacto)		
	Para C _a ≤ 0.125 (*):		
	$3.14\sqrt{\frac{E}{f_y}}(1-1.54C_a)$		
Almas en flexo-compresión (Perfiles H y C)	Para C _a > 0.125 (*):		
	$1.12\sqrt{\frac{E}{f_{y}}}(2.33 - C_{a}) \ge 1.49\sqrt{\frac{E}{f_{y}}}$		
Alas de perfiles H sometidos a flexión			
Alas de perfiles C Perfiles L	$0.30\sqrt{f_y}$		
Almas o alas de perfiles []	NO APLICA (**)		
(*):El valor de Ca viene dado por la expresión (diseño LRFD):			
$C_a = \frac{P_u}{\phi A_t f_y}$			
(**): No aplica para estructuraciones de marcos rígidos.			

Tabla 4.6: Expresiones para esb	eltez sísmica según AISC 2005 Seismic Provisions	[12]
---------------------------------	--	------

En los edificios analizados, se utilizaron perfiles H sólo en las vigas, y dado que los esfuerzos axiales en este tipo de elementos son despreciables en relación a los de flexión, se puede suponer que el valor de C_a es igual a cero.

Tabla 4.7: Expresiones para esbeltez según AISC 2005 [8]

	λ_{p}	λ_r	
Elemento	(Compacto)	(No Compacto)	
Perfiles [] (cajón)	$1.12\sqrt{\frac{E}{f_y}}$	$1.40\sqrt{rac{E}{f_y}}$	

Luego, las esbelteces obtenidas se muestran en las tablas siguientes:

		Alma	Ala			
Dorfil	Borfil Esbeltez λ _{ps} Tipo		Esbeltez	λ_{ps}	Tipo	
Feili	Alma			ala		
20H17	37.60	85.46	Sísmicamente compacto	7.92	8.16	Sísmicamente compacto
25H15	34.29	85.46	Sísmicamente compacto	6.30	8.16	Sísmicamente compacto
30H20 ⁸	48.33	85.46	Sísmicamente compacto	9.40	8.16	No compacto

Tabla 4.8: Esbeltez perfiles H

Tabla 4.9: Esbeltez perfiles []

Perfil	Esbeltez	λ _p	λ_r	Tipo
[]200x200x6	30.33	30.48	38.10	Compacto
[]200x200x5	37.00	30.48	38.10	No compacto
[]200x200x4	47.00	30.48	38.10	Esbelto

Tabla 4.10: Esbeltez perfiles C

	Alma			Ala		
Dorfil	Esbeltez	λ_{ps}	Estatus	Esbeltez	λ_{ps}	Estatus
Feilli	alma			Ala		
250C17	39.67	85.46	Sísmicamente compacto	10.50	8.16	No compacto
C200x75x20x3	64.67	85.46	Sísmicamente compacto	23.00	8.16	No compacto
C150x65x20x3	48.00	85.46	Sísmicamente compacto	23.00	8.16	No compacto

Tabla 4.11: Esbeltez perfiles L

Perfil	Esbeltez	$\lambda_{ m ps}$	Estatus
L65x65x5	12.00	8.16	No compacto
4.3 Normativa aplicable a solicitaciones

4.3.1 Diseño estructural- Cargas permanentes y sobrecargas de uso

La norma chilena NCh 1537 Of.86 "Diseño estructural de edificios- Cargas permanentes y sobrecargas de uso" [13] establece las bases para determinar las cargas permanentes y los valores mínimos de las sobrecargas de uso normales que deben considerarse. Dependiendo del tipo de edificio y del uso que se le dará a cada área, se definen las sobrecargas de uso uniformemente distribuidas. Esta norma es aplicable tanto para pisos como para techos.

Además de incluir los valores de las cargas, en esta norma se definen factores de reducción tanto para la sobrecarga de techo como para la de piso, definidos por el área tributaria a considerar. Dado que este trabajo de titulación no considera la modelación de las losas del edificio, la descarga se produce directamente en las vigas, haciendo importante la consideración de este factor de reducción dado por:

$$C_A = 1 - 0.008A_T \ge 0.6 \tag{4.1}$$

Donde A_T corresponde al área tributaria de cada elemento expresada en m².

4.3.2 Diseño sísmico

La norma chilena NCh 433 Of. 96 "Diseño sísmico de edificios" [14] es el documento oficial que establece los requisitos mínimos para el diseño sísmico de estructuras de carácter habitacional. Para estructuras industriales, se debe aplicar la norma NCh 2369 Of. 2003 "Diseño sísmico de estructuras e instalaciones industriales".

En el caso de este trabajo de título, corresponde trabajar con la NCh 433 Of. 96 [14], dado que se trata de un edificio de carácter habitacional. Esta norma se orienta a lograr que las estructuras cumplan los siguientes requisitos:

- Resistan sin daños movimientos sísmicos de intensidad moderada.
- Limiten los daños en elementos no estructurales durante sismos de mediana intensidad.

- Aunque presenten daños, eviten el colapso durante sismos de intensidad excepcionalmente severa.

4.3.2.1 Procedimientos de análisis norma NCh 433 Of. 96

Esta norma establece dos procedimientos de cálculo para las solicitaciones sísmicas. Cualquiera sea el método utilizado, se debe considerar un modelo estructural con al menos tres grados de libertad. Los procedimientos que se indican en la norma son el análisis estático y el análisis modal espectral.

4.3.2.1.1 Análisis estático

Mediante la aplicación de este método, la solicitación sísmica se asimila a un sistema de fuerzas aplicadas en los centros de masa de cada piso, cuyos efectos se calculan siguiendo los principios de la estática. La distribución de estas fuerzas en la altura depende de la geometría de la estructura y del peso de cada piso.

El esfuerzo de corte basal viene dado por:

$$Q_b = C \cdot I \cdot P \tag{4.2}$$

Donde C es el coeficiente sísmico, dependiente de parámetros tales como el tipo de suelo y el lugar donde se encuentre emplazado el edificio. I es el factor de importancia, que depende del tipo de uso que se le dará a la estructura. Finalmente, P es el peso total del edificio, incluido el peso propio y un porcentaje de la sobrecarga.

Este resultado debe combinarse con los del análisis por torsión accidental, generada por posibles distribuciones de masa no uniformes en cada piso. Este análisis consiste en aplicar momentos de torsión en cada nivel, calculados como el producto de las fuerzas estáticas que actúan en el nivel por una excentricidad dada por:

$$\pm 0.1 \cdot b_{ky} \cdot \frac{Z_k}{H}$$
 para el sismo según x (4.3)

$$\pm 0.1 \cdot b_{kx} \cdot \frac{Z_k}{H}$$
 para el sismo según y (4.4)

Donde b_{kx} y b_{ky} corresponden a la longitud del edificio en el eje x y en el eje y, respectivamente. Z_k corresponde a la altura acumulada hasta el nivel k y H es la altura total del edificio.

El procedimiento estático es aplicable en estructuras de no más de 5 pisos y 20 metros de altura. Para el resto de los casos, este método es aplicable sólo bajo ciertas condiciones, dependientes de los modos de vibrar con mayor masa traslacional y de la comparación con la otra metodología indicada en la norma: Análisis modal espectral.

4.3.2.1.2 Análisis modal espectral

Este método puede aplicarse a las estructuras que presenten modos normales de vibración clásicos, con amortiguamientos modales del orden del 5% del amortiguamiento crítico. A través de un espectro de diseño, que representa la envolvente de espectros de respuesta para diversos sismos, se calculan los desplazamientos y aceleraciones máximas para cada modo. Posteriormente, estos valores pueden combinarse mediante distintos procedimientos. Uno de ellos es el de la combinación cuadrática completa (método CQC), que considera además una correlación entre los valores modales máximos. Finalmente, se obtienen los valores más probables de desplazamientos y fuerzas [14].

Al igual que en el método estático, los resultados del análisis modal espectral deben combinarse con los del análisis por torsión accidental. Para este caso, la norma permite considerar este efecto de dos formas:

- Aplicando momentos de torsión en cada nivel, calculados como el producto de la variación del esfuerzo de corte combinado en ese nivel, por una excentricidad dada por las ecuaciones (4.3) y (4.4).
- II. Desplazando los centros de masa del modelo en $\pm 0.05b_{ky}$ para el sismo en x y $\pm 0.05b_{kx}$ para el sismo en x.

28

En el caso del edificio real, es aplicable el método estático [14]. En los edificios ficticios (modelos de 6, 8 y 10 pisos) que se analizarán posteriormente, se utilizará el método modal espectral.

4.4 Determinación de las solicitaciones

4.4.1 Cargas permanentes y sobrecargas de uso

Las cargas permanentes y sobrecargas de uso se determinaron bajo las indicaciones norma NCh 1537 Of. 86 [13].

4.4.1.1 Cargas permanentes

Dentro de las cargas permanentes, se consideran los pesos de la estructura metálica, losas y el de las terminaciones. En el primer caso, el valor es calculado directamente por SAP2000. La solicitación generada por las losas se calculó considerando el espesor de 11 cm de éstas, y la carga debida a terminaciones fue estimada según lo habitualmente usado en oficinas de cálculo.

Tabla 4.12: Cargas permanentes

Carga	Valor	Unidad
Peso estructura metálica (4 pisos)	37450	[kgf]
Losas	264	[kgf/m ²]
Terminaciones	150	[kgf/m ²]

4.4.1.2 Sobrecargas de uso

Considerando el carácter habitacional de la estructura y la sobrecarga típica de techo, se consideraron las siguientes solicitaciones.

Tabla 4.13: Sobrecargas de uso

Carga	Valor	Unidad
Sobrecarga de uso	200	[kgf/m ²]
Sobrecarga de techo	100	[kgf/m ²]

La descarga en las vigas se realizó mediante el método de las franjas, debido a la simplicidad que presentaba para aplicarlo al modelo. En la figura 4.11 se muestra la forma de tributar, para el caso de una carga w uniformemente distribuida. En el anexo 1 se muestra un ejemplo del cálculo de las descargas en las vigas.

Figura 4.11: Tributación mediante el método de las franjas

4.4.1.3 Cargas sísmicas

4.4.1.3.1 Determinación del período de la estructura

Previo a la determinación de las solicitaciones sísmicas, es necesario realizar un análisis modal que permita determinar el período fundamental de la estructura. En la tabla 4.14 se muestran los períodos obtenidos de este análisis.

Tabla 4.14: Períodos	s obtenidos de	l análisis modal	(Estructura 4	1 pisos).
----------------------	----------------	------------------	---------------	-----------

Modo	Período	Período Masa acumulada	
		dirección x	dirección y
1	0.91	0.75	0.00
2	0.90	0.75	0.84
3	0.82	0.85	0.84
4	0.32	0.92	0.84
5	0.31	0.92	0.94

Se aprecia que el período fundamental de la estructura es 0.91 [s].

Los períodos de los modos 1 y 2 tienen valores similares, siendo ambos traslacionales. Este fenómeno es conocido como acoplamiento de las componentes de traslación en dos direcciones mutuamente perpendiculares [15], que genera un estado de solicitaciones simultáneas en dos direcciones sobre aquellos elementos comunes a pórticos perpendiculares. Esto reviste especial importancia en estructuras con propiedades mecánicas similares en ambas direcciones.

4.4.1.3.2 Parámetros de diseño

Independientemente de cuál sea el método de análisis escogido, la norma indica ciertos parámetros para el cálculo de las solicitaciones dependientes del tipo de suelo, uso del edificio, estructuración y zona sísmica. Se considerará suelo tipo II (predominante en la zona), uso habitacional, estructuración mediante marcos de acero y zona sísmica 3.

Tabla 4.15: Parámetros de suelo tipo II NCh 433 Of. 96

S	T₀ [s]	Ν	Р	T' [s]
1	0.3	1.33	1.5	0.35

Tabla 4.16: Parámetros según estructuración, uso y zona sísmica NCh 433 Of. 96

Parámetro	Valor	Unidad	Tipo
R (estático)	7	-	Estructuración
R _o (modal espectral)	11	-	Estructuración
I	1	-	Uso del edificio
A ₀	0.4	[g]	Zona sísmica

El cálculo del coeficiente sísmico se muestra en el anexo 2. De los resultados, se desprende que C=C_{min}= 0.067.

4.4.1.3.3 Solicitaciones mediante método estático

Del análisis resulta que el peso del edificio, incluyendo peso propio y 25% de la sobrecarga, es de 818 [Tonf]. Finalmente, el valor del corte basal dado por la ecuación 4.2 resulta ser 54.5 [Tonf].

La distribución de las fuerzas y de las excentricidades por piso se muestran en las tablas siguientes. El detalle del cálculo se muestra en el anexo 2.

Piso	Fuerza [Tonf]
1	11.13
2	12.88
3	16.79
4	13.73

Tabla 4.17: Distribución fuerzas en altura método estático

Tabla 4.18: Excentricidades por piso método estático

Piso	Excentricidad eje x [m]	Excentricidad eje y [m]
1	0.27	1.17
2	0.53	2.31
3	0.79	3.46
4	1.06	4.60

4.5 Verificación del modelo ante la norma sísmica

Según los resultados del análisis, el corte basal de diseño es el mínimo que establece la norma. En función de este valor y de la geometría del edificio, se determinó la distribución de fuerzas en la altura según lo indicado en la tabla 4.17. Posteriormente, el efecto de la torsión accidental se consideró calculando las excentricidades por piso, según la tabla 4.18, y multiplicándolas por las fuerzas respectivas, obteniendo los momentos torsores solicitantes.

4.5.1 Verificación de los desplazamientos máximos

Una vez determinado el estado de carga, se procedió a realizar el análisis de deformaciones que establece la NCh 433 Of.96 [14] en su punto 5.9. Se deben verificar las siguientes condiciones:

- El desplazamiento relativo máximo entre dos pisos consecutivos, medidos en el centro de masas en cada una de las direcciones de análisis, no debe ser mayor que la altura de entrepiso multiplicada por 0.002.
- El desplazamiento relativo máximo entre dos pisos consecutivos, medidos en cualquier punto de la planta en cada una de las direcciones de análisis, no debe exceder en más de 0.001h al desplazamiento relativo correspondiente, medido en el centro de masas, en que h es la altura de entrepiso.

Luego, los desplazamientos obtenidos se muestran en las tablas siguientes.

Diafragma	Caso	Desplazamiento relativo [mm]	Dirección	Desplazamiento relativo máximo NCh 433 [mm]	Verificación
P2-P3	SY	3.79	Y	4.90	CUMPLE
P3-P4	SY	2.56	Y	4.90	CUMPLE
P4-Techo	SY	1.20	Y	4.90	CUMPLE
P2-P3	SX	3.76	Х	4.90	CUMPLE
P3-P4	SX	2.52	Х	4.90	CUMPLE
P4-Techo	SX	1.14	Х	4.90	CUMPLE

Tabla 4.19: Desplazamientos relativos entre centros de masa de cada piso.

Tabla 4.20: Desplazamientos relativos máximos entre pisos.

Diafragma	Caso	Desplazamiento relativo [mm]	Dirección	Desplazamiento relativo máximo NCh 433 [mm]	Verificación
P2-P3	SY	5.10	Y	6.24	CUMPLE
P3-P4	SY	3.50	Y	5.01	CUMPLE
P4-Techo	SY	1.80	Y	3.65	CUMPLE
P2-P3	SX	3.80	Х	6.21	CUMPLE
P3-P4	SX	2.50	Х	4.97	CUMPLE
P4-Techo	SX	1.20	Х	3.59	CUMPLE

Se puede apreciar que los desplazamientos relativos de los centros de masa se ajustan a la norma. De la misma forma, los desplazamientos relativos entre pisos medidos en puntos distintos al centro de masa, también cumplen la normativa sísmica vigente.

4.5.2 Verificación de los factores de utilización de los elementos estructurales

Otro de los aspectos que es necesario verificar es el factor de utilización de cada elemento estructural, de forma tal de comprobar si el diseño cumple con las exigencias de la normativa actual o bien se presentan algunas diferencias. La norma NCh 433 Of. 96 [14] en su punto 5.2 establece combinaciones de cargas a analizar, para el caso del método de factores de carga y resistencia (LRFD), dadas por:

$$1.4 \cdot (DL + SC \pm SISMOX) \tag{4.5}$$

$$1.4 \cdot (DL + SC \pm SISMOY) \tag{4.6}$$

$$0.9 \cdot DL \pm 1.4 SISMOX \tag{4.7}$$

$$0.9 \cdot DL \pm 1.4 SISMOY \tag{4.8}$$

Luego, en función de las solicitaciones obtenidas en el punto 4.4.1.3.3 se evalúan las combinaciones de carga indicadas en las ecuaciones 4.5, 4.6, 4.7 y 4.8. La verificación del diseño de los elementos estructurales se realiza siguiendo las indicaciones de la norma AISC 2005 [11]. Para el caso de las columnas, se analiza la interacción esfuerzo axial – momento, para las vigas se analizará el efecto del momento en el eje fuerte y para los arriostramientos el efecto del esfuerzo axial. Los factores de utilización máximos obtenidos para cada elemento se muestran en la tabla 4.21.

Tabla 4.21: Factores de utilización máximos modelo real estructura 4 pisos.

Perfil	Tipo	F.U	Combinación
[]200x200x4	Columna	0.65	1.4(PP+SC-SISMOY)
[]200x200x5	Columna	1.15	1.4(PP+SC-SISMOY)
[]200x200x6	Columna	0.90	1.4(PP+SC-SISMOY)
20H17	Viga	0.91	1.4(PP+SC-SISMOX)
25H15	Viga	0.65	1.4(PP+SC-SISMOX)
30H208	Viga	0.92	1.4(PP+SC-SISMOY)
30H22	Viga	0.65	1.4(PP+SC-SISMOX)
VAR1	Viga	0.70	1.4(PP+SC-SISMOY)
VAR2	Viga	0.88	1.4(PP+SC-SISMOX)
C150x65x20x3	Viga	0.15	1.4(PP+SC-SISMOX)
C200x75x25x3	Viga	0.48	1.4(PP+SC-SISMOX)
250C17	Viga	0.38	1.4(PP+SC+SISMOX)
L65x65x5	Arriostramiento	0.66	1.4(PP+SC-SISMOX)

Se aprecia que, para el caso de las vigas y arriostramientos, los factores de utilización son menores que 1. En el caso de las columnas, las correspondientes al segundo piso del edificio son las más solicitadas (perfiles [] 200x200x5), presentando un factor de utilización superior a 1. Por lo tanto, en lo referente al diseño de los elementos, se puede concluir que el edificio no cumple la normativa vigente.

4.6 Verificación viga débil - columna fuerte

Según el documento AISC Seismic Provisions [12], la siguiente relación debe ser satisfecha en la conexión viga-columna:

$$\frac{\sum M_{pc}^{*}}{\sum M_{pb}^{*}} > 1.0 \tag{4.9}$$

Donde:

 $\sum M_{pc}^*$ = suma de las capacidades nominales en flexión de las columnas conectadas al nudo considerando la reducción por la carga axial en la columna.

 $\sum M_{_{pb}}^{*}$ = suma de las capacidades nominales en flexión de las vigas conectadas al nudo.

Las expresiones para la suma de las capacidades nominales de las columnas y vigas conectadas al nudo, al igual que el cálculo de la razón entre dichas capacidades, se muestran en el anexo 3 de la presente memoria.

Esta condición promueve el diseño de estructuras dúctiles, induciendo que las fallas se produzcan primero en las vigas que en las columnas.

Es importante decir que, aun cuando esta verificación es relativamente reciente, en el diseño del edificio se aprecia que la reducción de secciones en las vigas tiene por objetivo alejar la zona de plastificación de la columna.

A modo de resumen, se puede señalar que las conexiones de este edificio no satisfacen la condición dada por la ecuación 4.9. Esto significa que, para la normativa actual, el diseño se consideraría poco dúctil, ya que las pérdidas de rigidez (formación de rótulas plásticas) se

35

provocarían primero en las columnas. Esto implica que las deformaciones posteriores a la fluencia son bajas, pudiendo provocar fallas frágiles.

5.1 Alcances

En este capítulo, se desarrollará el análisis no lineal estático y dinámico de la estructura real. En función de estos resultados, se determinará el factor de modificación de respuesta estructural.

5.2 Análisis no lineal estático

5.2.1 Implementación computacional

Como se mencionó en el capítulo 1, el análisis *Pushover* se realizará usando el programa computacional SAP2000 v.14. Los pasos involucrados en el análisis se muestran a continuación:

- Creación del modelo computacional básico.
- Definición arbitraria de patrones de cargas estáticas para realizar el análisis.
- Definición de los casos de carga *Pushover*. En este caso, se utilizarán como condición inicial del análisis los resultados obtenidos de la aplicación de las cargas gravitacionales en la estructura (cargas muertas + 25% de la sobrecarga), para posteriormente analizar el efecto de las cargas laterales incrementales.
- Definición y asignación de las rótulas plásticas por medio de sus propiedades y criterios de aceptación. Estos parámetros serán determinados según lo indicado en el documento FEMA 356 [9].
- Realización del análisis *Pushover*.
- Obtención de la curva de capacidad de la estructura.
- Revisión de los resultados.

5.2.1.1 Definición del patrón de cargas

SAP2000 ofrece la posibilidad de definir la distribución de carga lateral en la altura en función de las masas sísmicas de cada piso y aplicación de aceleraciones uniformes incrementales. La fuerza aplicada es entonces el producto de estas dos cantidades. Por simplicidad, se utilizará este tipo de metodología en el presente trabajo de título.

5.2.1.2 Definición de zonas de plastificación

La modelación computacional de las rótulas plásticas se realiza mediante la definición de las curvas generalizadas carga-deformación. Estas curvas establecen niveles de desempeño para acciones controladas por deformación. El documento FEMA 356 [9] establece curvas de carga-deformación dependientes del tipo de elemento estructural, clasificados como primarios o secundarios. Los elementos primarios son aquellos que proveen a la estructura de capacidad para resistir un colapso frente a cargas sísmicas, mientras que los secundarios no proveen dicha capacidad. En este trabajo de título sólo se modelarán las rótulas plásticas de los elementos estructurales principales, dado que interesa conocer el comportamiento de estos frente a las acciones sísmicas.

La curva idealizada carga-deformación para elementos estructurales se muestra en la figura 5.1.

Figura 5.1: Curva carga-deformación elementos estructurales

Esta curva muestra el comportamiento dúctil de los elementos. Se aprecia un rango elástico (tramo AB), seguido de un rango plástico (tramo BC). El punto E indica la resistencia

última de los elementos que les permiten resistir las cargas gravitacionales. Los parámetros a y b indican deformaciones totales posteriores a la fluencia (deformación plástica). El parámetro c es la resistencia final de la pieza, después del descenso repentino del punto C al D. Esta caída abrupta puede generar problemas en la implementación computacional de las curvas. Para solucionar este problema, se le asigna una pequeña pendiente al tramo CD, de forma tal de no generar problemas de inestabilidad en el programa.

En la figura 5.2 se muestran los criterios de aceptación de deformaciones de los miembros primarios (P = Primary members) y de los secundarios (S = Secondary members). Además, se definen tres niveles de desempeño, dependientes del tipo de daño que exista en la estructura:

- IO (Inmediate Occupancy): El edificio es seguro de habitar. Las reparaciones necesarias son menores.
- LS (Life Safety): La estructura se mantiene estable y posee una reserva de resistencia importante. El daño en elementos no estructurales se mantiene controlado.
- CP (Collapse Prevention): La estructura se mantiene estable con dificultad.

Figura 5.2: Criterios de aceptación de deformaciones.

SAP 2000 v.14 define automáticamente todas las curvas de carga - deformación para cada elemento en función de los parámetros entregados por FEMA 356 [9].

5.2.1.3 Criterios de discretización y elección de las rótulas plásticas.

El modelo a desarrollar tiene como objetivo determinar correctamente las zonas que desarrollan comportamiento inelástico en la estructura. Claramente, los lugares de inserción de las rótulas plásticas vienen dados por el desarrollo de los esfuerzos máximos en los elementos, por lo que no sería necesario discretizar acabadamente el modelo, puesto que las zonas que pudiesen desarrollar comportamiento no lineal estarían previamente identificadas. Esto ayuda, además, a que la modelación resulte más sencilla sin alterar la calidad de los resultados.

Por simple inspección, se puede apreciar que debido al efecto de las cargas sísmicas, los mayores esfuerzos deberían producirse en los extremos de cada elemento, por lo que las rótulas plásticas se asignarán en estas zonas. La elección del tipo de rótula dependerá del tipo de elemento que se esté analizando. Para el caso de las vigas, sabiendo que el esfuerzo de corte y axial no son predominantes, se considerará sólo la formación de rótulas por flexión en el eje fuerte. Para las columnas, al igual que en las vigas, el esfuerzo de corte no es predominante, pero el esfuerzo axial si lo es. Por lo tanto, la elección de las rótulas para este tipo de elementos viene dada por la interacción esfuerzo axial – momento.

5.2.1.3.1 Rótulas plásticas en columnas

Como se mencionó en el punto anterior, se asignarán rótulas plásticas en los extremos de las columnas. La disposición elegida se muestra en las figuras 5.3 y 5.4. Para considerar la interacción del esfuerzo axial y el momento en el eje correspondiente, se utilizará la ecuación 5.1, correspondiente a la ecuación 5.4 del documento FEMA 356 [9], que viene implementada en SAP 2000 v.14.

$$M_{CE} = 1.18 \cdot Z \cdot F_{ye} \cdot (1 - \frac{P}{P_{ye}}) \le Z \cdot F_{ye} = M_{p}$$
(5.1)

Donde:

M_{CE}: Esfuerzo de flexión esperado.

M_p: Momento plástico de la sección.

P: Fuerza axial en el elemento para un desplazamiento determinado.

- P_{ye}: Fuerza de fluencia esperada del material = A_gF_{ye} (A_g : Área bruta de la sección; $F_{ye}=R_yF_y=350$ MPa, $R_y=1.3$, $F_y=270$ MPa)
- Z: Módulo plástico de la sección.

Figura 5.3: Disposición rótulas plásticas columnas ejes B, C y D

Figura 5.4: Disposición rótulas plásticas columnas ejes 1@11

Finalmente, los parámetros a, b y c indicados en la figura 5.1 para cada columna, se obtienen de la tabla 5-6 de FEMA 356 [9], que se muestra en el anexo 4 del presente trabajo, ítem Columns – Flexure. Estos parámetros son función de las deformaciones de fluencia de los elementos. Las propiedades utilizadas en las rótulas plásticas de las columnas se muestran en el anexo 5.

5.2.1.3.2 Rótulas plásticas en vigas

Al igual que el caso de las columnas, las rótulas plásticas de las vigas se colocarán en los extremos de éstas y corresponderán a rótulas de flexión en el eje fuerte (M3). En las figuras 5.5 y 5.6 se muestran esquemáticamente la disposición de las rótulas de las vigas. Los parámetros de modelación a, b y c, indicados en la figura 5.1 para este tipo de elementos, se obtienen de la tabla 5-6 de la FEMA 356, ítem Beams – Flexure. Esta tabla se muestra en el anexo 4. Las propiedades utilizadas en las rótulas plásticas de las vigas se muestran en el anexo 5.

Figura 5.5: Disposición rótulas plásticas vigas ejes B, C y D.

Figura 5.6: Disposición rótulas plásticas vigas ejes 1@11

5.2.2 Desarrollo del análisis no lineal estático

Definida la metodología y la modelación de las zonas de plasticidad, se procede a realizar el análisis no lineal estático de las diversas estructuras. Utilizando como condición inicial las tensiones y deformaciones generadas por las cargas gravitacionales (cargas muertas + 25% de la sobrecarga), se realiza el análisis en las direcciones X e Y mediante un patrón de fuerzas horizontales incrementales, considerando efectos de segundo orden (P-delta y grandes desplazamientos). No se considera la reducción de capacidad para perfiles no compactos. De todas formas, se espera que las rótulas plásticas se produzcan en los pisos inferiores, por lo que el efecto de no considerar la disminución de la capacidad de estos perfiles no será muy importante.

El corte basal último se produce cuando una cierta cantidad de rótulas plásticas alcanzan el punto C de la curva tensión deformación (figura 5.2). La cantidad de rótulas es tal que genera un mecanismo de colapso en el sistema.

5.2.2.1 Mecanismo de colapso

Para las dos direcciones de análisis, se aprecia que el mecanismo de colapso es el de plastificación de las columnas, específicamente se produce el fenómeno "piso blando" en las columnas del primer piso, mediante el cual la estructura pierde rigidez lateral, que le permite resistir las cargas sísmicas. Aun cuando las vigas presentan deformaciones importantes, éstas no provocan inestabilidad del modelo. En las figuras 5.7 y 5.8 se muestra el mecanismo de colapso para el análisis *Pushover* en la dirección X. En las figuras 5.9 y 5.10 se muestra el modo de falla para el análisis en la dirección Y. Las columnas de los pisos superiores no presentan plastificaciones importantes, de manera tal que las reducciones de capacidad no consideradas en los perfiles no compactos no afectan en gran medida los resultados finales.

En ambas figuras, las rótulas de color rosado representan el punto de fluencia de los elementos, las de color azul representan pequeñas incursiones en el rango no lineal (punto IO en la figura 5.2), las de color celeste representan el punto LS de la curva tensión deformación (ver figura 5.2), las de color verde representan el nivel CP (figura. 5.2) y, finalmente, las rótulas plásticas de color amarillo indican el colapso del elemento.

43

Figura 5.7: Mecanismo de falla Pushover dirección X (Paso 1)

Figura 5.8: Mecanismo de falla Pushover dirección X (Paso 2)

Figura 5.9: Mecanismo de falla Pushover dirección Y (Paso 1)

Figura 5.10: Mecanismo de falla Pushover dirección Y (Paso 2)

5.2.2.2 Curvas Pushover

En las figuras 5.11 y 5.12 se muestran los resultados del análisis *Pushover* en las direcciones X e Y, respectivamente.

Figura 5.11: Curva Pushover edificio real 4 pisos dirección X.

Figura 5.12: Curva Pushover edificio real 4 pisos dirección Y.

Los puntos característicos de las curvas Pushover en ambas direcciones se muestran en las tablas 5.1 y 5.2.

Tabla 5.1: Puntos curva *Pushover* dirección X (Edificio real 4 pisos).

Punto	nto Abreviatura Corte basal [Tonf]		Desplazamiento [cm]
Fluencia	Q _p	276	8.5
Corte último	Q _f	346	21.2

Tabla 5.2: Puntos curva Pushover dirección Y (Edificio real 4 pisos).

Punto	Abreviatura	Corte basal [Tonf]	Desplazamiento [cm]
Fluencia	Q _p	301	9.0
Corte último	Q _f	355	22.7

No se aprecian grandes diferencias en los resultados de ambas direcciones. El corte basal que genera la fluencia en la dirección Y es levemente superior al de la dirección X. Los desplazamientos no presentan diferencias importantes.

5.3 Análisis no lineal dinámico

El análisis no lineal dinámico, como se mencionó en el capítulo 3, se utilizará para verificar la respuesta del modelo del edificio "República Popular China" ante el registro de aceleraciones del sismo del 3 de marzo de 1985. Además, mediante este tipo de análisis, se podrá determinar el corte basal último suponiendo un comportamiento lineal en la estructura, a través del uso de registros escalados.

5.3.1 Criterios de discretización y elección de las rótulas plásticas

El tipo de rótula plástica que se utilizará para este análisis será el mismo que se utilizó previamente para el análisis no lineal estático, indicado en el punto 5.2.1.3.

5.3.2 Elección del registro de aceleraciones

El edificio que se analiza en este trabajo de título resistió sin problemas el evento sísmico de 1985 y se encuentra ubicado en un lugar donde existen registros de aceleraciones del terremoto. Uno de estos fue obtenido gracias a la instrumentación de un edificio, cercano a la plaza "José Francisco Vergara", en el centro de Viña del Mar. El otro registro de la zona es el que se obtuvo en la Universidad Técnica Federico Santa María, ubicada en el camino que une Viña del Mar con Valparaíso. Las componentes del primer registro se muestran en las figuras 5.13 y 5.14, mientras que las del segundo se muestran en las figuras 5.15 y 5.16.

La elección final del acelerograma se basó en las características de los suelos en los que fueron obtenidos y de la similitud que se tenía con el suelo en el que fue fundado el edificio. El registro de aceleraciones de Viña del Mar fue obtenido en un suelo aluvial, con una capa de sedimentos de alrededor de 100 metros de profundidad, que provoca una importante amplificación de la onda sísmica [2]. El registro de la Universidad Técnica Federico Santa María (U.T.F.S.M), en cambio, fue obtenido en un suelo predominantemente rocoso.

Por la ubicación geográfica de la población "República Popular China", en el sector Miraflores Alto de Viña del Mar, según lo indicado en las figuras 2.1 y 2.2, el registro más conveniente de utilizar sería el de la U.T.F.S.M, dada la mayor similitud entre los lugares de emplazamiento de las edificaciones.

En la figura 5.17 se muestra la comparación de los espectros de respuesta elásticos para un oscilador de un grado de libertad frente a los registros anteriormente señalados. Se aprecia claramente que el de Viña del Mar presenta mayores aceleraciones en sus dos componentes que las del registro U.T.F.S.M, lo que concuerda con lo expuesto anteriormente, referente a la amplificación de la onda sísmica por parte del suelo. Además, se aprecia que los períodos donde se generan las máximas aceleraciones son distintos en ambos casos. Para el caso de Viña del Mar, los máximos están en torno a 0.7 [s] y, para el registro U.T.F.S.M, las aceleraciones máximas se encuentran en torno a 0.5 [s].

Figura 5.13: Acelerograma Viña N70W

Figura 5.14: Acelerograma Viña S20W

3 2

Figura 5.15: Acelerograma U.T.F.S.M N70E

Figura 5.16: Acelerograma U.T.F.S.M S20E

Figura 5.17: Espectros de respuesta elástica

5.3.3 Respuesta del modelo ante el registro de aceleraciones

Para revisar el comportamiento de la estructura frente al registro de aceleraciones elegido, se debe realizar un análisis no lineal dinámico. Para ello, es necesario simular fielmente el modo en el cual el sismo pudo haber actuado en la estructura. Por lo tanto, se debe conocer la ubicación geográfica de ésta, de forma tal de proyectar las componentes conocidas del acelerograma en las dos direcciones de análisis. En la figura 5.18 se muestra el emplazamiento de los edificios del conjunto "República Popular China", según planos generales.

Figura 5.18: Emplazamiento bloques B1@ B4

De la figura anterior, se desprende que en un caso el ángulo de uno de los edificios es 35º en relación a la dirección norte (caso 1) y, en el otro, los bloques están orientados en un ángulo de 55º en dirección norte (caso 2).

Las componentes del registro, como se indican en las figuras 5.15 y 5.16, son N70E y S20E, respectivamente. En la figura 5.19 se muestra la manera de representar estas proyecciones.

Figura 5.19: Representación Proyecciones N70E y S20E registro U.T.F.S.M

Luego, para ver el efecto de cada componente del sismo en los ejes de la estructura, basta con proyectar dichas componentes en los ejes de cada edificio. En las ecuaciones 5.2 y 5.3, se muestran las solicitaciones resultantes en cada una de las direcciones de análisis para los bloques de los casos 1 y 2, respectivamente. El sismo se aplicó simultáneamente en las dos direcciones de análisis.

$$(-N70E\cos(55) + S20E\cos(35))i + (N70E\cos(35) + S20E\cos(55))j$$
(5.2)

$$(N70E\cos(35) + S20E\cos(55))i + (N70E\cos(55) - S20E\cos(35))j$$
(5.3)

Los dos casos expuestos anteriormente corresponden a las dos orientaciones posibles de los bloques. Finalmente, el corte basal en el tiempo para ambos casos se muestra desde la figura 5.20 a la 5.23. Los valores fluencia 1 y 2 indican el valor del corte que generan la fluencia en el análisis *Pushover* (valores positivo y negativo, respectivamente).

Figura 5.21: Corte basal eje X caso 2

Figura 5.23: Corte basal eje Y caso 2

Los gráficos corte basal versus desplazamiento obtenidos en ambos casos se muestran desde la figura 5.24 a la 5.27

Figura 5.24: Corte basal vs desplazamiento eje X caso 1

Figura 5.25: Corte basal vs desplazamiento eje X caso 2

Figura 5.26: Corte basal vs desplazamiento eje Y caso 1

Figura 5.27: Corte basal vs desplazamiento eje Y caso 2

Se aprecia que el edificio resistió sin problemas el registro de aceleraciones aplicado, sin incursiones en el rango no lineal en ambos casos. El corte basal máximo se produce en la dirección Y con un valor aproximado de 200 [Tonf] (caso 2). El desplazamiento máximo de techo es aproximadamente de 8 [cm], en la dirección Y (caso 2).

5.4 Determinación del corte elástico

La metodología adecuada para determinar este valor consiste en utilizar un conjunto de registros de aceleraciones para determinar el punto de colapso de la estructura y el corte basal asociado. Como la cantidad de registros de los eventos sísmicos chilenos más importantes es bastante reducida, es complejo llevar esto a cabo. La creación de acelerogramas ficticios también escapa a los alcances de este trabajo de título, dada la complejidad que tiene asociado su desarrollo.

Por lo tanto, se recurrió al uso de dos metodologías alternativas. La primera consiste en el escalamiento de registros de aceleraciones. Una buena aproximación del corte elástico se obtendrá del escalamiento de algún registro conocido. Por simplicidad, se utilizará el registro UTFSM, específicamente la componente N70E. La segunda, consistirá en el uso del espectro de aceleraciones de la norma NCh 2745 [16], basado en acelerogramas de sismos importantes ocurridos en Chile.

De esta forma, se podrá obtener una buena aproximación de las demandas sísmicas de cada modelo analizado. La elección del corte elástico último vendrá dada por el menor valor obtenido por los dos métodos de análisis.

5.4.1 Determinación del corte elástico mediante el uso de registros escalados

En este caso, se utilizará el análisis no lineal dinámico con registros escalados para identificar el corte último, suponiendo un comportamiento lineal de la estructura.

El procedimiento consistirá en utilizar el acelerograma amplificado previamente. Los factores de amplificación serán múltiplos de 0.5. Se realizará un análisis no lineal dinámico para cada registro escalado, aplicado en las dos direcciones principales independientemente, hasta encontrar el factor de escala que provoque el colapso de la estructura en cada dirección. Posteriormente, identificado este valor, se procederá a hacer el análisis tiempo- historia, en este caso suponiendo comportamiento elástico en la estructura.

Finalmente, se obtendrán los valores del corte elástico último y del corte inelástico último. Éste se podrá comparar con el valor obtenido en la curva *Pushover*, para finalmente identificar qué valor es el más adecuado para calcular los parámetros de sobre-resistencia y ductilidad.

56

5.4.1.1 Desarrollo del análisis

5.4.1.1.1 Determinación del punto de colapso de la estructura

Al realizar el escalamiento de registros y realizar el análisis no lineal dinámico en el modelo real, se obtuvieron los resultados expuestos en la tabla 5.4.

Dirección de	Registro	Factor	Corte último	Desplazamiento
análisis	utilizado	de	inelástico (Qi)	último
		amplificación	[Tonf]	[cm]
Х	UTFSM N70E	2.0	295	11
Y	UTFSM N70E	2.5	306	15

Tabla 5.3: Análisis no lineal dinámico con registros escalados.

Se aprecia que para el caso de análisis en la dirección X, el primer factor de amplificación que genera colapso en la estructura es 2 y para la dirección Y es 2.5. Una de las posibles razones que expliquen este resultado es la menor rigidez de una de las líneas resistentes de la dirección X (Vigas 20H17).

En las figuras siguientes, se muestran las relaciones corte basal versus desplazamiento de techo en cada uno de los casos de análisis.

Figura 5.28: Qi vs desplazamiento eje X (Edificio real, registros escalados)

Figura 5.29: Qi vs desplazamiento eje Y (Edificio real, registros escalados)

En las figuras siguientes, se muestran las envolventes de desplazamientos, derivas y corte por piso.

Figura 5.30: Envolvente desplazamientos (Edificio real 4 pisos, registros escalados)

Figura 5.31: Envolvente derivas (Edificio real 4 pisos, registros escalados)

Figura 5.32: Envolvente esfuerzo de corte (Edificio real 4 pisos, registros escalados)

5.4.1.1.2 Resultados obtenidos

Una vez determinado el punto de colapso de la estructura, el corte inelástico último y el factor de amplificación que genera dichos resultados, se procede a determinar el corte último elástico, suponiendo un comportamiento lineal de la estructura. Estos resultados se muestran en las tablas siguientes:

Tabla 5.4: Corte elástico último (registros escalados).

Dirección de	Registro	Factor	Corte último	Desplazamiento
análisis	utilizado	de	elástico (Q _{oe})	último
		amplificación	[Tonf]	[cm]
Х	UTFSM N70E	2.0	330	11.5
Y	UTFSM N70E	2.5	418	17.5

En las figuras siguientes, se muestran las relaciones corte basal versus desplazamiento de techo para los análisis lineales en cada una de las direcciones.

Figura 5.33: Qoe vs desplazamiento eje X (Edificio real, registros escalados)

Figura 5.34: Qoe vs desplazamiento eje Y (Edificio real, registros escalados)
5.4.2 Determinación del corte elástico mediante el espectro de aceleraciones de la norma NCh 2745 Of. 2003

5.4.2.1 Consideraciones

La norma NCh 2745 [16] incorpora un espectro de aceleraciones Newmark & Hall para el diseño de estructuras aisladas. Fue desarrollado para aceleraciones máximas de terreno de 0,4g, 0,41g y 0,45g, para los suelos I, II y III, respectivamente, y desplazamientos máximos de 10 cm, 15 cm y 17 cm, respectivamente.

Figura 5.35: Espectro base de diseño NCh 2745 para distintos tipos de suelo (β =0.05)

Como este espectro de aceleración fue obtenido en base a registros de terremotos chilenos y es más conservador que el propuesto en la NCh 433 Of. 96 [14], permite evaluar cuál será la demanda sísmica de la estructura para un sismo severo, suponiendo un comportamiento elástico de ésta.

Además, el espectro debe ser modificado por un factor Z dependiente de la zona sísmica. En este caso, para la zona sísmica 3, el factor Z es igual a 5/4. Los parámetros que se muestran en la figura 5.35, se calculan a partir de los valores mostrados en la tabla siguiente:

Suelo	Ta	Tb	T _c	T _d	Te	Tf	α _A A	α _V V	α _d d
	[s]	[s]	[s]	[s]	[s]	[s]	[cm/s2]	[cm/s]	[cm/s]
	0.03	0.20	0.54	2.00	10	33	1100	94	30

Tabla 5.5: Definición del espectro de diseño (NCh 2745, Suelo Tipo II).

La comparación entre el espectro de la norma NCh 2745 [16], amplificado por el factor de zona y el de la norma NCh 433 [14] se muestra en la figura 5.36.

Figura 5.36: Comparación espectros elásticos NCh 433 y NCh 2745

Se aprecia claramente que el peak de aceleraciones que propone el espectro de la NCh 2745 [16] es mayor que el de la NCh 433 [14]. Además, para el rango de períodos a analizar, dada la cantidad de pisos de los edificios, también se obtienen aceleraciones mayores.

5.4.2.2 Resultados obtenidos

Aplicando el espectro elástico de aceleraciones de la norma NCh 2745 [16] en la estructura real de 4 pisos, se obtienen los resultados expuestos en la tabla siguiente.

Dirección de	Espectro	Corte último	Desplazamiento
análisis	utilizado	elástico (Q _{oe})	último
		[Tonf]	[cm]
Х	NCh 2745	812	25
Y	NCh 2745	702	22

Tabla 5.6: Corte elástico último (Espectro NCh 2745).

5.5 Determinación del factor de modificación de la respuesta "R"

Con los resultados obtenidos en los puntos anteriores y basados en la metodología expuesta en el capítulo 3, se determinarán los factores de modificación de la respuesta.

El factor de sobre-resistencia se determina a partir de la razón entre el corte último alcanzado y el corte basal de diseño. Como existen dos valores para el valor del corte último, dados por el análisis no lineal estático y el dinámico, el factor de sobre - resistencia se tomará como el menor valor de la razón entre éstos y el corte basal de diseño.

Tabla 5.7: Factores de sobre – resistencia (Edificio 4 pisos)

Edificio	Dirección de análisis	Corte diseño	Corte último	Factor de sobre-resistencia (Ω)
		(Q _d) [Tonf]	(Q _f) [Tonf]	Q _f /Q _d
4 pisos	Х	55	295	5.36
4 pisos	Y	55	306	5.56

El factor de ductilidad se determina a partir de la razón entre el corte último alcanzado, suponiendo un comportamiento lineal de la estructura y el corte último con comportamiento inelástico. Este último valor se determina a partir del menor valor obtenido entre análisis no lineal dinámico y el no lineal estático El corte elástico se tomará como la menor demanda sísmica, comparando el análisis con registros escalados y el análisis modal espectral utilizando la norma NCh 2745 [16].

Tabla 5.8: Factores de reducción por ductilidad (Edificio 4 pisos).

Edificio	Dirección	Corte último inelástico	Corte último elástico	Factor de ductilidad
	de análisis	(Q _f)	(Q _{oe})	(R _µ)
		[Tonf]	[Tonf]	Qoe/Qf
4 pisos	Х	295	330	1.12
4 pisos	Y	306	418	1.36

El corte elástico elegido fue el que se obtuvo del escalamiento de registros, que resultó ser menor que la demanda sísmica generada por el espectro de la norma NCh 2745 [16].

El factor de modificación de la respuesta estructural para cada dirección de análisis se muestra en la tabla siguiente:

Edificio	Dirección	Factor de	Factor de ductilidad	Factor de modificación
	de análisis	sobre-resistencia (Ω)	(R _µ)	de la respuesta (R)
				(R _μ Ω)
4 pisos	Х	5.36	1.12	6.00
4 pisos	Y	5.56	1.37	7.61
			R _{promedio}	6.81

Tabla 5.9: Factores de modificación de la respuesta (Edificio 4 pisos)

Como se indica en el documento FEMA P695 [6], el factor de modificación de la respuesta estructural se calcula como el promedio de los resultados obtenidos en las dos direcciones de análisis. Este valor se muestra en la tabla anterior, expresado como R_{promedio}.

5.6 Comparación y análisis de resultados

El factor de reducción obtenido en el punto anterior es levemente inferior al indicado por la NCh 433 [14], que para el caso estático indica un valor igual a 7. Cabe recordar que el diseño del edificio analizado se encontraba controlado por el corte mínimo, dado que el esfuerzo obtenido a través del método estático resultaba ser inferior a este valor. Por ende, el factor de reducción efectivo que se debe considerar al momento de realizar comparaciones resulta de la siguiente expresión:

$$R_{efectivo} = \frac{Q_e}{Q_d} = \frac{Q_e}{Q_r} \cdot \frac{Q_r}{Q_d} = R \cdot f$$
(5.4)

Donde,

- Qe: Corte basal obtenido con el espectro sin reducir.
- Q_r: Corte basal obtenido con el método estático.
- Q_d: Corte basal mínimo, según NCh 433 Of. 96.
- f: Razón entre el corte obtenido con el espectro reducido y el corte de diseño
- R: Factor de modificación de la respuesta obtenido de la NCh 433. R o R* según el caso a analizar.

El factor de reducción efectivo se muestra en la Tabla 5.10

Tabla 5.10: Factor de reducción efectivo (Edificio 4 pisos)

Edificio	Factor R	Qr	Q_d	Factor	Factor de reducción efectivo
	NCh 433			f	(R _{efectivo})
4 pisos	7	37	55	0.68	4.76

Comparando el factor obtenido en la Tabla 5.10 con el que se obtuvo del análisis, se aprecia claramente que las reducciones propuestas por la norma resultan ser más conservadoras.

El valor del factor R queda principalmente determinado por el valor de la sobre – resistencia. Se aprecia claramente que los factores de sobre – resistencia resultan ser más grandes que los factores de ductilidad.

La falta de ductilidad de la estructura se ve, por ejemplo, en el mecanismo de colapso tipo "piso blando" que se produjo en el análisis lineal elástico *Pushover*. Esto es, la estructura se hace inestable antes que se produzcan desplazamientos importantes. Además, el incumplimiento de la condición columna fuerte –viga débil reafirma aún más la falta de ductilidad del sistema.

6 Factor de modificación de la respuesta estructural para modelos ficticios

6.1 Alcances

Luego de haber determinado el factor de modificación de la respuesta para un edificio real de 4 pisos estructurado en base a marcos rígidos, se procederá a calcular este valor para edificios ficticios con el mismo tipo de estructuración de 6, 8 y 10 pisos.

6.2 Diseño de las estructuras

6.2.1 Bases de diseño

Al igual que para la estructura real, se utilizará la siguiente normativa aplicable a solicitaciones y al diseño de elementos:

- NCh 1537 Of. 86. "Diseño estructural de edificios Cargas permanentes y sobrecargas de uso".
- NCh 433 Of. 96. "Diseño sísmico de edificios".
- AISC (2005a). "Seismic Provisions for Structural Steel Buildings".
- AISC (2005b). "ANSI/AISC 360-05. Specification for Structural Steel Buildings"

6.2.2 Descripción de los edificios

La estructuración de los edificios será del mismo tipo que la del edificio real. Las dimensiones en planta se conservarán, al igual que la altura entre pisos.

6.2.2.1 Perfiles a utilizar

En las tablas siguientes, se muestra la descripción de los perfiles resultantes del diseño a utilizar en los modelos de 6, 8 y 10 pisos. La nomenclatura utilizada es la misma del edificio real, que se muestra en la figura 4.10.

Tabla 6.1: Perfiles tipo H

Perfil	В	H t _w		t _f	Peso
	[mm]	[mm]	[mm]	[mm]	[kgf/m]
20H17	100	200	5	6	17.0
25H15	70	250	7	5	15.0
30H37 ⁷	100	300	10	10	37.7
30H45 ⁵	150	300	10	10	45.5
30H58 ⁸	150	300	10	16	58.8

Tabla 6.2: Perfiles tipo []

Perfil	Ancho (B)	Alto(H)	Espesor (t)	Peso
	[mm]	[mm]	[mm]	[kgf/m]
[]350x350x14	350	350	14	147.7
[]350x350x12	350	350	12	127.4
[]350x350x10	350	350	10	106.8
[]300x300x14	300	300	14	125.7
[]300x300x12	300	300	12	108.5
[]300x300x10	300	300	10	91.1
[]300x300x8	300	300	8	73.4

Tabla 6.3: Perfiles tipo C

Perfil	В	Н	t	f	Peso
	[mm]	[mm]	[mm]	[mm]	[kgf/m]
250C17	75	250	6	20	18.3
C200x75x20x3	75	200	3	20	8.1
C150x65x20x3	75	150	3	20	6.5

Tabla 6.4: Perfiles sección L

Perfil	В	Н	t	Peso	
	[mm]	[mm]	[mm]	[kgf/m]	
L65x65x5	65	65	5	4.9	

Tabla 6.5: Perfiles sección variable

Perfil	Altura Inicial [mm]	Altura Final [mm]	Ancho Inicial [mm]	Ancho final [mm]	Espesor alma [mm]	Espesor ala [mm]	Largo [mm]
30H22	300	170	100	100	5	8	1600
VAR2	200	200	200	100	5	6	500
VAR3	300	300	200	100	10	10	500
VAR4	300	300	200	150	10	10	500
VAR5	300	300	200	150	10	16	500

6.2.2.2 Verificación de las esbelteces

Con las expresiones de las tablas 4.6 y 4.7 del capítulo 4, se calcularon las esbelteces de los perfiles a utilizar en los edificios. Los resultados se muestran en las tablas siguientes:

		Alma	Ala			
Porfil	Esbeltez	λ_{ps}	Tipo	Esbeltez	λ_{ps}	Tipo
Felli	Alma			ala		
20H17	37.60	85.46	Sísmicamente compacto	7.92	8.16	Sísmicamente compacto
25H15	34.29	85.46	Sísmicamente compacto	6.30	8.16	Sísmicamente compacto
30H37 [′]	28.00	85.46	Sísmicamente compacto	4.50	8.16	Sísmicamente compacto
30H45 ⁵	28.00	85.46	Sísmicamente compacto	7.00	8.16	Sísmicamente compacto
30H58 ⁸	26.80	85.46	Sísmicamente compacto	4.38	8.16	Sísmicamente compacto

Tabla 6.6: Esbeltez perfiles H

Tabla 6.7: Esbeltez perfiles []

Perfil	Esbeltez	λ_{p}	λ _r	Tipo
[]350x350x14	22.00	30.48	38.10	Compacto
[]350x350x12	26.17	30.48	38.10	Compacto
[]350x350x10	32.00	30.48	38.10	No compacto
[]300x300x14	18.43	30.48	38.10	Compacto
[]300x300x12	22.00	30.48	38.10	Compacto
[]300x300x10	27.00	30.48	38.10	Compacto
[]300x300x8	34.50	30.48	38.10	No compacto

Tabla 6.8: Esbeltez perfiles C

	Alma			Ala		
Porfil	Esbeltez	λ_{ps}	Estatus	Esbeltez	λ_{ps}	Estatus
Feilli	alma			Ala		
250C17	39.67	85.46	Sísmicamente compacto	10.50	8.16	No compacto
C200x75x20x3	64.67	85.46	Sísmicamente compacto	23.00	8.16	No compacto
C150x65x20x3	48.00	85.46	Sísmicamente compacto	23.00	8.16	No compacto

Tabla 6.9: Esbeltez perfiles L

Perfil	Esbeltez	λ_{ps}	Estatus
L65x65x5	12.00	8.16	No compacto

Se privilegió el uso de perfiles sísmicamente compactos, tal como se indica en el documento AISC Seismic Provisions [12], ya que la utilización de este tipo de elementos va en

directa relación con una mayor ductilidad de la estructura diseñada. Para los casos de los perfiles 350x350x10 y 300x300x8, que resultan ser no compactos, se espera que no influyan en la ductilidad global del sistema, puesto que son elementos que se utilizarán en los pisos superiores y no estarán sometidos a grandes esfuerzos.

6.2.2.3 Geometría de los edificios y distribución de perfiles

6.2.2.3.1 Edificio 6 pisos

En las figuras siguientes, se muestran plantas, elevaciones, detalles y distribución de perfiles, según nomenclatura indicada, para el modelo de 6 pisos. Las medidas de los detalles de perfiles se encuentran expresadas en mm.

Figura 6.1: Planta y detalles 2º @ 6º piso

Figura 6.4: Elevación ejes B, C y D

Figura 6.6: Detalle sección VAR3

Figura 6.7: Modelo 3D edificio 6 pisos.

6.2.2.3.2 Edificio 8 pisos

En las figuras siguientes, se muestran plantas, elevaciones, detalles y distribución de perfiles, según nomenclatura indicada, para el modelo de 8 pisos. Las medidas de los detalles de perfiles se encuentran expresadas en mm.

Figura 6.9: Cielo 8º piso

Figura 6.10: Planta techo

Figura 6.11: Elevación ejes B, C y D

Figura 6.12: Elevaciones ejes 1 @ 11 (8 pisos).

Figura 6.13: Detalle sección VAR4

Figura 6.14: Modelo 3D edificio 8 pisos

6.2.2.3.3 Edificio 10 pisos

En las figuras siguientes, se muestran plantas, elevaciones, detalles y distribución de perfiles, según nomenclatura indicada, para el modelo de 10 pisos. Las medidas de los detalles de perfiles se encuentran expresadas en mm.

Figura 6.15: Planta y detalles 2º @ 10º piso

Figura 6.16: Cielo 10º piso

Figura 6.17: Planta techo

Figura 6.19: Elevaciones ejes 1 @ 11 (10 pisos)

Figura 6.20: Detalle sección VAR5

Figura 6.21: Modelo 3D edificio 10 pisos

.

6.3 Determinación de las solicitaciones

6.3.1 Cargas permanentes y sobrecargas de uso

Por simplicidad, se mantendrá el espesor de 11 cm de las losas, la carga asignada por terminaciones y las sobrecarga de uso y de techo.

Tabla 6.10: Cargas permanentes y sobrecargas de uso modelos ficticios.

Carga	Valor	Unidad
Peso estructura metálica (6 pisos)	104	[Tonf]
Peso estructura metálica (8 pisos)	161	[Tonf]
Peso estructura metálica (10 pisos)	239	[Tonf]
Losas	264	[kgf/m ²]
Terminaciones	150	[kgf/m ²]
SC uso	200	[kgf/m ²]
SC techo	100	[kgf/m ²]

6.3.2 Cargas sísmicas

6.3.2.1 Determinación del período de las estructuras

Previo a la determinación de las solicitaciones sísmicas, fue necesario realizar un análisis modal que permita determinar el período fundamental de la estructura. En la tablas 6.11, 6.12 y 6.13 se muestran los períodos obtenidos en este análisis.

Tabla 6.11: Períodos obtenidos del análisis modal (Estructura 6 pisos).

Modo	Período [s]	Masa acumulada	Masa acumulada
		dirección x	dirección y
1	0.89	0.54	0.00
2	0.84	0.54	0.76
3	0.81	0.75	0.76
4	0.29	0.75	0.76
5	0.29	0.75	0.76

Modo	Período [s]	Masa acumulada	Masa acumulada
		dirección x	dirección y
1	1.13	0.63	0.00
2	1.07	0.63	0.77
3	1.01	0.76	0.77
4	0.36	0.84	0.77
5	0.34	0.84	0.85

Tabla 6.12: Períodos obtenidos del análisis modal (Estructura 8 pisos).

Tabla 6.13: Períodos obtenidos del análisis modal (Estructura 10 pisos).

Modo	Período [s]	Masa acumulada	Masa acumulada
		dirección x	dirección y
1	1.25	0.66	0.00
2	1.19	0.66	0.77
3	1.11	0.76	0.77
4	0.40	0.85	0.77
5	0.38	0.85	0.86

Para los casos analizados, los primeros cinco modos resultaron ser traslacionales, salvo en el caso del edificio de 6 pisos, donde los modos 4 y 5 resultaron ser torsionales. Esto se debe a la regularidad y simetría en la estructura. El 90% de la masa sísmica se alcanza al considerar aproximadamente 40 modos en el análisis.

6.3.2.2 Coeficiente sísmico

Según los parámetros obtenidos en las tablas 4.14, 4.15 y 4.16, se calcularon los coeficientes sísmicos que se muestran a continuación:

Tabla 6.14: Valores del coeficiente sísmico

Modelo	С	C _{mín}	C _{máx}	C utilizado
6 pisos	0.045	0.067	0.140	0.067
8 pisos	0.033	0.067	0.140	0.067
10 pisos	0.029	0.067	0.140	0.067

Todos los edificios quedan controlados por el corte mínimo.

6.3.2.3 Solicitaciones mediante análisis modal espectral

Complementando lo indicado en el capítulo 4, punto 4.3.2.1.2, el espectro de diseño que determina la resistencia sísmica de una estructura, se obtiene mediante la siguiente fórmula:

$$S_a = \frac{IA_0\alpha}{R^*} \tag{6.1}$$

Donde:

I: Factor de importancia del edificio

A₀: Aceleración efectiva del suelo

α: Factor de amplificación para cada modo de vibrar n

R^{*}: Factor de reducción

El factor de amplificación α se determina para cada modo de vibrar n, mediante la siguiente expresión:

$$\alpha = \frac{1 + 4.5 \left(\frac{T_n}{T_0}\right)^p}{1 + \left(\frac{T_n}{T_0}\right)^3}$$
(6.2)

Los parámetros T_0 y p dependen del tipo de suelo. T_n corresponde a las distintas formas de vibrar.

El factor de reducción R^{*} de la respuesta elástica viene dado por la siguiente fórmula:

$$R^* = 1 + \frac{T^*}{0.1T_0 + T^*/R_0}$$
(6.3)

Donde:

T^{*}: Período del modo con mayor masa traslacional en la dirección de análisis

R₀: Valor para la estructura que se establece de acuerdo con las disposiciones del párrafo 5.7 de la norma NCh 433 Of. 96 [8]

Luego, el espectro de diseño sin reducción determinado según la norma se muestra en la figura 6.22. El cálculo de los factores de reducción para cada caso se muestra en el anexo 2.

Figura 6.22: Espectro elástico NCh 433 (Sin reducción).

Si al momento de realizar este análisis no se alcanza el corte basal mínimo dado la ecuación (6.4), los desplazamientos y esfuerzos obtenidos para cada elemento deben ser multiplicados por un factor tal que se alcance el corte basal mínimo.

$$Q_{\min} = \frac{IA_0P}{6g} \tag{6.4}$$

6.3.2.4 Solicitaciones debidas a la torsión accidental

Como se indicó en el capítulo 4, la norma sísmica NCh 433 Of. 96 [14] establece que los efectos del análisis modal espectral deben combinarse con el análisis por torsión accidental. Por simplicidad, este efecto se incluirá aplicando momentos de torsión en cada nivel, calculados como el producto de la variación del esfuerzo de corte combinado en ese nivel, por una excentricidad dada por las ecuaciones (4.3) y (4.4). En la tabla 6.15 se muestra los cortes basales obtenidos para los modelos ficticios.

Tabla 6.15: Corte basal edificios ficticios

Edificio	Corte basal	Unidad
6 pisos	89.07	[Tonf]
8 pisos	124.53	[Tonf]
10 pisos	157.93	[Tonf]

En función de los cortes basales, de la distribución de fuerzas en la altura y de las excentricidades establecidas por la norma, se determinan los valores de los momentos debidos a la torsión accidental para cada piso.

Tabla 6.16: Fuerzas y momentos torsores por piso (modelo 6 pisos).

Piso	Fuerza [Tonf]	Momento torsor SX [Tonf·m]	Momento torsor SY [Tonf·m]
1	10.60	1.87	8.13
2	11.72	4.14	17.98
3	13.31	7.05	30.61
4	15.78	11.15	48.40
5	20.57	18.17	78.85
6	17.08	18.11	78.58

Tabla 6.17: Fuerzas y momentos torsores por piso (modelo 8 pisos).

Piso	Fuerza [Tonf]	Momento torsor SX [Tonf·m]	Momento torsor SY [Tonf·m]
1	10.42	1.38	5.99
2	11.19	2.97	12.88
3	12.18	4.84	21.00
4	13.47	7.14	30.98
5	15.29	10.13	43.95
6	18.13	14.42	62.56
7	23.63	21.92	95.12
8	20.22	21.43	92.99

Piso	Fuerza [Tonf]	Momento torsor SX [Tonf·m]	Momento torsor SY [Tonf.m]
1	10.14	1.07	4.66
2	10.72	2.27	9.86
3	11.42	3.63	15.76
4	12.27	5.20	22.57
5	13.34	7.07	30.69
6	14.76	9.38	40.73
7	16.75	12.43	53.94
8	19.87	16.85	73.13
9	25.89	24.70	107.22
10	22.73	24.10	104.58

Tabla 6.18: Fuerzas y momentos torsores por piso (modelo 10 pisos).

6.4 Verificación del diseño

Una vez determinadas las solicitaciones, se calculan los desplazamientos y esfuerzos internos, comparándolos con lo que la norma exige.

6.4.1 Corte basal

Al realizar un primer análisis de los 3 modelos, se pudo apreciar que con los espectros utilizados no se alcanzaba el corte basal mínimo indicado por la norma NCh 433 Of.96 [14]. Por esta razón, las solicitaciones fueron amplificadas por un factor tal que se alcanzara el corte basal mínimo en todos los casos. El corte basal mínimo viene dado por la ecuación (6.4) y los valores mínimos de este esfuerzo se muestran en la tabla 6.19.

Tabla 6.19: Corte basal de diseño (Edificios ficticios).

Edificio	Corte basal	Unidad
6 pisos	89.07	[Tonf]
8 pisos	124.53	[Tonf]
10 pisos	157.93	[Tonf]

6.4.2 Verificación de los desplazamientos.

En las tablas siguientes, se muestran los desplazamientos obtenidos para cada modelo. Utilizando los criterios de la norma sísmica NCh 433 Of. 96, detallados en el capítulo 4, se procede a verificar los valores obtenidos con los que indica la norma. Se considerarán aceptables desplazamientos que no superen en más de un 10% al desplazamiento límite.

Diafragma	Caso	Desplazamiento relativo [mm]	Dirección	Desplazamiento relativo máximo NCh 433 [mm]	Verificación
P2-P3	SY	5.3	Y	5.0	SE ACEPTA
P3-P4	SY	5.1	Y	5.0	SE ACEPTA
P4-P5	SY	4.0	Y	5.0	CUMPLE
P5-P6	SY	2.7	Y	5.0	CUMPLE
P6-Techo	SY	1.3	Y	5.0	CUMPLE
P2-P3	SX	5.3	Х	5.0	SE ACEPTA
P3-P4	SX	5.1	Х	5.0	SE ACEPTA
P4-P5	SX	4.0	Х	5.0	CUMPLE
P5-P6	SX	2.7	Х	5.0	CUMPLE
P6-Techo	SX	1.2	Х	5.0	CUMPLE

Tabla 6.20: Desplazamientos relativos centros de masa de cada piso (6 pisos).

Tabla 6.21: Desplazamientos relativos máximos entre pisos (6 pisos).

Diafragma	Caso	Desplazamiento relativo	Dirección	Desplazamiento relativo máximo	Verificación
		[mm]		NCh 433 [mm]	
P2-P3	SY	6.7	Y	7.5	CUMPLE
P3-P4	SY	6.6	Y	7.5	CUMPLE
P4-P5	SY	5.4	Y	6.5	CUMPLE
P5-P6	SY	3.7	Y	5.2	CUMPLE
P6-Techo	SY	1.9	Y	3.8	CUMPLE
P2-P3	SX	5.8	Х	7.5	CUMPLE
P3-P4	SX	5.5	Х	7.5	CUMPLE
P4-P5	SX	4.3	Х	6.5	CUMPLE
P5-P6	SX	3.0	Х	5.2	CUMPLE
P6-Techo	SX	1.4	Х	3.7	CUMPLE

		Desplazamiento		Desplazamiento	
Diafragma	Caso	relativo	Dirección	relativo máximo NCh	Verificación
		[mm]		433 [mm]	
P2-P3	SY	5.2	Y	5.0	SE ACEPTA
P3-P4	SY	5.3	Y	5.0	SE ACEPTA
P4-P5	SY	4.7	Y	5.0	CUMPLE
P5-P6	SY	3.8	Y	5.0	CUMPLE
P6-P7	SY	3.1	Y	5.0	CUMPLE
P7-P8	SY	2.0	Y	5.0	CUMPLE
P8-Techo	SY	1.1	Y	5.0	CUMPLE
P2-P3	SX	5.2	Х	5.0	SE ACEPTA
P3-P4	SX	5.0	Х	5.0	CUMPLE
P4-P5	SX	5.0	Х	5.0	CUMPLE
P5-P6	SX	4.1	Х	5.0	CUMPLE
P6-P7	SX	3.1	Х	5.0	CUMPLE
P7-P8	SX	2.0	Х	5.0	CUMPLE
P8-Techo	SX	1.0	X	5.0	CUMPLE

Tabla 6.22: Desplazamientos relativos centros de masa de cada piso (8 pisos).

Tabla 6.23: Desplazamientos relativos máximos entre pisos (8 pisos).

Diafragma	Caso	Desplazamiento relativo [mm]	Dirección	Desplazamiento relativo máximo NCh 433 [mm]	Verificación
P2-P3	SY	6.9	Y	7.5	CUMPLE
P3-P4	SY	7.0	Y	7.5	CUMPLE
P4-P5	SY	6.4	Y	7.2	CUMPLE
P5-P6	SY	5.4	Y	6.3	CUMPLE
P6-P7	SY	4.4	Y	5.6	CUMPLE
P7-P8	SY	3.0	Y	4.5	CUMPLE
P8-Techo	SY	1.7	Y	3.6	CUMPLE
P2-P3	SX	5.9	Х	7.5	CUMPLE
P3-P4	SX	5.9	Х	7.5	CUMPLE
P4-P5	SX	5.1	Х	7.5	CUMPLE
P5-P6	SX	4.3	Х	6.6	CUMPLE
P6-P7	SX	3.4	Х	5.6	CUMPLE
P7-P8	SX	2.3	Х	4.5	CUMPLE
P8-Techo	SX	1.2	Х	3.5	CUMPLE

Diafragma	Caso	Desplazamiento relativo [mm]	Dirección	Desplazamiento relativo máximo NCb 433 [mm]	Verificación
P2-P3	SY	49	Y	5.0	CUMPLE
P3-P4	SY	4.9	Ŷ	5.0	CUMPLE
P4-P5	SY	4.7	Ý	5.0	CUMPLE
P5-P6	SY	4.1	Y	5.0	CUMPLE
P6-P7	SY	3.6	Y	5.0	CUMPLE
P7-P8	SY	3.1	Y	5.0	CUMPLE
P8-P9	SY	2.5	Y	5.0	CUMPLE
P9-P10	SY	1.8	Y	5.0	CUMPLE
P10-Techo	SY	1.0	Y	5.0	CUMPLE
P2-P3	SX	5.1	Х	5.0	SE ACEPTA
P3-P4	SX	5.2	Х	5.0	SE ACEPTA
P4-P5	SX	4.9	Х	5.0	CUMPLE
P5-P6	SX	4.2	Х	5.0	CUMPLE
P6-P7	SX	3.7	Х	5.0	CUMPLE
P7-P8	SX	3.1	Х	5.0	CUMPLE
P8-P9	SX	2.5	Х	5.0	CUMPLE
P9-P10	SX	1.7	Х	5.0	CUMPLE
P10-Techo	SX	0.8	Х	5.0	CUMPLE

Tabla 6.24: Desplazamientos relativos centros de masa de cada piso (10 pisos).

Tabla 6.25: Desplazamientos relativos máximos entre pisos (10 pisos).

Diafragma	Caso	Desplazamiento relativo [mm]	Dirección	Desplazamiento relativo máximo NCh 433 [mm]	Verificación
P2-P3	SY	6.3	Y	7.4	CUMPLE
P3-P4	SY	6.7	Y	7.4	CUMPLE
P4-P5	SY	6.4	Y	7.2	CUMPLE
P5-P6	SY	5.8	Y	6.6	CUMPLE
P6-P7	SY	5.2	Y	6.1	CUMPLE
P7-P8	SY	4.5	Y	5.6	CUMPLE
P8-P9	SY	SY 3.7 Y	Y	5.0	CUMPLE
P9-P10	SY	2.7	Y	4.3	CUMPLE
P10-Techo	SY	1.6	Y	3.5	CUMPLE
P2-P3	SX	5.6	Х	7.5	CUMPLE
P3-P4	SX	5.7	Х	7.5	CUMPLE
P4-P5	SX	5.4	Х	7.4	CUMPLE
P5-P6	SX	4.6	Х	6.7	CUMPLE
P6-P7	SX	4.0	Х	6.2	CUMPLE
P7-P8	SX	3.5	Х	5.6	CUMPLE
P8-P9	SX	2.8	X	5.0	CUMPLE
P9-P10	SX	2.0	X	4.2	CUMPLE
P10-Techo	SX	0.9	X	3.3	CUMPLE

Se concluye que los desplazamientos relativos de los centros de masa se ajustan a la norma (aproximando los valores al milímetro). De la misma forma, los desplazamientos relativos entre pisos medidos en puntos distintos al centro de masa, también cumplen la normativa sísmica vigente.

6.4.3 Verificación de los factores de utilización de los elementos estructurales

Otro de los aspectos que es necesario verificar es el factor de utilización de cada elemento estructural, de forma tal de comprobar si el diseño cumple con las exigencias de la normativa. La norma NCh 433 Of. 96 [14], en el punto 5.2, establece combinaciones de cargas a analizar para el caso del método de factores de carga y resistencia (LRFD), dadas por las ecuaciones (4.5), (4.6), (4.7) y (4.8).

La verificación del diseño de los elementos estructurales se realiza siguiendo las indicaciones de la norma AISC 2005 [11]. Para el caso de las columnas, se analiza la interacción esfuerzo axial – momento, para las vigas se analizará el efecto del momento en el eje fuerte y para los arriostramientos el efecto del esfuerzo axial. Los factores de utilización máximos obtenidos para cada elemento de los edificios analizados se muestran en las tablas siguientes.

Perfil	Tipo	F.U	Combinación
[]300x300x12	0x300x12 Columna		1.4(PP+SC-SISMOX)
[]300x300x10	Columna	0.55	1.4(PP+SC-SISMOX)
[]300x300x8	Columna	0.25	1.4(PP+SC-SISMOX)
20H17	Viga	0.84	1.4(PP+SC-SISMOX)
25H15	Viga	0.57	1.4(PP+SC-SISMOX)
30H37 ⁷	Viga	0.75	1.4(PP+SC+SISMOY)
30H22	Viga	0.71	1.4(PP+SC+SISMOY)
VAR3	Viga	0.58	1.4(PP+SC+SISMOY)
VAR2	Viga	0.86	1.4(PP+SC-SISMOX)
C150x65x20x3	Viga	0.39	1.4(PP+SC+SISMOY)
C200x75x25x3	Viga	0.54	1.4(PP+SC-SISMOX)
250C17	Viga	0.36	1.4(PP+SC-SISMOX)
L65x65x5	Arriostramiento	0.69	1.4(PP+SC-SISMOX)

Tabla 6.26: Factores de utilización máximos modelo 6 pisos.

Perfil	Tipo	F.U	Combinación
[]300x300x14	[]300x300x14 Columna		1.4(PP+SC-SISMOX)
[]300x300x12	Columna	0.55	1.4(PP+SC-SISMOX)
[]300x300x10	Columna	0.19	1.4(PP+SC-SISMOX)
20H17	Viga	0.86	1.4(PP+SC-SISMOX)
25H15	Viga	0.59	1.4(PP+SC-SISMOX)
30H45 ⁵	Viga	0.69	1.4(PP+SC+SISMOY)
30H22	Viga	0.71	1.4(PP+SC-SISMOX)
VAR4	Viga	0.65	1.4(PP+SC+SISMOY)
VAR2	Viga	0.88	1.4(PP+SC-SISMOX)
C150x65x20x3	Viga	0.41	1.4(PP+SC+SISMOY)
C200x75x25x3	Viga	0.47	1.4(PP+SC-SISMOX)
250C17	Viga	0.37	1.4(PP+SC-SISMOX)
L65x65x5	Arriostramiento	0.70	1.4(PP+SC-SISMOX)

Tabla 6.27:	Factores de	utilización	máximos	modelo 8	pisos.
			11100/0111000	111001010 0	p.000.

Tabla 6.28: Factores de utilización máximos modelo 10 pisos.

Perfil	Tipo	F.U	Combinación
[]350x350x14 Columna		0.73	1.4(PP+SC-SISMOX)
[]350x350x12	Columna	0.52	1.4(PP+SC-SISMOX)
[]350x350x10	Columna	0.34	1.4(PP+SC-SISMOX)
20H17	Viga	0.85	1.4(PP+SC-SISMOX)
25H15	Viga	0.61	1.4(PP+SC-SISMOX)
30H455	Viga	0.61	1.4(PP+SC+SISMOY)
30H22	Viga	0.70	1.4(PP+SC+SISMOY)
VAR1	Viga	0.62	1.4(PP+SC+SISMOY)
VAR2	Viga	0.87	1.4(PP+SC-SISMOX)
C150x65x20x3	Viga	0.53	1.4(PP+SC-SISMOX)
C200x75x25x3	Viga	0.49	1.4(PP+SC-SISMOX)
250C17	Viga	0.38	1.4(PP+SC-SISMOX)
L65x65x5	Arriostramiento	0.73	1.4(PP+SC-SISMOX)

Como se puede apreciar, los factores de utilización en todos los casos son menores que 1.0. Por lo tanto, en lo referente al diseño de los elementos, el edificio cumple la normativa vigente.

Claramente, el diseño quedó controlado por los desplazamientos. De manera de cumplir esta condición, se tuvo que aumentar la inercia de los elementos, aumentando altura y espesores de estos, lo que también provocó una disminución en los factores de utilización obtenidos.

Estos resultados concuerdan plenamente con lo expuesto en el capítulo 2, donde se mencionaba el problema de este tipo de estructuración en relación a los desplazamientos.

6.4.4 Verificación viga débil - columna fuerte

La verificación viga débil – columna fuerte, dada por la ecuación 4.9, para los edificios de 6, 8 y 10 pisos, se muestra en el anexo 3. A modo de resumen, se puede concluir que las conexiones de todos los modelos ficticios satisfacen este requerimiento, por lo que los diseños se podrían clasificar como dúctiles.

6.5 Análisis no lineal elástico

Utilizando la metodología indicada en el punto 5.2 de la presente memoria, con el mismo tipo de definición de rótulas plásticas, se procede a realizar el análisis no lineal elástico. En el anexo 5, se muestran las propiedades de las rótulas plásticas utilizadas.

En los puntos siguientes, se muestran las curvas obtenidas para cada caso.

6.5.1 Modelo 6 pisos

En las figuras siguientes, se muestran los resultados obtenidos del análisis *Pushover* para el modelo de 6 pisos.

Figura 6.23: Curva Pushover dirección X edificio 6 pisos

Figura 6.24: Curva Pushover dirección Y edificio 6 pisos

El mecanismo de colapso para ambos casos se muestra en las figuras 6.25 y 6.26.

Figura 6.25: Mecanismo de colapso Pushover dir. X (Edificio 6 pisos)

Figura 6.26: Mecanismo de colapso *Pushover* dir. Y (Edificio 6 pisos)

Los puntos importantes de las curvas anteriormente mostradas se indican en la tabla 6.29.

Punto	Dirección	Abreviatura	Corte basal [Tonf]	Desplazamiento [cm]
Fluencia	Х	Q _p	743	13.5
Corte último	Х	Q _f	943	59.0
Fluencia	Y	Q _p	710	12.0
Corte último	Y	Q _f	958	80.7

Tabla 6.29: Puntos curvas Pushover (Edificio 6 pisos).

Para el análisis en la dirección Y, se aprecian importantes deformaciones después de alcanzar la resistencia máxima. Para el análisis en la dirección X, las deformaciones posteriores resultan ser menores.

6.5.2 Modelo 8 pisos

En las figuras siguientes, se muestran los resultados obtenidos del análisis *Pushover* para el modelo de 8 pisos.

Figura 6.27: Curva Pushover dirección X edificio 8 pisos

Figura 6.28: Curva Pushover dirección Y edificio 8 pisos.

El mecanismo de colapso para ambos casos se muestra en las figuras 6.29 y 6.30.

Figura 6.29: Mecanismo de colapso Pushover dir. X (Edificio 8 pisos)

Figura 6.30: Mecanismo de colapso *Pushover* dir. Y (Edificio 8 pisos)

Los puntos importantes de las curvas anteriormente mostradas se indican en la tabla 6.30.

Punto	Dirección	Abreviatura	Corte basal [Tonf]	Desplazamiento [cm]
Fluencia	Х	Q _p	860	18.0
Corte último	Х	Q _f	1093	74.8
Fluencia	Y	Q _p	777	14.7
Corte último	Y	Q _f	1017	47.8

Tabla 6.30: Puntos curvas *Pushover* (Edificio 8 pisos).

Para estos casos, las curvas muestran que después de alcanzada la resistencia máxima el sistema colapsa. Esto es producto de mecanismos locales, generados por la activación de determinadas rótulas plásticas debido a la magnitud de los desplazamientos involucrados.

6.5.3 Modelo 10 pisos

En las figuras siguientes, se muestran los resultados obtenidos del análisis *Pushover* para el modelo de 10 pisos.

Figura 6.31: Curva Pushover dirección X edificio 10 pisos.

Figura 6.32: Curva Pushover dirección Y edificio 10 pisos

El mecanismo de colapso para ambos casos se muestra en las figuras 6.33 y 6.34

Figura 6.33: Mecanismo de colapso Pushover dir. X (Edificio 10 pisos)

Figura 6.34: Mecanismo de colapso Pushover dir. Y (Edificio 10 pisos)

Los puntos importantes de las curvas anteriormente mostradas se indican en la tabla 6.31.

Punto	Dirección	Abreviatura	Corte basal [Tonf]	Desplazamiento [cm]
Primera fluencia	Х	Q _p	1006	19.0
Corte último	Х	Q _f	1350	90.0
Primera fluencia	Y	Q _p	1110	21.0
Corte último	Y	Q _f	1280	51.0

Tabla 6.31: Puntos curvas Pushover (Edificio 10 pisos).

Al igual que para el modelo de 8 pisos, las curvas muestran que después de alcanzada la resistencia máxima el sistema colapsa. Esto es producto de mecanismos locales, generados por la activación de determinadas rótulas plásticas debido a la magnitud de los desplazamientos y rotaciones involucradas.

6.6 Determinación del corte elástico

Al igual que para el edificio real, analizado en el capítulo anterior, el corte elástico se determinará mediante dos procedimientos: Uso de registros escalados y el espectro de la norma NCh 2745 Of 2003 [16].

6.6.1 Determinación del corte elástico mediante el uso de registros escalados

Como se mencionó en el capítulo anterior para el edificio real, se debe utilizar el análisis no lineal dinámico con registros escalados para determinar el punto de colapso de la estructura. Una vez determinado este punto y el factor de escala que lo provoca, se procede a realizar el análisis lineal elástico con el registro escalado obtenido para determinar el corte elástico último.

6.6.1.1 Determinación del punto de colapso de la estructura

Al realizar el escalamiento de registros y realizar el análisis no lineal dinámico en los modelos ficticios, se obtuvieron los resultados expuestos en la tabla 6.32.

Edificio	Dirección de	Registro	Factor	Corte último	Desplazamiento
	análisis	utilizado	de	inelástico (Q _i)	último
			amplificación	[Tonf]	[cm]
6 pisos	Х	UTFSM N70E	8.0	837	31
6 pisos	Y	UTFSM N70E	9.0	831	34
8 pisos	Х	UTFSM N70E	9.0	1196	32
8 pisos	Y	UTFSM N70E	7.5	920	36
10 pisos	Х	UTFSM N70E	7.5	1397	47
10 pisos	Y	UTFSM N70E	7.0	1300	35

Tabla 6.32: Análisis no l	lineal dinámico	con registros e	escalados (Edificios	ficticios

En las figuras siguientes, se muestran las relaciones corte basal último inelástico versus desplazamiento de techo en cada uno de los casos de análisis.

Figura 6.36: Qi vs desplazamiento eje Y (Edificio 6 pisos, registros escalados)

Figura 6.37: Q_i vs desplazamiento eje X (Edificio 8 pisos, registros escalados)

Figura 6.38: Qi vs desplazamiento eje Y (Edificio 8 pisos, registros escalados)

Figura 6.39: Q_i vs desplazamiento eje X (Edificio 10 pisos, registros escalados)

Figura 6.40: Q_i vs desplazamiento eje Y (Edificio 10 pisos, registros escalados)

Las envolventes de desplazamientos, derivas entre piso y corte, para cada uno de los modelos analizados, se muestran en las figuras siguientes:

Figura 6.41: Envolvente desplazamientos (Edificio 6 pisos, registros escalados)

Figura 6.42: Envolvente derivas (Edificio 6 pisos, registros escalados)

Figura 6.43: Envolvente esfuerzo de corte (Edificio 6 pisos, registros escalados)

Figura 6.44: Envolvente desplazamientos (Edificio 8 pisos, registros escalados)

Figura 6.45: Envolvente derivas (Edificio 8 pisos, registros escalados)

Figura 6.46: Envolvente esfuerzo de corte (Edificio 8 pisos, registros escalados)

Figura 6.47: Envolvente desplazamientos (Edificio 10 pisos, registros escalados)

Figura 6.48: Envolvente derivas (Edificio 10 pisos, registros escalados)

Figura 6.49: Envolvente esfuerzo de corte (Edificio 10 pisos, registros escalados)

6.6.1.2 Corte elástico obtenido

Una vez determinado el punto de colapso de la estructura, el corte inelástico último y el factor de amplificación que genera dichos resultados, se procede a determinar el corte último elástico, suponiendo un comportamiento lineal de la estructura. Estos resultados se muestran en la tabla 6.33:

Edificio	Dirección de	Registro	Factor	Corte último	Desplazamiento
	análisis	utilizado	de	elástico (Qoe)	último
			amplificación	[Tonf]	[cm]
6 pisos	Х	UTFSM N70E	8.0	1902	45
6 pisos	Y	UTFSM N70E	9.0	3028	75
8 pisos	Х	UTFSM N70E	9.0	1723	45
8 pisos	Y	UTFSM N70E	7.5	1593	43
10 pisos	Х	UTFSM N70E	7.5	2653	56
10 pisos	Y	UTFSM N70E	7.0	2496	55

Tabla 6.33: Corte elástico último registros escalados (Edificios ficticios).

Llama la atención los valores del corte elástico obtenidos para el modelo de 6 pisos, que resultan ser mayores que para los edificios de mayor altura. Esto se produce porque para el período del edificio, el espectro presenta una mayor aceleración que para el resto de los modelos (figura 5.17).

En las figuras siguientes, se muestran las relaciones corte basal versus desplazamiento de techo para los análisis lineales para los edificios de 6, 8 y 10 pisos en cada una de las direcciones de análisis.

Figura 6.50: Q_{oe} vs desplazamiento eje X (Edificio 6 pisos, registros escalados)

Figura 6.51: Qoe vs desplazamiento eje Y (Edificio 6 pisos, registros escalados)

Figura 6.52: Qoe vs desplazamiento eje X (Edificio 8 pisos, registros escalados)

Figura 6.53: Qoe vs desplazamiento eje Y (Edificio 8 pisos, registros escalados)

Figura 6.54: Q_{oe} vs desplazamiento eje X (Edificio 10 pisos, registros escalados)

Figura 6.55: Q_{oe} vs desplazamiento eje Y (Edificio 10 pisos, registros escalados)

6.6.2 Determinación del corte elástico mediante el espectro de aceleraciones de la norma NCh 2745 Of. 2003.

Aplicando el espectro elástico de aceleraciones de la norma NCh 2745 [16] en los modelos ficticios de 6, 8 y 10, se obtienen los resultados expuestos en la tabla 6.34:

Edificio	Dirección de	Espectro	Corte último	Desplazamiento
	análisis	utilizado	elástico (Q _{oe})	último
			[Tonf]	[cm]
6 pisos	Х	NCh 2745	1193	20
6 pisos	Y	NCh 2745	1249	21
8 pisos	Х	NCh 2745	1339	27
8 pisos	Y	NCh 2745	1367	27
10 pisos	Х	NCh 2745	1586	30
10 pisos	Y	NCh 2745	1598	30

Tabla 6.34: Corte elástico último espectro NCh 2745 (Edificios ficticios).

6.7 Determinación del factor de modificación de la respuesta "R".

De los resultados anteriores, se obtienen los factores de sobre – resistencia, expuestos en las tablas siguientes.

Edificio	Dirección de análisis	Corte diseño	Corte último	Factor de sobre-resistencia (Ω)
		(Q _d) [Tonf]	(Q _f) [Tonf]	Q_{f}/Q_{d}
6 pisos	Х	89	837	9.40
6 pisos	Y	89	831	9.34

Tabla 6.35: Factores de sobre – resistencia (Edificio 6 pisos)

Tabla 6.36: Factores de sobre – resistencia (Edificio 8 pisos)

Edificio	Dirección de análisis	Corte diseño	Corte último	Factor de sobre-resistencia (Ω)
		(Q _d) [Tonf]	(Q _f) [Tonf]	Q_f/Q_d
8 pisos	Х	125	1196	9.57
8 pisos	Y	125	920	7.36

Tabla 6.37: Factores de sobre – resistencia (Edificio 10 pisos)

Edificio	Dirección de análisis	Corte diseño	Corte último	Factor de sobre-resistencia (Ω)
		(Q _d) [Tonf]	(Q _f) [Tonf]	Q_{f}/Q_{d}
10 pisos	Х	158	1397	8.84
10 pisos	Y	158	1300	8.23

Igualmente, se obtienen los factores de reducción por ductilidad mostrados en las tablas siguientes:

Tabla 6.38: Factores de reducción por ductilidad (Edificio 6 pisos).

Edificio	Dirección	Corte último inelástico	Corte último elástico	Factor de ductilidad
	de análisis	(Q _f)	(Q _{oe})	(R _µ)
		[Tonf]	[Tonf]	Q _{oe} /Q _f
6 pisos	Х	943	1193	1.26
6 pisos	Y	958	1249	1.30

Tabla 6.39: Factores de reducción por ductilidad (Edificio 8 pisos).

Edificio	Dirección	Corte último inelástico	Corte último elástico	Factor de ductilidad
	de análisis	(Q _f)	(Q _{oe})	(R _u)
		[Tonf]	[Tonf]	Q_{oe}/Q_{f}
8 pisos	Х	1196	1339	1.12
8 pisos	Y	1017	1367	1.34

Tabla 6.40: Factores de reducción por ductilidad (Edificio 10 pisos).

Edificio	Dirección	Corte último inelástico	Corte último elástico	Factor de ductilidad
	de análisis	(Q _f)	(Q _{oe})	(R _µ)
		[Tonf]	[Tonf]	Q _{oe} /Q _f
10 pisos	Х	1397	1586	1.13
10 pisos	Y	1300	1598	1.23

En este caso, la demanda sísmica generada por el espectro de la norma NCh 2745 [16] resultó ser menor en todos los casos que el corte obtenido mediante el escalamiento de registros. A través de esta metodología, se puede apreciar que el corte que provoca el colapso de la estructura resulta ser mayor que los esfuerzos generados por un sismo severo, como el que se indica en dicha norma. Por lo tanto, utilizar el corte elástico último obtenido del análisis con el espectro de la norma NCh 2745 [16] es una buena medida de la demanda sísmica de la estructura sometida a un sismo severo, habiendo verificado previamente que el corte que genere el colapso (obtenido a través de los registros escalados) no fuese menor que el generado por el espectro.

Finalmente, por las razones expresadas en el párrafo anterior, se utilizará el corte elástico último (Q_{oe}), obtenido del análisis con el espectro de la NCh 2745 [16], para determinar los factores de modificación de la respuesta. Estos factores, para cada edificio y dirección de análisis, se muestran en las tablas siguientes:

Tabla 6.41: Factores de modificación de la respuesta (Edificio 6 pisos)

Edificio	Dirección	Factor de	Factor de ductilidad	Factor de modificación
	de análisis	sobre-resistencia (Ω)	(R _µ)	de la respuesta (R)
				(R _μ Ω)
6 pisos	Х	9.40	1.26	11.84
6 pisos	Y	9.34	1.30	12,14
			R _{promedio}	11.99

Edificio	Dirección	Factor de	Factor de ductilidad	Factor de modificación
	de análisis	sobre-resistencia (Ω)	(R _µ)	de la respuesta (R)
				(R _μ Ω)
8 pisos	Х	9.57	1.12	10.71
8 pisos	Y	7.36	1.34	9.86

R_{promedio}

10.29

Tabla 6.42: Factores de modificación de la respuesta (Edificio 8 pisos)

Tabla 6.43: Factores de modificación de la respuesta (Edificio 10 pisos)

Edificio	Dirección	Factor de	Factor de ductilidad	Factor de modificación
	de análisis	sobre-resistencia (Ω)	(R _µ)	de la respuesta (R)
				(R _μ Ω)
10 pisos	Х	8.84	1.13	9.98
10 pisos	Y	8.23	1.23	10.12
			R promedio	10.05

Como se mostró en las tablas anteriores, el factor de modificación de la respuesta para cada edificio se calculó como el promedio de los resultados de las dos direcciones de análisis.

6.8 Comparación y análisis de resultados

En los edificios ficticios, se obtuvieron grandes valores para los factores de sobre – resistencia. Como se mencionó en el capítulo 3, este factor depende de la redundancia estructural involucrada y del sobredimensionamiento de los elementos utilizados, entre otras cosas. Por lo tanto, los valores obtenidos concuerdan con el sobredimensionamiento de los elementos, dado por las restricciones de desplazamientos establecidas por la NCh 433 Of. 96 [14].

Los factores de ductilidad obtenidos resultaron ser menores que los factores de sobre – resistencia. Por este motivo, el factor de modificación de la respuesta estructural resultó ser principalmente dependiente de la sobre – resistencia.

Como se indicó en el capítulo anterior, la comparación de los resultados obtenidos no debería hacerse directamente con el factor de reducción expuesto por la norma, R* para los edificios sometidos al análisis modal espectral, debido a que los diseños fueron controlados por el corte mínimo, en todos los casos. Por ende, el factor de reducción utilizado fue un poco menor a los valores R*, y estará dado por la razón entre el corte generado por el espectro reducido (Q_r) y el corte mínimo indicado en la norma (Q_d), como se indica en la ecuación 5.4.

Los valores de los factores de reducción efectivos de la NCh 433 [14] obtenidos se muestran en la Tabla 6.44. La nomenclatura utilizada es la misma que la expuesta en la ecuación 5.4.

Edificio	Factor R*	Q _r (*)	Q_d	Factor	Factor de reducción efectivo
	NCh 433			f	(R _{efectivo})
6 pisos	9.03	35	89	0.45	4.06
8 pisos	9.51	41	125	0.37	3.52
10 pisos	9.70	46	158	0.33	3.20

Tabla 6.44: Factores de reducción efectivos NCh 433 (Edificios ficticios)

(*): Conservadoramente se consideró el menor valor del corte basal en ambas direcciones de análisis

Al igual que para el edificio real de 4 pisos, se aprecia que los factores de reducción utilizados al trabajar con la NCh 433 Of. 96[14] son menores que los obtenidos a través de la

metodología desarrollada, acrecentándose la diferencia entre lo que indica la norma y los valores obtenidos a medida que aumenta la altura de los edificios. Posiblemente, esto guarde relación con las consideraciones tomadas en el diseño de las estructuras ficticias, que cumplían todas las verificaciones sísmicas, a diferencia del modelo real.

Se aprecia también que los valores obtenidos en el análisis siguen la misma tendencia decreciente que los factores de reducción efectivos de la NCh 433 [14], considerando la limitante del corte mínimo, según la Tabla 6.44.

Por lo tanto, al diseñar estructuras con todos los requerimientos de la normativa sísmica vigente y utilizando las recomendaciones para el diseño sísmico de documentos tales como el AISC Seismic Provisions [12], aumentan considerablemente las capacidades de las estructuras. Pero este aumento en la capacidad viene dado principalmente por un aumento de la sobre – resistencia, aún cuando se tiene un diseño más dúctil, en teoría. Esto se debe a que las estructuras fallan debido a la formación de mecanismos, antes de que se pueda desarrollar mayor resistencia y se pueda apreciar mayor ductilidad.

7 Conclusiones

7.1 Resumen

En este capítulo se analizarán de forma general los resultados obtenidos, haciendo énfasis en la aplicación de la normativa vigente, metodología empleada y los valores de los factores de modificación de la respuesta obtenidos.

7.2 Conclusiones generales

7.2.1 Cumplimiento de la normativa vigente del edificio real de 4 pisos

Dentro de este ámbito, se apreció que el edificio real cumple plenamente las restricciones a los desplazamientos indicados en la NCh 433 Of. 96 [14]. Pero, por el contrario, los esfuerzos generados en los elementos resultaron, en algunos casos, mayores que los permitidos.

Un aspecto que llamó la atención fue el incumplimiento de la condición columna fuerte – viga débil para todos los tipos de conexiones del edificio. En las curvas de capacidad obtenidas, se aprecia claramente la falta de ductilidad de estos edificios, que podría ser explicada por el incumplimiento de la condición anteriormente señalada. Los desplazamientos últimos alcanzados resultaron ser bastante inferiores, en comparación con los edificios que se tuvieron que diseñar para este trabajo, que efectivamente cumplían la condición columna fuerte – viga débil. Además, los análisis mostraron la falla de piso blando por rotulación de las columnas.

Es posible concluir que mediante este requerimiento se promueven diseños que claramente aseguran mejor comportamiento sísmico debido a la gran resistencia desarrollada previa al colapso.

7.2.2 Diseño de los edificios de 6, 8 y 10 pisos.

Según los resultados obtenidos, el diseño de los edificios de marcos rígidos se encuentra gobernado por las limitaciones a los desplazamientos que impone la norma sísmica. Esto concuerda con lo visto en la literatura, donde se mencionaba que el principal inconveniente de este sistema estructural era el control de desplazamientos.

Para evitar el sobredimensionamiento de las estructuras, sería conveniente combinar este sistema con otros tipos de estructuración, de tal forma de otorgar mayor rigidez lateral a la estructura, sin que esto implique un sobredimensionamiento de ésta. La combinación con sistemas arriostrados o muros de corte podría ser una buena alternativa.

Sería conveniente revisar el criterio de corte mínimo de la normativa sísmica chilena que, aún cuando va por el lado de la seguridad, puede resultar un poco conservador, traduciéndose, por ejemplo, en restricciones de desplazamientos demasiado grandes.

La verificación columna fuerte – viga débil para estos edificios se cumple sin inconvenientes para todas las conexiones. Las grandes restricciones relativas a los desplazamientos dadas por la NCh 433 Of 96 [14], hicieron que las dimensiones de las columnas aumentaran en forma considerable, lo que implicó que la condición de columna fuerte se acentuará aún más.

7.2.3 Escalamiento de registros

La metodología empleada en este trabajo de título presenta una serie de limitaciones. Una de ellas es el haber considerado sólo un registro para realizar el análisis. En estricto rigor, como se indicó en el capítulo 5, se debería haber utilizado una serie de registros normalizados, de forma tal de eliminar todos los efectos del tipo de suelo y de distancia del epicentro, para posteriormente escalarlos considerando todos los efectos anteriormente señalados. Luego, el colapso de la estructura vendría dado por la media obtenida de todos estos registros.

Esta falta de rigurosidad en el procedimiento se trató de remediar con el uso del espectro de aceleraciones de la norma NCh 2745 [16] que, como se indicó, proviene de la recopilación de varios registros chilenos, resultando ser más conservador que el espectro de la NCh 433 [14]. De esta manera, se controló la demanda sísmica máxima que se pudiera obtener

del escalamiento de registros, fijando como cota máxima lo obtenido del análisis con el espectro de la NCh 2745 [16].

El único caso en que el corte elástico obtenido del escalamiento de registros controlaba, esto es, resultaba ser menor que el obtenido mediante el análisis modal espectral, era para el edificio real de 4 pisos. Esto concuerda con las verificaciones realizadas a este modelo en relación a la normativa actual, explicadas previamente, donde se apreciaba el no cumplimiento de las condiciones columna fuerte – viga débil, además de factores de utilización superiores a 1.0.

Aun cuando la metodología no es del todo exacta, es una buena medida para encontrar el margen de colapso de la estructura. Los tiempos involucrados en el análisis y la cantidad de información procesada la pueden tornar compleja, pero dado que propone una distribución de esfuerzos más cercana a la realidad, resulta ser una alternativa muy buena en el caso de necesitar análisis más refinados y exactos.

7.2.4 Factores de modificación de la respuesta.

En este punto, es necesario señalar la importancia de conocer cada una de las variables que influyen en la determinación de estos factores: Sobre – resistencia y ductilidad. La sobreresistencia depende del grado de redundancia estructural, de sobredimensionamiento y de la resistencia que puedan aportar elementos que no pertenecen propiamente al sistema de estructural. El factor de ductilidad depende del nivel de demanda sísmica que es capaz de resistir la estructura.

Sería muy provechoso, como se utiliza en algunas normas internacionales, separar el efecto de cada una de estas variables para finalmente determinar el factor de modificación de la respuesta. Por ejemplo, se apreció que los factores de reducción obtenidos dependían principalmente del factor de sobre –resistencia, más que de la ductilidad. Por ende, un factor de modificación de la respuesta grande no implica necesariamente un diseño dúctil.

Es posible afirmar que los factores de reducción utilizados al trabajar con la NCh 433 Of. 96 [14] son menores que los obtenidos a través de la metodología empleada en el trabajo de título. Puede concluirse que las innovaciones en el diseño sísmico que han incorporado las normas actuales hacen que los diseños resulten ser más eficientes, dado el conocimiento que se ha ido adquiriendo en el comportamiento de las estructuras. Por este motivo, sería bueno

que todas las innovaciones incorporadas vayan de la mano con una nueva evaluación de los factores de modificación utilizados. Claramente, se pudo apreciar que las demandas sísmicas que pueden resistir las estructuras pueden ser bastante superiores a las indicadas en la NCh 433 [14], por lo que los factores indicados podrían ser excesivamente conservadores.

También es importante señalar que imponer un corte basal mínimo, tal como lo indica la norma sísmica, hace que las reducciones posibles se mantengan controladas, dándole un carácter más seguro al diseño, pero que puede llegar a ser excesivamente conservador.

7.3 Futuros trabajos.

En investigaciones posteriores, sería importante considerar también la interacción suelo – estructura. El considerar apoyos perfectamente empotrados puede no resultar del todo correcto.

Otro de los aspectos que sería importante incorporar es el efecto que pudiesen tener elementos tales como las losas. Por simplicidad, en este trabajo se omitieron, despreciando el aporte que pudiesen llegar a tener. Resultaría interesante analizar el efecto de estos elementos en la limitación de desplazamientos, de manera tal de obtener diseños más cercanos a la realidad.

Sería provechoso realizar el análisis no lineal dinámico con un set de registros de aceleraciones, de tal manera de determinar estadísticamente los márgenes de colapso de la estructura y llegar a resultados más exactos.

Por último, dadas las circunstancias del evento sísmico 27 de febrero de 2010, en la Séptima y Octava Región, la investigación referente a la determinación de parámetros sísmicos debería tender a realizar este mismo tipo de análisis para edificios que hayan resistido el terremoto. Como la cantidad de puntos de medición de aceleraciones ha aumentado considerablemente desde 1985, la cantidad de edificios analizables también se incrementó. Por lo tanto, se podrían calibrar parámetros sísmicos para diversos tipos de estructuración siguiendo la metodología expuesta en este trabajo de título e incorporando las mejoras indicadas.

Bibliografía y Referencias.

- 1. Monge, J., Campino, V., y Sharpe, R. (1986). "El sismo del 3 de marzo de 1985, Chile", Acero Comercial, Santiago.
- 2. Aguirre, C. y Pérez, P. (Enero 2005). "V Región: Microzonificación sísmica", Revista Bit, Santiago.
- Beltrán, J.F y Herrera, R. "Las nuevas disposiciones para edificios de acero estructural de la AISC", Construcción metálica en América Latina, <u>http://www.construccionenacero.com/Documents/AISCsismica c_revJB_RH.doc</u> [Revisado el 16 de Mayo de 2010].
- Hidalgo, P., Riddell, R., y Cruz, E. (1989). "Factor de Reducción de la respuesta para el diseño de estructuras rígidas", 5^{as} Jornadas de Sismología e Ingeniería antisísmica, Pontificia Universidad Católica de Chile, Santiago.
- Hidalgo, P., Arias, A., Flores, R., y Arze, E. (1989). "Proyecto de Revisión de la norma NCh 433", 5^{as} Jornadas de Sismología e Ingeniería antisísmica, Pontificia Universidad Católica de Chile, Santiago.
- 6. FEMA P695 (2009). "Quantification of Building Seismic Performance Factors", Federal Emergency Management Agency, Washington, D.C.
- Fernández, C. (2008). "Coeficientes de modificación de la respuesta estructural en edificios de marcos dúctiles de viga enrejada", Memoria para optar al título de Ingeniero Civil, Universidad Técnica Federico Santa María, Departamento de Obras Civiles, Viña del Mar.
- 8. Bruneau, M., Uang, Ch., Whittaker, A. (1998). "Ductile Design of Steel Structures", McGraw-Hill, New York.
- FEMA 356 (2000). "Prestandard and commentary for the seismic rehabilitation of buildings", Federal Emergency Management Agency, Washington, D.C.
- 10. FEMA 273 (1997) "Seismic rehabilitation of buildings", Federal Emergency Management Agency, Washington, D.C.
- 11. AISC (2005b). "ANSI/AISC 360-05. Specification for Structural Steel Buildings", American Institute of Steel Construction, Chicago, Illinois.
- 12. AISC (2005a). "Seismic Provisions for Structural Steel Buildings", American Institute of Steel Construction, Chicago, Illinois.
- Instituto Nacional de Normalización (1986). "Diseño estructural de edificios Cargas permanentes y sobrecargas de uso". NCh 1537. Of 86, I.N.N, Santiago.
- Instituto Nacional de Normalización (1996). "Diseño sísmico de edificios". NCh 433. Of 96, I.N.N, Santiago.

- Guendelman, T., Gatica, R., y Monge, J. (1976). "Acoplamiento dinámico en edificios de doble simetría", 2^{das} Jornadas Chilenas de Sismología e Ingeniería Antisísmica, Santiago.
- 16. Instituto Nacional de Normalización (2003). "Análisis y diseño de edificios con aislación sísmica". NCh 2745 Of. 2003, I.N.N, Santiago.

Anexos

Anexo 1: Ejemplo determinación de las cargas gravitacionales solicitantes.

Sobrecargas de uso

La sobrecarga de uso es determinada a partir de lo establecido en la norma NCh 1537Of. 86. A continuación se presenta el cálculo de esta carga.

 $SC := 200 \frac{\text{kgf}}{\text{m}^2}$

Sobrecarga de uso (Viviendas: Áreas de uso general):

El factor de reducción aplicable a las sobrecargas de uso es el mismo correspondiente al área tributaria de las sobrecargas de techo. Como las áreas tributarias son menores a 15 m^2 , se asume que el factor de reducción aplicable es C=1

Tributación de cargas mediante método de las franjas

En la figura a.1 se muestran la denominación de cada una de las vigas y un ejemplo de división de las franjas

Figura a.1: Método de las franjas

Cargas en vigas ele vVigas tipo 1
$$b_{piso_x} := 4.6 \text{ m}$$
 $b_{franja1x} := 1.1 \text{ m}$ $b_{franja1x} := 1.1 \text{ m}$ $b_{franja3x} := 1.1 \text{ m}$ $b_{franja3x} := 1.1 \text{ m}$ $carga por unidad de longitud $q_{1a_piso_s} C := \frac{SC}{2} \cdot b_{franja1}$ $q_{1a_piso_s} C := \frac{SC}{2} \cdot b_{franja1x} + \frac{SC}{2} \cdot \frac{b_{franja2x}}{2}$ $q_{1b_piso_s} C := SC \cdot b_{franja1x} + \frac{SC}{2} \cdot \frac{b_{franja2x}}{2}$ $q_{1c_piso_s} C := \frac{SC}{2} \cdot b_{franja1x}$ $q_{1c_piso_s} C := \frac{SC}{2} \cdot b_{franja1x}$ $q_{1c_piso_s} C := \frac{SC}{2} \cdot b_{franja1x}$ $q_{2a_piso_s} C := 2 \cdot q_{1a_piso_s} C$ $q_{2a_piso_s} C := 2 \cdot q_{1a_piso_s} C$ $q_{2a_piso_s} C := 2 \cdot q_{1b_piso_s} C$ $q_{2c_piso_s} C := 2 \cdot q_{1c_piso_s} C$ $q_{2c_piso_s} C := 1 \cdot q_{2c_piso_s} C := 1 \cdot q_{2c_piso_s} C$$

$$q_{5b_piso_s}SC := q_{1c_piso_s}SC$$
 $q_{5b_piso_s}SC := q_{1c_piso_s}SC$ $q_{5c_piso_s}SC := 110 \frac{kgf}{m}$ Viant tipo 6Carga por unidad de longitud $q_{6u_piso_s}SC := q_{2u_piso_s}SC$ $q_{6u_piso_s}SC := 220 \frac{kgf}{m}$ $q_{6b_piso_s}SC := q_{2b_piso_s}SC$ $q_{6b_piso_s}SC := 680 \frac{kgf}{m}$ $q_{6c_piso_s}SC := q_{2c_piso_s}SC$ $q_{6b_piso_s}SC := 680 \frac{kgf}{m}$ $q_{6c_piso_s}SC := q_{2c_piso_s}SC$ $q_{6c_piso_s}SC := 620 \frac{kgf}{m}$ $q_{6c_piso_s}SC := q_{2c_piso_s}SC$ $q_{6c_piso_s}SC := 220 \frac{kgf}{m}$ Ugas tipo 3 $b_{franja} 2y := 4.5 m$
 $b_{franja} 2y := 2.3 \pi$
 $b_{franja} 3y := 1.1 m$ Carga por unidad de longitud $q_{3u_piso_s}SC := 110 \frac{kgf}{m}$ $q_{3u_piso_s}SC := \frac{SC}{2} b_{franja} 1y$ $q_{3u_piso_s}SC := 110 \frac{kgf}{m}$ $q_{3b_piso_s}SC := SC b_{franja} 1y + \frac{SC}{2} \frac{b_{ranja} 2y}{2}$ $q_{3b_piso_s}SC := 110 \frac{kgf}{m}$ $q_{3c_piso_s}SC := \frac{SC}{2} b_{franja} 1y$ $q_{3c_piso_s}SC := 110 \frac{kgf}{m}$

Vigas tipo 4

Carga por unidad de longitud

$$q_{4a_piso_SC} := 2 \cdot q_{3a_piso_SC} \qquad q_{4a_piso_SC} = 220 \frac{\text{kgf}}{\text{m}}$$

$$q_{4b_piso_SC} := 2 \cdot q_{3b_piso_SC} \qquad q_{4b_piso_SC} = 670 \frac{\text{kgf}}{\text{m}}$$

$$q_{4c_piso_SC} := 2 \cdot q_{3c_piso_SC} \qquad q_{4c_piso_SC} = 220 \frac{\text{kgf}}{\text{m}}$$

Vigas tipo 7

 $b_{piso_y} := 1.6 \text{ m}$ $b_{franja_y} := 0.4 \text{ m}$ $b_{franja_2y} := 0.8 \text{ m}$ $b_{franja_{3y}} := 0.4 \text{ m}$

Carga por unidad de longitud

 $q_{7a_piso_SC} := \frac{SC}{2} \cdot b_{franja1y} \qquad q_{7a_piso_SC} = 40 \frac{kgf}{m}$ $q_{7b_piso_SC} := SC \cdot b_{franja1y} + \frac{SC}{2} \cdot \frac{b_{franja2y}}{2} \qquad q_{7b_piso_SC} = 120 \cdot \frac{kgf}{m}$ $q_{7c_piso_SC} := \frac{SC}{2} \cdot b_{franja1y} \qquad q_{7c_piso_SC} = 40 \cdot \frac{kgf}{m}$

Vigas tipo 8

Carga por unidad de longitud

q _{8a_piso_SC} := q _{7a_piso_SC} + q _{3a_piso_SC}	$q_{8a_piso_SC} = 150 \frac{\text{kgf}}{\text{m}}$
q _{8b_piso_SC} := q _{7b_piso_SC} + q _{3b_piso_SC}	$q_{8b_piso_SC} = 455 \cdot \frac{\text{kgf}}{\text{m}}$
$q_{8c_piso_SC} := q_{7c_piso_SC} + q_{3c_piso_SC}$	$q_{8c_piso_SC} = 150 \frac{\text{kgf}}{\text{m}}$

Anexo 2: Obtención Solicitaciones Sísmicas norma NCh 433 Of.96

- Edificio real 4 pisos (Método estático)

1. Dimensiones

N := 4	Número de pisos
k := 0 N	
$h_k := 2.45 m$	Altura piso k
$\mathbf{h}_0 := 0 \cdot \mathbf{m}$	Altura origen
$H := \sum_{k} h_{k} = 9.8m$	Altura total
Lx := 46 m	Dimensión en planta eje x
Ly := 10.6 m	Dimensión en planta eje y

2. Obtención de datos de la norma

- Factores de modificación de la respuesta

R := 7	Estructuración mediante marcos de acero
R ₀ := 11	Estructuración mediante marcos de acero
I := 1	Factor de importancia edificio habitacional
Ao := 0.4 g	Zona sísmica 3

- Parámetros de suelo (Suelo Tipo 2)

S := 1 $T_0 := 0.3 \cdot s$ n := 1.33 p := 1.5 $T'' := 0.35 \cdot s$

3. Periodo aproximado

$\Gamma_n := 0.91 \cdot s$	Obtenido del análisis modal de SAP
----------------------------	------------------------------------

4. Determinación del corte basal

- Coeficiente sísmico

$$C := 2.75 \frac{Ao}{g \cdot R} \cdot \left(\frac{T''}{T_n}\right)^n = 0.044$$

$$C_{\min} := \frac{Ao}{6 \cdot g} = 0.067$$

$$C_{\max} := 0.35 \text{ S} \cdot \frac{Ao}{g} = 0.14$$

$$C := \begin{bmatrix} C_{\max} & \text{if } C > C_{\max} \\ C_{\min} & \text{if } C < C_{\min} \\ C & \text{otherwise} \end{bmatrix}$$

C = 0.067

- Pesos por piso

$$k := 1.. (N - 1)$$

 $P_k := 245 \text{ Tonf}$
 $P_4 := 83 \cdot \text{Tonf}$

k := 1.. N

$$P_{total} := \sum_{k} P_{k} = 818 \text{ Tonf}$$
 Peso total estructura

Corte basal

 $Q_{basal} := C \cdot I \cdot P_{total} = 54.533 Tonf$

5. Distribución de Fuerzas en la altura

k := 0.. N

$$Z_k := \sum_{i=0}^{k} h_i$$
 $Z_k = \begin{pmatrix} 0 \\ 2.45 \\ 4.9 \\ 7.35 \\ 9.8 \end{pmatrix} m$

k := 1.. N

$$A_k := \sqrt{1 - \frac{Z_{k-1}}{H}} - \sqrt{1 - \frac{Z_k}{H}}$$

- Distribución de fuerzas por piso

k := 1.. N

$$F_{k} := \frac{A_{k} \cdot P_{k}}{\sum_{i=1}^{N} (A_{i} \cdot P_{i})} \cdot Q_{basal}$$

$$F_{k} = \begin{pmatrix} 10.915\\ 12.947\\ 16.872\\ 13.8 \end{pmatrix} \cdot Tonf$$

- Distribución del corte

$$Q_k := \sum_{i=k}^{N} F_i$$

 $Q_k = \begin{pmatrix} 54.533\\ 43.619\\ 30.672\\ 13.8 \end{pmatrix}$. Tonf

6. Torsión accidental

- Cálculo de excentricidades

 $\mathbf{k} := 1 \dots \mathbf{N}$

<u>Eje y</u>

Eje x

$$e_{bx_k} := 0.1 \cdot Ly \cdot \frac{Z_k}{H}$$
 $e_{by_k} := 0.1 \cdot Lx \cdot \frac{Z_k}{H}$

- Momentos torsionales por piso

<u>Eje x</u>

<u>Eje y</u>

$$M_{tx_{k}} := e_{bx_{k}} \cdot F_{k} \qquad M_{ty_{k}} := e_{by_{k}} \cdot F_{k}$$
$$M_{ty_{k}} := e_{by_{k}} \cdot F_{k}$$
$$M_{tx_{k}} = \begin{pmatrix} 2.892 \\ 6.862 \\ 13.414 \\ 14.628 \end{pmatrix} \cdot \text{Tonf} \cdot \text{m} \qquad M_{ty_{k}} = \begin{pmatrix} 12.552 \\ 29.777 \\ 58.21 \\ 63.478 \end{pmatrix} \cdot \text{Tonf} \cdot \text{m}$$

Edificios ficticios

Determinación solicitaciones por torsión accidental y espectros de diseño

- Edificio 6 pisos

Cálculo momentos torsores

1. Dimensiones

N := 6

k := 1.. N

$$h_k := 2.45 \text{ m}$$
 Altura piso k

$$h_0 := 0 \cdot m$$

$$H := \sum_{k} h_{k} = 14.7m$$

Altura inicial

$$\sum_{k} h_{k} = 14.7 \text{m}$$

Altura total

2. Periodo aproximado

$$T_n := 0.89 s$$

Obtenido del análisis modal de SAP

3. Determinación del corte basal

- Coeficiente sísmico

$$C := 2.75 \frac{Ao}{g \cdot R} \cdot \left(\frac{T''}{T_n}\right)^n = 0.045$$

$$\operatorname{Cmin} := \frac{\operatorname{Ao}}{6 \cdot g} = 0.067$$

$$Cmax := 0.35 \cdot S \cdot \frac{Ao}{g} = 0.14$$

- Pesos por piso

$$k := 1.. (N - 1)$$

 $P_k := 250 \text{ Tonf}$

$$k := N$$

 $P_k := 86 \cdot Tonf$

- Peso total

k := 1.. N

$$P_{total} := \sum_{k} P_{k} = 1336 \text{ Tonf}$$

- Corte basal

 $Q_{basal} \coloneqq C \cdot I \cdot P_{total} = 89.067 Tonf$

C = 0.067
4. Distribución de Fuerzas en la altura

$$k := 0.. N$$

$$Z_{k} := \sum_{i=0}^{k} h_{i}$$

$$k := 1.. N$$

$$A_{k} := \sqrt{1 - \frac{Z_{k-1}}{H}} - \sqrt{1 - \frac{Z_{k}}{H}}$$

$$F_{k} := \frac{A_{k} \cdot P_{k}}{\sum_{i=0}^{N} (A_{i} \cdot P_{i})} \cdot Q_{basal}$$

5. Torsión accidental

- Cálculo de excentricidades

<u>Eje x</u>

<u>Eje y</u>

$$e_{bx_k} := 0.1 \cdot Ly \cdot \frac{Z_k}{H}$$
 $e_{by_k} := 0.1 \cdot Lx \cdot \frac{Z_k}{H}$

- Momentos torsionales por piso

<u>Eje x</u>

<u>Eje y</u>

$$M_{tx_{k}} := e_{bx_{k}} \cdot F_{k} \qquad M_{ty_{k}} := e_{by_{k}} \cdot F_{k}$$

$$M_{tx_{k}} = \begin{pmatrix} 1.872 \\ 4.142 \\ 7.053 \\ 11.154 \\ 18.17 \\ 18.108 \end{pmatrix} \cdot \text{Tonf} \cdot \text{m} \qquad M_{ty_{k}} = \begin{pmatrix} 8.126 \\ 17.976 \\ 30.605 \\ 48.405 \\ 78.853 \\ 78.584 \end{pmatrix} \cdot \text{Tonf} \cdot \text{m}$$

Espectro de diseño (Edificio 6 pisos)

 $T_n := 0.89 s$

i := 1.. 1000

$$T_i := i \cdot 0.005 s$$

Factor de amplificación a:

$$\alpha_{i} := \frac{1 + 4.5 \left(\frac{T_{i}}{T_{o}}\right)^{p}}{1 + \left(\frac{T_{i}}{T_{o}}\right)^{3}}$$

Factor de reducción efectivo

$$R_{eff} := 1 + \frac{T_n}{0.1 \cdot T_0 + \frac{T_n}{R_0}} = 9.025$$

Espectro de diseño:

$$S_{a_i} := \frac{I \cdot Ao \cdot \alpha_i}{R_{eff}}$$

Espectro de diseño elástico:

$$S_{a_elast_i} := I \cdot Ao \cdot \alpha_i$$

- Edificio 8 pisos

Cálculo momentos torsores

1. Dimensiones

- N := 8 Número de pisos
- k := 1.. N
- $h_k := 2.45 \, m$ Altura piso k
- $h_0 := 0 \cdot m$ Altura inicial
- $H := \sum_{k} h_{k} = 19.6m \qquad \qquad \text{Altura total}$

2. Periodo aproximado

 $T_n := 1.13 \cdot s$

Obtenido del análisis modal de SAP

3. Determinación del corte basal

- Coeficiente sísmico

$$C := 2.75 \frac{Ao}{g \cdot R} \cdot \left(\frac{T''}{T_n}\right)^n = 0.033$$

$$\operatorname{Cmin} := \frac{\operatorname{Ao}}{6 \cdot g} = 0.067$$

$$Cmax := 0.35 \cdot S \cdot \frac{Ao}{g} = 0.14$$

- Peso total

k := 1.. N

$$P_{\text{total}} := \sum_{k} P_{k} = 1868 \text{ Tonf}$$

- Corte basal

$$Q_{basal} := C \cdot I \cdot P_{total} = 124.533 Tonf$$

4. Distribución de Fuerzas en la altura

$$k := 0.. N$$
$$Z_k := \sum_{i=0}^k h_i$$

$$A_{k} := \sqrt{1 - \frac{Z_{k-1}}{H}} - \sqrt{1 - \frac{Z_{k}}{H}}$$
$$F_{k} := \frac{A_{k} \cdot P_{k}}{\sum_{i=0}^{N} (A_{i} \cdot P_{i})} \cdot Q_{basal}$$

5. Torsión accidental

- Cálculo de excentricidades

<u>Eje x</u>

<u>Eje y</u>

$$e_{bx_k} := 0.1 \cdot Ly \cdot \frac{Z_k}{H}$$
 $e_{by_k} := 0.1 \cdot Lx \cdot \frac{Z_k}{H}$

- Momentos torsionales por piso

<u>Eje x</u>

<u>Eje y</u>

$$M_{tx_{k}} \coloneqq e_{bx_{k}} \cdot F_{k} \qquad M_{ty_{k}} \coloneqq e_{by_{k}} \cdot F_{k}$$

$$M_{ty_{k}} \coloneqq e_{by_{k}} \cdot F_{k}$$

$$M_{tx_{k}} = \begin{pmatrix} 1.381 \\ 2.967 \\ 4.84 \\ 7.138 \\ 10.128 \\ 10.128 \\ 14.416 \\ 21.919 \\ 21.429 \end{pmatrix} \cdot \text{Tonf} \cdot m \qquad M_{ty_{k}} = \begin{pmatrix} 5.993 \\ 12.877 \\ 21.004 \\ 30.977 \\ 43.951 \\ 62.561 \\ 95.12 \\ 92.992 \end{pmatrix} \cdot \text{Tonf} \cdot m$$

Espectro de diseño (Edificio 8 pisos)

 $T_n := 1.13 \cdot s$

i := 1.. 1000

 $T_i := i \cdot 0.005 s$

$$\alpha_{i} := \frac{1 + 4.5 \left(\frac{T_{i}}{T_{o}}\right)^{p}}{1 + \left(\frac{T_{i}}{T_{o}}\right)^{3}}$$

Factor de reducción efectivo

Factor de amplificación a:

$$R_{eff} := 1 + \frac{T_n}{0.1 \cdot T_0 + \frac{T_n}{R_0}} = 9.514$$

3. Determinación del corte basal

- Coeficiente sísmico

$$C := 2.75 \frac{Ao}{g \cdot R} \cdot \left(\frac{T''}{T_n}\right)^n = 0.029$$

$$Cmin := \frac{Ao}{6 \cdot g} = 0.067$$

$$Cmax := 0.35 \cdot S \cdot \frac{Ao}{g} = 0.14$$

$$C := \begin{bmatrix} Cmax & \text{if } C > Cmax \\ Cmin & \text{if } C < Cmin \\ C & \text{otherwise} \end{bmatrix}$$

$$- Pesos por piso$$

$$k := 1.. (N - 1)$$

$$P_k := 254 \text{ Tonf}$$

$$k := N$$

$$P_k := 92 \cdot \text{Tonf}$$

$$- Peso total$$

$$k := 1.. N$$

$$P_{total} := \sum_k P_k = 2378 \cdot \text{Tonf}$$

$$- Corte \ basal$$

$$Q_{basal} := C \cdot I \cdot P_{total} = 158.533 \cdot \text{Tonf}$$

C = 0.067

4. Distribución de Fuerzas en la altura

$$k := 0.. N$$

$$Z_{k} := \sum_{i=0}^{k} h_{i}$$

$$k := 1.. N$$

$$A_{k} := \sqrt{1 - \frac{Z_{k-1}}{H}} - \sqrt{1 - \frac{Z_{k}}{H}}$$

$$F_{k} := \frac{A_{k} \cdot P_{k}}{\sum_{i=0}^{N} (A_{i} \cdot P_{i})} \cdot Q_{basal}$$

5. Torsión accidental

- Cálculo de excentricidades

<u>Eje x</u>

<u>Eje y</u>

$$\mathbf{e}_{\mathbf{b}\mathbf{x}_{k}} \coloneqq 0.1 \cdot \mathbf{L}\mathbf{y} \cdot \frac{\mathbf{Z}_{k}}{\mathbf{H}} \qquad \mathbf{e}_{\mathbf{b}\mathbf{y}_{k}} \coloneqq 0.1 \cdot \mathbf{L}\mathbf{x} \cdot \frac{\mathbf{Z}_{k}}{\mathbf{H}}$$

- Momentos torsionales por piso

<u>Eje x</u>

<u>Eje y</u>

$$\mathbf{M}_{\mathbf{tx}_{k}} := \mathbf{e}_{\mathbf{bx}_{k}} \cdot \mathbf{F}_{k} \qquad \qquad \mathbf{M}_{\mathbf{ty}_{k}} := \mathbf{e}_{\mathbf{by}_{k}} \cdot \mathbf{F}_{k}$$

	 1.08 2.284 3.648 5.226 7.103 			 4.688 9.913 15.831 22.678 30.826 	
M _{tx_k} =	3.648 5.226 7.103 9.428 12.485 16.926 24.815 24.111	•Tonf • m	M _{ty_k} =	15.831 22.678 30.826 40.916 54.182 73.452 107.689 104.631	•Tonf •m

Espectro de diseño (Edificio 10 pisos)

 $T_n := 1.25 \cdot s$

i := 1.. 1000

 $T_{i} := i \cdot 0.005 s$

 $\alpha_{i} := \frac{1 + 4.5 \left(\frac{T_{i}}{T_{o}}\right)^{2}}{1 + \left(\frac{T_{i}}{T_{o}}\right)^{3}}$

Factor de reducción efectivo

Factor de amplificación a:

$$R_{eff} := 1 + \frac{T_n}{0.1 \cdot T_0 + \frac{T_n}{R_0}} = 9.703$$

Espectro de diseño:

$$S_{a_i} := \frac{I \cdot Ao \cdot \alpha_i}{R_{eff}}$$

Espectro de diseño elástico:

$$S_{a_elast_i} := I \cdot Ao \cdot \alpha_i$$

Anexo 3: Verificación viga débil – columna fuerte

PROPIEDADES DEL ACERO

Módulo de elasticidad:	$\mathbf{E}_{\mathbf{S}} := 2 \cdot 10^5 \cdot \mathbf{MPa}$
Tensión de fluencia:	f _y := 270 MPa
Densidad del acero:	$\gamma_{\rm S} := 7.85 \frac{{\rm Tonf}}{{\rm m}^3}$
Razón entre la fluencia esperada y la fluencia mínima:	R _y := 1.3 (Análogo al acero ASTM A36)
Ubicación de las rótulas plásticas	
Distancia entre el nudo y la ubicación de la rótula plástica en vigas:	$d_{v} := (0.1 + 0.5) \cdot m$
Distancia entre el nudo y la ubicación de la rótula plástica en columnas:	$d_{c} := (0.15) \cdot m$
Propiedades de las secciones	
- Vigas	
$Z_{30h20} := Z_{viga} (100 \text{ mm}, 10 \text{ mm}, 10 \text{ mm}, 300 \text{ mm})$	$A_{30h20} := A_{viga}(100 \text{ mm}, 6 \cdot \text{mm}, 5 \cdot \text{mm}, 300 \text{ mm})$
$Z_{30h37} := Z_{viga} (100 \text{ mm}, 10 \text{ mm}, 10 \text{ mm}, 300 \text{ mm})$	$A_{30h37} := A_{viga}(100 \text{ mm}, 10 \text{ mm}, 10 \text{ mm}, 300 \text{ mm})$
$Z_{30h45} := Z_{viga} (150 \text{ mm}, 10 \text{ mm}, 10 \text{ mm}, 300 \text{ mm})$	$A_{30h45} := A_{viga}(150 \text{ mm}, 10 \text{ mm}, 10 \text{ mm}, 300 \text{ mm})$
$Z_{30h58} := Z_{viga} (150 \text{ mm}, 16 \text{ mm}, 10 \text{ mm}, 300 \text{ mm})$	$A_{30h58} := A_{viga}(150 \text{ mm}, 16 \text{ mm}, 10 \text{ mm}, 300 \text{ mm})$
$Z_{20h17} := Z_{viga}(100 \text{ mm}, 6 \cdot \text{mm}, 5 \cdot \text{mm}, 200 \text{ mm})$	$A_{20h17} := A_{viga}(100 \text{ mm}, 6 \text{ mm}, 5 \text{ mm}, 200 \text{ mm})$

$Z_{200x200x4} = Z_{columna}(200 \text{ mm}, 200 \text{ mm}, 4 \cdot \text{mm})$	$A_{200x200x4} = A_{columna}(200 \text{ mm}, 200 \text{ mm}, 4 \cdot \text{mm})$
$Z_{200x200x\dot{5}} = Z_{columna}(200 \text{ mm}, 200 \text{ mm}, 5 \cdot \text{mm})$	$A_{200x200x\dot{5}} = A_{columna}(200 \text{ mm}, 200 \text{ mm}, 5 \cdot \text{mm})$
$Z_{200x200x\dot{6}} = Z_{columna}(200 \text{ mm}, 200 \text{ mm}, 6 \cdot \text{mm})$	$A_{200x200x6} = A_{columna}(200 \text{ mm}, 200 \text{ mm}, 6 \text{ mm})$
$Z_{300x300x\dot{8}} = Z_{columna}(300 \text{ mm}, 300 \text{ mm}, 8 \cdot \text{mm})$	$A_{300x300x\dot{8}} = A_{columna} (300 \text{ mm}, 300 \text{ mm}, 8 \cdot \text{mm})$
$Z_{300x300x1\dot{\theta}} = Z_{columna}(300 \text{ mm}, 300 \text{ mm}, 10 \text{ mm})$	$A_{300x300x10} = A_{columna}(300 \text{ mm}, 300 \text{ mm}, 10 \text{ mm})$
$Z_{300x300x12} = Z_{columna}(300 \text{ mm}, 300 \text{ mm}, 12 \text{ mm})$	$A_{300x300x12} = A_{columna}(300 \text{ mm}, 300 \text{ mm}, 12 \text{ mm})$
$Z_{300x300x14} = Z_{columna}(300 \text{ mm}, 300 \text{ mm}, 14 \text{ mm})$	$A_{300x300x14} = A_{columna}(300 \text{ mm}, 300 \text{ mm}, 14 \text{ mm})$
$Z_{350x350x10} = Z_{columna} (350 \text{ mm}, 350 \text{ mm}, 10 \text{ mm})$	$A_{350x350x10} = A_{columna}(350 \text{ mm}, 350 \text{ mm}, 10 \text{ mm})$
$Z_{350x350x12} = Z_{columna}(350 \text{ mm}, 350 \text{ mm}, 12 \text{ mm})$	$A_{350x350x12} = A_{columna}(350 \text{ mm}, 350 \text{ mm}, 12 \text{ mm})$
$Z_{350x350x14} = Z_{columna}(350 \text{ mm}, 350 \text{ mm}, 14 \text{ mm})$	$A_{350x350x14} = A_{columna}(350 \text{ mm}, 350 \text{ mm}, 14 \text{ mm})$

Verificación Edificio 4 pisos (Edificio real)

- Caso 1: O 200 x 200 x 6, O 200 x 200 x 5, 2 x 30H20
- Caso 2: O 200 x 200 x 6, O 200 x 200 x 5, 1 x 30H20
- Caso 3: 200 x 200 x 5, O 200 x 200 x 5, 2 x 30H20
- Caso 4: 200 x 200 x 5, O 200 x 200 x 5, 1 x 30H20
- Caso 5: 200 x 200 x 6, O 200 x 200 x 5, 2 x 20H17
- Caso 6: 200 x 200 x 6, O 200 x 200 x 5, 1 x 20H17
- Caso 7: 200 x 200 x 5, O 200 x 200 x 5, 2 x 20H17
- Caso 8: 200 x 200 x 5, O 200 x 200 x 5, 1 x 20H17
- Caso 9: 200 x 200 x 5, O 200 x 200 x 4, 2 x 30H20

- Caso 10: 200 x 200 x 5, O 200 x 200 x 4, 1 x 30H20

- Caso 11: 200 x 200 x 5, O 200 x 200 x 4, 2 x 20H17

- Caso 12: 200 x 200 x 5, O 200 x 200 x 4, 1 x 20H17

$$i := 1.. \operatorname{rows}(Z_{cl})$$

$$\Sigma M_{pe_{i}} := Z_{cl_{i}} \left(f_{y} - \frac{P_{col_{i,1}}}{A_{cl_{i}}} \right) + Z_{cII_{i}} \left(f_{y} - \frac{P_{col_{i,2}}}{A_{cII_{i}}} \right) + \left(V_{col_{i,1}} + V_{col_{i,2}} \right) \cdot d_{c}$$

$$\Sigma M_{pb_{i}} := 1.1 \cdot f_{y} \cdot R_{y} \left(Z_{bl_{i}} + Z_{bl_{i}} \right) + \left(V_{vig_{i,1}} + V_{vig_{i,2}} \right) \cdot d_{y}$$

$$cuociente_{i} = \frac{\Sigma M_{pc_{i}}}{2M_{pb_{i}}}$$

$$Verificación := \begin{bmatrix} ^{\circ}COLUMNA FUERTE - VIGA DEBIL^{*}if cuociente_{i} \ge 1 \\ ^{\circ}NO CUMPLE^{*} \text{ otherwise} \end{bmatrix}$$

$$Verificación := \begin{bmatrix} \frac{0}{^{\circ}NO CUMPLE^{*}} \\ \frac{1}{^{\circ}NO CUMPLE^{*}} \\ \frac{3}{^{\circ}NO CUMPLE^{*}} \\ \frac{3}{^{\circ}NO CUMPLE^{*}} \\ \frac{4}{^{\circ}NO CUMPLE^{*}} \\ \frac{6}{^{\circ}NO CUMPLE^{*}} \\ \frac{8}{^{\circ}NO CUMPLE^{*}} \\ \frac{10}{^{\circ}NO CUMPLE^{*}} \\ \frac{10}{^{\circ}OO CUMPL$$

Verificación Edificio 6 pisos

- Caso 1: O 300 x 300 x 12, O 300 x 300 x 10, 2 x 30H37
- Caso 2: O 300 x 300 x 12, O 300 x 300 x 10, 1 x 30H37
- Caso 3: 300 x 300 x 10, O 300 x 300 x 10, 2 x 30H37
- Caso 4: 300 x 300 x 10, O 300 x 300 x 10, 1 x 30H37
- Caso 5: 300 x 300 x 12, O 300 x 300 x 10, 2 x 20H17
- Caso 6: 300 x 300 x 12, O 300 x 300 x 10, 1 x 20H17
- Caso 7: 300 x 300 x 10, O 300 x 300 x 10, 2 x 20H17
- Caso 8: 300 x 300 x 10, O 300 x 300 x 10, 1 x 20H17
- Caso 9: 300 x 300 x 10, O 300 x 300 x 8, 2 x 30H37
- Caso 10: 300 x 300 x 10, O 300 x 300 x 8, 1 x 30H37
- Caso 11: 300 x 300 x 10, O 300 x 300 x 8, 2 x 20H17
- Caso 12: 300 x 300 x 10, O 300 x 300 x 8, 1 x 20H17

$$Z_{bI} := \begin{pmatrix} Z_{30h37} \\ Z_{30h37} \\ Z_{30h37} \\ Z_{30h37} \\ Z_{30h37} \\ Z_{30h37} \\ Z_{20h17} \\ Z_{20h17} \\ Z_{20h17} \\ Z_{20h17} \\ Z_{20h17} \\ Z_{20h17} \\ Z_{30h37} \\ Z_{30h37} \\ Z_{30h37} \\ Z_{30h37} \\ Z_{30h37} \\ Z_{30h37} \\ Z_{20h17} \\ Z_{2$$

$$\begin{split} \mathbf{i} &:= 1..\, \mathrm{rows} \left(\mathbf{Z}_{cI} \right) \\ \Sigma \mathbf{M}_{pc_{i}} &:= \mathbf{Z}_{cI_{i}} \left(\mathbf{f}_{y} - \frac{\mathbf{P}_{col_{i,1}}}{\mathbf{A}_{cI_{i}}} \right) + \mathbf{Z}_{cII_{i}} \left(\mathbf{f}_{y} - \frac{\mathbf{P}_{col_{i,2}}}{\mathbf{A}_{cII_{i}}} \right) + \left(\mathbf{V}_{col_{i,1}} + \mathbf{V}_{col_{i,2}} \right) \cdot \mathbf{d}_{c} \end{split}$$

$$\Sigma M_{pb_i} := 1.1 \cdot f_y \cdot R_y \left(Z_{bI_i} + Z_{bI_i} \right) + \left(V_{vig_{i,1}} + V_{vig_{i,2}} \right) \cdot d_v$$

cuociente _i :=
$$\frac{\Sigma M_{pc_i}}{\Sigma M_{pb_i}}$$

		0
	0	"COLUMNA FUERTE - VIGA DEBIL"
	1	"COLUMNA FUERTE - VIGA DEBIL"
	2	"COLUMNA FUERTE - VIGA DEBIL"
	3	"COLUMNA FUERTE - VIGA DEBIL"
	4	"COLUMNA FUERTE - VIGA DEBIL"
Verificación =	5	"COLUMNA FUERTE - VIGA DEBIL"
	6	"COLUMNA FUERTE - VIGA DEBIL"
	7	"COLUMNA FUERTE - VIGA DEBIL"
	8	"COLUMNA FUERTE - VIGA DEBIL"
	9	"COLUMNA FUERTE - VIGA DEBIL"
	10	"COLUMNA FUERTE - VIGA DEBIL"
	11	"COLUMNA FUERTE - VIGA DEBIL"

		0
	0	1.436
	1	1.441
	2	1.453
	3	1.462
	4	3.98
ciente =	5	4.861
	6	3.793
	7	4.543
	8	1.489
	9	1.55
	10	3.755
	11	4.256

Verificación Edificio 8 pisos

- Caso 1: O 300 x 300 x 14, O 300 x 300 x 14, 2 x 30H45
- Caso 2: O 300 x 300 x 14, O 300 x 300 x 14, 1 x 30H45
- Caso 3: 300 x 300 x 14, O 300 x 300 x 12, 2 x 30H45
- Caso 4: 300 x 300 x 14, O 300 x 300 x 12, 1 x 30H45
- Caso 5: 300 x 300 x 14, O 300 x 300 x 14, 2 x 20H17
- Caso 6: 300 x 300 x 14, O 300 x 300 x 14, 1 x 20H17
- Caso 7: 300 x 300 x 14, O 300 x 300 x 12, 2 x 20H17
- Caso 8: 300 x 300 x 14, O 300 x 300 x 12, 1 x 20H17
- Caso 9: 300 x 300 x 12, O 300 x 300 x 12, 2 x 30H45
- Caso 10: 300 x 300 x 12, O 300 x 300 x 12, 1 x 30H45
- Caso 11: 300 x 300 x 12, O 300 x 300 x 12, 2 x 20H17
- Caso 12: 300 x 300 x 12, O 300 x 300 x 12, 1 x 20H17
- Caso 13: 300 x 300 x 12, O 300 x 300 x 10, 2 x 30H45
- Caso 14: 300 x 300 x 12, O 300 x 300 x 10, 1 x 30H45

	$(Z_{300x300x})$	ĸ14		(Z _{300x300x1})	A A		(A ₃₀₀	x300x14		$\left(A_{3}\right)$	00x300	x14
Z _{cI} :=	Z _{300x300x}	x14		Z _{300x300x14}	1		A ₃₀₀	x300x14		A ₃	00x300	x14
	Z _{300x300x}	x14		Z _{300x300x12}	2		A ₃₀₀	x300x14		A ₃	00x300	x12
	Z _{300x300x}	x14		Z _{300x300x12}	2			x300x14		A ₃	00x300	x12
	Z _{300x300x}	x14		Z _{300x300x14}	1		A ₃₀₀	x300x14		A ₃	00x300	x14
	Z _{300x300x}	x14		Z _{300x300x14}	1		A ₃₀₀	x300x14		A ₃	00x300	x14
	Z _{300x300x})x14		Z _{300x300x12}	2		A ₃₀₀	x300x14		A ₃	00x300	x12
	Z _{300x300x}	x14 Z	cII ^{:=}	Z _{300x300x12}		cI ^{:=}	A _{300x300x14}	A _{cII}	$ A_3$	00x300	x12	
	Z _{300x300x}	x12		Z _{300x300x12}	2		A ₃₀₀	x300x12		A ₃	00x300	x12
	Z _{300x300x}	x12		Z _{300x300x12}	2		A ₃₀₀	x300x12		A ₃	00x300	x12
	Z _{300x300x}	x12		Z _{300x300x12}	2		A ₃₀₀	x300x12		A ₃	00x300	x12
	Z _{300x300x}	x12		Z _{300x300x12}	2		A ₃₀₀	x300x12		A ₃	00x300	x12
	Z _{300x300x}	x12		Z _{300x300x10})		A ₃₀₀	x300x12		A ₃	00x300	x10
	$(z_{300x300x})$	x1 2		Z _{300x300x10})		A300	x300x12		$\left(A_{3}\right)$	00x300	x10
	(Z _{30h45})											
	Z _{30h45}	(7		8.1)		102	88)		0.7	0.6	1	
	Z _{30h45}	6.	6.5	7.3	1	117	101			1.2	0	
	Z _{30h45}		7.3 6	5.5		101	85			5.8	1.3	
	Z _{20h17}		7.3 6	5.5		101	85			1.1	0	
	Z _{20h17}		4.1 9	9.3	10	101	89	2	2.5	2.3		
	Z _{20h17}		5.1 9	9.7		58 46.5				2.4	0	
Z _{bI} ≔	Z _{20h17}	V _{col} :=	9.3 3	$\left \begin{array}{c} 3.7 \\ 3.3 \end{array} \right \cdot \text{Tonf} 1 \\ \end{array} \right $	$P_{col} :=$	87.1	72 39	·Tonf	V _{vig} :=	2.3 2.3	2.3	·Tonf
	Z _{30h45}		3.3 2	2.7		39	31			0.04	0.052	
	Z _{30h45}		2.9 2	2.3		54	44			0.052	0	
	Z201-17		3.7 3	3.2		73	59			2.4	2.4	
	7		3.2 2	2.7		39	31			2.4	0	
	² 20h17		4.5 (0.2		17	4			2.8	2.5	
	² 30h45	(3.5	1.8)	(21	6)			2.8	0)	
	$\left(\mathbf{Z}_{30h45} \right)$											
					150)						

$$\begin{split} \mathbf{i} &:= 1.. \operatorname{rows}(\mathbf{Z}_{cI}) \\ & \Sigma \mathbf{M}_{pc_{i}} := \mathbf{Z}_{cI_{i}} \left(\mathbf{f}_{y} - \frac{\mathbf{P}_{col_{i,1}}}{\mathbf{A}_{cI_{i}}} \right) + \mathbf{Z}_{cII_{i}} \left(\mathbf{f}_{y} - \frac{\mathbf{P}_{col_{i,2}}}{\mathbf{A}_{cII_{i}}} \right) + \left(\mathbf{V}_{col_{i,1}} + \mathbf{V}_{col_{i,2}} \right) \cdot \mathbf{d}_{c} \\ & \Sigma \mathbf{M}_{pb_{i}} := 1.1 \cdot \mathbf{f}_{y} \cdot \mathbf{R}_{y} \left(\mathbf{Z}_{bI_{i}} + \mathbf{Z}_{bI_{i}} \right) + \left(\mathbf{V}_{vig_{i,1}} + \mathbf{V}_{vig_{i,2}} \right) \cdot \mathbf{d}_{v} \\ & \text{cuociente}_{i} := \frac{\Sigma \mathbf{M}_{pc_{i}}}{\Sigma \mathbf{M}_{pb_{i}}} \end{split}$$

Verificación := | "COLUMNA FUERTE - VIGA DEBIL" if cuociente $_{i} \ge 1$ "NO CUMPLE" otherwise

		0		
	0	"COLUMNA FUERTE - VIGA DEBIL"		0
	1	"COLUMNA FUERTE - VIGA DEBIL"		1
	2	"COLUMNA FUERTE - VIGA DEBIL"		2
	3	"COLUMNA FUERTE - VIGA DEBIL"		3
	4	"COLUMNA FUERTE - VIGA DEBIL"		4
	5	"COLUMNA FUERTE - VIGA DEBIL"		5
Verificación =	6	"COLUMNA FUERTE - VIGA DEBIL"	cuociente =	6
	7	"COLUMNA FUERTE - VIGA DEBIL"		7
	8	"COLUMNA FUERTE - VIGA DEBIL"		8
	9	"COLUMNA FUERTE - VIGA DEBIL"		9
	10	"COLUMNA FUERTE - VIGA DEBIL"		10
	11	"COLUMNA FUERTE - VIGA DEBIL"		11
	12	"COLUMNA FUERTE - VIGA DEBIL"		12
	13	"COLUMNA FUERTE - VIGA DEBIL"		13

0 1.484

1.424

1.281 1.37

4.844

5.988

4.689

5.697

1.487

1.426

4.384

5.283

1.377

1.406

Verificación Edificio 10 pisos

- Caso 1: O 350 x 350 x 14, O 350 x 350 x 14, 2 x 30H58
- Caso 2: O 350 x 350 x 14, O 350 x 350 x 14, 1 x 30H58
- Caso 3: 350 x 350 x 14, O 350 x 350 x 12, 2 x 30H58
- Caso 4: 350 x 350 x 14, O 350 x 350 x 12, 1 x 30H58
- Caso 5: 350 x 350 x 14, O 350 x 350 x 14, 2 x 20H17
- Caso 6: 350 x 350 x 14, O 350 x 350 x 14, 1 x 20H17
- Caso 7: 350 x 350 x 14, O 350 x 350 x 12, 2 x 20H17
- Caso 8: 350 x 350 x 14, O 350 x 350 x 12, 1 x 20H17
- Caso 9: 350 x 350 x 12, O 350 x 350 x 12, 2 x 30H58
- Caso 10: 350 x 350 x 12, O 350 x 350 x 12, 1 x 30H58
- Caso 11: 350 x 350 x 12, O 350 x 350 x 12, 2 x 20H17
- Caso 12: 350 x 350 x 12, O 350 x 350 x 12, 1 x 20H17
- Caso 13: O 350 x 350 x 12, O 350 x 350 x 10, 2 x 30H58
- Caso 14: O 350 x 350 x 12, O 350 x 350 x 10, 1 x 30H58
- Caso 15: 350 x 350 x 10, O 350 x 350 x 10, 2 x 30H58
- Caso 16: 350 x 350 x 10, O 350 x 350 x 10, 1 x 30H58

	(Z _{350x350x1} 2	à	$(Z_{350x350x14})$		(A _{350x}	350x14	(A _{350x35}	0x14	
	$ Z_{350x350x14}$	4	Z _{350x350x14}		A _{350x}	350x14		A _{350x35}	0x14	
	$Z_{350x350x14}$	4	Z _{350x350x12}		A _{350x}	350x14		A _{350x35}	0x12	
	$Z_{350x350x14}$	4	Z _{350x350x12}	x350x12		350x14		A _{350x35}	0x12	
	$ Z_{350x350x14}$	4	Z _{350x350x14}		A _{350x}	350x14		A _{350x35}	0x14	
	Z _{350x350x14}	4	Z _{350x350x14}		A _{350x}	350x14		A _{350x35}	0x14	
	$ z_{350x350x14}$	4	Z _{350x350x12}		A _{350x}	350x14		A _{350x35}	0x12	
	Z _{350x350x14}	4	Z _{350x350x12}		A _{350x}	350x14		A _{350x35}	0x12	
Z _{cI} ≔	Z _{350x350x12}	Z _{cII} :=	Z _{350x350x12}	A _{cI} :	$= A_{350x}$	350x12	A _{cII} :=	A _{350x35}	0x12	
	Z _{350x350x12}	2	Z _{350x350x12}		A _{350x}	350x12		A _{350x35}	0x12	
	Z _{350x350x12}	2	Z _{350x350x12}		A _{350x}	350x12		A _{350x35}	0x12	
	Z _{350x350x12}	2	Z _{350x350x12}		A _{350x}	350x12		A _{350x35}	0x12	
	Z _{350x350x12}	2	Z _{350x350x10}		A _{350x}	350x12		A _{350x35}	0x10	
	Z _{350x350x12}	2	Z _{350x350x10}		A _{350x}	350x12		A _{350x35}	0x10	
	Z _{350x350x10}	D	Z _{350x350x10}		A _{350x}	350x10		A _{350x35}	0x10	
	$\left(z_{350x350x19} \right)$		Z _{350x350x19}		(A _{350x}	350x10		A _{350x35}	0x10	
	(Z _{30h58})									
	Z _{30h58}	,	,		<i>,</i> , , , , , , , , , , , , , , , , , ,		,	,		
	Z _{30h58}		9.6		152 135		($\begin{pmatrix} 6.1 & 1.4 \\ 0.1 & 0 \end{pmatrix}$		
	Z _{30h58}	8.5	5 9.7		148 132 115 99			2 1.9		
	Z _{20h17}	8.5	7.5		115 99			0.6 0		
	Z _{20h17}	4.9	11.6		129 114			2.5 2.5		
	Z _{20h17}	6	12		78 62			2.5 0		
	Z _{20h17}	11	4.4		100 86			2.5 2.4		
Z _{bI} ≔	Z _{30h58}	$V_{col} := \begin{bmatrix} 4.4\\7.5 \end{bmatrix}$	\cdot 3.7 \cdot Tonf	P _{col} :=	55 47 99 84	·Tonf	V _{vig} :=	2.4 0	·Tonf	
	Z _{30h58}	8.2	2 7.7		102 85			1.1 0		
	Z _{20h17}	4.4	4.0		85 72			2.5 2.5		
	Z _{20h17}	3.8	3.4		47 39			2.5 0		
	Z _{30h58}	6.1	5.2		53 37			5.9 0.9		
	Z20159	2.2	1.9		35 25			5.9 0		
	Z201.50		(3.5)		57 21 25 14	}		5.2 0.3 5.2 0		
	Z201.50	(2.0	1.0 /		25 14	/	C	5.2 0)		
	(~30h58)			450						

$$i := 1.. \operatorname{rows}(Z_{cI})$$

$$\Sigma M_{pc_{i}} := Z_{cI_{i}} \cdot \left(f_{y} - \frac{P_{col_{i,1}}}{A_{cI_{i}}} \right) + Z_{cII_{i}} \cdot \left(f_{y} - \frac{P_{col_{i,2}}}{A_{cII_{i}}} \right) + \left(V_{col_{i,1}} + V_{col_{i,2}} \right) \cdot d_{c}$$

$$\Sigma M_{pb_{i}} := 1.1 \cdot f_{y} \cdot R_{y} \left(Z_{bI_{i}} + Z_{bI_{i}} \right) + \left(V_{vig_{i,1}} + V_{vig_{i,2}} \right) \cdot d_{v}$$

$$\operatorname{cuociente}_{i} := \frac{\Sigma M_{pc_{i}}}{\Sigma M_{pb_{i}}}$$

$$\operatorname{Verificación_{i}} := \left| \operatorname{COLUMNA FUERTE - VIGA DEBIL''if cuociente}_{i} \ge 1 \right|$$

$$\operatorname{NO CUMPLE'' otherwise}$$

		0			0
	0	"COLUMNA FUERTE - VIGA DEBIL"		0	1.313
	1	"COLUMNA FUERTE - VIGA DEBIL"		1	1.41
	2	"COLUMNA FUERTE - VIGA DEBIL"		2	1.354
	3	"COLUMNA FUERTE - VIGA DEBIL"		3	1.393
	4	"COLUMNA FUERTE - VIGA DEBIL"		4	6.458
	5	"COLUMNA FUERTE - VIGA DEBIL"		5	8.052
	6	"COLUMNA FUERTE - VIGA DEBIL"		6	6.374
Verificación =	7	"COLUMNA FUERTE - VIGA DEBIL"	cuociente =	7	7.708
	8	"COLUMNA FUERTE - VIGA DEBIL"		8	1.294
	9	"COLUMNA FUERTE - VIGA DEBIL"		9	1.311
	10	"COLUMNA FUERTE - VIGA DEBIL"		10	5.964
	11	"COLUMNA FUERTE - VIGA DEBIL"		11	7.201
	12	"COLUMNA FUERTE - VIGA DEBIL"		12	1.286
-	13	"COLUMNA FUERTE - VIGA DEBIL"		13	1.333
	14	"COLUMNA FUERTE - VIGA DEBIL"		14	1.228
	15	"COLUMNA FUERTE - VIGA DEBIL"		15	1.253

Anexo 4: Tabla 5-6 Fema 356

Table 5-6 Mode Comp	ling Paramete oonents	ers and Ac	ceptance C	riteria for N	Nonlinear F	Procedures	—Structur	al Steel		
	Mode	ling Paran	neters	Acceptance Criteria						
	Plastic F	otation	Residual		Plastic Ro	tation Angle	e, Radians			
	Ang Radi	jle, ans	Strength Ratio		Prin	nary	Seco	ndary		
Component/Action	a	b	С	ю	LS	CP	LS	CP		
Beams—flexure							-			
a. $\frac{b_f}{2t_f} \leq \frac{52}{\sqrt{F_{ye}}}$ and $\frac{h}{t_w} \leq \frac{418}{\sqrt{F_{ye}}}$	90y	11θ _y	0.6	10 _y	6θy	80y	90y	11ө _у		
b. $\frac{b_f}{2t_f} \ge \frac{65}{\sqrt{F_{ye}}}$ or $\frac{h}{t_w} \ge \frac{640}{\sqrt{F_{ye}}}$	4θ _y	6θy	0.2	0.25θ _у	2θ _y	3θ _y	3θ _y	4θ _y		
c. Other	Linear interp web slende	olation bet erness (sec	ween the valu ond term) sha	es on lines a all be perform	and b for bo ed, and the l	th flange slei owest resulti	nderness (fir ing value sha	st term) and all be used		
Columns—flexure ^{2, 7}										
For <i>P/P_{CL}</i> < 0.20										
a. $\frac{b_f}{2t_f} \leq \frac{52}{\sqrt{F_{ye}}}$ and $\frac{h}{t_w} \leq \frac{300}{\sqrt{F_{ye}}}$	90y	11ө _у	0.6	10 _y	6θy	8θ _y	9θ _y	11 0 y		
b. $d \frac{b_f}{2t_f} \ge \frac{65}{\sqrt{F_{ye}}}$ or $\frac{h}{t_w} \ge \frac{460}{\sqrt{F_{ye}}}$	4θ _y	6θy	0.2	0.25θ _у	2θ _y	3θ _y	3θ _y	4θ _y		
c. Other	Linear interp	olation bet erness (sec	ween the valu cond term) sha	es on lines a all be perform	and b for bo ed, and the	th flange sler owest resulti	nderness (fin ing value sha	st term) and all be used		

	Modeling Parameters			Acceptance Criteria							
	Plastic	Rotation	Residual		Plastic Ro	otation Angle	e, Radians				
	An Rad	gle, ians	Strength Ratio		Prin	nary	Seco	ondary			
Component/Action	a	b	с	10	LS	CP	LS	CP			
For 0.2 < <i>P/P_{CL}</i> < 0.50								-			
a. $\frac{b_f}{2t_f} \le \frac{52}{\sqrt{F_{ye}}}$ and $\frac{h}{t_w} \le \frac{260}{\sqrt{F_{ye}}}$	_3	4	0.2	0.25θ _y	_ 5	_3	6	4			
b. $\frac{b_f}{2t_f} \ge \frac{65}{\sqrt{F_{ye}}}$ or $\frac{h}{t_w} \ge \frac{400}{\sqrt{F_{ye}}}$	1 0 y	1.5 0 у	0.2	0.25 0 у	0.50 _y	0.80 _y	1.2θ _y	1.2 0 у			
c. Other	Linear inter web slend	polation betw lerness (seco	veen the valu and term) sha	es on lines a all be perform	a and b for bo ned, and the	oth flange sle lowest result	nderness (fi ing value sh	rst term) and all be used			
Column Panel Zones	120 _y	120y	1.0	10 _y	80y	<mark>11</mark> θу	120 _y	120 _y			
Fully Restrained Moment	Connection	s ¹³		(9)			1	1			
WUF ¹²	0.051-0.0013d	0.043-0.0006d	0.2	0.0128- 0.0003d	0.0337- 0.0009d	0.0284- 0.0004d	0.0323- 0.0005d	0.043-0.0006d			
Bottom haunch in WUF with slab	0.026	0.036	0.2	0.0065	0.0172	0.0238	0.0270	0.036			
Bottom haunch in WUF without slab	0.018	0.023	0.2	0.0045	0.0119	0.0152	0.0180	0.023			
Welded cover plate in WUF ¹²	0.056-0.0011d	0.056-0.0011 <i>d</i>	0.2	0.0140- 0.0003d	0.0319- 0.0006d	0.0426- 0.0008d	0.0420- 0.0008d	0.056-0.0011 <i>d</i>			
Improved WUF-bolted web ¹²	0.021-0.0003d	0.050-0.0006d	0.2	0.0053- 0.0001 <i>d</i>	0.0139- 0.0002d	0.0210- 0.0003d	0.0375- 0.0005d	0.050-0.0006d			
Improved WUF-welded web	0.041	0.054	0.2	0.0103	0.0312	0.0410	0.0410	0.054			
Free flange ¹²	0.067-0.0012d	0.094-0.0016d	0.2	0.0168- 0.0003d	0.0509- 0.0009d	0.0670- 0.0012d	0.0705- 0.0012d	0.094-0.0016d			
Reduced beam section ¹²	0.050-0.0003d	0.070-0.0003d	0.2	0.0125- 0.0001d	0.0380- 0.0002d	0.0500- 0.0003d	0.0525- 0.0002d	0.07-0.0003d			
Welded flange plates	1						4				
a. Flange plate net section	0.03	0.06	0.2	0.0075	0.0228	0.0300	0.0450	0.06			
b. Other limit states	force-controlle	ed					85 10	10 10 10 10 10 10 10 10 10 10 10 10 10 1			
Welded bottom haunch	0.027	0.047	0.2	0.0068	0.0205	0.0270	0.0353	0.047			
Welded top and bottom haunches	0.028	0.048	0.2	0.0070	0.0213	0.0280	0.0360	0.048			
Welded cover-plated flanges	0.031	0.031	0.2	0.0078	0.0177	0.0236	0.0233	0.031			

Table 5-6 Modeling Parameters and Acceptance Criteria for Nonlinear Procedures—Structural Steel Components (continued)

		Mod	eling Paran	neters	Acceptance Criteria							
		Plastic	Rotation	Residual		Plastic Ro	otation Angl	e, <mark>Radian</mark> s				
	-	Rad	gie, ians	Ratio		Prir	mary	Seco	ndary			
Compo	onent/Action	а	b	С	10	LS	CP	LS	CP			
Partiall	y Restrained Mome	nt Connect	ions	76 78		90. 	38	5	20			
Top ar	nd bottom clip angle ⁹											
a.	Shear failure of rivet or bolt (Limit State 1) ⁸	0.036	0.048	0.200	0.008	0.020	0.030	0.030	0.040			
b.	Tension failure of horizontal leg of angle (Limit State 2)	0.012	0.018	0.800	0.003	0.008	0.010	0.010	0.015			
C.	Tension failure of rivet or bolt (Limit State 3) ⁸	0.016	0.025	1.000	0.005	0.008	0.013	0.020	0.020			
d.	Flexural failure of angle (Limit State 4)	0.042	0.084	0.200	0.010	0.025	0.035	0.035	0.070			
Double	e split tee ⁹		22	da al					A.			
a.	Shear failure of rivet or bolt (Limit State 1) ⁸	0.036	0.048	0.200	0.008	0.020	0.030	0.030	0.040			
b.	Tension failure of rivet or bolt (Limit State 2) ⁸	0.016	0.024	0.800	0.005	0.008	0.013	0.020	0.020			
C.	Tension failure of split tee stem (Limit State 3)	0.012	0.018	0.800	0.003	0.008	0.010	0.010	0.015			
d.	Flexural failure of split tee (Limit State 4)	0.042	0.084	0.200	0.010	0.025	0.035	0.035	0.070			
Bolted	l flange plate ⁹											
a.	Failure in net section of flange plate or shear failure of bolts or rivets ⁸	0.030	0.030	0.800	0.008	0.020	0.025	0.020	0.025			
b.	Weld failure or tension failure on gross section of plate	0.012	0.018	0.800	0.003	0.008	0.010	0.010	0.015			
Bolted	l end plate		8 8			10 10			10. 10			
a.	Yield of end plate	0.042	0.042	0.800	0.010	0.028	0.035	0.035	0.035			
b.	Yield of bolts	0.018	0.024	0.800	0.008	0.010	0.015	0.020	0.020			
C.	Failure of weld	0.012	0.018	0.800	0.003	0.008	0.010	0.015	0.015			
Comp	osite top clip angle bott	om ⁹										
a.	Failure of deck reinforcement	0.018	0.035	0.800	0.005	0.010	0.015	0.020	0.030			
b.	Local flange yielding and web crippling of column	0.036	0.042	0.400	0.008	0.020	0.030	0.025	0.035			

Table 5-6 Modeling Parameters and Acceptance Criteria for Nonlinear Procedures—Structural Steel Components (continued) Components

	Mod	eling Parame	eters	Acceptance Criteria						
	Plastic	Rotation	Residual		Plastic Ro	tation Ang	le, Radians			
	An Rac	gle, lians	Strength Ratio		Prin	nary	Seco	ndary		
Component/Action	a	b	С	10	LS	CP	LS	CP		
c. Yield of bottom flange angle	0.036	0.042	0.200	0.008	0.020 0.030		0.025	0.035		
d. Tensile yield of rivets or bolts at column flange	0.015	0.022	0.800	0.005	0.008	0.013	0.013	0.018		
e. Shear yield of beam flange connection	0.022	0.027	0. <mark>2</mark> 00	0.005	0.013	0.018	0.018	0.023		
Shear connection with slab ¹²	0.029- 0.0002d _{bg}	0.15-0.0036d _{bg}	0.400	0.0073- 0.0001d _{bg}			0.1125- 0.0027d _{bg}	0.15- 0.0036d _{bg}		
Shear connection without slab ¹²	0.15-0.0036dbg	0.15-0.0036d _{bg}	0.400	0.0375- 0.0009d _{bg}			0.1125- 0.0027d _{bg}	0.15- 0.0036d _{bg}		
EBF Link Beam ^{10, 11}			1							
$a. \ e \leq \frac{1.6 M_{CE}}{V_{CE}}$	0.15	0.17	0.8	0.005	0.11	0.14	0.14	0.16		
b. $e \ge \frac{2.6 M_{CE}}{V_{CE}}$ Same as for beams.						•				
c. $\frac{.6 M_{CE}}{V_{CE}} < e < \frac{2.6 M_{CE}}{V_{CE}}$	Linear interpolation shall be used.									
Steel Plate Shear Walls 1	14θ _y	16ө _у	0.7	0.50 _y	100 _y	130 _у	130 _у	150 _у		

Table 5-6 Modeling Parameters and Acceptance Criteria for Nonlinear Procedures—Structural Steel Components (continued)

1. Values are for shear walls with stiffeners to prevent shear buckling.

Columns in moment or braced frames shall be permitted to be designed for the maximum force delivered by connecting members. For rectangular or square columns, replace bt/2tf with b/t, replace 52 with 110, and replace 65 with 190.

- 3. Plastic rotation = 11 (1-1.7 P/P_{CL}) θ_y .
- 4. Plastic rotation = 17 (1-1.7 P/P_{CL}) θ_y .
- 5. Plastic rotation = 8 (1-1.7 P/P_{CL}) θ_y .
- 6. Plastic rotation = 14 (1-1.7 P/P_{CL}) θ_y .
- 7. Columns with $P/P_{CL} > 0.5$ shall be considered force-controlled.
- 8. For high-strength bolts, divide values by 2.0.
- 9. Web plate or stiffened seat shall be considered to carry shear. Without shear connection, action shall not be classified as secondary. If beam depth, $d_b > 18$ inches, multiply *m*-factors by $18/d_b$.
- 10. Deformation is the rotation angle between link and beam outside link or column.
- 11. Values are for link beams with three or more web stiffeners. If no stiffeners, divide values by 2.0. Linear interpolation shall be used for one or two stiffeners.
- 12. d is the beam depth; d_{bg} is the depth of the bolt group.
- 13. Tabulated values shall be modified as indicated in Section 5.5.2.4.2, item 4.

Anexo 5: Tablas de propiedades de rótulas plásticas utilizadas

De acuerdo a lo explicado en el capítulo 5, se definen las rótulas plásticas siguiendo una curva normalizada momento – deformación. El esquema de los puntos determinados se muestra en la figura a5.1.

Figura a5.1: Curvas normalizada momento - deformación

		_		_	_	_	_		
		Punto	A	В	С	D	E		
Modelo	Perfil	Rotación normalizada (*)	0	0	4	4	6	de	escala
		Momento normalizado (*)	0	1	1.12	0.2	0.2		
	001-000	Rotación [rad]	0.000	0.000	0.036	0.036	0.053	SF	0.009
	30h208	Momento [Tonf m]	0.000	10.830	12.130	2.166	2.166	SF	10.830
	001147	Rotación [rad]	0.000	0.000	0.052	0.052	0.078	SF	0.013
4	20H17	Momento [Tonf m]	0.000	6.210	6.955	1.242	1.242	SF	6.210
4 pisos		Rotación [rad]	0.000	0.000	0.005	0.005	0.008	SF	0.001
VAR1	Momento [Tonf m]	0.000	21.910	24.539	4.382	4.382	SF	21.910	
		Rotación [rad]	0.000	0.000	0.007	0.007	0.010	SF	0.002
	VARZ	Momento [Tonf m]	0.000	9.282	10.396	1.856	1.856	SF	9.282
	0011077	Rotación [rad]	0.000	0.000	0.037	0.037	0.055	SF	0.009
	30H377	Momento [Tonf m]	0.000	18.790	21.045	3.758	3.758	SF	18.790
	001147	Rotación [rad]	0.000	0.000	0.052	0.052	0.078	SF	0.013
0	20H17	Momento [Tonf m]	0.000	6.210	6.955	1.242	1.242	SF	6.210
6 pisos		Rotación [rad]	0.000	0.000	0.005	0.005	0.007	SF	0.001
	VAR3	Momento [Tonf m]	0.000	30.070	33.678	6.014	6.014	SF	30.070
		Rotación [rad]	0.000	0.000	0.007	0.007	0.010	SF	0.002
	VARZ	Momento [Tonf m]	0.000	9.282	10.396	1.856	1.856	SF	9.282
	2011455	Rotación [rad]	0.000	0.000	0.036	0.036	0.053	SF	0.009
	308433	Momento [Tonf m]	0.000	24.400	27.328	4.880	4.880	SF	24.400
	201147	Rotación [rad]	0.000	0.000	0.052	0.052	0.078	SF	0.013
0 ninon	20017	Momento [Tonf m]	0.000	6.210	6.955	1.242	1.242	SF	6.210
8 pisos		Rotación [rad]	0.000	0.000	0.005	0.005	0.007	SF	0.001
	VAR4	Momento [Tonf m]	0.000	32.150	36.008	6.430	6.430	SF	32.150
	1/4 02	Rotación [rad]	0.000	0.000	0.007	0.007	0.010	SF	0.002
	VARZ	Momento [Tonf m]	0.000	9.282	10.396	1.856	1.856	SF	9.282
	2011455	Rotación [rad]	0.000	0.000	0.036	0.036	0.053	SF	0.009
	308433	Momento [Tonf m]	0.000	33.300	37.296	6.660	6.660	SF	33.300
	201147	Rotación [rad]	0.000	0.000	0.052	0.052	0.078	SF	0.013
10 5 6 6 6	20017	Momento [Tonf m]	0.000	6.210	6.955	1.242	1.242	SF	6.210
10 pisos		Rotación [rad]	0.000	0.000	0.005	0.005	0.007	SF	0.001
	VAK4	Momento [Tonf m]	0.000	38.112	42.685	7.622	7.622	SF	38.112
_		Rotación [rad]	0.000	0.000	0.007	0.007	0.010	SF	0.002
	VAR2	Momento [Tonf m]	0.000	9.282	10.396	1.856	1.856	SF	9.282

Tabla a5.1: Rótulas plásticas en vigas

*: Para momentos y rotaciones negativas, anteponer signo negativo a los valores

Modelo	Perfil	Carga Axial [Tonf]	Punto	A	В	с	D	E	Fa	Factor de escala	
		-92.26	Rotación normalizada	0.000	0.000	0.537	0.537	0.806	SI	:	0.009
		-03.30	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SI		8.334
	[]200x200x6	-33 51	Rotación normalizada	0.000	0.000	0.814	0.814	1.221	SI		0.009
		-55.51	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SI	:	12.615
		-33 34	Rotación normalizada	0.000	0.000	3.259	3.259	4.888	SI	:	0.009
		-33.34	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SI		12.615
	[]200x200x5	-69.88 -28.09	Rotación normalizada	0.000	0.000	0.537	0.537	0.805	SI		0.009
			Momento normalizado	0.000	1.000	1.030	0.200	0.200	SI		7.012
4 nisos			Rotación normalizada	0.000	0.000	0.814	0.814	1.221	SI		0.009
4 pisos			Momento normalizado	0.000	1.000	1.030	0.200	0.200	SI		10.626
			Rotación normalizada	0.000	0.000	3.259	3.259	4.888	SI		0.009
		-27.95	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SI		10.626
		-56 22	Rotación normalizada	0.000	0.000	0.537	0.537	0.805	SI		0.009
		-30.23	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SI	:	5.683
ſ	[]200x200x4	22.6	Rotación normalizada	0.000	0.000	0.814	0.814	1.220	SI	:	0.009
	[]200x200x4	-22.0	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SI	:	8.580
		22.4	Rotación normalizada	0.000	0.000	3.259	3.259	4.888	SI	:	0.009
		-22.4	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SI	:	8.580

Tabla a5.2: Rótulas plásticas en columnas (modelo 4 pisos)

Rotación [rad] = Rotación normalizada x SF

Modelo	Perfil	Carga Axial [Tonf]	Punto	A	в	с	D	E	Factor de escala								
		-258 12	Rotación normalizada	0.000	0.000	0.517	0.517	0.776	SF	0.006							
		-230.12	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	35.407							
	[]200×200×12	-103 76	Rotación normalizada	0.000	0.000	0.806	0.806	1.209	SF	0.006							
	[]500x500x12	100.70	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	55.171							
		-103.25	Rotación normalizada	0.000	0.000	3.227	3.227	4.841	SF	0.006							
			Momento normalizado	0.000	1.000	1.120	0.200	0.200	SF	55.171							
		-216.69 -87.11	Rotación normalizada	0.000	0.000	0.517	0.517	0.775	SF	0.006							
	11200-200-40		Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	29.846							
6 pices			Rotación normalizada	0.000	0.000	0.806	0.806	1.209	SF	0.006							
o pisos	[]300x300x10		Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	46.535							
		96 67	Rotación normalizada	0.000	0.000	3.227	3.227	4.841	SF	0.006							
		-00.07	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SF	46.535							
		474.60	Rotación normalizada	0.000	0.000	0.517	0.517	0.775	SF	0.006							
		-174.03	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	24.307							
	[1200x200x9	70.21	Rotación normalizada	0.000	0.000	0.806	0.806	1.209	SF	0.006							
	[]200x200x8	-70.21	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	37.748							
		co o 5	Rotación normalizada	0.000	0.000	3.227	3.227	4.841	SF	0.006							
										-09.00	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SF

Tabla a5.3: Rótulas plásticas en columnas (modelo 6 pisos)

Rotación [rad] = Rotación normalizada x SF

Tabla a5.4: Rótulas plásticas en columnas	(modelo 8 pisos)
---	-----------------	---

Modelo	Perfil	Carga Axial [Tonf]	Punto	А	в	с	D	E	Factor de escala		
		208.01	Rotación normalizada	0.000	0.000	0.517	0.517	0.776	SF	0.006	
		-290.91	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	40.734	
	[]200×200×14	-120.16	Rotación normalizada	0.000	0.000	0.806	0.806	1.209	SF	0.006	
	[]300x300x14	-120.10	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	63.405	
		-110 56	Rotación normalizada	0.000	0.000	3.227	3.227	4.841	SF	0.006	
		-119.50	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SF	63.405	
	[]300x300x12	-216.69 2 -87.11	Rotación normalizada	0.000	0.000	0.517	0.517	0.775	SF	0.006	
			Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	35.407	
8 pices			Rotación normalizada	0.000	0.000	0.806	0.806	1.209	SF	0.006	
o pisos			Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	55.171	
		96 67	Rotación normalizada	0.000	0.000	3.227	3.227	4.841	SF	0.006	
		-00.07	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SF	55.171	
		174 62	Rotación normalizada	0.000	0.000	0.517	0.517	0.775	SF	0.006	
		-174.05	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	29.846	
[]3	[]200×200×10	-70.21	Rotación normalizada	0.000	0.000	0.806	0.806	1.209	SF	0.006	
	[]300x300x10	-70.21	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	46.535	
		-60.85	Rotación normalizada	0.000	0.000	3.227	3.227	4.841	SF	0.006	
		-69.85	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SF	46.535	

Rotación [rad] = Rotación normalizada x SF

Tabla a5.5: Rótulas	s plásticas en columnas	s (modelo 10 pisos)
---------------------	-------------------------	---------------------

Modelo	Perfil	Carga Axial [Tonf]	Punto	A	В	с	D	E	Factor de escala		
		-254 60	Rotación normalizada	0.000	0.000	0.513	0.513	0.769	SF	0.005	
		-354.00	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	55.654	
	[]250×250×14	-142.55	Rotación normalizada	0.000	0.000	0.804	0.804	1.206	SF	0.005	
	[]5508550814		Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	87.193	
		-1/1 8/	Rotación normalizada	0.000	0.000	3.220	3.220	4.830	SF	0.005	
		-141.04	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SF	87.193	
	[1250~250~12	-305.84 x12 -122.95	Rotación normalizada	0.000	0.000	0.513	0.513	0.769	SF	0.005	
			Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	48.430	
10 10 10 10 10			Rotación normalizada	0.000	0.000	0.804	0.804	1.206	SF	0.005	
10 pisos	[]350x350x12		Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	75.662	
			Rotación normalizada	0.000	0.000	3.220	3.220	4.830	SF	0.005	
		-122.33	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SF	75.662	
		256 44	Rotación normalizada	0.000	0.000	0.512	0.512	0.769	SF	0.005	
		-236.44	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	40.782	
	[]250×250×40	102.00	Rotación normalizada	0.000	0.000	0.804	0.804	1.206	SF	0.005	
	[]350x350x10	-103.09	Momento normalizado	0.000	1.000	1.030	0.200	0.200	SF	63.808	
		402.57	Rotación normalizada	0.000	0.000	3.219	3.219	4.830	SF	0.005	
		-102.57	Momento normalizado	0.000	1.000	1.120	0.200	0.200	SF	63.808	

Rotación [rad] = Rotación normalizada x SF