

Universidad de Chile

Facultad de Ciencias Químicas y Farmacéuticas

Departamento de Química Orgánica y Fisicoquímica

Influencia de Quiralidad en Compuestos Líquido Cristalinos Polares: Modelación Molecular de los Monómeros Estudiados

Tesis para optar al título de Químico

Química Orgánica y Fisicoquímica

Guillermo Antonio Rodríguez Lehyt

Patrocinante: Eduardo A. Soto Bustamante

Martín Contreras Patricio Navarrete Encina

MARZO 2006

Agradecimientos

Dedico este trabajo a mi familia por el gran apoyo que me han brindado en la obtención de mis metas.

Agradezco el respaldo que me ha brindado el Laboratorio de Materiales Moleculares de la Universidad de Chile, representado por el Dr. Eduardo Soto Bustamante y a todos sus integrantes, en especial a Carmen González Henríquez.

INDICE

INDICE	3
1 INTRODUCCION	7
1.1 Cristales líquidos	<u>7</u>
1.1.1 Parámetro de Orden de la Fase Nemática.	8
1.1.2 Parámetro de Orden para la Fase Esméctica A	8
1.1.3 Parámetro de Orden para La Fase Esmectica C	10
1.2 Quiralidad y Ferroelectricidad	11
1.3 Técnica Piroeléctrica	13
1.4 Formalastrisidad	15
1.4 Terroelectricidad	<u>13</u>
1.5 Análisis Térmico Diferencial (DTA) o (DSC)	<u>16</u>
1.6 Microscopia de luz polarizada	18
	10
1.7 1 Dinámica malecular	<u>10 10 10 10 10 10 10 10 10 10 10 10 10 1</u>
1.7.2 Ecuaciones de movimiento de Newton	<u>19</u> 20
1.7.3 Algoritmo de Dinámica Molecular	<u>20</u> 21
1.7.4 Condiciones periódicas de frontera	<u>21</u> 22
1.7.5 Restricciones Dinámicas	23
1.7.6 El modelo de campo de Fuerzas	
2 PARTE EXPERIMENTAL	<u>26</u>
2.1 Consideraciones Conerales	26
	<u></u> 40
2.2 Preparación de Anilina Quiral y Aquiral.	26
2.2.3 Preparación de Anilina (R8):	27
2.3 Monómero Metacrílico (MnRm)	28
2.3.7 6-(3- hidroxi- 4 - {[4 - (1-metil-heptiloxifenil) imino] metil} fenoxi) hexil -2-metacrilato	
(M6R7q)	30
2 4 Prenaración del Monómero M68R	31
267 1 1 CPAI AVIOI AVI 1410101101 V 141001V	<u></u>

2.5 Polimerización del Monómero	
2.5.1 Polimerización.	
2.5.2 Formación del composito (PM6R8-M6R8)	
2.6 Parte experimental – Modelación	34
2.6.1 Armado del Cluster	
2.6.1 Armado del Campo de Fuerza Molecular	
2.6.2 Parámetros de la simulación	<u></u>
2.6.5 Tarametros de la sinulación 2.6.4 Simulación M6R8, monocana:	38
2.6.4 Simulation M68R monocana	38
2.6.5 Simulación M6R8 multicanas:	39
2.6.6 Simulación M6r7a multicapas:	39
3 RESULTADOS Y DISCUSIÓN	40
3.1 Análisis Térmico Diferencial	40
3.2 Resultados Técnica piroeléctrica	43
3.3 Resultados Simulación	
3.3.1 Simulación en monocapa de M6R8 y M68R	
3.3.2 Simulación M6R8 en Multicapas	
Tabla Resumen	
3.3.3 Simulación multicapas M6R7q.	
· ·	
<u>4. CUNCLUSIUNES</u>	<u>54</u>

RESUMEN

Se sintetizaron los compuestos denominado M6R8, M6R7q y el polímero PM6R8 para estudiar el efecto de un centro quiral en sistemas aquirales con fases antiferroeléctricas. Los compuestos se caracterizaron por Microscopía de luz polarizada y análisis térmico diferencial. El compuesto M6R8 presenta fases esmécticas A y C. El compuesto M6R7q no presenta características líquido cristalinas.

El compósito formado por M6R7q al 33% con el polímero PM6R8, presenta propiedades líquido cristalinas. Se determinaron sus propiedades eléctricas por medición de su señal piroeléctrica y se compararon con PM6R8-33. La inclusión de un centro quiral ejerce un efecto negativo sobre las propiedades del sistema, probablemente al cambiar la estructura antiferroeléctrica original.

Para comprobar el efecto del centro quiral, se realizaron cálculos teóricos usando dinámica molecular en los monómeros preparados. Se uso el software Moscito IV modificado, para que analice las características propias de los cristales líquidos usando el parámetro de orden. Un homólogo M68R con el centro aromático invertido, que desarrolla una fase nemática en vez de la esméctica A, se usó en el estudió para comparar las modelaciones moleculares de dichas moléculas.

Las modelaciones corroboran los datos experimentales mostrando que M6R8 forma claramente una fase esméctica C a una temperatura dentro del rango experimental observado, al igual que la fase esméctica A. Para el M68R, también se predice la fase nemática. Para M6R7q, las simulaciones no desarrollaron mesofases.

En este trabajo se establecieron las bases para desarrollar un modelo teórico de cristales líquidos, apoyado en dinámica molecular, para compuestos que presentan como grupo mesógeno un centro aromático que contiene al grupo salicilaldimino.

SUMMARY

CHIRALITY INFLUENCE IN POLAR LIQUID CRYSTALLINE COMPOUNDS: MOLECULAR MODELING OF STUDIED MONOMERS.

Compounds M6R8 and M6R7q and the polymer PM6R8, were prepared to study the effect of the chiral center in antiferroelectric achiral systems. The compounds were characterized by polarizing light microscopy and differential thermal analysis. Compound M6R8 develop Sm A and C phases. M6R7q does not shows LC properties.

The composite of M6R7q at 33% with PM6R8, develop liquid crystalline properties. Their electrical properties were determined by pyroelectric signal measurements and compared with PM6R8-33. The inclusion of a quiral centre in the monomer decreases the electric properties of the system, probably due to the lateral substitution that modifies the antiferroelectric nature of the system.

In order to verify the chiral centre effect, theoretical calculations were carried out, using molecular dynamics in the prepared monomers. A modified software Moscito IV was used to analyze the proper characteristic of the liquid crystals through the order parameter. A homologous compound, M68R where the aromatic core is inverted, develops a nematic phase instead of the smectic A phase. It was used in this study to compare the molecular modelations of those molecules.

The calculations corroborate the experimental data, showing that in M6R8 a smectic C phase can be clearly predicted at a temperature within the experimental temperature range, as well as the smectic A phase. In case of M68R the nematic phase was also predicted and for M6R7q, simulation also did not develop mesophases.

In this work, the basis for the development of a theoretical model for liquid crystals were established, to be applied in molecular dynamics studies for mesogens bearing an aromatic mesogenic salicyl aldiminic group.

1 INTRODUCCION

1.1 Cristales líquidos

Por mucho tiempo se ha aceptado que la materia presenta tres fases: sólido, líquido y gas. Sin embargo ciertos materiales, no presentan un cambio de fase de líquido a sólido de forma secuencial sino que presentan una o más mesofases o fases intermedias. Estas fases se denominan mesofases o fases mesomórficas que presentan propiedades intermedias entre un sólido cristalino y un líquido. En el primero las moléculas se encuentran localizadas en puntos regulares dentro del espacio, existiendo un orden traslacional en 3 dimensiones. En el segundo, dicho orden no existe y las moléculas se encuentran orientadas completamente al azar.

En cristales líquidos el orden traslacional está confinado a una o dos dimensiones. En el caso de moléculas no esféricas, el orden traslacional es retenido, presentando orientaciones moleculares semiordenadas.

El estado líquido cristalino se conoce hace más de cien años [1]. El crédito de este descubrimiento lo tiene Friederich Reitnizer al notar que el benzoato de colesterilo presentaba 2 puntos de fusión [1]. En el primero el cristal funde a un líquido turbio y en el segundo su apariencia cambiaba a un líquido transparente. Un punto importante en la historia de los cristales líquidos fue el trabajo de George Friedel [2], al clasificar fases líquido cristalinas. Es en este momento cuando se introduce el término mesofase, entre fases, como alternativa para designar fases líquido cristalinas y el término mesógeno para las moléculas que forman tales fases.

Los cristales líquidos se pueden clasificar en 2 grupos: liótropos y termótropos. El primero se refiere a los que presentan mesofases al variar su concentración en un medio determinado y el segundo a aquellos que al variar la temperatura formarán diferentes mesofases.

Las mesofases existentes para el grupo de los termótropos se pueden clasificar a su vez en nemáticas, esmécticas y colestéricas, dependiendo del tipo de orden espacial en que se dispongan las moléculas.

1.1.1 Parámetro de Orden de la Fase Nemática

El parámetro de orden utilizado para la fase nemática es de tipo escalar (figura 1a). El vector director n (figura 1b) es definido como la suma de todos los vectores formados por un eje determinado para cada una de las moléculas individuales [3]. Dicho vector define la dirección traslacional del promedio de las moléculas.

Figura 1: a) Fase Nemática (N); b) Vector director y ángulo de inclinación.

Una vez obtenido el valor del vector director, es posible calcular el parámetro de orden según la ecuación 1:

$$S_2 = \frac{1}{2} \left\langle 3\cos^2 \theta_i - 1 \right\rangle$$
 Ecuación 1.

donde θ_i es el ángulo que forma el vector molecular definido por el eje de la molécula i con respecto al vector director n. El parámetro S₂ para una fase nemática totalmente ordenada es 1 y para una fase isótropa es 0.

1.1.2 Parámetro de Orden para la Fase Esméctica A

En la fase esméctica A el vector director n y el eje óptico se encuentran de forma perpendicular al plano formado por la capa esméctica (ver figura 2), en dirección del

eje molecular. El grado de orden traslacional con periodicidad d, que es el espesor de las capas, puede ser aplicado al largo L de una molécula. El parámetro de orden para la fase esméctica A se define en función de Θ_i , que es el ángulo de inclinación respecto a la normal de la capa; z_i que corresponde a la posición del centro de masa de la molécula i; d, el espesor de la capa. La ecuación 2 relaciona dichos parámetros:

Figura 2: Esquema de una fase Esméctica A (SmA)

$$\sigma = \left\langle \frac{\left(3\cos^2\theta_i - 1\right)}{2}\cos\left(2\frac{\pi}{d}z_i\right)\right\rangle$$

Ecuación 2.

El término σ_i contiene el parámetro de orden S₂ multiplicado por el término de orden posicional, según la ecuación 2.

Este último representa el primer término de una serie de expansión de Fourier de la distribución de la función de orden posicional. Este parámetro de orden se encuentra directamente relacionado con experimentos de rayos X. El espesor experimental de la capa se evalúa por difracción de rayos X de acuerdo con la ecuación de Bragg (ecuación 3).

$$n\lambda = 2 \cdot d \cdot sen \alpha$$
 Ecuación 3.

donde n es el orden de difracción, λ es la longitud de onda de la radiación de rayos X, d es la periodicidad y α es el ángulo de difracción. En el caso de la línea K_{a1} del Cu, λ corresponde a 1,54 Å. Para la mayoría de las moléculas de cristales líquidos sólo es

observado el pico de difracción de primer orden, el que se presenta generalmente como un patrón sinusoidal en la distribución de moléculas en relación a su centro de masa. Esto demuestra la posibilidad de arreglos que pueden tener la fase esméctica A en monocapa con d=L, bicapa d=2L e interdigitada con L<d<2L.

1.1.3 Parámetro de Orden para La Fase Esmectica C

La fase esméctica C es similar a la fase esméctica A pues ambas forman capas en planos. En este caso, el vector director de las capas posee un ángulo respecto a la normal de los planos de inclinación de una molécula individual (ver figura 3a). Se describe por un vector con amplitud θi y una inclinación azimutal φi (ver figura 3b). El promedio de un conjunto de moléculas está dado por la ecuación 4:

Figura 3: a) Fase Esmectica C (SmC); b) Vector director y ángulo de inclinación.

$$\theta = \left\langle \theta_i \begin{pmatrix} \cos \varphi_i \\ \sin \varphi_i \end{pmatrix} \right\rangle$$
Ecuación 4.

Donde la amplitud del ángulo θ está determinada por variables termodinámicas y la dirección de inclinación no está determinada del todo. El ángulo θ aumentará en la medida que la temperatura disminuye, siendo un buen índicador del tipo de fase presente, que permite diferenciar entre una fase ortogonal e inclinada.

El tipo de orden que hasta ahora se ha descrito, está circunscrito a microdominios, que forman el conjunto macroscópico del material. En la figura 4 se representan microdominios de una fase nemática, cada uno con su vector director apuntando en una dirección específica. Lo mismo es aplicable para la fase esméctica A y C.

Figura 4: Fase nemática mostrando microdominios con su vector director

1.2 Quiralidad y Ferroelectricidad

La búsqueda de materiales análogos no quirales mesomórficos que presenten características ferro y antiferroeléctricas ha sido un gran desafío para investigadores tanto teóricos como experimentalistas

La ferroelectricidad en moléculas orgánicas fue descubierta por primera vez en 1975 por Meyer et. al. [4] en una molécula de bajo peso molecular (ver figura 5a) con propiedades liquido cristalinas. Dicho sistema presenta una mesofase esméctica de tipo C o inclinada. El principio del ordenamiento polar para éste tipo de compuestos se basa en la no centrosimetría macroscópica impuesta en el sistema por un grupo quiral que generalmente se encuentra en la cola de la molécula y, por la inclinación del empacado en la mesofase debido a la presencia de la fase esméctica C. Dichas tres características producen finalmente un momento dipolar perpendicular relativo a las capas que se reparten en macrodominios, sensitivos a la presencia de un campo eléctrico.

En 1995 se desarrolló un sistema polímeros de cadena lateral - monómero, con sorprendentes resultados de polarizabilidad macroscópica, que no presentan quiralidad, algo completamente no esperado en tales sistemas [5]. La aparición de ferro

o antiferroelectricidad en sistemas líquido cristalinos siempre estuvo asociado con un segundo quiebre en la simetría debido a la presencia de quiralidad en la molécula. En ese caso particular y único hasta esa fecha, se postuló un mecanismo combinado de puente de hidrógeno que posibilita la aparición de altos valores de polarizabilidad y le permite ser switchable debido a la influencia de un campo eléctrico externo [6].

Se trata de un sistema compuesto por un polímero metacrílico con un grupo salicilaldimino y su monómero (ver figura 5b) que en distintas proporciones presentan antiferroelectricidad. La razón polímero a monómero óptima es cuando el monómero se encuentra en un 33%.

Otro tipo de sistemas, son las llamadas moléculas flexionadas o tipo banana (ver figura 5c), las que atrajeron bastante atención debido a la propiedad que ellas poseen de formar estructuras de bicapas [7].

Figura 5: a) Primer cristal líquido de bajo peso molecular con propiedades ferroeléctricas; b) monómero base en la formación de sistemas aquirales líquido cristalinos con propiedades antiferroeléctricas; c) moléculas flexionada o tipo banana líquido cristalina con propiedades antiferroeléctricas.

1.3 Técnica Piroeléctrica

Esta técnica se basa en la medición de la corriente eléctrica que se genera en una celda que contiene el material en estudio, la que recibe pulsos de un láser semiconductor para provocar variaciones de temperatura que inciden en la densidad de carga superficial del material [8]. La ventaja principal de esta técnica es la obtención de la polarización espontánea a partir de dichas mediciones. La desventaja es la dificultad de hacer medidas absolutas de la polarización espontánea. Variables a considerar son el espesor de los electrodos, la posición del láser sobre la muestra en la mesa de calentamiento, el radio y foco del haz del láser, etc.

Por convención, el coeficiente piroeléctrico es la primera derivada de la polarización espontánea con respecto a la temperatura (ecuación 5):

$$\gamma_s(T) = \frac{dP_s(T)}{dT}$$

Ecuación 5.

Un cambio pequeño de temperatura ΔT sobre la muestra causa un cambio en la polarización espontánea ΔPs , y consecuentemente un cambio en la densidad de carga superficial. Sin embargo el caso no es tan simple, ya que la diferencia de temperatura causa una expansión térmica sobre la muestra.

Las formulas necesarias para entender este principio son:

 $\gamma = \frac{i(T)}{A} * \frac{dt}{dT}$

t: tiempo T: Temperatura

Ecuación 6.

$$i(t) = 2 * \pi * V(T) * C(T)$$

Ecuación 7.

Donde

C(T) es la capacidad del sistema respecto a la temperatura;

V(T) es el voltaje obtenido;

dt/dT es la variación de temperatura provocada por el láser por unidad de tiempo;

A es el área del electrodo.

Si nos regimos por la ecuación 6, con el valor de la corriente piroeléctrica i(T), es posible calcular el valor del coeficiente piroeléctrico (γ), siempre y cuando sea posible determinar el valor de dt/dT. Este factor aún no puede ser medido en forma experimental en el laboratorio, por lo que la respuesta eléctrica se calcula tomando como referencia un material estándar. El método es conveniente para medir la dependencia de la temperatura respecto de la polarización a distintas energías aplicadas. Debido a su simplicidad se puede combinar con estudio de texturas y estudios electro-ópticos.

El método utiliza un láser semiconductor, el cual es usado para proveer diferencias de temperatura sobre la muestra, a una cierta frecuencia ω controlada por un oscilador, lo que se rige por la ecuación 8:

$$\Delta T = To + T_m sen^*(wt)$$

Ecuación 8.

La frecuencia angular $=2\Pi \cdot f$ puede ser varía en base a la frecuencia f. En nuestro caso, típicamente se usan 70 Hz. La medida de la señal piroeléctrica, proviene de la muestra, la cual se encuentra en la celda (1) (ver figura 6). Esta es colocada en una mesa de calentamiento (2) (Linkam THMSE600) controlada por un computador (4), que obtiene los datos de respuesta eléctrica del material, mediante un software. El rango de temperatura de trabajo es desde temperatura ambiente hasta la transición al estado isótropo del material. Para temperaturas bajas existe un sistema de enfriamiento externo (3), en donde se puede ocupar N₂ liquido para alcanzar temperaturas cercanas a -170 ° C.

La variación de temperatura fue obtenida usando una luz modulada desde un láser semiconductor (5). La frecuencia aplicada de 70 Hz proviene de un Amplificador Lock

In (7) (EG&G modelo 7260). Para polarizar la muestra se usa un generador de voltaje DC (1.8-103V) (8).

Figura 6: a) Mesa de calentamiento; b) Celda con ITO; c) Técnica modulada piroeléctrica.

1.4 Ferroelectricidad

La ferroelectricidad fue descubierta en las sales de Rochel en 1920 por Joseph Valasek quien escribió la primera publicación referente a la piezoelectricidad de estas sales. Este estudio contribuyó a entender las propiedades eléctricas de la materia, en particular en materiales polares y transiciones de fase. Desde esa fecha surge el concepto de ferroelectricidad en un material, el que está directamente relacionado con una polarización macroscópica espontánea. Esta polarización aparece debido a la orientación de dipolos eléctricos, la que puede ser revertida mediante un campo eléctrico aplicado (ver figura 7a). Ambos estados polares corresponde a estados de equilibrio termodinámico, de tal forma que al quitar el campo, dicha condición persiste.

Un material antiferroeléctrico por su parte, presenta una disposición de sus dipolos en direcciones opuestas antiparalelas, nuevamente en estados termodinámicamente

estables. Esta situación, a diferencia del caso anterior, se produce inicialmente en ausencia de campo eléctrico. El material puede, debido a la influencia de un campo externo, polarizarse de la misma forma que un material ferroeléctrico. La diferencia radica en que dicho estado se revierte a 0 cuando el campo se retira, tomando nuevamente la estructura antiferroeléctrica. Dicho estado es el mismo que el inicial (ver figura 6b).

Figura 7. Curva de histéresis a) Ferroeléctrica, donde E es el campo eléctrico aplicado; b) Antiferroeléctrica

1.5 Análisis Térmico Diferencial (DTA) o (DSC)

Se define DTA como análisis térmico diferencial (figura 8a y 8b) [5] y DSC como calorimetría diferencial de barrido (figura 7c). La diferencia entre ambos métodos radica en el principio de medición de la energía absorbida o liberada por el compuesto en estudio. En el caso del DSC, dicha energía es compensada por una cantidad equivalente de energía eléctrica entregada por una resistencia que se localiza en el contenedor de la muestra. Esta diferencia es captada mediante sensores de platino que se ubican tanto en la muestra como en el recipiente que posee la referencia. Uno de los numerosos beneficios es que el área del pick es una verdadera medida de energía eléctrica. Por lo tanto la magnitud no depende de ninguna constante térmica, ocupándose constantes de calibración directas para convertir áreas a calorías.

En un clásico DTA los sensores de temperatura se encuentran localizados en el interior del portamuestra y del portareferencia en forma independiente. Luego, el calentamiento tanto de la muestra como la referencia resulta en una diferencia de temperatura en ambas. El problema radica en que si el DTA no se encuentra calibrado por medio de estándares, no se logran resultados adecuados de transiciones de fase.

Figura 8: a) DTA (Mettler Toledo FP90); b) DTA y c) DSC. En donde C es compuesto y E se define como el estándar.

Para obtener transiciones de fase se realiza la calibración con ácido fumárico, indio,

zafiro o cafeína, con los que se puede obtener (τ) valor que se utiliza para la calibración del DTA. Una vez calibrado se pueden obtener transiciones de fase, valores de capacidad calorífica a presión constante (Cp) para el compuesto a analizar y entalpías asociadas a la transición, ya sea de primer o de segundo orden [9].

1.6 Microscopia de luz polarizada

Esta técnica consiste en una luz blanca, policromática que es reflejada hacia arriba a través de un espejo que pasa a través de un lente y un polarizador, el que puede ser rotado en 360°. Luego entra a un condensador, el que colecta la luz desde la fuente ajustando la apertura del iris correctamente (ver figura 9).

El microscopio de luz polarizada se encuentra equipado con una mesa de calentamiento para poder observar las mesofases involucradas para cada transición de fase. Por lo tanto es una herramienta esencial para la caracterización de compuestos líquido cristalinos.

Figura 9: Esquema para estudio de mesofase a) 1. Cámara digital, 2. Ocular, 3. Analizador, 4. Objetivo, 5. Muestra sobre un horno para producir calentamiento, 6. Condensador, 7. Foco, 8. Polarizador- Lente, 9. Fuente de luz.

1.7 Modelación Molecular y Simulación

En la investigación de materiales avanzados como los cristales líquidos es necesario establecer un modelo que explique el fenómeno que se está investigando para así tener criterios donde se establezcan parámetros para su estudio y a la vez poder establecer las variables que se pueden modificar para obtener las propiedades deseadas según la aplicación que se necesite.

Para estos fines se necesita el apoyo del marco teórico que explique los resultados experimentales de forma coherente y a la vez permita establecer una línea de estudio. Sin embargo hoy en día es tal la cantidad de información que se debe manejar y sobre todo para materiales avanzados de este tipo que el apoyo de la informática se hace indispensable para realizar esta tarea. Dentro de esta área la Dinámica Molecular (DM) se ha convertido en una herramienta muy útil para desarrollar el modelo molecular.

1.7.1 Dinámica molecular

En las primeras simulaciones en Dinámica Molecular y de Montecarlo [10-12] las ecuaciones de movimiento eran resueltas numéricamente. Se basan en el estudio de la evolución temporal de un sistema por lo que permite estudiar propiedades dependientes del tiempo como la difusión. Estas primeras simulaciones utilizaban potenciales de esferas duras. Al profundizar en el uso de estos 2 métodos se desarrollaron funciones de potencial más realistas [13-15] en los cuales se utilizan potenciales de variación en el espacio, generando términos que aportan tanto con funciones repulsivas como atractivas.

En estas primeras simulaciones con unas pocas partículas y modelos simples de interacción fueron bastante valiosas las observaciones que se llegaron a tener de las simulaciones del estado líquido principalmente, como por ejemplo el comportamiento a largo plazo de fenómenos de transporte [16]. Luego, al incrementar el poder computacional y las continuas mejoras que se han logrado en los métodos, se ha incrementado el tamaño y la complejidad de los sistemas que pueden ser estudiados. Hoy en día pueden estudiarse miles de moléculas a nivel atómico o millones de

moléculas simples en grandes supercomputadores. Inclusive se pueden estudiar sistemas de 10000 partículas, sean estas átomos o moléculas, en computadores con un sólo procesador.

Este desarrollo ha permitido que las simulaciones de Dinámica Molecular permitan resolver sistemas muy grandes de muchas partículas y que presenten comportamientos difíciles de estudiar por el costo computacional mediante cálculos mecano cuánticos.

1.7.2 Ecuaciones de movimiento de Newton

La simulación por Dinámica Molecular es un método computacional para calcular propiedades de equilibrios dinámicos y estáticos de sistemas de muchos cuerpos o partículas, fundamentado en solucionar las ecuaciones de movimiento de Newton. Es decir es un conjunto de partículas gobernado por las leyes de la mecánica estadística clásica.

$$\frac{d^{-2} r_i(t)}{dt^{-2}} = m_i^{-1} fi$$
Ecuación 9.
$$f_i = \partial_V \frac{(r_1 \dots r_N)}{(\partial r_i)}$$
Ecuación 10.

fi es la fuerza que actúa sobre una partícula i y V es el potencial de interacción total. Sin embargo cuando están involucradas más de 2 partículas este procedimiento debe ser efectuado de forma numérica usando diferencias finitas.

1.7.3 Algoritmo de Dinámica Molecular

El algoritmo General que se utiliza para desarrollar el proceso se puede describir en el siguiente esquema

Se utilizan para esto diferentes esquemas de integración numérica. Uno de los más simples pero que es muy robusto y que generalmente permite resolver la mayoría de los problemas es el algoritmo de Verlet [17-18]. En el software utilizado para desarrollar la dinámica molecular, Moscito 4 [19], este algoritmo está implementado en la forma leapfrog [20], donde las velocidades v_i son calculadas a medio paso de tiempo:

$$v_i(t_n + \Delta t/2) = v_i(t_n - \Delta t/2) + \Delta t m_i^{-1} fi(r_1 \dots r_N, t_n) + O(\Delta t^3)$$
 Ecuación 11.

$$r_i(t_n + \Delta t) = r_i(t_n) + v_i(t_n + \Delta t/2)\Delta t + O(\Delta t^3)$$
 Ecuación 12.

La desventaja al aplicar este algoritmo (ecuación 11 y 12), es que no es posible calcular la energía total en forma totalmente satisfactoria pues la energía cinética con la energía potencial es calculada en tiempos diferentes. Sin embargo, presenta errores muy pequeños en referencia al término $O(\Delta t^3)$ para velocidades y posiciones que lo hace perfectamente adecuado para problemas de dinámica molecular y ciertamente para sistemas muy grandes de partículas (ver figura 10).

Figura 10: Derivación de la ecuación 8, donde se muestra las fuerzas conservativas de los enlaces.

1.7.4 Condiciones periódicas de frontera

Cuando se trata de simulación de sistemas de fase condensada es necesario evitar los problemas que puedan generar los efectos de superficie en las fronteras de este, y que por cierto pueden afectar sus propiedades de manera impredecible. Para evitar esto se utiliza las condiciones de frontera periódicas replicando la caja central de simulación en el espacio infinitamente: las paredes del sistema permiten que una molécula que sale del sistema, ingrese nuevamente por el otro costado de la caja de simulación, logrando así que el sistema no presente interfases en las fronteras de la caja. Esto se realiza usando la definición de convención de imagen mínima, donde una partícula i se encuentra en el centro del sistema y todas las demás partículas se proyectan en una caja. En sistemas rectangulares se puede calcular según la ecuación 13.

$$\Delta x_{ij} = x_j - x_i - L_x an \operatorname{int}((x_j - x_i)/L_x)$$
 Ecuación 13.

Donde Lx es el largo de la caja en la dirección x. De manera análoga se aplica a Lz e Ly, lo que permite calcular la distancia mínima entre 2 imágenes de partículas [21].

1.7.5 Restricciones Dinámicas

Si el sistema contiene grados de libertad, es una buena aproximación separar en grados de libertad individuales y enlazarlos a funciones de restricción dinámicas. Esta aproximación ha probado funcionar bien para largos de enlaces y en menor extensión para interacciones de flexión de enlace. El programa Moscito 4 utiliza el método SHAKE-scheme [22] para implementar las restricciones para distancias. Una restricción de este tipo que se aplica a 2 partículas a un paso de tiempo t está definida por la ecuación 14:

$$\sigma_{K} = (r_{i} - r_{j})^{2} - d_{ij}^{2} = 0$$
 Ecuación 14.

Esta ecuación de movimiento para partículas cambia al introducir fuerzas de restricción gi, en una partícula i

1.7.6 El modelo de campo de Fuerzas

Moscito 4 utiliza un modelo de campo de fuerzas para la aplicación en dinámica molecular que se fundamenta en la aproximación de Born-Openheimer. Debido a esto se asume que los grados de libertad electrónicos siempre están en equilibrio con la configuración cambiante del núcleo. Luego, el potencial de interacción total se expresa en función de las posiciones de los núcleos. El modelo de campo de fuerzas se puede describir en términos de potencial de energía y convenientemente separado en energía intermolecular más energía intramolecular.

$$E = E_{inter} + E_{intra}$$
 Ecuación 15.

Las denominadas interacciones intermoleculares [23] incluyen fuerzas de repulsión de Pauli, fuerzas electrostáticas y de dispersión [24]. Estas fuerzas se modelan a partir de cargas puntuales qi e interacciones de Lennard-Jonnes[21], ver ecuación 16.

$$E_{\text{int},er} = \frac{1}{4\pi\varepsilon_o} \sum_{n} \sum_{k} \sum_{m>n} \sum_{\lambda} \frac{q_{nkqm,\lambda}}{r_{nkm,\lambda}} + \sum_{n} \sum_{k} \sum_{m>n} \sum_{\lambda} \left\{ \left(\frac{\sigma_{nmk,\lambda}}{r_{nmk,\lambda}}\right)^{12} - \left(\frac{\sigma_{nmk,\lambda}}{r_{nmk,\lambda}}\right)^6 \right\}$$

Ecuación 16.

Generalmente estos sitios de interacción se encuentran definidos sobre los átomos, pero se pueden definir sitios virtuales que involucren un conjunto de átomos o enlaces que describan de mejor forma el comportamiento experimental. En lo que se refiere al modelo de las interacciones intramoleculares es necesario introducir más términos de modo de representar las fuerzas covalentes (ver ecuación 17).

$$E_{intra} = \underbrace{\frac{1}{4\pi\varepsilon_o}\sum_{n}\sum_{k}\sum_{\lambda>k}\frac{q_{nk}q_{nk}}{r_{nk}}f_{nk}}_{\text{Término Coulombico}} + \underbrace{\sum_{n}\sum_{k}\sum_{\lambda>k}4\varepsilon_{nkk}}_{nk}\left\{\left(\frac{\sigma_{nkk}}{r_{nkk}}\right)^{12} - \left(\frac{\sigma_{nkk}}{r_{nkk}}\right)^{6}\right\}$$

$$= \underbrace{\frac{1}{2}\sum_{n}\sum_{g}k_{ng}^{\delta}(r_{ng(kk)} - r_{ng}^{0})^{2}}_{\text{Estiramien to de enlace}} + \underbrace{\frac{1}{2}\sum_{n}\sum_{g}a_{ng}^{\delta}(\phi_{ng(kka)} - \phi_{ng}^{0})^{2}}_{\text{flexion de enlace}} + \underbrace{\frac{1}{2}\sum_{n}\sum_{g}a_{ng}^{\delta}(\phi_{ng(kka)} - \phi_{ng}^{0})^{2}}_{\text{flexion de enlace}} + \underbrace{\frac{1}{2}\sum_{n}\sum_{g}a_{ng}^{\delta}(\psi_{ng(kka)} - \phi_{ng}^{0})^{2}}_{\text{diedro impropio}} + \underbrace{\frac{1}{2}\sum_{n}\sum_{g}a_{ng}^{\delta}(\psi_{ng(kka)} - \phi_{ng}^{0})^{2}}_{\text{diedro propio}} + \underbrace{\frac{1}{2}\sum_{n}\sum_{g}a_{ng}^{\delta}(\psi_{ng(kka)} - \phi_{ng}^{0})^{2}}_{\text{diedro propio}} + \underbrace{\frac{1}{2}\sum_{n}\sum_{g}a_{ng}^{\delta}(\psi_{ng(kka)} - \psi_{ng}^{0})^{2}}_{\text{diedro propio}} + \underbrace{\frac{1}{2}\sum_{g}\sum_{g}a_{ng}^{\delta}(\psi_{ng(kka)} - \psi_{ng}^{0})^{2}}_{\text{diedro propio}} + \underbrace{\frac{1}{2}\sum_{g}\sum_{g}a_{g}^{\delta}(\psi_{ng(kka)} - \psi_{ng}^{0})^{2}}_{\text{diedro propio}} + \underbrace{\frac{1}{2}\sum_{g}\sum_{g}\sum_{g}a_{g}^{\delta}(\psi_{ng(kka)} - \psi_{ng}^{0})^{2}}_{\text{diedro}} + \underbrace{\frac{1}{2}\sum_{g}\sum_{g}\sum_{g}a_{g}$$

Ecuación 17.

Los términos de estiramiento de enlace, armónicos y tipo Morse, de flexión angular de enlace permiten esta representación [25]. Los términos potenciales de ángulos diedros se dividen en 2 tipos: los potenciales armónicos impropios, que permiten sólo distorsiones muy pequeñas, por ejemplo, mantener la planaridad en un benceno. El segundo término es una serie de cosenos que forman los potenciales de ángulos diedros propios, usados en situaciones mas comunes [19]. Aunque Moscito 4 permite cualquier tipo de interacción de pares no enlazantes, es posible modificar el término F_{nkλ} en la parte Coulómbica. Las interacciones del tipo 1-2 y 1-3 generalmente se encuentran prohibidas para evitar una repulsión innecesaria entre centros enlazados. Para potenciales de torsión las interacciones 1-4 son muy importantes y en casos muy necesarios se utilizan interacciones del tipo 1-5, que son poco probables (figura 11).

Figura 11. Ejemplo de interacciones intermoleculares.

Este trabajo intenta revisar el efecto que se produce en un sistema aquiral por la incorporación de un grupo ópticamente activo y su repercusión en las propiedades eléctricas del sistema. La temática principal del trabajo, se orienta hacia el estudio de un modelo teórico aplicable a sistemas homólogos a los estudiados, basado en Dinámica Molecular y aplicado a sistemas de bajo peso molecular, para optimizar el poder de cálculo.

2 Parte Experimental

2.1 Consideraciones Generales

La preparación del monómero se realizó usando una síntesis convergente a partir de compuestos preparados en el laboratorio o bien obtenidos comercialmente de Aldrich, Acros, Fluka o Merck. Los solventes ocupados en la preparación de los compuestos intermediarios y finales fueron todos de grado p.a. Los compuestos obtenidos se caracterizaron mediante ¹H-RMN utilizando un equipo Brucker, digital de 300 MHz (Advance DRX300). Para la polimerización se utilizó N₂ extra puro 99,995%, con el fin de sacar el oxígeno presente en la muestra y AIBN como iniciador. Para determinar peso molecular, se utilizó un GPC que consta de una columna HPLC Waters la cual puede discernir pesos moleculares que están en el rango de 5.000 a 600.000, un detector Waters 410 "Differential Difractometer" y un controlador Waters 600. Para purgar la muestra se utilizó He.

2.2 Preparación de Anilina Quiral y Aquiral.

La preparación de las anilinas se realizó usando el esquema de síntesis de la figura 12.

2.2.1 [4-(octiloxi)fenil]etanamida (A): En un equipo a reflujo simple compuesto con trampa de calcio, se agrega una cantidad equimolar de 4-acetamidofenol e hidróxido de potasio, disuelto en etanol. La mezcla de reacción se deja a reflujo durante 1 hora, observando el obscurecimiento de la misma. A continuación se agrega un 10% de exceso de bromooctano, manteniendo el calentamiento por 20 horas. Al término de la reacción se enfría en baño de hielo y se filtra al vacío. El sólido obtenido se recristaliza en etanol. Rendimiento: 60%. Este mismo procedimiento se utilizó para

la síntesis de una anilina quiral (B), la diferencia radica en que el compuesto alifático bromado, posee actividad óptica (2(S)-Bromo octano).

Anilina Quiral protegida (A)

1H-NMR, δ ppm, CDCl3: 7.05(s,1H, -CO-HN-Ar), 7.37 (2H, d-NH-Ar-H), 6.80 (2H, d-O-Ar-H), 4.38 (m,1H,-Ar-O-CH-CH3),1.42 (m, 2H, βCH2-O),1.36 (3H,m,CH3-CH-Ar)1.30 (m,8H, -CH2-).0.88 (t, 3H, CH3-).

Anilina desprotegida quiral (B)

1H-NMR, δ ppm, CDCl3: 6.68 (2H, d,NH2-Ar-H), 6.64 (2H, d-O-Ar-H), 4.37 (m,1H,-Ar-O-CH-CH3), 1.48 (m, 2H, βCH2-O),1.38 (3H,m,CH3-CH-Ar),1.39 (m,8H, -CH2-).0.88 (t, 3H, CH3-).

2.2.2 4-(octiloxi)anilina (C): En un equipo a reflujo, con agitador se agrega la acetanilida (A o B) disuelta en etanol (por cada 15 gramos de A, se agrega 30 ml de etanol). En cuanto comienza el reflujo se agrega el hidróxido de sodio concentrado (por cada 8 gramos de NaOH, se agrega 10 mL de agua) y se mantiene por 2 horas. El avance de la reacción se controla por cromatografía en placa fina. Una vez terminada, se enfría la mezcla en un baño de hielo y se agrega acido en medio acuoso para neutralizar la base que se encuentra en el medio. Posteriormente se filtra en vacío. El sólido obtenido se recristaliza en etanol. Rendimiento: 80%. De este mismo procedimiento se obtiene la anilina quiral (D)

2.2.3 Preparación de Anilina (R8):

La preparación de este compuesto se realiza de forma análoga a la anilina quiral.

Anilina protegida:

1H-NMR, δ ppm, CDCl3: 7.387(s,1H, -CO-HN-Ar), 6.825 (2H, d-NH-Ar-H), 6.868 (2H, d-O-Ar-H), 3.94 (t, 2H. αCH2-O);2.149 (s,3H,CH3-CO-NH-Ar),1.761 (m, 2H, βCH2-O), 1.264 (m,10H, -CH2-)0.883 (t, 3H, CH3-).

Anilina desprotegida

1H-NMR, δ ppm, CDCl3: 6.687 (2H, d-O-Ar-H), 6.584 (2H, d NH2-Ar-H), 3.780 (t, 2H. α CH2-O), 1.687 (m, 2H, βCH2-O), 1.187 (m,10H, -CH2-), 0.809 (t, 3H, CH3-).

Figura 12: Ruta sintética para anilina quiral y aquiral.

2.3 Monómero Metacrílico (MnRm)

2.3.1 Cloruro de Metacriloilo (MCI): En un equipo a reflujo compuesto de un agitador magnético, manto calefactor, balón de dos cuellos, embudo de adición a presión constante y trampa de calcio, totalmente seco, se agrega una cantidad

equimolar de ácido metacrílico y se adiciona lentamente una cantidad equimolar de cloruro de tionilo manteniendo el reflujo. El producto se purifica por destilación simple. Punto de ebullición experimental = 97° C, Punto de ebullición teórico = 99 -104° C. Rendimiento: 75%

2.3.2 6-Clorohexil-2-metacrilato (M6CI): En un equipo compuesto por un agitador magnético, balón de dos cuellos, embudo de adición a presión constante y refrigerante se agrega una cantidad equimolar de 6-clorohexanol y trietilamina (TEA) utilizando como solvente tetrahidrofurano (THF) o tolueno seco. Se adiciona lentamente cloruro de ácido metacrílico, manteniendo una agitación constante. El avance de la reacción se controla por cromatografía en placa fina. El clorhidrato de trietilamina que precipita como polvo blanco se filtra y las aguas madres se purifican por columna en silicagel utilizando una mezcla tolueno acetato de etilo 10:1 como eluyente. Rendimiento: 75%

2.3.4 6-Yodohexil-2-metacrilato (M6I): En un balón con refrigerante, trampa de calcio y agitador magnético, se disuelve M6CI en acetona seca. Se agrega una cantidad equimolar de yoduro de sodio, previamente disuelta en la mínima cantidad de solvente. La mezcla de reacción se agita a temperatura ambiente por 24 horas. Luego se filtra el cloruro de sodio formado y la solución se concentra, llevándola a un embudo de decantación con éter etílico donde se lava en formas sucesivas con una solución de tiosulfato de sodio. Se concentra la fase etérea y el producto se purifica por columna en silicagel, utilizando una mezcla tolueno acetato de etilo 10:1 como eluyente. Rendimiento: 82%. Este proceso se puede realizar dos veces para asegurar un 100% de intercambio.

2.3.5 6-(4-formil-3-hidroxifenoxi)hexil-2-metacrilato (M6R): En un equipo a reflujo compuesto de un balón de dos cuellos, trampa de calcio y termómetro, se disuelve una cantidad equimolar de 2,4-dihidroxibenzaldehído y bicarbonato de sodio en dimetilformamida (DMF) a lo que se agrega una pequeña cantidad de hidroquinona como inhibidor de radicales libres. La mezcla de reacción se estabiliza a 100°C y se agrega la misma cantidad de M6I, con un exceso del 15%. La reacción se controla por

cromatografía en placa fina, el intervalo de tiempo de reacción es entre 12 y 24 horas. Al término de la reacción, se deja enfriar, se agrega agua y se extrae con éter. La fase etérea se lava en formas sucesivas con agua con el fin de extraer el DMF de la solución. En seguida el producto se seca con sulfato de sodio anhidro y se concentra. La DMF, es recuperada por destilación al vacío. La purificación se realiza mediante cromatografía en columna con silicagel, utilizando tolueno acetato de etilo 10:1 como eluente. Si la purificación del producto es poco eficiente para aldehídos con cadena alifática mayor que 6, se agrega etanol y se deja enfriar, ya que el 2,4dihidroxibenzaldehído no precipita en estas condiciones. Rendimiento: 60%

2.3.6 6-(3- hidroxi- 4 - {[4 – octiloxifenil) imino] metil} fenoxi) hexil -2metacrilato (M6R8): En un equipo a reflujo compuesto de un balón de un cuello y trampa de calcio, se disuelve una cantidad equimolar de M6R en etanol, a lo que se agrega la 4-octiloxianilina correspondiente y una pequeña porción de hidroquinona. La mezcla de reacción se deja a reflujo con agitación por unas 2 horas. El avance de la reacción se controla mediante cromatografía en placa fina. El precipitado obtenido se recristaliza en etanol. De esta forma se obtiene el monómero M6R8. Rendimiento:80%. Ver figura 13.

1H-NMR, δ ppm, CDCl3: 13.95 (s, 1H, Ar-OH), 8.50 (s, 1H, Ar-N=CH-Ar); 6.45 y 6.92 (s, 3H, Ar-H), 7.22 y 6.42 (d, 2H, O-Ar-H), 6.92 (m, 2H, O-Ar-H), 6.10 (2H, s, trans, CH2=CH), 5.56 (2H, s, cis, CH2=CH), 4.16 (t, 2H. -CH2-O), 3.98 (m,4H,-Ar-O-CH-CH3), 1.95 (s, CH3-CH=CH2), 1.29-1.83 (m,22H,-CH2), 0.89 (t, 3H, CH3-).

2.3.7 6-(3- hidroxi- 4 - {[4 – (1-metil-heptiloxifenil) imino] metil} fenoxi) hexil -2-metacrilato (M6R7q).

De esta misma forma se realizo el monómero quiral (ver figura 13b), pero se utiliza la anilina quiral (ver figura 12), con el fin de conferir actividad óptica a la molécula sintetizada.

1H-NMR, δ ppm, CDCl3: 9.80 (s, 1H, Ar-OH), 7.06 (s, 1H, Ar-N=CH-Ar); 7.33 y 7.10 (s, 3H, Ar-H), 7.43 (d, 2H, O-Ar-H), 6.52 (d, 1H, O-Ar-H), 6.36 (s, 1H, O-Ar-H), 5.29 (2H, s,

trans, CH2=CH),4.73 (2H, s, cis, CH2=CH), -3.99 (t, 2H. -CH2-O), 4.36 (m,1H,-Ar-O-CH-CH3), 2.00 (s, CH3-CH=CH2),1.48 (m, 2H, CH2-O),1.38 (3H,m,CH3-CH-Ar), 1.85 (m,10H,-CH2), 1.40 (m,8H, - CH2-CH2-).0.89 (t, 3H, CH3-).

Figura 13. Estructura de las méculas en estudio: a) M6R8; b) M6R7q.

2.4 Preparación del Monómero M68R

2.4.1 2-hidroxi-4-(octiloxi)benzaidehído (8R): En un equipo compuesto de un balón de dos bocas, refrigerante, trampa de cloruro de calcio, termómetro, agitador magnético y manto calefactor, se disuelve una cantidad equimolar de 2,4-dihidroxibenzaldehído (24,07 mmoles) y bicarbonato de sodio en DMF. La mezcla de reacción se mantiene en equilibrio a 100° C y se agrega la misma cantidad de 1-bromooctano (27,68 mmoles) con un 15% en exceso. La reacción se controla por cromatografia en placa fina, siendo el tiempo de reacción entre 12 y 24 horas. Al término de la reacción, se deja enfriar, se agrega agua y se extrae con éter. La fase etérea se lava en formas sucesivas con agua para extraer el DMF de la solución. Enseguida el producto se seca con sulfato de sodio anhidro y se concentra. La purificación se realiza por cromatografía en columna utilizando como soporte silicagel, en una mezcla de tolueno:acetato de etilo 10:1 como eluyente. Rendimiento: 80 %

1H-NMR, δ ppm, CDCl3: 10.26 (s, 1H, Ar-CHO); 7.74 (d, 1H, H-Ar); 6.35 (d, 1H, H-Ar); 6.35 (s, 1H, H-Ar); 3.96 (t, 2H, CH2-O); 1.74 (m, 2H, CH2-O); 1.20 (m, 10H, -CH2-); 0.83 (t, 3H, CH3-).

2.4.2 5-(octiloxi)-2-{[(4-hidroxifenil)lmino)rnetil)fenol (A8R): En un equipo compuesto de un balón de una boca, refrigerante, agitador magnético, manto calefactor y trampa de cloruro de calcio, se disuelve una cantidad equimolar de 4-aminofenol (3,59 mmoles) y aldehído 8R en etanol. la mezcla de reacción se refluja durante 2 horas, cuyo avance se controla por cromatografia en placa fina. El producto se obtiene como precipitado amarillo y se purifica mediante recristalización en etanol. Rendimiento: 60%

1H-NMR, δ ppm, CDCl3: 8.49 (s, 1H, Ar-N=CH-Ar); 7.19 (m, 1H, Ar-H); 7.16 (m, 2H, Ar-H), 6.88 (m, 2H, Ar-H); 6.48 (d; 2H, Ar-H); 3.98 (t, 2H. αCH2-O); 1.79 (m, 2H, βCH2-O), 1.26 (m, 10H, -CH2-); 0.88 (t, 3H, CH3-).

2.4.3 6-(4-[-(2-hydroxy-4-octaoxifenil)mutilen)amino)fenoxi)Hexil-2-

metacrilato (M68R): En un equipo compuesto de un balón de una boca, agitador magnético, refrigerante, manto calefactor y trampa de cloruro de calcio, se disuelve una cantidad equimolar de A8R (2,17mmnoles) en etanol, y KOH a la que se agrega un 10% en exceso de M6I (2,38 mmoles) y una pequeña porción de hidroquinona. El tiempo de reacción aproximado es de 12 horas, cuyo avance se controla mediante cromatografla en placa fina. La mezcla de reacción se purifica mediante cromatografía, utilizando como soporte silicagel, en tolueno:acetato de etilo 10:1 como eluyente. El producto obtenido, se precipita con etanol en frío. Rendimiento- 60%

1H-NMR, δ ppm, CDCl3: 13.53 (s, 1H, Ar-OH), 8.44 (s, 1H, Ar-N=CH-Ar); 7.22 (s, 3H, Ar-H), 7.11(d, 2H, O-Ar-H),6.29 (2H, d, trans, CH2=CH),5.70 (2H, d, cis, CH2=CH), -3.95 (t, 2H. α CH2-O); 3.66 (m, 4H, Ar-O-CH2), 2.00 (s, CH3-CH=CH2), 1.75 (m, 2H, β CH2-O), 1.22 (m, 10H, -CH2-); 0.88 (t, 3H, CH3-).

Figura 14. Ruta sintética para el monómero M6A8R.

2.5 Polimerización del Monómero

2.5.1 Polimerización

La polimerización se llevo a cabo vía radicales libres. Se disuelve la muestra en tolueno (previamente secado con sodio), y se hace purgar N_2 sobre ella. Enseguida se agrega AIBN (aso-isobutironitrilo) como iniciador de la polimerización en una concentración 2M, mediante una jeringa con el fin de que no entre aire a la muestra. El compuesto se deja en la estufa por 48 horas a 60° C. Una vez terminada la reacción se deja caer sobre acetona con el fin de que precipite el polímero. Se recristaliza en Etanol o en Acetona. Rendimiento: 56%

2.5.2 Formación del composito (PM6R8-M6R8)

Se pesa el monómero y el polímero en una relación (2:1), y ambos se disuelven en tolueno previamente secado con Na°. La mezcla se filtra con el fin de sacar alguna impureza presente y se deja evaporar. Una vez terminado este proceso se deja en una estufa a vacío con un poco de calentamiento, para asegurar que la mezcla está completamente seca.

2.6 Parte experimental – Modelación.

2.6.1 Armado del Cluster.

Se construyó un cluster de cálculo tipo Beowulf conformado por 3 computadores Pentium 4 de 2.8 Ghz con tecnología Hyperthreading (HT) con 512 MB de RAM cada uno y 80 GB de disco duro, a excepción del nodo principal que cuenta con 420 GB. Cada nodo cuenta con una tarjeta de red de 1 Gbit/s de velocidad y se intercomunican a través de un switch de la misma velocidad. Además, el nodo principal cuenta con una tarjeta 3D Nvidia GeForce MX-4000 para facilitar la visualización de los sistemas moleculares. El sistema operativo utilizado es Gnu/Linux, plataforma necesaria para efectuar cálculos en paralelo como cualquier sistema Unix. La distribución elegida es Fedora Core 3, debido al conocimiento que ya se tenía de ella, pero principalmente porque presenta un gran soporte para computadores y tarjetas de última generación que se requieren para este tipo de sistema. Se utilizó un kernel de tipo paralelo para procesadores simultáneos (SMP), con el objeto de aprovechar la tecnología HT, lo que permite que el cluster funcione como si tuviera 2 procesadores en cada nodo.

Al utilizar el software Moscito 4 fue necesario compilar el programa para adaptarlo a la plataforma de tal manera de obtener la máxima eficiencia. Sin embargo se requirió compilar y optimizar las librerías de transformadas de Fourier FFTW para cálculo en paralelo. La paralelización se basa en las librerías de comunicaciones LAM/MPI (Local Area Multicomputer / Message Passing Interface) [26]. A pesar que Fedora 3 trae estas librerías listas para funcionar, fue necesario instalarlas y compilarlas desde código fuente para aprovechar al máximo su capacidad y que fueran compatibles con los programas de Dinámica Molecular y Mecánica Cuántica. Además se instaló otro programa de Dinámica Molecular, Gromacs [27-28] que funciona en forma ya sea independiente o paralela. Este software es más poderoso pero requiere de más trabajo para generar un campo de fuerzas para un cristal líquido termótropo comparado con Moscito 4, que ya había sido aplicado a este tipo de compuestos [29-30]. También se instalaron programas que ayudan en la visualización y análisis de los resultados como VMD[31] y Xmgrace [32].

2.6.2 Creación del Campo de Fuerza Molecular

Para crear el campo de fuerzas de una molécula se comienza por dibujarla con ayuda del programa Gabedit [33], el cual es una interfaz gráfica para programas de mecánica cuántica, métodos semiempíricos o mecánica molecular como el Gaussian98 [34], Gamess[35], MPQC [36] y Mopac 7 [37] entre otros. Luego se calcula la minimización de energía de la molécula por métodos ab-initio Hartree-Fock(HF) basado en 6-31G*, método utilizado en otros experimentos [38]. Con esto se obtiene la estructura minimizada y las cargas parciales para cada átomo que serán necesarias para construir el potencial electrostático (ver figura 15).

Figura 15. Estructura de mínima energía para el compuesto M6R8.

Luego, se utiliza un programa utilitario de Moscito 4 para entregar los datos en forma de matriz XYZ junto con las cargas y leer el potencial electrostático generado. El programa crea el campo de fuerzas describiendo los potenciales de enlace, flexiones de ángulos, planos diedros, etc, basado en tablas de parámetros que describen campos de fuerzas para varios sistemas ya estudiados. En este caso el campo de fuerzas para cada segmento en particular de una molécula en Moscito 4 se deriva de AMBER94 [39]. Dichos campos de fuerzas individuales generan la descripción del campo de fuerzas para la molécula en estudio, dejando indefinidos los parámetros que no tenga incorporados. Esta definición que involucra fuerzas, potenciales y funciones de restricción que definen el comportamiento de las interacciones tanto intramoleculares como intermoleculares es la denominada topología de la molécula. Luego, el sector topológico más pequeño se define a partir de 2 átomos y su enlace. Los sectores topológicos en una estructura pueden entonces ser muy variados ya que sólo involucra una parte de la molécula con muchos o varios átomos, ángulos diedros y sectores específicos. En el caso de M6R8 no quedaron definidos 2 sectores topológicos en su estructura, que corresponden al ángulo diedro del enlace CH₂-CH₃ en la cadena oxialifática final y a otro ángulo diedro en el enlace C=N del grupo azometino. Para el primero sector topológico, se tomaron los datos de un campo de fuerzas general GAFF [40] ajustando los parámetros para el campo de fuerza de Moscito 4. Para el segundo sector topológico se parametrizó utilizando el programa Gaussian98 utilizando los valores de función potencial, para completar el ángulo propio del diedro. Cada vez que se modifica o agrega un parámetro o término del campo de fuerzas es necesario estudiar nuevamente el comportamiento del sistema mediante las simulaciones. Al agregar estos parámetros el sistema respondió de mejor manera en la interacción de los grupos mesógenos que demoraban menos al interactuar, disponiéndose en forma planar uno sobre otro.

De forma análoga se crearon los campos de Fuerza para M68R. En el caso de M6R7q, se usaron los valores y constantes que proporcionaba el campo de fuerza de MOSCITO 4 para M6R8.

2.6.3 Parámetros de la simulación

Una vez que se ha completado el campo de fuerzas se procede a generar la configuración del sistema, que corresponde a establecer cuantas moléculas tendrá el sistema, la posición de cada molécula y por consiguiente de cada átomo y el tamaño del sistema. Para esto se utiliza la topología que incluye el campo de fuerza molecular para M6R8 desarrollado anteriormente y se le proporciona la información de cuantas moléculas disponer en las direcciones x, y, z. Luego de esto se tienen que definir los parámetros para ejecutar la simulación, lo que necesariamente se tiene que lograr utilizando una metodología de prueba y error para muchos parámetros.

Para el paso de tiempo, el cual corresponde al Δt de las ecuaciones de movimiento a temperaturas dentro del rango de los 300 y 400 K, si se especifica en 1 fs (10⁻¹⁵ segundos) la caja de simulación generalmente se desintegra (rigurosamente explota). Si el valor cambia 2 a fs esto no sucede y la simulación continua normalmente. Cuando las temperaturas se encuentran dentro del rango de los 400 a 1.000 K, especificando 1
fs en el paso de tiempo, la simulación tiene un desarrollo normal. Otro de los paramétros que fue necesario establecer es el factor de compresibilidad. El programa lo calcula ya sea internamente o se le puede pedir al programa que utilice un valor arbitrario. Para el caso del compuesto M6R8 se utilizó el mismo factor utilizado en experimentos de piezoelectricidad de materiales de este tipo [41]. Luego de diferentes pruebas realizadas en las simulaciones, el sistema se comportó de manera mucho más estable y cercana a lo experimental.

Se establecen parámetros generales comunes a todas las simulaciones que se utilizarán para estudiar los casos. Para ello se requieren algunas definiciones:

Ewald grid fast, que corresponde al método usado para manejar las interacciones electrostáticas entre partículas que reemplaza al lento algoritmo de Ewald, mediante Particle Mesh ewald (PME) [42-43]. Permite aumentar la velocidad de convergencia en el cálculo utilizando sumas de recíprocos de nubes Gaussianas que reemplazan a las cargas puntuales en una rejilla construida en el sistema.

Kspace PME 24 60 36 4, es la cantidad de grillas que tiene la rejilla del sistema en las direcciones x y z. El último número corresponde al orden de la función de interpolación utilizada en el cálculo. Dichos parámetros corresponden al ejemplo que usa Moscito 4 para un cristal líquido.

Alfa, que es el ancho de las nubes gaussianas usadas en el sistema, el que toma un valor de 5.36. Este valor es adimensional y se utiliza para la precisión del cálculo de cargas en el espacio.

El factor de compresión, que corresponde a la fuerza requerida para la compresión de la caja. En nuestro caso, corresponde a un valor experimental de 1.667x10⁻⁵ bar⁻¹, reportado con anterioridad [41].

Radio de corte esférico para calcular las fuerzas de todos los sitios intermoleculares no enlazados: 9 Å

Radio de corte esférico para determinar los pares átomo-átomo intermoleculares: 11 Å

Tolerancia para posiciones restringidas por el procedimiento SHAKE: 1x10⁻⁴ (Capítulo 1.7.6)

Los parámetros que varían para las simulaciones son temperatura (K), presión (bar), tiempo de paso (ps, 10⁻¹² segundos), numero de pasos y número de moléculas en algunos casos. El tiempo de paso es una variable que multiplicado por el numero de pasos proporciona el tiempo total de simulación.

La temperatura es controlada utilizando el algoritmo de Berendsen [44], el cual reajusta la temperatura del sistema como si estuviera inmerso en un baño térmico. Esto se realiza reescalando las velocidades de las partículas por un factor determinado, y por consecuencia controlando la temperatura del sistema por influencia en la energía cinética la cual esta acoplada a un reservorio térmico externo en cada paso de tiempo.

2.6.4 Simulación M6R8 monocapa:

Se simuló un sistema de 108 moléculas subiendo la temperatura a 1.000 K y luego disminuyendo lentamente hasta llegar a la temperatura de estudio de 368 K. Para realizar la pendiente de temperatura fue necesario crear un algoritmo que proporciona la temperatura inicial al programa MOSCITO 4 el cual minimiza la energía del sistema y mantiene la temperatura utilizando el algoritmo de Berendsen. Luego, al terminar la simulación a esa temperatura el algoritmo nuevamente proporciona una nueva temperatura al sistema resultante de la simulación anterior. Así, recursivamente se construye la pendiente de temperatura. Luego el sistema se estudia a la temperatura de 368 K.

2.6.4 Simulacion M68R monocapa.

En forma análoga a la simulación de M6R8 descrita anteriormente, se simula un sistema de 108 moléculas de M68R formando una monocapa y se estudia el sistema para obtener el parámetro de orden a la temperatura de 368K tomando en cuenta que este compuesto experimentalmente sí presenta una fase nemática a dicha temperatura.

2.6.5 Simulación M6R8 multicapas:

Se simuló un sistema de 512 moléculas del compuesto M6R8 a T=350 K, P=1,031 bar, a partir de la conformación de un sistema de capas ideal forzado tipo esméctica A. Luego de minimizar la energía del sistema, se asegura que ésta mantiene constante, tanto la energía cinética, potencial y total. El proceso necesito de 5 ns, y se procedió a medir sus propiedades durante 2 ns, lo que requirió de 1.000 pasos con 2 fs para cada uno de ellos.

También se estudio el parámetro de orden a partir de un modelo ideal forzado de capas para M6R8 pero a T=360 K y se minimizó la energía. Luego se dejo estabilizar el sistema en las mismas condiciones de la simulación anterior.

2.6.6 Simulación M6r7q multicapas:

Para este compuesto se realizó una simulación análoga al estudio de M6R8 en multicapas partiendo de una estructura tipo fase esméctica A forzada a una temperatura de 350 K, teniendo como referencia la estructura del M6R8, que presenta una fase esméctica C en esas condiciones.

3. Resultados y Discusión

3.1 Análisis Térmico Diferencial

El DTA del compuesto M6R8 (ver figura 16) permite establecer que existe al menos una mesofase, ya que presenta 2 peaks claros de transición de fase. Sin embargo la microscopía de luz polarizada revela la existencia de 2 mesofases, esméctica A y esméctica C (ver figura 17). La transición es de segundo orden, ya que sólo se observa una leve variación de entalpía con Cp constante.

Figura 16. Análisis térmico Diferencial del monómero M6R8 en una rampa por calentamiento.

En la figura 16 se observan texturas de una mesofase SmA y SmC. La fase SmA se encuentra cerca del estado Isótropo y la fase SmC cerca del estado cristalino. Variaciones en el ángulo de inclinación de las moléculas, en la fase esméctica C, ocasionan la birrefringencia observada (figura 17a), en tanto que la orientación

homeótropa en la fase esméctica A produce la textura mas difusa observada (figura 17b).

Figura 17. Mesofases del M6R8 a) Fase Esméctica C a 61° C; b) Fase Esméctica A a 90° C.

Observando el DTA (ver figura 18) obtenido para el compuesto M6R7q se observa sólo un cambio de fase del estado sólido al isótropo, a los 46° C, no advirtiéndose la aparición de mesofases. Un análisis por microscopía de luz polarizada no revela texturas representativas de mesofases. Sólo se observa la fase cristalina y la líquida

Figura 18: Análisis térmico diferencial (DTA) para el monómero M6R7q. .

Figura 19: Análisis térmico Diferencial del polímero PM6R8.

El polímero PM6R8 (ver figura 19) presenta fases líquido cristalinas, obviamente a temperaturas más elevadas que para el monómero. Tanto el polímero como los compósitos no presentan texturas representativas de una fase esméctica específica. Luego su caracterización se realiza usando otras técnicas como la difracción de rayos X. Por DTA, en el caso del PM6R8-M6R8 33%, sólo se observa el punto de aclaramiento (figura 20).

Figura 20: DTA del composito PM6R8-M6R8.

Los datos obtenidos en la tabla 1, corresponden al peso molecular e índice de polidispersidad del PM6R8. Estos datos fueron obtenidos mediante Cromatografía de Permeación en Gel (GPC).

Tabla1: Datos del polímero PM6R8.

Peso molecular Promedio (<i>M</i> w)	Mw _{Ip=} Mn	Viscosidad Intrínseca
147868	1,27	38,8

3.2 Resultados Técnica piroeléctrica

Para realizar las curvas de respuesta eléctrica (γ) y polarización espontánea (Ps), se calibro el equipo con un estándar FLC 397, el cual posee una polarización espontánea conocida, Ps = 180 nC/cm² [41]. Con dicho valor es posible determinar un factor de conversión para el voltaje piroeléctrico que el amplificador lock-in arroja, y evita el determinar la constante dT/dt necesaria para la calibración del sistema (ver cap. 1.2)

Es conocido que para la mezcla PM6R8-M6R8 33% (ver figura 21) se observa una respuesta eléctrica y una polarización interesantes. De hecho se considera como un estándar secundario en la técnica de piroelectricidad, ya que corresponde a homólogos de los sistemas que se están estudiando.

Figura 21: Respuesta eléctrica del composito PM6R8-M6R8 33%

Sin embargo, al utilizar M6R7q se modifican completamente las propiedades ferroeléctricas del sistema. Corresponde a una estructura similar al monómero M6R8, con un grupo metilo lateral en la cadena oxialifática que imparte la quiralidad al sistema. Dicha modificación estructural, cambia las propiedades eléctricas que se pueden observar en el sistema al mezclarlo con PM6R8. El intercambio total de M6R8 por M6R7q, produce una disminución a la mitad de la señal piroeléctrica, como se observa en la figura 22a. El DTA en la figura 22b, indica que existe una mezcla homogénea con un punto de aclaramiento bastante menos definido.

Figura 22: Compósito PM6R8-M6R7q (66:33): a) grafico de polarización (Ps) y Respuesta eléctrica (γ) v/s Temperatura; b) DTA.

Para verificar la modificación que se produce en el sistema por la incorporación de un grupo metilo, se comprobaron porcentajes del 10 y 30%, respectivamente, guardando la proporción total de un 33 % de huésped en la red polimérica con M6R8. Se constató que prácticamente no hay variación en las propiedades observadas al reemplazar en

cualquiera de dichas proporciones con el monómero quiral, esto es una disminución de casi un 40% en la señal observada (Figura 23).

Figura 23: Gráfico de polarización (Ps) y Respuesta eléctrica (γ) v/s Temperatura para a) PM6R8-M6R8 3%-M6R7q 10% b) PM6R8-M6R8 3%-M6R7q 30%

Los DTA de los compósitos enseñan que la incorporación del nuevo huésped modifica la estructura del mismo ya que sólo para cantidades iguales o menores a 10% de M6R7q es posible observar claramente la transición al isótropo (figura 24).

a)

b)

Figura 24: DTA para a) PM6R8-M6R8 3%-M6R7q 10% b) PM6R8-M6R8 10%-M6R7q 30%

En la figura 25a, se muestran las curvas de histéresis obtenidas para la mezcla de PM6R8-M6R7q-33% a 150°C, la que se compara con la histéresis obtenida para el PM6R8-M6R8-33% en la figura 25b, en las mismas condiciones En ambos casos la forma de la curva muestra un comportamiento de tipo antiferroeléctrico. La única diferencia, atribuible al grupo metilo lateral, es una asimetría en las ramas de la histéresis. La explicación de ello puede atribuirse a distintos tiempos de respuesta, dependiendo del sentido del campo que se aplica. Luego, queda claro que ambos compósitos presentan una disposición de sus dipolos en dirección opuesta antiparalelas, como ocurre en un sistema antiferroeléctrico. La influencia del grupo metilo puede atribuirse entonces no solo en disminuir la señal, sino que también en un aumento de viscosidad del sistema en un sentido, en donde probablemente el grupo metilo disturba la rotación libre de las cadenas laterales.

Figura 25. Curva de Histéresis para los compósitos a) PM6R8-M6R7q 33%; b) PM6R8-M6R8 33%.

3.3 Resultados Simulación

Se comprobó que para fases totalmente ordenadas en modelos forzados los valores calculados eran del orden de 1. El programa Moscito 4 no presenta una herramienta que facilite el cálculo del parámetro de orden durante el cálculo o posteriormente para el análisis de las trayectorias. Para ello se creo una herramienta en lenguaje C que permite utilizar las bibliotecas del programa Gromacs para acceder a las posiciones de todos los átomos. Fue creado de forma genérica de tal modo que permite establecer un vector entre 2 átomos dentro de la topología y luego, conociendo el número total de moléculas, es posible establecer ese mismo vector para el resto de las moléculas. La suma de todos estos vectores determina la dirección y magnitud del vector director n. Luego, se obtiene el promedio de los ángulos de cada vector molecular respecto del vector n, permitiendo obtener el parámetro de orden usando las fórmulas 9, 10 y 11.

En dinámica molecular es necesario asignar átomos con los cuales se determinarán vectores representativos del eje molecular. Para definirlo es necesario establecer una referencia dentro de la topología molecular. Para el caso del compuesto M6R8 se prueban 3 opciones: el enlace C-N dentro del grupo mesógeno, los carbonos externos de los bencenos del grupo mesógeno o los oxígenos terminales del grupo mesógeno como vectores de referencia del eje molecular más largo. Dentro de estas opciones, obviamente la menos representativa corresponde al enlace C-N, siendo las otras dos comparables entre si.

De esta forma y aplicando los rangos experimentales para el parámetro de orden, es posible determinar qué sistemas forman capas y cuáles no lo hacen. Siguiendo además el ángulo de inclinación theta (ver figura 3b) y su variación, será posible determinar la formación de capas ortogonales e inclinadas.

3.3.1 Simulación en monocapa de M6R8 y M68R

Para la simulación de la monocapa de M6R8 existente se encontró que presenta un parámetro de orden de aproximadamente 0,6. Dicho valor es un poco alto para una fase nemática, lo que se corrobora con los datos experimentales ya que M6R8 no

presenta esta fase. Luego dicho valor debe asociarse a la formación de una monocapa en la fase esméctica A. El compuesto M68R presenta un valor menor, con un promedio de 0.4 a T=370 K, lo que concuerda experimentalmente con una fase nemática. Se puede observar la visualización como resultado de la simulación en la figura 26 para esta mesofase.

Figura 26: M68R nemático con su vector director esquematizado

3.3.2 Simulación M6R8 en Multicapas

Para el compuesto M6R8 al simular multicapas durante 4 ns a 350 K, se puede observar una fase esméctica C con conformación anticlínica en algunas de sus capas. Sin embargo esto se puede deber a que al partir de una estructura forzada se requiere de mucho más tiempo de simulación para saber si la capas estarán configuradas de forma sinclínica o anticlínica. Al dejar descansar el sistema por 5 ns más se pudo observar una fase anticlínica (figura 27a). En la simulación del M6R8 a 360 K durante 2 ns después de llegar al equilibrio, se observan algunas capas con inclinación de 8,23 grados en promedio y el resto con una inclinación prácticamente nula, de 0,71 grados promedio. Experimentalmente se espera una capa esméctica A, lo que concuerda con el último valor obtenido para esas capas. Probablemente si el sistema se simula 10 ns más este alcance la conformación esperada. Si no es así sería necesario ajustar los parámetros del campo de fuerza molecular.

Figura 27: a) Fase esméctica C anticlínica obtenida por modelación molecular; b) modelo de dicha fase; c) fase esméctica C sinclínica obtenida por modelación molecular; d) modelo de dicha fase.

El parámetro de orden para el compuesto M6R8 se midió de 3 formas: utilizando el enlace C-N del grupo mesógeno, utilizando los carbonos terminales de los bencenos del grupo mesógeno (36-57) y los oxígenos que encierran al grupo mesógeno (38-55). En las figuras 28a se puede observar el espesor de intercapas en función del tiempo de la simulación de los tres tipos. De dichos cálculos puede determinarse que el uso de los carbonos terminales y de los oxígenos entrega el mismo comportamiento, lo cual indica que ambos representan de forma fidedigna el eje molecular más largo del

compuesto en estudio. Por otro lado en la figura 28b se observa el ángulo de amplitud correspondiente al parámetro de orden, similar a lo que ocurre en la figura 28a.

Figura 28: a) Distancia entre capas; b) ángulo del monómero M6R8.

En la tabla que se muestra a continuación, se observan los valores obtenidos por simulación en comparación con aquellos obtenidos experimentalmente. Se observa que al utilizar los vectores C-C ó O-O se obtienen valores cercanos a los valores experimentales [42].

	Angulo θ	Distancia capas	Distancia interna
Vector C-C	15,72	35,89	32,73
Vector O-O	15,62	35,89	32,76
Valor Experimental	12,53	34,06	

Tabla Resumen

3.3.3 Simulación multicapas M6R7q

Para el compuesto M6R7q a partir de una fase esméctica A forzada a T=350 K, se observa durante la simulación de 2 ns, que no se conserva el ordenamiento líquido cristalino, inclusive utilizando el parámetro de orden de una fase nemática, para el que se desarrolla un valor de 0,19 partiendo de una situación ideal de 1,0 (ver figura 29). Esto se corrobora con los datos experimentales presentados anteriormente que muestran que el M6R7q no desarrolla fases líquido cristalinas, sino que es líquido a esa temperatura. Debería esperarse entonces un valor de éste parámetro de prácticamente cero, típico para un estado líquido. Al continuar la simulación por 2 ns más el parámetro sólo disminuyo a 0,18. Es recomendable el poder estudiar el sistema por unos 10 a 20 ns más para saber si disminuye a cero o si mantiene un cierto valor. Si sucede esto último podría deberse a un defecto en el campo de fuerzas y sería necesario ajustarlo.

Figura 29: Parámetro de orden del monómero M6R7q.

4. Conclusiones

El esquema utilizado de síntesis convergente permitió obtener monómeros con un centro quiral y su respectivo polímero con buen rendimiento.

La caracterización por Microscopía de Luz Polarizada complementa eficientemente las técnicas calorimétricas o DTA, permitiendo identificar la transición de fase S_c - S_A

El monómero M6R7q no presenta características líquido cristalino, por lo tanto afectará negativamente en la señal eléctrica y polarización del sistema al formar un compósito con el polímero PM6R8.

Compósitos de M6R7q y M6R8 con PM6R8 presentaron un comportamiento similar, en donde la polarizabilidad encontrada disminuye drásticamente la señal del sistema en las proporciones estudiadas.

Un sistema de cálculo para dinámica molecular fue implementado y exitosamente comprobado con datos experimentales de moléculas en estudio.

La simulación por dinámica molecular demostró ser una herramienta eficiente para predecir características líquido cristalinas en nuestros sistemas, ya que para el monómero M6R7q no se observó la formación de mesofases, de la misma manera que lo observado con la molécula obtenida en laboratorio.

El parámetro de orden, nos da información de la mesofase presente en el sistema, la que está relacionada con el monómero en estudio.

El mayor éxito de la simulación fue obtener valores de ángulo de inclinación y espesor de la capa, similares a los experimentales, por lo que es una muy buena herramienta para el estudio de estos materiales.

BIBLIOGRAFIA

[1] S.B. Lang, Ferroelectrics, 7, (1974), 231.

[2] G. Friedel, Ann. Phys. (Fr), 18, (1922), 273.

[3] I. Dierking, Textures of liquid Crystals,

[4] A R.B. Meyer, L. Liebert, L. Strzelcki, P. Keller, J. Phys., 36, L69, 1975.

[5] B E. A. Soto Bustamante, S. V. Yablonsky, L. A. Beresnev, L. M. Blinov, W. Haase, W. Dultz, and Yu. G. Galyametdinov, "Methode zur Herstellung von polymeren pyroelektrischen und piezoelektrischen Elementen", German Patent: No. 195 47 934.3 (20.12.95) DE195 47 934 A1, 26.06.97, European Patent: EP 0 780 914 A1 25.06.97, Japan Patent: JP 237921/907 09.09.97, US Patent: US 5 833 833, 10.11.98.

[6] C E. A. Soto Bustamante, S. V. Yablonsky, B. I. Ostrovskii, L. A. Beresnev, L. M. Blinov, W. Haase, <u>Liquid Crystals</u>. 21: 829, 1996.

[7] D T. Niori, T. Sekine, J. Watanabe, T. Furukawa, H. Takezoe, J. Mater. Chem., 6, 1232, 1996.
[8] E.A.Soto Bustamante, P.A.Navarrete Encina, T.Weyrauch and R.Werner Ferroelectric, 243, (2000) 125-135

[9] Information for user of Mettler Toledo Thermal Analysis Systems- December 1997.

[10] USER COM N°7. Mettler Toledo Thermal analysis system (1998) 1-5.

[11] B. J. Alder and T. E. Wainwright J. Chem. Phys. 27, 1208 (1957)

[12] B. J. Alder and T. E. Wainwright J. Chem. Phys. 31, 459 (1959)

[13] B. J. Alder and T. E. Wainwright J. Chem. Phys. 33, 1439 (1960)

[14] W. W. Wood and F. R. Parker J. Chem. Phys. 27, 720 (1957)

[15] A. Rahman Phys. Rev. 136A, 405 (1964)

[16] L. Verlet Phys. Rev. 159, 98 (1967)

[17] B. J. Alder and T. E. Wainwright Phys. Rev. A 1, 18 (1970)

[18] L. Verlet Phys. Rev. 165, 201 (1968)

[19] L. Verlet Phys. Rev. 159, 98 (1967) (algoritmo Verlet)

[20] MOSCITO4, D. Paschek and Geiger, Department of Physical Chemistry, University of Dormund, (2002).

[17] M. P. Allen and D. J. Tildesley Computer Simulation of Liquids Oxford University Press, Oxford (1989) (Leapfrog algorithm)

[21] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berensden J. Comput. Phys. 23, 327 (1977) (Shake algorithm)

[22] A. J. Stone The Theory of Intermolecular Forces Oxford University Press, Oxford (1996) (teoría de las fuerzas intermoleuclares)

[23] N. L. Allinger and U. Burkett Molecular Mechanics American Chemical Society, Washington DC (1982) (electrostatic interactions)

[24] J. E. Lennard-Jones Proc. R. Soc. Lond. Ser. A 106, 463 (1924) (Potencial de Lenard Jones) [25] A. R. Leach. Molecular Modelling: Principles and Applications,131,A. W. Longman Limited, Edinburgh, England (1996)

[26] G. Burns, R. Daoud, J. Vaigl, LAM a open cluster environment for MPI, Proceedings of Supercomputer Forum, 379-386, University of Toronto, 1994.

[27] Berendsen, H.J.C., van der Spoel, D. van Drunen, R GROMACS: A message-passing parallel molecular dynamics implementation. Comp. Phys. Comm. 91:43-56, 1995

[28] E. Lindahl, B. Hess, D. van der Spoel, Gromacs 3.0 a package for molecular simulation and trayectory analysis, J. Mol. Mod. 7:306-317, 2001.

[29] D. Paschek, S.Y. Yakovenko, A.A. Muravski, A. Geiger: Atomistic Modelling of Ferroelectric Liquid Crystals, Ferrolelectrics 212, 45-53 (1998).

[30] G. Krömer, D. Paschek, A. Geiger: Molecular Dynamics Simulation Study of Isotropic and Nematic PCH-5, Ber. Bunsenges. Phys. Chem. 97, 1188-1192 (1993)

[31] Humphrey, W., Dalke, A. and Schulten, K., "VMD - Visual Molecular Dynamics", J. Molec. Graphics, 1996, vol. 14, pp. 33-38.

[32] Paul J Turner, Evgeny Stambulchik, Xmgrace, analysis and plotting package, http://plasmagate.weizmann.ac.il/Grace, 1996-2005.

[33] Abdul-Rahman A., GABEDIT, Université Claude Bernard Lyon1 Laboratoire de Spectrométrie Ionique et Moléculaire, (2000-2005).

[34] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M.

Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.

[35] M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga, K.A.Nguyen, S.J.Su, T.L.Windus, M.Dupuis, J.A.Montgomery *J. Comput. Chem.* 14, 1347-1363 (1993).

[36] The Massively Parallel Quantum Chemistry Program (MPQC), Version 2.2.3, Curtis L. Janssen, Ida B. Nielsen, Matt L. Leininger, Edward F. Valeev, Edward T. Seidl, Sandia National Laboratories, Livermore, CA, USA, 2004.

[37] J. J. P. Stewart. MOPAC: A General Molecular Orbital Package. Quant. Chem. Prog. Exch., 10:86, 1990

[38] F. Eikelschulte, S. Y. Yakovenko, D. Paschek, A. Geiger: Electrostatic Properties of Cyanocontaining Mesogens, Liq. Cryst. 27, 1137-1146 (2000).

[39] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, T. Fox, J. W. Caldwell, and P. A. Kollman J. Am. Chem. Soc. 117, 5179 (1995).

[40]J. Wang, R. M. Wolf, J. M. Cadwell, P. A. Kollman, D. A. Case, Development and testing of a Amber Force Field, Journal of Comp. Chemistry, 25, 1157-1174, 2004.

[41] S.V. Yablonskii, E.I. Kats, M.V. Kozlovskii, T. Weyrauch, E.A. Soto Bustamante, D.B. Subachius, W. Hasse. Piezoelectric effects in poled amourphous. Mol. Mat, Vol 3, pp 311-318, 1994.

[42] J. A. Barker and R. O. Watts Molec. Phys. 26, 789 (1973) (PME algorithm)

[43] J. Eastwood and R. Hockney J. Comput. Phys. 16, 342 (1974) (PPME algorithm)

[44] H. J. C. Berensden, J. P. M. Postma, W. F. V. Gunsteren, A. D. Nola, and J. R. Haak J. Chem. Phys., 81, 3864 (1984).

[45] L.M.Blinov Advanced Liquid Crystal: A special Volume of Advanced in Chemical Physics, 113, (2000), 78-94 y 146-154.

[46] E. A. Soto-Bustamante, D. Saldaño-Hurtado, R. O. Vergara-Toloza, P.A. Navarrete-Encina, Liquid Crystals, 30, 1, 17-22, (2003

ANEXO ANEXO: CAMPO DE FUERZAS PARA M6R8

#-# # FFPARSE generated # # MOSCITO SYSTEM-File # # forcefield file : /home/laboratorio/moscito/forcefield/lib/LABC30postamber94.ff # topology data file : m6r8.mmf # #------begin{sites} # charge (e) mass (g/mol) hc_1 0.182294 1.008000 hc_2 0.169983 1.008000 ha_3 0.189136 1.008000

ct 4	-0.487209	12.010000
hc_5	0.181956	1.008000
ca 6	-0.385526	12.010000
ca 7	-0.047473	12.010000
ha 8	0.228725	1.008000
hc_9	0.172089	1.008000
h1 10	0.158758	1.008000
hc_11	0.159692	1.008000
c 12	0.809429	12.010000
ha 13	0.209610	1.008000
os 14	-0.646283	16.000000
ha 15	0.211117	1.008000
o 16	-0.586533	16.000000
hc 17	0.172151	1.008000
ct 18	-0.330336	12.010000
ca 19	-0.319071	12.010000
hc_20	0.159232	1.008000
ct 21	0.010279	12.010000
ca 22	-0.181225	12.010000
ct 23	-0.322849	12.010000
h4 24	0.191814	1.008000
h1_25	0.160593	1.008000
hc_26	0.173733	1.008000
ct_27	0.012268	12.010000
hc_28	0.156287	1.008000
hc_29	0.152371	1.008000
h1_30	0.180630	1.008000
hc_31	0.153679	1.008000
hc_32	0.156042	1.008000
hc_33	0.152805	1.008000
ct_34	-0.322820	12.010000
hc_35	0.155674	1.008000
cb_36	0.478913	12.010000
hc_37	0.164296	1.008000
os_38	-0.670634	16.000000
h1_39	0.154395	1.008000
cb_40	-0.141718	12.010000
cm_41	0.189511	12.010000
ct_42	-0.324287	12.010000
hc_43	0.179122	1.008000
ct_44	-0.322112	12.010000
ha_45	0.216882	1.008000

ct_46 ha_48 ca_49 ca_50 ct_51 ct_52 h1_54 os_55 ct_57 cb_58 n*_66 hc_66 ha_68 hc_71 hc_77 hc_77 hc_78 ot_78 hc_77 hc_78 hc_77	-0.478653 0.162380 0.207940 -0.253116 -0.215049 -0.303259 -0.301623 0.180748 -0.304502 -0.677719 -0.303219 0.437280 0.244580 -0.322683 -0.681498 -0.322683 -0.681498 -0.332903 -0.284744 0.013468 -0.197418 0.451504 0.216585 0.177777 0.174213 0.230846 0.156350 0.153094 0.520792 0.156284 -0.778308	12.010000 1.008000 12.010000 1.008000 1.0
h1_80 end{sites}	0.155806	1.008000
begin{opls_ hc_1 hc_2 ha_3 ct_4 hc_5 ca 6	lj} # sigma 2.6495 2.6495 2.5996 3.3997 2.6495 3.3997	 (A) epsilon (K) 7.9043 7.5519 55.0782 7.9043 43.2973
ca 7	3.3997	43.2973

ha_8

2.5996 7.5519

hc_9	2.6495	7.9043
h1_10	2.4714	7.9043
hc_11	2.6495	7.9043
c_12	3.3997	43.2973
ha_13	2.5996	7.5519
os_14	3.0000	85.5877
ha 15	2.5996	7.5519
o 16	2.9599	105.7260
hc 17	2.6495	7.9043
ct 18	3 3997	55 0782
ca 19	3 3997	43 2973
hc_20	2 6495	7 9043
ct 21	3 3997	55 0782
ca 22	3 3007	43 2073
ct_{23}	3 3007	55 0782
b4 24	2 5105	7 5510
h4_24	2.5105	7.0042
ho 26	2.47 14	7.9043
nc_20	2.0495	7.9043
CL_27	3.3997	35.0762
nc_28	2.6495	7.9043
nc_29	2.6495	7.9043
h1_30	2.4/14	7.9043
hc_31	2.6495	7.9043
hc_32	2.6495	7.9043
hc_33	2.6495	7.9043
ct_34	3.3997	55.0782
hc_35	2.6495	7.9043
cb_36	3.3997	43.2973
hc_37	2.6495	7.9043
os_38	3.0000	85.5877
h1_39	2.4714	7.9043
cb_40	3.3997	43.2973
cm 41	3.3997	43.2973
$ct \overline{4}2$	3.3997	55.0782
hc 43	2.6495	7.9043
ct 44	3.3997	55.0782
ha 45	2.5996	7.5519
ct 46	3.3997	55.0782
hc_47	2.6495	7.9043
ha_48	2 5996	7 5519
ca 49	3 3997	43 2973
ca_50	3 3997	43 2973
ct 51	3 3997	55 0782
ct_52	3 3997	55 0782
h1 53	2 4714	7 9043
ct 54	3 3007	55 0782
0 55	3 0000	85 5877
03_00 ct 56	3 3007	55 0782
ct_50 ch_57	3 3007	13 2073
cb_57	2 2007	43.2973
CD_56	2.3997	43.2973
CL_59	3.3997	05.0702
n°_60	3.2500	85.5877
ca_61	3.3997	43.2973
ca_62	3.3997	43.2973
ct_63	3.3997	55.0782
ca_64	3.3997	43.2973
Cb_65	3.3997	43.2973
hc_66	2.6495	7.9043
ha_67	2.5996	7.5519
ha_68	2.5996	7.5519
hc_69	2.6495	7.9043
hc_70	2.6495	7.9043
ha_71	2.5996	7.5519
hc_72	2.6495	7.9043

#-----begin{molecule}

label molecule

begin{con	figuration}			
hc_1	-13.7357	-2.7123	-1.2404 #	1
hc ²	-15.1605	-3.3205	-0.4068 #	2
ha 3	-16.8822	-1.6438	-0.1241 #	3
ct 4	-14.3277	-2.6314	-0.3356 #	4
hc 5	-13.6945	-2.9425	0.4885 #	5
ca 6	-16.1084	-0.8998	-0.0500 #	6
ca 7	-14.8300	-1.2244	-0.1349 #	7
ha 8	-16.4108	0.1194	0.0957 #	8
hc 9	-10.2077	-0.8397	-1.1012 #	9
h1_10	-5.1059	-0.3851	-1.1674 #	10
hc_11	-7.6578	-0.6070	-1.1456 #	11
c 12	-13.8333	-0.1098	-0.0188 #	12
ha 13	-3.0895	-1.3606	-0.4557 #	13
os_14	-12.5863	-0.5449	-0.1152 #	14
ha_15	-0.7036	-1.8038	-0.3319 #	15
o 16	-14.1111	1.0370	0.1417 #	16
hc 17	-10.1591	-1.0676	0.6281 #	17
ct 18	-10.2238	-0.3132	-0.1510 #	18
ca 19	-2.4101	-0.5525	-0.2737 #	19
hc_20	-7.6086	-0.8405	0.5809 #	20
ct 21	-5.1639	0.1512	-0.2249 #	21
ca 22	-1.0546	-0.7940	-0.2043 #	22
ct 23	-7.6864	-0.0798	-0.1939 #	23
h4_24	1.5282	-1.1820	-0.0541 #	24
h1_25	-5.0385	-0.5645	0.5816 #	25
hc_26	9.8462	-1.7423	-0.0934 #	26
ct_27	-11.5455	0.4202	-0.0179 #	27
hc_28	17.5198	-1.6641	-0.9229 #	28
hc_29	14.9412	-1.6917	-0.6401 #	29
h1_30	-11.6730	1.1564	-0.8003 #	30
hc_31	16.0831	0.1855	-1.8303 #	31
hc_32	12.3987	-1.7161	-0.3693 #	32
hc_33	13.5396	0.1623	-1.5610 #	33
ct_34	-9.0300	0.6394	-0.0585 #	34
hc_35	11.0010	0.1351	-1.2920 #	35
cb_36	-2.8577	0.7594	-0.1081 #	36
hc_37	-9.1088	1.3986	-0.8339 #	37
os_38	-4.1472	1.1232	-0.1629 #	38
h1_39	8.4553	0.0872	-1.0232 #	39
cb_40	-0.1204	0.2117	0.0222 #	40
cm_41	1.2986	-0.1307	0.0837 #	41
ct_42	-6.4936	0.8726	-0.1006 #	42
hc_43	-6.5506	1.6232	-0.8830 #	43
ct_44	9.9012	-0.7464	0.3365 #	44
ha_45	5.6352	-2.0718	1.5885 #	45
ct_46	17.5136	-0.6743	-0.4751 #	46
hc_47	18.3565	-0.1255	-0.8745 #	47
na_48	3.2569	-1.4/11	1.5141 #	48

$\begin{array}{c} ca_49\\ ca_50\\ ct_52\\ h1_52\\ ct_55\\ cb_57\\ cb_58\\ ct_59\\ ct_60\\ ca_63\\ cb_66\\ cb$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1849 .8461 .0495 .6927 .0260 .7923 .7176 .3727 .3119 .0016 .7165 .7872 .7872 .7923 .0257 .1283 .5294 .1679 .4474 .0351 .4043 .8735 2.7914 0.7956 0.8293 1.0476 0.8293 1.0248	$\begin{array}{c} 1.0755 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c} 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 57\\ 58\\ 59\\ 60\\ 162\\ 63\\ 64\\ 66\\ 67\\ 68\\ 970\\ 71\\ 72\\ 73\\ 74\\ 75\\ 77\\ 78\end{array}$
oh_79 h1_80	0.2168 2 8.5987 0	5578 .9653	0.3995 # 0.4938 #	79 80
end{configi begin{z-ma	iration} trix}			
3 6 3 7 6 4 7 1 4 12 7 2 4 5 4 8 6 14 12 27 14 18 27 30 27 9 18 37 34 36 34 37 34 66 34 11 23 20 23 #begin{context	1.0759 1.3217 3 1.5074 6 1.0843 7 1.4998 4 1.0833 7 1.0833 7 1.0848 7 1.0731 7 1.3242 7 1.1908 7 1.4228 12 1.5174 14 1.0818 14 1.0819 14 1.0865 27 1.5301 27 1.5299 18 1.0884 18 1.0884 34 1.0886 34 1.5292 34	121.422(124.0638 111.2662 118.851 110.2599 111.1633 120.9637 112.087 124.826 117.45 107.65 109.02 108.963 108.93 108.94 111.92 112.77 109.56 109.53 109.15 109.16 112.75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	546 9423 2106 914 7988 3544 9.372 .9436 9.8999 9.7841 3.9882 3.5635 .1374 9.9523 .6193 .2082 9.5291 3.0403 7.8559 9.9682
# 1 4	1.0900			

			1.0000
#	2	4	1.0900
#	3	6	1.0800

$\begin{array}{c} 21\\ 10\\ 43\\ 92\\ 53\\ 83\\ 91\\ 13\\ 12\\ 14\\ 16\\ 71\\ 40\\ 75\\ 50\\ 84\\ 49\\ 55\\ 52\\ 63\\ 94\\ 28\\ 55\\ 55\\ 70\\ 24\\ 33\\ 52\\ 97\\ 51\\ 13\\ 74\\ 82\\ 74\\ 72\\ 75\\ 29\\ 75\\ 13\\ 74\\ 82\\ 74\\ 72\\ 75\\ 75\\ 29\\ 75\\ 13\\ 74\\ 82\\ 74\\ 72\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75$	$\begin{array}{c} 4 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 3 \\ 3 \\ 1 \\ 3 \\ 1 \\ 2 \\ 2 \\ 2 \\ 4 \\ 0 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 4 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 5 \\ 0 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	1.5179 1.0860 1.0857 1.0860 1.0856 1.4079 1.3410 1.3960 1.0713 1.3869 1.3786 1.0767 1.3912 1.4610 1.4105 1.0767 1.3912 1.4610 1.4105 1.0767 1.3293 1.4102 1.3849 1.2627 1.3293 1.4102 1.3848 1.0752 1.3842 1.3782 1.3782 1.3782 1.3782 1.3782 1.3782 1.3782 1.3782 1.3782 1.3782 1.3782 1.3782 1.3782 1.3782 1.3782 1.3842 1.3869 1.0867 1.5298 1.0884 1.5298 1.0884 1.5298 1.0888 1.0887 1.5288 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888 1.0888	242124421869992260404040680555564455556464444999966464242121212212212122121	112.4765 110.6468 108.3897 108.4560 110.7137 107.5100 120.5895 123.9502 121.7142 120.4687 118.2873 118.6086 122.8066 119.3129 117.8347 119.8251 115.3020 123.6202 122.2939 120.6716 123.4126 120.0152 120.2939 120.6716 123.4126 120.0152 112.909 120.8967 120.5490 115.9988 119.1590 120.5490 115.9988 119.1590 120.5490 115.9988 119.1590 120.5490 115.9988 119.1590 120.5490 115.9988 119.1590 120.5490 115.9988 119.1590 120.5490 115.9988 119.1590 120.5490 115.9988 119.1590 120.5490 115.9988 119.1590 120.4902 109.8233 107.8516 108.4565 110.6813 112.4063 109.2137 113.2268 109.3132 109.2167 113.0223 111.149 109.3396 111.149	123002313131311559222241646484445573232222333332323232	-58.6661 58.3567 -63.7667 -179.3712 -61.6500 178.3911 -66.4605 8.2732 -0.1541 -179.6280 179.5307 -0.2701 179.6616 -0.1611 179.6297 -179.7915 -1.9248 -40.0407 -1.3584 176.4479 -179.5081 1.2954 -177.8511 0.9328 -178.4504 -178.7282 -59.9496 179.6583 -62.4189 178.0559 59.6701 63.1873 -58.6898 179.4198 -179.2696 -64.056 58.0254 64.0964 -179.9334 -57.9696 -64.1323 -179.9326 -64.1463 179.9112 -57.8833 -62.1245 -178.0935 57.9823 -178.0935
46	5∠ 51	1.5287	52	113.0323	29	-57.8833
28 74	46 51	1.0864	51 46	111.1149	31 28	-62.1245
47	46	1.0822	51	111.2660	31	57.9823
72	46	1.0864	51	111.1134	31	178.0851
67	62	1.0725	57	121.1797	49	179.3306
68	64	1.0747	58	118.8629	50	-178.5653
//	79 matri	0.9591	65	109.7198	40	0.1913
Griu{Z·	mau	ivl				

4	5	1.0900
4	7	1.5100
6	7	1.4000
6	8	1.0800
7	12	1.4100
	4 4 6 7	4 5 4 7 6 7 6 8 7 12

#	9	18	1.0900
#	10	21	1.0900
# #	11	23	1.0900
#	12	16	1.2300
#	13	19	1.0800
#	14	27	1.4100
#	15	22	1.0800
# #	18	27	1.0900
#	18	34	1.5300
#	19	22	1.4000
#	19	36	1.4000
# #	20	23	1.0900
#	21	38	1.4100
#	21	42	1.5300
#	22	40	1.4000
# #	23	34 42	1.5300
#	23	41	1.0800
#	26	44	1.0900
#	27	30	1.0900
#	27	53	1.0900
#	20 29	40 52	1.0900
#	31	51	1.0900
#	32	56	1.0900
#	33	54	1.0900
# #	34 34	37 66	1.0900
#	35	59	1.0900
#	36	38	1.3600
#	36	61	1.4000
# #	39 40	03 41	1.0900
#	40	65	1.3700
#	41	60	1.3600
#	42	43	1.0900
# #	42 11	69 50	1.0900
#	44	63	1.5300
#	44	70	1.0900
#	45	49	1.0800
# #	46	4/ 51	1.0900
#	46	72	1.0900
#	48	50	1.0800
#	49	50	1.4000
#	49 50	5/	1.4000
#	51	52	1.5300
#	51	74	1.0900
#	52	54	1.5300
# #	52 54	73 56	1.0900
# #	54 54	50 76	1.0900
#	55	. 0 57	1.3600
#	55	63	1.4100
#	56	59	1.5300
# #	50 57	75 62	1.0900
#	58	60	1.3700
#	58	64	1.4000

# 59 78 # 61 65 # 61 71 # 62 67 # 63 80 # 64 68 # 65 79 # 77 79 #end{constra	1 1 1 1 1 1 0 aints	.090 .400 .080 .080 .090 .080 .360 .960 }	0 0 0 0 0 0 0 0	
begin{bonds] harmonic	$\{12344667901112123145171889902121222222222222223333344556679001112121314517188990212122222222222222233333445566390004442244444556666666666666666666666666$	$\begin{array}{c} 4 \\ 4 \\ 6 \\ 5 \\ 7 \\ 7 \\ 8 \\ 12 \\ 18 \\ 12 \\ 21 \\ 16 \\ 19 \\ 7 \\ 22 \\ 18 \\ 7 \\ 4 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 \\ 23 $	2846.4800 2846.4800 2846.4800 2846.4800 2846.4800 2846.4800 2846.4800 2846.4800 2846.4800 2846.4800 2846.4800 2846.4800 2595.3200 2595.3200 264700 2846.4800	1.0900 1.0900 1.0900 1.5100 1.4000 1.4000 1.0900 1.4100 1.0900 1.0900 1.3600 1.2300 1.4100 1.0800 1.4100 1.5300 1.5300 1.4000 1.5300 1.4000 1.5300 1.4000 1.5300 1.4000 1.5300 1.4000 1.5300 1.0900
nannonic	40	49	0012.0200	1.0000

harmonic harmonic	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 2846 2595 2595 2595 3926 3926 3926 3926 2595 2846 2595 2846 2595 2846 2595 2846 32679 2595 2846 3926 36506 3926 3926 3926 3926 3926 3926 3072 3072 3072 3072 3072 3072 3072 3072 3072 4629 	4800 3200 4800 4700 4700 4700 3200 4700 3200 4800 4800 4800 4800 4800 4800 4800 4800 4800 4700 5200 4700 5200 4800 4700 5200 4800 5200 4800 5200 4800 5200 4800 5200	1.0900 1.5300 1.0900 1.4000 1.4000 1.4000 1.5300 1.0900 1.5300 1.0900 1.5300 1.0900 1.3600 1.4100 1.5300 1.0900 1.4000 1.4000 1.4000 1.0900 1.4000 1.0900 1.4000 1.0900 1.4000 1.0800 1.0800 1.0800 1.0800 1.0800 1.0800 1.0800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 293. 5 293. 7 418. 7 418. 7 418. 7 293. 7 418. 7 293. 6 586. 2 586. 2 586. 2 586. 2 586. 2 586. 2 586. 2 586. 2 586. 2 586. 2 7418. 3 414. 34 413. 27 418. 34 413. 22 29. 36 52. 38 41. 42 41. 42 41. 42 41. 42 41. 42 41. 42 41. 42 41. 42 41. 43. 42. 44. 41.	0200 0200 6000 0200 0200 0200 0200 0200 0200 0400 .0400 2.7600 9.7600 9.7600 9.7600 3.0200 3.6000 8.6000 3.0200 7.4400 3.0200 7.4400 3.0200 8.60000 8.6000 8.60000 8.6000 8.6000 8	109.500 109.500 109.500 109.500 120.000 120.000 120.000 120.000 120.000 120.000 120.000 120.000 120.00 120.00 120.00 120.00 120.00 120.00 109.55 100.55 109.55 1000	00 00 00 00 00 00 00 00 00 00 000 000

$\begin{array}{c} 15 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 1 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
222332333277777777744444444444444444444
$\begin{array}{c} 400\\ 2342\\ 3422\\ 803\\ 530\\ 532\\ 376\\ 676\\ 668\\ 81\\ 16\\ 636\\ 65\\ 46\\ 60\\ 23\\ 46\\ 60\\ 23\\ 46\\ 69\\ 93\\ 70\\ 70\\ 71\\ 51\\ 21\\ 22\\ 20\\ 57\\ 79\\ 88\\ 86\\ 24\\ 24\\ 24\\ 41\\ 5\\ 5\\ 5\\ 7\\ 5\\ 7\\ 5\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 5\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$
293.0200 527.4400 293.0200 418.6000 527.4400 527.4400 527.4400 527.4400 527.4400 527.4400 527.4400 527.4400 527.4400 293.0200 418.6000 418.6000 418.6000 418.6000 293.0200 418.6000 293.0200 418.6000 293.0200 418.6000 293.0200 527.4400 <t< td=""></t<>
120.0000 120.0000 109.5000 109.5000 109.5000 109.5000 109.5000 109.5000 109.5000 109.5000 109.5000 109.5000 109.5000 109.5000 109.5000 109.5000 120.0000 120.0000 120.0000 120.0000 123.6000 109.5000 100

51 54 33 33 52 52 56 57 32 32 32 54 59 49 49 55 50 50 60 35 35 35 44 44 56 41 36 65 57 64 39 39 39 44 44 55 88 82 40 40 61 65 end{ansistantic end{ansistantic	$\begin{array}{c} 5224455556666667778888999999961112223333344445557788889999999961112222333333444455579888999999999611112222333333444455579888999999999999611112222333333444465559999999999999999$	735260 576657665 577655755622006444575677755627755622006444577577556220077667745588002686667777755627775565777667745580558002666677777757565777667745580558002666677777777777777777777777777777777	33255555349595552204445335335114774505002331997	418 418 418 293 334 418 293 418 293 418 293 418 293 418 293 418 293 418 293 418 5527 5586 527 5586 527 5586 527 5586 527 5293 293 293 293 293 293 293 293 293 293	.6000 .6000 .6000 .2000 .8800 .6000 .2000 .6000 .2000 .8800 .6000 .4400 .0400 .4400 .0400 .4400 .0400 .0400 .0400 .0200 .6000 .0200 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .6000 .0200 .6000 .0200 .6000 .0200 .6000 .02000 .0200 .0200 .02000 .02000 .02000 .020000000 .0200000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09.5 09.5 09.5 09.5 09.5 09.5 09.5 09.5		
, begin{c	lihe	dral	s}						
#pro prop prop 0.0000 prop	oper er er er	tor: 1 1 2	sio 4 4 4	ns 7 7 7	6 12 6	0.0 0.0 0.0	000		2.0000 2.0000 2.0000
0.0000 prop prop	er er	2 5 5	4 4 4	7 7 7	6 12	0.0 0.0	000) 2	2.0000 2.0000 2.0000
0.0000 prop	er	3	6	7	4	15.1	1743	3	2.0000
180.00	00	2	c	7	10	15	174	。	2 0000

0.0000

0.0000

0.0000

proper 3 6 7 12 15.1743 2.0000

180.0000		_	_			
proper 180.0000	8	6	7	4	15.1743	2.0000
proper 180 0000	8	6	7	12	15.1743	2.0000
proper	4	7	12	14	15.1743	2.0000
proper	4	7	12	16	15.1743	2.0000
proper	6	7	12	14	15.1743	2.0000
proper	6	7	12	16	15.1743	2.0000
180.0000 proper	7	12	14	27	3.7674	2.0000
proper	16	12	14	27	3.7674	2.0000
proper	12	14	27	18	1.6046	3.0000
proper	12	14	27	30	1.6046	3.0000
proper	12	14	27	53	1.6046	3.0000
proper	9	18	27	14	0.6512	3.0000
proper	9	18	27	30	0.6512	3.0000
proper	9	18	27	53	0.6512	3.0000
proper	17	18	27	14	0.6512	3.0000
proper	17	18	27	30	0.6512	3.0000
proper	17	18	27	53	0.6512	3.0000
proper	34	18	27	14	0.6512	3.0000
proper	34	18	27	30	0.6512	3.0000
proper	34	18	27	53	0.6512	3.0000
proper	9	18	34	23	0.6512	3.0000
proper	9	18	34	37	0.6512	3.0000
proper	9	18	34	66	0.6512	3.0000
proper	17	18	34	23	0.6512	3.0000
proper	17	18	34	37	0.6512	3.0000
proper	17	18	34	66	0.6512	3.0000
proper	27	18	34	23	0.6512	3.0000
proper	27	18	34	37	0.6512	3.0000
proper	27	18	34	66	0.6512	3.0000
proper	13	19	22	15	15.1743	2.0000
180.0000 proper	13	19	22	40	15.1743	2.0000
180.0000 proper	36	19	22	15	15.1743	2.0000

180.0000						
proper	36	19	22	40	15.1743	2.0000
proper	13	19	36	38	14.6510	2.0000
proper	13	19	36	61	14.6510	2.0000
proper	22	19	36	38	14.6510	2.0000
proper	22	19	36	61	14.6510	2.0000
proper	10	21	38	36	1.6046	3.0000
proper	25	21	38	36	1.6046	3.0000
proper	42	21	38	36	1.6046	3.0000
0.0000 proper	10	21	42	23	0.6512	3.0000
0.0000 proper	10	21	42	43	0.6512	3.0000
0.0000 proper	10	21	42	69	0.6512	3.0000
0.0000 proper	25	21	42	23	0.6512	3.0000
0.0000 proper	25	21	42	43	0.6512	3.0000
0.0000 proper	25	21	42	69	0.6512	3.0000
0.0000 proper	38	21	42	23	0.6512	3.0000
proper	38	21	42	43	0.6512	3.0000
proper	38	21	42	69	0.6512	3.0000
proper	15	22	40	41	14.6510	2.0000
proper	15	22	40	65	14.6510	2.0000
proper	19	22	40	41	14.6510	2.0000
proper	19	22	40	65	14.6510	2.0000
proper	11	23	34	18	0.6512	3.0000
proper 0 0000	11	23	34	37	0.6512	3.0000
proper	11	23	34	66	0.6512	3.0000
proper 2	20 2	23 3	84 1	8	0.6512	3.0000
proper 0 0000	20	23	34	37	0.6512	3.0000
proper 0 0000	20	23	34	66	0.6512	3.0000
proper 0.0000	42	23	34	18	0.6512	3.0000
proper 0.0000	42	23	34	37	0.6512	3.0000
proper 0.0000	42	23	34	66	0.6512	3.0000
proper 0.0000	11	23	42	21	0.6512	3.0000
proper	11	23	42	43	0.6512	3.0000

0.0000						
proper	11	23	42	69	0.6512	3.0000
proper	20	23	42	21	0.6512	3.0000
proper	20	23	42	43	0.6512	3.0000
0.0000 proper	20	23	42	69	0.6512	3.0000
0.0000 proper	34	23	42	21	0.6512	3.0000
0.0000 proper	34	23	42	43	0.6512	3.0000
0.0000 proper	34	23	42	69	0.6512	3.0000
0.0000 proper	19	36	38	21	6 9069	2 0000
180.0000 proper	61	36	38	21	6 9069	2 0000
180.0000	40	200	00	~	14 0540	2.0000
180.0000	19	30	61	60	14.0510	2.0000
proper 180.0000	19	36	61	71	14.6510	2.0000
proper	38	36	61	65	14.6510	2.0000
proper	38	36	61	71	14.6510	2.0000
180.0000 proper	22	40	41	24	10.6743	2.0000
180.0000	22	40	41	60	10 6743	2 0000
180.0000	~~	40		00	10.0743	2.0000
proper 180.0000	65	40	41	24	10.6743	2.0000
proper 180 0000	65	40	41	60	10.6743	2.0000
proper	22	40	65	61	22.8137	2.0000
proper	22	40	65	79	22.8137	2.0000
proper	41	40	65	61	22.8137	2.0000
180.0000 proper	41	40	65	79	22.8137	2.0000
180.0000 proper	24	41	60	58	7.7441	2.0000
180.0000	40	41	60	58	7 7441	2 0000
180.0000	-10		50	00	0.0540	2.0000
0.0000	26	44	59	35	0.6512	3.0000
proper 0.0000	26	44	59	56	0.6512	3.0000
proper 0 0000	26	44	59	78	0.6512	3.0000
proper	63	44	59	35	0.6512	3.0000
proper	63	44	59	56	0.6512	3.0000
proper	63	44	59	78	0.6512	3.0000
proper	70	44	59	35	0.6512	3.0000
proper	70	44	59	56	0.6512	3.0000
0.0000 proper	70	44	59	78	0.6512	3.0000

0.0000						
proper 0.0000	26	44	63	39	0.6512	3.0000
proper 0.0000	26	44	63	55	0.6512	3.0000
proper	26	44	63	80	0.6512	3.0000
proper	59	44	63	39	0.6512	3.0000
0.0000 proper	59	44	63	55	0.6512	3.0000
0.0000 proper	59	44	63	80	0.6512	3.0000
0.0000 proper	70	44	63	39	0 6512	3 0000
0.0000	70		62	55	0.6512	2 0000
0.0000	70	44	03	00	0.0512	3.0000
proper 0.0000	70	44	63	80	0.6512	3.0000
proper 0.0000	28	46	51	31	0.6512	3.0000
proper	28	46	51	52	0.6512	3.0000
proper	28	46	51	74	0.6512	3.0000
proper	47	46	51	31	0.6512	3.0000
0.0000 proper	47	46	51	52	0.6512	3.0000
0.0000 proper	47	46	51	74	0.6512	3.0000
0.0000 proper	72	46	51	31	0.6512	3 0000
proper	12	40	51	51	0.0012	5.0000
0.0000	70	40	-1	- 0	0.0540	2 0000
0.0000 proper 0.0000	72	46	51	52	0.6512	3.0000
0.0000 proper 0.0000 proper 0.0000	72 72	46 46	51 51	52 74	0.6512 0.6512	3.0000 3.0000
0.0000 proper 0.0000 proper 0.0000 proper 180.0000	72 72 45	46 46 49	51 51 50	52 74 48	0.6512 0.6512 15.1743	3.0000 3.0000 2.0000
0.0000 proper 0.0000 proper 0.0000 proper 180.0000 proper	72 72 45 45	46 46 49 49	51 51 50 50	52 74 48 58	0.6512 0.6512 15.1743 15.1743	3.0000 3.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper	72 72 45 45 57	46 46 49 49 49	51 51 50 50 50	52 74 48 58 48	0.6512 0.6512 15.1743 15.1743 15.1743	3.0000 3.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	72 72 45 45 57 57	46 46 49 49 49 49	51 50 50 50 50	52 74 48 58 48 58	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	72 72 45 45 57 57 45	46 49 49 49 49 49	51 50 50 50 50 50	52 74 48 58 48 58 55	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 15.1743 14.6510	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	72 72 45 45 57 57 45 45	46 46 49 49 49 49 49 49	51 50 50 50 50 50 57	52 74 48 58 48 58 55 62	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 14.6510 14.6510	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	72 72 45 57 57 45 45 45	46 46 49 49 49 49 49 49 49	51 50 50 50 50 57 57 57	52 74 48 58 48 58 55 62 55	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 15.1743 14.6510 14.6510	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	72 72 45 45 57 45 45 45 50	46 46 49 49 49 49 49 49 49	51 50 50 50 50 50 57 57 57	52 74 48 58 48 58 55 62 55	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 15.1743 14.6510 14.6510	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	72 72 45 57 57 45 45 50 50	46 49 49 49 49 49 49 49 49 49	51 50 50 50 50 57 57 57 57	52 74 48 58 48 58 55 62 55 62	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 14.6510 14.6510 14.6510	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	72 72 45 57 57 45 50 50 48	46 49 49 49 49 49 49 49 49 49 50	51 50 50 50 50 57 57 57 57 58	 52 74 48 58 58 55 62 55 62 60 	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 14.6510 14.6510 14.6510 14.6510	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	 72 72 45 45 57 45 45 50 48 48 	46 49 49 49 49 49 49 49 49 50 50	51 50 50 50 50 57 57 57 57 58 58	52 74 48 58 58 55 62 55 62 60 64	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 14.6510 14.6510 14.6510 14.6510 14.6510	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	 72 72 45 57 57 45 50 50 48 48 49 	46 49 49 49 49 49 49 49 49 49 50 50	51 50 50 50 50 57 57 57 57 58 58 58	52 74 48 58 48 55 62 62 60 64 60	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 14.6510 14.6510 14.6510 14.6510 14.6510 14.6510	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	 72 72 45 57 57 45 50 50 48 49 49 	46 49 49 49 49 49 49 49 49 50 50 50	51 50 50 50 50 57 57 57 57 58 58 58 58	52 74 48 58 58 55 62 55 62 60 64 60 64	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 14.6510 14.6510 14.6510 14.6510 14.6510 14.6510 14.6510	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	72 72 45 57 57 45 50 50 48 48 48 49 49 31	46 49 49 49 49 49 49 49 49 50 50 50 50	51 50 50 50 50 57 57 57 57 57 58 58 58 58 58	52 74 48 58 48 55 62 55 62 60 64 60 64 29	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 14.6510 14.6510 14.6510 14.6510 14.6510 14.6510 14.6510 14.6510 0.6512	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 3.0000
0.0000 proper 0.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper 180.0000 proper	72 72 45 57 45 57 45 50 45 50 48 48 49 49 31 31	46 49 49 49 49 49 49 49 49 50 50 50 50 50 51	51 50 50 50 57 57 57 57 57 58 58 58 58 58 58 52 52	52 74 48 58 48 55 62 55 62 60 64 60 64 29 54	0.6512 0.6512 15.1743 15.1743 15.1743 15.1743 14.6510 14.6510 14.6510 14.6510 14.6510 14.6510 14.6510 14.6510 14.6510 0.6512 0.6512	3.0000 3.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 3.0000 3.0000

0.0000						
proper 0.0000	31	51	52	73	0.6512	3.0000
proper	46	51	52	29	0.6512	3.0000
proper	46	51	52	54	0.6512	3.0000
proper	46	51	52	73	0.6512	3.0000
proper	74	51	52	29	0.6512	3.0000
proper	74	51	52	54	0.6512	3.0000
proper	74	51	52	73	0.6512	3.0000
proper	29	52	54	33	0.6512	3.0000
proper	29	52	54	56	0.6512	3.0000
proper	29	52	54	76	0.6512	3.0000
0.0000 proper	51	52	54	33	0.6512	3.0000
0.0000 proper	51	52	54	56	0.6512	3.0000
0.0000 proper	51	52	54	76	0.6512	3.0000
0.0000 proper	73	52	54	33	0.6512	3.0000
0.0000 proper	73	52	54	56	0.6512	3.0000
0.0000 proper	73	52	54	76	0.6512	3.0000
0.0000 proper	33	54	56	32	0.6512	3.0000
0.0000 proper	33	54	56	59	0.6512	3.0000
0.0000 proper	33	54	56	75	0.6512	3.0000
0.0000 proper	52	54	56	32	0.6512	3.0000
0.0000 proper	52	54	56	59	0.6512	3.0000
0.000 proper	52	54	56	75	0.6512	3.0000
0.0000 proper	76	54	56	32	0 6512	3 0000
0.0000 proper	76	54	56	59	0.6512	3 0000
0.0000 proper	76	54	56	75	0.6512	3 0000
0.0000 proper	63	55	57	10	6 9069	2 0000
180.0000	62	55	57	+3 60	6.0060	2.0000
180.0000	63	55	57	20	0.9009	2.0000
0.0000	57	55	03	39	1.0040	3.0000
proper 0.0000	5/	55	63	44	1.6046	3.0000
proper 0.0000	57	55	63	80	1.6046	3.0000
proper 0.0000	32	56	59	35	0.6512	3.0000
proper	32	56	59	44	0.6512	3.0000

0.0	0000						
_	proper	32	56	59	78	0.6512	3.0000
0.0	proper	54	56	59	35	0.6512	3.0000
0.0	proper	54	56	59	44	0.6512	3.0000
0.0	0000 proper	54	56	59	78	0.6512	3.0000
0.0	0000 proper	75	56	59	35	0.6512	3.0000
0.0	0000 proper	75	56	59	44	0.6512	3.0000
0.0	0000 proper	75	56	59	78	0.6512	3.0000
0.0	0000 proper	49	57	62	64	14.6510	2.0000
18	0.0000 proper	49	57	62	67	14.6510	2.0000
18	0.0000						
18	proper 0.0000	55	57	62	64	14.6510	2.0000
18	proper 0.0000	55	57	62	67	14.6510	2.0000
ا 18	oroper 0.0000	50	58	60	41	6.9069	2.0000
18	proper	64	58	60	41	6.9069	2.0000
18	proper	50	58	64	62	14.6510	2.0000
18	proper	50	58	64	68	14.6510	2.0000
10	proper	60	58	64	62	14.6510	2.0000
10	proper	60	58	64	68	14.6510	2.0000
10	proper	36	61	65	40	14.6510	2.0000
18	proper	36	61	65	79	14.6510	2.0000
18	0.0000 proper	71	61	65	40	14.6510	2.0000
18	0.0000 proper	71	61	65	79	14.6510	2.0000
18	0.0000 proper	57	62	64	58	15.1743	2.0000
18	0.0000 proper	57	62	64	68	15.1743	2.0000
18	0.0000 proper	67	62	64	58	15 1743	2 0000
18	0.0000	67	62	64	69	15 1743	2.0000
18	0.0000	07	02	70		0 7074	2.0000
18	proper 0.0000	40	65	79		3.7674	2.0000
18	proper 0.0000	61	65	79	//	3.7674	2.0000
#	.improp	er to	orsio	ns	-		
# #	proper	4	2	1	ວ < 7	- not defined	L L
# #	proper	- 4 ⊿	2 5	1	7 2	- not defined	4
#	proper	4	5	2	7 <	- not defined	Å
17	proper	3	7	6	8	4.6050 2	2.0000
10 #	nroper	7	6	۵	12 -	<_ not define	Ч
#	proper	7	14	+ 12	16	43.9530	2.0000

18	0.0000						
#	proper	18	17	9	27	<- not define	ed
#	proper	18	17	9	34	<- not define	ed
#	proper	18	27	9	34	<- not define	ed
#	proper	18	27	17	34	<- not defin	ed
	proper	13	22	19	36	4.6050	2.0000
18	0,000						
#	nroner	21	25	10	38	<_ not defin	ed
#	proper	21	25	10	12		od
#	proper	21	20	10	42	<- not defin	
#	proper	21	30	10	42	<- not defin	eu
Ħ	proper	21	38	25	42	<- not defin	ea
	proper	15	19	22	40	4.6050	2.0000
18	0.0000						
#	proper	23	20	11	34	<- not defin	ed
#	proper	23	20	11	42	<- not defin	ed
#	proper	23	34	11	42	<- not defin	ed
#	proper	23	34	20	42	<- not defin	ed
#	proper	27	18	14	30	<- not defin	ed
#	proper	27	18	14	53	<- not defin	ed
#	nroner	27	30	14	53	<_ not defin	ed
#	proper	27	30	10	53		od
#	proper	21	20	10	27	<- not defin	
#	proper	34	23	10	31	<- not defin	eu
#	proper	34	23	18	66	<- not defin	ed
#	proper	34	37	18	66	<- not defin	ed
#	proper	34	37	23	66	<- not defin	ed
#	proper	36	38	19	61	<- not defin	ed
#	proper	40	41	22	65	<- not defin	ed
	proper	24	40	41	60	4.6050	2.0000
18	0.0000						
#	proper	42	23	21	43	<- not defin	ed
#	proper	42	23	21	69	<- not defin	ed
#	nroner	42	43	21	69	<- not defin	ed
#	proper	12	13	22	60		od
#	proper	42	40	20	62	< not defin	eu
#	proper	44	59	20	03	<- not defin	eu
#	proper	44	59	26	70	<- not defin	ea
#	proper	44	63	26	70	<- not defin	ed
#	proper	44	63	59	70	<- not defin	ed
#	proper	46	47	28	51	<- not defin	ed
#	proper	46	47	28	72	<- not defin	ed
#	proper	46	51	28	72	<- not defin	ed
#	proper	46	51	47	72	<- not defin	ed
	proper	45	50	49	57	4.6050	2.0000
18	0.0000						
	proper	48	49	50	58	4.6050	2.0000
18	0.0000						
#	proper	51	46	31	52	<- not defin	ed
#	nroner	51	46	31	74	<- not defin	ed
<i>#</i>	nroper	51	52	31	74	<_ not defin	ed
#	proper	51	52	16	7/		od
#	proper	51	52	40	14 EA	<- not defin	
#	proper	52	51	29	- 04 - 70	<- not defin	eu
#	proper	52	51	29	73	<- not defin	ea
#	proper	52	54	29	73	<- not defin	ed
#	proper	52	54	51	73	<- not defin	ed
#	proper	54	52	33	56	<- not defin	ed
#	proper	54	52	33	76	<- not defin	ed
#	proper	54	56	33	76	<- not defin	ed
#	proper	54	56	52	76	<- not defin	ed
#	proper	56	54	32	59	<- not defin	ed
#	proper	56	54	32	75	<- not defin	ed
#	nroner	56	50	32	75	<- not defin	ed
#	proper	56	50	57	75	<_ not defin	ed
#	proper	50	55	10	60		od
# #	proper	57	00	49	02		
#	proper	58	60	50	64	<- not defin	ea
#	proper	59	44	35	56	<- not defin	ed

proper 59 44 35 78 <- not defined # # proper 59 56 35 78 <- not defined proper 59 56 44 78 <- not defined # 2.0000 proper 36 65 61 71 4.6050 180.0000 proper 57 64 62 67 4.6050 2.0000 180.0000 proper 63 44 39 55 <- not defined # # proper 63 44 39 80 <- not defined proper 63 55 39 80 <- not defined # # proper 63 55 44 80 <- not defined proper 58 62 64 68 4.6050 2.0000 180.0000 # proper 65 61 40 79 <- not defined end{dihedrals} begin{nonbonded} 9.2498 0.8333 # hc_1 6 3.0013 1 ca_6 9.2498 0.8333 # hc_1 1 12 3.0013 c_12 2 6 3.0013 9.2498 0.8333 # hc_2 ca 6 2 9.2498 0.8333 12 3.0013 # hc_2 c_12 5 6 3.0013 9.2498 0.8333 # hc_5 ca_6 5 12 3.0013 9.2498 0.8333 # hc_5 c_12 10.1973 0.8333 3 4 2.9729 # ha_3 ct_4 # ha_3 3 12 2.9729 9.0412 0.8333 c_12 8 4 10.1973 0.8333 # ha_8 2.9729 ct_4 c_12 8 12 2.9729 9.0412 0.8333 # ha_8 4 14 3.1936 34.3294 0.8333 # ct_4 os_14 4 16 3.1722 38.1549 0.8333 # ct 4 o_16 6 14 3.1936 30.4373 0.8333 # ca_6 os_14 6 16 3.1722 33.8292 0.8333 # ca 6 o_16 7 27 3.3997 24.4169 0.8333 # ca_7 ct_27 16 27 3.1722 38.1549 0.8333 # o_16 ct_27 12 18 3.3997 24.4169 0.8333 # c_12 ct_18 12 30 2.8986 9.2498 0.8333 # c_12 h1_30 12 53 2.8986 9.2498 0.8333 # c_12 h1 53 9 14 2.8193 13.0049 0.8333 # hc_9 os_14 9 30 2.5589 3.9521 0.8333 # hc 9 h1_30 9 53 2.5589 3.9521 0.8333 # hc_9 h1_53 17 14 2.8193 13.0049 0.8333 # hc_17 os_14 17 30 2.5589 3.9521 0.8333 # hc_17 h1_30 17 53 2.5589 3.9521 0.8333 # hc_17 h1 53 34 14 3.1936 34.3294 0.8333 # ct_34 os_14 34 30 2.8986 10.4326 0.8333 # ct_34 h1 30 34 53 2.8986 10.4326 0.8333 # ct 34 h1_53 9 23 3.0013 10.4326 0.8333 # hc 9 ct_23

9 37 bc 37	2.6495	3.9521 0.8333	# hc_9
9 66	2.6495	3.9521 0.8333	# hc_9
17 23	3.0013	10.4326 0.8333	# hc_17
ct_23 17_37	2.6495	3.9521 0.8333	# hc_17
hc_37 17 66	2.6495	3.9521 0.8333	# hc_17
hc_66 27 23	3.3997	27.5391 0.8333	# ct_27
ct_23 27 37	3.0013	10.4326 0.8333	# ct_27
hc_37 27 66	3.0013	10.4326 0.8333	# ct_27
hc_66 13 15	2.5996	3.7759 0.8333	# ha_13
ha_15 13 40	2.9729	9.0412 0.8333	# ha_13
cb_40 36 15	2.9729	9.0412 0.8333	# cb_36
ha_15 36 40	3.3997	21.6487 0.8333	# cb_36
cb_40 13 38	2.7927	12.7117 0.8333	# ha_13
os_38 13 61	2.9729	9.0412 0.8333	# ha_13
ca_61 22 38	3.1936	30.4373 0.8333	# ca_22
os_38 22 61	3.3997	21.6487 0.8333	# ca_22
ca_61 10 36	2.8986	9.2498 0.8333	# h1_10
cb_36 25 36	2.8986	9.2498 0.8333	# h1_25
cb_36 42 36	3.3997	24.4169 0.8333	# ct_42
cb_36 10 23	2.8986	10.4326 0.8333	# h1_10
ct_23 10 43	2.5589	3.9521 0.8333	# h1_10
hc_43 10 69	2.5589	3.9521 0.8333	- # h1_10
hc_69 25 23	2.8986	10.4326 0.8333	_ # h1 25
ct_23 25 43	2.5589	3.9521 0.8333	_ # h1 25
hc_43 25 69	2.5589	3.9521 0.8333	- # h1 25
hc_69 38 23	3.1936	34.3294 0.8333	- # os 38
ct_23 38 43	2.8193	13.0049 0.8333	- # os 38
hc_43 38 69	2.8193	13.0049 0.8333	# os 38
hc_69 15 41	2.9729	9.0412 0.8333	# ha 15
cm_41 15 65	2.9729	9.0412 0.8333	# ha 15
cb_65 19_41	3 3997	21 6487 0 8333	# ca 10
cm_41 19_65	3 3997	21 6487 0 8333	# ca 10
cb_65	0.0001	21.0407 0.0000	# 0a_19

11 ·	18	3.0013	10.4326	0.8333	#	hc_11
11	37	2.6495	3.9521	0.8333	#	hc_11
nc_37 11 (66	2.6495	3.9521	0.8333	#	hc_11
20 ·	18	3.0013	10.4326	0.8333	#	hc_20
20 37	37	2.6495	3.9521	0.8333	#	hc_20
20 (66	2.6495	3.9521	0.8333	#	hc_20
42 ·	18	3.3997	27.5391	0.8333	#	ct_42
42 3 hc 37	37	3.0013	10.4326	0.8333	#	ct_42
42 (hc 66	66	3.0013	10.4326	0.8333	#	ct_42
11 2 ct 21	21	3.0013	10.4326	0.8333	#	hc_11
11 4 hc 43	43	2.6495	3.9521	0.8333	#	hc_11
11 (hc 69	69	2.6495	3.9521	0.8333	#	hc_11
20 2 ct 21	21	3.0013	10.4326	0.8333	#	hc_20
20 4	43	2.6495	3.9521	0.8333	#	hc_20
20 (69	2.6495	3.9521	0.8333	#	hc_20
34 2 ct 21	21	3.3997	27.5391	0.8333	#	ct_34
34 4	43	3.0013	10.4326	0.8333	#	ct_34
34 (69	3.0013	10.4326	0.8333	#	ct_34
19 2 19 2	21	3.3997	24.4169	0.8333	#	ca_19
61 2 61 2	21	3.3997	24.4169	0.8333	#	ca_61
19 1 19 1	71	2.9729	9.0412	0.8333	#	ca_19
38 (65	3.1936	30.4373	0.8333	#	os_38
38 1 38 1	71	2.7927	12.7117	0.8333	#	os_38
22 2	24	2.9215	9.0412	0.8333	#	ca_22
114_24 22 (60	3.3240	30.4373	0.8333	#	ca_22
65 2	24	2.9215	9.0412	0.8333	#	cb_65
n4_24 65 (60	3.3240	30.4373	0.8333	#	cb_65
n^_60 22	79	3.2288	33.8614	0.8333	#	ca_22
on_79 41 (61	3.3997	21.6487	0.8333	#	cm_41
ca_61 	79	3.2288	33.8614	0.8333	#	cm_41
on_79 	58	2.9215	9.0412	0.8333	#	h4_24
cb_58 40 { cb_58	58	3.3997	21.6487	0.8333	#	cb_40

26 35	2.6495	3.9521 0.8333	#	hc_26
10_35 26_56	3.0013	10.4326 0.8333	#	hc_26
26 78	2.6495	3.9521 0.8333	#	hc_26
hc_78 63 35	3.0013	10.4326 0.8333	#	ct_63
hc_35 63 56	3.3997	27.5391 0.8333	#	ct_63
ct_56 63 78	3.0013	10.4326 0.8333	#	ct_63
hc_78 70 35	2.6495	3.9521 0.8333	#	hc_70
hc_35 70 56	3.0013	10.4326 0.8333	#	hc_70
ct_56 70 78	2.6495	3.9521 0.8333	#	hc_70
hc_78 26 39	2.5589	3.9521 0.8333	#	hc_26
h1_39 26 55	2.8193	13.0049 0.8333	#	hc_26
os_55 26 80	2.5589	3.9521 0.8333	#	hc_26
h1_80 59 39	2.8986	10.4326 0.8333	#	ct_59
h1_39 59 55	3.1936	34.3294 0.8333	#	ct_59
os_55 59 80	2.8986	10.4326 0.8333	#	ct_59
h1_80 70 39	2.5589	3.9521 0.8333	#	hc 70
h1_39 70 55	2.8193	13.0049 0.8333	#	- hc 70
os_55 70 80	2.5589	3.9521 0.8333	#	- hc 70
h1_80 28 31	2.6495	3.9521 0.8333	#	- hc 28
hc_31 28 52	3 0013	10 4326 0 8333	#	hc 28
ct_52 28 74	2 6495	3 9521 0 8333	#	hc 28
hc_74 47 31	2 6495	3 9521 0 8333	" #	hc 47
hc_31	2.0433	10 4326 0 8333	π #	hc_47
ct_52	2.6405	2 0521 0 0222	#	ho 47
47 74 hc_74	2.0495	3.9521 0.0333	# #	nc_47
hc_31	2.6495	3.9521 0.8333	#	nc_72
72 52 ct_52	3.0013	10.4326 0.8333	#	nc_/2
72 74 hc_74	2.6495	3.9521 0.8333	#	hc_72
45 48 ha_48	2.5996	3.7759 0.8333	#	ha_45
45 58 cb_58	2.9729	9.0412 0.8333	#	ha_45
57 48 ha_48	2.9729	9.0412 0.8333	#	cb_57
57 58 cb 58	3.3997	21.6487 0.8333	#	cb_57
45 55 os 55	2.7927	12.7117 0.8333	#	ha_45
_				

45 62	2.9729	9.0412 0.8333	#	ha_45
50 55	3.1936	30.4373 0.8333	#	ca_50
0s_55 50_62	3.3997	21.6487 0.8333	#	ca_50
ca_62 48 60	2.9067	12.7117 0.8333	#	ha_48
n*_60 48 64	2.9729	9.0412 0.8333	#	ha_48
ca_64 49 60	3.3240	30.4373 0.8333	#	ca_49
n*_60 49 64	3.3997	21.6487 0.8333	#	ca_49
ca_64 31 29	2.6495	3.9521 0.8333	#	hc_31
hc_29 31 54	3.0013	10.4326 0.8333	#	hc_31
ct_54 31 73	2.6495	3.9521 0.8333	#	hc_31
hc_73 46 29	3.0013	10.4326 0.8333	#	ct_46
hc_29 46 54	3.3997	27.5391 0.8333	#	ct_46
ct_54 46 73	3.0013	10.4326 0.8333	#	ct_46
hc_73 74 29	2.6495	3.9521 0.8333	#	hc_74
hc_29 74 54	3.0013	10.4326 0.8333	#	hc_74
ct_54 74 73	2.6495	3.9521 0.8333	#	hc_74
hc_73 29 33	2.6495	3.9521 0.8333	#	hc_29
hc_33 29 56	3.0013	10.4326 0.8333	#	- hc_29
ct_56 29 76	2.6495	3.9521 0.8333	#	hc 29
hc_76 51 33	3.0013	10.4326 0.8333	#	- ct 51
hc_33 51 56	3.3997	27.5391 0.8333	#	- ct 51
ct_56 51 76	3.0013	10.4326 0.8333	#	- ct 51
hc_76 73 33	2.6495	3.9521 0.8333	#	- hc 73
hc_33 73 56	3.0013	10.4326 0.8333	#	- hc 73
ct_56 73 76	2.6495	3.9521 0.8333	#	- hc_73
hc_76 33 32	2.6495	3.9521 0.8333	#	- hc 33
hc_32 33 59	3.0013	10.4326 0.8333	#	- hc 33
ct_59 33 75	2.6495	3.9521 0.8333	#	hc 33
hc_75 52 32	3.0013	10.4326 0.8333	#	ct 52
hc_32 52 59	3,3997	27.5391 0.8333	 #	ct 52
ct_59 52 75	3 0013	10 4326 0 8333	" #	ct_52
hc_75 76 32	2 6/05	3 9521 0 8333	π #	bc 76
hc_32	2.0490	0.0021 0.0000	#	10_70

76 59	3.0013	10.4326 0.8333 # hc_76
ct_59 76 75	2.6495	3.9521 0.8333 # hc_76
63 49	3.3997	24.4169 0.8333 # ct_63
63 62	3.3997	24.4169 0.8333 # ct_63
57 39	2.8986	9.2498 0.8333 # cb_57
57 44	3.3997	24.4169 0.8333 # cb_57
57 80	2.8986	9.2498 0.8333 # cb_57
32 35	2.6495	3.9521 0.8333 # hc_32
32 44	3.0013	10.4326 0.8333 # hc_32
32 78	2.6495	3.9521 0.8333 # hc_32
54 35	3.0013	10.4326 0.8333 # ct_54
54 44	3.3997	27.5391 0.8333 # ct_54
54 78	3.0013	10.4326 0.8333 # ct_54
75 35	2.6495	3.9521 0.8333 # hc_75
75 44	3.0013	10.4326 0.8333 # hc_75
75 78	2.6495	3.9521 0.8333 # hc_75
49 67	2.9729	9.0412 0.8333 # ca_49
55 64	3.1936	30.4373 0.8333
55 67	2.7927	12.7117 0.8333 # os_55
50 41	3.3997	21.6487 0.8333 # ca_50
64 41	3.3997	21.6487 0.8333 # ca_64
50 68	2.9729	9.0412 0.8333 # ca_50
60 62	3.3240	30.4373 0.8333
60 68	2.9067	12.7117 0.8333
36 79	3.2288	33.8614 0.8333 # cb_36
71 40	2.9729	9.0412 0.8333 # ha_71
71 79	2.8234	14.1417 0.8333
on_79 57 68	2.9729	9.0412 0.8333 # cb_57
na_68 67 58	2.9729	9.0412 0.8333
67 68	2.5996	3.7759 0.8333 # ha_67
40 77	0.0000	0.0000 0.8333 # cb_40
10_// 61_77	0.0000	0.0000 0.8333 # ca_61
10_77		

end{nonbonded

begin{exclude}	54 56	18 23
	54 76	18 37
2 4	55 57	18 66
3 6	55 63	23 37
4 5	56 59	23 66
4 7	56 75	37 66
6 7	57 62	19 38
6 8	58 60	19 61
7 12	58 64	38 61
9 18	59 78	21 36
10 21	61 65	22 41
11 23	61 71	22 65
12 14	62 64	41 65
12 16	62 67	24 40
13 19	63 80	24 60
14 27	64 68	40 60
15 22	65 79	21 23
1/ 18	// /9	21 43
18 27	1 2	21 69
18 34	1 5	23 43
19 22	2 5	23 09
20 23	2 5	40 09 26 59
21 25	5 7	20 55 26 63
21 38	3 7	26 70
21 42	3 8	59 63
22 40	7 8	59 70
23 34	4 6	63 70
23 42	4 12	28 47
24 41	6 12	28 51
26 44	7 14	28 72
27 30	7 16	47 51
27 53	14 16	47 72
20 40	0 17	51 72
29 52	9 17	45 50
32 56	9 34	40 57 50 57
33 54	17 27	48 49
34 37	17 34	48 58
34 66	27 34	49 58
35 59	13 22	31 46
36 38	13 36	31 52
36 61	22 36	31 74
39 63	10 25	46 52
40 41	10 38	46 74
40 65	10 42	52 74
41 00	25 30	29 51
42 43	38 42	29 73
44 59	15 19	51 54
44 63	15 40	51 73
44 70	19 40	54 73
45 49	11 20	33 52
46 47	11 34	33 56
46 51	11 42	33 76
46 72	20 34	52 56
48 50	20 42	52 76
49 50	34 42	56 76
49 57 50 59	14 18	57 63
DU DO 51 50	14 30	32 54
51 52 51 74	14 00	32 59 32 75
52 54	18 53	52 75 54 50
52 73	30 53	54 75

59 75	17 23	26 78
49 55	17 37	63 35
49 62	17 66	63 56
55 62	27 23	63 78
50 60	27 37	70 35
50 64	27 66	70 56
60 64	13 15	70 78
35 44	13 40	26 39
35 56	36 15	26 55
35 78	36 40	26 80
44 56	13 38	59 39
44 78	13 61	59 55
56 78	22 38	59 80
41 58	22 61	70 39
36 65	10 36	70 55
36 71	25 36	70 80
65 71	42 36	28 31
57 64	10 23	28 52
57 67	10 43	28 74
64 67	10 69	47 31
39 44	25 23	47 52
39 55	25 43	47 74
39 80	25 69	72 31
44 55	38 23	72 52
44 80	38 43	72 74
55 80	38 69	45 48
58 62	15 41	45 58
58 68	15 65	57 48
62 68	19 41	57 58
40 61	19 65	45 55
40 79	11 18	45 62
61 79	11 37	50 55
65 77	11 66	50 62
1 6	20 18	48 60
1 12	20 37	48 64
2 6	20 66	49 60
2 12	42 18	49 64
5 6	42 37	31 29
5 12	42 66	31 54
3 4	11 21	31 73
3 12	11 43	46 29
8 4	11 69	46 54
8 12	20 21	46 73
4 14	20 43	74 29
4 16	20 69	74 54
6 14	34 21	74 73
6 16	34 43	29 33
7 27	34 69	29 56
16 27	19 21	29 76
12 18	61 21	51 33
12 30	19 71	51 56
12 53	38 65	51 76
9 14	38 /1	73 33
9 30	22 24	73 56
9 53	22 60	73 76
17 14	65 24	33 32
17 30	65 60	33 59
17 53	22 79	33 75
34 14	41 61	52 32
34 30	41 79	52 59
34 53	24 58	52 75
9 23	40 58	76 32
9 37	26 35	76 59
9 66	26 56	76 75

63	49	75	44	71	79
63	62	75	78	57	68
57	39	49	67	67	58
57	44	55	64	67	68
57	80	55	67	40	77
32	35	50	41	61	77
32	44	64	41	end{e	xclude}
32	78	50	68		
54	35	60	62	end{n	nolecule}
54	44	60	68		
54	78	36	79		
75	35	71	40		