
UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

ESTRUCTURAS COMPRIMIDAS PARA GRAFOS DE LA WEB

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS,
MENCIÓN COMPUTACIÓN

FRANCISCO JOSÉ CLAUDE FAUST

PROFESOR GUÍA:
GONZALO NAVARRO BADINO

MIEMBROS DE LA COMISIÓN:
BENJAMIN BUSTOS CÁRDENAS

MAURICIO MARÍN CAIHUÁN
JÉRÉMY BARBAY

Esta tesis ha recibido el apoyo de Yahoo! Research Latin America, y del
Núcleo Milenio Centro de Investigación de la Web, Proyecto P04-067-F,
Mideplan, Chile.

SANTIAGO DE CHILE
AGOSTO 2008

Resumen
La estructura de la Web se puede modelar como un grafo, donde las páginas

son los nodos y los hiperv́ınculos las aristas. Estos grafos Web son ampliamente
utilizados para diversas tareas de análisis de la Web, tales como el cálculo de Page-
Rank o la detección de spam en la Web, entre otras. Una de las limitantes que se
presentan al trabajar con estos grafos es su tamaño, por ejemplo, el 2005 se calculó
que la Web pública y estática teńıa 11.5 mil millones de nodos, y unas 15 aristas por
nodo, lo que requiere más de 600 GB para su representación plana. De aqúı surge
la motivación de este trabajo, que consiste en la creación de estructuras de datos
comprimidas para representar grafos de la Web.

Una estructura comprimida busca almacenar la mayor cantidad de datos en el
menor espacio posible, ya sea en memoria principal o en disco, soportando las con-
sultas de interés sin la necesidad de descomprimir la estructura en su totalidad. La
principal ventaja de estas estructuras es que se puede evitar mantener la información
en disco o se disminuye la cantidad de transferencias necesarias. Esto es de vital
importancia dado que el disco puede llegar a ser un millón de veces más lento que
la memoria principal.

Entre los resultados más importantes de este trabajo se presenta una estructura
comprimida para grafos de la Web que mejora el estado del arte, ofreciendo el mejor
compromiso espacio-tiempo conocido para recuperar listas de adyacencia. Además
se muestra cómo extender esta estructura para soportar consultas más complejas,
como vecinos reversos, manteniendo los requerimientos de espacio.

Como productos agregados se incluyen resultados experimentales y propuestas
para el problema de rank y select sobre secuencias generales, incluyendo estructuras
no implementadas antes. Los resultados derivan en mejoras inmediatas para ı́ndices
comprimidos para texto, en los cuales se reduce el espacio utilizado por los mejores
ı́ndices existentes, a veces incluso sin penalización en el tiempo de búsqueda. Además
se presenta un algoritmo aproximado para comprimir utilizando el método Re-Pair
cuando la memoria principal es limitada. También se obtienen resultados en es-
tructuras comprimidas para relaciones binarias, presentándose una nueva propuesta
que, además de utilizar espacio proporcional a la entroṕıa de la relación binaria,
permite dinamizar la estructura, vale decir, aceptar inserciones y borrados de pares
en la relación.

Agradecimientos
Quiero comenzar agradeciendo a mi padres, Ingrid Faust y Francisco Claude, a

mi hermana Carolina Claude y a mis abuelas Sonja Kühne y Nicole Bourdel. Todos
ellos han sido un apoyo incondicional durante toda mi vida y no existen palabras
adecuadas para agradecer todo lo que han hecho por mı́, ni lo importantes que son
en mi vida. Además me gustaŕıa incluir a mi polola Maŕıa Jesús Chau, quien ha
comprendido mi pasión por lo que hago y me ha apoyado de corazón, junto con
alegrar aún más estos últimos meses de trabajo.

También es importante incluir a los amigos, que siempre estuvieron ah́ı para
compartir buenos momentos. Entre ellos, sin un orden particular, están: Roberto
Konow, Francisco Gutiérrez, Ismael Vergara, Francisca Varela, Maŕıa José Paredes,
Francisco Uribe, Cristina Melo, Marcela Huerta, Gonzalo Dávila, Philippe Pavez,
Cristián Serpell, Sebastián Kreft, Victor Ramiro, Julio Villane, Patricia Nuñez,
Gustavo Garćıa, Mauricio Farah, Ignacio Fantini y muchos otros.

Otro grupo, muy importante para mı́ durante este trabajo, es el Grupo Miércoles
de Algoritmos. Todos y cada uno de los integrantes de este grupo aportó a este
trabajo con ideas y estimulantes discusiones, todo esto en un ambiente familiar y de
amistad entre los miembros que hizo el trabajo aún más entretenido y ameno. Quiero
agradecer especialmente a Rodrigo González, Diego Arroyuelo, Rodrigo Paredes,
Hernán Arroyo, Rodrigo Cánovas, Susana Ladra, Ana Cerdeira, Daniel Valenzuela,
Nora Reyes, Gilberto Gutiérrez y Felipe Sologuren.

No puedo dejar fuera a los miembros de mi comisión, Jérémy Barbay, Benjamin
Bustos y Mauricio Maŕın, quienes revisaron el borrador de la tesis con una dedicación
admirable y enriquecieron el contenido de ésta con comentarios muy acertados.

Por último me gustaŕıa agradecer a mi profesor gúıa, Gonzalo Navarro, con quien
tuve el honor y la suerte de trabajar en esta tesis. No sólo guió mi trabajo y estuvo
siempre ah́ı para ayudarme durante todo el desarrollo de la tesis, sino que además
estuvo presente como un gran amigo, siempre dispuesto a dar buenos consejos y
organizar una que otra parrillada.

A todos los mencionados en esta página, y a todos ellos que me acompañaron
durante este proceso, mis más sinceros agradecimientos.

Francisco José Claude Faust
13 de Agosto de 2008

University of Chile

Faculty of Physics and Mathematics
Graduate School

Compressed Data Structures for Web Graphs

by

Francisco Claude

Submitted to the University of Chile in fulfillment

of the thesis requirement to obtain the degree of
MSc. in Computer Science

Advisor : Gonzalo Navarro

Committee : Benjamin Bustos
: Mauricio Maŕın
: Jérémy Barbay

This work has been supported in part by Yahoo! Research Latin Amer-
ica, and by Millennium Nucleus Center for Web Research, Grant P04-
067-F, Mideplan, Chile.

Departament of Computer Science - University of Chile
Santiago - Chile

August 2008

Abstract
The Web structure can be modeled as a directed graph, where the pages are nodes

and the links between pages correspond to edges. These Web graphs are widely used
for analyzing the Web, for example, for the calculation of Page-Rank and for spam
detection, among others. The size of these graphs makes their manipulation in
main memory unfeasible. In 2005, the graph representing the public static Web
was estimated to have 11.5 billion nodes, and 15 edges per node on average; this
requires around 600 GB in its plain representation. Hence the motivation for this
work, which consists in building compressed data structures for Web graphs.

A compressed data structure aims to represent data using little space, in main
memory or on disk, while supporting queries without decompressing the whole data.
The main advantage of these structures is that more data can be kept in main
memory, or fewer disk transfers are required. This is of utmost importance, since
an access to disk can be a million times slower than an access to main memory.

The most important contribution of this thesis is a new compressed data struc-
ture for Web graphs, which offers the best known space/time trade-off for retrieving
the adjacency list of a node. We also show how to extend the structure in order to
support more complex queries, such as reverse neighbors, within the same space.

As byproducts of this work we present experimental results for different data
structures for the rank and select problem on general sequences, including struc-
tures never implemented before. These results have direct implications in full-text
self-indexes, where we obtain space usages never achieved before, sometimes even
without time penalty. We also present a new approximate version of the Re-Pair
compression algorithm, which allows compressing sequences using little memory on
top of the sequence itself. Finally, we include a new proposal for representing binary
relations. This structure achieves space proportional to the zero-order entropy of
the binary relation, and can be made dynamic in order to support insertion and
deletion of new pairs in the relation.

Contents

1 Introduction 1
1.1 Outline of the Thesis . 2
1.2 Contributions of the Thesis . 2

2 Related Work 4
2.1 Compression of Sequences . 4
2.2 Encoding . 5
2.3 Graph Compression . 6
2.4 Phrase-Based Compression . 9

2.4.1 Re-Pair . 9
2.4.2 Lempel-Ziv . 11

2.5 Rank and Select on Sequences . 12
2.5.1 Binary Sequences . 13
2.5.2 Arbitrary Sequences . 14

2.6 Compressed Full-Text Indexes . 16
2.6.1 Suffix Arrays . 17
2.6.2 Sadakane’s Compressed Suffix Array (CSA) 18
2.6.3 The FM-Index . 19

3 Rank, Select and Access on Sequences 22
3.1 Practical Implementations . 23

3.1.1 Raman, Raman and Rao’s Structure 23
3.1.2 Wavelet Trees without Pointers 24
3.1.3 Golynski et al.’s Structure . 25

3.2 Experimental Results . 26
3.2.1 Binary Sequences . 26
3.2.2 General Sequences . 27
3.2.3 Compressed Full-Text Self-Indexes 31

ii

4 Re-Pair and Lempel-Ziv 35
4.1 Re-Pair . 35

4.1.1 Approximate Re-Pair . 35
4.1.2 Running on Disk . 38
4.1.3 Adding Local Decompression 39

4.2 Local Decompression on Lempel-Ziv 40
4.3 Experimental Results . 40

5 Edge List Representation 43
5.1 Building the Index . 46
5.2 Compressing the Index . 46
5.3 Undirected Graphs . 49

6 Nodes Representation 51
6.1 Re-Pair Compression of Web Graphs 51

6.1.1 Improvements . 53
6.2 Lempel-Ziv Compression of Web Graphs 54
6.3 Experimental Results . 55

6.3.1 Compression Performance . 55
6.3.2 Limiting the Dictionary . 57
6.3.3 Compressed Graphs Size and Access Time 61

6.4 Further Compression . 63

7 Extending Functionality 70
7.1 A Simple and Complete Representation 71
7.2 Extended Functionality . 72
7.3 Wavelet Trees for Binary Relations 73

7.3.1 Dynamic Representation (dBRWT) 76
7.4 Experimental Results . 77

8 Conclusions 81

Bibliography 84

iii

List of Figures

2.1 Example Re-Pair rules representation. 10
2.2 Re-Pair decompression . 11
2.3 Example of a suffix array . 17
2.4 Count - CSA . 19
2.5 Counting on FM-Indexes . 20

3.1 Binary rank/select . 27
3.2 Results for byte alphabets . 30
3.3 Results for word identifiers . 32
3.4 Counting time (self-indexes) . 34

4.1 Example of App. Re-Pair over graphs 37
4.2 Example over T =abcdababcab. 39
4.3 Local decompression times for several texts. 42

5.1 Map function . 45
5.2 Retrieval of the adjacency list . 45
5.3 Retrieval of the reverse list . 45
5.4 Computation of the outdegree . 45
5.5 Computation of the indegree . 46
5.6 Building the suffix array on disk . 47
5.7 Building the inverted suffix array on disk 47
5.8 Building Ψ on disk . 48
5.9 Example of Ψ . 49

6.1 An example graph . 52
6.2 Space for limited dictionary . 60
6.3 Experimental results for EU crawl . 64
6.4 Experimental results for Indochina crawl 65
6.5 Experimental results for UK crawl . 66
6.6 Experimental results for Arabic crawl 67

iv

7.1 Obtaining the reverse adjacency list 73
7.2 Example of BRWT for binary relations. 74
7.3 Space supporting reverse queries . 80

v

List of Tables

2.1 Different encodings for integers 1 to 10. 6
2.2 Complexities for binary rank/select by Sadakane et al. 13
2.3 Example of Ψ . 18

3.1 Space for a bitmap generated from a wavelet tree 28

4.1 Compression ratios for text . 41
4.2 Compressed representation of Br . 41

5.1 Compression ratio for UK crawl . 48

6.1 Crawls characteristics . 56
6.2 Compression ratio with App. Re-Pair 57
6.3 Compression Time Re-Pair and LZ 58
6.4 Re-Pair behavior for Graph compression 59
6.5 Further compression of Re-Pair+Graphs 68
6.6 Alternative compression methods for C estimation 69
6.7 Results of compressing C using pointer-less wavelet trees 69

7.1 Space estimated for different representations 71
7.2 Simple and complete representation 78
7.3 Space for Re-Pair based representations 79

vi

Chapter 1

Introduction

A compressed data structure, besides answering the queries supported by its classical
(uncompressed) counterpart, uses little space for its representation. Nowadays this
kind of structures is receiving much attention because of two reasons: (1) the
enormous amounts of information digitally available, (2) the ever-growing speed gaps
in the memory hierarchy. As an example of the former, the graph of the 2005 static
indexable Web was estimated to contain more than 11.5 billion nodes [GS05] and
more than 150 billion links. A plain adjacency list representation of this graph would
need around 600 GB. As an example of (2), access time to main memory is about one
million times faster than to disk. Similar phenomena (albeit less pronounced) arise
at other levels of memory hierarchy. Although memory sizes have been growing fast,
new applications have appeared with data management requirements that exceed
the capacity of the faster memories. Distributed computation has been explored as
a solution to those problems [BBYRNZ01, TGM93]. However, access to a remote
memory involves a waiting time which is closer to that of a disk access than to a
local one. Because of this scenario, it is attractive to design and use compressed
data structures, even if they are several times slower than their classical counterpart.
They will run much faster anyway if they manage to fit in a faster memory.

In this scenario, compressed data structures for graphs have gained interest in
recent years, because a (directed) graph is a natural model of the Web structure.
Several algorithms used by the main search engines to rank pages, discover
communities, and so on, are run over those Web graphs. Needless to say, relevant
Web graphs are huge and maintaining them in main memory is a challenge, especially
if we wish to access them in compressed form, say for navigation purposes.

In this work we focus on building compressed data structures for Web graphs
by treating them as text and using known text compression methods (sometimes

1

Chapter 1 Introduction 1.1 Outline of the Thesis

adapted) to achieve better space while answering queries within competitive time.

1.1 Outline of the Thesis

Chapter 2 gives the basic concepts needed to read this thesis. We address data
compression and coding, the related work in graph compression, rank/select
capable data structures and compressed text indexes.

Chapter 3 proposes and studies different variants of rank/select data structures
for binary sequences and texts over larger alphabets. We compare them on
different kind of sequences and show the implications of these results for self-
indexing.

Chapter 4 introduces a practical approximate version of Re-Pair and compares
it with the optimal Re-Pair [LM00] and LZ78 [ZL78] on different types of
sequences.

Chapter 5 presents a first approach for compressing Web graphs, which allows us
to answer all the queries we have considered, but uses much space compared to
other known structures and the time for answering queries is not competitive.

Chapter 6 introduces a simplification of the previous approach (Chapter 5)
which achieves better time/space tradeoffs than the existing Web graph
representations. The space needed by our structure is similar to the best
known results while navigation is much faster.

Chapter 7 shows how to extend the representation presented in Chapter 6 in order
to add backward navigation without using too much extra space.

Chapter 8 gives our conclusions and further lines of research that could be explored
based on the results obtained in this work.

1.2 Contributions of the Thesis

Chapter 3 : We present a practical implementation of Raman, Raman
and Rao’s compressed rank/select data structure for binary sequences
[RRR02]. We compare different variations of the wavelet tree [GGV03,
FMMN07, MN07] and show how to implement them omitting pointers. We
also present the first practical implementation of Golynski et al.’s rank/select

2

Chapter 1 Introduction 1.2 Contributions of the Thesis

data structure for strings over large alphabets [GMR06]. Using the results of
this comparison, we implement a variant of the SSA compressed text-index
[FGNV07], where we achieve the smallest self-index seen so far for counting.
This work will appear in SPIRE 2008.

Chapter 4 : We introduce a new variation of Re-Pair [LM00] that works using
a small amount of memory on top of the text and advantageously trades
compression ratio for speed. We include a simple technique to allow local
decompression in sequences compressed with Re-Pair and LZ78 [ZL78], based
on the technique presented by González and Navarro [GN07], and present
experimental results for this technique.

Chapter 5 : We present a graph representation that allows easy forward and
backward navigation, and can represent undirected graphs without paying
twice for every edge in the graph. We also show that this representation is
suboptimal and that the representation shown in Chapter 6 achieves better
time/space tradeoffs.

Chapter 6 : We demonstrate that an adjacency list based representation,
combined with the technique of Chapter 4, improves by far the best known
space/time tradeoff [BV04] and that it can be further compressed by combining
the resulting structure with the techniques of Chapter 3. This work was
published in SPIRE 2007 [CN07], and submitted to IEEE TKDE.

Chapter 7 : We explore an alternative way of compressing Web graphs, relating
them to binary relations. We work mainly in a decomposition of a binary
relation into two relations defined by the resulting structures of Chapter 6:
the sequence compressed with Re-Pair and the dictionary. This approach
achieves good space and supports reverse queries. We also present a new data
structure for binary relations that achieves space proportional to the entropy
of the binary relation, which can be dynamized and supports insertion and
deletion of pairs to/from the relation.

3

Chapter 2

Related Work

2.1 Compression of Sequences

The goal of data compression is to store and access information using less space
than its plain (uncompressed) representation.

A common measure of the compressibility of a sequence is the empirical entropy.
For a text T of length n whose symbols are drawn from an alphabet Σ of size σ, the
zero-order empirical entropy is defined as follows:

H0(T) =
∑

c∈Σ

nc

n
log

n

nc

where nc is the number of occurrences of c in T 1. H0(T) represents the
average number of bits needed to represent a symbol of T and is a lower bound of
the compression that can be achieved without considering contexts, that is, encoding
each symbol independently of the text surrounding it.

If we consider the context in which each symbol appears, we can achieve better
compression ratios. For example, if we consider the context th in English, it is more
likely to find an a,e,i,o or u, and it is very unlikely to find a k. The definition of
empirical entropy can be extended to consider contexts as follows [Man01]:

Hk(T) =
∑

s ∈ Σk

|T s|

n
H0(T

s)

1All logarithms are in base 2 unless stated otherwise.

4

Chapter 2 Related Work 2.2 Encoding

where T s is the sequence of symbols preceded by the context s in T . It can be
proved that Hk(T) ≤ Hk−1(T) ≤ . . . ≤ H0(T) ≤ log(σ).

One way to achieve compression is to use so-called dictionary based methods,
which focus on representing a sequence by factorization or reference to other areas
of the sequence. Some examples of this technique are Lempel-Ziv [ZL77, ZL78] and
Re-Pair [LM00]. It has been proved that those techniques achieve space proportional
to nHk(T) plus some lower order terms [KM99, NR08].

Another way is to encode the source symbols with a variable-length encoder.
For example Huffman [Huf52], which generates prefix-free codes for every symbol in
the text, assigns shorter codes to the most probable symbols in order to represent
the text using less space. This method achieves space proportional to nH0(T) plus
some lower order terms.

Other methods transform the text prior to compressing it. An example is the
Burrows-Wheeler Transform [BW94]. Using this approach one can achieve nHk(T)+
o(n log σ) bits of space using local zero-order compression.

2.2 Encoding

When representing data in compact or compressed form we usually need to represent
symbols using binary variable-length prefix-free codes. In the case of Huffman, the
codes depend on the symbol frequencies. There are other coding techniques for
alphabets of unbounded size, which give shorter codes to the smaller symbols. In
this work, we make use of Gamma codes, Delta codes and Rice codes [WMB99]
tailored to positive numbers. Table 2.1 shows Unary, Gamma, Delta and Rice codes
for the first 10 integers.

Unary Codes The unary representation is commonly used within other encodings;
the idea is to encode the value n as 1n−10. For example, for 5 the codification
is 11110. The final zero allows to delimit the code (i.e., makes it prefix-free).

Gamma Codes The Gamma code of a given integer n is the concatenation of the
length of its binary representation in unary, and the binary representation of n
omitting the most significant bit. For example, for 5 = (101)2, its codification
is 11001. The representation of a symbol n uses 2⌊log n⌋+ 1 bits: ⌊log n⌋+ 1
are used to represent the symbol length in unary and ⌊log n⌋ bits are used to
represent the symbol without its most significant bit.

5

Chapter 2 Related Work 2.3 Graph Compression

Symbol Unary Code γ-Code δ-Code Rice Code (b = 2)
1 0 0 0 000
2 10 100 1000 001
3 110 101 1001 010
4 1110 11000 10100 011
5 11110 11001 10101 1000
6 111110 11010 10110 1001
7 1111110 11011 10111 1010
8 11111110 1110000 11000000 1011
9 111111110 1110001 11000001 11000
10 1111111110 1110010 11000010 11001

Table 2.1: Different encodings for integers 1 to 10.

Delta Codes Delta codes are the natural extension of Gamma codes for larger
symbols. They represent the binary length of the symbol using Gamma codes.
This allows us to represent a symbol using 1 + 2⌊log log n⌋+ ⌊log n⌋ bits.

Rice Codes Rice codes are parameterized codes that receive two values, the symbol
n and a parameter b. Then n is represented as q = ⌊(n − 1)/2b⌋ in unary

concatenated with r = n−q2b−1 in binary using b bits, for a total of
⌊

n−1
2b

⌋

+b
bits.

2.3 Graph Compression

Let us consider graphs G = (V, E), where V is the set of vertices and E is the set
of edges. We call n = |V | and m = |E|. Standard graph representations such as
the incidence matrix and the adjacency list require n(n − 1)/2 and 2m log n bits,
respectively, for undirected graphs. For directed graphs the numbers are n2 and
m log n, respectively. We call the neighbors of a node v ∈ V those u ∈ V such that
(v, u) ∈ E.

The oldest work on graph compression focuses on undirected unlabeled graphs.
The first result we know of [Tur84] shows that planar graphs can be compressed into
O(n) bits. The constant factor was later improved [KW95], and finally a technique
yielding the optimal constant factor was devised [HKL00]. Results on planar graphs
can be generalized to graphs with constant genus [Lu02]. More generally, a graph
with genus g can be compressed into O(g + n) bits [DL98].

6

Chapter 2 Related Work 2.3 Graph Compression

Some classes of planar graphs have also received special attention, for example
trees, triangulated meshes, triconnected planar graphs, and others [IR82, KW95,
HKL99, Ros99]. For dense graphs, it is shown that little can be done to improve
the space required by the adjacency matrix [Nao90].

The above techniques consider just the compression of the graph, not its
access in compressed form. The first compressed data structure for graphs we
know of [Jac89] requires O(gn) bits of space for a g-page graph. A page is a
subgraph whose nodes can be written in a linear layout so that its edges do not
cross (the ordering of nodes in those linear layouts must be consistent across
pages). Edges of a page hence form a nested structure that can be represented
as a balanced sequence of parentheses. The operations are supported using succinct
data structures that permit navigating a sequence of balanced parentheses. The
neighbors of a node can be retrieved in O(logn) time each (plus an extra O(g)
complexity for the whole query). The O(log n) time was later improved to constant
by using improved parentheses representations [MR97], and also the constant term
of the space complexity was improved [CGH+98]. The representation also permits
finding the degree (number of neighbors) of a node, as well as testing whether two
nodes are connected or not, in O(g) time.

All those techniques based on number of pages are unlikely to scale well to more
general graphs, in particular to Web graphs. A more powerful concept that applies
to this type of graph is that of graph separators. Although the separator concept
has been used a few times [DL98, HKL00, CPMF04] (yet not supporting access
to the compressed graph), the most striking results are achieved in recent work
[BBK03, Bla06]. Their idea is to find graph components that can be disconnected
from the rest by removing a small number of edges. Then, the nodes within each
component can be renumbered to achieve smaller node identifiers, and only a few
external edges must be represented.

They [Bla06] apply the separator technique to design a compressed data
structure that gives constant access time per delivered neighbor. They carefully
implement their techniques and experiment on several graphs. In particular, on a
graph of 1 million (1M) nodes and 5M edges from the Google programming contest2,
their data structures require 13–16 bits per edge (bpe), and work faster than a plain
uncompressed representation using arrays for the adjacency lists. It is not clear how
these results would scale to larger graphs, as much of their improvement relies on
smart caching, and this effect should vanish with real Web graphs, which have no
chance of fitting a significant portion in today’s caches, even if compressed.

2www.google.com/programming-contest, not anymore available.

7

Chapter 2 Related Work 2.3 Graph Compression

There is also some work specifically aimed at compression of Web graphs
[BKM+00, AM01, SY01, BV04]. In this graph, the (labeled) nodes are Web pages
and the (directed) edges are the hyperlinks. Several properties of Web graphs have
been identified and exploited to achieve compression:

Skewed distribution: The in- and out-degrees of the nodes distribute according
to a power law, that is, the probability that a page has i links is 1/iθ for some
parameter θ > 0. Several experiments give rather consistent values of θ = 2.1
for incoming and θ = 2.72 for outgoing links [ACL00, BKM+00].

Locality of reference: Most of the links from a site point within the site. This
motivates the use of lexicographical URL order to list the pages, so that
outgoing links go to nodes whose position is close to that of the current node
[BBH+98]. Gap encoding techniques are then used to encode the differences
among consecutive target node positions.

Similarity of adjacency lists: Nodes tend to share many outgoing links with
some other nodes [KRRT99, BV04]. This permits compressing them by a
reference to the similar list plus a list of edits.

Suel and Yuan [SY01] partition the adjacency lists considering the popularity of
the nodes, and use different coding methods for each partition. A more hierarchical
view of the nodes is exploited by Raghavan and Garcia-Molina [RGM03]. Different
authors [AM01, RSWW01] take explicit advantage of the similarity property. A page
with similar outgoing links is identified with some heuristic, and then the current
page is expressed as a reference to the similar page plus some edit information to
encode the deletions and insertions needed to obtain the current page from the
referenced one. Finally, probably the best current result is from Boldi and Vigna
[BV04], who build on previous work [AM01, RSWW01] and further engineer the
compression to exploit the properties above.

Experimental figures are not always easy to compare, but they give a reasonable
idea of the practical performances. Over a graph with 115M nodes and 1.47 billion
(1.47G) edges from the Internet Archive, Suel and Yuan [SY01] require 13.92 bpe
(plus around 50 bits per node, bpn). Randall et al. [RSWW01], over a graph of
61M nodes and 1G edges, achieve 5.07 bpe for the graph. Adler and Mitzenmacher
[AM01] achieve 8.3 bpe (no information on bpn) over TREC-8 Web track graphs
(WT2g set), yet they cannot access the graph in compressed form. Broder at
el. [BKM+00] require 80 bits per node plus 27.2 bpe (and can answer reverse neighbor
queries as well).

8

Chapter 2 Related Work 2.4 Phrase-Based Compression

By far the best figures are from Boldi and Vigna [BV04]. For example, they
achieve space close to 3 bpe to compress a graph of 118M nodes and 1G link from
WebBase3. This space, however, is not sufficient to access the graph in compressed
form. They carried out an experiment including the extra information required for
navigation on a graph of 18.5M nodes and 292M links, and their method needs 6.7
bpe to achieve access times below the microsecond. Those access times are of the
same order of magnitude than other representations [SY01, RGM03, RSWW01].
For example, the latter reports times around 300 nanoseconds per delivered edge.

A recent proposal [Nav07] advocates regarding the adjacency list representation
as a text sequence and using compressed text indexing techniques [NM07], so that
neighbors can be obtained via text decompression and reverse neighbors via text
searching. The concept and the results are interesting but not yet sufficiently
competitive with those of Boldi and Vigna.

2.4 Phrase-Based Compression

2.4.1 Re-Pair

Re-Pair [LM00] is a phrase-based compressor that permits fast and local
decompression. It consists of repeatedly finding the most frequent pair of symbols in
a sequence of integers and replacing it with a new symbol, until no more replacements
are convenient. More precisely, Re-Pair over a sequence T works as follows:

1. It identifies the most frequent pair ab in T

2. It adds the rule s → ab to a dictionary R, where s is a new symbol not
appearing in T .

3. It replaces every occurrence of ab in T by s.4

4. It iterates until every pair in T appears once.

Let us call C the resulting text (i.e., T after all the replacements). It is easy
to expand any symbol s from C in time linear on the expanded data (i.e., optimal):
We expand s using rule s→ s′s′′ in R, and continue recursively with s′ and s′′, until
we obtain the original symbols of T .

3www-diglib.stanford.edu/~testbed/doc2/WebBase/
4As far as possible, e.g., one cannot replace both occurrences of aa in aaa.

9

Chapter 2 Related Work 2.4 Phrase-Based Compression

Despite its quadratic appearance, Re-Pair can be implemented in linear time
[LM00]. However, this requires several data structures to track the pairs that must
be replaced. This is usually problematic when applying it to large sequences, as
witnessed when using it for natural language text compression [Wan03]. Indeed, it
was also a problem when using it over suffix arrays [GN07], where an approximate
algorithm (that is, it does not always choose the most frequent pair to replace)
performs much better. The approximate algorithm runs very fast, with limited
extra memory, and loses very little compression. Unfortunately, it only applies to
suffix arrays.

In addition, the method works well in secondary memory. If we store C on
disk and the dictionary in main memory, the decompression process is I/O-optimal,
since we only need to expand a contiguous piece of the sequence.

2.4.1.1 Dictionary Compression

As each new rule added to R costs two integers of space, replacing pairs that
appear twice does not involve any gain unless R is compressed. In the original
proposal [LM00], a very space-effective dictionary compression method is presented.
However, it requires R to be fully decompressed before using it. In this work, we
are interested in being able to operate the graphs in little space. Thus, we favor a
second technique to compress R [GN07], which reduces the space it takes to about
a half and can operate in compressed form. We use this dictionary representation
in our experiments, and explain it here.

The main idea is to represent the set of rules as a set of binary trees. Every
tree is represented by the sequence of symbols (S) and a bitmap (BRR) that defines
the shape of the tree. For example, the set of rules c→ ab, d→ cb and e→ ac can
be represented by the tree shown in Figure 2.1.

Figure 2.1: Example Re-Pair rules representation.

In BRR, internal nodes are represented by ones and leaves by zeroes. The
example shown in Figure 2.1 would result in 11000100 and the sequence S is abba2,

10

Chapter 2 Related Work 2.4 Phrase-Based Compression

where the last ‘2’ represents the non-terminal ‘c’, whose tree is at position 2 in BRR.
In general, the dictionary is a set of trees, which are concatenated. Internal nodes
are identified with the position of their 1 in the bitmap, for example d = 1, c = 2
and e = 6. Given the starting position of a non-terminal symbol (in the bitmap),
it is easy to expand it: We have to traverse the tree until the number of 0s exceeds
the number of 1s. To map the i-th 0 in the bitmap to a symbol, we have to access
S[rankBRR(0, i)] (see Section 2.5).

The description of symbol c is included inside that of symbol d. This saves one
integer to represent c, and it can be done only once per symbol. The rest of the
occurrences of c are not expanded but appear in S. Those non-terminals have to be
recursively expanded. Figure 2.2 shows the expansion process.

decompress(s)
1. If s ≤ σ Then output s
2. Else
3. p← s− σ
4. r ← 1
5. i← rankBRR(0, p)
6. While r > 0 Do
7. If BRR[p] = 1 Then r ← r + 1
8. Else
9. decompress(S[i])
10. r ← r − 1
11. i← i + 1

Figure 2.2: Re-Pair decompression. We assume terminals are in [1, σ] and
nonterminals are positions in the bitmap shifted by σ.

2.4.2 Lempel-Ziv

The Lempel-Ziv compression family [ZL77, ZL78] achieves compression by replacing
repeated sequences found in the text by a pointer to a previous occurrence thereof.
In particular, the LZ78 variant [ZL78] stands as a plausible candidate for graph
compression.

LZ78 compresses the text by dividing it into phrases. Each phrase is built as
the concatenation of the longest previous phrase that matches the prefix of the text

11

Chapter 2 Related Work 2.5 Rank and Select on Sequences

yet to be compressed and an extra character which makes this phrase different from
all the previous ones. The algorithm is as follows:

1. It starts with a dictionary S of known phrases, containing initially the empty
string.

2. It finds the longest prefix Ti,j of the text Ti,n yet to be processed, which matches
an existing phrase. Let p be that phrase number.

3. It adds a new phrase to S, with a fresh identifier, and content (p, Tj+1).

4. It returns to step 2, to process the rest of the text Tj+2,n.

In order to carry out efficiently step 2, S is organized as a trie data structure.
The output of the compressor is just the sequence of pairs (p, Tj+1). The phrase
identifier is implicitly given by the position of the pair in the sequence.

The content of any phrase in the compressed text can be obtained backwards
in linear time. Let p0 the phrase we wish to expand. We read the p0-th pair in the
compressed sequence and get (p1, c0). Then c0 is the last character of the phrase.
Now we read the p1-th pair and get (p2, c1), thus c1 precedes c0. We continue until
reaching pi = 0, which denotes the empty phrase. In i constant-time steps we
obtained the content ci−1ci−2 . . . c1c0.

Just as for Re-Pair, this extraction can be made I/O-optimal if we limit the
creation of phrases to what can be maintained in main memory. A simple way
to achieve this is as follows: After the main memory is full, the process continues
identically but no new phrases are inserted into S (hence not all the phrase contents
will be different).

2.5 Rank and Select on Sequences

Probably the most basic tool, used in virtually all compressed data structures, is the
sequence of symbols supporting rank, select and access. Rank(a,i) counts the number
of occurrences of character a until position i (included). Select(a,i) finds the position
of the i-th occurrence of a in the sequence. Access(i) returns the symbol at position
i in the sequence. The most basic case is when the sequence is drawn from a binary
alphabet. Theoretically and practically appealing solutions have been proposed for
this case, achieving space close to the zero-order entropy of the sequence and good
time performance.

12

Chapter 2 Related Work 2.5 Rank and Select on Sequences

Variant Size Rank Select
esp nH0(B) + o(n) O(1) O(1)

recrank 1.44m log n
m

+ m + o(n) O
(

log n
m

)

O
(

log n
m

)

vcode m log(n/ log2 n) + o(n) O(log2 n) O (log n)

sdarray m log n
m

+ 2m + o(n) O
(

log n
m

+ log4 m
log n

)

O
(

log4 m
log n

)

darray n + o(n) O(1) O
(

log4 m
log n

)

Table 2.2: Space in bits and query time achieved by the data structures proposed
by Okanohara and Sadakane.

2.5.1 Binary Sequences

Many solutions have been proposed for the case of binary sequences. Consider a
bitmap B[1, n] with m ones. The first compact solution to this problem is capable
of answering the queries in constant time and uses n+o(n) bits [Cla96] (i.e., B itself
plus o(n) extra space); the solution is straightforward to implement [GGMN05].
This was later improved by Raman, Raman and Rao (RRR) [RRR02] achieving
nH0(B) + o(n) bits while answering the queries in constant time, but the technique
is not anymore simple to implement. Several practical alternatives achieving very
close results have been proposed by Okanohara and Sadakane [OS07], tailored to the
case of small m: esp, recrank, vcode, sdarray, and darray. Table 2.2 shows the
time and space complexities achieved by these variants. Most of them are very good
for select queries, yet rank queries are slower. The variant esp is indeed a practical
implementation of RRR structure that saves space by replacing some pointers by
estimations based on entropy.

In this work, we implement the RRR data structure [RRR02]. It divides the
sequence into blocks of length u = log n

2
and every block is represented as a tuple

(ci, oi). The first component, ci, represents the class of the block, which corresponds
to its number of 1s. The second, oi, represents the offset of that block inside a list
of all the possible blocks in class ci. Three tables are defined:

• Table E: stores every possible combination of u bits, sorted by class, and by
offset within each class. It also stores all answers for rank at every position of
each combination.

• Table R: corresponds to the concatenation of all the ci’s, using ⌈log(u + 1)⌉
bits per field.

13

Chapter 2 Related Work 2.5 Rank and Select on Sequences

• Table S: stores the concatenation of the oi’s using
⌈

log
(

u
ci

)⌉

bits per field.

This structure also needs two partial sum structures [RRR01], one for R and the
other for the length of the oi’s in S, posS. For answering rank until position i, we
first compute sum(R, ⌊i/u⌋) =

∑⌊i/u⌋
j=0 Rj , the number of 1s before the beginning of

i’s block, and then rank inside the block until position i using table E. For this, we
need to find oi: using sum(posS, ⌊i/u⌋) we determine the starting position of oi in S,
and with ci and u we know how many bits we need to read. For select queries, they
store the same extra information as Clark [Cla96], but no practical implementation
for this extra structure has been shown. Access can be answered with two ranks,
access(i) = rank(1, i)− rank(1, i− 1).

2.5.2 Arbitrary Sequences

Rank, select and access operations can be extended to arbitrary sequences drawn
from an alphabet Σ of size σ. The two most prominent data structures that solve
this problem are reviewed next.

Wavelet Trees. A wavelet tree [GGV03, FMMN07, NM07] is a perfectly balanced
tree that stores a bitmap of length n in the root; every position in the bitmap is
either 0 or 1 depending on the value of the most significant bit of the symbol in that
position in the sequence.5 A symbol with a 0 goes to the left subtree and a symbol
with a 1 goes to the right subtree. This decomposition continues recursively with
the next highest bit, and so on. The tree has σ leaves and requires n⌈log σ⌉ bits, n
bits per level. Every bitmap in the tree must be capable of answering access, rank
and select queries.

The access query for position i can be answered by following the path described
for position i. At the root, if the bitmap at position i has a 0/1, we descend to
the left/right child, switching to the bitmap position rank(0/1, i) in the left/right
subtree. This continues recursively until reaching the last level, when we finish
forming the binary representation of the symbol.

The rank query for symbol a until position i can be answered in a similar way
as access, the difference being that instead of considering the bit at position i in the
first level, we consider the most significant bit of a; for the second level we consider

5In general wavelet trees are described as dividing alphabet segments into halves. The
description we give here, based on the binary decomposition of alphabet symbols, is more
convenient for the solutions shown in the next chapter.

14

Chapter 2 Related Work 2.5 Rank and Select on Sequences

the second highest bit, and so on. We update the position for the next subtree with
rank(b, i), where b is the bit of a considered at this level. At the leaves, the final
bitmap position corresponds to the answer to rank(a, i) in S.

The select query does a similar process as rank, but upwards. To select the
i-th occurrence of character a, we start at the leaf where a is represented and do
select(b, i) where, as before, b is the bit of a corresponding to this level. Using the
position obtained by the binary select query we move to the parent, querying for
this new position. At the root, the position is the final result.

The cost of the operations is O(log σ) assuming constant-time rank, select and
access over bitmaps. If we use a multiary wavelet tree, using general sequences
for the levels, the time drops to O(1 + log σ

log log n
) [FMMN07]. However, no practical

implementation of this variant has succeeded up to now.

A practical variant to achieve n(H0(S) + 1) bits of space is to give the wavelet
tree the same shape than the Huffman tree of S [GGV03, NM07]. This saves space
and even time on average.

Golynski et al. Golynski et al. [GMR06] proposed a data structure capable of
answering rank, select and access in time O(log log σ) using n log σ + n o(log σ) bits
of space. The main idea is to reduce the problem over one sequence of length n and
alphabet size σ to n/σ sequences of length σ.

Consider a binary matrix M with n columns and σ rows. The value of M [i, j]
is 1 if the i-th symbol of the text is j and 0 otherwise. Let A be obtained by writing
M in row-major order. We can answer rank and select very easily: Rank for symbol
a until position i is rankA(1, (a− 1)n + i)− rankA(1, (a− 1)n). Select for the i-th
occurrence of symbol a is selectA(1, i + rankA(1, (a− 1)n)) − (a − 1)n. The space
required by A is too high, nσ bits, so they divide A into pieces of length σ and
write the cardinality (number of 1s) of every piece in unary in a new bitmap B. For
example if A = 001011010111101 and σ = 3, the resulting B is 01011010111011.
Using this new bitmap we can answer rank only for positions that are multiples of σ
and we can only determine in which block is the i-th position for select. In exchange,
B uses 2n+ o(n) bits instead of nσ. In order to complete the structure, we must be
able to answer rank, select and access inside the blocks formed by B. This is solved
by using a structure they call a chunk.

Every chunk stores σ symbols of the text using a bitmap X and a permutation
π. X stores the cardinality of every symbol of the alphabet in the chunk using
the same encoding as B. π stores the permutation obtained by stably sorting the

15

Chapter 2 Related Work 2.6 Compressed Full-Text Indexes

sequence represented by the chunk, and uses a data structure that allows constant-
time computation of π−1 [MRRR03]. This requires 2σ+o(σ) bits for X and σ log σ+
o(σ log σ) for π. Summing over the n/σ chunks we get 2n + n log σ + n o(log σ). For
example, if the sequence is 231221 then X = 011011101 and π = [3, 6, 1, 4, 5, 2].

Every query is divided into two subqueries, the first one over B and the
second over the corresponding chunk. Using B and assuming that σ divides
n, we can determine rank for a symbol a until position ⌊i/σ⌋σ by computing
rankB(1, selectB(0, (a+1)⌊n/σ⌋+ ⌊i/σ⌋))− rankB(1, selectB(0, (a+1)⌊n/σ⌋)). For
select, we can determine the chunk where the i-th occurrence of a appears by
computing rankB(0, selectB(1, rankB(1, selectB(0, (a− 1)⌊n/σ⌋)) + i)).

Inside the chunk, a select query can be answered by computing
π(rankX(1, selectX(0, a) + i)). The rank queries can be answered by doing a binary
search over π[rankX(1, selectX(0, a)) . . . rankX(1, selectX(0, a+1))]. Using a Y-Fast
Trie [Wil83] to speed up this process, Golynski et al. achieve O(log log σ) instead of
O(log σ) time. The access query for retrieving the symbol at position i is calculated
in constant time as rankX(0, selectX(1, π−1(i))).

We note that the n o(log σ) extra term does not vanish asymptotically with
n but with σ. This suggests, as we verify experimentally later, that the structure
performs well only on large alphabets.

2.6 Compressed Full-Text Indexes

A full-text index is a data structure that indexes a text T of length n, drawn from
an alphabet Σ of size σ. The index supports the following operations:

• count(pattern p): counts the number of occurrences of p in T .

• locate(pattern p): reports the positions where p appears in T .

• extract(position i, position j): extracts the substring T [i . . . j].

Classical indexes, like suffix arrays [MM93], consist of a large data structure
built on top of the text, which answers count and locate. Extracting strings is trivial
since T is stored as well.

A compressed full-text self-index is a full-text index that in addition replaces
the text and takes space proportional to the compressed text size. Since they do not

16

Chapter 2 Related Work 2.6 Compressed Full-Text Indexes

Figure 2.3: Example of a suffix array. It assumes that ‘ ’ is greater than any other
symbol.

store the text anymore, the extract operation can be far from obvious now. In this
work, in particular, we consider Sadakane’s Compressed Suffix Array (CSA) [Sad03]
and the FM-Index [FM00].

2.6.1 Suffix Arrays

A suffix array [MM93] is a data structure built on top of the text that speeds up the
count and locate operations. The suffix array stores the positions of all the suffixes
of the text, sorted alphabetically. This is not a compressed full-text index, but the
idea behind the suffix array is used as a base for many compressed full-text indexes.

Figure 2.3 shows the suffix array for the text ‘alabar a la alabarda’. We
add an extra symbol $ at the end of the text, which is alphabetically smaller than
all the others.

For counting and locating we perform a binary search over the suffixes, finding
the left and right boundaries where the pattern appears. The number of elements
between these two positions is the answer to count, and the positions listed in the
suffix array in that range are the answer to locate, since every substring in the text
is the prefix of a suffix. For a pattern of length m, count takes time O(m log n) and
locate takes O(m logn+ occ), where occ is the number of occurrences of the pattern.

17

Chapter 2 Related Work 2.6 Compressed Full-Text Indexes

i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A = 21 20 3 15 13 1 17 5 11 8 16 4 19 14 2 10 18 6 12 7 9

Ψ = 15 3 12 8 18 20 10 21 16 9 19 5 14 4 11 7 17 13 2 1 6

Table 2.3: Example of Ψ

2.6.2 Sadakane’s Compressed Suffix Array (CSA)

Sadakane’s CSA [Sad03] is based on the function Ψ, which is computed using the
suffix array.

Definition 1 (Ψ) Let A[1 . . . n] be the suffix array of a text T . Then Ψ(i) is defined
as the position i′ in the suffix array where A[i′] = (A[i] mod n)+1, which is A[i]+1,
except for the case A[i] = n, where A[i′] = 1.

In simple words, Ψ(i) tells the position where the “next” text suffix is located
in the suffix array. Table 2.3 shows Ψ for the suffix array given in Figure 2.3.

The CSA also uses function Occ(s), defined for every symbol s ∈ Σ, which
counts the number of occurrences of all the symbols s′ < s in the text.

Using Ψ, Occ, and regular sampling of the suffix array and the text, we can
build an index that replaces the text and supports the three operations described
above. Before explaining how to answer the queries we highlight some important
properties:

• Ψ is a permutation from [1 . . . n]. In the ranges corresponding to one symbol
in the suffix array, Ψ is increasing [GV00].

• Occ(s) corresponds to the first position where the suffixes starting with s
appear in the suffix array.

To count the number of occurrences of a pattern p = p1p2 . . . pm in a text
indexed using the CSA, we perform a backward search. First, using Occ we
determine the range of the suffix array where the suffixes starting with pm are.
Then, we search the range where the suffixes start with pm−1, for the subrange
where the values of Ψ are within the prior range. This iterates until reaching p1,
where the length of the range corresponds to the number of occurrences of the
pattern in the text. For locating, we retrieve the values of the suffix array within

18

Chapter 2 Related Work 2.6 Compressed Full-Text Indexes

the range obtained during counting, and those are the positions where the pattern
appears. For retrieving the values of the suffix array, we must store a sample of it.
If we have to apply Ψ k times on the original position to reach a sampled value ai,
then the answer is ai − k. Figure 2.4 shows the algorithm for counting in the CSA.
For locating, we have to retrieve the values in the range determined by the count
operation.

CSA-Count(p1p2 . . . pm)
1. i← m
2. sp← 1
3. ep← n
4. While sp ≤ ep and i ≥ 1 Do
5. c← pi

6. sp′ ← min{j ∈ [Occ(c) + 1, Occ(c + 1)], Ψ(j) ∈ [sp, ep]}
7. ep← max{j ∈ [Occ(c) + 1, Occ(c + 1)], Ψ(j) ∈ [sp, ep]}
8. sp← sp′

9. i← i− 1
10. If ep < sp Then
11. return 0
12. Else
13. return ep− sp + 1

Figure 2.4: Count - CSA

This index requires 1
ǫ
nH0(T) + O(n log log σ) + σ log σ bits, for any 0 < ǫ ≤ 1.

Mäkinen and Navarro later improved this space to nHk(T) + O(n log log σ) for k ≤
α logσ n and constant 0 < α < 1 [MN07]. The time for counting is O(m logn), the
time for locating is O(log n) per occurrence, and the time to display ℓ symbols of
the text is O(ℓ + log n).

2.6.3 The FM-Index

The FM-Index family is based on the Burrows-Wheeler transform (BWT) [BW94].
We first explain the transformation, how to recover the text from the transformation,
and how to search for a pattern inside the transformed text. Then we describe some
full-text self-indexes based on this transformation and how they represent the BWT.

19

Chapter 2 Related Work 2.6 Compressed Full-Text Indexes

2.6.3.1 The Burrows-Wheeler Transform (BWT)

For a text T of length n, imagine a matrix of dimensions n × n of all the cyclic
shifts of T . If we sort this matrix, then the BWT (T bwt) is the last column of that
matrix. This is equivalent to collecting the character preceding every suffix of the
suffix array A of T , hence BWT can be identified with A. Assuming that the last
symbol of T is lexicographically smaller than all the other symbols in T , and that it
only appears in that position, it is possible to reverse the transformation: T [n− 1]
is located at T bwt[1], since the first element in the sorted matrix starts with T [n]. A
mapping function LF allows us to navigate T backwards, T [n − 2] = T bwt[LF (1)].
For a position k, T [n− k] = T bwt[LF k−1(1)].

Definition 2 The LF -mapping is defined as LF (i) = Occ[c]+rankT bwt(c, i), where
c = T bwt[i] and Occ[c] is the number of symbols lexicographically smaller than c in
T .

Note that LF is the inverse function of Ψ: LF corresponds to the position in
A of the suffix pointing to T [A[i] − 1]. Using the BWT we can perform backward
search in a similar way as for the CSA index. Figure 2.5 shows the algorithm for
counting the occurrences of a pattern P .

FM-Count(p1p2 . . . pm)
1. i← m
2. sp← 1
3. ep← n
4. While sp ≤ ep and i ≥ 1 Do
5. c← pi

6. sp← C[c] + rankT bwt(c, sp− 1) + 1
7. ep← C[c] + rankT bwt(c, ep)
8. i← i− 1
9. If ep < sp Then
10. return 0
11. Else
12. return ep− sp + 1

Figure 2.5: Counting on FM-Indexes

Since the suffix array is not explicitly stored, we must use a regular text
sampling to retrieve the positions covered by the range resulting from the counting.

20

Chapter 2 Related Work 2.6 Compressed Full-Text Indexes

Given a position i in the BWT , we can traverse the text backwards by jumping
across the BWT using the LF function, thus if after applying the LF function k
times we get a sampled value A[j], then the value for the original position is A[j]+k.
A suitable representation of the BWT, which supports rank queries, is a wavelet tree
(see Section 2.5.2).

The most prominent indexes based on the BWT are [NM07, FGNV07]:

SSA [MN05, FMMN07] Uses a Huffman-shaped wavelet tree on the BWT and plain
bitmaps to approach zero-order entropy space (n(H0(T) + 1)(1 + o(1)) bits).

AFFM-Index [FMMN07] Splits the BWT into segments and represents each with
a Huffman-shaped wavelet tree, to approach high-order entropy space. The
space required is nHk(T) + o(n log σ) bits for k ≤ α logσ n, 0 < α < 1.

RLFM-Index [MN05] Builds a wavelet tree over the run heads of the BWT,
requiring O(nHk(T) log σ) bits for k ≤ α logσ n, 0 < α < 1.

Each of them supports counting in O(m logσ) time and locating in O(log1+ǫ n)
per occurrence, for any constant ǫ > 0.

21

Chapter 3

Rank, Select and Access on
Sequences

In this chapter we propose and study practical implementations of sequences with
rank and select capabilities. Our first contribution is a compressed representation of
binary sequences based on Raman, Raman, and Rao’s (RRR) [RRR02] theoretical
proposal. We combine a faithful implementation of the theory with some common
sense decisions. The result is compared, on uniformly distributed bitmaps, with a
number of very well-engineered implementations for compressible binary sequences
[OS07], and found to be competitive when the sequence is not too compressible,
that is, when the proportion of 1s is over 10%.

Still this result does not serve to illustrate the local compressibility property
of RRR data structure, that is, that it adapts well to local variations in the
sequence. Mäkinen and Navarro [MN07] showed that the theoretical properties of
RRR structure makes it an excellent alternative for full-text indexing: Combining it
with the BWT (see Section 2.6.3) immediately yields a high-order compressed self-
index, without all the extra sophistications previously used [NM07]. In this chapter
we show experimentally that the proposed combination does work well in practice,
achieving (sometimes significantly) better space than any other existing self-index,
with moderate or no slowdown. The other compressed bitmap representations do
not achieve this result: the bitmaps are globally balanced, but they exhibit long
runs of 0s or 1s that only the RRR technique exploits so efficiently.

We then turn our attention to representing sequences over larger alphabets.
Huffman-shaped wavelet trees have been used to approach zero-order compression
of sequences [GGV03, FGNV07]. This requires O(σ log n) bits for the symbol table
and the tree pointers, where n is the sequence length. On large alphabets, this

22

Chapter 3 Rank, Select and Access on Sequences 3.1 Practical Implementations

factor can be prohibitive in space and ruin the compression ratios. We propose an
alternative representation that uses no (or just log σ) pointers, and concatenates all
the bitmaps of the wavelet tree by levels. As far as we know, no previous solution
to select over this representation existed. Combined with our compressed bitmap
representation, the result is an extremely useful tool to represent a sequence up to its
zero-order entropy, disregarding any problem related to alphabet size. We illustrate
this point by improving an existing result on graph compression (see Chapter 6), in
a case where no other considered technique succeeds.

Finally, we present the (as far as we know) first implementation of Golynski et
al.’s data structure for sequences [GMR06], again combining faithful implementation
of the theory with common sense. The result is a representation that does not
compress the sequence, yet it answers queries very fast without using too much
extra space. In particular, its performance over a sequence of word identifiers
provides a representation that uses about 70% of the original space of the text (in
character form) and gives the same functionality of an inverted index. In this sense,
it might become an interesting alternative to recent wavelet-tree-based proposals for
representing text collections [BFLN08], and to inverted indexes in general.

3.1 Practical Implementations

In the next three subsections we describe our practical implementations of RRR
[RRR02] structure for binary strings, of wavelet trees [GGV03, FMMN07, NM07],
and of Golynski et al.’s [GMR06] data structure. (See Section 2.5.)

3.1.1 Raman, Raman and Rao’s Structure

We store the table E, which only depends on u (recall Section 2.5.1), and we fix
u = 15 so that encoding the ci’s requires at most 4 bits each. We store table E using
16-bit integers for the bitstring contents, and for the pointers to the beginning of
each class in E. The answers to rank are not stored but computed on the fly from
the bitstrings, so E uses just 64 KB. Table R is represented by a compact array
using 4 bits per field, achieving fast extraction. Table S stores each offset using
⌈

log
(

u
ci

)⌉

bits.

The partial sums are represented by a one-level sampling. For table R, we
sample the sum every k values, and store these values in a new table sumR using
⌈log m⌉ bits per field, where m is the number of ones. To obtain the partial

23

Chapter 3 Rank, Select and Access on Sequences 3.1 Practical Implementations

sum until position i, we compute sumR[j] +
∑i

p=jk cp, where j = ⌊i/k⌋, and the
summation of the cp’s is done sequentially over the R entries. The positions in S are
represented the same way: We store the sampled sums in a new table called posS
using ⌈log(

∑n/u
i=1⌈log

(

u
ci

)

⌉)⌉ bits per field. We compute the position for block i as

posS[j] +
∑i

p=jk⌈log
(

u
cp

)

⌉. We precompute the 16 possible ⌈log
(

u
cp

)

⌉ values in order

to speed up this last sequential summation.

With this support, we answer rank queries by using the same RRR procedure.
Yet, select(1, i) queries are implemented in a simpler and more practical way. We
use a binary search over sumR, finding the rightmost sampled block for which
sumR[k] ≤ i. Then we traverse table R looking for the block in which we expect to
find the i-th bit set (i.e., adding up cp’s until we exceed i). Finally we access this
block in table E and traverse it bit by bit until finding the i-th 1. Select(0, i) can
be implemented analogously.

3.1.2 Wavelet Trees without Pointers

There exist already Huffman-shaped wavelet tree implementations that
achieve close to zero-order entropy space [NM07, FGNV07]. Yet, those solutions are
not efficient when the alphabet is very large: The overhead of storing the Huffman
symbol assignment and the wavelet tree pointers, O(σ log n), ruins the compression
if σ is large. In this section, we present an alternative implementation that achieves
zero-order entropy with a very mild dependence on σ (i.e., O(log σ log n) bits of
space), thus extending the existing results to the case of very large alphabets. We
use the following bitmaps:

• DA[1, σ] stores which symbols appear in the sequence, DA[i] = 1 if symbol i
appears in S. This allows us to remap the sequence in order to get a contiguous
alphabet; using rank and select over DA we can map in both directions.

• Occ[1, n] records the number of occurrences of symbols i ≤ r ∈ [1, σ] by placing
a one at

∑r
i=1 ni. For example, the sequence 113213323, where n1 = 3, n2 = 2

and n3 = 4, would generate Occ = 001010001. In the compressed version
of the wavelet tree, this array is stored in compressed form using our RRR
implementation.

Our practical implementation of the wavelet tree stores ⌈log σ⌉ bitmaps of length n.
The tree is mapped to these bitmaps levelwise: the first bitmap corresponds to the
root, the next one corresponds to the concatenation of left and right children of the

24

Chapter 3 Rank, Select and Access on Sequences 3.1 Practical Implementations

root, and so on. In this set of bitmaps, we must be able to calculate the interval
[s, e] corresponding to the bitmap of a node, and to obtain the new interval [s′, e′]
upon a child or parent operation. Assume the current node is at level ℓ (ℓ = 1 at
the leaves) on a tree of h levels. Further, assume that a is the symbol related to the
query, that Σ = {0, . . . , σ − 1}, and that selectOcc(1, 0) = 0.

• Computing the left child: s′ = s and e′ = e− rank(1, e) + rank(1, s− 1).

• Computing the right child: s′ = e + 1− rank(1, e) + rank(1, s− 1) and e′ = e.

• Computing parent: s′ = selectOcc(1, ⌊a/2ℓ⌋ · 2ℓ) + 1 and e′ = selectOcc(1,
(⌊a/2ℓ⌋+ 1) · 2ℓ).

Let us explain the left child formula. In the next level, the current bitmap segment
is partitioned into a left child and right child parts. The left child starts at the
same position of the current segment in this level, so s′ = s. To know the end of its
part, we must add the number of 0s in the current segment, e′ = s + rank(0, e) −
rank(0, s− 1)− 1 = s + (e− rank(1, e))− ((s− 1)− rank(1, s− 1))− 1. The right
child formula is similar.

For the parent formula, the idea is to consider the binary representation of a, as
this is the way our wavelet tree is structured. A node at level ℓ should contain all the
combinations of the ℓ lowest bits of a. For example, if ℓ = 1 and a = 5 = (101)2, its
parent is the node at level ℓ = 2 comprising the symbols 4 = (100)2 to 5 = (101)2.
The parent of this node, at level ℓ = 3, comprises the symbols 4 = (100)2 to
7 = (111)2. The formula blurs the last ℓ bits of a and uses selectOcc to find the right
segments at any level corresponding to the symbol intervals.

We can now navigate the tree and answer every query as if we had the explicit
structure.

It is possible to represent the wavelet tree using only one bitmap and omitting
the ⌈log σ⌉ pointers; the navigation is similar. We implemented and tested this
variation, but the results do not differ much from the first proposal. When
compressing the wavelet tree with RRR, the first variation achieves better space
because the absolute samples are smaller, thus it uses less space even considering
the pointers. The sample used in RRR offers a time/space trade-off for this version.

3.1.3 Golynski et al.’s Structure

We implement Golynski et al.’s proposal rather faithfully, with one important
exception: We do not use the Y-Fast trie, but rather perform a binary search over

25

Chapter 3 Rank, Select and Access on Sequences 3.2 Experimental Results

the positions for the rank query. In practice, this yields a gain in space and time
except for large σ values and biased symbol distribution within the chunk (remind
that we must search within the range of occurrences of a symbol of Σ in a chunk
of size σ, that is, the range is O(1) size on average). Hence the time for rank is
O(log σ) worst case, and O(1) on average. Select and access are not affected. The
version used for permutations [MRRR03] requires (1+ǫ)n⌈log n⌉ bits for n elements
and computes π−1 in O(1/ǫ) worst-case time1.

In the case when n ≈ σ, we also experiment with using only one chunk to
represent the structure. This speeds up all the operations since we do not need
to compute which chunk should we query, and all the operations over B become
unnecessary, as well as storing B itself.

3.2 Experimental Results

We first test the data structures for binary sequences, on random data and on the
BWT of real texts, showing that RRR is an attractive option. Second, we compare
the data structures for general sequences on various types of large-alphabet texts,
obtaining several interesting results. Finally, we apply our machinery to obtain the
best results so far on compressed text indexing.

The machine is a Pentium IV 3.0 GHz with 4GB of RAM using Gentoo
GNU/Linux with kernel 2.6.13 and g++ with -O9 and -DNDEBUG options.

3.2.1 Binary Sequences

We generated three random uniformly and independently distributed bitmaps of
length n = 108, with densities (fraction of 1s) of 5%, 10% and 20%. Fig. 3.1 compares
our RRR implementation against the best practical ones in previous work [OS07],
considering operations rank and select (access can be implemented as the difference
of two rank’s, and in some cases it can be done slightly better, yet only some of the
structures in [OS07] support it). As control data we include a fast uncompressed
implementation [GGMN05], which is insensitive to the bitmap density.

Our RRR implementation is far from competitive for very low densities (5%),
where it is totally dominated by sdarray, for example. For 10% density it is
already competitive with esp, its equivalent implementation [OS07], while offering

1Thanks to Diego Arroyuelo for providing his implementation for this solution.

26

Chapter 3 Rank, Select and Access on Sequences 3.2 Experimental Results

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1 1.2

t
i
m
e

(
s
e
c
s

f
o
r

1
0
0
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (bits per symbol)

Bitmap 100M (rank)

RRR 5%
esp 5%

recrank 5%
sdarray 5%

RRR 10%
esp 10%

recrank 10%
sdarray 10%

RRR 20%
esp 20%

recrank 20%
sdarray 20%

GMMN

 0

 50

 100

 150

 200

 0 0.2 0.4 0.6 0.8 1 1.2

t
i
m
e

(
s
e
c
s

f
o
r

1
0
0
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (bits per symbol)

Bitmap 100M (select)

RRR 5%
esp 5%

recrank 5%
sdarray 5%

RRR 10%
esp 10%

recrank 10%
sdarray 10%

RRR 20%
esp 20%

recrank 20%
sdarray 20%

GMMN

Figure 3.1: Space in bits per symbol and time in seconds for answering 108 random
queries over a bitmap of 108 bits.

more space/time tradeoffs and achieving the best space. For 20% density, RRR is
unparalleled in space usage, and alternative implementations need significantly more
space to beat its time performance. We remark that RRR implements select(0, i) in
the same time as select(1, i) with no extra space, where competing structures could
have to double the space they devote to select to retain their performance.

A property of RRR that is not apparent over uniformly distributed bitmaps,
but which becomes very relevant for implementing the wavelet tree of a
BWT-transformed text, is its ability to exploit local regularities in the bit
sequence. To test this, we extracted the 50MB English text from Pizza&Chili
(http://pizzachili.dcc.uchile.cl), computed the balanced wavelet tree of
its BWT, and concatenated all the bitmaps of the wavelet tree levelwise (this
corresponds to variant WT in Section 3.2.2, where the space directly depends on
the compression of the bit sequence). Table 3.1 shows the compression achieved by
the different methods. Global methods like sdarray and recrank fail, taking more
space than an uncompressed implementation. RRR stands out as the clear choice for
this problem, followed by esp (which is based on the same principle). The bitmap
density is around 40%, yet RRR achieves space similar to 5% uniformly distributed
density. We will explore further consequences of this fact in Section 3.2.3.

3.2.2 General Sequences

We compare our implementations of Golynski et al.’s and different variants of wavelet
trees. We consider three alphabet sizes. The smaller one is byte-size: We consider

27

Chapter 3 Rank, Select and Access on Sequences 3.2 Experimental Results

our plain text sequences English and DNA, seeing them as character sequences. Next,
we consider a large alphabet, yet not large enough to compete with the sequence size:
We take the 200MB English text from Pizza&Chili and regard this as a sequence
of words (a word is a maximal string of letters and digits). The result is a sequence
of 46, 582, 195 words over an alphabet of size 270, 096. Providing access and select
over this sequence mimics a word-addressing inverted index functionality [BFLN08].
Finally, we consider a case where the alphabet is nearly as large as the text. The
sequence corresponds to the graph Indochina after applying Re-Pair compression
on its adjacency list (see Chapter 6). The result is a sequence of length 15, 568, 253
over an alphabet of size 13, 502, 874. The result of Re-Pair can still be compressed
with a zero-order compressor, but the size of the alphabet challenges all of the
traditional methods. Our techniques can achieve such compression and in addition
provide rank/select functionality, which supports backward traversal on the graph
for free (see Chapter 7).

We consider full and 1-chunk variants of Golynski, as well as different
combinations of choices for wavelet trees. Note that DA and RRR can be combined
in 4 ways. RRR can also be combined with the last two options. Each plot will
omit obviously non-competitive combinations.

• WT: Concatenates all the wavelet tree levels into ⌈log σ⌉ bitmaps, which are
not compressed. Spurious symbols are added to the sequence to make the
alphabet contiguous.

• WT+DA: Instead of adding spurious symbols, maps the sequence to a
contiguous range using a bitmap (see Section 3.1.2).

• WT+RRR: Uses RRR compressed bitmap representation instead of a plain
one.

Variant Size Rank time
sdarray 2.05 > uncompressed
recrank 1.25 > uncompressed
esp 0.50 0.594
RRR (ours) 0.48 0.494
uncompressed 1.05 0.254

Table 3.1: Space (as a fraction of the bitmap size) and rank time (in µsec per query)
achieved by different data structures on the wavelet tree bitmaps of a real BWT
transformed text.

28

Chapter 3 Rank, Select and Access on Sequences 3.2 Experimental Results

• WT Ptrs: Uses pointers to keep the (balanced) tree shape, so it wastes σ
pointers for them. Uses uncompressed bitmaps within the tree nodes. No
contiguous alphabet is necessary here.

• WT Ptrs+Huff: Gives the tree a Huffman tree shape, so it approaches zero-
order entropy at the price of wasting σ words of space for the Huffman codes.

Figure 3.2 shows the results for byte alphabets. Golynski’s structure is not
competitive here. This shows that their o(log σ) term is not yet negligible for
σ = 256. On wavelet trees, the Ptrs+Huff variant excels in space and in time.
Adding RRR reduces the space very slightly in some cases; in others keeping
balanced shape gives better time in exchange for much more space. We also included
Naive, an implementation for byte sequences that stores the plain sequence plus
regularly sampled rank values for all symbols [BFLN08]. The results show that we
could improve their wavelet trees on words by replacing their Naive method by WT
Ptrs (as the alphabet is of size 127 and uniformly distributed in that application).

Figure 3.3 shows experiments on larger alphabets. Here Golynski et al.’s
structure becomes relevant. On the sequence of words, it adds to the previous
scenario a third space/time tradeoff point, offering much faster operations (especially
select) in exchange for significantly more space. Yet, this extra space is acceptable
for the sequence of word identifiers, as overall it is still a representation taking 70% of
the original text. As such it competes with a word-addressing inverted index. This
follows a recent trend of replacing inverted indexes by a succinct data structure
for representing sequences of word identifiers [BFLN08], which can retrieve the text
using access but also find the consecutive positions of a word using select. Golynski et
al.’s implementation takes around 2 µsec for select. The structure used in that work
[BFLN08] requires just 55% of the text space to achieve the same performance. Yet
some simple optimizations (such as treating stopwords and separators in a different
way) could close the gap. Another tradeoff point is WT Ptrs+Huff, which takes 40%
of the original text and 15 µsec for select. The other structure [BFLN08] requires
around 35% of the text for about the same time.

Again, adding RRR reduces the space of Ptrs+Huff, yet this time the reduction
is more interesting, and might have to do with some locality in the usage of words
across a text collection.

For the case of graphs, where the alphabet size is close to the text length,
the option of using just one chunk in Golynski et al.’s structure becomes extremely
relevant. It does not help to further compress the Re-Pair output, but for 20% extra
space it provides very efficient backward graph traversal (see Chapter 7). On the

29

Chapter 3 Rank, Select and Access on Sequences 3.2 Experimental Results

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.2 0.4 0.6 0.8 1 1.2

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

DNA 100MB (rank)

WT
WT DA
WT RRR

WT DA+RRR
WT Ptrs

WT Ptrs+RRR
WT Ptrs+Huff

WT Ptrs+Huff+RRR
Naive

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

English 100MB (rank)

WT
WT RRR

WT Ptrs
WT Ptrs+RRR
WT Ptrs+Huff

WT Ptrs+Huff+RRR
Naive

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

DNA 100MB (select)

WT
WT DA
WT RRR

WT DA+RRR
WT Ptrs

WT Ptrs+RRR
WT Ptrs+Huff

WT Ptrs+Huff+RRR
Naive

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

English 100MB (select)

WT
WT RRR

WT Ptrs
WT Ptrs+RRR
WT Ptrs+Huff

WT Ptrs+Huff+RRR
Naive

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.2 0.4 0.6 0.8 1 1.2

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

DNA 100MB (access)

WT
WT DA
WT RRR

WT DA+RRR
WT Ptrs

WT Ptrs+RRR
WT Ptrs+Huff

WT Ptrs+Huff+RRR
Naive

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

English 100MB (access)

WT
WT RRR

WT Ptrs
WT Ptrs+RRR
WT Ptrs+Huff

WT Ptrs+Huff+RRR
Naive

Figure 3.2: Results for byte alphabets. Space is measured as a fraction of the
sequence size (assuming one byte per symbol) and the time is measured in seconds
for 106 queries.

30

Chapter 3 Rank, Select and Access on Sequences 3.2 Experimental Results

other hand, the wavelet trees with DA+RRR offer further compression up to 70% of
the Re-Pair output size, which is remarkable for a technique that already achieved
excellent compression results (see Chapter 6). The price is much higher access time.
Without RRR, the times are in between both extremes, with no compression yet
no space penalty either. An interesting point here is that the versions with pointers
are not applicable here, as the alphabet overhead drives their space over 3 times the
sequence size. Hence exploring versions that do not use pointers pays off.

3.2.3 Compressed Full-Text Self-Indexes

It was recently proved [MN07] that the wavelet tree of the Burrows-Wheeler
transform (BWT) of a text (the key ingredient of the successful FM-index family
of text self-indexes [NM07]), achieves high-entropy space without any further
sophistication, provided the bitmaps of the wavelet tree are represented using RRR
structure [RRR02]. Hence a simple and efficient self-index emerges, at least in
theory. In Section 3.2.1, we showed that RRR indeed takes unique advantage from
the varying densities along the bitmap typical of the BWT transform. We can now
show that this proposal [MN07] has much practical value.

Fig. 3.4 compares the best suffix-array based indexes from Pizza&Chili:
SSA, AFFM-Index, RLFM-Index and the CSA (see Section 2.6). We combine
SSA with our most promising versions for this setup, WT Ptrs+RRR and WT
Ptrs+Huff+RRR. All the spaces are optimized for the count query, which is the key
one in these self-indexes (the others depend linearly on the product of these times
and a suffix array sampling step parameter, which we set to ∞).

We built the index over the 100 MB texts English, DNA, Proteins, Sources,
Pitches, and XML provided in Pizza&Chili. We chose 105 random patterns of length
20 from the same texts and ran the count query on each. Each count triggers 40
rank operations per wavelet tree level (in Huffman shaped trees this quantity could
change).

As can be seen, our new implementation is extremely space-efficient, achieving
a space performance never seen before in compressed full-text indexing (see, e.g.,
English, but also the hard-to-compress DNA and Proteins). In some cases, there is
no even time penalty!

It is interesting to question why combining RRR with Huffman shape is
better than RRR alone, since RRR by itself should in principle exploit all of the
compressibility captured by Huffman. The answer is in the c component of the (c, o)
pairs of RRR, which poses a fixed overhead per symbol which is not captured by

31

Chapter 3 Rank, Select and Access on Sequences 3.2 Experimental Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

Word ids (rank)

Golynski
WT

WT RRR
WT Ptrs

WT Ptrs+RRR
WT Ptrs+Huff

WT Ptrs+Huff+RRR
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.5 1 1.5 2

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

Indochina (rank)

Golynski
Golynski - Chunk

WT
WT DA
WT RRR

WT DA+RRR

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

Word ids (select)

Golynski
WT

WT RRR
WT Ptrs

WT Ptrs+RRR
WT Ptrs+Huff

WT Ptrs+Huff+RRR
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.5 1 1.5 2

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

Indochina (select)

Golynski
Golynski - Chunk

WT
WT DA
WT RRR

WT DA+RRR

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

Word ids (access)

Golynski
WT

WT RRR
WT Ptrs

WT Ptrs+RRR
WT Ptrs+Huff

WT Ptrs+Huff+RRR
 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2

t
i
m
e

(
s
e
c
s

f
o
r

1
M

r
a
n
d
o
m

q
u
e
r
i
e
s
)

space (fraction of the sequence)

Indochina (access)

Golynski
Golynski - Chunk

WT
WT DA
WT RRR

WT DA+RRR

Figure 3.3: Results for word identifiers (left) and a graph compressed with Re-Pair
(right). Space is measured as a fraction of the sequence (using ⌈log σ⌉ bits per
symbol) and the time is measured in seconds for 106 queries.

32

Chapter 3 Rank, Select and Access on Sequences 3.2 Experimental Results

the entropy. Indeed, we measured the length of the o components (table S) in both
cases and the difference was 0.02%. Yet the difference among the c components was
56.67%. Thus the Huffman shape helps reduce the total number of symbols to be
indexed, and hence it reduces the overhead due to the c components.

33

Chapter 3 Rank, Select and Access on Sequences 3.2 Experimental Results

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

t
i
m
e

(
m
i
l
l
i
s
e
c
s

p
e
r

q
u
e
r
y
)

space (fraction of the sequence)

English 100MB

SSA
CSA

AFFM-Index
RLFM-Index

SSA Ptrs+RRR
SSA Ptrs+Huff+RRR

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

t
i
m
e

(
m
i
l
l
i
s
e
c
s

p
e
r

q
u
e
r
y
)

space (fraction of the sequence)

Dna 100MB

SSA
CSA

AFFM-Index
RLFM-Index

SSA Ptrs+RRR
SSA Ptrs+Huff+RRR

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t
i
m
e

(
m
i
l
l
i
s
e
c
s

p
e
r

q
u
e
r
y
)

space (fraction of the sequence)

Proteins 100MB

SSA
CSA

AFFM-Index
RLFM-Index

SSA Ptrs+RRR
SSA Ptrs+Huff+RRR

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t
i
m
e

(
m
i
l
l
i
s
e
c
s

p
e
r

q
u
e
r
y
)

space (fraction of the sequence)

Sources 100MB

SSA
CSA

AFFM-Index
RLFM-Index

SSA Ptrs+RRR
SSA Ptrs+Huff+RRR

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t
i
m
e

(
m
i
l
l
i
s
e
c
s

p
e
r

q
u
e
r
y
)

space (fraction of the sequence)

Pitches 100MB

SSA
CSA

AFFM-Index
RLFM-Index

SSA Ptrs+RRR
SSA Ptrs+Huff+RRR

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

t
i
m
e

(
m
i
l
l
i
s
e
c
s

p
e
r

q
u
e
r
y
)

space (fraction of the sequence)

XML 100MB

SSA
CSA

AFFM-Index
RLFM-Index

SSA Ptrs+RRR
SSA Ptrs+Huff+RRR

Figure 3.4: Times for counting, averaged over 105 repetitions, for patterns of length
20.

34

Chapter 4

Re-Pair and Lempel-Ziv with
Local Decompression

4.1 Re-Pair

Recall from Section 2.4.1 that the exact Re-Pair compression algorithm requires too
much main memory and hence it is not suitable for compressing large sequences. We
present now an approximate Re-Pair compression method that: (1) works on any
sequence; (2) uses as little memory as desired on top of T ; (3) given a fixed extra
memory to work, can trade accurateness for speed; (4) is able to work smoothly on
secondary memory due to its sequential access pattern.

4.1.1 Approximate Re-Pair

In this section, we describe the method assuming we have M > |T | main memory
available, that is, the text plus some extra space fit in main memory. Section 4.1.2
considers the case of larger texts.

We place T inside the bigger array of size M , and use the remaining space as a
(closed) hash table H of size |H| = min(M −|T |, 2|T |). Table H stores unique pairs
of symbols ab = titi+1 occurring in T , and a counter of their number of occurrences
in T . The key ab = titi+1 is represented as a single integer by its position i in T
(any occurrence works). Thus each entry in H requires two integers.

The algorithm carries out several passes. At each pass, we identify the k most
promising replacements to carry out, and then try to materialize them. Here k ≥ 1

35

Chapter 4 Re-Pair and Lempel-Ziv 4.1 Re-Pair

is a time/quality tradeoff parameter. At the end, the new text is shorter and the
hash table can grow. We detail now the steps carried out for each pass.

Step 1 (counting pair frequencies). We traverse T = t1t2 . . . sequentially and
insert all the pairs titi+1 into H . If, at some point, the table surpasses a load factor
0 < α < 1 (defined by efficiency considerations, as the expected insertion time is

O
(

1
1−α

)

[Knu98]), we do not insert new pairs anymore, yet we keep traversing T to

increase the counters of already inserted pairs. This step requires O
(

1

1−α
|T |

)

= O(n)
time on average. H stores the counters and the position of one occurrence of the
pair, so we need just one integer to represent the pair instead of two.

Step 2 (finding k promising pairs). We scan H and retain the k most frequent
pairs from it. A heap of k pointers to cells in H is sufficient for this purpose. Hence
we need also space for k further integers. This step requires O(|H| logk) = O(n log k)
time.

Step 3 (simultaneous replacement). The k pairs identified will be
simultaneously replaced in a single pass over T . For this sake we must consider
that some replacements may invalidate others, for example we cannot replace both
ab and bc in abc. Some pairs can have so many occurrences invalidated that they
are not worthy of replacement anymore (especially at the end, when even the most
frequent pairs occur a few times). These considerations complicate the process.

We first empty H and reinsert only the k pairs to be replaced. This time
we store the explicit key ab in the table, as well as a field pos, the position of its
first occurrence in T . Special values for pos are null if we have not yet seen any
occurrence in this second pass, and proceed if we have already started replacing it.
We now scan T and use H to identify pairs that must be replaced. If pair ab is
in H and its pos value is null, then this is its first occurrence, whose position we
now record in pos (that is, we do not immediately replace the first occurrence until
we are not sure there will be at least two occurrences to replace). If, on the other
hand, its pos value is proceed, we just replace ab by sz in T , where s is the new
symbol for pair ab and z is an invalid entry. Finally, if the pair ab already has a first
position recorded in pos, we read this position in T and if it still contains ab (after
possible replacements that occurred since we saw that position), then we make both
replacements and set the pos value to proceed. Otherwise, we set the pos value of
pair ab to the current occurrence we are processing (i.e., its new first position). This

36

Chapter 4 Re-Pair and Lempel-Ziv 4.1 Re-Pair

method ensures that we create no new symbols s that will appear just once in T . It
takes O(|T |) = O(n) time on average.

Step 4 (compacting T and enlarging H). We compact T by deleting all the
z entries, and restart the process. As now T is smaller, we can have a larger hash
table of size |H| = min(M − |T |, 2|T |). The traversal of T , regarded as a circular
array, will now start at the point where we stopped inserting pairs in H in Step 1
of the previous pass, to favor a uniform distribution of the replacements. This step
takes O(|T |) = O(n) time.

Figure 4.1 illustrates the execution of the algorithm on an example sequence.

Figure 4.1: Part of the execution of the approximate version of Re-Pair. H represents
the space used for the hash table and T the space used for the text. The arrows
point from the counter in the hash table to the first occurrence of the pair counted
by that field. In the first iteration we replace ac by G; we do not replace cd because
ac blocks every replacement. During the second iteration we replace Gd by H.

Approximate analysis. Although not being complete, the following analysis
helps understand the accuracy/time tradeoff involved in the choice of k. Assume
the exact method creates |R| new symbols. The approximate method can also carry
out |R| replacements (achieving hopefully similar compression, since these need not
be the same replacements of the exact method) in p = ⌈|R|/k⌉ passes, which take
overall average time O(⌈|R|/k⌉ n log k). Thus we can trade time for accurateness
by tuning k. The larger k, the faster the algorithm (as there is an O(log(k)/k)
factor), but the less similar the result compared to the exact method. This analysis,
however, is only an approximation, as some replacements could be invalidated by
others and thus we cannot guarantee that we carry out k of them per round. Hence
p may be larger than ⌈|R|/k⌉ for some texts.

Note that even k = 1 does not guarantee that the algorithm works exactly as
Re-Pair, as we might not have space to store all the different pairs in H for some

37

Chapter 4 Re-Pair and Lempel-Ziv 4.1 Re-Pair

values of α and sizes of H . In this respect, it is interesting that the algorithm
becomes more accurate (thanks to a larger H) in its later stages, as by that time
the frequency distribution is flatter and more precision is required to identify the
best pairs to replace.

4.1.2 Running on Disk

The process described above also works well if T is too large to fit in main memory.
In this case, we maintain T on disk and table H occupies almost all the main
memory, |H| ≈M < |T |. We must also reserve sufficient main memory for the heap
of k elements. To avoid random accesses to T in Step 1, we do not store anymore
in H the position of pairs ab, but instead ab explicitly. Thus Step 1 carries out a
sequential traversal of T . Step 2 runs entirely in main memory. Step 4 involves
another sequential traversal of T .

Step 3 is, again, the most complicated part. In principle, a sequential traversal
of T is carried out. However, when a pos value changes to proceed, we make two
replacements: one at its first occurrence (at value pos) and one at the current
position in the traversal of T . The first involves a random access to T . Yet, this
occurs only when we make the first replacement of an occurrence of a pair ab. This
occurs at most k times per pass. However, checking that the first position pos still
contains ab and has not been overwritten, involves another random access to T , and
these cannot be bounded.

To carry out Step 3 efficiently, we note that there are at most k positions
in T needing random access at any time, namely, those containing the pos (6∈
{null, proceed}) values of the k pairs to be replaced. We maintain those k disk
pages cached in main memory1. Those must be replaced whenever value pos changes.
This replacement does not involve reading a new page, because the new pos value
always corresponds to the current traversal position (whose block is also cached in
main memory). Thus cached pages not pointed anymore from any pos values are
simply discarded (an elementary reference counting mechanism is sufficient), and
the current page of T might be retained in main memory if, after processing it,
some pos values now point to it.

As explained, most changes to T are done at the current traversal position,
hence it is sufficient to write back the current page of T after processing it to handle
those changes. The exceptions are the cases when one writes at some old position

1Note that the pairs could span two pages, in that case we need 2k pages at most. We thank
Hernán Arroyo for pointing this.

38

Chapter 4 Re-Pair and Lempel-Ziv 4.1 Re-Pair

pos. In those cases the pages we have cached in main memory must be written back
to disk. Yet, as explained, this occurs at most k times per pass. (Note that using
a dirty bit for the cached pages might avoid some of those write-backs, as the dirty
page could be modified several times before being abandoned by all the pairs.)

Thus the worst-case I/O cost of this algorithm, if p passes are carried out, is
O(p (n/B + k)), where B is the disk block size. That is, the algorithm is almost
I/O optimal with respect to its main memory version. Indeed, it is asymptotically
I/O optimal if k is chosen to be in O(n/B), a rather reasonable condition.

4.1.3 Adding Local Decompression

After compressing a text with Re-Pair, we can decompress the whole file but cannot
access any piece of it at a random position without decompressing all of the preceding
data.

In order to allow random access to the compressed file, we add some structures
that allow fast decompression of any snippet of the text, by expanding the optimal
number of symbols. The idea is to add a rank/select-capable structure Br in which
we mark every position of the real text where a phrase of Re-Pair begins. For
example, imagine the text abcdababcab where we replace e→ab and f → ec. The
result of C and Br is shown in Figure 4.2. This idea was originally presented in
[GN07] for locally decompressing suffix arrays.

Figure 4.2: Example over T =abcdababcab.

For extracting the snippet that starts at position i and ends at position j, we
determine which symbols in C contain those positions. The substring of C that we
have to decompress is C[i′, j′] where i′ = rankBr(i) and j′ = rankBr(j). The only
problem is that we must find out what is the real position of i′ in the text. That can
be answered with Br by calculating the start position s = selectBr(i′). After that,

39

Chapter 4 Re-Pair and Lempel-Ziv 4.2 Local Decompression on Lempel-Ziv

the extraction is trivial: We start expanding C[i′, j′] knowing that the first symbols
will correspond to position s, and expand until position i. Then we start reporting
until reaching position j, which is achieved while expanding C[j′].

4.2 Local Decompression on Lempel-Ziv

We add a bitmap like Br to the structure. This new bitmap stores every position
where a phrase ends. The decompression can be done pretty much in the same
way as for Re-Pair. We just ask in which phrase, j′, the position j is, and then
decompress backwards until reaching position i. The decompression could expand
many phrases; the important fact is that if we reach the end of the phrase and we
have not reached position i, we continue with phrase j′−1 and then with j′−2 and
so on. Note that every phrase is similar to a symbol in C that is expanded, thus
the idea is the same as for Re-Pair: It expands the optimal number of phrases just
as Re-Pair expands the optimal number of symbols.

4.3 Experimental Results

In order to validate our approximate Re-Pair method, we compared the compression
ratios obtained with the original method with those obtained with our version. The
parameter that determines the space used by the hash table does not include the
space used by the heap. Thus one has to add O(k) words to the space requirements,
which is negligible in our experiments.

We measured the compression ratio for several texts downloaded from
Pizza&Chili (http://pizzachili.dcc.uchile.cl). Table 4.1 shows the
compression ratios obtained for the six 200MB files. We can see that the approximate
version of Re-Pair achieves better compression ratio than LZ78 and is comparable
with other common compressors. The compression lost by applying the approximate
version instead of the original method is acceptable (1%−5%), especially if we focus
on large Web graphs, for which the approximate version might be the only option.
We use 50% extra space for the hash table and k = 10000. The value of α is 0.8.

In order to decompress locally we need to add the bitmap Br. Table
4.2 shows the space used by this bitmap using different implementations. The
space is measured as percentage of the implementation of González et al.
[GGMN05], which requires 1.05n bits. The first implementation shown is our

40

Chapter 4 Re-Pair and Lempel-Ziv 4.3 Experimental Results

Text Exact Re-Pair App. Repair LZ78 gzip -1 gzip -9 bzip2 -1 bzip2 -9

xml.200MB 13.93% 16.72% 21.76% 21.19% 17.12% 14.37% 11.36%
english.200MB 29.06% 33.53% 42.13% 44.99% 37.64% 32.83% 28.07%
dna.200MB 34.37% 35.41% 30.25% 32.51% 27.02% 26.57% 25.95%
proteins.200MB 51.18% 52.32% 57.37% 48.86% 46.51% 45.74% 44.80%
sources.200MB 25.71% 30.51% 40.50% 28.01% 22.38% 21.30% 18.67%
pitches.50MB 53.92% 57.31% 61.30% 33.92% 33.57% 34.99% 36.12%

Table 4.1: Compression ratio (size of compressed file compared with the original
one) for exact Re-Pair, our approximate Re-Pair, LZ78, gzip and bzip2.

version of RRR (see Chapter 3 [RRR02]). The second implementation is
an unpublished work from González and Navarro that is available in the site
http://pizzachili.dcc.uchile.cl. As we can see, the space can be considerably
reduced with the last two implementations.

File RRR GN
xml.200MB 45.51% 40.12%
dna.200MB 66.58% 64.84%
english.200MB 56.22% 55.32%
pitches.50MB 66.79% 69.71%
proteins.200MB 63.96% 68.16%
sources.200MB 53.80% 51.63%

Table 4.2: Size of compressed representation of Br (as a percentage of [GGMN05]).

Finally, Figure 4.3 shows the time for decompressing a random snippet from
a compressed text stored in main memory for the approximate version of Re-Pair
and our implementation of LZ78. Both use the bitmap Br represented with the
implementation of González et al. [GGMN05]. Figure 4.3 shows the plots for
every text. The LZ78 implementation consistently outperforms Re-Pair, yet is uses
significantly more space (see also Chapter 6).

We conclude that dictionary-based methods are a good alternative for
achieving acceptable compression ratios, together with good performance for local
decompression.

Lempel-Ziv achieves faster decompression because the phrases are shorter on
average, so Re-Pair has to decompress larger symbols. For the same reason, Re-Pair
yields a better compression ratio.

We do not focus on reducing much the space of the bitmap Br since the
local decompression for Web graphs uses a denser (but smaller) bitmap. The

41

Chapter 4 Re-Pair and Lempel-Ziv 4.3 Experimental Results

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

t
i
m
e

(
s

f
o
r

1
0
0
0
0

e
x
t
r
a
c
t
i
o
n
s
)

lg(length of snippet)

xml.200MB

Re-Pair

Lempel-Ziv

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

t
i
m
e

(
s

f
o
r

1
0
0
0
0

e
x
t
r
a
c
t
i
o
n
s
)

lg(length of snippet)

dna.200MB

Re-Pair

Lempel-Ziv

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

t
i
m
e

(
s

f
o
r

1
0
0
0
0

e
x
t
r
a
c
t
i
o
n
s
)

lg(length of snippet)

english.200MB

Re-Pair

Lempel-Ziv

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

t
i
m
e

(
s

f
o
r

1
0
0
0
0

e
x
t
r
a
c
t
i
o
n
s
)

lg(length of snippet)

proteins.200MB

Re-Pair

Lempel-Ziv

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

t
i
m
e

(
s

f
o
r

1
0
0
0
0

e
x
t
r
a
c
t
i
o
n
s
)

lg(length of snippet)

sources.200MB

Re-Pair

Lempel-Ziv

 0.01

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16 18

t
i
m
e

(
s

f
o
r

1
0
0
0
0

e
x
t
r
a
c
t
i
o
n
s
)

lg(length of snippet)

pitches.50MB

Re-Pair

Lempel-Ziv

Figure 4.3: Local decompression times for several texts.

representation using Re-Pair achieves better space and the speed can be improved
by representing the dictionary using plain integers.

42

Chapter 5

Edge List Representation

In this chapter1, we present a textual representation for a directed graph G = (V, E).
The main idea of the new representation is to encode all the graph edges, adjacency-
list-wise, and build a text with the concatenation of all the lists.

Let n = |V | and m = |E|, and δ(v) = |{u, (v, u) ∈ E}|. For every node v ∈ V
we will have two identifiers, v and v̄.

Definition 3 (Encoded edge) The edge (u, v) is encoded as the concatenation of
the identifier of u and the second identifier of v, that is, uv̄. We will assume that
∀v, u ∈ V, v̄ < u.

Definition 4 (Encoded adjacency list) Every adjacency list of a node v ∈ V is
encoded as the concatenation of the encoded edges that leave from v followed by the
identifier of v. For example if the adjacency list of v is {u1, u2, u3}, the encoded
adjacency list is vū1vū2vū3v. However, if δ(v) = 0 the encoded list is the empty
string, ǫ (as opposed to v).

Finally, the graph itself is written as a text by concatenating all the encoded
adjacency lists, we call T = T (G) this text. The space needed by this representation
is obviously larger than the classical adjacency list. In fact:

|T | =
∑

v ∈ V
δ(v) > 0

(1 + 2δ(v))

1This is a joint work with Paolo Ferragina, University of Pisa.

43

Chapter 5 Edge List Representation

where |T | is measured in number of node identifiers.

This representation offers a very simple way to answer every query. We now
explain how each query is answered, assuming the queries are over a node v.

1. Adjacency list: report the node following each occurrence of v in the text,
except for the last one.

2. Reverse adjacency list: report the node following each occurrence of v̄ in the
text.

3. Outdegree: report the number of occurrences of v minus one.

4. Indegree: report the number of occurrences of v̄.

5. Existence: edge (v, u) exists if and only if vū appears in the text.

We use a self-index to answer these queries, namely the CSA of Sadakane
[Sad03]. We use structures D and Ψ, described in Section 2.6.2. Based on these two
structures we explain how to answer the queries just described, again assuming the
query is over a node v.

The bitmap D (as the structure that answers Occ) works only if the alphabet is
contiguous. We assume that we have a function map that associates a node identifier
with a symbol in the text, and unmap which is the inverse of map. The symbols v̄
are represented as −v (before applying the map function).

In order to avoid the special conditions arising when T (v) = ǫ, we renumber
the nodes: the first range is assigned to the nodes with T (v) = ǫ that are pointed
by other nodes (type I), then the nodes with non-empty adjacency list (type II) and
finally the nodes with outdegree and indegree 0 (type III).

Call nI the number of nodes of type I, nII the nodes of type II, and nIII those of
type III. Figure 5.1 gives the mapping function using during the rest of this chapter.
It also shows the idea behind the function: The marked region is mapped into a
contiguous range.

Figures 5.2 to 5.5 show the algorithms for the first four queries.

44

Chapter 5 Edge List Representation

map(v)
1. If v > 0 Then
2. v ← v − nI

3. v ← v + nII

Figure 5.1: Map function for the CSA-based representation, and schematic idea:
the function maps the grey areas to a contiguous interval starting at 0.

1. i← rank(D, map(v))
2. j ← rank(D, map(v) + 1)− 2
3. For k ← i to j Do
4. report(unmap(rank(D, Ψ[k])))

Figure 5.2: Retrieval of the adjacency list in the CSA-based representation.

1. i← rank(D, map(v̄))
2. j ← rank(D, map(v̄) + 1)− 1
3. For k ← i to j Do
4. report(unmap(rank(D, Ψ[k])))

Figure 5.3: Retrieval of the reverse adjacency list in the CSA-based representation.

1. i← rank(D, map(v))
2. j ← rank(D, map(v) + 1)
3. return j − i− 1

Figure 5.4: Computation of the outdegree in the CSA-based representation.

45

Chapter 5 Edge List Representation 5.1 Building the Index

1. i← rank(D, map(v̄))
2. j ← rank(D, map(v̄) + 1)
3. return j − i

Figure 5.5: Computation of the indegree in the CSA-based representation.

5.1 Building the Index

The index was implemented in a 32-bit machine that allows only 3GB of RAM
per process. The initial experiments were run using the UK crawl (downloaded
from http://law.dsi.unimi.it/, see Chapter 6) whose size is around 1.2GB, so
the edge representation takes more than 2GB. Hence, the construction of the suffix
array and Ψ had to be carried out on disk. Figure 5.6 shows a simple folklore method
for the construction of the suffix array on disk. The main idea is to make several
passes on the text, sorting consecutive lexicographic ranges of suffixes. In each pass,
we need to sort at least the suffixes starting with one symbol. Since the maximal
indegree and outdegree of Web graphs is not so big, this is not a problem. Figure
5.7 shows the construction of the inverted suffix array, and finally Figure 5.8 shows
the construction of Ψ on disk. Those methods are tailored to the case where we can
hold |T | integers in RAM, but not 2|T |.

5.2 Compressing the Index

We have shown how to represent the graph as a text and how to answer the desired
queries using a CSA full-text self-index structure. The structure itself is very
promising from a performance point of view, but unfortunately its size makes it
unpractical.

The standard CSA is able of compressing a text to nH0(T) + O(n log log σ),
and run-length compression on Ψ can achieve space proportional to Hk(T) for k > 0.
The problem of our representation is that every substring of size 2 in T is unique,
thus we cannot hope to achieve H2(T) space (H2(T) = 0). We experimented with
compressing Ψ using a truncated Huffman code (representing symbols until a given
number and escaping the others). We also tried to exploit runs in Ψ, but there
was no noticeable improvement. Even compressing it with Gamma Codes and Rice

46

Chapter 5 Edge List Representation 5.2 Compressing the Index

buildSA(T [1 . . . n], C[1 . . . σ], buffer[1 . . . k])
1. l ← 1
2. r ← 1
3. While l ≤ σ Do
4. acc← 0
5. While r ≤ σ and acc + C[r] ≤ k Do
6. acc← acc + C[r]
7. r ← r + 1
8. If r = l Then r → l + 1
9. For i← 1 . . . n Do
10. If l ≤ T [i] < r Then
11. append i to buffer
12. l ← r
13. sort(buffer)
14. write buffer to disk

Figure 5.6: Algorithm for building the suffix array on disk, when T and buffer fit
in main memory. The C array counts how many times does each symbol appear in
T . The function sort alphabetically sorts the positions stored in buffer.

buildiSA(SA[1 . . . n], buffer[1 . . . k])
1. For i← 1 . . . n/k Do
2. For j ← 1 . . . n Do
3. If (i− 1)k + 1 ≤ SA[j] ≤ ik Then
4. buffer[SA[j]− (i− 1)k]← j
5. write buffer to disk

Figure 5.7: Algorithm for building the inverted suffix array on disk. We assume
n mod k = 0 and that SA and buffer fit in main memory.

47

Chapter 5 Edge List Representation 5.2 Compressing the Index

buildPsi(iSA[1 . . . n], buffer1[1 . . . k], buffer2[1 . . . k])
1. For i← 1 . . . n/k Do
2. load SA[(i− 1)k + 1 . . . ik] into buffer1
3. For j ← 1 . . . k Do
4. If buffer1[j] = n Then buffer2[j]← iSA[1]
5. Else buffer2[j]← iSA[buffer1[j] + 1]
6. write buffer2 to disk

Figure 5.8: Algorithm for building Ψ on disk, where buffer1, buffer2 and iSA fit
in main memory. We assume n mod k = 0.

Method Bits per edge
Huffman 39.28
Rice Codes 55.84
Gamma Codes 58.56

Table 5.1: Compression ratio, |Ψ|/m in bits/edge, for the UK crawl. Within this
space we support reverse navigation as well.

Codes, the results were all poor. Table 5.1 shows the sizes obtained using the ideas
above.

A way to improve the result is to note that if two nodes have similarity in their
adjacency list, then the differences in Ψ would repeat too. This allows us to use
a compressor that could exploit this regularity, that is, common sequences in the
differences of Ψ. For example, let us assume we have two nodes v1 and v2 for which
map(v1) = map(v2) − 1, and the two nodes point to u1, u2 and u3. The text would
look like this:

. . . v1ū1v1ū2v1ū3v1v2ū1v2ū2v2ū3v2 . . .

Figure 5.9 gives an idea of how the pointers in Ψ look like. The important fact
is that the first occurrence of v1 in the suffix array points to some place into the
area of ū1, and for v2 it points to the same position plus one. The same happens
with ū2 and ū3, so if we calculate the differences of Ψ it would result in a repetition:
The area of v1 has the same values as the area of v2 except for the borders, that is,
the position that points to ū1 and of course the position of v1 that points to v2.

48

Chapter 5 Edge List Representation 5.3 Undirected Graphs

Figure 5.9: Example of Ψ

In order to exploit the regularities present in Ψ, we used Re-Pair on the
differences of Ψ. It achieved 22.45 bits per edge for the UK crawl. This seems
much more promising. Yet, there is an important fact to notice: If we decompress
Ψ in the range corresponding to a node v, we have to pay one rank query for every
element in the adjacency list (plus the cost of decompression of Ψ, see Figure 5.2).
We also notice that this compression exploits the similarity between adjacency lists
for a node and the similarities of the reverse lists, but we lose some of them in the
differences of Ψ. Hence, this representation should not achieve better space than
compressing the adjacency lists and their reverse adjacency lists separated using Re-
Pair. In fact, there can be regularities in the differences of Ψ that are not related
with those in adjacency lists, but those are essentially random coincidences. This
fact motivates the work presented in Chapter 6, which compresses much better and
has less penalty in time.

An example of the regularities lost by computing the differences of Ψ can be
seen using Figure 5.9. Consider a new node u′ between u1 and u2 that is pointed
by v2. This node inserts a new value in between the original two values. Now
the differences for the pointers inside v2 do not have the same value. Consider the
adjacency lists of v1 and v2, {u1, u2, u3} and {u1, u

′, u2, u3}: the symbols u2 and
u3 will form a pair, while in this representation this does not happen. The same
problem arises for the reverse graph.

5.3 Undirected Graphs

We have shown how to answer queries over a directed graph indexed like a text
that is built by concatenating the encoded edges of the graph. An interesting
extension of this idea is to apply this to undirected graphs. The normal way of
representing every edge (u, v) is to add the edges (u, v) and (v, u) to the graph in
order to answer adjacency list efficiently.

49

Chapter 5 Edge List Representation 5.3 Undirected Graphs

With the textual representation, we have shown that it is not necessary to
represent both edges in an undirected graph, because the adjacency list of a node
can be seen as the union between the adjacency list and its reverse list. As we have
seen in the previous section, these two queries are answered almost the same way.
So, the adjacency list is the union between the direct adjacency list and the reverse
adjacency list and we just represent each edge once.

50

Chapter 6

Nodes Representation

This chapter presents two approaches to compressing the adjacency lists of Web
graphs while providing random access. The first approach is based on Re-Pair and
the second on Lempel-Ziv (see Section 2.4).

6.1 Re-Pair Compression of Web Graphs

Let G = (V, E) be the graph we wish to compress and navigate. Let V =
{v1, v2, . . . , vn} be the set of nodes in arbitrary order, and adj(vi) = {vi,1, vi,2, . . .
vi,ai
} the set of neighbors of node vi. Finally, let vi be an alternative identifier for

node vi. We represent G by the following sequence:

T = T (G) = v1 v1,1 v1,2 . . . v1,a1
v2 v2,1 v2,2 . . . v2,a2

. . . vn vn,1 vn,2 . . . v1,an

so that vi,j < vi,j+1 for any 1 ≤ i ≤ n, 1 ≤ j < ai. This is essentially the
concatenation of all the adjacency lists with separators that indicate the node each
list belongs to. Figure 6.1 shows an example graph and its textual representation.

The application of Re-Pair to T (G) has several important properties:

• Re-Pair permits fast local decompression, as it is a matter of extracting
successive symbols from C (the compressed T) and expanding them using
the dictionary of rules R. Moreover, Re-Pair handles well large alphabets, V
in our case.

51

Chapter 6 Nodes Representation 6.1 Re-Pair Compression of Web Graphs

Figure 6.1: An example graph. The textual representation is T (G) =
āacdb̄acdc̄ded̄cdeē.

• This works also very well if T (G) must be anyway stored in secondary memory
because the accesses to C are local and sequential, and moreover we access
fewer disk blocks because it is a compressed version of T . This requires,
however, that R (the set of rules) fits in main memory. This can be enforced
at compression time, at the expense of losing some compression ratio, by
preempting the compression algorithm when |R| reaches the memory limit.

• As the symbols vi are unique in T , they will not be replaced by Re-Pair. This
guarantees that the beginning of the adjacency list of each vi will start at a
new symbol in C, so that we can decompress it in optimal time O(|adj(vj)|)
without decompressing unnecessary symbols.

• If there are similar adjacency lists, Re-Pair will spot repeated pairs, therefore
capturing them into shorter sequences in C. Actually, assume adj(vi) =
adj(vj). Then Re-Pair will end up creating a new symbol s which, through
several rules, will expand to adj(vi) = adj(vj). In C, the text around those
nodes will read visvi+1 . . . vjsvj+1. Even if those symbols do not appear
elsewhere in T (G), the compression method for R [GN07] (Section 2.4.1)
will represent R using |adj(vi)| numbers plus 1 + |adj(vi)| bits. Therefore,
in practice we are paying almost the same as if we referenced one adjacency
list from the other. Thus we achieve, with a uniform technique, the result
achieved by Boldi and Vigna [BV04] by explicit techniques such as looking for
similar lists in an interval of nearby nodes.

• Even when the adjacency lists are not identical, Re-Pair can take partial
advantage of their similarity. For example, if we have abcde and abde, Re-
Pair can transform them to scs′ and ss′, respectively. Again, we obtain
automatically what Boldi and Vigna [BV04] achieve by explicitly encoding
the differences using gaps, bitmaps, and other tools.

52

Chapter 6 Nodes Representation 6.1 Re-Pair Compression of Web Graphs

• The locality property (i.e., the fact that most outgoing links from each page
point within the same domain) is not exploited by Re-Pair, unless its translates
into similar adjacency lists. This, however, makes our technique independent
of the numbering. In Boldi and Vigna’s work [BV04] it is essential to be able
of renumbering the nodes according to site locality. Despite this is indeed a
clever numbering for other reasons, it is possible that renumbering is forbidden
if the technique is used inside another application. However, we show next a
way to exploit locality.

The representation T (G) we have described is useful for reasoning about the
compression performance, but it does not give an efficient method to know where a
list adj(vi) begins. For this sake, after compressing T (G) with Re-Pair, we remove
all the symbols vi from the compressed sequence C (as explained, those symbols
remain unaltered in C). Using essentially the same space we have gained with this
removal, we create a table that, for each node vi, stores a pointer to the beginning
of the representation of adj(vi) in C. With it, we can obtain adj(vi) in optimal time
for any vi. Integers in C are stored using the minimum bits required to store the
maximum value in C (see Chapter 4).

6.1.1 Improvements

We describe now several possible improvements over the basic scheme. Some can be
combined, some not. Several possible combinations are explored in the experiments.

Differential encoding. If we are allowed to renumber the nodes, we can exploit
the locality property in a subtle way. We let the nodes be ordered and numbered
by their URL, and encode every adjacency list using differential encoding. The first
value is absolute and the rest represents the difference to the previous value. For
example the list 4 5 8 9 11 12 13 is encoded as 4 1 3 1 2 1 1.

Differential encoding is usually a previous step to represent small numbers with
fewer bits. We do not want to do this as it hampers decoding speed. Our main idea
to exploit differential encoding is that, if many nodes tend to have local links, there
will be many small differences we could exploit with Re-Pair, say pairs like (1, 1),
(1, 2), (2, 1), etc. The price is slightly slower decompression.

53

Chapter 6 Nodes Representation 6.2 Lempel-Ziv Compression of Web Graphs

Reordering lists. Since the adjacency list does not need to be output in any
particular order, we can alter the original order to spot more global similarities1.
Consider the lists 1, 2, 3, 4, 5 and 1, 2, 4, 5. Re-Pair can replace 1, 2 by 6 and 4, 5
by 7, but the common subsequence 1, 2, 4, 5 cannot be fully exploited because the
first list has a 3 in between. If we sort both adjacency lists after compressing we
get 3, 6, 7 and 6, 7, and then we can replace 6, 7, thus exploiting global regularities
in both adjacency lists. The method is likely to improve compression ratios. The
compression process is slightly slower: it works almost as in the original version,
except that the lists are sorted after each pass of Re-Pair, so we cannot combine
this method with differences. Decompression and traversal, on the other hand,
are not affected at all. The experimental results show that this approach achieves
better compression ratios than applying Re-Pair without differences. Note that this
reordering is just a heuristic, and one could aim to finding the optimal ordering.
However, similar problems have been studied for differential encoding of inverted
lists, and they have been found to be hard [FV99, SCSC03].

Removing pointers. It might be advantageous, for relatively sparse graphs, to
remove the need to spend a pointer for each node (to the beginning of its adjacency
list in C). We can replace the pointers by two bitmaps. The first one, B1[1, n],
marks in B1[i] whether node vi has a non-empty adjacency list. The second bitmap,
B2[1, c] (where c = |C| ≤ m), marks the positions in C where adjacency lists begin.
Hence the starting position of the list for node vi in C is select(B2, rank(B1, i)) if
B1[i] = 1 (otherwise the list is empty). The list extends up to the next 1 in B2.
The space is n + c + o(n + c) bits, instead of n log c needed by the pointers. When
n is significant compared to c, space reduction is achieved at the expense of slower
access to the adjacency lists.

6.2 Lempel-Ziv Compression of Web Graphs

The Lempel-Ziv compression family [ZL77, ZL78] achieves compression by replacing
repeated sequences found in the text by a pointer to a previous occurrence thereof.
In particular, the LZ78 variant [ZL78] stands as a plausible alternative candidate
to Re-Pair for our goals: it detects duplicate lists of links in the adjacency lists,
handles well large alphabets, and permits fast local decompression. Moreover, LZ78
admits efficient compression without requiring approximations (see Chapter 4).

1Thanks to Rodrigo Paredes for pointing out this idea during a “Miércoles de Algoritmos”
meeting (http://www.dcc.uchile.cl/gnavarro/algoritmos/).

54

Chapter 6 Nodes Representation 6.3 Experimental Results

For a graph G = (V, E), where V = {v1, v2, . . . , vn} and adj(vi) = {vi1, vi2,
. . . , viai

} is the set of neighbors of node vi, the textual representation used for LZ78
compression is slightly different from that of Section 6.1:

T = T ′(G) = v11v12v13 . . . v1a1
v21v22 . . . v2a2

. . . vn1vn2 . . . vnan
,

where we note that the special symbols vi have been removed. The reason is that
removing them later is not as easy as for Re-Pair. To ensure that adjacency lists
span an integral number of phrases (and therefore can be extracted in optimal time
O(|adj(vi)|)), we run a variant of LZ78 compression. In this variant, when we look
for the longest phrase Ti,j in Step 2, we never cross a list boundary. More precisely,
the character tj+1 to be appended to the new phrase must still belong to the current
adjacency list. This might produce repeated phrases in the compressed text, which
of course are not inserted into S.

Like C, the array of pointers and symbols added are stored using the minimum
number of bits required by the largest pointer and symbol, respectively.

In addition, we store a pointer to every beginning of an adjacency list in the
compressed sequence, just as for Re-Pair. Some of the improvements in Section 6.1.1
can be applied as well: differential encoding (which will have a huge impact with
LZ78) and replacing pointers by bitmaps.

6.3 Experimental Results

We carried out several experiments to measure the compression and time
performance of our graph compression techniques, comparing them to the state
of the art.

We downloaded four Web crawls from the WebGraph project,
http://law.dsi.unimi.it/. Table 6.1 shows their main characteristics. The last
column shows the size required by a plain adjacency list representation using 4-byte
integers.

6.3.1 Compression Performance

Our compression algorithm (see Section 2.4.1) is parameterized by M , k, and
α. Those parameters yield a tradeoff between compression time and compression
effectiveness. In this section, we study those tradeoffs. As there are several possible

55

Chapter 6 Nodes Representation 6.3 Experimental Results

Crawl Nodes Edges Edges/Nodes Plain size (MB)
EU 862,664 19,235,140 22.30 77
Indochina 7,414,866 194,109,311 26.18 769
UK 18,520,486 298,113,762 16.10 1,208
Arabic 22,744,080 639,999,458 28.14 2,528

Table 6.1: Some characteristics of the four crawls used in our experiments.

variants of our method, we stick in this section to the one called Re-Pair Diffs
CDict NoPtrs in Section 6.3.3. The machine used in this section is a 2GHz Intel
Xeon (8 cores) with 16 GB RAM and 580 GB Disk (SATA 7200rpm), running
Ubuntu GNU/Linux with kernel 2.6.22-14 SMP (64 bits). The code was compiled
with g++ using the -Wall, -O9 and -m32 options. The space is measured in bits per
edge (bpe), dividing the total space of the structure by the number of edges in the
graph.

Parameter α (the maximum loading ratio of the hash table H before we stop
inserting new pairs) turns out to be not too relevant, as its influence on the results
is negligible for a wide range of reasonable choices. We set α = 0.6 for all our
experiments.

Value M is related to the amount of extra memory we require on top of T . Our
first experiment aims at demonstrating that we obtain competitive results using very
little extra memory. Table 6.2 shows the compression ratios achieved with different
values of M (as a percentage over the size of T). As it can be seen, we gain little
compression by using more than 5% over |T |, which is extremely modest (the linear-
time exact Re-Pair algorithm [LM00] uses at the very least 200% extra space). The
rest of our experiments are run using 3% extra space2.

We now study the effect of parameter k in our time/quality compression
tradeoff. Table 6.3 shows the time and compression ratio achieved for different
k on our crawls. For the smaller crawls we also run the exact algorithm (using a
relatively compact implementation [GN07] that requires 260MB total space for EU

and 2.4GB for Indochina). It can be seen that our approximate method is able
of getting very close to the exact result while achieving reasonable performance
(around 1 MB/sec). Lempel-Ziv compression is much faster but compresses far less.

It is interesting to notice that, as k doubles, compression time is almost halved
(especially for small k). This is related to the approximate analysis of our methods

2That is, in the beginning. As the text is shortened along the compression process we enlarge
the hash table and keep using the absolute space originally allowed.

56

Chapter 6 Nodes Representation 6.3 Experimental Results

Graph 1% 3% 5% 10% 50%
EU 4.68 4.47 4.47 4.47 4.47
Indochina 2.53 2.53 2.53 2.52 2.52
UK 4.23 4.23 4.23 4.23 4.23
Arabic 3.16 3.16 3.16 3.16 3.16

Table 6.2: Compression ratios (in bpe) achieved when using different amounts
of extra memory for H (measured in percentage over the size of the sequence to
compress). In all cases we use k = 10, 000.

(see Chapter 4), where we could not guarantee that all the k pairs chosen are actually
replaced. Table 6.4 measures the number of replacements actually done by our
algorithm on crawls EU and Indochina. As it can be seen, for k up to 10,000, more
than 85% of the planned replacements are actually carried out, and this improves for
larger graphs. Note also that the number of passes made by the algorithm is rather
reasonable. This is relevant for secondary memory, as it means for example that
with k = 10, 000 we expect to do about 60 passes over the (progressively shrinking)
text on disk for the EU crawl, and 263 for the Indochina crawl.

For the rest of the experiments we use k = 10, 000.

6.3.2 Limiting the Dictionary

As explained, we can preempt Re-Pair compression at any pass in order to limit
the size of the dictionary. This is especially interesting when the graph, even in
compressed form, does not fit in main memory. In this case, we can take advantage
of the locality of accesses to C to speed up the access to the graph: If we are able
to compress T (G) by a factor c, then access to long adjacency lists can be speeded
up by a factor up to c. However, some Re-Pair structures need random access, and
those must reside in RAM. This includes the dictionary, but also the structure that
tells us where each adjacency list starts in C. The latter could still be kept on disk
at the cost of one extra disk access per list, whereas the former definitely needs to
lie in main memory.

Figure 6.2 shows the tradeoffs achieved between the size of the main sequence
C and that of the RAM structures, as we modify the preemption point. It is
interesting to notice that the main memory usage has a minimum, due to the fact
that, as compression progresses, the dictionary grows but the width of the pointers

57

Chapter 6 Nodes Representation 6.3 Experimental Results

EU

k time (min) bpe
exact 86.15 4.40

10,000 1.77 4.47
25,000 1.03 4.70
50,000 0.83 4.74
75,000 0.72 4.76

100,000 0.73 4.79
250,000 0.62 4.91
500,000 0.62 4.95

1,000,000 0.67 4.95
LZ Diffs 0.07 7.38

Indochina

k time (min) bpe
exact 5,230.67 2.50

10,000 52.97 2.53
25,000 20.73 2.53
50,000 12.68 2.54
75,000 8.70 2.54

100,000 7.75 2.54
250,000 4.85 2.56
500,000 4.07 2.59

1,000,000 3.77 2.62
LZ Diffs 0.53 4.89

UK

k time (min) bpe
10,000 341.32 4.23
25,000 142.57 4.24
50,000 74.20 4.25
75,000 49.08 4.25

100,000 38.22 4.25
250,000 20.45 4.26
500,000 14.23 4.27

1,000,000 10.60 4.29
LZ Diffs 1.32 8.56

Arabic

k time (min) bpe
10,000 1,034.53 3.16
25,000 370.08 3.18
50,000 191.60 3.19
75,000 132.72 3.19

100,000 102.55 3.19
250,000 53.77 3.20
500,000 30.48 3.21

1,000,000 24.57 3.23
LZ Diffs 2.72 6.11

Table 6.3: Time for compressing different crawls with different k values. For the
smaller graphs, we also include the exact method. We also include the results of our
LZ variants for the four crawls. The LZ version was compiled without the -m32 flag,
since our implementation requires more than 4GB of RAM for the larger graphs.

58

Chapter 6 Nodes Representation 6.3 Experimental Results

EU

k Passes Total Pairs Pairs/pass % of k
5,000 108 497,297 4,604 92.08

10,000 58 502,530 8,664 86.64
20,000 33 513,792 15,569 77.85
50,000 19 543,417 28,600 57.20

100,000 14 576,706 41,193 41.19
500,000 12 676,594 56,382 11.28

1,000,000 12 676,594 56,382 5.64

Indochina

k Passes Total Pairs Pairs/pass % of k
10,000 263 2,502,880 9,516 95.16
20,000 136 2,502,845 18,403 92.02
50,000 60 2,503,509 41,725 83.45

100,000 34 2,528,530 74,368 74.37
500,000 16 2,772,091 173,255 34.65

1,000,000 14 2,994,149 213,867 21.39
5,000,000 14 3,240,351 231,453 4.63

10,000,000 14 3,240,351 231,453 2.31

Table 6.4: Number of pairs created by approximate Re-Pair over two crawls.

59

Chapter 6 Nodes Representation 6.3 Experimental Results

to C decreases3.

At those optima, the overall size of C plus RAM data is not the best possible
one, but rather close. In our graphs, the optimum space in RAM is from 0.2 to 0.4
bpe. This means, for example, that just 15MB of RAM is needed for our largest
graph, Arabic. If we extrapolate to the 600GB graph of the whole static indexable
Web, we get that we could handle it in secondary memory with a commodity desktop
machine of 4GB to 8GB of RAM. If the compression would stay at about 6 bpe,
this would mean that access to the compressed Web graph would be up to 5 times
faster than in uncompressed form, on disk.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

s
p
a
c
e

f
o
r

p
o
i
n
t
e
r
s

p
l
u
s

d
i
c
t
i
o
n
a
r
y

(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

EU

App. Re-Pair

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8 10 12

s
p
a
c
e

f
o
r

p
o
i
n
t
e
r
s

p
l
u
s

d
i
c
t
i
o
n
a
r
y

(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

Indochina

App. Re-Pair

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

s
p
a
c
e

f
o
r

p
o
i
n
t
e
r
s

p
l
u
s

d
i
c
t
i
o
n
a
r
y

(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

UK

App. Re-Pair

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

s
p
a
c
e

f
o
r

p
o
i
n
t
e
r
s

p
l
u
s

d
i
c
t
i
o
n
a
r
y

(
b
i
t
s
/
e
d
g
e
)

space for C (bits/edge)

Arabic

App. Re-Pair

Figure 6.2: Space used by the sequence versus the dictionary plus the pointers, all
measured in bits per edge.

3In the variant NoPtrs we use a bitmap of |C| bits, which produces the same effect.

60

Chapter 6 Nodes Representation 6.3 Experimental Results

6.3.3 Compressed Graphs Size and Access Time

We now study the space versus access time tradeoffs of our graph compression
proposals based on Re-Pair and LZ78. From all the possible combinations of
improvements4 depicted in Sections 6.1 and 6.2 we have chosen the following,
which should be sufficient to illustrate what can be achieved (see in particular
Section 6.1.1).

• Re-Pair: Normal Re-Pair.

• Re-Pair Diffs: Re-Pair with differential encoding.

• Re-Pair Diffs NoPtrs: Re-Pair with differential encoding and with pointers to
C replaced by bitmaps.

• Re-Pair Diffs CDict NoPtrs: Re-Pair with differential encoding and a
compacted dictionary. In the other implementations, every element of the
dictionary is stored as an integer in order to speed up the access. This version
stores every value using the required number of bits and not 32 by default. It
also replaces the pointers to C by bitmaps.

• Re-Pair Reord: Normal Re-Pair with list reordering.

• Re-Pair Reord CDict: Re-Pair with list reordering and compacted dictionary.

• LZ: Normal LZ78.

• LZ Diffs: LZ78 on differential encoding.

For each of those variants, we measured the size needed by the structure
versus the time required to access random adjacency lists. Structures that offer
a space/time tradeoff will appear as a line in this plot, otherwise they will appear as
points. The time is measured by extracting full adjacency lists and then computing
the time per extracted element in adj(vi). More precisely, we generate a random
permutation of all the nodes in the graph and sum the user time of recovering all of
the adjacency lists (in random order). The time per edge is this total time divided
by the number of edges in the graph.

These experiments were run on a Pentium IV 3.0 GHz with 4GB of RAM using
Gentoo GNU/Linux with kernel 2.6.13 and g++ with -O9 and -DNDEBUG options.

4We can devise 16 combinations of Re-Pair and 8 combinations of LZ78 variants.

61

Chapter 6 Nodes Representation 6.3 Experimental Results

We compared to Boldi and Vigna’s implementation [BV04] run on our machine
with different space/time tradeoffs. The implementation of Boldi and Vigna gives a
size measure that is consistent with the sizes of the generated files (and with their
paper [BV04]). However, their process (in Java) needs significantly more memory to
run. This could suggest that they actually use some structures that are not stored
on the file, but built on the fly at loading time. Those should be accounted for
in order to measure the size needed by the data structure to operate. Yet, this is
difficult to quantify because of other space overheads that come from Java itself and
from the WebGraph framework their code is inside.

To account for this, we draw a second line that shows the minimum amount of
RAM needed for their process to run. In all cases, however, the times we show are
obtained with the garbage collector disabled and sufficient RAM to let the process
achieve maximum speed. Although our own code is in C++, the Java compiler
achieves very competitive results5.

We also show, in a second plot, a comparison of our variants with plain
adjacency list representations. One representation, called “plain”, uses 32-bit
integers for nodes and pointers. A second one, called “compact”, uses ⌈log2 n⌉
bits for node identifiers and ⌈log2 m⌉ for pointers to the adjacency list.

Figures 6.3 to 6.6 show the results for the four Web crawls. The
different variants of LZ achieve the worst compression ratios (particularly without
differences), but they are the fastest (albeit for a very little margin). The normal
Re-Pair achieves a competitive result both in time and space. The other variants
achieve different competitive space/time tradeoffs. The most space-efficient variant
is Re-Pair Diffs CDict NoPtrs.

Node reordering usually achieves better compression without any time penalty,
yet it cannot be combined with differential encoding.

A similar time/space tradeoff shown between Re-Pair Diffs and Re-Pair Diffs
NoPtrs can be achieved with the other representations that use Re-Pair, since
the pointers are the same for all of them. The time/space tradeoff between
compacting the dictionary or not should be almost the same for the other Re-Pair
implementations too.

The results show that our method is a very competitive alternative to Boldi
and Vigna’s technique, which is currently the best by a wide margin for Web graphs.
In all cases, our method can achieve almost the same space (and less in some cases).

5See http://www.idiom.com/∼zilla/Computer/javaCbenchmark.html or
http://www.osnews.com/story/5602.

62

Chapter 6 Nodes Representation 6.4 Further Compression

Moreover, using the same amount of space, our method is always faster (usually
2–3 times faster, even considering their best line). In addition, some of our versions
(those that do not use differential encoding) do not impose any particular node
numbering.

Compared to an uncompressed graph representation, our method is also a very
interesting alternative. It is 3–10 times smaller than the compact version and 2–4
times slower than it; and it is 5–13 times smaller than the the plain version and 4–8
times slower.

6.4 Further Compression

The compressed sequence C is still stored with fixed-length integers. This is
amenable of further compression: After applying Re-Pair, every pair of symbols
in C is unique, yet individual symbols are not. Thus, zero-order compression could
still reduce the space (probably at the expense of increasing the access time).

Yet, it is not immediate how to apply a zero-order compressor to such
sequence, because its alphabet is very large. For example, applying Huffman
would be impractical because of the need to store the table (i.e., at least the
symbol permutation in decreasing frequency order). Instead, one could consider
approximations such as Hu-Tucker’s [HT71], which does not permute the symbols
and thus needs only to store the tree shape. Hu-Tucker achieves less than 2 bits
over the entropy.

To get a rough idea of what could be achieved, we estimated the space needed
by Huffman and Hu-Tucker methods on our graphs, for the version Re-Pair Diffs.
Let us call Σ the alphabet of C, and σ its size (n ≤ σ ≤ n + |R|), and say that ni is
the number of occurrences of the symbol i in C. A lower bound on the maximum
size that Huffman can achieve is:

Huffman ≥ σ log σ +
∑

i∈Σ

ni log
n

ni

,

where we have optimistically bounded its output with the zero-order entropy and
also assumed that the tree shape information is free (it is indeed almost free when
using canonical Huffman codes, and the entropy estimation is at most 1 bit per
symbol off, so the lower bound is rather tight).

63

Chapter 6 Nodes Representation 6.4 Further Compression

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 2 4 6 8 10 12 14

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

EU

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

BV-Memory
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 5 10 15 20 25 30 35

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

EU

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

Figure 6.3: Space and time to find neighbors for different graph representations, over
EU crawl. BV-Memory represents the minimum heap space needed by the process
to run.

64

Chapter 6 Nodes Representation 6.4 Further Compression

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 1 2 3 4 5 6 7 8 9

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Indochina

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

BV-Memory
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 5 10 15 20 25 30 35

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Indochina

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

Figure 6.4: Space and time to find neighbors for different graph representations,
over Indochina crawl. BV-Memory represents the minimum heap space needed by
the process to run.

65

Chapter 6 Nodes Representation 6.4 Further Compression

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 2 4 6 8 10 12

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

UK

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

BV-Memory
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 5 10 15 20 25 30 35

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

UK

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

Figure 6.5: Space and time to find neighbors for different graph representations, over
UK crawl. BV-Memory represents the minimum heap space needed by the process
to run.

66

Chapter 6 Nodes Representation 6.4 Further Compression

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 2 4 6 8 10

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Arabic

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

BV-Memory
BV

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0 5 10 15 20 25 30 35

t
i
m
e

(
m
i
l
i
s
e
c
/
e
d
g
e
)

space (bits/edge)

Arabic

Re-Pair
Re-Pair Diffs

Re-Pair Diffs NoPtrs
Re-Pair Diffs CDict NoPtrs

Re-Pair Reord
Re-Pair Reord CDict

LZ Diffs
LZ

Plain
Compact

Figure 6.6: Space and time to find neighbors for different graph representations,
over Arabic crawl. BV-Memory represents the minimum heap space needed by the
process to run.

67

Chapter 6 Nodes Representation 6.4 Further Compression

Since Hu-Tucker achieves more competitive results, we lower and upper bound
its performance:

2σ +
∑

i∈Σ

ni log
n

ni
≤ HT ≤ 2σ +

∑

i∈Σ

ni

(

log
n

ni
+ 2

)

,

where the term 2σ arises because we have to represent an arbitrary binary tree of σ
leaves, so the tree has 2σ − 1 nodes and we need basically 2σ − 1 bits to represent
it (e.g., using 1 for internal nodes and 0 for leaves).

Table 6.5 shows the compression ratio bounds for C (i.e., not considering the
other structures). As expected, Huffman compression is not promising, because just
storing the symbol permutation offsets any possible gains. Yet, Hu-Tucker stands
out as a promising alternative to achieve further compression. However, because
of the bit-wise output of these zero-order compressors, the pointers to C must be
wider6. Table 6.6 measures the size of the whole data structure with and without
Hu-Tucker (we use the lower bound estimation for the latter). It can be seen that
compression is not attractive at all, and in addition we will suffer from increased
access time due to bit manipulations.

Graph Huffman Hu-Tucker Hu-Tucker
lower bound lower bound upper bound

EU 145.68% 84.65% 94.18%
Indochina 161.57% 82.11% 90.44%
UK 168.87% 82.94% 90.64%
Arabic 162.96% 82.81% 90.51%

Table 6.5: Compression ratio bounds for C, using Re-Pair Diffs. We measure the
compressed C size as a percentage of the uncompressed C size.

An alternative, more sophisticated, approach to achieve zero-order entropy is
to represent C using a wavelet tree where the bitmaps are compressed using the
technique described in Section 2.5.2. This guarantees zero-order entropy (plus some
sublinear terms for accessing the sequence), and it can take even less because each
small block of around 16 entries of C is compressed to its own zero-order entropy.
The sum of those zero-order entropies add up to at most the zero-order entropy of
the whole sequence, but it can be significantly less if there are local biases of symbols
(as it could perfectly be the case in Web graphs due to locality of reference).

6In the NoPtrs case this is worse, as we now need to spend one extra bit per bit of C, not per
number in C.

68

Chapter 6 Nodes Representation 6.4 Further Compression

Graph Hu-Tucker Hu-Tucker Original
(Diffs NoPtrs) (Diffs)

EU 6.61 4.89 4.47
Indochina 3.64 3.13 2.53
UK 6.14 5.33 4.23
Arabic 4.01 3.14 3.16

Table 6.6: Total space required by our original structures and the result after
applying Hu-Tucker (lower-bound estimation).

Table 6.7 shows some results on the achievable space, using different sampling
rates for the partial sums. We note that, because we can still refer to entry offsets
(and not bit offsets) in C, our pointers to C do not need to change (nor the NoPtrs
bitmap). We achieve impressive space reductions, to 70%–75% of the original space,
and for Indochina we largely break the 2 bpe barrier.

In exchange, symbol extraction from C becomes rather slow. We measured the
access time per link for the Arabic crawl using a sampling step of 32, and found
that this approach is 22 times slower than our smallest (and slowest) version based
on Re-Pair. For a sampling of 128 the slowdown is 43 times.

This can be alleviated by extracting all the symbols from an adjacency list at
once, as no new rank operations are needed once we go through the same wavelet
tree node again. In the worst case, we pay O(k(1+log σ

k
)) time, instead of O(k log σ),

to extract k symbols. This improvement can only be applied when the symbols can
be retrieved in any order, so it could not be combined with differences.

Our goal in this experiment was to show that it is still possible to achieve
better results in terms of space, whereas more research is needed to couple those
with attractive access times.

Graph WT (8) WT (32) WT (128) WT (∞) Original
EU 4.59 3.71 3.49 3.42 4.47
Indochina 2.52 1.97 1.84 1.79 2.53
UK 4.36 3.40 3.16 3.08 4.23
Arabic 3.34 2.60 2.42 2.36 3.16

Table 6.7: Total space, measured in bpe, achieved when using compressed wavelet
trees to represent C, with different sampling rates.

69

Chapter 7

Extending Functionality

Retrieving the list of neighbors is just the most basic graph traversal operation.
One could explore other relevant operations to support within compressed space.
An obvious one is to know the indegree/outdegree of a node. Those can be stored
in plain form using O(n log m) bits, or using bitmaps: if we write in a bitmap a 1
for each new adjacency list and a 0 for each new element in the current adjacency
list, one can compute outdegree as select(i + 1) − select(i). This bitmap requires
m + n + o(m + n) bits of space (i.e., little more than 1 bpe on typical Web graphs).
This could be compressed to O(n log m+n

n
) = O(m) bits (around 0.25 extra bpe in

practice on typical Web graphs) and still support select in constant time. Indegree
can be stored with a similar bitmap.

More ambitious is to consider reverse neighbors (list the nodes that point to
v), which permits backward traversal in the graph (as in Chapter 5). One way
to address this is to consider the graph as a binary relation on V × V , and then
use the techniques of Barbay et al. [BGMR06], where forward and reverse traversal
operations can be solved in time O(log log n) per node delivered. A more recent
followup [BHMR07] retains those times and reduces the space to the zero-order

entropy of the binary relation, that is, log
(

m
n

)

.

This compression result is still poor for Web graphs, see Table 7.1 where we give
lower bound estimations of the space that can be achieved (that is, we do not charge
for any sublinear space terms on top of the binary relation data structures, which
are significant in practice). The space for the binary relation is not much smaller
than that of a plain adjacency list representation, although within that space it can
solve reverse traversal queries. To achieve the same functionality we would need to
store the original and the transposed graphs, hence we included the column “2 ×

70

Chapter 7 Extending Functionality 7.1 A Simple and Complete Representation

Plain” in the table. We also included our best result based on Re-Pair (we add the
space used by the directed and reverse graphs) 1.

Graph Plain 2 × Plain Bin.Rel. Our Re-Pair
EU 20.81 41.62 15.25 7.65
Indochina 23.73 47.46 17.95 4.54
UK 25.89 51.78 20.13 7.50
Arabic 25.51 51.02 19.66 5.53

Table 7.1: Expected space usage (bpe) using the binary relation method, compared
to other results.

7.1 A Simple and Complete Representation

It is interesting to note2 that our textual representation T (G) of Chapter 6, armed
with symbol rank and select operations, is able of handling the extended set of
queries:

• adjacency list of vi: extract T (G) between positions select(v̄i, 1) and
select(v̄i+1, 1).

• outdegree of vi: select(v̄i+1, 1)−select(v̄i, 1)− 1.

• indegree of vi: rank(vi, m + n).

• reverse adjacency list of vi: using select(vi, k) we can retrieve the k-th
occurrence of vi in T (G), and then using a bitmap B which marks the
beginning of every adjacency list in T (G) we can determine the lists of each
such occurrence: rankB(select(vi, k)).

The main problem of this scheme is that T (G) is essentially an uncompressed
adjacency list representation, and the scheme does not compress it (or compresses it
to its zero-order entropy [FMMN07], which is not good enough in this context). Our
current research focus is to apply this same idea to the compressed representation C
of T (G) obtained from Re-Pair (see Chapter 6). This is particularly challenging for
reverse neighbors, as the same symbol vi might have been involved in the formation
of many different new symbols, which must be found in the dictionary, and then all
of them must be searched for in C.

1The transposed graph usually compresses better than the original in Web graphs [BV04].
2This is ongoing work with Paolo Ferragina and Rossano Venturini, University of Pisa.

71

Chapter 7 Extending Functionality 7.2 Extended Functionality

7.2 Extended Functionality

We can regard our graph compression method as (and attribute its success to) the
decomposition of the graph binary relation into two binary relations:

• Nodes are related to the Re-Pair symbols that conform their (compressed)
adjacency list.

• Re-Pair symbols are related to the graph nodes they expand to.

Our result in Chapter 6 can be restated as: The graph binary relation can
be efficiently decomposed into the product of the two relations above, achieving
significant space gains. The regularities exposed by such a factorization go well
beyond those captured by the zero-order entropy of the original binary relation.
Now, representing these two binary relations with the technique of Barbay et
al. [BGMR06] would yield a space comparable to our current solution, and
O(log log n) complexities to retrieve forward and reverse neighbors. Our next
approaches build on this idea.

Our first proposal is based on the implementation of Re-Pair with reordering
without pointers (see Section 6.1.1). We index C and the sequence of the dictionary,
S (see Section 2.4.1), using one chunk of Golynski et al. (recall Section 2.5.2). The
indegree and outdegree queries can be answered with the method presented in the
beginning of this chapter, and the direct neighbors query is answered the same way
as in Chapter 6, since the chunk structure allows access.

The main problem to find reverse neighbors of v is that v may appear in implicit
form in many lists, in the form of a non-terminal that expands to v. Recall from
Section 2.4.1 that the dictionary is represented as a sequence of symbols S and a
bitmap BRR describing the trees. Thus we must look for v in the dictionary and,
for each occurrence in the sequence S, collect all the ancestors and look for them in
the text. The process has to be repeated recursively for every ancestor found.

Among the different possible solutions to find all the ancestors of an occurrence
in S, we opted for a simple one: We mark the beginning of the top-level trees of
BRR in another bitmap. Then we unroll the whole tree containing the occurrence
and spot the ancestors.

Figure 7.1 shows the algorithm for retrieving the reverse neighbors. Note that
no reverse neighbor can be reported twice.

72

Chapter 7 Extending Functionality 7.3 Wavelet Trees for Binary Relations

rev-adj(v)
1. For k ← 1 to rankC(v, |C|) Do
2. occ← selectC(v, k)
3. report rankB(1, occ)
4. For k ← 1 to rankS(v, |S|) Do
5. occ← selectS(v, k)
6. For each s ancestor of S[occ] in S Do
7. rev-adj(s)

Figure 7.1: Obtaining the reverse adjacency list

This representation can also be combined with the compressed version of the
wavelet trees without pointers (see Section 3.1.2). This is much slower than the
representation using Golynski et al.’s proposal (only one chunk), but it achieves
better space.

7.3 Wavelet Trees for Binary Relations

Wavelet trees can be adapted to store binary relations (BRWT) while answering all
the desired queries: in-degree, out-degree, direct neighbors and reverse neighbors.
Since the order of the elements inside an adjacency list is not relevant, we can adapt
wavelet trees to achieve better space than if we use the textual representation.

In this representation every node in the BRWT has two bitmaps. The first
bitmap, lb, marks for every position whether the symbol is related to one or more
symbols in the left side of the BRWT. The second bitmap, rb, marks for every
position whether the symbol is related to at least one element in the right subtree.
Figure 7.2 shows an example of this construction.

The space usage can be measured in terms of the entropy of the binary relation.
Let n be the number of elements and m the number of related pairs. Consider a
particular element i, related to other ki elements. In the worst case, it would waste
2ki log n bits, 2 per level per pair. Yet, those ki paths cannot be totally separated
in the wavelet tree. At worst, they must share the first log ki levels (occupying all
the wavelet tree nodes up to there) and then each can split independently. So we
have 2ki nodes (i.e., 4ki bits) up to the splitting level, and 2ki(log n− log ki) for the
rest of the path to the leaves. If we sum up for all the elements we have

73

Chapter 7 Extending Functionality 7.3 Wavelet Trees for Binary Relations

Figure 7.2: Example of BRWT for binary relations.

n
∑

i=1

4ki + 2ki(log n− log ki) = 4m + 2
n

∑

i=1

ki log
n

ki

The worst case is ki = m/n, yielding

4m + 2m log
n2

m
= 2H0 + O(m)

being H0 the zero-order entropy of the binary relation. This analysis can be
extended to the case when we have a binary relation B over two sets V1 of size n1

and V2 of size n2, resulting in Theorem 7.3.1. Each bit requires 1 + o(1) space in
order to support rank and select queries.

Theorem 7.3.1 For a binary relation B over two sets V1 of size n1 and V2 of size
n2, B ⊆ V1 × V2 with m related pairs, the BRWT requires 2m log n1n2

m
+ O(m) +

o(H0(B)) = 2H0(B) + O(m) + o (H0(B)) bits of space.

This is a worst-case analysis. The space can be much better if the binary
representation of the elements to which an element is related share a common
prefix. Call p1 . . . pk the elements to which element i is related. We define f(j)
as the binary representation of pj without the longest prefix it shares with the
elements in p1 . . . pj−1. Then the space needed by the data structure to store this
element can be expressed as 2f(j). Thus the final total space for element i can
be calculated as 2

∑ki

j=i f(j). Note that defining g(i) as the length of the binary
representation without the prefix shared with any element in the list, the sum of
all the g(i)s is a lower bound of the entropy defined for that binary relation, thus
this function introduces a new measure which captures more regularities than the
classical entropy.

74

Chapter 7 Extending Functionality 7.3 Wavelet Trees for Binary Relations

The time to support the indegree and outdegree operators is O(1), by adding
two extra bitmaps of length n + m, iB and oB, using O(m) bits each, as already
explained. We add an extra bitmap oZ of length n, where we mark the nodes that
have outdegree greater than zero. This also requires O(m) bits.

The elements related to an element v can be retrieved by following the paths
described by the ones in lb and rb, starting at the root in the position corresponding
to v, until reaching the leaves (recall that we may have to go both left and right from
some nodes). With rank queries over iB, we can determine the element represented
by each node. The paths share some work during this process, the same way they
share the space. If an element is related to k elements in the set, the worst case for
retrieving its direct neighbors is O

(

k + k log n
k

)

, assuming constant time rank/select
queries on bitmaps.

The reverse list can be retrieved by traversing the path backwards. We
start from the leaf corresponding to v and, for each element in the leaf, find its
corresponding position in the root node. We start from the leaf corresponding to
v, and use select of 1 over lb if we are coming from the left, and over rb if we are
coming from the right. We use oZ to identify the node given the root position. In
this case, we do not share any work and we have to pay the log n2 levels for every
element retrieved. The time for reverse neighbors is O(k log n), assuming constant
time rank/select queries on bitmaps.

A better alternative represents lb and rb together as a sequence drawn from
an alphabet of size 3, Σ = {s01, s10, s11}. If we assume that all elements are related
to some other elements, we can compress these sequences and the resulting space is
at most (log 3)H0(B) + O(m) + o(H0(B)) instead of 2H0(B) + O(m) + o(H0(B)). In
practice we need only 2 (not 3) rank directories: for the sum of s01 + s11 (to go left)
and for s01 + s11 (to go right). The case when an element is not related to other
elements in the set can be fixed with the bitmap used for outdegree.

As before, the pointers can be omitted, but this is harder than for the original
wavelet trees. Assume we represent the BRWT using 2⌈log n2⌉ bitmaps, one per
level. Given a range that represents a node, we can compute the position where
the left child starts in the next level by counting how many elements are before in
the next level. That corresponds to rank in that level until the starting position of
the current node (for both lb and rb). The right child has to add the number of
elements going to the left child from the current node.

We can emulate this process using only one bitmap. We have to consider how
to know the range covering every level. That can be done by adding the number of
ones in lb and rb in the prior level, since this corresponds to the number of elements
in the next level.

75

Chapter 7 Extending Functionality 7.3 Wavelet Trees for Binary Relations

7.3.1 Dynamic Representation (dBRWT)

Hon et al. [HSS03] proposed a bitmap representation that, for a bitmap B of
length n, supports rank/select in O(log n/ log log n) time and insert/delete in
O(polylog(n)), requiring n + o(n) bits. This result was later improved by Mäkinen
and Navarro [MN06], achieving nH0(B)+o(n) bits of space and supporting the four
operations in O(log n) time. If we use these representations for the bitmaps in the
BRWT, it is possible to insert and delete new pairs to/from the relation.

In order to insert a new pair v → u, we start at the position corresponding to
element v and follow the path to leaf u. At every level, if we find a 1 in the direction
described by u, we do not modify anything in the node. Otherwise, we set the bit
to 1, and for the rest of the path we insert two bits. If the path goes left, we insert
a 1 in lb and a 0 in rb, otherwise we insert a 1 in rb and a 0 in lb.

The delete operation is similar. We have to traverse upwards the path described
by u, and delete the corresponding bits in lb and rb only at the levels where the
only remaining symbol contained is u.

For every operation that modifies the binary relation, we have to update the
bitmaps for indegree and outdegree. This does not affect the asymptotic time.

Notice that at every level we need a constant number of rank/select queries,
and at most two insert/delete queries. Every level has at most m bits, and assuming
n1 ≥ n2, we have log m = O(log n1).

It is also possible to use a dynamic representation for sequences. The solution
proposed by González and Navarro [GN08] requires nH0(S)+o(n) logσ bits of space
for a sequence S of length n drawn from an alphabet of size σ. The queries rank,
select and access are supported in O

(

log n
(

1 + log σ
log log n

))

time. In our case σ = 3
and we can perform the operations the same way as for the bitmaps, thus the space
is at most (log 3)H0(B) + O(m) + o(H0(B)) bits.

Theorem 7.3.2 gives a trade-off between the representations using one or
⌈log n2⌉ bitmaps.

Theorem 7.3.2 Consider a binary relation B over two sets, V1 of size n1 and V2 of
size n2, n1 ≥ n2. Assume there exists a data structure for representing a bitmap B
of length n, that supports rank/select in time f(n), insert/delete in time g(n), and
requires n + o(n) bits.

Then, the dBRWT that uses log n2 bitmaps requires 2H0(B) + O(m) +
log n2 log n1n2 + o(H0(B)) = 2H0(B) + O(m) + o (H0(B)) bits of space and supports
(k represents the size of the output in every query):

76

Chapter 7 Extending Functionality 7.4 Experimental Results

Operation Cost

Direct neighbors O
(

f(m)
(

k + k log n2

k

))

Reverse neighbors O(f(m)k log n2)
In/outdegree O(f(m))
Insert/delete (pair) O(g(m) logn2)

For the case we use only one bitmap to represent the dBRWT, the space required is
2H0(B) + O(m) + o (H0(B)) bits and supports:

Operation Cost

Direct neighbors O
(

f
(

4m + 2m log n1n2

m

) (

k + k log n2

k

))

Reverse neighbors O
(

f
(

4m + 2m log n1n2

m

)

k log n2

)

In/outdegree O(f(m))

Insert/delete (pair) O
(

g
(

4m + 2m log n1n2

m

)

log n2

)

Corollary 7.3.3 By applying Theorem 7.3.2 to the case when we represent lb and
rb in a joint sequence using the representation proposed by González and Navarro
[GN08], the constant multiplying the entropy for binary relations drops to log 3 and
f(n) = g(n) = O(logn).

By updating our bitmaps, we can add new elements to V1 without modifications
to the wavelet tree structure: We only need to add a 1 at the corresponding position
of the bitmaps oB and iB, and a 0 at the same position of oZ. We can also delete
an element v from V1 in time O(g(n)(1 + k + k̄ + k log n2)), where k is the number
of elements related to v and k̄ is the number of element to which v is related. The
same cannot be done so easily for V2 without major changes to the wavelet tree
structure.

7.4 Experimental Results

The experiments were run on a 2GHz Intel Xeon (8 cores) with 16 GB RAM and
580 GB Disk (SATA 7200rpm), running Ubuntu GNU/Linux with kernel 2.6.22-14
SMP (64 bits). The code was compiled with g++ using the -Wall, -O9 and -m32

options. For the wavelet tree built over the plain representation of the graph, we
omitted the -m32 directive.

Table 7.2 gives the results of representing the Web graphs without applying
Re-Pair, but rather using compressed wavelet-tree-based representations of the plain

77

Chapter 7 Extending Functionality 7.4 Experimental Results

adjacency lists. In the first column, we directly use a wavelet tree over the sequence,
representing bitmaps with RRR and omitting pointers (see Section 3.1.2). In the
second column, we represent the graph as a binary relation using BRWT (see Section
7.3). In the last column, we give the entropy of the binary relation for each crawl.
The results show that the methods are interesting for general binary relations (in
paticular better than the global entropy of the binary relation), but we show next
that Re-Pair performs much better on Web graphs.

Table 7.3 shows the space required for the four crawls using Re-Pair based
compression. In column one (Re-Pair+WT), we include the structure given in
Section 7.2, which supports reverse queries based on the wavelet tree representation
of the Re-Pair compressed sequence. In column two, we show the representation that
combines Re-Pair with Golynski et al.’s chunk (Re-Pair+Golynski). We include in
column three the best structure proposed in Chapter 6 (adding direct and reverse
graphs). As a baseline for comparison, we show in the last column the binary relation
entropy of these graphs.

Comparing Table 7.3 with Table 7.2, we have that the Re-Pair-induced
decomposition into the product of two relations is key to the success of our approach.
We also tried compressing the binary relations after Re-Pair with the BRWT, but
the space achieved is worse than our simple implementation with reoridering (e.g.,
it spends 0.59 extra bpe in EU, 0.24 on Indochina and 0.49 on UK).

Crawl Wavelet Tree BRWT Bin. Rel. Entropy
EU 13.67 10.31 15.25
Indochina 6.26 14.16 17.95
UK 15.05 8.23 20.13
Arabic 15.30 8.40 19.66

Table 7.2: Size required by simple (and complete) compressed representations of the
plain adjacency lists (measured in bpe).

Figure 7.3 shows retrieval times obtained for the four crawls using
the representation that combines Re-Pair with Golynski et al.’s chunk (Re-
Pair+Golynski). We compare it against the best structure proposed in Chapter
6 (adding up the direct and reverse graphs). Re-Pair+Golynski is not as fast as the
structure presented in Chapter 6, but it requires much less space when supporting
reverse queries. We also include a second version of Re-Pair+Golynski for EU and
Indochina which indexes the reverse graph in order to achieve better space. The
results of this second version are not good since the reverse graph compresses better,

78

Chapter 7 Extending Functionality 7.4 Experimental Results

Crawl Re-Pair + Re-Pair + Re-Pair Bin. Rel.
WT (samp 64) Golynski (direct+reverse) Entropy

EU 3.93 5.86 7.65 15.25
Indochina 2.30 3.65 4.54 17.95
UK 3.98 6.22 7.50 20.13
Arabic 2.72 4.15 5.53 19.66

Table 7.3: Space consumption (in bpe) of the Re-Pair based compressed
representations of the adjacency lists.

generating more symbols in the dictionary, and thus the reverse queries (direct
adjacency list for the original graph, Re-Pair Golynski Direct v2) become much
slower. On the other hand, the direct queries (reverse adjacency list for the original
graph, Re-Pair Golynski Reverse v2) are slightly faster than the direct queries
in Re-Pair+Golynski. When comparing the same type of queries, the second version
is always slower. Other alternatives considered in Tables 7.2 and 7.3 are much slower
as well (see Section 6.4).

79

Chapter 7 Extending Functionality 7.4 Experimental Results

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

t
i
m
e

(
m
i
c
r
o
s
e
c
/
e
d
g
e
)

space (bits/edge)

EU

Re-Pair Diffs CDict NoPtrs Direct
Re-Pair Diffs CDict NoPtrs Reverse

Re-Pair+Golynski Direct
Re-Pair+Golynski Reverse

Re-Pair+Golynski Direct v2
Re-Pair+Golynski Reverse v2

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

t
i
m
e

(
m
i
c
r
o
s
e
c
/
e
d
g
e
)

space (bits/edge)

Indochina

Re-Pair Diffs CDict NoPtrs Direct
Re-Pair Diffs CDict NoPtrs Reverse

Re-Pair+Golynski Direct
Re-Pair+Golynski Reverse

Re-Pair+Golynski Direct v2
Re-Pair+Golynski Reverse v2

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8

t
i
m
e

(
m
i
c
r
o
s
e
c
/
e
d
g
e
)

space (bits/edge)

UK

Re-Pair Diffs CDict NoPtrs Direct
Re-Pair Diffs CDict NoPtrs Reverse

Re-Pair+Golynski Direct
Re-Pair+Golynski Reverse

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

t
i
m
e

(
m
i
c
r
o
s
e
c
/
e
d
g
e
)

space (bits/edge)

Arabic

Re-Pair Diffs CDict NoPtrs Direct
Re-Pair Diffs CDict NoPtrs Reverse

Re-Pair+Golynski Direct
Re-Pair+Golynski Reverse

Figure 7.3: Experimental results of the proposed structure that combines Golynski
et al.’s chunk with Re-Pair. It is compared against our best variant representing
the graph and its reverse. Direct and Reverse refer to the times to retrieve each
neighbor and reverse neighbor, respectively.

80

Chapter 8

Conclusions

We have presented a graph compression method that exploits the similarities
between adjacency lists by using grammar-based compressors such as Re-Pair
[LM00] and LZ78 [ZL78]. Our results demonstrate that those similarities account
for most of the compressibility of Web graphs, on which our technique performs
particularly well. Our experiments over different Web crawls demonstrate that
our method achieves compression ratios very close to (sometimes slightly better
than) those of the best current schemes [BV04], while being 2–3 times faster to
navigate the compressed graph. Compared to a plain adjacency list representation,
our compressed graphs can be 5 to 13 times smaller, at the price of a 4- to 8-
fold traversal slowdown (this has to be compared to the hundred to thousand times
slowdown caused by running on secondary memory). This makes it a very attractive
choice to maintain graphs all the time in compressed form, without the need of a
full decompression in order to access them. As a result, graph algorithms that are
designed for main memory can be run over much larger graphs, by maintaining
them in compressed form. In case the graphs do not fit in main memory, even in
compressed form, our scheme adapts well to secondary memory, where it can take
fewer accesses to disk than its uncompressed counterpart for navigation.

An interesting example is the Arabic crawl. It needs 2.4 GB of RAM with a
plain representation, whereas our compressed version requires only 250 MB of RAM.
This can be easily manipulated in a normal 1 GB machine, whereas the plain version
would have to resort to disk. If we extrapolate to the 600GB graph of the whole
static indexable Web, we get that we could handle it in secondary memory with a
commodity desktop machine of 4GB to 8GB of RAM. If the compression would stay
at about 6 bpe, this would mean that access to the compressed Web graph would
be up to 5 times faster than in uncompressed form, on disk.

81

Chapter 8 Conclusions

Our technique is not particularly tailored to Web graphs (beside trying to
exploit similarities in adjacency lists). This could make it suitable to compress
other types of graphs, whereas other approaches which are too tailored to Web
graphs could fail. To us, this is a beautiful example where a general and elegant
technique can compete successfully with carefully ad-hoc designed schemes.

We also presented several practical implementations for the rank and select
problem in general sequences. We introduced a new variant of the wavelet tree, and
presented the first known implementation of Golynski et al.’s proposal [GMR06]
for rank and select over large alphabets. This experimental comparison is a useful
resource for deciding which structure is suitable depending on the application.

The results obtained by applying the different structures for rank and select on
full-text self-indexing show that a simple modification of the SSA index can achieve
space proportional to nHk in practice, thus validating the theoretical proposal of
[MN07]. We also demonstrate that this index allows us to achieve the best space
ever seen in self-indexes, sometimes without any time penalty.

We also included an experimental comparison of Re-Pair, LZ78 and our
approximate version of the Re-Pair algorithm. The results showed that dictionary
based methods achieve acceptable space, while supporting local decompression with
very good performance. We developed an efficient approximate version of Re-Pair,
which can work within very limited space and also works well on secondary memory.
This can be of interest given the large amount of memory required by the exact Re-
Pair compression algorithm.

In the extension of the solution based on Re-Pair (see Chapter 7), we proposed
a solution to queries like indegree, outdegree, and reverse adjacency list. The reverse
queries are based on a decomposition of the binary relation, and despite that our
decomposition is tailored to Re-Pair compression, we believe that the perspective of
achieving compressible decompositions of binary relations can be a very interesting
research track on its own.

We also proposed a new data structure for representing binary relations. This
structure uses space proportional to the entropy of the binary relation and can be
dynamized, supporting insertion and deletion of new pairs to/from the relation.

An interesting problem related to graph compression is the definition of entropy
for binary relations. The space achieved by our structures, and those proposed
before, achieve much better space than the entropy for these graphs seen as binary
relations. A new measure for this problem has not been found and would be of
great interest, since the actual parallel, Hk for text, cannot be applied in this case,
at least not for our proposals, since the alphabet size is too big. The result proved

82

Chapter 8 Conclusions

by Gagie [Gag06] shows that we cannot achieve compression better than H2 for the
adjacency lists (seeing the concatenation of them as a text).

This works pointed out interesting lines of research for the future. We first
include some medium-term goals:

• Implementing a practical solution for RRR which includes run-length
compression. This would improve the space achieved by the modified SSA,
since the bitmap of the BWT usually has many runs.

• Measuring the space achieved by the representation based on the LZ78
algorithm when we replace the sequence by compressed wavelet trees.

• Extending the representation based on LZ78 to support reverse queries.

• A new representation based on Re-Pair with differences for the graph and its
reverse that shares a common dictionary1.

• Implement the alternative version of Golynski et al.’s structure for rank and
select over large alphabets using the inverse permutation as π. This favors
access over rank and select operations.

• Use this alternative for the graph representation proposed in Chapter 7. This
would favor direct over reverse queries.

Some long-term goals are:

• Faster compressed representation of sequences supporting access, which would
improve the compression in Chapter 6.

• Proposing a general factorization method for binary relations.

• Finding a better measure of entropy for binary relations, a definition like Hk

for text.

1This idea came up during a conversation with Susana Ladra.

83

Bibliography

[ACL00] W. Aiello, F. Chung, and L. Lu. A random graph model for massive
graphs. In Proc. 32th ACM Symposium on Theory of Computing
(STOC), pages 171–180, 2000.

[AM01] M. Adler and M. Mitzenmacher. Towards compressing Web graphs.
In Proc. 11th Data Compression Conference (DCC), pages 203–212,
2001.

[BBH+98] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S. Venkatasubra-
manian. The Connectivity Server: Fast access to linkage information
on the Web. In Proc. 7th World Wide Web Conference (WWW),
pages 469–477, 1998.

[BBK03] D. Blandford, G. Blelloch, and I. Kash. Compact representations of
separable graphs. In Proc. 14th Symposium on Discrete Algorithms
(SODA), pages 579–588, 2003.

[BBYRNZ01] C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and N. Ziviani.
Distributed query processing using partitioned inverted files. In Proc.
8th International Symposium on String Processing and Information
Retrieval (SPIRE), pages 10–20, 2001.

[BFLN08] N. Brisaboa, A. Fariña, S. Ladra, and G. Navarro. Reorganizing
compressed text. In Proc. 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval
(SIGIR), 2008. To appear.

[BGMR06] J. Barbay, A. Golynski, I. Munro, and S. Srinivasa Rao. Adaptive
searching in succinctly encoded binary relations and tree-structured
documents. In Proc. 17th Symposium on Combinatorial Pattern
Matching (CPM), pages 24–35, 2006.

84

BIBLIOGRAPHY BIBLIOGRAPHY

[BHMR07] J. Barbay, M. He, I. Munro, and S. Srinivasa Rao. Succinct indexes for
strings, binary relations and multi-labeled trees. In Proc. 18th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 680–
689, 2007.

[BKM+00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener. Graph structure in the Web.
Journal of Computer Networks, 33(1–6):309–320, 2000.

[Bla06] D. Blandford. Compact data structures with fast queries. PhD thesis,
School of Computer Science, Carnegie Mellon University, 2006. Also
as Tech. Report CMU-CS-05-196.

[BV04] P. Boldi and S. Vigna. The WebGraph framework I: compression
techniques. In Proc. 13th World Wide Web Conference (WWW),
pages 595–602, 2004.

[BW94] M. Burrows and D. Wheeler. A block sorting lossless data
compression algorithm. Technical Report Technical Report 124,
Digital Equipment Corporation, 1994.

[CGH+98] R. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-I. Lu. Compact
encodings of planar graphs with canonical orderings and multiple
parentheses. In LNCS v. 1443, pages 118–129, 1998.

[Cla96] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo,
1996.

[CN07] F. Claude and G. Navarro. A fast and compact Web graph
representation. In Proc. 14th International Symposium on String
Processing and Information Retrieval (SPIRE), LNCS 4726, pages
105–116, 2007.

[CPMF04] D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Faloutsos. Fully
automatic cross-associations. In Proc. ACM Special Interest Group
on Knowledge Discovery and Data Mining (SIGKDD), pages 79–88,
2004.

[DL98] N. Deo and B. Litow. A structural approach to graph compression.
In Proc. of the 23th MFCS Workshop on Communications, pages 91–
101, 1998.

85

BIBLIOGRAPHY BIBLIOGRAPHY

[FGNV07] P. Ferragina, R. González, G. Navarro, and R. Venturini.
Compressed text indexes: From theory to practice! Manuscript.
http://pizzachili.dcc.uchile.cl, 2007.

[FM00] P. Ferragina and G. Manzini. Opportunistic data structures with
applications. In Proc. 41st Annual Symposium on Foundations of
Computer Science (FOCS), pages 390–398, Washington, DC, USA,
2000. IEEE Computer Society.

[FMMN07] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed
representations of sequences and full-text indexes. ACM Transactions
on Algorithms (TALG), 3(2):article 20, 2007.

[FV99] A. Fink and S. Voß. Applications of modern heuristic search methods
to pattern sequencing problems. Computers & Operations Research,
26:17–34, 1999.

[Gag06] T. Gagie. Large alphabets and incompressibility. Information
Processing Letters, 99(6):246–251, 2006.

[GGMN05] R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. Practical
implementation of rank and select queries. In Proc. 4th International
Workshop on Efficient and Experimental Algorithms (WEA), pages
27–38, 2005. Posters.

[GGV03] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed
text indexes. In Proc. 14th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 841–850, 2003.

[GMR06] A. Golynski, I. Munro, and S. Rao. Rank/select operations on large
alphabets: a tool for text indexing. In Proc. 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 368–373, 2006.

[GN07] R. González and G. Navarro. Compressed text indexes with fast
locate. In Proc. 18th Annual Symposium on Combinatorial Pattern
Matching (CPM), LNCS 4580, pages 216–227, 2007.

[GN08] R. González and G. Navarro. Improved dynamic rank-select entropy-
bound structures. In Proc. 8th Latin American Symposium on
Theoretical Informatics (LATIN), LNCS 4957, pages 374–386, 2008.

[GS05] A. Gulli and A. Signorini. The indexable Web is more than 11.5
billion pages. In Proc. 14th World Wide Web Conference (WWW),
pages 902–903, 2005.

86

BIBLIOGRAPHY BIBLIOGRAPHY

[GV00] R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees
with applications to text indexing and string matching. In Proc. 32nd
ACM Symposium on Theory of Computing (STOC), pages 397–406,
2000.

[HKL99] X. He, M.-Y. Kao, and H.-I. Lu. Linear-time succinct encodings
of planar graphs via canonical orderings. Journal on Discrete
Mathematics, 12(3):317–325, 1999.

[HKL00] X. He, M.-Y. Kao, and H.-I. Lu. A fast general methodology for
information-theoretically optimal encodings of graphs. SIAM Journal
on Computing, 30:838–846, 2000.

[HSS03] W. Hon, K. Sadakane, and W. Sung. Succinct data structures for
searchable partial sums. In 14th Annual International Symposium on
Algorithms and Computation (ISAAC), pages 505–516, 2003.

[HT71] T. Hu and A. Tucker. Optimal computer-search trees and variable-
length alphabetic codes. SIAM Journal of Applied Mathematics,
21:514–532, 1971.

[Huf52] D. Huffman. A method for the construction of minimum-redundancy
codes. Proceedings of the I.R.E., 40(9):1090–1101, 1952.

[IR82] A. Itai and M. Rodeh. Representation of graphs. Acta Informatica,
17:215–219, 1982.

[Jac89] G. Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie
Mellon University, 1989.

[KM99] R. Kosaraju and G. Manzini. Compression of low entropy strings with
Lempel-Ziv algorithms. SIAM Journal on Computing, 29(3):893–911,
1999.

[Knu98] D. E. Knuth. Art of Computer Programming, Volume 3: Sorting and
Searching (2nd Edition). Addison-Wesley Professional, April 1998.

[KRRT99] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Extracting
large scale knowledge bases from the Web. In Proc. 25th Conference
on Very Large Data Bases (VLDB), pages 639–650, 1999.

[KW95] K. Keeler and J. Westbook. Short encodings of planar graphs and
maps. Discrete Applied Mathematics, 58:239–252, 1995.

87

BIBLIOGRAPHY BIBLIOGRAPHY

[LM00] J. Larsson and A. Moffat. Off-line dictionary-based compression.
Proc. IEEE, 88(11):1722–1732, 2000.

[Lu02] H.-I. Lu. Linear-time compression of bounded-genus graphs into
information-theoretically optimal number of bits. In Proc. 13th
Symposium on Discrete Algorithms (SODA), pages 223–224, 2002.

[Man01] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal
of the ACM, 48(3):407–430, 2001.

[MM93] U. Manber and G. Myers. Suffix arrays: A new method for on-line
string searches. SIAM Journal of Computing, 22:935–948, 1993.

[MN05] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-
length encoding. Nordic Journal of Computing, 12(1):40–66, 2005.

[MN06] V. Mäkinen and G. Navarro. Dynamic entropy-compressed sequences
and full-text indexes. In Proc. 17th Annual Symposium on
Combinatorial Pattern Matching (CPM), LNCS 4009, pages 307–318,
2006.

[MN07] V. Mäkinen and G. Navarro. Implicit compression boosting with
applications to self-indexing. In Proc. 14th International Symposium
on String Processing and Information Retrieval (SPIRE), LNCS 4726,
pages 214–226, 2007.

[MR97] I. Munro and V. Raman. Succinct representation of balanced
parentheses, static trees and planar graphs. In Proc. 38th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 118–
126, 1997.

[MRRR03] J. Munro, R. Raman, V. Raman, and S. Rao. Succinct representations
of permutations. In Proc. 30th International Colloquium on
Automata, Languages and Programming (ICALP), LNCS 2719, pages
345–356, 2003.

[Nao90] M. Naor. Succinct representation of general unlabeled graphs.
Discrete Applied Mathematics, 28(303–307), 1990.

[Nav07] G. Navarro. Compressing web graphs like texts. Technical Report
TR/DCC-2007-2, Dept. of Computer Science, University of Chile,
2007.

88

BIBLIOGRAPHY BIBLIOGRAPHY

[NM07] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):article 2, 2007.

[NR08] G. Navarro and L. Russo. Re-pair achieves high-order entropy. In
Proc. 18th Data Compression Conference (DCC), page 537, 2008.
Poster.

[OS07] D. Okanohara and K. Sadakane. Practical entropy-compressed
rank/select dictionary. In 9th Workshop on Algorithm Engineering
and Experiments (ALENEX), 2007.

[RGM03] S. Raghavan and H. Garcia-Molina. Representing Web graphs. In
Proc. 19th International Conference on Data Engineering (ICDE),
page 405, 2003.

[Ros99] J. Rossignac. Edgebreaker: Connectivity compression for triangle
meshes. IEEE Transactions on Visualization, 5(1):47–61, 1999.

[RRR01] R. Raman, V. Raman, and S. Rao. Succinct dynamic data structures.
In Proc. 7th Workshop on Algorithms and Data Structures (WADS),
LNCS 2125, pages 426–437, 2001.

[RRR02] R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proc. 13th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 233–242, 2002.

[RSWW01] K. Randall, R. Stata, R. Wickremesinghe, and J. Wiener. The LINK
database: Fast access to graphs of the Web. Technical Report 175,
Compaq Systems Research Center, Palo Alto, CA, 2001.

[Sad03] K. Sadakane. New text indexing functionalities of the compressed
suffix arrays. Journal of Algorithms, 48(2):294–313, 2003.

[SCSC03] W. Shieh, T. Chen, J. Shann, and C. Chung. Inverted file compression
through document identifier reassignment. Information Processing &
Management, 39(1):117–131, 2003.

[SY01] T. Suel and J. Yuan. Compressing the graph structure of the Web.
In Proc. 11th Data Compression Conference (DCC), pages 213–222,
2001.

89

BIBLIOGRAPHY BIBLIOGRAPHY

[TGM93] A. Tomasic and H. Garcia-Molina. Performance of inverted indices
in shared-nothing distributed text document information retrieval
systems. In Proc. 2nd International Conference on Parallel and
Distributed Information Systems (PDIS), pages 8–17, 1993.

[Tur84] G. Turán. Succinct representations of graphs. Discrete Applied
Mathematics, 8:289–294, 1984.

[Wan03] R. Wan. Browsing and Searching Compressed
Documents. PhD thesis, Dept. of Computer Science
and Software Engineering, University of Melbourne, 2003.
http://eprints.unimelb.edu.au/archive/00000871.

[Wil83] D. Willard. Log-logarithmic worst-case range queries are possible in
space θ(n). Information Processing Letters, 17(2):81–84, 1983.

[WMB99] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan
Kaufmann Publishers, New York, second edition, 1999.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEE Transactions on Information Theory, 23(3):337–
343, 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via
variable length coding. IEEE Transactions on Information Theory,
24(5):530–536, 1978.

90

	1 Introduction
	1.1 Outline of the Thesis
	1.2 Contributions of the Thesis

	2 Related Work
	2.1 Compression of Sequences
	2.2 Encoding
	2.3 Graph Compression
	2.4 Phrase-Based Compression
	2.4.1 Re-Pair
	2.4.1.1 Dictionary Compression

	2.4.2 Lempel-Ziv

	2.5 Rank and Select on Sequences
	2.5.1 Binary Sequences
	2.5.2 Arbitrary Sequences

	2.6 Compressed Full-Text Indexes
	2.6.1 Suffix Arrays
	2.6.2 Sadakane's Compressed Suffix Array (CSA)
	2.6.3 The FM-Index
	2.6.3.1 The Burrows-Wheeler Transform (BWT)

	3 Rank, Select and Access on Sequences
	3.1 Practical Implementations
	3.1.1 Raman, Raman and Rao's Structure
	3.1.2 Wavelet Trees without Pointers
	3.1.3 Golynski et al.'s Structure

	3.2 Experimental Results
	3.2.1 Binary Sequences
	3.2.2 General Sequences
	3.2.3 Compressed Full-Text Self-Indexes

	4 Re-Pair and Lempel-Ziv
	4.1 Re-Pair
	4.1.1 Approximate Re-Pair
	4.1.2 Running on Disk
	4.1.3 Adding Local Decompression

	4.2 Local Decompression on Lempel-Ziv
	4.3 Experimental Results

	5 Edge List Representation
	5.1 Building the Index
	5.2 Compressing the Index
	5.3 Undirected Graphs

	6 Nodes Representation
	6.1 Re-Pair Compression of Web Graphs
	6.1.1 Improvements

	6.2 Lempel-Ziv Compression of Web Graphs
	6.3 Experimental Results
	6.3.1 Compression Performance
	6.3.2 Limiting the Dictionary
	6.3.3 Compressed Graphs Size and Access Time

	6.4 Further Compression

	7 Extending Functionality
	7.1 A Simple and Complete Representation
	7.2 Extended Functionality
	7.3 Wavelet Trees for Binary Relations
	7.3.1 Dynamic Representation (dBRWT)

	7.4 Experimental Results

	8 Conclusions
	Bibliography

