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Estudiamos la formación estelar en escalas galácticas y el crecimiento de agujeros negros a través
de simulaciones usando el código de grilla adaptativa de refinamiento Enzo. Nuestro estudio se centra
en dos de las más famosas leyes de formación estelar: las ley de Kennicutt-Schmidt y la ley de Silk,
ambas relacionan la tasa de formación estelar con propiedades globales de la galaxia. A pesar de que
ambas han cuantificado exitosamente esta relación, aún no hay un consenso en el valor exacto de sus
pendientes. Nosotros tratamos de clarificar este problema estudiando los factores que influyen en ambas
leyes, tales como la densidad de gas superficial, el tiempo orbital y la masa rotacional. Para estudiar
el crecimiento de agujeros negros masivos, centramos nuestro trabajo en las relaciones MBH −Mbulge

y MBH − σ, las cuales relacionan la masa de un agujero negro con propiedades globales de su galaxia
huésped. Tratamos de explicar el origen de ambas relaciones a través de un análisis del Medio Interestelar.

Modelamos galaxias locales con tres componentes: gas, estrellas y materia oscura. Dejamos a los
modelos evolucionar por 1 Gyr, y durante la evolución el gas puede formar estrellas, las cuales mueren en
forma de supernovas. Al final de las corridas, nuestras simulaciones están caracterizadas por un medio
altamente turbulento y compresible, con una Función de Densidad de Probabilidades que puede ser ajus-
tada por una distribución lognormal a altas densidades. Su espectro de potencia de velocidad es bien
ajustado por una ley de potencia de pendiente ∼ -4 en el espacio k a escalas pequeñas, lo cual es más
pronunciado que la turbulencia de Kolmogorov y la de Burger. Este espectro de potencia nos permite

deducir una relación del tipo vr ∼ vrot
(
λ
Rd

)−β
, la cual es el nexo necesario entre las propiedades globales

de la galaxia y la alimentación del agujero negro masivo central.

Estudiamos la eficiencia de formación estelar en nuestras galaxias, donde investigamos cómo la pendi-
ente de las leyes de Kennicutt-Schmidt y Silk pueden variar dependiendo de cómo definamos las cantidades
involucradas en ambas leyes. Las dos leyes son fuertemente dependientes en el criterio ocupado para se-
leccionar el radio al cual se calculan las densidades superficiales, y el intervalo de tiempo ocupado para
medir la tasa de formación estelar. En el primer caso la elección de un radio más grande puede llevar
a obtener menores pendientes, mientras que en el segundo caso las pendientes más bajas son obtenidas
usando un intervalo de tiempo más grande para promediar las tasas de formación estelar. Ambos efectos
pueden cambiar la pendiente de las leyes de formación estelar en el rango entre 0.8 y 2.1.

Nuestras simulaciones también muestran una dependencia en los perfiles iniciales de Mrot. Esta
relación es más pronunciada al comienzo de las simulaciones, donde la masa rotacional determina el
tiempo al cual las galaxias comienzan a formar estrellas, y por lo tanto determina las tasas de formación
estelar en etapas tempranas de la evolución.
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We study galactic scale star formation and massive black hole growth through simulations using the
Adaptive Mesh Refinement code Enzo. We focus our study on two of the most important star formation
laws: the Kennicutt-Schmidt and the Silk law, both of them relate star formation rate with global prop-
erties of the galaxy. Although both laws have successfully quantified this relation, there is no consensus
on the exact value of their slopes. We try to clarify this issue studying the factors that can influence
both laws, such as gas surface density, orbital time and rotational mass. To study massive black hole
growth, we will center our work in the MBH −Mbulge and MBH − σ relations, which relate the mass of
a black hole with global properties of its host galaxy. We try to explain the origin of both relations from
the analysis of the Interstellar Medium.

We model local galaxies with three constituents: gas, stars and dark matter. We let the models
evolve for ∼1 Gyr, and during the evolution gas is allowed to form stars which also die as supernovae. At
the end of the runs, our simulations are characterized by a highly turbulent and compressible medium,
with a Probability Density Function that can be fitted by a lognormal distribution at high densities. Its
velocity power spectrum is well-fitted by a power law with slope of ∼ -4 in k space at small scales, which
is steeper than Kolmogorov and Burger turbulence. This power spectrum allows us to deduce a relation

of the type vr ∼ vrot

(
λ
Rd

)−β
, which is the necessary link between the global properties of the galaxy

and the fueling of central massive black holes.

We study the star formation efficiency in our simulations. where we investigate how the slope of the
Kennicutt-Schmidt and the Silk law can vary depending on the way we define the quantities involved
in both laws. The two laws are strongly dependent on the criteria used to select the radius at which
calculate the surface densities, and the time interval used to measure star formation rates. In the first
case the selection of a larger radius can lead to obtain lower slopes, while in the second case the lower
slopes are obtained using a longer interval of time to average star formation rates. Both effects can change
the slope of the star formation laws in the range 0.8 - 2.1.

Our simulations also show a dependency on the initialMrot profiles. This relation is most pronounced
at the beginning of the simulations, where the rotational mass determines the time at which galaxies start
to form stars, and hence determine star formation rates at early stages of evolution.

ii



A mis padres



Agradecimientos

Quiero comenzar agradeciendo a mi familia. A mis padres, Fernando y Nilda, y a mis hermanos, Alex y
Jaime, que siempre han estado ahí para apoyarme en todo, en los momentos buenos y en los malos. Sin
ellos yo no sería nada.

También agradecer a esas personas que desinteresadamente me han ofrecido su cariño y amistad, en
especial a María José, quien me ha acompañado (y soportado) este último tiempo. No puedo dejar de
mencionar a Felipe Antimán, César Casanova, Felipe Mancilla, Héctor Pérez, Sebastián Román, Kenneth
Reese, Javier Sánchez y Héctor Sotomayor, quienes desde tiempos pueriles me han brindado su amistad.
Tampoco pueden quedar afuera mis amigas Natalia Cornejo, Lisset Manzano y Natalia Zúñiga, quienes
hicieron mucho más ameno mi paso por aquél lúgubre lugar ubicado en Beauchef 850.

Imposible dejar de nombrar a aquellas personas de quienes he aprendido todo lo que sé. A los pro-
fesores de Calán, en especial a mi profesor guía Andrés Escala quien me ha enseñado y ayudado en la
elaboración de esta tesis. También a Mario Hamuy y Álvaro Núñez quienes me ayudaron en mis pos-
tulaciones al doctorado. Yéndome a épocas más tempranas, también quisiera recordar a mis profesores
del Instituto Nacional que me enseñaron a enfrentar la vida. Una mención especial se merece Don Luis
Elmes, quien con su humanidad nos enseñó a nunca olvidar nuestros sueños.

Mención aparte para la gente de Calán. A todos los alumnos, en especial a mis compañeros de gen-
eración y mis compañeros de oficina. A Nicola, Fernando, Jesús y, por supuesto, a Claudia. No puedo
dejar de agradecer tampoco a todos los funcionarios, quienes hacen que el departamento pueda vivir. A
Don Ricardo, Natalie, Lucho Lalo y Alejandro.

A CONICYT, al Departamento de Astronomía a través del proyecto Basal y al proyecto FONDE-
CYT de iniciación #11090216 por financiar mi Magíster. Al Departamento de Astronomía de la PUC
por facilitarme el cluster Geryon, y al Departamento de Ingeniería Matemática de la Universidad de Chile
quien a través del Centro de Modelo Matemático también me facilitó el cluster levque. También dar las
gracias a SOCHIAS quien financió mi viaje a una escuela de simulaciones numéricas en 2010.

Por último, también agradecer a todos aquellos que no han sido mencionados explícitamente aquí,
pero que de una u otra forma han aportado un grano de arena a mi vida.

A todos ellos, mis más sinceros agradecimientos.

iv



Contents

1 Introduction 1

1.1 Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 The Kennicutt-Schmidt law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Other Star Formation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Black Hole Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The code 8

2.1 Enzo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Integration algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Creating grid hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Gravity solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Self-Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 External Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Hydrodynamical solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 ZEUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.2 ZEUS Source Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.3 ZEUS Transport Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



CONTENTS CONTENTS

2.6 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The simulations 23

3.1 Galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Star formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Stellar feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 The models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Group A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Group B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Results and analysis 31

4.1 Galaxy dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Rotational velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Orbital times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Toomre Q parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Interstellar Medium Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Probability Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Star Formation Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.2 Star Formation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.3 Dependency of Mrot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Massive Black Hole accretion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Conclusion and outlook 62

Bibliography 64

A Individual profiles 70

A.1 Star formation rate fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.2 Probability Density Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.3 Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



CONTENTS CONTENTS

B Codes 85

B.1 yt new fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.2 Preamble and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.3 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.4 PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.5 Star formation law plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



List of Tables

1.1 Star Formation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Galaxy parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Orbital times and rotational velocities of the simulated galaxies at different radius . . . . 43

viii



List of Figures

1.1 Schmidt and Silk from Kennicutt (1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Two sequence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Silk law from observations of Daddi et al. (2010) . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Main loop of Hydrodynamic Cosmology Code . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Illustration of an AMR grid hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Finer grid and boundary corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Example of distribute hierarchy using two processors and six grids . . . . . . . . . . . . . 13

2.5 Enzo AMR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Grids on a simulation using baryon mass as refinement criteria . . . . . . . . . . . . . . . 15

2.7 The “W" cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Cloud-in-Cell (CIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 ZEUS flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Initial gas surface density profile for Group A . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Initial Mrot profiles for Group A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Least-square fit for star mass profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Initial Mrot profiles for Group B galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Initial gas surface density profiles for Group B . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Edge-on view of simulation BIV at t=640 Myr . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Evolution of model F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Evolution of model AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Evolution of model AII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Evolution of model AIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 Evolution of model BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



LIST OF FIGURES LIST OF FIGURES

4.7 Evolution of model BII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.8 Evolution of model BIII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.9 Evolution of model BIV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.10 Evolution of model BV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.11 Initial rotation curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.12 Radius enclosing 90%, 95% and 100% of stars . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.13 Toomre Q parameter at initial time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.14 Evolution of the Toomre Q parameter for model F . . . . . . . . . . . . . . . . . . . . . . 45

4.15 Density PDF for simulation F at the end of the run . . . . . . . . . . . . . . . . . . . . . 46

4.16 Gas surface density and Temperature phase diagram for model F, weighted by cell mass. . 47

4.17 Kinetic energy power spectrum for simulation F at the end of the run . . . . . . . . . . . 48

4.18 Star Formation Rate fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.19 Star Formation Rates profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.20 KS relation as a function of the radius for Group A . . . . . . . . . . . . . . . . . . . . . . 51

4.21 KS relation as a function of the radius for Group B . . . . . . . . . . . . . . . . . . . . . . 52

4.22 Silk relation as a function of radius for Group A . . . . . . . . . . . . . . . . . . . . . . . 54

4.23 Silk relation as a function of radius for Group B . . . . . . . . . . . . . . . . . . . . . . . 55

4.24 Differences between average and instantaneous SFR . . . . . . . . . . . . . . . . . . . . . 57

4.25 Star formation laws using instantaneous and average Star Formation Rates . . . . . . . . 58

4.26 Evolution of star formation laws with time . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.27 Radial velocity power spectrum and its best linear fit . . . . . . . . . . . . . . . . . . . . . 60

x



Chapter 1

Introduction

1.1 Star Formation

Stars are crucial for our Universe. In their interiors is where every heavy element is formed, and therefore
where life takes root. To understand the Universe we have to start with the stars. Although they are
small relatively to other structures such as galaxies, their influence in the Universe is much more greater
than their size. Processes that happen in stars can change their environment on galactic scales (e.g.
supernovae). Even though stars have been widely studied, we ignore much of them. In order to model
the Universe as a whole, one of the first requirements is to understand the formation and behavior of
stars. This requirement is much more important when simulating the formation and evolution of the
Universe (e.g. Springel and Hernquist 2003), where we still can not reach the needed resolution to fully
develop the formation of stars. Instead we use a star formation recipe, which is basically a predetermined
way of creating stars. This recipe is usually based on what we call a star formation law, that relates star
formation with global properties of the host galaxy. In the following subsections we will give an outline
of the more important theories explaining how gas converts into stars at galactic scales.

1.1.1 The Kennicutt-Schmidt law

One of the first pioneering works studying star formation and developing a star formation law were
proposed by Schmidt (1959, 1963). He suggested that the relation between star formation rate volume
density (ρSFR) and gas volume density (ρgas) was a power-law of index n, with its value ranging from 1
to 2.

ρSFR ∝ ρngas (1.1)

These volume densities are not easily observable, instead we commonly measure surface densities
from observations. In order to test Schmidt law with observations, one of the options is to assume a
constant gas disk scale height as Kennicutt (1989, 1998) did. Using that assumption, the expression can
be rewritten using surface densities instead of volume densities, originating the more common expression
(where we have explicitly written n and N to differentiate both indexes)

ΣSFR ∝ ΣNgas (1.2)

In particular, Kennicutt (1998) measured the index N using Hα, CO and HI observations of disk
galaxies and infrared observations of starburst galaxies. To complete the range of gas surface density
between disk and starbursts galaxies, he also used the central part of disks as nuclear disks. Since the
amount of H2 can not be directly measured, Kennicutt measured the CO intensity and convert it to H2

assuming a CO-H2 conversion factor, which in the case of Kennicutt (1998) is assumed constant for the

1



1. INTRODUCTION 1.1. STAR FORMATION

whole sample of galaxies. Its value was adopted to be 2.8 × 1028cm−2(K km s−1)−1 following Bloemen
et al. (1986), Kenney (1987). This assumption can be a source of errors in the law as we still do not know
how this factor changes with other properties such as redshift or metallicity. The best fit for the data gives
a value of N ∼ 1.4, which is known as the Kennicutt-Schmidt (KS, also known as Schmidt-Kennicutt)
relation. It is important to mention that in order to get this value, Kennicutt (1998) only considered the
gas enclosed in the region where stars form, not including the rest of the disk. As he took average over en-
tire galaxies for gas surface densities and star formation rates, this relation is also known as global KS law.

The physical interpretation proposed in the same study to explain the exponent is that star formation
rate is proportional to the product of gas surface density and the inverse of the free-fall time. But at the
same time, the free-fall time is related to gas surface density by a power-law tff ∝ Σ−0.5

gas , so that

ΣSFR ∝
Σgas
tff

∝ Σ1.5
gas (1.3)

which results in agreement with the measurements of Kennicutt (1998). This expression tells us that gas
is mostly consumed to form stars with a characteristic timescale of a free-fall time, which means that gas
collapses into clumps due to gravitational forces.

An alternative version of Equation 1.2 was also studied by Kennicutt (1998) in which star formation
rate is correlated with gas surface density and the dynamical time (tdyn) of the system. Analogously to
the interpretation of Equation 1.3, the characteristic time scale for the formation of stars is taken to be
proportional to a dynamical time. This parameter is commonly taken as the time needed for the gas
to do an orbit at the galactic radius, which is also known as the orbital time torb. This relation was
first proposed by Elmegreen (1997), Silk (1997) reason why from now on it will be called Silk law. The
analytical expression of the law is given by the following form:

ΣSFR ∝
Σgas
tdyn

=
Σgas
torb

(1.4)

Utilizing exactly the same galaxies previously used to find the exponent in relation 1.2, Kennicutt
(1998) found the best fit of slope N ∼ 1 to the data. Both relations are shown in Figure 1.1. Even
though we have treated torb and tdyn as different quantities conceptually, we have to mention that both
time scales are similar in value (Binney and Tremaine 2008)

Figure 1.1: Schmidt and Silk from Kennicutt (1998). Left: Schmidt law. Right: Silk law
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Since the seminal study of Kennicutt, numerous studies have been done studying these relations,
both observations-based (Martin and Kennicutt 2001, Wong and Blitz 2002, Bouché et al. 2007, Kenni-
cutt et al. 2007, Leroy et al. 2008, Bigiel et al. 2008) and simulations-based (Kravtsov 2003, Li et al. 2005,
Tasker and Bryan 2006, 2008, Robertson and Kravtsov 2008, Gnedin and Kravtsov 2010). In general most
studies do find that galaxies follow a KS law, but there is no consensus on the exact value of the index N .
Almost every value measured is within the range 1-2 originally proposed by Schmidt (1959, 1963), so the
focus of present works is to find the factor that produces these variations. In that sense phenomena such
as metallicity or a dependence on redshift appears as good candidates to influence the slope of the relation.

1.1.2 Paradigms

The Kennicutt-Schmidt law has been very successful explaining the relation between stars and gas at
galactic scales, but recent studies contradict one of Kennicutt’s findings. Newer studies have shown that
star formation is better correlated with molecular gas rather than atomic or total gas (Kennicutt et al.
2007, Bigiel et al. 2008), on the contrary of what Kennicutt (1998) found. A physical explanation is that
it is expected that as stars forms in molecular clouds their formation should have a tighter relation with
molecular gas. Recently developed instruments and observations have allowed to carry out new studies
with sub-kpc resolution to improve the global measurements used by Kennicutt.

Figure 1.2: Comparison of atomic, molecular and total gas Kennicutt-Schmidt law

Figure 1.2 shows a comparison between the correlation of star formation rate with atomic, molecular
and total gas as reported by Bigiel et al. (2008). They found a tighter relation between star formation
rate and molecular gas (Figure 1.2 center), with less scatter and a slope ∼ 1.0, in contrast to the atomic
KS law (Figure 1.2 left) which shows a steeper relation with more scatter. Including both relations they
obtain the dependence on total gas (Figure 1.2 right) which has a slope in between the atomic and molec-
ular inclinations. It is worthwhile to note that at log ΣHI+H2

= 1.0 there is a break in the relation which
translates in a change of slope. This break is originated by a transition between a region dominated by
atomic gas to a region dominated by molecular gas, with star formation happening most in the latter
region.
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More recently, observations of starburst at high redshift have postulated another paradigm. Daddi
et al. (2010), Genzel et al. (2010) found that spirals disks at low redshift and starburst galaxies at high
redshift follow a Kennicutt-Schmidt law with the same slope but different zero points, in what has been
called a "two sequence" law. These results have also been supported through simulations of the Antennae
galaxies (Teyssier et al. (2010), Figure 1.3b). One tentative explanation for these discoveries is based
on the change of the CO-H2 factor (X(CO)) for galaxies at high redshifts. Unfortunately there is a
restriction for this theory: it is only valid in the case of a discontinuous change. On the contrary, if the
change is continuous the slope of the KS relation changes from 1.4-1.5 to 1.7-1.9 (Narayanan et al. 2012).
Opposed to this explanation, new measurement of the interacting system Arp 158 have shown to follow
the double sequence without assuming a different X(CO) conversion factor (Boquien et al. 2011), what
would put in doubt the change in the conversion factor as the origin of the two sequence.

(a) Observations from Daddi et al. (2010) (b) Simulations from Teyssier et al. (2010)

Figure 1.3: Two sequence relations

What is most intriguing is that although the two sequences found by Daddi et al. (2010) in KS law,
they plotted the same data to study Silk law (Figure 1.4) finding that they follow one unique relation
with slope N ∼ 1 in completely agreement with Kennicutt (1998). This yields to the question of which
of the two star formation laws is the intrinsic relation and which one is a by product of the other one.
Ultimately, an intrinsic star formation law is what is being sought to include it as a recipe to fully model
the formation and evolution of galaxies in the Universe.

1.1.3 Other Star Formation laws

Many other Star Formation laws have been proposed trying to explain the paradigms presented before.
A complete summary of the most important ones is presented in Table 1.1. We encourage the reader to
go to the given references to look for any specification and detail. Here we will focus on one of them:
SFR-Mrot law (Escala 2011).

Based on stability criteria, from the dispersion relation for small perturbations (Binney and Tremaine
2008) ω2 = κ2 − 2πGΣgas|k| + k2c2s, Escala and Larson (2008) deduced a characteristic length λrot =
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1. INTRODUCTION 1.2. BLACK HOLE GROWTH

Figure 1.4: Silk law from observations of Daddi et al. (2010)

4π2GΣgas/κ
2 beyond which the disk is supported on large scales by rotation. This length has a charac-

teristic mass associated given by the expression (Escala and Larson 2008, Escala 2011)

Mrot =
4π4G2Σ3

gas

κ4
= 3× 107M�

Mgas

109M�

( η

0.2

)2

, (1.5)

where κ is the epicyclic frequency and η = Mgas/Mdyn is gas fraction.

Later on using observations of disk galaxies and starburst galaxies, Escala (2011) found a relation
between star formation rate surface density and Mrot. As Equation 1.5 indicates, in order to do that it
also is necessary to calculate the gas fraction in galaxies, which is rarely measured in observations. With
the available data the best fit curve found by Escala (2011) was

ΣSFR ∝M2.3
rot . (1.6)

1.2 Black Hole Growth

It is well-established the existence of a correlation between a central black hole and the global proper-
ties of its host galaxy, such as the MBH -Mbulge (Marconi and Hunt 2003, Häring and Rix 2004) and
the MBH − σ relation (Gebhardt et al. 2000, Ferrarese and Merritt 2000). Although they were derived
separately, they are not completely independent. Using the Faber-Jackson relation (Re ∝ σ2− σ3, Faber
and Jackson (1976)) one of them is derivable from the other one. This also implies that only one of them
is a fundamental relation, while the other is a by-product of the first one. In any case, these relations
supports a scenario of coevolution of the black hole and its host galaxy.
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Theory Form References

Disk free-fall time
fixed scale height ΣSFR ∝ Σ1.5

gas Kennicutt (1998)

variable scale heigh ΣSFR ∝
Σ2

gas

σg

(
1 + Σ?

Σgas

σg
σ?,z

)0.5

Elmegreen (1989), Krumholz and McKee (2005)

Orbital timescale ΣSFR ∝ Σgasτ
−1
orb =

v(rgal)

2πrgal]
Silk (1997), Elmegreen (1997)

Cloud-cloud collisions ΣSFR ∝ Σgasτ
−1
orbQ

−1
gas(1− 0.7β) Tan (2000)

Atomic and molecular gas ΣSFR = fH2(Σgas, c, Z
′) Σgas

2.6Gyr ×


(

Σgas

85M�pc−2

)−0.33

if Σgas

85M�pc−2 < 1(
Σgas

85M�pc−2

)0.33

if Σgas

85M�pc−2 > 1
Krumholz et al. (2009)

Rotational mass ΣSFR ∝M2.3
rot Escala (2011)

Table 1.1: Star Formation Laws

Several theories have been proposed to explain these relations. Some of them rely upon black hole
feedback (Robertson et al. 2006, Di Matteo et al. 2008, Somerville et al. 2008). Others assumes that a
fraction of the gas disk is accreted into the center of the galaxy to fuel the black hole (Burkert and Silk
2001, Escala 2006, 2007, Li et al. 2007). In the latter case is required to solve first another question:
how to remove or redistribute angular momentum and transport gas to the central region of the galaxy?
Numerous studies have been focused on investigate the mechanisms that drive gas to the center, propos-
ing explanations such as gravitational torques due to asymmetries in the disk (Chang et al. 2007), bars
(Athanassoula 1992) and the so called "bars-within-bars" (Shlosman et al. 1989, 1990). Although the
great variety of possible explanations, there is no an agreement of which one is the dominant one.

In this context, Escala (2006, 2007) suggested that the MBH − σ relation can be explained using a
simple model of mass transport through a turbulence-dominated α-disk and assuming a relation of the
form:

vturb ∼ vrot
(
λturb
Rd

)−β

. (1.7)

He derived an expression for the mass of the black hole:

MBH ∼
2
√

2ξα

Q

(
λturb
Rd

)−β
Reσ

2

G
, (1.8)

where ξ ≈ 5.9, α is from the α-disk model, and Q is the turbulent Toomre’s Q parameter. This expression
implies the standard MBH ∝ σ4 (Gebhardt et al. 2000, Ferrarese and Merritt 2000, Tremaine et al. 2002)
if the Faber-Jackson relation (Re ∝ σ2

e) is assumed. Additionally, in Equation 1.8 we can identify the
bulge mass as Mvir = kReσ

2/G recovering at the same time the MBH -Mbulge relation (Marconi and
Hunt 2003, Häring and Rix 2004).

1.3 Objectives

Our aim is to study the factors that influence the Kennicutt-Schmidt and Silk laws. Among these factors
we found the radius used to calculate surface densities, and the method used to calculate star formation
rates (SFR). We will see how the slope changes depending on the values chosen. Additionally, we will
investigate how Mrot affects these relations and the scattering it can introduce in them.

Our work will be carried out using numerical simulations of local galaxies. Our study will be centered
in a total of nine simulations which will be performed in an Adaptive Mesh Refinement (AMR) code.
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The initial parameters of these simulations will be chosen according to our aim.

We will also take advantage of the simulations to study the validity of Equation 1.7 in the models
we will perform. In order to do that, we will examine the properties of the Interstellar Medium (ISM) at
the end of our simulations, and we will verify that a relation of this kind is obtained.

1.4 Thesis structure

We will introduce the code used in §2, detailing the structure, the algorithm and the way it works. In §3
we will describe the characteristics of our models, emphasizing the physical processes involved in them
and how we choose their configuration. The analysis of the runs will be presented and discussed in §4.
Finally, we will present the conclusions of our work in §5.
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Chapter 2

The code

The two most common approaches to do numerical simulations in astrophysics are Adaptive Mesh Refine-
ment (AMR, Berger and Oliger (1984), Berger and Colella (1989)) and Smoothed Particle Hydrodynamics
(SPH, Gingold and Monaghan (1977), Lucy (1977), for a review see Monaghan (1992), and Springel (2010)
for a more recent one) The former is based in an Eulerian hydrodynamics method for solving equations,
while the latter uses a Lagrangian one. Both of them have advantages and disadvantages. On one
side, the advantages of SPH are: (1) resolution not limited to grid spacing ∆x; and (2) solutions are
translational and rotational invariant. On the other side, AMR also has advantages over SPH methods:
(1) eliminates Poisson noise representing fluids as a continuum, not discrete particles; (2) low density
cells are computed as accurately as high density cells at the same cost; (3) integral conservation laws
are straightforward to implement for mass, momentum, energy and magnetic flux which are numerically
conservative to machine roundoff; and (4) due to hydrodynamics solvers, shocks are captured in 1-2 cells
with correct entropy generation and non-oscillatory shocks.

In this work we are focusing in how gas evolves to study star formation on galactic scales. This
process also includes supernovae explosions as stellar feedback which generates steep shocks of gas. The
best technique to resolve this kind of shocks is AMR. In particular we will use ENZO1 code (Bryan and
Norman 1997, Norman and Bryan 1999, O’Shea et al. 2004), which is one among other implementations
of AMR.

2.1 Enzo

Enzo is an Eulerian numerical method based on the structured AMR algorithm by Berger and Colella
(1989). It was first developed for 3D hydrodynamic cosmological simulations and it is written in a mixture
of C++ and Fortran. The former is used for high-level functions and data structures, while the latter is
used for computationally intensive low-level functions. It uses the Message-Passing Interface (MPI)2 to
implement communication between processors and Hierarchy Data Format 5 (HDF5)3 to write data and
restart files in a platform independent format.

Among the routines implemented in this code we can find gravity solver, hydrodynamic solvers, N-
body solver and different routines to model physical processes such as species solver, heating, cooling,
star formation and feedback, and radiative transfer. Figure 2.1 shows one example of the loop followed by
Enzo to run a cosmological simulation. The code starts calculating the expansion factor for a fixed time.
The next step is to solve the gravitational field in the simulation. In third place the hydrodynamical
equations are evolved, which besides gas dynamics also includes solving species, calculating heating and
cooling rates, forming stars and radiative transfer. After that, N-body solver is used to evolve particles,

1http://enzo-project.org
2http://www.mcs.anl.gov/mpi/
3http://www.hdfgroup.org/HDF5/
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which can be dark matter, stars, black holes or sink particles. After the whole process, the loop enters a
new timestep and it starts again.

Figure 2.1: Main loop of Hydrodynamic Cosmology Code

2.2 Adaptive Mesh Refinement

The primary goal of the Structured Adaptive Mesh Refinement developed by Berger and Colella (1989)
is to focus the computational effort in regions where it is most useful. Given that hydro solvers have
already a great resolution by themselves, improve them will not increase accuracy significantly. So what
this method really do is to select the regions where a better resolution is needed and apply the solvers in
them. In this way what we are looking for is to minimize the cost for a fixed accuracy.

2.2.1 Grids

In order to discretized the hydrodynamical equations, the entire domain D is split in quadrilateral meshes
which are logically connected between them. Each mesh belongs to a certain level which represent how
refined the grid is. In the case of level 0, the sum of all grids at this level is the entire domain D, that
also means that in level 0 grids has to align with each other.

D = G0 =
⋃
k

G0,k (2.1)

If we generalize Equation 2.1 for any level l, then we get

Gl =
⋃
k

Gl,k (2.2)

In general there can be overlapping grids at the same level, so that Gl,j ∩ Gl,k 6= 0, for j 6= k, but
discrete solution should not depend on how grids are decomposed. Grids on a level l are called sibling
grids. One level above, on level l−1, the grids are parent grids while one level below are child grids. The
greater the level, the finer the grid is.
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Grids at different levels in the grid hierarchy have to fulfill two requirements to be “properly nested"

(i) a fine grid starts and ends at the corner of a parent grid
(ii) A level l grid has to be completely contained on at least one level l − 1 cell.

Besides space, grids are also refined in time by the same mesh refinement ratio R = ∆xl−1/∆xl:

∆tl
∆xl

=
∆tl−1

∆xl−1
= . . . =

∆t0
∆x0

(2.3)

This means that in fine grids more timesteps are taken, increasing accuracy in both space and time.
It does not mean that the finest timestep will be imposed globally, but each level has its own timestep in
order to get the accuracy needed.

A point (x, y) ∈ D may be contained in several grids. The solution u(x, y) is taken from the finest
grid containing that point, which is also the most accurate. In case there are more than one fine grids
containing the point, the solution can be taken from any grid, since the solution on the intersection of
overlapping fine grids will be identical.

Figure 2.2 shows an example of an AMR grid hierarchy for the case ofR = 2, and 3 levels of refinement.

2.2.2 Integration algorithm

AMR assumes there is a basic, underlying, conservative, explicit finite difference scheme of the form:

un+1
i,j = uni,j −

∆t

∆x

(
Fi+1/2,j − Fi−1/2,j

)
− ∆t

∆y

(
Gi,j+1/2 −Gi,j−1/2

)
(2.4)

The values ui,j are cell-centered values of the grid with coordinates (i, j) and we have used the
notation u(tn) = un. This scheme is applied on every cell at every level without exceptions, but there
are two cases in which this result should be modified

(i) the cell is overlaid by a finer level grid

(ii) the cell abuts a fine grid interface but is not itself covered by any fine grid.

In case (i) the grid value of the coarse grid at level l− 1 is simply replaced by the average of the fine
grid values at level l. Both grid values are calculated using Equation 2.4, but as the fine grid has a better
resolution in time and space, the result of the scheme is more accurate. Then the coarse grid value is
simply discarded. Taking as an example the grey square in Figure 2.3 and assuming a refinement radio
r the expression of the replacement is

ucoarsei,j ← r−α
∑
k

∑
m

ufinek,m . (2.5)

In case (ii) we also have to ensure the scheme to be conservative in the boundary between a fine grid
and a coarse grid. That means that the fluxes into the fine grid across the boundary must equal the flux
out of the coarse cell. Taking as an example cell (i, j) (yellow square) in Figure 2.3, we have to correct
the flux in the following way

ui,j(t+ ∆tcoarse) = ui,j(t)−
∆tcoarse

∆x

[
Fi+1/2,j(t)−

1

rα

r−1∑
q=0

r−1∑
p=0

Fk+1/2,m+p(t+ q∆tfine)

]

− ∆tcoarse
∆y

[
Gi,j+1/2(t)− Fi,j−1/2(t)

]
(2.6)
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Figure 2.2: Illustration of an AMR grid hierarchy
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Figure 2.3: Finer grid and boundary corrections

2.2.3 Boundary conditions

To complete the discussion we have to refer to boundary conditions. The integration scheme showed in
Equation 2.4 needs initial values to start working, these values are provided by the user which consists
on information from outside the problem domain.

For a grid at level l boundary values are copied from adjacent cells at the same level l where they
are available, otherwise the AMR algorithm uses bilinear interpolation from coarser level solution values
to compute boundary values. If needed, the algorithm can also interpolate linearly in time. This can be
summarized in three steps.

(i) find solutions values from parent grids at level l− 1 on a slightly larger rectangular piece enclosing
the border cells

(ii) interpolate linearly for the border values

(iii) if there are neighboring grid at level l that could supply some values, overwrite the linearly inter-
polated values from step (ii)

2.2.4 Creating grid hierarchy

Finally the grid hierarchy is built using an error estimation for each grid at each level. This allows to
select which grids need to be refined in order to get smaller errors. Refining grids implies that the grid
hierarchy has to be re-created from finest to coarsest grids. When a grid at level l is modified, then all
finer grids are changed as well, but the coarser grids may remain the same.

In that process only one level can be created at a time, although many levels can be changed during
the regriding operation. Let’s see an example to explain it: suppose there is a base level lbase where grids
will stay fixed and finer levels go from level lbase + 1 to lfinest. The error estimation is first applied to
the grid at level lfinest and if there are points where it is too high, then this cell is flagged for refinement
and a different level lfinest + 1 grid is created. Then we estimate the error on the grids at level lfinest− 1
and apply the same procedure. In case there are flagged points then a new level lfinest grid is created,
making sure that if there are any level lfinest + 1 grid, they are properly contained in the level lfinest
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grids. This method is applied until we reach level lbase and estimate error there.

2.3 Implementation

The AMR grid patches are the primary data structures in Enzo. Each one of this patches is an object
which contains field variables and particles data. They are organized in a distributed hierarchy following
two different methods: a tree data hierarchy and a level-based array of linked lists. An example of this
distributed hierarchy in the case of two processors and six grids is illustrated in Figure 2.4

Figure 2.4: Example of distribute hierarchy using two processors and six grids

Each processor contains the whole distributed AMR hierarchy, but not all processor contain all grid
data. Storing all grids in each processor would be significantly expensive in terms of memory, so it is
much better to store some of them as real grids and the other ones as ghost grids. A grid is a real grid
in a processor if its data is allocated on that processor, and a ghost grid if its data is not. A grid is a
real grid in only one processor and a ghost grid in all others. Each data field within a grid is an array
of zones in 1, 2 or 3 dimensions. There are two types of zones: real and ghost zones. Ghost zones store
temporarily neighboring grid values to update real zones data fields when required. As seen in Figure
2.4 ghost zones are surrounding real zones and are 3 zones deep.

Communication between processors can only be done in grid of the same level because different levels
are computed in a serial way, which means that the next level can only be evolved once the previous one
has finished. Using ghost grids and linked lists, real grids can communicate and exchange information
between processors to update their data fields.

2.3.1 Algorithm

The basic Enzo algorithm can be written in pseudocode as Figure 2.5 shows. The main procedure is
the EvolveLevel routine, which receives the current level and time as arguments. Once this routine has
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begun, the first step is to call the procedure SetBoundaryValues to calculate the boundary values for
each grid. It can be done in two different ways: interpolating from a parent grid or obtaining the values
from neighboring grids as seen in §2.2.3. After that, Enzo enters a while cycle in which there is a recursive
call to EvolveLevel so that all refined levels are advanced as well.

Figure 2.5: Enzo AMR algorithm

Inside the while cycle the procedure ComputeTimeStep calculates the timestep of the current grid.
As seen in Equation 2.3, in a linear system the timestep should be calculated using ∆tl+1 = ∆tl/R where
∆tl+1 is the current timestep, ∆tl is the timestep of the coarse grid and R is the refinement factor.
Usually systems are nonlinear, in this case timestep can be computed choosing the minimum between
the following

a)

∆thydro = min

(
κhydro

a∆x

cs + |vx|

)
L

where κhydro is the Courant Safety Factor

b)

∆tdm = min

(
κdm

a∆x

vdm,x

)
L

where κdm is the Particle Courant Safety Factor

c)
∆t = fexp

(a
ȧ

)
where fexp is the Maximum Expansion Factor

d)

∆taccel = min

(√
∆x

~g

)
L

Once the timestep is calculated, the procedure PrepareDensityField solves the Poisson equation
and SolveHydroEquations evolves hydrodynamical equations. Following Figure 2.5 Enzo increases the
current time by one timestep and calls SetBoundaryValues and EvolveLevel recursively. In that way,
all finer grids are also evolved. The best resolution of the finer grids allows to compute more pre-
cise values which are used to correct values from coarse grids calling procedures FluxCorrection and
Projection, methods described in §2.2.2. Finally, all grids in the level given as an argument are rebuilt
using RebuildHierarchy to reflect the changing solution (§2.2.4). This procedure is in charge of flag
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Figure 2.6: Grids on a simulation using baryon mass as refinement criteria
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cells for refinement following criteria such as baryon density, baryon mass, particles mass, Jeans length
and cooling time. Using these criteria the grids will not be uniform as showed in Figure 2.2. On the
contrary, we will get a non linear hierarchy as shown in Figure 2.6 where there is an example of the
grids obtained using baryon mass as refinement criteria and a maximum refinement level of 7. The small
numbers indicate the level at which the cell belongs. As a last step, RebuildHierarchy also can create
new grids interpolating values from their parent grids or copying values from old grids, which are deleted.

The algorithm described above applies to any level in the grid hierarchy. An important feature of
this algorithm is the recursive call of it, which allows that all levels with finer subgrids are evolved as
well. In that way grids are evolved from coarse to fine using their individually determined timesteps.
This temporal integration scheme is known as "W-cycle" as Figure 2.7 shows. This order of integration
allows us to achieve second order accuracy on time on the entire hierarchy.

Figure 2.7: The “W" cycle

2.4 Gravity solver
2.4.1 Self-Gravity

ENZO also includes an algorithm to resolve the acceleration that the baryonic mass will have due to
itself. This behavior is completely defined by Equation 2.7 (the Poisson equation), which says that any
baryonic mass density distribution will generate a gravitational potential that will affect itself. So for
this case we first compute the potential field φ from the baryonic density ρ.

∇2φ = 4πGρ (2.7)

In order to do that the mass density has to be completely defined everywhere. This is relatively easy
for grids because they have an attribute which stores the density value, but for particles is a little more
complicated. In case there is a particle, we have to distribute its mass among the eight nearest cells. For
that, we advance the particle position by half step and we build an imaginary cube around it as Figure
2.8 shows. We then calculate the fraction of the cube that is superposed with each cell and we deposit
that same fraction of the mass of the particle on the surrounding cells. This method is called Cloud-in-Cell.
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Figure 2.8: Cloud-in-Cell (CIC)

Root grid
To solve Poisson equation in root grid, Enzo applies a Fast Fourier Transform obtaining

φ̃(k) = G(k)ρ̃(k) (2.8)

and then it computes acceleration from the gravitational potential to update the velocities.

Subgrids
In subgrids Enzo does not solve Poisson equation directly, instead it first interpolates the gravitational po-
tential from parent grids and assign this value to each subgrid. Enzo then solves Poisson equation in each
of them using multigrid method. This method has a few disadvantages such as propagation of errors from
coarse levels to fine levels and inconsistency of potential gradient across boundaries. Both of them can
be improved, in the first case we can ameliorate it using six ghost zones in the case of gravity, and in the
second case we can copy boundary conditions for potential from sibling grids and resolve Poisson equation.

2.4.2 External Gravity

In the case of external gravity the user can define the potential field directly in the initialization of the
problem, that means that there is no need to solve Poisson equation and we can derived acceleration
directly from potential. So in case we want to put a single point source of gravity, then we have to specify
the acceleration field due to that source which will be simply

a(r) =
GM

r3
(2.9)
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2.5 Hydrodynamical solver

One of the most important features in Enzo is the numerical solver for hydrodynamics equations. The
complete set of hydrodynamic equations are

∂ρ

∂t
+ ~v · ∇ρ = −ρ∇ · ~v (2.10)

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p−∇φ (2.11)

∂E

∂t
+ ~v · ∇E = −1

ρ
∇ · (p~v)− ~v · ∇φ+ Γ− Λ (2.12)

E = e+
1

2
~v2 (2.13)

Here the dependent variables are mass volume density ρ, velocity ~v and the total energy density E.
Equation 2.10 is known as continuity equation and expresses conservation of mass. Equations of mo-
tion are represented by Equation 2.11 which describe conservation of momenta. The remaining equation
(Equation 2.12) is conservation of total energy, which is the sum of internal and kinetic energy as shown
in Equation 2.13. Here we have added a source term Γ and a sink term Λ to account for energy input
and output respectively, such as supernovae explosions or radiative cooling.

To close this set of equations another two are necessary. The first one relates pressure with mass
density and internal energy density. This is also known as Equation of State (EOS) and commonly is
assumed to be the ideal gas EOS:

e =
p

(γ − 1)ρ
(2.14)

The second equation required is the self-gravity equation, also known as Poisson equation (Equation
2.15) which relates mass density with gravitation potential φ.

∇2φ = 4πG(ρtotal − ρ0) (2.15)

Enzo has a wide variety of hydrodynamical solvers implemented: a direct-Eulerian version of the
Piecewise-Parabolic Method (PPM, Colella and Woodward 1984); a cartesian, 3D version of ZEUS
(Stone and Norman 1992); a Runge Kutta second-order based on Monotone Upstream-centered Schemes
for Conservation Laws (MUSCL); and a similar solver to the previous one but including Magneto Hydro-
dynamics (MHD) from Dedner et al. (2002) (Wang and Abel 2009). For simplicity we will only discuss
ZEUS which is the solver used in our simulations.

2.5.1 ZEUS

ZEUS is a three-dimensional Eulerian hydrocode that solves the fluid equations using the method of
finite-differences with a time-explicit, multistep solution procedure. Among its characteristics are its
robustness, its simplicity and its speed. The code is completely described in Stone and Norman (1992),
but here we will summarize the most important points and briefly discuss how they are implemented in
Enzo.

Figure 2.9 shows the flow chart for the code. Once the problem is completely initialized, the first
step is to compute the gravitational potential from the mass density solving Poisson equation (Equation
2.15). After that, the code evolves the hydrodynamic equations entering the source and the transport
step, which will be described in §2.5.2 and §2.5.3 respectively. Then the code is able to go to the next
grid, compute its timestep and solve the set of equations in it. The final data outputs and graphics will be
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Figure 2.9: ZEUS flow chart
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written once the code had finished all grids, but intermediate data outputs and graphics can be written
anytime during the execution of the code.

2.5.2 ZEUS Source Step

This step consists basically in solving Equations 2.11 and 2.12 using finite-difference approximations. In
order to do that the code has to compute the pressure p before it starts the Source step, so it obtains p
from Equation 2.14. A second requirement is to compute gravitational potential φ, which ZEUS can get
using Equation 2.15. With both quantities p and φ calculated, the Source step can now begin.

The Source step is subdivided in three substeps. In their description we will use the following no-
tation: the value computed before Source step begins will have a superscript n. Then, the superscripts
n+a, n+ b and n+ c will correspond to the values computed after the Substep 1, Substep 2 and Substep
3, respectively.

Substep 1
The main objective is to calculate the new velocity of the fluid, which has to be updated adding pressure
gradients and gravitational forces. So first ZEUS does the correction by pressure

vn+a
j = vnj −

∆t

∆xj

pnj − pnj−1

(ρnj + ρnj−1)/2
(2.16)

and then it corrects by acceleration (gravitational force).

Substep 2
In this substep a new term q is included to account for viscous stresses and dissipation in the form of an
artificial viscosity. Similar to what kinematic viscosity does in real fluids, this term smooth discontinu-
ities which may appear in the flow, where the finite-difference equations break down (numerical errors).
Including this term leads to a new correction in velocity and energy density given by

vn+b
j = vn+a

j − ∆t

∆xj

qn+a
j − qn+a

j−1

(ρnj + ρnj−1)/2
(2.17)

en+b
j = enj −

∆t

∆xj

qn+a
j (vj − vj+1)

ρnj
(2.18)

Here in Equations 2.17 and 2.18 the artificial viscosity can be chosen in two different ways. The first
option is to assume a quadratic viscosity term as formulated by Vonneumann and Richtmyer (1950):

qquadj =

{
QAV ρj(vj+1 − vj)2 if (vj+1 − vj) < 0
0 otherwise

or we can choose a linear viscosity coefficient as defined by Lapidus (1967), Norman and Winkler (1986):

qlinj = C1ρCa∆v = C1ρ

√
γp

ρ
(vj+1 − vj)

where Ca is the adiabatic speed of sound.

Substep 3
Finally, a compressional heating term is also added to improve energy conservation. To do that we define
pn+1/2 = (pn + pn+1)/2 and write the finite-difference version of Equation 2.12 in the following way
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en+1 = en −∆tpn+1/2∇ · ~v (2.19)

which can be rewritten using the ideal gas equation of state (Equation 2.14)

en+c
j = en+b

j

(
1− ∆t

2 (γ − 1)(∇ · ~v)j

1 + ∆t
2 (γ − 1)(∇ · ~v)j

)
(2.20)

2.5.3 ZEUS Transport Step

The following step is to solve equations of motion in their integral forms which is basically to compute
fluxes in a conservative way. The equations can be obtained applying the divergence theorem to Equation
2.10 and are given by the following expressions:

d

dt

∫
V

ρdV =

∫
dV

ρ~v · ~dS (2.21)

d

dt

∫
V

ρ~vdV =

∫
dV

ρ~v2 · ~dS (2.22)

d

dt

∫
V

edV =

∫
dV

e~v · ~dS (2.23)

The Transport step is done in one direction at a time, that means that it starts with x-direction,
continue with y-direction and finish with z-direction in the 3 dimensional case. So let’s take for example
Equation 2.21. If we try to solve it using finite-differences in the x-direction we obtain

ρn+d
j = ρnj −

∆t

∆x
(vn+c
j+1/2ρ

∗
j+1/2 − v

n+c
j−1/2ρ

∗
j−1/2) (2.24)

where the superscript n+ d indicates that it is the value after the Transport step, similar to the notation
used in §2.5.2

To compute the new value of the density, we first need values for mass density and velocity in the
boundaries of the grid. The problem is that while the velocities are face-centered, the mass density is
grid-centered. One way of obtaining the value of mass density at the boundaries is via interpolation from
its centered values. The interpolated values are represented by the asterisks in Equation 2.24. Here we
use the second-order-accurate van Leer method (van Leer 1977), which basically consists in a piecewise
linear interpolation of the zone-centered value w given by:

w∗
j =

{
wj−1 + (∆xj−1 − (vj − vgj)∆t) (dwj−1/2) if vj − vgj > 0
wj − (∆xj + (vj − vgj)∆t) (dwj/2) if vj − vgj < 0

where dwi are the monotonized van Leer slopes computed from the harmonic average:

dwj =

{
2(∆wj−1/2∆wj+1/2)

∆wj−1/2+∆wj+1/2
if ∆wj+1/2∆wj−1/2 > 0

0 otherwise

2.6 Particles
As seen in §2.4 particles can contribute to the density field and influence gravitationally the surrounding
material. Besides this characteristic, particles are also evolved following N-body dynamics, that means
that each particle also has position, velocity and acceleration. The calculation of the acceleration of
the particle is just the opposite to the process of distribution of mass described in §2.4. This time,
the acceleration is interpolated from the values of the eight nearest cells as illustrated in Figure 2.8.
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With the value of the acceleration we are able to update its position and velocity using the so called
"drift-kick-drift" leapfrog algorithm.

xn+1/2 = xn +
∆t

2
vn (2.25a)

vn+1 = vn + ∆tan+1/2 (2.25b)

xn+1 = xn+1/2 +
∆t

2
vn+1 (2.25c)

Here we first evolve the particle position by half-step maintaining constant the velocity, which is
called a "drift". Then we advanced particle velocity one step keeping position constant (a "kick") and
finally we again advance position by half-step with a constant velocity (another "drift"). This order of
integration allows us to reach second order accuracy. Finally these particles attributes are stored in the
locally most-refined grid. As a side note, it is no necessary to store previous timesteps which reduces
significantly the memory used.
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Chapter 3

The simulations

The galaxies are simulated in a box of 666h−1 kpc with periodic boundary conditions. The size of the
parent grid is 1283 and we proceed down to additional 7 subgrids of refinement. This level of refinement
allows us to reach a resolution of ∼40pc which is a reasonable resolution to resolve star formation and
feedback (Ceverino and Klypin 2009). The criteria used for refinement is of two kinds and both of them
have to be fulfill: refinement by baryon mass if the density of the cell is four times the average density,
and refinement by Jeans length to ensure that it is at least resolved by 4 cells to prevent artificial frag-
mentation (Truelove et al. 1997).

We also add radiative gas cooling through a file where we specified the values of cooling rates for each
temperature following the curves of Sarazin and White (1987) down to T = 104K and Rosen and Bregman
(1995) down to T = 300K. As pointed out by Ceverino and Klypin (2009) this range of temperatures
will let us resolve the Interstellar Medium (ISM) to observe a multi-phase medium.

Finally, the simulations are evolved in comoving coordinates in a ΛCDM universe, where we have
adopted the values Ωm = 0.3, ΩΛ = 0.7, and H0 = 67 km s−1 Mpc−1.

3.1 Galaxy

We model our galaxies as a three-component system which includes gas, stars and dark matter, similar
to Wang et al. (2010). The treatment for each component is different. In the case of gas we model it
using grids, while in the case of stars and dark matter they are modeled as external potentials which are
fixed in time. That means that we do not add star particles or dark matter particles at the beginning
of the simulations, but that does not exclude us to allow creation of particles once the simulations are
evolved.

3.1.1 Gas

We initialize the gas using an exponential profile in the radial direction in cylindrical coordinates combined
with a sech2 profile in the vertical direction:

ρgas(R, z) = ρ0 exp(−R/R0)sech2

(
z

2z0

)
, (3.1)

where R0 is the disk scale-length, z0 is the disk scale-height and ρ0 is the central volume density which
can be expressed as a function of z0, ρ0 and the total gas mass Mgas

ρ0 =
Mgas

8πz0R2
0

(3.2)
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3. THE SIMULATIONS 3.1. GALAXY

Integrating Equation 3.1 in the vertical direction from −z0 to +z0 gives the gas surface density of
the disk:

Σgas(R) = 4ρ0z0 exp(−R/R0) = Σ0 exp(−R/R0). (3.3)

For the whole set of simulations we will use R0 = 35 kpc and z0 = 0.4 kpc.

3.1.2 Dark Matter

The dark matter component will be modeled as an external time-independent gravitational field which
will be fixed through the evolution of the galaxies. As explained in §2.4.2, this approach only affects gas
dynamics changing its velocity due to the acceleration field produced by the density profile. It allows
us to focus the study in the evolution of gas. Here we will use the popular Navarro-Frenk-White profile
(NFW, Navarro et al. 1997) for dark matter density

ρDM (r) =
ρcritδc

(r/rs)(1 + r/rs)2
, (3.4)

where rs = r200/c is a characteristic radius, ρcrit = 3H2/8πG is the critical density (H is the current
value of Hubble’s constant), c is the concentration parameter, and δc is given by:

δc =
200

3

c3

[ln(1 + c)− c/(1 + c)]
. (3.5)

Integrating Equation 3.4 in volume we obtain the dark matter mass profile:

MDM (r) =
M200

f(c)

[
ln(1 + x)− x

1 + x

]
, (3.6)

where x = rc/r200 and f(c) is defined in the following way:

f(c) = ln(1 + c)− c

1 + c
(3.7)

We will adopt a value c = 12 for the concentration parameter and M200 = 1012M� for the mass
enclosed by the virial radius.

3.1.3 Stars

Finally in the case of the star component we use a Miyamoto-Nagai (Miyamoto and Nagai 1975) profile,
where the potential and the density are given by (Miyamoto and Nagai 1975, Binney and Tremaine 2008):

φ(R, z)stars =
−GMstar√

R2 +
(
a+
√
z2 + b2

)2 (3.8)

ρstars =

(
b2Mstar

4π

)
aR2 + (a+ 3

√
z2 + b2)(a+

√
z2 + b2)2

[R2 + (a+
√
z2 + b2)2]5/2(z2 + b2)3/2

(3.9)

The potential of Equation 3.8 is an intermediate case between the Plummer potential (Plummer
1911) which is recovered in the case when a = 0, and the Kuzmin potential (also known as Toomre’s
model 1, Kuzmin 1956, Toomre 1963) which is recovered in the case when b = 0. Its main characteristic
is to model a disk and a bulge depending on the values chosen for a and b, which allows to reproduce the
effect that stars have upon gas.
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3.2 Star formation
Although we do not initialize the galaxy with star particles, we do let star particles be created through
the simulation. As mentioned in §3.1 and §3.1.3 we will focus our study on the evolution of the gas and
how it creates stars. This will only depend on how the stars influence gravitationally the surrounding gas
and not on how many stars are at the beginning of the simulation, which is well modeled by the approach
described previously.

In order to create a new star particle we follow Cen and Ostriker (1992) algorithm with a density
restriction added. For a cell to enter into the Cen & Ostriker algorithm its density has to be greater than
a density threshold:

ρcell > ρthres (3.10)

If this requirement is satisfied then the cell has to fulfill three physical criteria: the gas has to be
contracting, the time it takes to cool has to be less that the time it takes to collapse, and it has to be
gravitationally unstable. These criteria are represented by Equations 3.11a, 3.11b and 3.11c respectively.

~∇ · ~v < 0 (3.11a)

tcool < tdyn ≡
√

3π

32Gρtot
(3.11b)

mcell > mJeans (3.11c)

Once a cell has passed all the requirements, a new star is created and its mass is calculated as a
function of the efficiency, the gas density and the cell-width

m? = ερgas∆x
3 (3.12)

It is useful to notice that there is a substantial difference between Equation 3.12 and the one proposed
by Cen and Ostriker (1992). Here we do not consider the efficiency per dynamical time, which means
that there is no delay in star formation. It implies that the cell does not wait a time tdyn to turn gas into
stars. We adopt this way to prevent that during the time it takes to create the star (a dynamical time)
the density keeps growing, which will result in a star with a greater mass.

Additionally, we also consider a numerical restriction to ensure low cost of time and memory. A
star particle will only be created if its mass given by Equation 3.12 is greater than a minimum mass
set to 105M�. In that way we prevent having big amounts of particles which will slow considerably the
simulations performed.

3.2.1 Stellar feedback

We also add stellar feedback due to supernovae explosions which is treated as an injection of energy on
the surrounding gas. Here we do feedback as if the star particles are created over a long period of time,
so the particle actually loses mass over time in an exponentially decaying way. To calculate star mass
over time, we use the integral form of Cen and Ostriker (1992):

mstars(t) = m?

∫ t

tSF

t− tSF
τ2

exp

[
−(t− tSF )

τ

]
dt (3.13)

We then inject an energy equivalent to a supernova of 1051 ergs for every 55 M� of star formed. We
do this increasing the momentum of the surrounding gas directly due to supernovae explosions. This
kind of feedback has been postulated as one of the most important processes in self-regulation of star
formation.
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3.3 The models

We performed a total of nine simulations summarized in Table 3.1, which differ between each other by
any of the parameters Mgas, Mstar, M200, a and/or b. We started with our fiducial simulation which we
tagged as "F". The choice of the values for each parameter of our fiducial simulation is based on the
Milky Way properties. We then subdivide the rest of the simulations in two groups: Group A and Group
B. From now on, when we refer to "Group A" it will include the simulations labeled as Group A in the
table plus our fiducial simulation F. The same will be applied when referring to "Group B".

Name Mgas Mstars M200 a b
109[M�] 1010[M�] 1011[M�] [kpc] [kpc]

Fiducial F 10 4 10 3.5 0.2

Group A
AI 10 10 10 3.5 0.2
AII 10 4 1 3.5 0.2
AIII 10 1 10 3.5 0.2

Group B

BI 8 2.537 6 3.428 0.496
BII 7 1.148 5 2.267 0.036
BIII 6 1.795 3 3.056 2.974
BIV 5 1.455 2 0.000 8.454
BV 4 2.388 1 3.603 11.030

Table 3.1: Galaxy parameters

3.3.1 Group A

The main characteristic that defines this group is that Mgas and Σgas are the same in every simulation.
What we are trying to do here is to start always with the same gas mass profile while varying dark
matter and stars profiles. In order to do that, we fixed Mgas = 1×1010M� and we vary Mstar and M200.
So for example we have three simulations with M200 = 1 × 1012M� with values of 1 × 1010, 4 × 1010

and 10 × 1010M� for Mstar which will allow us to study the influence of the stellar profile in the star
formation. Similarly we also have two simulations with the same initial star mass Mstar = 4 × 1010M�
but with different values for M200 (1× 1011M� and 10× 1011M�). It is also important to notice that we
have not changed the parameters a and b of the Miyamoto-Nagai profile for stars (Equation 3.8) which
means that the shape of the stars profile has not varied.

Figure 3.1 shows the gas surface density profile at the beginning of our fiducial simulation F, which
at the same time is equal for each galaxy of the Group A. Varying M200 and Mstar also implies that the
dynamical properties will change among them, including dynamical time, rotation curves and rotational
mass. The different Mrot profiles for this group at t = 0 are shown in Figure 3.2 where simulations F,
AI, AII, AIII are represented by the blue, dark cyan, black, and red lines respectively.

If Σgas has the same profile for all Group A simulations at the beginning, the Kennicutt-Schmidt law
tells us that we should expect very similar star formation rates for the whole group. We suppose that
we will not obtain exactly the same SFR, but little variations between them which will be interpreted as
scattering in the KS relation. We will study this dispersion as a result of changing secondary parameters
such as the dynamical time or the rotational mass.
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Figure 3.1: Initial gas surface density profile for Group A

Figure 3.2: Initial Mrot profiles for Group A. Colors are as follow: blue for model F, dark cyan for model
AI, black for model AII and red for model AIII
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3.3.2 Group B

For Group B we try something similar to the previous group. In this case we will keep constant the initial
rotational mass Mrot profile, while changing the dynamical time and the gas surface density. So in this
case all parameters in Group B simulations are calculated in order to obtain a similar rotational mass
profile. From Equation 1.5 we can see that we do not have a direct way of controlling the value of Mrot.
So what we do here is to take our fiducial simulation F, calculate its rotational mass profile and take it
as a reference for the other simulations. We then vary Mgas from 1× 109M� to 1× 1010M�, and M200

from 1× 1011M� to 1× 1012M� in intervals of 109M� and 1011M� respectively. Then for each pair of
values we found a "theoretical" profile for Mstar in order to get a similar rotational mass profile to that
of reference. We then fit a "real" star mass profile following Equations 3.8 and 3.9 to the theoretical
ones, obtaining the parameters Mstar, a and b. Figure 3.3 shows the theoretical profile expected as blue
points and our best least-squares fit keeping a Miyamoto-Nagai profile for stars as a red dashed line.

From our fits it is worthwhile to note a few things. First, of the total of star mass-dark matter mass
pairs we obtained from our fit, we only selected five to plot. This is mainly because of two reasons: these
simulations had the lowest chi-square values at the same time that they cover a wide range in the initial
gas mass, fromMgas = 4×109M� toMgas = 9×109M� (see Table 3.1). A second point is that in Figure
3.3a we recover the original rotational mass profile for our fiducial simulation F using our fit code, which
indicates at least that our code is working well.

As we pointed out before, we do not expect to have exactly the same rotational mass profiles for the
simulations in this group, on the contrary they will be different but we should minimize these differences.
In Figure 3.4 we plot all the Mrot profiles for Group B. They agree quite well in general with differences
no more than 20% for a given radius. We also show in Figure 3.5 the gas surface density profiles which will
obviously be different because of the values chosen for the initial Mgas. In both figures the blue, yellow,
cyan, magenta, green and orange lines represent simulations F, BI, BII, BIII, BIV and BV respectively.

As a final statement we want to highlight that we will do a similar search for second parameters as
the one proposed in §3.3.1, but this time centered on Mrot law. As we keep Mrot constant, Σgas and
tdyn will change. That means that in this opportunity gas surface density and the dynamical time will
be the second parameters. Comparing both groups will lead us to the conclusion on the existence of a
fundamental law and the factors that alter it.
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(a) Model F (b) Model BI

(c) Model BII (d) Model BIII

(e) Model BIV (f) Model BV

Figure 3.3: Least-square fit for star mass profiles. Blue dot is the profile needed, and red dashed line is
our best fit.
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Figure 3.4: Initial Mrot profiles for Group B galaxies. Colors are as follow: blue is simulation F, yellow
BI, cyan BII, magenta BIII, green BIV and orange BV

Figure 3.5: Initial gas surface density profiles for Group B. Colors are as in Figure 3.4
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Chapter 4

Results and analysis

Before we discuss the results, we will show the evolution of each galaxy. We let them evolve for a total
time of ∼ 1Gyr. In general all simulations follow the same evolution pattern. First they start fragmenting
in the central part of the disk (because of the shorter tdyn) to soon start fragmenting in the outer parts.
This is expected because the Toomre Q parameter (Toomre 1964) is below unity in all our simulations
as we will see later in §4.2.1. Another interesting feature is the effect of stellar feedback. The influence
of supernovae can be better appreciated in Figure 4.1 which shows an edge-on view of simulation BIV at
t=640 Myr, where the gas ejected forms gas filaments that propagates in the vertical direction of the disk.

From Figure 4.2 to 4.10 we present a series of images representing face-on snapshots of the simulations.
From left to right the columns correspond to times t ∼100, 200, 400, and 800 Myr. The upper row shows
density slices in a scale from 1× 10−28 g cm−3to 1× 10−20 g cm−3and the lower row shows the position
of particles representing recently formed stars. Despite of the similar pattern, a few differences can be
seen at times t=100 and 200 Myr where we can appreciate that the evolution of some galaxies such as AI
is slower than the rest. For the same reason, as some galaxies start to fragment earlier, the stars are also
created early. Seeing Figure 4.3 it is obvious that it has not yet created stars by time t=200 Myr, while
others such as Figure 4.5 have started long time ago. The same effect from stellar feedback of Figure 4.1
can be easily seen in Figure 4.8 and 4.9 at t =400 Myr. From this point of view we see regions of low
densities. These "dark bubbles" are supernovae which have exploded injecting energy to the surrounding
material and provoking the ejection of the gas.

Figure 4.1: Edge-on view of simulation BIV at t=640 Myr
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Figure 4.2: Evolution of model F. Upper row shows density and lower row shows stars. From left to right columns represent snapshots of 30 kpc wide
at times t ∼100, 200, 400, and 800 Myr.
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Figure 4.3: Evolution of model AI. Upper row shows density and lower row shows stars. From left to right columns represent snapshots of 30 kpc wide
at times t ∼100, 200, 400, and 800 Myr.
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Figure 4.4: Evolution of model AII. Upper row shows density and lower row shows stars. From left to right columns represent snapshots of 30 kpc wide
at times t ∼100, 200, 400, and 800 Myr.
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Figure 4.5: Evolution of model AIII. Upper row shows density and lower row shows stars. From left to right columns represent snapshots of 30 kpc wide
at times t ∼100, 200, 400, and 800 Myr.
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Figure 4.6: Evolution of model BI. Upper row shows density and lower row shows stars. From left to right columns represent snapshots of 30 kpc wide
at times t ∼100, 200, 400, and 800 Myr.
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Figure 4.7: Evolution of model BII. Upper row shows density and lower row shows stars. From left to right columns represent snapshots of 30 kpc wide
at times t ∼100, 200, 400, and 800 Myr.
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Figure 4.8: Evolution of model BIII. Upper row shows density and lower row shows stars. From left to right columns represent snapshots of 30 kpc wide
at times t ∼100, 200, 400, and 800 Myr.
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Figure 4.9: Evolution of model BIV. Upper row shows density and lower row shows stars. From left to right columns represent snapshots of 30 kpc wide
at times t ∼100, 200, 400, and 800 Myr.
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Figure 4.10: Evolution of model BV. Upper row shows density and lower row shows stars. From left to right columns represent snapshots of 30 kpc
wide at times t ∼100, 200, 400, and 800 Myr.
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4. RESULTS AND ANALYSIS 4.1. GALAXY DYNAMICS

In the following sections we will study in detail the properties of each simulation, including their
dynamical properties in §4.1 (e.g. rotation curves) and the stability of the disks in §4.2. In §4.4 and §4.5
we will show how our galaxies behave related to the formation of stars and massive black hole growth. It
is worthwhile to mention that in making plots and figures in Chapter 3 and 4 we have made an extensively
use of yt 1 (Turk et al. 2011) and jacques 2.

4.1 Galaxy dynamics

4.1.1 Rotational velocities

In Figure 4.11 we show the rotational velocity profiles for every galaxy in the Group A (left) and Group
B (right) at the beginning of the runs. In general they are flat rotation curves as observed in several
galaxies, with a peak ranging from 160 km s−1in simulation AII to 280 km s−1in simulation AI for the
first group and from 110 km s−1in simulation BV to 230 km s−1in simulation F for the second group.
There are some exceptions as the black curve in Figure 4.11a, which is not completely flat. Instead the
velocity start to slowly decrease after reaching its maximum value. The same process happens with the
dark cyan rotation curve of the same figure, but not so pronounced. This slowly decay is correlated
with the increase in the Mrot profile for simulation AII (black curve) in Figure 3.2. The rotation curves
calculated for Group B are also related to the criteria for choosing their configuration. As they have
similar Mrot profiles, they will also have similar rotation curves which is clearly appreciated in the figure.

(a) Group A (b) Group B

Figure 4.11: Initial rotation curves for Group A (left) and Group B (right). Colors for A are as in Figure
3.2 and for B are as in Figure 3.4

4.1.2 Orbital times

One important parameter to consider is the orbital time of the system, which we can derive from rotation
curves. As pointed out in §1.1.1, this is calculated as the time that the gas take to complete one orbit.

1http://yt-project.org
2http://jacques.enzotools.org/
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This is a straightforward calculation from the curves in the previous section. Given a fixed radius, the
orbital time is easily computed using

torb(R) =
2πR

vrot(R)
(4.1)

It can be seen that having a flat rotation curve as the ones showed in Figure 4.11, torb will strongly
depend on the radius at which its value is calculated. We then have to determined first the radius at
which torb will be computed. Our criteria for choosing a radius is the fraction of stars enclosed by it. So
for example, we have determine the orbital time at the radius of the most distant star in the disk which
encloses a 100% of stars and we have called it R100. A second and third comparative radius are the ones
that enclose 95% and 90% of total stars. The different radius are shown graphically in Figure 4.12 right
in yellow, green and blue dashed circles respectively. For comparison it has also been plotted gas density
in Figure 4.12 left with a wide of 70 kpc.

Figure 4.12: Radius enclosing 90% (blue dashed line), 95% (green dashed line) and 100% of stars (yellow
dashed line). In the left is plotted a density slice for comparison.

To calculate a representative value per simulation, we have averaged the radius of the last ten output
data. Then using Equation 4.1 and rotation curves from Figure 4.11, the calculation of torb is straight-
forward. Table 4.1 summarizes the value computed for each radius, where we have assumed the notation
RX is equal to the radius enclosing X% of stars. As seen in Figure 4.12, R100 is not a representative
radius of star formation, because great fraction of stars included by R100 are there not because they were
formed in that place, but because they were ejected from the inner regions of the disk. Taking this into
account, R95 or R90 are much better options to be the representative radius. As these last two radius
are similar, for simplicity we have chosen R95 just to enclose a greater percentage of stars.
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Name R90 Vrot(R90) tdyn(R90) R95 Vrot(R95) tdyn(R95) R100 Vrot(R100) tdyn(R100)
[kpc] [km s−1] 108 [yr] [kpc] [km s−1] 108 [yr] [kpc] [km s−1] 108 [yr]

Fiducial F 8.38 228.67 2.25 8.78 229.16 2.35 27.26 - -

Group A
AI 7.77 276.65 1.72 9.39 273.74 2.11 23.35 - -
AII 10.61 161.61 4.03 10.64 161.48 4.05 44.39 31.98 8.53
AIII 8.41 201.09 2.57 8.65 201.86 2.63 31.39 - -

Group B

BI 7.77 193.18 2.47 9.08 194.98 2.86 16.42 194.34 5.19
BII 8.16 174.17 2.88 8.24 174.29 2.90 18.00 174.59 6.32
BIII 7.64 153.85 3.05 8.24 155.31 3.26 21.90 - -
BIV 6.14 126.98 2.97 7.05 130.56 3.32 12.55 137.62 5.60
BV 5.34 100.86 3.25 7.88 108.72 4.46 14.03 112.73 7.65

Table 4.1: Orbital times and rotational velocities of the simulated galaxies at different radius
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4.2 Stability

4.2.1 Toomre Q parameter

To analyze the dynamical stability of the simulated disks, we have calculated Toomre Q parameter
(Toomre 1964, Goldreich and Lynden-Bell 1965) given by (Leroy et al. 2008):

Q =
κσ

πGΣgas
(4.2)

where κ is the epicyclic frequency, Σgas the gas surface density and σ the gas velocity dispersion. It gives
us a criteria to determine if the galaxy will globally fragment and therefore create stars. In disk galaxies,
a critical average value of Q ∼ 1 has been found. If Q is greater than this value, the disk will be stable.
On the contrary, if it is less than unity then it will be unstable.

In Figure 4.13 we can see that initially all our disks have Q < 1 for radius at least until 25 kpc, which
means that they are unstable and therefore will fragment. As deduced from Table 4.1 a radius of 25 kpc
will enclose at least 95% of the stars created during the evolution of the galaxies. This prediction can
be compared with Figures 4.2 to 4.6 where it is clearly appreciated that fragmentation and formation of
clumps occur where it is predicted.

(a) GroupA (b) GroupB

Figure 4.13: Toomre Q parameter at initial time for Group A (left) and Group B (right). Colors are s in
Figure 3.4

The evolution of the Toomre parameter for model F is shown in Figure 4.14. The solid line represents
the profile of Q at t =100 Myr, dashed line at t = 200 Myr and dotted line at t = 400 Myr. There are two
clear tendencies that can be appreciated in the graph: a) the median value of the parameter increases as
time goes by, beginning at values Q << 1 but increasing to 0.1 at time t = 100 Myr, 0.5 at t = 200 Myr
and reaching 1.2 at t = 400 Myr; and b) as the disk evolves the radius at which the Toomre parameter
increases to values greater than 2 decreases from ∼ 23 kpc to ∼ 7 kpc. This last feature is easier to see
in Figure 4.2 where it is shown that in the outer regions of the simulations the gas becomes smoother.
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Figure 4.14: Evolution of the Toomre Q parameter for model F. Solid, dashed and dotted lines are Q
profile at t=100, 200 and 400 Myr, respectively
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4.3 Interstellar Medium Statistics

4.3.1 Probability Density Function

All our models reach a quasi-stationary state where a fragmented and highly turbulent disk is observed.
Figure 4.15 shows the density Probability Density Function (PDF) of our fiducial simulation. As in
the rest of our models, the high density tail of the density PDF can be fitted by a lognormal PDF
(LN-PDF) over almost four orders of magnitude in gas surface density (red dashed line) in concordance
with simulations of Wada and Norman (2001), Kravtsov (2003), Tasker and Bryan (2006, 2008), Wada
and Norman (2007). It is believed that this LN-PDF could be the origin of the Kennicutt-Schmidt
relation (Elmegreen 2002, Wada and Norman 2007). The average densities in our best fit LN-PDF vary
from 10−0.9M�pc−2 to 10−0.65M�pc−2 while the dispersion stays almost constant at 100.95M�pc−2 (see
Appendix A.2).

Figure 4.15: Density PDF for simulation F at the end of the run. The red dashed line shows our best
lognormal fit to the high density part.

A lognormal probability density function for gas surface density is thought to be a natural outcome
of isothermal gas (e.g. Passot and Vázquez-Semadeni 1998, Vázquez-Semadeni et al. 2000). Although the
denser cells in our models have temperatures near 300 K, in general temperature lies in a range from 102

K to 104 K (Figure 4.16). Thus we obtain a lognormal fit at high densities, even though our simulations
are not isothermal.

As noted at the beginning of this Chapter, supernovae explosions originates zones of low density seen
as "black bubbles" in face-on snapshots (see Figure 4.8). This also can be viewed in the density PDF as
a peak in the low density part of the curve. A similar feature was also obtained by Slyz et al. (2005),
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Figure 4.16: Gas surface density and Temperature phase diagram for model F, weighted by cell mass.
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although they found a bi-modal PDF for simulations with feedback which is not seen in our case.

4.3.2 Power spectrum

We also analyze the power spectrum of the Interstellar Medium (ISM) in our models. The power spectrum
of our fiducial simulation F can be seen in Figure 4.17. Total energy spectrum is plotted in dashed line
and solid line is used for radial velocity power spectrum. Both profiles have a similar slope being almost
parallel in the whole k range. The shift in the y-axis is in average ∼ 0.5 ∼ log 3, which can be explained
if we assume isotropic turbulent velocity. In that case we have < v2

r >=< v2
θ >=< v2

z >, and then:

< v2 >=< v2
r > + < v2

θ > + < v2
z >= 3 < v2

r >
⇒ log< v2 > ∼ log 3 + log< v2

r >
(4.3)

For comparison, in dotted lines we have plotted the slopes of the Kolmogorov E(k) ∼ k−5/3 (Kol-
mogorov 1941) and Burger E(k) ∼ k−2 power spectrum. The former is an indicator of an incompressible
flow while the latter indicates a shock-dominated one. Our results agree best with a slope β = −2, but
for larger values of k it is significantly steeper than both of them, reaching values of ∼ -4.

As we are modeling disk galaxies, most of their velocity component is in the tangential direction in
the plane of the disk. Assuming that will allow us to say that in our case vturb ∼ vr. As we plotted
the radial velocity as a function of the wavenumber, this will lead us to a direct relation between vturb
and the wavelength λ. If we remember Equation 1.7 then we will be able to test that hypothesis. This
analysis will be done in more detail in §4.5.

Figure 4.17: Kinetic energy power spectrum (E(k)) for simulation F at the end of the run. Solid line
is radial velocity power spectrum, while dashed line is total energy power spectrum. For reference, the
Kolmogorov and Burger slopes have been plotted as dotted lines.
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4.4 Star Formation

4.4.1 Star Formation Rates

Star formation rates are highly variable, commonly oscillating around an average value. Usually effects
such as supernovae explosions trigger star formation, provoking high peaks in the SFR curves. This
variability can be a problem when plotting star formation rates if we display them in order to compare
them all together. Therefore as a previous step, we have fitted a smoother curve to them. By applying a
median filter to the original points we reduced the noise and we then calculated a polynomial fit to the
points. An example is shown in Figure 4.18 where the original data is plotted as a red solid line while
our fit is represented by a blue dashed curve for our fiducial simulation. The rest of the simulations are
shown in Appendix A.1. It is important to mention that we use this fit only for plotting purposes, in any
other calculation (for example ΣSFR in §4.4.2) we have used the original values.

Figure 4.18: Star Formation Rate fit. In red solid line is shown the star formation rate, while in blue
dashed line is shown SFR after applying a median filter and a polynomial fit.

We present Star Formation Rates for Group A and Group B in Figures 4.19a and 4.19b respectively.
In general they follow a similar pattern, reaching a peak of star formation at t ∼ 500− 600 Myr and then
decreasing slowly to a stationary value. One key aspect in Figure 4.19 is the time at which star formation
starts for each galaxy. In the case of Group A there are differences of ∼ 2× 108yr, where in the case of
Group B this difference is no more than ∼ 0.7× 108yr.
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(a) Group A (b) Group B

Figure 4.19: Star Formation Rates profiles for Group A (left) and Group B (right). Colors are s in Figure
3.4

4.4.2 Star Formation Laws

We will focus our study in the Kennicutt-Schmidt and Silk laws introduced in §1.1.1. Our aim is to
explore the factors that can affect these relations. In order to do that we will calculate star formation
rates, gas surface densities and dynamical times for each galaxy at different stages of evolution of the
galaxies. Assuming that the want to measure SFR at time t∗, we will consider two different approaches to
calculate it: a) the exact star formation rate value at t∗, and b) the total cumulative mass of stars formed
until t∗, divided by the total time elapsed from the beginning of the simulation to t∗. From now on, we
will adopt the names instantaneous star formation rate for the first case, and average star formation rate
for the second one. It is important to make this distinction because observations are only able to measure
instantaneous star formation rates, which can be a bias in the observationally deduced star formation laws.

In Figure 4.20 and 4.21 we start studying the instantaneous KS law. These figures show star for-
mation rate surface density versus gas surface density. For reference we first plot the values of these
quantities at t ∼ 300 Myr which is when star formation has already begun for every simulation. Next, we
select snapshots every ∼ 60 Myr to include them as points in our plots . The two lines drawn in Group A
simulations plots are the best fit to the points using a least-squares method (red solid line) and the original
KS law from Kennicutt (1998) (black dashed line). The slope of the fit is wrote on the top left of each plot.

Each image is divided in three columns which represent different radius used to calculate surface
densities. From left to right the radius are R90, R95 and R100 (see Figure 4.12). It is clearly inferred that
the larger radius we consider, the lower slope we get. Comparing images of the same row we can also
say that taking R100 will give us a broader range of gas densities. Its explanation is that increasing the
radius in the outer regions of the galaxy will not add significant amount of gas. It means that the area
enclosed increase more than the gas mass enclosed, thus decreasing the gas surface density.

In the case of Group B, we have only plotted the fitting curve for R100. That radius gives us a wider
range of values for gas surface density as mentioned before. This will allow us to obtain a better fit to
the points, which is not possible for R90 and R95 where we have a narrower range of values for Σgas. In
the first two columns, the proximity of the points does not give a good fit making it a poor indicator
of the relation. We consider that it is much better to compare our results with the original law (dotted
black curve) in the case of R90 and R95.
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Figure 4.20: Kennicutt-Schmidt relation as a function of radius for Group A. Rows represent R90, R95

and R100 from left to right. Columns represent models F, AII, AIII and AI from top to bottom. The red
solid line shows our best fit to the points and the black dashed line shows the relation from Kennicutt
(1998)
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Figure 4.21: Kennicutt-Schmidt relation as a function of radius for Group B. Rows represent R90, R95

and R100 from left to right. Columns represent models F, BI and BII from top to bottom. The red solid
line shows our best fit to the points and the black dashed line shows the relation from Kennicutt (1998)
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Figure 4.21: Continuation: Kennicutt-Schmidt relation as a function of radius for Group B. Rows rep-
resent R90, R95 and R100 from left to right. Columns represent models BIII, BIV and BV from top to
bottom. The red solid line shows our best fit to the points and the black dashed line shows the relation
from Kennicutt (1998)
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Figure 4.22: Silk relation as a function of radius for Group A. Rows represent R90, R95 and R100 from
left to right. Columns represent models F, AII, AIII and AI from top to bottom. The red solid line shows
our best fit to the points and the black dashed line shows the relation from Kennicutt (1998)
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Figure 4.23: Silk relation as a function of radius for Group B. Rows represent R90, R95 and R100 from
left to right. Columns represent models F, BI and BII from top to bottom. The red solid line shows our
best fit to the points and the black dashed line shows the relation from Kennicutt (1998)
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Figure 4.23: Continuation: Silk relation as a function of radius for Group B. Rows represent R90, R95

and R100 from left to right. Columns represent models BIII, BIV and BV from top to bottom. The red
solid line shows our best fit to the points and the black dashed line shows the relation from Kennicutt
(1998)
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A similar analysis for the Silk law is shown in Figures 4.22 and 4.23. Here we have plotted this
relation using exactly the same points we used when studying KS relation. From these figures we deduce
that both law behave in a equivalent way when increasing radius. In that sense we have the same problem
fitting a curve to the data from Group B simulations at R90 and R95 due to lack of a wider range in
gas surface density values. Even though not all of them gives us a poor fit, we have prefer to follow the
discussion of KS law and not include the fits for these radius for the sake of consistency.

Once we have studied the dependence of both laws on the radius used for surface densities, a second
parameter to be studied is how we measure star formation rates. To introduce the differences between
instantaneous and average star formation rates, we will divide the SFR profiles (Figure 4.19) in two
sections: before and after the peak. In the first case when SFR is increasing the instantaneous SFR will
be greater than the average, because the last one is also influenced by the lower SFRs before the peak.
In the second case the average SFR is greater than instantaneous. At those times the average SFR will
be greatly influenced for the peak which will give a greater value. We can see this variation illustrated in
Figure 4.24 where the dashed and dotted lines represent the value of the instantaneous and average SFR
respectively.

Now, to see how it influences star formation laws, we will focus in Figure 4.25 which shows a compari-
son between the slopes obtained taking instantaneous (upper row) and average (lower row) star formation
rates in Kennicutt-Schmidt law (Figure 4.25a) and Silk law (Figure 4.25b). These plots correspond to
model F which means that upper rows in Figures 4.25a and 4.25b are exactly the same upper rows as in
Figures 4.20 and 4.22 respectively. It is clearly noted that the second method of measuring SFRs gives
us lower slopes. As we pointed out before, if average SFR tends to a fixed value then as gas is consumed,
gas surface density will decrease while keeping almost constant the value of SFR.

(a) Pre-peak (b) Post-peak

Figure 4.24: Example of differences between average (dotted line) and instantaneous SFR (dashed line)
for the case before the peak (left) and after the peak (right) for model F

4.4.3 Dependency of Mrot

Finally, we also want to study how rotational mass affects the Kennicutt-Schmidt and Silk relations. We
have plotted all simulations in one unique plot, where each point represent one of the models. Doing
that we will be able to compare the behavior of both groups, the one with similar Mrot profiles at the
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(a) Kennicutt-Schmidt law

(b) Silk law

Figure 4.25: Comparison of Star Formation Laws ((a) Kennicutt-Schmidt, (b) Silk) using instantaneous
(upper row) and average (lower row) Star Formation Rates for model F
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beginning, and the one with different profiles.

In order to do that, we first have to choose a time at which we will analyze the SFR laws. In Figure
4.26 we have plotted three different times: 389, 616 and 927 Myr. It is important to mention that in
the y-axis we have plotted the average star formation rate. We consider that it is a better indicator of
the global SFR, converging to a fixed value as the galaxy evolves and decreasing the scattering in the
law. Despite that, the relation does exhibit scattering at initial times, but mainly because galaxies start
creating stars at different times (§4.4.1, Figure 4.19) which translates in different SFRs for different values
of initial Mrot. This is easily seen at t =389 Myr in Figure 4.26, where Group A (blue, black, red and
dark cyan dots) have different SFRs, even though they started with the same gas surface density profile.
As the galaxies evolve (t =616 and t = 927 Myr) the values of the average SFR start to converge to a
common value.

(a) Kennicutt-Schmidt law

(b) Silk law

Figure 4.26: Evolution of star formation laws with time. From left to right the plots represent the star
formation laws at t =389, 616 and 927 Myr. Each point represent a model. The colors are as follow: F
blue, AI dark cyan, AII black, AIII red, BI yellow, BII cyan, BIII magenta, BIV green and BV orange.
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4.5 Massive Black Hole accretion rate

As introduced in §1.2, we will focus our study of Massive Black Hole growth in studying the relation
between their radial velocity power spectrum and the rotational velocity of the disk. We already showed
the power spectrum for model F at the beginning of this Chapter (Figure 4.17), where we found that
they are well-fitted by a power-law with index ∼-4. Now to derive a generic relation of the type

vturbr ∼ vrot
(
λ

Rd

)−β

= vrot

(
k

kd

)β
, (4.4)

where kd = 2π/Rd, we will also need to study a larger sample of simulated galaxies. Taking in mind
that Equation 4.4 involves rotation curves, we will concentrate our study in Group B which is the most
dynamically diverse (see Figure 4.11).

First we select models F, BI, BIII and BV to plot them all together in a radial velocity power spectrum
as a function of k normalized by kd, as seen in Figure 4.27a. Our definition for Rd is the radius enclosing
95% of total stars (§4.1.2, Figure 4.12). We then proceed to fit a linear curve for the small scales interval
−1.3 < log k/kd < −0.9 obtaining slopes in the range β ∼ −3.3 to β ∼ −4.1. As we are more interested
in the zero points of the fit rather than its slope, we adopted the average value of β = −3.83 for all Group
B simulations. With this value, we refitted our simulations getting what is shown in Figure 4.27b. In
parallel we also calculated the average value of vrot for each simulation and we show them in the top right
corner of the same Figure. There is a clear relation between the zero point and the rotational velocity
in the plot, obtaining a greater zero point for a greater circular velocity. This reinforces a relation of the
form shown in Equation 4.4. Our findings are similar to the relation found between the area below the
power spectrum and the Mach number deduced by Ballesteros-Paredes et al. (2006).

(a) Radial velocity power spectrum (b) Linear fit of power spectrum with β = −3.83

Figure 4.27: Radial velocity power spectrum and its best linear fit for models F (blue), BI (yellow), BIII
(magenta) and BV (orange). In the upper right corner of plot (b) it is also shown the average rotational
velocity of each model.

Once we have velidated Equation 4.4, making a few assumptions we can recover the MBH − σ and
MBH − Mbulge relations. Following Escala (2006), first we will start assuming an α-disk, which is a
good approximation for our high turbulent disks. Besides that, as the disk is turbulence-dominated, the
more relevant quantity dynamically speaking is vturb, so the disk scale-height will be parameterized as a
function of this velocity. We then obtain ν = αΩh2 = α(vturb)2/Ω for the viscosity, where we can assume
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an isotropic velocity and replace vturb by
√

3vturbr as we demonstrated in §4.3.2. We can then write the
mass accretion rate as:

Ṁ =
6
√

6α(vturbr )3

GQ
, (4.5)

where Q = vturbΩ/πGΣgas is the "turbulent" Toomre’s parameter.

Replacing our result of Equation 4.4 with β = −3.83 in Equation 4.5, we obtain:

Ṁ ∼ 6
√

6α

GQ

(
λ

Rd

)11.5

v3
rot. (4.6)

To follow our reasoning, we need to determine the mass of the black hole, which will be given by
MBH = ηṀtgas where η is the fraction of gas within the radius of influence that finally ends inside the
Schwarzschild radius of the black hole, and tgas is the gas lifetime. Remembering Equation 1.4, we have
already argued that the characteristic timescale of the gas is an orbital time, as Silk law pointed out.
Thus, we can express tgas = torb = ξRe/vrot with Re the effective radius of the host spheroid. Replacing
the values of Ṁ and tgas we get:

MBH ∼
6
√

6α

Q

(
λ

Rd

)11.5
Rev

2
rot

G
(4.7)

Considering that Mdyn = Rev
2
rot/G it is straightforward to deduce the MBH −Mbulge relation. In

order to obtain the MBH − σ relation, it is enough to recall the Faber-Jackson relation which says that
Re ∝ σ2. In the case of our disks, we have that the radial velocity is a good estimator of the dispersion
of the disk σ, and hence we can replace it using vrot ≈ σ, obtaining finally MBH ∼ σ4
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Chapter 5

Conclusion and outlook

Using the Adaptive Mesh Refinement code Enzo, we performed nine simulations of local galaxies to
study the factors that alter the Kennicutt-Schmidt and Silk relations. Our models are three-components
galaxies, which are composed by gas, stars and dark matter. We use an exponential profile in the radial
direction in cylindrical coordinates, coupled with a sech2 in the vertical direction to model the gas disk.
The other two components are modeled as time-independent external potentials by a Miyamoto-Nagai
and a Navarro-Frenk-White profile respectively. Among the physical processes included it is worth to
mention that we introduce radiative cooling via cooling curves down to T = 300 K, we allow stars to
form in cells that fulfill a series of requirements, and that these stars also inject energy to the surrounding
material through stellar feedback. The simulations were performed in a box of 666 h−1 kpc using peri-
odic boundary conditions and a maximum level of refinement of seven additional subgrids. This choice
allowed us to reach a resolution of ∼40 pc, where we used refinement by baryon mass and refinement to
resolve Jeans length for at least four cells. We let them evolve during ∼ 1 Gyr in a ΛCDM universe, to en-
sure that each model evolves at least two orbits at a radius that encloses the region where stars are formed.

Our models were divided in two groups. Group A is characterized by different initial rotational mass
scale (Mrot) profiles and the same gas surface density initial profile, in contrast to Group B where all
galaxies have a similar Mrot profile while varying their Σgas profiles. In both groups we included our
fiducial simulation as a reference for comparison. In each model we obtained a similar evolution, with
their inner regions fragmenting first and their outer regions later. In the same way, stars start being cre-
ated at times ∼ 50 Myr in the galaxies with lower torb. What we get once our simulations have evolved
is a highly turbulent Interstellar Medium, characterized by a lognormal Probability Density Function at
high densities and a power spectrum steeper than Kolmogorov and Burger models.

In order to study star formation, we have plotted KS and Silk laws at different stages in the evolution
of our models, using both instantaneous and average star formation rates. In our best fit models for
the star formation laws, we obtained slopes ranging from 0.8 to 2.1 for both relations. The two most
important factors affecting the slope of the relations are:

a) Radius: We used the radius enclosing 90, 95 and 100 per cent of stars to calculate surface densities.
For greater radius we obtained lower slopes. Our explanation is that on one hand, increasing radius
does not increase the amount of gas considerably thus obtaining a lower gas surface density. On the
other hand, in the case of star formation rate it increases proportionally to the area, thus keeping the
SFR surface density with no great variations. Adding both effects, we obtain that an increment in the
radius means a decrement of Σgas while keeping ΣSFR almost constant, reducing therefore the slope.

b) Star Formation Rate: Other factor that greatly influences both laws is the interval of time we consider
to measure SFR, in what we have called the instantaneous and average SFR. The former introduces
more scattering in the relations as the SFR curves have large oscillations, while the latter converges
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5. CONCLUSION AND OUTLOOK

to a fixed value as the galaxies evolves, and hence decreasing scattering. We have also examined the
differences between both SFRs at the beginning and once the simulations have reach a stationary
condition, which is translated in a lower slope for the case of using the average star formation rate in
KS and Silk laws. This leads us to the conclusion that on one hand the instantaneous SFR is a more
representative value to study the evolution of a single galaxy, but on the other hand the average SFR
is a more representative value of the galaxy as a global quantity, specially useful when comparing the
different models between them.

The dependence on the rotational mass Mrot is much clear at the early stages of the simulations,
influencing strongly the time at which simulations starts forming stars. This is also translated in different
SFRs for simulations even when they started with the same amount of gas. We propose as a future work
to investigate if this effect can be reproduced in longer time scales. We think that varying Mrot profiles
much more than we did in this study will provoke differences greater than ∼ 2× 108 yr in the time when
first stars are formed as seen in Group A. These time delays could have a greater impact on the global
SFR of the galaxy.

Our simulations also allowed us to study Massive Black Hole growth, through the analysis of the
ISM. Using power spectrum plots, we have shown that the radial velocity power spectrum of the galaxy
is clearly related to the circular velocity. We have also demonstrated that the velocity in our simulations
is nearly isotropic, so we can write turbulent velocity as a function of one of its components. This relation
between turbulent, radial and circular velocity will ultimately lead us to the relation between the mass of
a black hole and the velocity dispersion of its host galaxy, explaining the origin of the so called MBH −σ
relation.
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Appendix A

Individual profiles

A.1 Star formation rate fits

Figure A.1: Least-square fit of the Star Formation Rate for model F
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A. INDIVIDUAL PROFILES A.1. STAR FORMATION RATE FITS

Figure A.1: Least-square fit of the Star Formation Rate for model AI

Figure A.1: Least-square fit of the Star Formation Rate for model AII
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A. INDIVIDUAL PROFILES A.1. STAR FORMATION RATE FITS

Figure A.1: Least-square fit of the Star Formation Rate for model AIII

Figure A.1: Least-square fit of the Star Formation Rate for model BI
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A. INDIVIDUAL PROFILES A.1. STAR FORMATION RATE FITS

Figure A.1: Least-square fit of the Star Formation Rate for model BII

Figure A.1: Least-square fit of the Star Formation Rate for model BIII
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A. INDIVIDUAL PROFILES A.1. STAR FORMATION RATE FITS

Figure A.1: Least-square fit of the Star Formation Rate for model BIV

Figure A.1: Least-square fit of the Star Formation Rate for model BV
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A. INDIVIDUAL PROFILES A.2. PROBABILITY DENSITY FUNCTIONS

A.2 Probability Density Functions

Figure A.2: Probability density function for model F

Figure A.2: Probability density function for model AI
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A. INDIVIDUAL PROFILES A.2. PROBABILITY DENSITY FUNCTIONS

Figure A.2: Probability density function for model AII

Figure A.2: Probability density function for model AIII
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A. INDIVIDUAL PROFILES A.2. PROBABILITY DENSITY FUNCTIONS

Figure A.2: Probability density function for model BI

Figure A.2: Probability density function for model BII
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A. INDIVIDUAL PROFILES A.2. PROBABILITY DENSITY FUNCTIONS

Figure A.2: Probability density function for model BIII

Figure A.2: Probability density function for model BIV
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A. INDIVIDUAL PROFILES A.2. PROBABILITY DENSITY FUNCTIONS

Figure A.2: Probability density function for model BV
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A. INDIVIDUAL PROFILES A.3. POWER SPECTRUM

A.3 Power spectrum

Figure A.3: Power spectrum for model F

Figure A.3: Power spectrum for model AI
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A. INDIVIDUAL PROFILES A.3. POWER SPECTRUM

Figure A.3: Power spectrum for model AII

Figure A.3: Power spectrum for model AIII
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A. INDIVIDUAL PROFILES A.3. POWER SPECTRUM

Figure A.3: Power spectrum for model BI

Figure A.3: Power spectrum for model BII
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A. INDIVIDUAL PROFILES A.3. POWER SPECTRUM

Figure A.3: Power spectrum for model BIII

Figure A.3: Power spectrum for model BIV
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A. INDIVIDUAL PROFILES A.3. POWER SPECTRUM

Figure A.3: Power spectrum for model BV
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Appendix B

Codes

B.1 yt new fields

def _DiskSurfaceDensity(field, data):
return data["Density"]*data["dz"]

def _ConvertDiskSurfaceDensity(data):
return data.convert("cm")

add_field("DiskSurfaceDensity", function=_DiskSurfaceDensity,
convert_function=_ConvertDiskSurfaceDensity,
units=r"\rm{g}/\rm{cm^2}")

def _ParticleDiskRadius(field, data):
center = data.get_field_parameter("center")
DW = data.pf.domain_right_edge - data.pf.domain_left_edge
radius = na.zeros(data["particle_position_x"].shape, dtype=’float64’)
for i, ax in enumerate(’xy’):

r = na.abs(data["particle_position_%s" % ax] - center[i])
radius += na.minimum(r, na.abs(DW[i]-r))**2.0

na.sqrt(radius, radius)
return radius

def _DiskRadius(field, data):
center = data.get_field_parameter("center")
DW = data.pf.domain_right_edge - data.pf.domain_left_edge
radius = na.zeros(data["x"].shape, dtype=’float64’)
for i, ax in enumerate(’xy’):

r = na.abs(data[ax] - center[i])
radius += na.minimum(r, na.abs(DW[i]-r))**2.0

na.sqrt(radius, radius)
return radius

def _ConvertDiskRadiusCGS(data):
return data.convert("cm")

add_field("ParticleDiskRadius", function=_ParticleDiskRadius,
validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiusCGS, units=r"\rm{cm}",
particle_type = True,
display_name = "Particle Disk Radius")

add_field("DiskRadius", function=_DiskRadius,
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B. CODES B.1. YT NEW FIELDS

validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiusCGS, units=r"\rm{cm}")

def _ConvertDiskRadiusMpc(data):
return data.convert("mpc")

add_field("DiskRadiusMpc", function=_DiskRadius,
validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiusMpc, units=r"\rm{Mpc}",
display_name = "Disk Radius")

add_field("ParticleDiskRadiusMpc", function=_ParticleDiskRadius,
validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiusMpc, units=r"\rm{Mpc}",
particle_type=True,
display_name = "Particle Disk Radius")

def _ConvertDiskRadiuskpc(data):
return data.convert("kpc")

add_field("ParticleDiskRadiuskpc", function=_ParticleDiskRadius,
validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiuskpc, units=r"\rm{kpc}",
particle_type=True,
display_name = "Particle Disk Radius")

add_field("DiskRadiuskpc", function=_DiskRadius,
validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiuskpc, units=r"\rm{kpc}",
display_name = "Disk Radius")

def _ConvertDiskRadiuskpch(data):
return data.convert("kpch")

add_field("ParticleDiskRadiuskpch", function=_ParticleDiskRadius,
validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiuskpc, units=r"\rm{kpc}/\rm{h}",
particle_type=True,
display_name = "Particle Disk Radius")

add_field("DiskRadiuskpch", function=_DiskRadius,
validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiuskpc, units=r"\rm{kpc}/\rm{h}",
display_name = "Disk Radius")

def _ConvertDiskRadiuspc(data):
return data.convert("pc")

add_field("ParticleDiskRadiuspc", function=_ParticleDiskRadius,
validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiuspc, units=r"\rm{pc}",
particle_type=True,
display_name = "Particle Disk Radius")

add_field("DiskRadiuspc", function=_DiskRadius,
validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiuspc, units=r"\rm{pc}",
display_name="Disk Radius")

def _ConvertDiskRadiusAU(data):
return data.convert("au")

add_field("ParticleDiskRadiusAU", function=_ParticleDiskRadius,
validators=[ValidateParameter("center")],
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convert_function = _ConvertDiskRadiusAU, units=r"\rm{AU}",
particle_type=True,
display_name = "Particle Disk Radius")

add_field("DiskRadiusAU", function=_DiskRadius,
validators=[ValidateParameter("center")],
convert_function = _ConvertDiskRadiusAU, units=r"\rm{AU}",
display_name = "Disk Radius")

add_field("ParticleDiskRadiusCode", function=_ParticleDiskRadius,
validators=[ValidateParameter("center")],
particle_type=True,
display_name = "Particle Disk Radius (code)")

add_field("DiskRadiusCode", function=_DiskRadius,
validators=[ValidateParameter("center")],
display_name = "Disk Radius (code)")

def obtain_rvec(data):
center = data.get_field_parameter(’center’)
coords = na.array([data[’x’],data[’y’],data[’z’]], dtype=’float64’)
new_shape = tuple([3] + [1]*(len(coords.shape)-1))
r_vec = coords - na.reshape(center,new_shape)
return r_vec # axis 0 is the x,y,z

def obtain_velocities(data):
if data.has_field_parameter("bulk_velocity"):

bv = data.get_field_parameter("bulk_velocity")
else: bv = na.zeros(3, dtype=’float64’)
xv = data["x-velocity"] - bv[0]
yv = data["y-velocity"] - bv[1]
zv = data["z-velocity"] - bv[2]
return xv, yv, zv

def _DiskRadialVelocity(field, data):
center = data.get_field_parameter("center")
bulk_velocity = data.get_field_parameter("bulk_velocity")
if bulk_velocity == None:

bulk_velocity = na.zeros(3)
new_field = ( (data[’x’]-center[0])*(data["x-velocity"]-bulk_velocity[0])

+ (data[’y’]-center[1])*(data["y-velocity"]-bulk_velocity[1])
)/data["DiskRadiusCode"]

if na.any(na.isnan(new_field)): # to fix center = point
new_field[na.isnan(new_field)] = 0.0

return new_field
def _DiskRadialVelocityABS(field, data):

return na.abs(_DiskRadialVelocity(field, data))
def _ConvertDiskRadialVelocityKMS(data):

return 1e-5
add_field("DiskRadialVelocity", function=_DiskRadialVelocity,

units=r"\rm{cm}/\rm{s}",
validators=[ValidateParameter("center")])

add_field("RadialVelocityABS", function=_DiskRadialVelocityABS,
units=r"\rm{cm}/\rm{s}",
validators=[ValidateParameter("center")])

add_field("DiskRadialVelocityKMS", function=_DiskRadialVelocity,
convert_function=_ConvertDiskRadialVelocityKMS, units=r"\rm{km}/\rm{s}",
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validators=[ValidateParameter("center")])
add_field("DiskRadialVelocityKMSABS", function=_DiskRadialVelocityABS,

convert_function=_ConvertDiskRadialVelocityKMS, units=r"\rm{km}/\rm{s}",
validators=[ValidateParameter("center")])

def _ParticleDiskVelocityMagnitude(field, data):
"""M{|v|}"""
bulk_velocity = data.get_field_parameter("bulk_velocity")
if bulk_velocity == None:

bulk_velocity = na.zeros(3)
return ( (data["particle_velocity_x"]-bulk_velocity[0])**2.0 + \

(data["particle_velocity_y"]-bulk_velocity[1])**2.0 )**(1.0/2.0)
add_field("ParticleDiskVelocityMagnitude", function=_ParticleDiskVelocityMagnitude,

particle_type=True,
take_log=False, units=r"\rm{cm}/\rm{s}")

add_field("ParticleDiskVelocityMagnitude", function=_ParticleDiskVelocityMagnitude,
particle_type=True,
take_log=False, units=r"\rm{cm}/\rm{s}")

def _DiskVelocityMagnitude(field, data):
"""M{|v|}"""
bulk_velocity = data.get_field_parameter("bulk_velocity")
if bulk_velocity == None:

bulk_velocity = na.zeros(3)
return ( (data["x-velocity"]-bulk_velocity[0])**2.0 + \

(data["y-velocity"]-bulk_velocity[1])**2.0 )**(1.0/2.0)
add_field("DiskVelocityMagnitude", function=_DiskVelocityMagnitude,

take_log=False, units=r"\rm{cm}/\rm{s}")

def _DiskVelocitySquared(field, data):
return data["DiskVelocityMagnitude"]**2

add_field("DiskVelocitySquared", function=_DiskVelocitySquared,
units=r"\rm{cm}^2/\rm{s}^2")

def _DiskTangentialVelocity(field, data):
return na.sqrt(data["DiskVelocityMagnitude"]**2.0

- data["DiskRadialVelocity"]**2.0)
add_field("DiskTangentialVelocity",

function=_DiskTangentialVelocity,
take_log=False, units=r"\rm{cm}/\rm{s}")

def _DiskAngularVelocity(field, data):
r_vec = obtain_rvec(data)
xv, yv, zv = obtain_velocities(data)
diskr_vec = na.array([r_vec[0],r_vec[1]], dtype=’float64’)
diskv_vec = na.array([xv,yv], dtype=’float64’)
mom = na.cross(diskr_vec, diskv_vec, axis=0)
return mom/data["DiskRadiusCode"]**2

def _convertDiskAngularVelocity(data):
return 1.0/data.convert("cm")

add_field("DiskAngularVelocity", function=_DiskAngularVelocity,
convert_function=_convertDiskAngularVelocity,
units=r"\rm{s}^{-1}", validators=[ValidateParameter(’center’)])
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B.2 Preamble and definitions

For every program used, the first lines were to preload the following packages:

from yt.config import ytcfg; ytcfg["yt","serialize"] = "False"
from yt.mods import *
from yt.analysis_modules.star_analysis.api import *
import numpy
import math
import scipy as sc
from scipy import interpolate
from scipy import ndimage
import pylab as pl
pl.ion()
from matplotlib import rc
fontsize=12
rc(’text’, usetex=True)
rc(’font’, **{’family’:’serif’,’serif’:’Computer Modern Roman’, ’size’:fontsize})
rc(’axes’, labelsize=fontsize)
rc(’legend’, fontsize=fontsize, numpoints=1, frameon=False)
rc(’xtick’, labelsize=fontsize)
rc(’ytick’, labelsize=fontsize)
rc(’lines’, lw=1.5, mew=0.3)
rc(’grid’, linewidth=0.5)

We also define the following variables:

start_data = 01
end_data = numpy.array([226])
path = ’/Volumes/SIMULATIONS/enzo-2.1.1/’
simulations = [’g1e10s4e10dm1e12’]
colors = [’b’]
total_sim = len(simulations)

disk_radius = numpy.array(range(1,60))/3.
initial_radius = disk_radius[0]
delta_radius = initial_radius/2.
final_radius = disk_radius[len(disk_radius)-1]
disk_height = 5 # kpc
specified_center = [0.5, 0.5, 0.5]
percentage_of_stars = 0.95

B.3 Profiles

Q = numpy.zeros(len(disk_radius), float)
sigma_c = numpy.zeros(len(disk_radius), float)
V_rot = numpy.zeros(len(disk_radius), float)
M_dyn = numpy.zeros(len(disk_radius), float)
Omega = numpy.zeros(len(disk_radius), float)
M_rot = numpy.zeros(len(disk_radius), float)
disk_sigma_gas = numpy.zeros(len(disk_radius), float)
ring_vtan = numpy.zeros(len(disk_radius), float)
ring_dispersion = numpy.zeros(len(disk_radius), float)
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ring_sigma_gas = numpy.zeros(len(disk_radius), float)

for sim in range(total_sim):

if PLOT_PROPERTY(SFR):
dir = path+simulations[sim]+"/DD%04i/" %(end_data[sim])
file = simulations[sim]+"_%04i" %(end_data[sim])
pf = load(dir+file)
my_disk=pf.h.disk(specified_center, [0, 0, 1], final_radius/pf["kpc"],

disk_height/pf["kpc"])
sfr = StarFormationRate(pf, data_source=my_disk)
mediansfr=ndimage.median_filter(sfr.Msol_yr, size=10)
newtime= [sfr.time[i] for i in range(len(sfr.time)) if i % 6 == 3]
newsfr= [mediansfr[i] for i in range(len(mediansfr)) if i % 6 == 3]
f=interpolate.interp1d(newtime, newsfr, kind=’cubic’)
interpsfr=f(sfr.time[(sfr.time>newtime[0]) & (sfr.time<newtime[len(newtime)-1])])
pl.xlabel(r’Time [yr]’)
pl.ylabel(r’SFR [$M_\odot~yr^{-1}$]’)
pl.plot(sfr.time-sfr.time[0], sfr.Msol_yr, ’r-’, linewidth=0.5)
pl.plot(sfr.time[(sfr.time>newtime[0]) &

(sfr.time<newtime[len(newtime)-1])]-sfr.time[0], interpsfr,
label=simulations[sim], color=colors[sim])

pl.ylim(ymin=0)
for actual_data in [221]:

dir = path+simulations[sim]+"/DD%04i/" %(actual_data)
file = simulations[sim]+"_%04i" %(actual_data)
pf = load(dir+file)
dd = pf.h.all_data()
print pf.current_time
my_disk=pf.h.disk(specified_center, [0, 0, 1], final_radius/pf["kpc"],

disk_height/pf["kpc"])
sfr = StarFormationRate(pf, data_source=dd)
inst_SFR=sfr.Msol_yr[len(sfr.time)-1]
avg_SFR=sfr.Msol_cumulative[len(sfr.time)-1]/

(sfr.time[len(sfr.time)-1]-sfr.time[0])
pl.plot([0, sfr.time[len(sfr.time)-1]-sfr.time[0]],

[inst_SFR, inst_SFR], ’k--’)
pl.plot([0, sfr.time[len(sfr.time)-1]-sfr.time[0]],

[avg_SFR, avg_SFR], ’k:’)
pl.plot([sfr.time[len(sfr.time)-1]-sfr.time[0],

sfr.time[len(sfr.time)-1]-sfr.time[0]], [0, avg_SFR], ’k-’, linewidth=0.5)
location=1
pl.savefig(’./profiles/SFR_avg_vs_inst_’+simulations[sim]+’.png’)
pl.show()
pl.close()

dir = path+simulations[sim]+"/DD%04i/" %(end_data[sim])
file = simulations[sim]+"_%04i" %(end_data[sim])
pf = load(dir+file)
for i in range(len(disk_radius)):

my_disk=pf.h.disk(specified_center, [0, 0, 1], disk_radius[i]/pf["kpc"],
disk_height/pf["kpc"])

ring=numpy.where((disk_radius[i] - delta_radius < my_disk["DiskRadiuskpc"])
& (my_disk["DiskRadiuskpc"] <= disk_radius[i] + delta_radius))

V_rot[i]=numpy.mean(my_disk["DiskTangentialVelocity"][ring])
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Omega[i]=V_rot[i]/(disk_radius[i]*kpc)
M_dyn[i]=V_rot[i]**2*(disk_radius[i]*kpc)/Grav/Msun

disk_area=na.pi*(disk_radius[i]*kpc)**2
ring_area=na.pi*((disk_radius[i] + delta_radius)**2-(disk_radius[i]

- delta_radius)**2)*kpc**2
disk_gas_mass=my_disk.quantities["TotalQuantity"]("CellMassMsun",

lazy_reader=True)[0]
ring_gas_mass=my_disk["CellMassMsun"][ring]
disk_sigma_gas[i]=disk_gas_mass*Msun/disk_area

M_rot[i]=na.pi**4*Grav**2.0*disk_sigma_gas[i]**3.0/4.0/Omega[i]**4/Msun

ring_sigma_gas[i]=sum(ring_gas_mass)*Msun/ring_area
ring_vtan[i]=sum(my_disk["DiskTangentialVelocity"][ring]*ring_gas_mass)/

sum(ring_gas_mass)
ring_velocity_squared=sum(my_disk["DiskVelocitySquared"][ring]*ring_gas_mass)/

sum(ring_gas_mass)
ring_dispersion[i]=na.sqrt(ring_velocity_squared)-ring_vtan[i]
if i > 0 :

dVdR=(ring_vtan[i]-ring_vtan[i-1])/((disk_radius[i]-disk_radius[i-1])*kpc)
kappa=na.sqrt(2*ring_vtan[i]**2/(disk_radius[i]*kpc)**2*(1+

disk_radius[i]*kpc/ring_vtan[i]*dVdR))
Q[i]=ring_dispersion[i]*kappa/(na.pi*Grav*ring_sigma_gas[i])
sigma_c[i]=alpha*kappa*ring_dispersion[i]/3.36/Grav

B.4 PDF

for sim in range(total_sim):

N = numpy.zeros(n_bins, float)
d_m = numpy.zeros(n_bins, float)

dir = path+simulations[sim]+"/DD%04i/" %(end_data)
file = simulations[sim]+"_%04i" %(end_data)
pf = load(dir+file)
dd = pf.h.all_data()
density = numpy.log10(dd["DiskSurfaceDensity"]*pc**2/Msun)
density = density.reshape(-1)

dmin, dmax = dd.quantities["Extrema"]("DiskSurfaceDensity", non_zero=True,
lazy_reader=False)[0]

dmin=dmin*pc**2/Msun
dmax=dmax*pc**2/Msun
if LOG_PLOT:

dmin=numpy.log10(dmin)
dmax=numpy.log10(dmax)

delta=(dmax-dmin)/n_bins
for i in range(0,n_bins):

d_i=delta*i+dmin
d_f=delta*(i+1)+dmin
d_m[i]=delta*(i+1./2.)+dmin
if LOG_PLOT:
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d_i=10**d_i
d_f=10**d_f
d_m[i]=10**d_m[i]

N[i]=float(len(numpy.where((d_i<=dd["DiskSurfaceDensity"]*pc**2/Msun)
& (dd["DiskSurfaceDensity"]*pc**2/Msun<d_f))[0]))/float(len(density))

pl.step(numpy.log10(d_m),numpy.log10(N), ’k’)

B.5 Star formation law plots

global_SFR = numpy.zeros((total_points[sim], number_of_radius), float)
avg_SFR = numpy.zeros((total_points[sim], number_of_radius), float)
sigma_gas = numpy.zeros((total_points[sim], number_of_radius), float)
V_rot = numpy.zeros((total_points[sim], number_of_radius), float)
t_dyn = numpy.zeros((total_points[sim], number_of_radius), float)
Omega = numpy.zeros((total_points[sim], number_of_radius), float)
M_dyn = numpy.zeros((total_points[sim], number_of_radius), float)
M_rot_1 = numpy.zeros((total_points[sim], number_of_radius), float)

for index in range (total_points[sim]):
dir = path+simulations[sim]+"/DD%04i/" %((index*every_data)+start_data)
file = simulations[sim]+"_%04i" %((index*every_data)+start_data)
pf = load(dir+file)
dd = pf.h.all_data()
stars = (dd["particle_type"] == PARTICLE_TYPE_STAR)
star_radius = sorted(dd["ParticleDiskRadiuskpc"][stars])
number_of_particles = len(star_radius)
if len(star_radius) == 0:

continue
for k in range(number_of_radius):

if percentage_of_stars[k]==1:
rpart_min, rpart_max = dd.quantities["Extrema"]("ParticleDiskRadiuskpc",

non_zero=True, lazy_reader=False)[0]
else:

rpart_max =
star_radius[int(math.floor(percentage_of_stars[k]*number_of_particles))]

my_disk =
pf.h.disk(specified_center, [0, 0, 1], rpart_max/pf["kpc"],

disk_height/pf["kpc"])
sfr = StarFormationRate(pf, data_source=my_disk)
if INST_KS:

global_SFR[index,k]=sfr.Msol_yr[len(sfr.time)-1]/PI/rpart_max**2
elif AVG_KS:

avg_SFR[index,k] = sfr.Msol_cumulative[len(sfr.time)-1]/
(sfr.time[len(sfr.time)-1]-sfr.time[0])/PI/rpart_max**2

sigma_gas[index,k]=my_disk.quantities["TotalQuantity"]("CellMassMsun",
lazy_reader=True)[0]/PI/(rpart_max*1000.0)**2

if SFRTDYN_PLOT:
epsilon=0.5
annulus=numpy.where((rpart_max - epsilon < my_disk["DiskRadiuskpc"])

& (my_disk["DiskRadiuskpc"] < rpart_max + epsilon))
V_rot[index,k]=numpy.mean(my_disk["DiskTangentialVelocity"][annulus])
t_dyn[index,k]=2*na.pi*rpart_max*kpc/V_rot[index,k]/sec_per_year

92


	Introduction
	Star Formation
	The Kennicutt-Schmidt law 
	Paradigms
	Other Star Formation laws

	Black Hole Growth
	Objectives
	Thesis structure

	The code
	Enzo
	Adaptive Mesh Refinement
	Grids
	Integration algorithm
	Boundary conditions
	Creating grid hierarchy

	Implementation
	Algorithm

	Gravity solver
	Self-Gravity
	External Gravity

	Hydrodynamical solver
	ZEUS
	ZEUS Source Step
	ZEUS Transport Step

	Particles

	The simulations
	Galaxy
	Gas
	Dark Matter
	Stars

	Star formation
	Stellar feedback

	The models
	Group A
	Group B


	Results and analysis
	Galaxy dynamics
	Rotational velocities
	Orbital times

	Stability
	Toomre Q parameter

	Interstellar Medium Statistics
	Probability Density Function
	Power spectrum

	Star Formation
	Star Formation Rates
	Star Formation Laws
	Dependency of Mrot

	Massive Black Hole accretion rate

	Conclusion and outlook
	Bibliography
	Individual profiles
	Star formation rate fits
	Probability Density Functions
	Power spectrum

	Codes
	yt new fields
	Preamble and definitions
	Profiles
	PDF
	Star formation law plots


