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Resumen

Una malla es una discretización de la geometŕıa de un cierto dominio. Las mallas pueden
estar compuestas de diversos elementos: triángulos, cuadriláteros, tetraedros, etc. Una he-
rramienta para la generación de mallas es un aplicación que permite crear, refinar, desrefinar,
mejorar, suavizar, visualizar y posprocesar mallas y/o una región particular de ella, como
también asignar valores f́ısicos a los elementos de la malla (temperatura, concentración, etc.).

Las herramientas para la generación de mallas son complejas y sofisticadas, y construir una
herramienta nueva desde cero o mantener una existente, demanda un esfuerzo enorme. Existe
una necesidad y oportunidad para usar enfoques nuevos en el desarrollo de estas herramientas,
de manera de reducir tanto el tiempo como los costos de desarrollo, sin comprometer la
calidad. La experiencia en el desarrollo de estas herramientas provee la motivación para
la construcción de otras nuevas mediante la reutilización del trabajo realizado durante los
desarrollos previos. Estas herramientas comparten varias caracteŕısticas y sus variaciones
pueden ser manejadas sistemáticamente. Esto hace que el desarrollo de estas herramientas
sea una buena oportunidad para aplicar el enfoque de Ĺınea de Productos de Software (LPS).
Los procesos existentes de LPS son generales y requieren usualmente una serie de pasos y
documentación innecesaria en el dominio de las herramientas para la generación de mallas.
Aśı, esta tesis propone un modelo de proceso de LPS espećıfico para este tipo de herramientas.

Un proceso de desarrollo de LPS está centrado en la reutilización de software, e involucra
principalmente dos fases: la ingenieŕıa del dominio (ID) y la ingenieŕıa de la aplicación (IA).
El proceso presentado en este trabajo está centrado en dos etapas de la ID: el análisis del
dominio (AD) y el diseño del dominio (DD). En el AD se define el modelo del dominio y el
alcance de la LPS. En el DD la arquitectura de la ĺınea de productos (ALP) es creada; esta
arquitectura es válida y compartida por todos los productos en la LPS.

Un modelo de caracteŕısticas es comúnmente usado para modelar el dominio. En este
trabajo, el AD también ocupa un diccionario, escenarios, acciones y metas para proveer el
razonamiento utilizado para la construcción del modelo de caracteŕısticas. Esta tesis presenta
un proceso riguroso para obtener el modelo del dominio. Este modelo es formalizado mediante
condiciones de consistencia y completitud. El proceso de definición del alcance es presentado
a través de un diagrama de actividad. Además, el enfoque presentado en esta tesis presenta
expĺıcitamente los diferentes productos de la LPS, estableciendo relaciones entre productos
y las caracteŕısticas de la LPS, lo que permite administrar el desarrollo del producto.

La etapa de DD se centra en la creación de la ALP, artefacto esencial para la construcción
de productos de la LPS. Para ello, este trabajo provee un proceso deductivo y otro transfor-
macional. En el primero, una ALP expĺıcita es desarrollada, usando los artefactos producidos
en el AD. Además, tanto la vista arquitectónica estructural como la de comportamiento son
establecidas. Ambas vistas son generales y permiten la representación de cualquier producto
dentro del alcance de la LPS. En el proceso transformacional, una ALP impĺıcita es desarro-
llada usando reglas de transformación, las que han sido creadas usando artefactos producidos
en el AD. En este proceso se produce la arquitectura para productos espećıficos, y la ALP es
definida como la suma de todas las arquitecturas de los productos.

Tanto el AD como el DD son descritos en detalle, y la aplicación del modelo de la LPS es
ilustrado a través de un ejemplo bien documentado en el dominio de las herramientas para
la generación de mallas, el que tiene un grado relativamente alto de complejidad. En este
ejemplo, un modelo del dominio formalizado es introducido, y la arquitectura es definida
tanto para el proceso deductivo como para el transformacional.



Abstract

A mesh is a discretization of a certain geometry of varying dimensions. Meshes may
be composed of different elements, e.g., triangles, quadrilaterals, tetrahedra, etc. A meshing
tool is a software application that allows creating, refining, derefining, improving, smoothing,
visualizing and postprocessing meshes and/or particular mesh regions, and also assigning
physical values to mesh elements (temperature, concentration, etc.) depending on their
intended use.

Meshing tools are complex and sophisticated software, and building a new tool from
scratch as well as evolving an existing tool demands an enormous effort. There is a need and
an opportunity for new approaches in meshing tool software development in order to reduce
development time and costs without compromising quality. Experience developing meshing
tools has provided the motivation for building new ones by reusing a large amount of the
work done during those developments. Meshing tools share several characteristics and their
variations can be managed in a systematic way. This makes meshing tool development an
appropriate opportunity for applying Software Product Lines (SPL). Existing processes for
engineering SPL are needlessly general and usually require a series of steps and documentation
not necessary in the meshing tool domain. Therefore, this thesis proposes a SPL process
model specifically for the meshing tool domain.

A SPL development process is centered in software reuse, and mainly involves two phases:
domain engineering (DE) and application engineering (AE). The process presented in this
work is centered in two stages of the DE phase: the domain analysis (DA) and the domain
design (DD) stages. In the DA stage, the domain model and the scope of the SPL are defined.
In the DD stage, the product line architecture (PLA) is produced; this architecture is valid
and shared for all particular products in the SPL.

A feature model is commonly used to model the domain. In this work, the DA stage also
uses a lexicon, scenarios, actions and goals that provide the rationale for building the feature
model. This thesis presents a rigorous process for collecting SPL features, through the iden-
tification of the aforementioned artifacts. Furthermore, the domain model is formalized by
providing consistency and completeness conditions. The scope definition process is presented
through an activity diagram. Furthermore, the approach presented in this thesis explicitly
presents the different products of the SPL, establishing relationships between products and
the SPL features, which permits managing the product development.

The proposed DD stage focuses on the creation of the PLA, an essential artifact for
building specific SPL products. To this purpose, this work provides a deductive process
and a transformational one. In the deductive process, an explicit PLA is developed using
the artifacts produced in the DA stage. Furthermore, both architectural structural and
architectural behavioral views are established for meshing tool SPL. Both views are general
and allow representing any product in the SPL scope. In the transformational process, an
implicit PLA is developed using transformation rules, which have been created using the
artifacts produced in the DA stage. In this process, only single product architectures are
produced, and the PLA is defined as the sum of all single architectures.

Both DA and DD stages are described in detail, and the SPL model application is illus-
trated through a suitably documented example with a relatively high degree of complexity
in the meshing tool domain. In this example, a formalized domain model is introduced, and
architectures are defined using both the deductive and transformational processes.
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3 páginas por d́ıa”. Lamento decir que con suerte fue solo 0,6 páginas por d́ıa.
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Chapter 1

Introduction

1.1 Motivation

Developing any complex software from scratch on a one-by-one basis is expensive, slow and
error prone, but nonetheless this is how many applications from diverse domains have tradi-
tionally been built. If this development task is not performed systematically following good
software engineering practices, it may easily get out of control making it almost impossible
to debug and even more difficult to modify.

Meshing tools are highly complex software for generating and managing geometrical dis- Meshing
toolcretizations. Because of this, they have generally been developed by end users following

ad-hoc methodologies and not by applying well-established software engineering practices.
New tools are generally developed from scratch without taking software reuse in mind, even
though they may involve algorithms and data structures already designed, implemented and
tested elsewhere.

Lately, there has been considerable effort into applying software engineering concepts to
meshing tool development, mainly through building general-purpose libraries that facilitate
reuse. Also, object-orientation and design patterns have the potential to enhance software
reuse at the code and design levels, and there is some experience in using these techniques
for developing meshing tools.

Software product lines is a development paradigm for planned massive reuse of software Software
product
lineassets. These reusable assets are typically software components, but other commonly reused

assets are software requirements, documentation, architecture, and test cases, among others.

Despite software reuse’s undeniable benefits, it is not as widely practiced as it should.
There are organizational, economical, and/or technical factors that directly or indirectly
influence its adoption.

In the following sections, meshing tools and software product lines are presented, and the
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opportunity for improving the methodological approach to meshing tool development tools
using software product lines is discussed. Then, the thesis hypothesis, objectives, justification
and methodology are presented. Finally, thesis results are presented and the structure of the
thesis is shown.

1.1.1 Meshing Tools

A meshing tool is software for generating and managing meshes. A bidimensional mesh (2D)
is composed of vertices defined by points, edges defined by segments and elements defined Meshes

by triangles and/or quadrilaterals. A three dimensional mesh (3D) has also faces defined
by triangles and/or quadrilaterals and the elements are tetrahedra and/or hexahedra. An
element represents the smallest discretization unit.

Meshing tools are inherently sophisticated software due to the complexity of the appli-
cation requirements they have to fulfill. Examples of requirements are to model as exact as
possible the geometry of the domain and to generate elements that satisfy geometric quality
criteria. Meshing tools must possess specific functionality while still having an acceptable
performance. Managing thousands and even millions of elements with a reasonable use of
computational resources –mainly processor time and storage– becomes a must if the tool is
to be usable at all. Lately, other qualities related to modifiability have also become relevant
in meshing tool development.

Because of their complexity, the price of meshing tools can be high. This is mainly because
these tools are used by people of diverse knowledge areas, and therefore it is necessary
to consider several points of view and skills as development requirements. Furthermore,
mesh generation algorithms are complex, and developers must have high programming skills
to develop efficient and robust code, and enough mathematic background to be able to
understand the application requirements.

Table 1.1 shows a list of general purpose commercial meshing tools, along with their cor- Meshing
tool
priceresponding license costs: GiD1, ADINA User Interface2, ANSA3, Surfgen4 and CM2 Mesh-

Tools5. The list of tools were obtained from Schneiders [200], who maintains a list of more
than sixty commercial and eighty public domain, downloadable and university meshing tools.
Single user license costs were obtained from each company’s salespeople. In some cases, such
as ADINA User Interface, there is a yearly maintenance fee after the first year; in others,
licenses have an unlimited duration.

It is well known that any software development has risks, and these risks are a threat
for the project’s success. Moreover, every software project is error-prone, and meshing tool

1Price obtained from Mónica Fraile, Administration and Sales department, Compass Ingenieŕıa y Sistemas.
June 2011.

2Price obtained from Arash Mahdavi, ADINA R&D, Inc. June 2011.
3Price obtained from Thomas Hasiotis, Chief Financial Officer, BETA CAE Systems S.A. June 2011.
4Price obtained from Gayle Ingalls, Senior Compliance Officer, Analytical Methods, Inc. June 2011.
5Price obtained from Damien Lucas, Manager, Computing Objects. June 2011.
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Name
Educational Commercial

Licence (US$) Licence (US$)
GiD 675 1.931
ADINA User Interface 1.400 9.702
ANSA 1.436 14.359
Surfgen 5.000 15.000
CM2 MeshTools 14.392 35.980

Table 1.1: Costs of different commercial Meshing Tools

development is not an exception. The algorithms used in these tools are in some cases very
complex, must manage very large quantities of data, data processing is CPU and memory
intensive, and subject to quality requirements regarding precision, exactitude and correctness.

There are many application domains where meshing tools are used, ranging from mechan- Application
domainsics design to medicine [78]. Each domain requires slightly different functionalities. For this

reason, a variety of meshing tools have been built differing in their functionalities, algorithms,
data representation, or input/output data format [200].

For example, during a brain tumor removal intervention, the accurate localization of the
tumor is essential: small errors may have a large impact on patients and morbidity could
increase dramatically. Once the skull is open, a brain deformation (brain-shift) occurs, such
that pre-operative images do not correspond to the new conditions. Meshes can be used to
simulate this brain-shift with the help of magnetic resonance imaging (MRI).

Figure 1.1 shows a final mesh used to simulate the brain-shift (a), with the initially
scanned MRI image (b) [131].

Figure 1.1: Mesh simulating a Brain and MRI Image

The semiconductor device simulation domain is another example where precision, exac-
titude and correctness is paramount.

The idea is to design and test a semiconductor device through a simulation process before
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building it, thus avoiding or reducing the costs of using a real device. In this way, it is
possible to design and test the semiconductor device with several different properties as many
times as required, so that finally only satisfactory semiconductor devices will be built and
experimentally tested. To this end, devices are simulated using meshes, usually representing
them through very thin layers due to their geometry, and their physical properties [100].

Figure 1.2 shows the geometry of a semiconductor device (a) and the corresponding mesh
for the device (b) [100].

(a) (b)

Figure 1.2: Geometry of an Insulated Gate Bipolar Transistor

1.1.2 The Opportunity

There is a need and an opportunity for new approaches in meshing tool software development
in order to reduce development time and costs without compromising quality [18, 81, 212].

Meshing tools are very sophisticated, and therefore it would be advantageous for the
product and the process to be able to reuse existing assets.

Experience developing meshing tools [18, 56, 99, 100, 101, 137, 141, 186, 210] has provided
the motivation for building new ones by reusing all or a large amount of the work done during
those developments. Meshing tools share several characteristics and it is possible to manage
their variations in an established and systematic way. Smith and Chen [212] give a simple yet
clarifying opinion about meshing tools: “although different in the specific details, all mesh
generators can be abstracted as: input information then calculate a mesh discretization and
finally output the results”. These issues show that it is possible to abstract a model from
the meshing tool domain that allows reuse. If a reuse oriented approach is used instead of a
single system development approach, then these commonalities can be developed only once.

As an example, all mesh generation processes share the following main steps [18]: Mesh
generation
steps
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• generation of an initial mesh that fits the domain geometry;

• generation of an intermediate mesh that satisfies the density requirements specified by
the user;

• generation of an improved mesh that satisfies the quality criteria;

• generation of the final mesh.

Therefore, these are some of the main commonalities among all members of a mesh
generation tool family.

For Czarnecki [58], research and practical experience in software development suggest
that achieving significant progress in software reuse requires centering efforts on modeling
and developing a collection of similar software systems rather than individual systems.

According to Arango [4], “the more restricted the domain, the easier it is to develop
a model of it”. Meshing tool development is a well-bounded domain, small enough that
software reuse can be applied with confidence, and at the same time general enough that
its applications encompass several areas of science and engineering. Thus, the final products
can be generated from high-level specifications. Automation is possible because the modeling
language and generator only need to fit the requirements of one domain [231].

1.1.3 Software Product Lines

Currently, there are several techniques for reducing the development time and costs of soft-
ware systems such as Agile Software Development, Prototyping, Component-based Software
Engineering, among others [217]. However, there is no unique standard development method
applicable to all problems or domains. It is possible to obtain better improvements by taking
advantage of the specific characteristics of particular application domains [86].

One of these techniques is Software Product Lines (also known as Software Families). Software
product
lineAccording to Northrop and Clements [157], a software product line (SPL) is a set of software

intensive systems that share a managed set of characteristics, and that satisfies the needs of
a particular market segment or mission, being developed using a set of common core assets
in a preestablished fashion. These core assets include the product line architecture, reusable
software components, and domain models, among others. In a SPL, two main technical
phases can be identified [50, 60, 174]: domain engineering, where reusable core assets are SPL

phasesdeveloped and maintained, and application engineering, where particular products are built
by combining the assets already developed. Understanding and identifying both common and
variable aspects play a central role during the domain engineering stage. Commonalities are
requirements that must hold for all products in the SPL, while variabilities are requirements
that may or may not be present in a particular product, and, as such, define how SPL
products may vary [246].
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Both domain engineering and application engineering have several substages or subpro- Domain
engineering
substagescesses, that differ in number or name depending on the author [60, 157, 174]. For Czarnecki

and Eisenecker [60], the domain engineering has the following substages: domain analysis,
domain design, and domain implementation; the application engineering has the following Application

engineering
substagessubstages: requirements analysis, product configuration, and integration and test. However,

all authors agree on the importance of the first stages. In particular, the most important
stages are the Domain Analysis stage, as it is where the stakeholders define the limits of the
SPL and establish the commonalities and variabilities present in it, and the Domain Design
stage, where the general architecture shared by all products in the SPL is defined.

A SPL is useful for an organization because it reduces both time and costs of production SPL
benefitsof new software and increases the quality of the released products by reusing core assets

which have been already tested. The cost of developing and maintaining core assets is not
borne by each product separately, but spread across all products in the SPL [90].

This issue marks the difference between a development approach for a single product and
for a product line. Several authors agree that a product line has a high upfront investment
(development of reusable core assets, transformation of the organization, etc.) in comparison
to a single product, but that the SPL’s return on investment is higher when producing three
products or more [30, 107, 157, 197, 236].

In spite of all its advantages, SPL is not a “silver bullet”; it has been known for several
years that its applicability in a concrete domain is not easy, specially for small organizations,
because of the amount of organizational changes required, high initial investment, need for
trained professionals, etc.

Although commonalities among different tools [20, 212] show that it is possible to produce
meshing tools by reusing well developed assets within a SPL approach [19, 20], this is not
the way such tools have been developed in the past, as can be seen by reviewing the state
of the art [104, 200]. Even though their performance and functionality are considered their
most relevant qualities, it is also known that good software engineering techniques are needed
as a means for maintainability. These software products are generally difficult to maintain,
and slight variations in product requirements may need building the product again, with the
consequent rework [104].

1.2 Proposal

1.2.1 Hypothesis

This thesis aims to prove the following hypothesis:

Hypothesis: Proper Domain Analysis (DA) and Domain Design (DD) processes in the SPL
approach enable an effective means for developing Meshing Tools.
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1.2.2 Objectives

1.2.2.1 General Objective

Build effective DA and DD processes for the Meshing Tool domain.

1.2.2.2 Specific Objectives

1. Identify the characteristics of meshing tools and of the way they are built.

2. Develop a DA process, describing the sequence of activities, artifacts and roles involved.

3. Identify architectural needs of meshing tools, considering the shared quality attributes.

4. Develop a DD process, describing the sequence of activities, artifacts and roles involved,
in a manner consistent with the DA process.

5. Validate the proposed DA and DD processes.

1.2.3 Overview

This work proposes a model for building domain analysis and domain design processes and
their associated artifacts, starting from meshing tool domain knowledge.

The model deals with the main two phases in a SPL: Domain Engineering and Application
Engineering. Within these phases, it focuses on the stages of Analysis and Design.

The model developed in this thesis is summarized in Figure 1.3.

The model provides two paths for creating the different artifacts produced by the asso-
ciated process in the domain engineering and the application engineering phases, starting
from the domain knowledge and customer needs. Both paths have as their main input the
domain model produced during the domain analysis stage, which incorporates the common
and variable abstractions elicited in this stage. Once the domain model is established, it is
possible to build, during the domain design stage, a common architecture for every product
in the SPL and then to instantiate a particular product architecture that takes into account
the costumer’s needs, during the application design stage. Alternatively, the proposed model
allows instantiating a particular application’s requirements in the application requirements
stage, and then using it as the basis for deriving a particular product architecture in the
application design stage.

The first path has the advantage of producing an explicit product line architecture which
can then be instantiated for every required single product architecture, according to the
user’s needs. Furthermore, this common architecture can be assessed, making it unnecessary
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Figure 1.3: Domain and Application Engineering for Meshing Tool Domain

to assess each particular product architecture. Building this common architecture is no easy
task, requiring a large effort and tradeoffs among stakeholders, but the benefits grow with
the number of products to be designed.

On the other hand, the second path has the advantage that is easier to build the ar-
chitecture for only one product. Each new architecture is built on demand only when it
is required. However, it is necessary to assess every single architecture independently from
other architectures. Moreover, the common architecture is implicit, and is constituted by the
sum of all single architectures.

Regarding Sections 1.2.1 and 1.2.2, this thesis does not address the question of which
path to follow. However, the choice of one or the other is guided by certain considerations.
For example, the first path should be chosen if there is extensive knowledge about the do-
main, clear software quality attributes, a considerable quantity and variety of implemented
components and relaxed development time constraints. The second path should be chosen
otherwise.

Finally, it can be noted that the process has feedback, from application engineering to
domain engineering. Customers’ needs are always changing, and this feedback allows consid-
ering new organizational or business opportunities and thus the evolution of the SPL.

According to the SPL process presented by van der Linden [234], and in accordance to
this thesis’ hypothesis and objectives, there are two missing phases: domain implementation,
where code generators and software components are built for future integration in particu-
lar products, and application implementation, where particular software products are built
using artifacts developed during the domain implementation. Nevertheless, the models and
processes are documented using rigorous notation, thus easily allowing the execution of the
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subsequent stages.

This thesis does not intend to develop a totally new approach for developing SPLs. In-
stead, the idea is to take the best practices from some existing SPL approaches or their
individual stages, e.g. domain analysis or domain design, and adapt them to the particular
application domain of meshing tools.

In that sense, one source of ideas was the PuLSE methodology [22]. This methodology
is applicable to any domain, encompasses several processes and subprocesses, and covers all
aspects of the development of a SPL. As such, it generates several artifacts at each step of
its processes, which are then necessary for other steps of the methodology. Furthermore,
in order to accomplish all processes involved in PuLSE, a significant amount of domain
information is necessary. However, these features of PuLSE do not impact positively the
meshing tool stakeholders, mainly scientists as mathematicians, physicists, mining engineers,
as they are not used to applying complex software engineering methodologies for software
development [118]. Rather, they are usually more interested in quality attributes such as
performance, correctness, and precision of the results. Nevertheless, lately they are usually
willing to sacrifice these attributes to a certain degree in order to attain other desirable
attributes such as maintainability or a shorter development time6.

1.2.4 Justification

SPL is an approach for systematic and organized reuse within a certain application domain,
and has been successfully applied in several different domains [157]. SPL’s goals are to reuse
as much as possible the same software assets, i.e., requirements, architecture, and components
in all products of the line, thus decreasing development costs, increasing productivity, and
achieving and maintaining a desired quality level of products [154]. Also, van Ommering and
Bosch [240] highlight the need for using a SPL so as to work in a coordinated, proactive and
systematic way with shared architecture, components and infrastructure for reuse.

In the meshing tool domain, other authors have made important efforts in the SPL direc-
tion [18, 81, 212, 213, 214], further justifying the adoption of a SPL approach as a solution.

The application domain also complies with the four drivers for SPL as exposed by van SPL
driversOmmering and Bosch [240]:

Manage Size and Complexity: Meshing tools are sophisticated software because they
manage large number of bidimensional or tridimensional elements and they are applied
in different kinds of domains. Many different algorithms are necessary for producing,
processing and visualizing meshes.

6Nikos Chrisochoides. Personal communication, January 2007. On Quality Attributes in the Meshing
Tool Domain.
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1.2 Proposal

Obtain High Quality: Meshing tools need to deal with several quality attributes. Some
of them are performance and maintainability with its variants, such as modifiability,
extensibility, portability, and interoperability [18, 20].

Manage Diversity: Existing meshing tools are used in diverse application domains. These
tools share several features, algorithms and interfaces which can be studied to extract
commonalities and variabilities. A feature model can then be used for domain model
formalization.

Lead-Time Reduction: In general, many meshing tools are developed from scratch. This
in turn discards all knowledge acquired from previously built tools. The main solution
to obtain lead-time reduction is software reuse [240].

Finally, Smith and Chen [212] and Smith et al. [214] show that meshing tools meet the
three hypotheses for a SPL as proposed by Weiss and Lai [247]: SPL

hypotheses

Redevelopment Hypothesis: Even though, in the meshing tool domain, there are many
commonalities present in requirements, architecture, design, implementation and doc-
umentation, several meshing tools have been developed without applying reuse tech-
niques.

Oracle Hypothesis: The possibility of predicting the changes that are likely to be needed
by a system over its lifetime is given by the possibility of building a model that supports
that prediction. In the meshing tool domain, this is dealt with by the SPL scope
definition and by the feature model, which are part of the domain model.

Organizational Hypothesis: Similarly to the previous hypothesis, the organizational hy-
pothesis is supported by the possibility of producing a methodological approach that
rules every activity in the SPL development. It is shown in part by the proposed
processes for the domain analysis and domain design stages.

1.2.5 Methodology

The methodology consists of five main activities that are carried out in order to study and
understand the meshing tool domain and the SPL approaches, create processes for both
domain analysis and domain design stage, produce architectures with intermediate artifacts
as SPL domain model and scope, and evaluate all the artifacts produced by both stages.

Some of these activities overlap in time. A summary of the sequence of activities is
presented below.

Study of the SPL development: The first activity is the study of existing SPL devel-
opment methods as well as the diverse internal processes, i.e., the process where the
reusable core assets are developed (domain engineering) and the process where the
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1.2 Proposal

products are built (application engineering), with their respective input and output
artifacts, considering initially a general vision of the SPL without particular internal
process and artifacts, or any particular application domain. This activity provides an
initial understanding of the potentiality of the SPL approaches and their difficulties for
a successful adoption. Additionally, it is necessary to study individual stages of the
SPL, such as domain analysis and domain design.

Study of the meshing tool domain: This activity consists of the study of existing litera-
ture, some meshing tools to get a good understanding of the domain, and conversations
with meshing tool developers and users. The information gathered is used to build a
domain model and to define the limits of the domain, so as to properly describe the
features and the way that the applications work.

SPL model definition: The next activity consists of defining the SPL development model
for the meshing tool domain. The model covers both the domain engineering and the
application engineering phases. Activity diagrams are built for the process of domain
analysis, domain design, and products instantiation through the application engineering
phase. The SPL model definition is obtained through an iterative process, making it
necessary to review the development model several times.

SPL model application: Once the SPL development model is built, it is applied to a
complete domain analysis and domain design. Each step of each process is accurately
and carefully followed, and the artifacts for each process are produced: domain model,
scope, and product line architecture with a state machine for the behavioral view. The
artifacts produced show how the model works, and some amendments are introduced
to the model.

SPL model validation: Even though building the SPL development model is, in some
sense, a validation of the chosen approach at a domain engineering level, this is com-
plemented at the application engineering level by the instantiation of selected particular
artifacts both at the application requirements and application design stages.

1.2.6 Results of the Thesis

The following results are achieved in this thesis:

• Meshing tool domain characterization.

• Domain analysis process.

• Domain model formal definition.

• Meshing tool product line architectures.

• Domain design process.

• Transformations for generating meshing tool product architectures.
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1.3 Document Structure

1.3 Document Structure

This document is organized as follows.

• Chapter 2 shows what a software product line is, describing its stages, some SPL
approaches, and their main advantages and disadvantages.

• Chapter 3 presents a description of the meshing tool domain.

• Chapter 4 presents the meshing tool domain analysis stage, describing its process graph-
ically and its output model formally.

• Chapter 5 presents an application example of the domain analysis process described in
the previous Chapter.

• Chapter 6 presents the meshing tool domain design stage, describing its process graph-
ically, reviewing the related work, and establishing guidelines for building the product
line architecture and transformations for automating product architecture creation.

• Chapter 7 presents the application of the domain design process to the same example
shown in Chapter 5.

• Chapter 8 presents the conclusions of this thesis, as well as directions for future research
work.

12



Chapter 2

Software Product Lines

This chapter presents an overview of software product lines, situating them in the context
of software reuse. Its advantages and disadvantages are explored, as well as the differences
between a software product line and single system development approach. Finally, its stages
are presented and discussed in detail.

2.1 Context: Software Reuse

Even though there is no generally accepted definition of software reuse, Fortune et al. [84]
give a couple of definitions about reuse in general, and define software reuse as:

Software
reuse

“the use of systems artifacts and processes in the development of solutions
to similar problems.”

Essentially, the purpose of software reuse is to reduce costs of software production and
maintenance, improve software quality, reliability and productivity, and to reduce time to
market [85, 217]. However, there are several costs and problems associated with software
reuse, such as increased maintenance costs, lack of tool support, costs of component libraries
creation and maintenance, among others [217].

According to de Almeida et al. [66], the software reuse process is a key factor in improving
quality and productivity, because it creates software systems from existing software pieces,
thereby reducing significantly software development effort, component duplication and results
overlap in each phase of the software life cycle.

There are at least three issues to be addressed for software reuse to be successful [14]:

1. Creating items so they are reusable in the future (item characteristics).
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2.1 Context: Software Reuse

2. Finding appropriate reusable items (environment characteristics).

3. Integrating them to build a new system (both item and environment characteristics).

These issues arise because it is necessary to develop said items according to standards,
to know exactly which items are necessary, to develop the right items, to know the way or
mechanism in which the items will be reused (e.g. use an instance of a general item, or
modify the item to fulfill new requirements), and to give support for accessing, modifying
and porting the items.

Another important aspect when developing software with reuse is the granularity of the
units to be used. In this sense, three options should be considered [217]:

1. Application system reuse: The whole application system may be reused either by incor-
porating it without changes into other systems or by developing application families.

2. Component reuse: Components of an application, ranging from sub-systems to single
objects, may be reused.

3. Object and function reuse: Software components that implement a single well defined
object or function may be reused.

Considering these three options, probably the most effective reuse technique is the first
one, because it implies the reuse of coarse-grained assets that can be quickly configured when
building new systems. However, it is also the hardest to achieve, requiring a well-defined
process and a thorough understanding of the domain.

In relation to the benefits of software reuse, and considering all the aforementioned con- Software
reuse
benefitssiderations, de Almeida [65] establishes that software reuse has a positive impact on software

quality, as well as on cost and productivity, and summarizes those benefits as follows:

Improvements. Software reuse results in improvements in quality, productivity and relia-
bility.

• Quality. Error fixes accumulate from reuse to reuse.

• Productivity. Productivity increases when less code has to be developed.

• Reliability. Using well-tested components increases the reliability of a software
system.

Effort Reduction. Software reuse provides a reduction in redundant work and development
time, which yields a shorter time to market.

• Redundant work and development time. Developing every system from scratch
means the redundant development of many parts. This can be avoided when these
parts are available as reusable assets and can be shared among systems.
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2.2 Software Product Lines

• Time to market. Using reusable assets can result in a reduction of time to market.

• Documentation. Reusing software components reduces the amount of documen-
tation to be written but increases the importance of what is written.

• Maintenance costs. Fewer defects and less maintainability of the system can be
expected when proven quality components are used.

• Team size. If many components can be reused, then software systems can be
developed by smaller teams, leading to better communication and increased pro-
ductivity.

There are several different software engineering techniques aimed at reducing the develop-
ment time and cost of software systems. However, there is no single successful development
method that is applicable to all problems or domains. Even though improvements in software
development have been considerable, existing generic solutions have reached a point where
it is difficult to make them better. Thus, further improvements must make use of knowledge
of the specific application domains’ characteristics.

An idea used in several engineering areas is to base software development on components
reuse. Clearly, for the success of this strategy, it is necessary to consider reuse in the early
stages of development, that is, in the requirements engineering and/or software design pro-
cesses. Furthermore, it is important to have reuse goals, such as the reuse of requirements,
design, code or tests, among others. Several software development paradigms as structured
programming, object oriented programming, and component based development have been
used since the 1960s and are usually cited as examples of successful software reuse. However,
they focus mainly on code reuse and thus do not contribute to reuse at other development
stages [40].

Sommerville [217] lists several approaches that support software reuse and software prod-
uct line (SPL) is one of them. Furthermore, SPL is a kind of application system reuse, as
was pointed out above by [217]. In fact, SPL development has proven to be an effective way
to benefit from reuse and variation, and it has allowed many organizations to reduce costs,
time and increase quality [90].

2.2 Software Product Lines

Maybe Parnas was one of the first researchers to talk about program families, a concept that
addresses variability in non-functional characteristics [236], which is similar to SPL. Parnas
[168] defines program families as

Program
family

“sets of programs whose common properties are so extensive that it is ad-
vantageous to study the common properties of the programs before analyzing
individual members.”
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2.2 Software Product Lines

This definition puts explicit emphasis in one of the key aspects in the reuse approach,
that is, the common characteristics shared among different products. In Parnas’s view, these
characteristics correspond to reusable components.

Another similar definition is given by Asikainen et al. [8]. For them, a software product
family

Software
product
family

“consists of a common architecture, a set of reusable assets used in sys-
tematically producing, i.e., deploying, products belonging to the family, and
the set of products thus produced.”

This definition indicates which are the constituent parts of the product family, and em-
phasizes the systematic way in which the products are built.

Probably the most generally accepted definition is the one stated by Northrop and
Clements [157], which states that a SPL

Software
product
line

“is a set of software-intensive systems that share a common, managed set
of features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a
prescribed way.”

Some researchers establish a difference between software product lines and software fam-
ilies. In particular, a software product line is designed to satisfy a given market, whereas a
software family can be the basis for several product lines aimed at different markets [60]. In
this thesis, these terms will be considered synonymous, as these issues are not relevant to the
scope of this work.

When a SPL is developed, a collection of related products is developed from generic
core assets and product-specific core assets. Figure 2.1, obtained from Gorton [90], shows
an example of a simple product line. In the figure, two different calculators are developed SPL

exampleusing the same core asset internal boards. The different functionalities of the two calculators
are provided by each of their product specific assets, that include the two different kinds of
buttons that provide the individualized interface to the generic functionality.

The existence of commonalities among different products is necessary to create a com-
mon base infrastructure for all products in the SPL. At the same time, product variabilities
are also necessary, as they allow having several products which differ in some aspects or
characteristics. These variabilities must be such that they do not compromise the existence
or development of the SPL and its reuse infrastructure by being more than the commonali-
ties [69]. In other words, the commonalities must be larger than the variabilities, in the sense
that their reuse in all products justifies the time and effort invested in their development.

There are several techniques for representing these commonalities and variabilities. Fea-
ture models [60, 115] are probably the most widely known and used technique. Two other
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Figure 2.1: A view of a simple product line

popular techniques are FAST Commonality Analysis, proposed by Weiss [246], and the Or-
thogonal Variability Model, proposed by Pohl et al. [174]. In general, all these techniques
are used as a specific method within the domain analysis process. This is explained further
in Section 4.2.4.

A SPL development process consists typically of two phases: domain engineering and
application engineering.

The domain engineering phase is where the common and variable parts (core assets) are Domain
engineering
definitiondefined, developed and maintained. This phase is typically called the development process

for reuse. Classically, it follows a waterfall life cycle [232]. Its inputs usually are preexisting
components, documentation, products, and product constraints, among others, and its out-
puts are usually the domain model, the product line scope, the core assets and the production
plan. On the other hand, the application engineering phase is where the applications of the Application

engineering
definitionline are built by reusing domain assets produced in the domain engineering phase. This phase

is typically called the development process with reuse, and it also follows a waterfall life
cycle.

Product commonalities and variabilities are generally defined in the domain engineering
phase, and product specific parts are handled exclusively in the application engineering phase.
This is shown in Figure 2.2, obtained from van der Linden et al. [236].
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Figure 2.2: Variability handling

Svahnberg et al. [224] conducted a thorough research on variability, in which they em-
phasize the factors to be considered when selecting an appropriate method for implementing
variability, and provide a taxonomy of techniques that can be used to implement variability.
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2.2 Software Product Lines

SPL adoption involves moving from developing software systems via a single system to SPL
adoptiondeveloping a family of software systems. According to McGregor et al. [136], organizations

typically have used two kinds of strategies for introducing SPL: a heavyweight strategy and
a lightweight strategy. In the first one, an organization assigns specific teams of specialists to
produce core assets, such as the product line architecture and components. In a lightweight
strategy, an organization first creates some products (in a traditional manner) and then mines
all products created so far to extract common characteristics (i.e. core assets). For Krueger
[126], a lightweight strategy is more convenient because it is a lower-risk strategy that implies
a small upfront investment, since the products already exist.

Additionally to the two strategies described above, other authors such as Gorton [90]
and Schmid and Verlage [197] explain situations where it is possible to adopt SPL. For
example, the first author cites two situations:

1. Green Fields : Where no products initially exist. In this case, it is important to ini-
tially define what products will be possible to build (the scope) and how they will be
constructed (the production plan). Then, it will be easier to plan and evaluate several
investment options.

2. Ploughed Fields : Where a collection of related legacy products have been developed
without reuse in mind. In this case, it is highly probable that the organization already
has a good understanding of the scope of the SPL, which will be driven by the existing
products’ functionality and future production plans.

Adoption of SPL development in an organization usually faces several problems, as people
in charge of building it frequently underestimate the management commitment and involve-
ment required to succeed. Additionally, organizations that are new at implementing SPL
usually have inappropriate organizational structure and processes, lack of training, have insuf-
ficient and inappropriate resources, incompatible development processes, cultural resistance,
and lack of carefully constructed plans for product line adoption [52, 158]. Furthermore, some
organizations tend to jump right into product line architecture and component development
activities without defining the scope of the SPL.

Catal [40] summarizes common barriers to the adoption of SPL process in an organization.
The most relevant are:

• Lack of practical resources: There are several books and articles that explain the pro-
cess of the SPL, but there are not many that combine both the process and practical
techniques for developing SPL.

• The necessity of change: Organizational and process change are necessary for a success-
ful product line initiative. This necessity for change prevents the senior management
group from adopting the SPL approach quickly.

• Abstract statements in case studies: Most published SPL case studies include mostly
abstract statements and it is very hard to adopt their methodology with the information
given.

18
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• Lack of SPL experts and high cost of training: There are not enough SPL experts and
the cost of training is very high for developing countries. Moreover, a successful SPL
initiative requires not only training but also extensive practice.

Finally, van der Linden et al. [236] present some principles to be considered for a successful
SPL adoption.

• Variability management: individual systems should be considered as variations of a
common theme. This variability is made explicit and must be systematically managed.

• Business-centric: SPL must aim at thoroughly connecting the engineering of the prod-
uct line with the long-term strategy of the business.

• Architecture-centric: the technical side of the software must be developed in a way that
allows taking advantage of similarities among the individual systems.

• Two-life-cycle approach: the individual systems must be developed based on a software
platform. These products as well as the platform must be engineered and have their
individual life-cycles.

2.3 Differences Between a SPL and Single System De-

velopment

There are several differences between a SPL and single system development. The obvious one
is that SPL is geared to developing several software products instead of just one. However,
other important differences stand out:

• SPL aims to develop reusable software explicitly. Indeed, it is possible to see a SPL as
a generic system that must be configured or instantiated to produce concrete systems
or components to be reused in different systems [60].

• SPL promotes scale economies, by taking economic advantage of the fact that many of
its products are very similar [157].

• Time to market in a SPL is shorter than for single system development because new
systems are built from core assets and only the functionalities that are unique to specific
products must be developed [90].

• A defect in a core asset only needs to be fixed once. This in turn benefits every product
in the SPL that uses this core asset [90].
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2.4 Advantages and Disadvantages of Using a SPL Approach

For Pohl and Metzger [175], there are two essential differences. The first one is that SPL
has two development processes: a domain engineering process, where the commonalities and
the variability of the SPL are defined and the domain artifacts are built, and the application
engineering process, where SPL applications are derived from the domain artifacts. The
second one is the explicit definition and management of variability through variation points
and variants: a variation point indicates and specifies what can vary, and a variant defines a
concrete variation.

2.4 Advantages and Disadvantages of Using a SPL Ap-

proach

The best known benefit of a SPL approach is a reduction in development costs. This is SPL
advantagessupported by several authors [6, 30, 107, 157, 197, 236], and is illustrated in Figure 2.3,

obtained from Pohl et al. [174].
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Figure 2.3: Costs Comparison between Single System and Product Line Development

The figure shows the accumulated costs needed to develop n different systems. The solid
line shows the costs of developing the systems independently, and the dashed line the costs
for SPL. When only a few systems are developed, the costs for SPL are high, due mainly to
the high initial investments, such as the definition of the product line scope, the development
of reusable core assets, and the creation of a production plan. SPL development costs per
product decrease as the number of products increases, as core assets are reused in several
different systems. The break-even point at which SPL is less expensive than single system
development is generally understood to occur at approximately 3 systems.

For Gorton [90], the most obvious benefit is an increase in productivity, as the cost of
developing and maintaining core assets is distributed across all products in the SPL. Thus,
an organization can capture these economies of scale to benefit from the development of a
large number of products.

Another commonly identified benefit is a reduction of time to market. Time to market is Time to
market
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simply the time it takes to get a product from an idea to the marketplace. For Kasunic [117],
it is the length of a project in work days, excluding times when the project is not active due
to work stoppages. The time starts when user requirements have been baselined, and ends
when the first software installation is done.

Figure 2.4 obtained from Pohl et al. [174] shows the time to market for both types of
developments.
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Figure 2.4: Time to Market comparison between Single System and Product Line Develop-
ment

Time to market for single system development is considered constant. Time to market for
SPL is initially higher because of core assets development. Once they are built, the time to
market for each new system produced by the SPL is reduced as core assets are reused. Thus,
only those parts of new products that do not exist as core assets must be developed, which
need probably to be tailor-made. The customers only need to wait for the development of
those functionalities that are unique to their needs [90, 174].

According to Northrop and Clements [157] and Trigaux and Heymans [232], organizational
competitive advantages are also obtained from core assets reuse. For instance, up to 100% of
the components in the core asset base are used in each product, so fewer people are required
to build products. Also, focusing personnel training on the core assets can lead to a better
domain comprehension, and to shorter training time.

Pohl et al. [174] and van der Linden et al. [236] present three other benefits:

• Reduction of maintenance costs: Whenever a core asset is changed, its changes can be
propagated to all products in which the core asset is being used. Moreover, the overall
amount of code and documentation to be maintained is reduced.

• Quality improvement: Core assets are used, reviewed and tested in many products of
the SPL. Therefore, there are more opportunities for fault detection and correction.
Also, a new software product has a large number of proven components. The defect
density of such products can be expected to be lower than products that are developed
from scratch [90].
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• Usability improvements in the final products: User interface consistency can be im-
proved by using the same building blocks when implementing the same kind of in-
teractions, thus making it easy for the customer to switch from one SPL product to
another.

The main disadvantages of the SPL approach are related to the costs of developing the SPL
disadvan-
tagescore assets. Additional costs associated with the requirements core asset may include the

costs of capturing the requirements for several systems, as this may require sophisticated
analysis and intense negotiation among the stakeholders so as to agree on both common
requirements and variation points that are acceptable for all products [157]. Likewise, the
architecture core asset may include additional costs because it must support the variations
inherent in the product line, which imposes additional constraints on it.

Trigaux and Heymans [232] mention at least four disadvantages of the SPL approach:

• Resistance to changes: It is not easy to change an organization from a single product
development approach to a SPL approach. Many people need to learn the new ap-
proach, and change their way of thinking or confronting the new processes. In [54],
Cohen shows that around 40% of the organizations in his study present some kind of
resistance to changes.

• The need for a global view of the complete product line architecture: few software
engineers know the application domain in depth. With this scenario it is difficult to
generate a product line architecture. It is a problem because SPL are generally built
around a product line architecture, and some organizations use the architecture as a
mechanism for organizing software development, of both assets and products [54]. The
problem increases due to the lack of guidelines, techniques and tools to represent or
validate product line architectures.

• Problems with the scope definition: The scope must be carefully defined, as the domain
can change. A too narrow scope does not justify the cost of core assets development
and maintenance; likewise, it is almost impossible to reuse core assets if the scope is
too broadly defined. Scope definition will be described in more detail in Section 4.1.2.

• Benefits are not visible immediately: SPL development needs a high initial investment.
Thus, it is necessary to develop several products to obtain a return on investment
(ROI). This was shown in Figure 2.3; SPL needs to build three or more products to
appreciate its real advantages.

Another important disadvantage of SPL is SPL deterioration over time due to the SPL
evolution. This deterioration is commonly called erosion, i.e., the deviation from product line
models up to the point where key properties no longer hold [71]. According to Thao [229],
the evolution in SPL may cause problems in the time dimension (referring to the evolution SPL

evolutionof shared code and the product itself over time) and/or in the space dimension (referring to
the variability among the products in the product line). SPL evolution must also deal with
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diverse issues such as customer’s needs and technology, which can be seen as functionality
addition or change [130]. For Dhungana et al. [72], there are two important issues in SPL
evolution: maintenance is done by multiple teams, where the knowledge about variability
is distributed across multiple stakeholders and teams, and the fact that the evolution of
different parts of a product happens at different speeds.

Thus, for a correct SPL evolution, the SPL maintainer has to perform an accurate previ-
ously specified sequence of steps [143], not necessarily in a standard form in any SPL domain.
In any case, SPL evolution has been recognized as a research challenge [143, 174].

Finally, there are several approaches for measuring the possible economic benefits of using
a SPL, as studied by Ali et al. [1] and Böckle et al. [30]. The evaluation of economic benefits
of SPL is beyond the scope of this thesis.

2.5 SPL Stages

During the years, researchers have proposed different approaches for SPL development, with
different numbers of phases. For instance, Northrop and Clements [157] identify three phases
or activities: Core Asset Development, Product Development and Management. Figure 2.5,
obtained from the authors above, presents these phases.

Product

Development

Core Asset

Development

Management

Figure 2.5: Activities for SPL

Figure 2.5 shows these three strongly linked and iterative phases. They can occur in
any order, and there is a clear and strong feedback loop between the core assets and the
products. In that sense, core assets must be updated when new products are developed.
After several cycles, more generic core assets can be obtained, which in turn contribute to
the development of new products probably not initially considered. Each phase, in turn, has
several more detailed stages inside, which can deliver products, too. Additionally, there is a
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permanent need and worry for management to invest time and resources in the development
and update of the core assets.

Other authors such as Pohl et al. [174] and Czarnecki and Eisenecker [60] identify two
phases in SPL development. In particular, Pohl et al. refers to the core asset development
phase as the Domain Engineering phase, and to the product development phase as the Ap-
plication Engineering phase, and they include the management phase inside the Domain
Engineering phase.

As stated by Czarnecki and Eisenecker [60] and Pohl et al. [174], the application engi-
neering phase is a process based on the results of the domain engineering phase, in which
the applications of the product line are built by reusing domain artifacts and exploiting the
product line variability. In this sense, it is important that the investments necessary to de-
velop the core assets during the domain engineering phase are outweighed by the benefits of
deriving individual products in the application engineering phase [70]. It is not easy to reach
this goal. An alternative mentioned by Deelstra et al. is to invest in research and technology
in the SPL domain engineering phase, in such a way that these investments decrease costs
in the application engineering phase.

Figure 2.6, obtained from Deelstra et al. [70], shows the impact of the application of
technology in the domain engineering and application engineering phases.
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Figure 2.6: Impact of technology on the SPL phases

If little effort is invested in the domain engineering phase (left side of Figure 2.6), i.e.,
the standardized reuse infrastructure provides generic behavior, contains no domain specific
functionality, and product variability is managed as in single system development, then a
large effort will be invested in the application engineering phase. On the other hand, large
investments in the domain engineering phase (right side of Figure 2.6), i.e., the reuse in-
frastructure captures all commonalities and variabilities and the product line architecture
is well-defined with no products derived out of architecture, then a large investment in the
application engineering phase is not as necessary.

This thesis considers domain engineering and application engineering as the two essential
phases in the SPL development. These phases, in turn, have other sub-phases or stages,
which in turn also may produce outputs or products. There is no agreement on the name
or number of these stages. For instance, Czarnecki and Eisenecker [60] and van der Linden
[234] present three stages in the domain engineering phase and three stages in the application
engineering phase, but they differ in the names of the stages. On the other hand, Pohl et al.
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[174] present domain engineering and application engineering phases with four stages inside
each one. These differences and similarities are presented in the following paragraphs.

Standard domain and application engineering phases are presented by Czarnecki and
Eisenecker [60] by means of Figure 2.7.
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Figure 2.7: Software Development based on Domain Engineering

This figure shows the two phases working in parallel. Domain knowledge is an input for
domain analysis and represents any kind of knowledge, such as stakeholders knowledge, and
information about existing systems and components. The domain engineering phase only
produces reusable core assets, and it does not produce any product or application. That task
is supported by the application engineering phase, which receives the customers’ needs for a
specific product and constructs it.

Figure 2.7 also shows it is possible to incorporate to the SPL new products not initially
considered. Initially, the product line is able to produce certain preestablished products.
If some customers’ needs are out of the scope of the SPL, new requirements are specified
and then it is necessary to evaluate whether it is worth incorporating these needs in the
form of core assets to the reuse infrastructure, or whether it is enough to develop these new
requirements and translate them into a custom design and custom implementation.

Van der Linden [234] shows a similar SPL process in his article, which is illustrated in
Figure 2.8.

Similarly to Figure 2.7, there are three stages in each phase. However, there are some
important differences between them:

• Feedback: Feedback in Figure 2.7 is explicit and produced from unsatisfied customers’
needs in the application engineering phase to the domain engineering phase. Feedback
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Figure 2.8: The Praise Reference Process

enters the domain analysis stage, and changes are propagated to the domain design
and domain implementation stages. In Figure 2.8, feedback is produced from the
application coding stage to the domain design and domain implementation stages.
From the nature of the process involved, it is necessary to consider both views of
feedback as complementary, because issues or needs for change can occur at any stage
of the application engineering phase, and their solutions can involve several stages in
the domain engineering phase.

• Repository: Figure 2.8 shows a family asset repository between the domain engineering
and the application engineering phases, storing all core assets produced by the domain
engineering phase. These assets can later be used by the application engineering phase
according to its needs. On the other hand, Figure 2.7 does not show the existence of
a repository explicitly. Instead, assets such as domain specific languages, components
and generators are mentioned between the domain implementation and integration
and test stages. All assets are important, not only those produced by the domain
implementation stage. When all core assets are stored in a repository, there is a greater
chance of improving software production, and software and SPL maintenance.

• Traceability: Traceability aids the development process by helping determine which
assets are necessary for which set of product requirements, and the maintenance process
by helping determine which versions of which assets are used in which systems. It is not
mentioned explicitly in Figure 2.7, but vertical traceability and horizontal traceability
are assumed. In contrast, traceability is an important issue in the Praise Reference
Process described in Figure 2.8, which explicitly shows only the horizontal traceability.

These three elements are important in any SPL approach. Particularly, the feedback
between stages is shown explicitly in Section A.2.7, according to Figure 1.3 in Section 1.2.

The six stages of the SPL development approach are described in the following subsections.
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2.5.1 Domain Analysis

Domain analysis is the process by which information used to develop software systems is
identified, captured, and organized, with the purpose of making it reusable for creating new
systems [178]. According to Czarnecki and Eisenecker [60] and Pohl et al. [174] the main
goals of domain analysis are: Domain

analysis
purposes

• define the domain scope;

• define a set of reusable, configurable, common and variable requirements for the systems
in the domain;

• develop precise documentation of the requirements.

The input to the domain analysis stage is generically represented by the domain knowl-
edge, which in turn has diverse sources such as existing systems, domain experts, manuals,
systems, prototypes, customers, known requirements of future systems, among others. The
output is a domain model, consisting mainly of a domain definition or scope, a domain lex-
icon and a feature model. This domain model will be the input for the domain design and
application requirements stages.

Northrop and Clements [157] define scope as a description of the products that will con-
stitute the product line or that the product line is capable of including. Clearly, determining
the scope is a process that requires the participation of a wide range of stakeholders as
developers, customers, and users, among others.

The domain lexicon or domain dictionary [226] represents the identification and definition
of terms used in the domain model. This domain vocabulary must be used consistently by
all stakeholders in the domain to allow a good understanding of the domain and to avoid
misunderstandings, inconsistencies and ambiguities in its usage.

The feature model is a tree-like structure that contains a series of constraints among the
included features. A feature is a distinguishable characteristic of a concept that is relevant
to some stakeholders [60].

For Pohl et al. [174] domain analysis is composed of three steps: Domain
analysis
steps

• Commonality analysis: Its goal is to identify which requirements are common to all
SPL applications.

• Variability analysis: Its goal is to identify which requirements differ among the appli-
cations, and to determine these differences precisely.

• Variability modeling: This activity is concerned with modeling variation points, vari-
ants, and their relationships.
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As the domain analysis process is the first stage, obviously any mistake at this stage is
propagated to all other stages of the SPL development process. In particular, the correct
definition of a suitable scope is crucial because a well-defined scope will determine the eco-
nomical viability of an organization, by allowing it to generate products as required by the
market.

2.5.2 Domain Design

According to Czarnecki and Eisenecker [60] the main goals of the domain design stage are: Domain
design
purposes

• develop an architecture for the SPL,

• create a production plan.

The inputs to this stage are provided by the domain analysis stage and are the scope and
the domain model and the stage’s outputs are the architecture and the production plan.

The architecture of the SPL is the artifact that defines the overall decomposition of
the products into the main components, capturing the commonalities between products and
facilitating the variability description [31]. This architecture, called product line architecture
or reference architecture, determines the structure and the texture of the SPL applications.
The structure determines the static and dynamic decompositions that are possible and valid
for all applications of the product line. The texture is the collection of common rules guiding
the design and realization of the parts, and how they are combined to build applications [174].

It is known that SPL developments are architecture-centered [164], but Gorton [90] in-
dicates that the existence of a product line architecture is not always necessary for SPL
development success. Gorton states that, even though products in a SPL will have some
type of architecture, it is not necessary to have a product line architecture, and presents
mechanisms for achieving reuse and variation without a product line architecture. Extend-
ing the idea of software development without an explicit product line architecture, Perovich
et al. [169] and Rossel et al. [189] present a transformational approach for deriving particular
architectures. Section 6.2.2 will explore this aspect in more detail.

The SPL production plan is a description of how core assets are used to develop a product
in a product line [41]. This plan is created to ensure that the products will be built using
the core assets correctly and appropriately.

2.5.3 Domain Implementation

The main goal of the domain implementation stage is to implement reusable core assets [174]. Domain
implementa-
tion
purpose
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It does not produce or develop concrete software applications. However, in the feature-
oriented programming paradigm (also known as feature-oriented software development) [3,
21, 176], it is common to find different levels of granularity in core assets. In that sense,
UML documents, process diagrams, makefiles, object-oriented classes, modules, and concrete
applications can be considered as core assets. Thus, this stage considers that a concrete
software application has been developed first. In any case, this paradigm is out of the scope
of this thesis.

The inputs to this stage are provided by the domain design stage. The outputs are
several core assets, such as components, interfaces, code and GUI generators, domain specific
languages, database tables, protocols, documentation, among others [60, 174].

Particularly, Pohl et al. [174] establish explicitly that interface design and component
design are part of the domain implementation stage. Furthermore, both interface and com-
ponent implementation, and compilation are carried out at this stage. The domain imple-
mentation stage does not produce applications or final products for customers; instead, it
provides an reuse infrastructure for the application production process.

According to de Almeida et al. [67], there has not been a lot of effort addressing this
stage, in contrast to the domain analysis and domain design stages. These authors present
a domain implementation approach based on the Open Service Gateway Interface (OSGi).
OSGi is a Java-based interface specification that defines a standardized, component-oriented,
computing environment for networked services. Basically, the work presented by de Almeida
et al. [67] provides a systematic way for implementing components for reuse within a SPL
through a set of principles that software engineers can keep in mind while performing activities
to implement and document software components.

2.5.4 Application Requirements

The main goal of this stage is to elicit and to document the requirements for a particular appli- Application
require-
ments
purposes

cation and at the same time reuse, as much as possible, the domain analysis artifacts [174]. In
words of van der Linden [234], application requirements determines what the product should
be.

The inputs for this stage are provided by the domain analysis stage: the scope and the
domain model. Moreover, it is possible to have other inputs as specific requirements for a
particular application that have not been captured during the domain analysis stage. The
output of this stage is the requirements specification for a given particular application.

Some activities to be carried out in this stage as stated by Pohl et al. [174] are:

• Communicating the commonality and variability of the product line: It is important
that the stakeholders know the SPL capabilities. With this information, the stakehold-
ers can decide which variants to select for each variation point.
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• Evaluating differences between domain and application requirements: Sometimes, stake-
holders requirements for a given application cannot be completely satisfied by the do-
main model. These requirements and their impact on the SPL must be evaluated
according to determine the effort required to build them. The decision to implement
these new requirements is taken by the stakeholders.

• Documentation of application requirements: This documentation is a result of the
previous activities. The documentation includes the new requirements, both those
present in the commonality and variability described in the domain analysis stage and
also those unsatisfied requirements that were accepted by the stakeholders.

2.5.5 Application Design

The main goal of this stage is to produce the application architecture [174]. For van der Application
design
purposesLinden [234], the application design stage selects the components needed to make the product.

The inputs to this stage are the product line architecture, which is provided by the
domain design stage, and the application requirements specification, which is provided by
the application requirements stage. The output of this stage is the application architecture
for a particular product.

The application architecture is not only produced from the product line architecture but
also by taking into account the aspects related to application specific requirements that are
not usually considered by the domain design.

2.5.6 Application Coding

The main goal of this stage is to develop applications that can be used by the customers in Application
coding
purposesthe domain [174]. According to van der Linden [234], the application coding stage combines

components using the infrastructure and possibly additional product-specific code.

The inputs to this stage consist of the application architecture generated by the applica-
tions design stage and the reusable output artifacts from the reusable platform generated by
the domain implementation stage. The output consists of a completely operational applica-
tion.

This stage uses artifacts produced in the domain implementation stage, such as code
and GUIs generators and domain specific languages. They allow generating applications
in an automatic or semiautomatic way, depending on how many custom developments are
necessary.
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2.6 Domain-Specific Languages

Because of the complexity of the applications that must be developed to satisfy the needs
of the users and customers, some authors [33] argue that the next level of abstraction that
programming languages must conform to is that level most familiar to domain experts and
users, i.e., based on abstractions and notations known to them. This abstraction level can
be reached via domain-specific languages.

For van Deursen et al. [239], a domain-specific language (DSL) is a programming language DSL
definitionor a specific executable language that provides an expressive power focused on, and usually

restricted to a particular domain. For Bryant et al. [33] a DSL is a language tailored to a
specific application domain, that offers a greater expressiveness and ease of use compared
with general-purpose languages in its domain of application.

Normally, DSLs are small languages, more declarative than imperative, and more attrac-
tive than general-purpose languages when applied to the same application domain in order
to achieve [96]:

• easier program understanding, writing, and reasoning,

• enhanced productivity, reliability, reusability, maintainability,

• easier verification,

• reduced semantic distance between the problem and the program.

The idea of working with specific-purpose languages instead of general-purpose languages
is not new: through the years, several DSLs have been developed such as Cobol for business DSL

examplescomputing, Fortran for scientific computing [220], LATEX for typesetting, HTML for hypertext
web pages, the Backus-Naur Form (BNF) for syntax specification, SQL for database queries
and manipulation [222], Excel for spreadsheets, Make for software building, MATLAB for
technical computing, and VHDL for hardware design [142].

The DSLs previously mentioned and many others more can be grouped by their applica-
tion domain, which in turn can be divided in five main groups [239]:

• Software Engineering: Financial products, software architectures, and databases.

• Systems Software: Description and analysis of abstract syntax trees, video device driver
specifications, cache coherence protocols, data structures in C, and operating system
specialization.

• Multi-Media: Web computing, image manipulation, 3D animation, and drawing.

• Telecommunications: String and tree languages for model checking, communication
protocols, and telecommunication switches.
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2.6 Domain-Specific Languages

• Miscellaneous: Simulation, mobile agents, robot control, solving partial differential
equations, and digital hardware design.

For example, in the software engineering domain, Medvidovic and Taylor [140] present
several architecture description languages (ADLs) which are particular DSLs for describing
the software architecture of a software system, i.e., the domain of software architecture.
Thus, and according to the same authors, an ADL is focused on the high-level structure
of the overall software system rather than the implementation details of any specific source
module of that system.

It is known that DSLs can reduce dramatically the time and cost of software development
and software maintenance, increase the software productivity, and assist programmers and
users to write more concise and descriptive programs [33, 96]. However, software maintenance
costs can increase or the system developed with the DSL can be difficult to maintain, if the
underlying domain model assumed by the DSL changes [237].

The DSM Forum [80] justifies the use of domain-specific modeling techniques due to
the productivity increase. Industrial experience has shown that domain-specific modeling is
between 5 and 10 times more productive than current software development practices. It is
mainly because the working programming abstraction level has been raised. For example,
one sentence in Java or C++ corresponds to a much larger set of instructions in Assembler
language.

According to Cánovas and Cabot [38], any DSL is composed of three main elements: an DSL
elementsabstract syntax, a concrete syntax, and a semantics.

1. Abstract syntax: It defines the main concepts of the language, relationships, and con-
straints.

2. Concrete syntax: It defines the language notation, and it can be textual, graphical or
a mix of both.

3. Semantics: It provides the meaning of each expression, and that meaning must be an
element in some well-defined and well-understood domain [95].

When the idea to create a DSL for a particular domain arises, it is necessary to take
into account if the problem to be solved or the domain itself deserves the creation of a DSL.
In this sense, Sprinkle et al. [220] give a checklist for determining if a problem or domain
requires the use or creation of a DSL. Some elements of the checklist are:

• The domain is well defined.

• The domain has repetitive elements or patterns, such as multiple products, features, or
targets.
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• An intuitive or well-accepted representation is already defined.

• The implementation or specification must serve as documentation.

• Amortization of effort justifies investment in DSL creation.

Moreover, the same authors indicate several considerations related to the use of DSL.
Some of them are:

• The effort to create and maintain the language and related code generators.

• The effort for domain experts to learn the language.

• The productivity increase compared to general purpose solutions.

• The quality improvement compared to general purpose solutions.

• The number of expected users or implementations.

With all these things in mind, the task of building a DSL seems difficult and error-prone.
To deal with this task, some authors such as Cánovas and Cabot [38], Mernik et al. [142],
and Strembeck and Zdun [222] present, with varying knowledge depth levels, processes for DSL

development
process
phases

building DSLs. In particular, a DSL development process is composed of seven phases: de-
cision, analysis, design, implementation, testing, deployment, maintenance [142, 242, 244].
In the decision phase, the decision whether or not to build a DSL is made considering the
needs of the domain; in the analysis phase, the application domain is analyzed and de-
fined, collecting domain information and integrating it into a suitable domain model; in the
design phase, both the architecture and language are designed, considering its syntax and
semantics; in the implementation phase, the DSL and supporting run-time system are con-
structed, selecting from different approaches for the DSL development such as interpreter,
compiler/application generator, preprocessing, extensible compiler/interpreter, Commercial
Off-The-Shelf (COTS), and hybrid, among others; in the testing phase, the DSL evaluation
is done, by making sure everything is in the working order; in the deployment phase the DSL
and applications constructed with it are used; finally, in the maintenance phase the DSL is
updated to reflect new requirements.

It is important to know that DSL development is not necessarily a sequential process. In
this sense, sometimes phases overlap [242].

Similar to other types of software development, the first stages or phases are very impor-
tant. Special consideration must be taken with the analysis phase of the DSL development.
In the analysis phase, it is necessary to obtain problem domain knowledge. To reach this goal,
a domain analysis is required. There are several suitable domain analysis techniques for the
DSL development context such as FORM [116] and FAST [246]. Mernik et al. [142] and Čeh
et al. [242] provide a list of other domain analysis techniques used in DSL development.
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In particular, the use of feature models as a model that captures the commonalities,
variabilities and the relationships among them is a good option for the analysis phase of the
DSL development [142, 238, 242], although other authors think that feature models work at
a level that is too general to properly identify necessary concepts involved in a DSL [33, 133].

In any case, either creating a DSL or adapting one, the adoption of the DSL approach
for the production of applications has advantages and disadvantages. The advantages can be DSL

advantagespointed as follows [33, 91, 237, 239]:

• DSLs allow the solutions to be represented in the language and abstraction level of the
problem.

• DSLs increase productivity, reliability, maintainability, reusability, quality and porta-
bility of the produced applications.

• DSLs assist programmers and end-users in writing more concise, descriptive, and platform-
independent applications.

• DSLs contain domain knowledge, and this characteristic permits the preservation and
reuse of this knowledge.

• Changes made to the applications are easy because they are developed automatically
using the DSL and the intention of the applications is close to the domain.

• The tedious activity of writing long programs is automated.

• Domain-specific knowledge is explicitly available, and it is not hidden in the source
code of the applications.

• The domain expert can understand, validate and modify the applications by adapting
the domain-specific descriptions.

On the other hand, the disadvantages are [33, 237, 239]: DSL
disadvan-
tages

• The cost of designing, implementing, and maintaining a DSL, and the cost of teaching
its users are high.

• Developing integrated development environments (IDEs) for DSLs from scratch is too
costly.

• The difficulty of finding the suitable scope for a DSL.

• The difficulty of striking a balance between domain-specificity and general-purpose
programming language constructs.

• The potential loss of efficiency when compared with hand-coded software.

• An organization that is active in several domains may need a large number of DSLs,
increasing the cost of development and maintenance.
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Chapter 3

Meshing Tool Domain

Understanding the domain is a key factor in successful software product development. In
particular, the meshing tool domain is very complex, involving concepts such as meshes,
refinement and derefinement algorithms, mesh quality criteria, and mesh formats, among
others. In this chapter, several meshing tool concepts are reviewed and defined.

3.1 Mesh Generation

Mesh generation algorithms play an important role in finite element methods (FEM), biome-
chanics, virtual surgery and geometric modeling [248]. Particularly, triangulations (product
of triangular mesh generation) are widely used as a basic methodology in different fields such
as finite element methods, computer graphics, geometric modeling, geographical information
systems, terrain modeling and real time rendering [185].

The International Society of Grid Generation establishes that mesh (grid) generation is

Mesh
generation

“that discipline of applied science and engineering which is devoted to the
discretization of fields associated with the computational analysis of sci-

entific and engineering problems encountered in fluid mechanics, heat and
mass transfer, aerospace and mechanical engineering, biomedical engineer-
ing, geophysics, electromagnetics, semiconductor devices, atmospheric and
ocean science, hydrodynamics, solid mechanics, civil engineering related
transport phenomena, and other physical field problems involving sets of
partial differential equations formulated in a continuum.”

This definition puts emphasis in the variety of domains and disciplines where mesh gen-
eration is applied.
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3.1 Mesh Generation

Mesh generation is an essential prerequisite for the numerical analysis of engineering
problems or fields, including those related to physical models described by partial differential
equations (PDE) [88].

A PDE is an equation involving one or more partial derivatives of a dependent variable
u [27] and independent variables xi , with u = u(x1, x2, ..., xn). The general form of a PDE
for u may be expressed as:

F (x1, ..., xn ; u, ux1 , ..., uxn , ux1x1 , ux1x2 , ..., ux1xn , ux2x1 , ux2x2 , ...., ux1x1x1 , ...) = 0

where

uxi =
∂u

∂xi

, uxixj =
∂u2

∂xi∂xj

, uxixj xk =
∂u3

∂xi∂xj∂xk

, ...

Solving a PDE over a continuous domain requires the following five steps [145]:

1. Geometric modeling: The continuous domain is approximated using a simple, discrete
description.

2. Mesh generation: The interior of the domain is decomposed into a mesh M of simple
and well-shaped elements.

3. Approximation: A system of linear or nonlinear equations is formed over M for the
governing PDEs.

4. Solution: The system of equations is solved, and the error of the solution is estimated.

5. Adaptive refinement: If necessary, the mesh is refined and steps 4 and 5 are repeated
over the refined mesh.

In step 2, a mesh is generated as an intermediate step of a numerical method to compute
or simulate physical quantities over the original domain. Not all meshes perform equally
well in the subsequent numerical computation, and therefore, numerical and discretization
errors depend on the geometric shape and size of the mesh elements [145]. Sometimes,
mesh generation can be seen as a bottleneck for a numerical process (e.g. PDE resolution)
in the sense that a failure in the mesh generation jeopardizes any subsequent numerical
simulation [88].

This thesis is centered neither in the resolution of PDEs, nor in the development of partic-
ular algorithms for mesh generation or processing. A more detailed explanation of the main
PDE solution methods, such as the finite difference method and the finite element method,
can be found in Bernatz [27]. Furthermore, an introductory review to mesh generation can
be found in Frey and George [88].
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3.2 Mesh Generation Process

A mesh is a discretization of a domain [144], and is generally composed of a set of many small Mesh
definitionadjacent elements, typically triangles or quadrilaterals in two dimensions and tetrahedra or

hexahedra in three [25].

Figure 3.1 shows different kinds of mesh elements.

Figure 3.1: Triangle, Quadrilateral, Tetrahedron and Hexahedron

A meshing tool is a highly complex piece of software for generating and managing meshes Meshing
tool[188]. Such tools are inherently sophisticated software due to the complexity of the concepts

involved, the large number of interacting elements they manage, and the application domains
where they are used.

According to Douglass et al. [78], the mesh generation process has three main steps: Mesh
generation
stepsgeometry representation, discretization and mesh modification.

1. Geometry representation: Mesh generation begins with a faithful representation of the
geometry of the physical problem being modeled. There are three ways to represent
the geometry:

(a) Constructive solid geometry (CSG): It defines a domain using a formula of set
theory operations over a collection of primitive geometric shapes (spheres, boxes,
cones, etc.).

(b) Boundary representation (b-reps): It defines the geometry in terms of piecewise
low-degree polygons fitted to its boundaries, such as a nonuniform rational B-
spline (NURBS) representation as from a CAD or CSG model.

(c) Domain decomposition representation (dd-reps): It describes the geometry of the
boundaries by a discretization into nonoverlapping polyhedra, from CAD or CSG
models.

Any flaws in the geometry must be repaired prior to mesh generation, a process called
geometric healing.

2. Discretization: It is the decomposition of the physical domain into linear or low-order
polynomial volumes such as triangles, squares, tetrahedra, hexagons, among others.
The result of a discretization is a faithful representation of the actual physical domain.
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The type of discretization used (the sort of element shapes and sizes used) depends
on the material properties within and across material boundaries, whether the physi-
cal processes being simulated have preferred directions, whether the problem must be
decomposed for parallel processing, among others.

3. Grid modification: It involves postgeneration modifications to the mesh to improve
its quality. Quality modifications to the mesh may be a one-time event done prior to
submitting the mesh to the equation solver, or may be a dynamic process either done
explicitly for each step in the solver or implicitly linked to the physical variables to be
solved for, all as one large problem.

3.3 Types of Meshes

The meshes are categorized in two types [26, 78, 145, 228]: structured and unstructured. Structured
and
unstruc-
tured
meshes

This thesis is focused on unstructured meshes.

For Miller et al. [144] the difference between structured and unstructured meshes lies in
the size of the elements: in the former, elements are squares of equal size; in the latter, there
are no constraints on the size of the elements.

A structured mesh is one in which all elements are geometrically alike [228]. In two dimen-
sions, in many cases it is simply a square mesh deformed by some coordinate transformation,
where each vertex of the mesh, except at the boundaries, has an isomorphic local neighbor-
hood [25]. An unstructured mesh has a varying local topology [228], and is frequently a
triangulation with arbitrarily varying local neighborhoods [25].

Figure 3.2, obtained from Bern and Plassmann [26], shows a structured mesh and an
unstructured mesh side by side.

Figure 3.2: Structured and Unstructured Mesh

Owen [165] established that all interior nodes (vertices) of a structured mesh have an equal
number of adjacent elements, while an unstructured mesh allows any number of elements to
meet at a single node.
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The previous idea is clearly illustrated in Figure 3.2: each vertex of the structured mesh,
with the exception of boundary vertices, is surrounded by four quadrilaterals; on the other
hand, each vertex of the unstructured mesh is surrounded by a variable number of triangles.

Sometimes, the shape of the mesh elements is considered enough for categorizing meshes
as structured or unstructured. For example, in two dimensions a structured mesh typically
uses quadrilaterals, while an unstructured mesh uses triangles. However, there is no reason
for using different element shapes for both structured and unstructured meshes [26, 165]. It
is always possible to transform a quadrilateral mesh into a triangular mesh, and vice versa.
Figure 3.3, obtained from Bern and Plassmann [26], shows the division of quadrilaterals into
triangles on the left side of the figure, and the division of triangles into quadrilaterals on the
right side of the figure.

Figure 3.3: Conversion between Triangles and Quadrilaterals

Both kinds of meshes have advantages and disadvantages. Structured meshes are easy Advantages
and
disadvan-
tages

to generate and manipulate, facilitating the use of simple data structures to reduce pro-
gramming complexity [26, 228], they require less computer memory, their coordinates can be
calculated (rather than explicitly stored) and have more control over the sizes and shapes of
elements [26]. On the other hand, structured meshes are limited to simple domains, so the
use of unstructured meshes is inevitable in the solution of complex problems with a more
sophisticated domain geometry or shape [25, 145]. Unstructured meshes offer more conve-
nient mesh adaptability and a better fit to complicated domains or objects with complicated
topologies [26, 78]. However, some aspects of the theory behind unstructured meshes are not
as well understood as those for structured meshes [145].

3.4 Algorithms for Mesh Generation

Unstructured mesh generation involves the creation of mesh points and their relevant con-
nectivities. Its stages are summarized as follows [88]:

1. Domain boundary definition: The boundary discretization is represented by a polygonal
or polyhedral approximation to the boundary of the real domain.

2. Specification of an element size distribution function: This function is a control element
to ensure the fulfillment of certain properties in the mesh generation, such as local
element sizes.
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3. Generation of a mesh respecting the domain boundaries, or the boundary discretization:
The mesh generation itself by means of a given method, e.g. quadtree.

4. Optimization of the element shapes (optional): In general, good quality meshes cannot
be generated directly, and a post processing step is required to optimize the mesh with
respect to the element shapes.

Most techniques of 2D and 3D mesh generation fall into three categories [26, 78, 165]:
Quadtree/Octree, Delaunay, and Advancing Front.

In the following section, quadtree and octree based methods are presented to illustrate
the stages of a mesh generation algorithm. Delaunay and advancing front methods can be
reviewed in Bern and Eppstein [25], Douglass et al. [78], Frey and George [88], and Owen
[165].

3.4.1 Quadtree and Octree methods

These methods are also called decomposition methods [88]. Quadtree is used in two dimen-
sions and octree in three dimensions.

A quadtree is a recursive partition of a region of the plane into axis-aligned squares. The Quadtree
definitionroot square covers the entire region. Any square, including the root, can be divided into four

child squares, by splitting it with horizontal and vertical line segments through its center.
Then, the collection of squares forms a tree, with smaller squares at lower levels of the tree,
called leaf squares [25].

Similarly, an octree is the three dimensional version of a quadtree. The root of an octree Octree
definitionis a box covering the entire domain Ω, over which the discretization is applied. An octree is

constructed by recursively and adaptively dividing a box into eight childboxes, by splitting
it with hyperplanes normal to each axis through its center [227].

Figure 3.4 shows a quadtree on the left side of the figure and an octree on the right side.
Figures were obtained from Bern and Eppstein [25] and Teng [227] respectively.

Figure 3.4: Quadtree and Octree

The concept of a balanced quadtree is important in quadtree mesh generation, because it Balanced
quadtree
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3.4 Algorithms for Mesh Generation

generates a well shaped mesh for any input 2D domain [228]. The condition for a balanced
quadtree is that the squares sharing a portion of a side with a leaf square B must be at most
twice the size (side length) of B [25].

Figure 3.5 shows both unbalanced and balanced quadtrees.

Figure 3.5: Unbalanced Quadtree (a), and Balanced Quadtree (b)

According to Frey and George [88], the classical quadtree/octree-based technique involves
the following steps:

1. Initializations.

• Boundary discretization.

• Definition of the size distribution function (if available).

2. Tree decomposition.

• Initialization: the tree representation is derived from a box enclosing the domain.

• Recursive subdivision of the box up to a satisfactory criterion.

3. Tree balancing: necessary to limit the difference between neighboring cells to only one
level (the so called 2:1 rule).

4. Cell meshing using predefined patterns (internal cells) and local connections (boundary
cells).

5. Optimization: topological and geometrical modifications.

These steps can be better understood by examining Figure 3.6, obtained from Frey and
George [88]. A 2D domain Ω is presented in (i); the domain Ω is recursively decomposed into
a set of disjoint and variable sized cells (squares), which represent a partition of a bounding
box B(Ω) of the domain Ω, as is shown in (ii). In this figure, each cell contains only one
boundary point. Other points are on the side of some cell. Then, each terminal cell is
decomposed into a set of elements (triangles or/and quadrilaterals) whose union constitutes
the final mesh of the domain Ω, as shown in (iii). Finally, an optimization stage is used to
improve the shape quality of the mesh elements, yielding the figure shown in (iv).
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Figure 3.6: Steps for Discretization of a 2D Domain

3.5 Algorithms for Generating an Optimal Mesh

As was sketched in the previous section, mesh generation algorithms do not usually gener-
ate an optimal mesh. Thus, an optimization stage is generally incorporated into the mesh
generation process in order to improve the quality of the mesh elements.

The following section reviews algorithms for improving the quality of an initial mesh.
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3.5 Algorithms for Generating an Optimal Mesh

3.5.1 Refinement Algorithms

The mesh refinement process usually involves adding more elements (points, triangles, quadri-
laterals, etc.) to the whole mesh (global refinement), or to selected regions of interest or of
high error (local refinement).

For Owen [165], refinement is defined as any operation performed on the mesh that Refinement
definitioneffectively reduces the local element size. Methods have been proposed for both 2D meshes

(triangles and quadrilaterals) and 3D meshes (tetrahedra and hexahedra).

2D refinement algorithms have at their core several techniques for dividing triangles.
According to Plaza and Rivara [173] and Suárez et al. [223] there are at least six partitions
of a triangle, as illustrated in Figure 3.7. Triangle

partitions

(a) (b) (c)

(d) (e) (f)

Figure 3.7: Triangle Partitions

The following definitions, taken from Suárez et al. [223] and Plaza and Rivara [173],
explain the triangle partitions.

Definition 3.1 (Simple edge bisection). The simple bisection consists in dividing the triangle
into two sub-triangles by the union of the midpoint of one of the edges with its opposite vertex
(Part (a) of Figure 3.7).

Definition 3.2 (Longest edge bisection). The longest-edge bisection consists in dividing the
triangle into two sub-triangles by the union of the midpoint of the longest-edge with its opposite
vertex (Part (b) of Figure 3.7).

Definition 3.3 (The 4-triangles similar partition). The triangle is divided into four similar
triangles by connecting the edge midpoints by means of line segments parallel to the edges of
the triangle. Therefore, the resulting sub-triangles are similar to the original one (Part (c)
of Figure 3.7).

Definition 3.4 (The 4-triangles longest edge (4T-LE) partition). The triangle is bisected
by its longest edge, followed by the edge bisection of the resulting triangles by the remaining
original edge of the triangle (Part (d) of Figure 3.7).
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Definition 3.5 (The 4-triangles shortest edge partition). The triangle is bisected by its
shortest edge, followed by the edge bisection of the resulting triangles by the remaining original
edge of the triangle (Part (e) of Figure 3.7).

Definition 3.6 (Barycentric partition). The barycentric partition consists in connecting the
barycenter of the original triangle with the vertex and edge midpoints of it (Part (f) of Fig-
ure 3.7).

Similarly, there are partitions and methods for tetrahedra refinement in 3D. For in-
stance, Plaza and Rivara [173] describe the 8-tetrahedra longest-edge (8T-LE) partition,
the 3D Freudenthal-Bey partition, and the 3D barycentric partition.

Owen [165] states that the above mentioned 2D and 3D strategies fall into the category of
edge bisection strategies. Owen presents another category for refinement approaches, called
point insertion. According to the author, this kind of approach consists of inserting a single
node at the centroid of an existing element, triangle or tetrahedron, dividing it into three or
four elements, respectively.

More information about refinement algorithms can be found in Miller et al. [146], Plaza
and Carey [171], Plaza et al. [172], Plaza and Rivara [173], Rivara [184], Rivara [185],
Shewchuk [207], Staten and Canann [221], and Teng and Wong [228].

3.5.2 Derefinement Algorithms

The mesh derefinement or mesh coarsening process usually involves removing mesh elements
(points, triangles, quadrilaterals, etc.) from the whole mesh, or from selected regions.

An initial mesh commonly contains some regions that have only a few elements, and/or
some other regions that have many elements. Sometimes, due to the nature of the problem
to be solved and the domain, some of these regions must be refined and others derefined.
For example, mesh refinement increases the number of elements and vertices, which in turn
can also increase the computation time for the entire model. In order to maintain a similar
computation time, while increasing resolution and accuracy in the results, it is sometimes
necessary to refine the main areas of interest and to derefine other mesh regions [205].

Two commonly used simplification operations are vertex remove and edge collapse [53]. Simplifica-
tion
operations

In a triangular mesh, the vertex remove operation consists in removing a single vertex
Vertex
removeand all the triangles touching it. This creates a hole that must be filled with a new set of

triangles. Figure 3.8, obtained from Cohen [53], illustrates the process.

In this case, the vertex has six adjacent triangles, and the elimination of that vertex
creates a hole with six sides. In this example, the six triangles around the vertex are replaced
by a new triangulation with four triangles.
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Figure 3.8: Vertex Remove Operation

The number of possible retriangulations for a n + 2-sided hole is given by the Catalan
sequence, that describes the number of unique ways in which a convex planar polygon can
be triangulated. In the case of a n + 2-sided concave planar polygon, the number of possible
triangulations is bound by the corresponding Catalan sequence.

The Catalan sequence is: Catalan
sequence

Cn = 1
n+1

(
2n
n

)
= (2n)!

(n+1)! n!
n ≥ 0

For instance, if a vertex is removed leaving a 5-sided concave hole, then Cn = C3 = 5,
i.e., there are five possible triangulations, which are shown in Figure 3.9.

Figure 3.9: Different Triangulations for a Pentagon

On the other hand, edge collapse consists in merging an edge’s two vertices into a single Edge
collapsevertex. With this, the triangles containing both of these vertices transform into 1D edges,

and therefore are removed from the mesh. Each application of this operation reduces the
number of triangles in the mesh by two.

Figure 3.10, obtained from Cohen [53], illustrates the process.

Figure 3.10: Edge Collapse Operation

More information about derefinement algorithms can be found in Bern and Plassmann
[26], Cohen [53], Miller et al. [145], Miller et al. [146], and Shepherd et al. [205]
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3.5.3 Improvement Algorithms

For Owen [165], mesh improvement, also called mesh clean-up, refers to any process that Improve-
ment
definitionchanges the element connectivity.

According to Canann et al. [36], and considering interior triangular mesh improvement, all
improvement algorithms can be based on three operations: element collapse, element open,
and diagonal swap, which can be implemented as a third basic operation or as a combination
of the two previous operations. In general, the element collapse operation is based on the
edge collapse operation described in Section 3.5.2. Thus, it is possible to consider it as a
derefinement operation instead of an improvement operation1.

The element open and diagonal swap operations are described in the following paragraphs.

The element open operation adds elements to the mesh. In Figure 3.11, adapted from Element
openCanann et al. [36], it is possible to see that the element open operation along a − b − c adds

a new vertex d ′, three new edges a ′d ′, b ′d ′ and c ′d ′ and two new elements P and Q .

c

a

b

b’

a’

Q

P

d’

c’

Figure 3.11: Element Open Operation

The diagonal swap operation swaps an existing shared edge between two edge-adjacent Diagonal
swaptriangles, in such a way that two new edge-adjacent triangles are built. Figure 3.12, adapted

from Canann et al. [36], shows the operation: triangles abd and bcd share edge db; this shared
edge is swapped with edge a ′c ′, producing the triangles a ′b ′c ′ and a ′c ′d ′.

a’

d’

c’

b’

a

d

c

b

Figure 3.12: Diagonal Swap Operation

1Nancy Hitschfeld-Kahler. Personal communication, August 2011. On Edge Collapse and Element Col-
lapse Operations.
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On the other hand, quadrilateral meshes have similar operations, which are discussed in
depth in [37].

An interesting point to be considered is that several refinement algorithms can also be
used as improvement algorithms2. More information about improvement algorithms can be
found in [37], Hitschfeld et al. [100], Kinney [122], Owen [165], Rivara [183], and Staten and
Canann [221]

3.5.4 Optimization Algorithms

Optimization or smoothing refers to any process that adjusts vertex locations while main- Optimiza-
tion
definitiontaining the element connectivity [165] with the purpose of improving the quality of the mesh

without changing its topology [228]

According to Owen [165], there are a variety of optimization techniques, classified in four
categories:

1. Averaging methods.

2. Optimization-based methods.

3. Physically-based methods.

4. Mid-node placement.

Laplacian smoothing, a commonly used averaging technique is hereby shown as an exam-
ple of an optimization algorithm [228] and illustrated in Figure 3.13, obtained from Vollmer
et al. [245]. This heuristic consists of moving each internal point (e.g., qi) to the barycenter
(pi) of its direct neighbors (qj 1, qj 2, qj 3, qj 4, qj 5, qj 6).

q
j1

q
j2 q

j4

q
j5

q
j6

q
j1

q
j2 q

j4

q
j5

q
j6

q
j3

q
j3

q
i

p
i

Figure 3.13: Laplacian Smoothing Algorithm

2Nancy Hitschfeld-Kahler. Personal communication, May 2008. On Refinement and Improvement Algo-
rithms.
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From the Figure 3.13, qi represents the current point (before the application of the al-
gorithm) and pi the new position (after the application of the algorithm), which is given by
the following formula:

pi =

{
1

|Adj (i)|
∑

j∈Adj (i) qj , i ∈ Vvar ,

qi , i ∈ Vfix .

where Adj (i) denotes the set of adjacent vertices of one vertex i , Vvar denotes the set of
movable vertices, that is, the set of vertices whose position can be modified, and Vfix the set
of vertices that are fixed [228].

Other examples of optimization techniques belonging to other categories presented by Owen
[165] can be studied in his article.

More about optimization algorithms can be found in the work of Bern and Eppstein [25],
Djidjev [75], Knupp [124], Owen [165], and Vollmer et al. [245]

3.6 Input/Output File Format

When meshes are generated, they are mainly stored in RAM using a suitable data structure.
Once they conform to the different quality criteria, it is necessary to store them in a persistent
media, using some specific format, so they can be used by other applications.

There are several file formats useful for both input and output data. Some of them are
described by Phillips et al. [170]. In the following sections two of them will be shown. Their
descriptions were obtained from Melo [141], Phillips et al. [170] and Silva [210], and the
example used for describing each format is shown in Figure 3.14 and was adapted from Melo
[141].

(0, 0, 5)

(10, 0, 0)

(0, 0, −5)

(10, 10, 0)

(0, 10, 5)

(0, 10, −5)

xz

y

Figure 3.14: Mesh to be Represented in Different Formats
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3.6.1 Object File Format (off)

Mesh data is stored in plaintext, with the first line or header of each file generally containing
descriptive information, as shown in Figure 3.15. The first row contains information about
the file’s format type. The second row has information about the number of vertices, faces and
edges, which is used mainly to verify that the number of vertices in the file correspond to the
data in the file. The following six rows are the vertices themselves in a x y z format. Finally,
information about the faces is provided. The first element is the number of the vertices for
the face, following by the vertex indices in the range [0..Number of Vertices – 1] . At the
end of the row, the color specification of the face is indicated in the R G B format. In this
case, all faces are green.

OFF

6 6 12

10 0 0

0 0 5

0 0 -5

10 10 0

0 10 5

0 10 -5

3 0 4 1 0 1 0

3 0 3 4 0 1 0

3 1 5 2 0 1 0

3 1 4 5 0 1 0

3 2 3 0 0 1 0

3 2 5 3 0 1 0

Figure 3.15: Example of a Mesh in Object File Format

3.6.2 Comsol Format

In this format, data is stored in plaintext, as shown in Figure 3.16. The file consists of
two parts, indicated by the delimiters % Coordinates and % Elements. In the example, six
vertices are described in a x y z format after the delimiter % Coordinates. The delimiter
% Elements (triangular) marks the start of the list of faces and their type. Each face’s
vertices are referenced in the range [1..Number of Vertices] .

3.7 Postprocessing Algorithms

Mesh postprocessing is performed to modify some of its characteristics as a last step before
storing it. In this sense, it is possible to identify at least two common postprocessing tasks:
transforming a triangular mesh into a quadrilateral one, and viceversa [141].
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% Coordinates

10 0 0

0 0 5

0 0 -5

10 10 0

0 10 5

0 10 -5

% Elements (triangular)

2 5 1

5 4 1

3 6 2

6 5 2

1 4 3

4 6 3

Figure 3.16: Example of a Mesh in Comsol Format

3.7.1 Triangle to Quadrilateral

This process transforms a triangular mesh into a quadrilateral one. The algorithm consists of
dividing each triangular face in three quadrilaterals, inserting a vertex in the centroid of the
triangle and a vertex in each edge of the triangle, as shown in Figure 3.17. This algorithm
is applied to all triangular faces of the mesh. When dividing an edge, it must be considered
that the edge belongs to two faces, and each edge must be divided only once.

Figure 3.17: Transformation from a Triangle to Quadrilaterals

3.7.2 Quadrilateral to Triangle

This process transforms a quadrilateral mesh into a triangular one. The algorithm consists
of adding a diagonal to the quadrilateral, as shown in Figure 3.18. The algorithm must be
applied to all quadrilateral faces of the mesh.

Figure 3.18: Transformation from a Quadrilateral to Triangles
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3.8 Visualization

Nowadays, it is very common to find meshing tools that integrate visualization functionalities
in order to show the results of the mesh generation process immediately to the users. All
meshing tools shown in Table 1.1 in page 3 incorporate visualization capabilities. However,
separate mesh generators and mesh visualizers are also common. Well-known examples are
TetGen [208] and TetView [209], currently maintained by the same research group. The
following paragraphs briefly describe several mesh visualization tools.

TetView: TetView is a program for viewing tetrahedral meshes and piecewise linear com-
plexes (PLC). It was written in C++, specifically for viewing and analyzing the input
and output files of TetGen [209], even though it can also show meshes in at least nine
formats, among them off and mesh (MEDIT tool format).

MEDIT: OpenGL-based visualization software, developed to visualize numerical simulation
results on unstructured meshes in two and three dimensions, and surfaces [87]. It
uses its own format (mesh) and an old data format from previous versions (msh2).
Additionally, it supports a gis format, specially designed for terrain description.

GeomView: Written in C, it can be used as a standalone viewer or to display input data
from another program that is running simultaneously. It manages more than ten file
formats, among them off and mesh [170].

3.9 Developing Meshing Tools

Only in the last fifteen years has meshing software development been approached from the
software engineering point of view mainly by applying object-oriented design and program-
ming. In general, it is a known fact that there is a gap between software engineering devel-
opers and computational scientists that use or develop scientific software such as meshing
tools [118].

Some recent works include the development of a software environment for the numeri- Traditional
software
developmentcal solution of partial differential equations (Diffpack) [32], the design of generic extensible

geometry interfaces between CAD modelers and mesh generators [166, 225], the design of
object-oriented data structures and procedural classes for mesh generation [147], the com-
putational geometry algorithm library CGAL [83], the definition of an optimal OO mesh
representation that allows the programmer to build efficient algorithms (AOMD) [181], and
algorithms that can be used independently of the concrete mesh representations [28], as well
as a tool to support these algorithms (Grid Algorithms Library) [29]. More recently, formal
methods have also been used to improve reliability of mesh generation software [81].

On the other hand, from a reuse point of view, some recent works include the analysis With
reuse
software
development

and design of product families of meshing tools [18, 20, 188] taking into account some imple-
mentation aspects and formalizing the domain analysis, the use of a known approach called
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commonality analysis [211, 212, 213, 214, 216] developed by Weiss [246] and that consists
of systematically identifying and documenting both the common and variable characteristics
that all program family members share, and the terms used by describing the family. A good
usage example [249] of the commonality analysis approach is developed by a Finite Element
Analysis software.

Furthermore, there is interest in improving the quality of software development in the field
of scientific computing [215] by focusing attention on quality attributes such as reliability,
performance, understandability, reusability, verifiability and maintainability, among others.

Finally, Chui et al. [43] present a component-oriented software toolkit that was developed
using a systematic software engineering approach based on the component object model
(COM), which enables the combination of existing mesh generation algorithms in an easy
way.
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Chapter 4

Domain Analysis for the Meshing
Tool Domain

In the following sections, the domain analysis stage is presented, along with its definition
and its corresponding substages. The particular process used to define both the meshing tool
domain model and the scope is presented through UML activity diagrams. The input and
output artifacts are described, and the domain model is formalized.

4.1 The Domain Analysis Stage

In the context of SPL, domain analysis is the first stage within the domain engineering phase.
The term domain analysis was introduced for the first time by Neighbors [152] as

Domain
analysis

“the activity of identifying the objects and operations of a class of similar
systems in a particular problem domain.”

According to Prieto-Dı́az [178], the difference between system analysis and domain anal-
ysis is that the former is centered on a specific system while the latter is concerned with all
systems in an application area.

Any domain analysis approach has four goals [111]: Domain
analysis
goals

1. to identify and document requirements;

2. to produce an integrated and concise model that captures the requirements;

3. to build a requirements document that supports planning a good development strategy
for a particular product;
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4. to produce a domain model that may be used for developing specific applications, as
well as for guiding the development and evolution of a reuse infrastructure.

As mentioned in Section 2.2, most SPL efforts are centered on areas where several single
product developments already exist. This, in turn, makes it possible to start a domain
analysis using these products as a basis.

Figure 4.1 illustrates this domain analysis process [111]. The space axis shows the set of
requirements from existing single systems at the same point in time; the time axis captures
the changes of the requirements on a particular system. The gray ellipse represents the scope
of the SPL, i.e., the products that can be produced as part of the product line. The scope
will be addressed in depth in Section 4.1.2.
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Model

Single−System

Requirements

Engineering
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Product D

Product C

Product B

Product A

Present Time

Space

Figure 4.1: Domain Analysis from Existing Products

In contrast, sometimes organizations do not have access to a sufficiently large number
of existing products on which to base the SPL. In these cases, the approach presented in
Figure 4.1 fails, and the need for more elements or artifacts in the domain analysis process
is evident. This thesis presents strategies to overcome this issue.

The domain analysis stage consists of two substages: scoping and domain modeling. Scop-
ing is the process of defining which products are part of the SPL and which are not. Domain
modeling is the process whereby commonalities and variabilities are identified, captured and
organized in a domain model with the purpose of characterizing the domain [178]. In the
following sections, both these substages are presented in more detail.

4.1.1 Domain Model

The domain model is a product of the domain analysis stage. A domain model is a definition
of the functions, objects, data, and relationships in a particular domain [115]. Domain
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modeling has been identified as one of the most important factors for the success of software
reuse [4], as it allows recording and organizing existing domain knowledge.

For Czarnecki and Eisenecker [60], a

Domain
model

“domain model is an explicit representation of the common and the vari-
able properties of the system in a domain, the semantics of the properties
and the domain concepts, and the dependencies between the variable prop-
erties.”

Even though the above definition puts emphasis in the explicit representation of the
common and variable characteristics of the existing or future applications in the domain, it
is unusual to find an exact and standard description about what artifacts compose the domain
model and what is the sequence of steps to be followed for building it; this varies from one
author to another [35, 60, 66, 174, 226]. The PuLSE methodology [22] is an important
exception, as it provides a thorough description of the domain model building through a
complete series of process diagrams which define the products, data and control flow.

The activities for domain model development depend on those artifacts identified as be-
longing to the model. For example, both de Almeida et al. [66] and Campos and Zorzo [35]
define the feature model as the only domain model artifact. The feature model identifies
the common and variable features of the domain concepts and the dependencies between the
variable features [59]. According to Campos and Zorzo [35], producing the feature model as
a domain model artifact involves the following three activities:

1. Commonality analysis: identifies which features (requirements) are common to all ap-
plications of the domain.

2. Variability analysis: identifies which features (requirements) are variables to all appli-
cations of the domain.

3. Domain modeling: establishes relationships among common and variable features in a
suitable model.

On the other hand, Taylor et al. [226] state that there are at least two important artifacts
to be considered in a domain model: a domain dictionary, which identifies and defines the
terms used in the domain model, and a feature model. They do not explain how to build
these artifacts, but rather present examples to illustrate each artifact.

4.1.2 Scope

Domain analysis is a creative activity that involves determining, among other things, the
scope of the family to be built [60]. Decisions about scope have an important business
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impact [234] and determines the long-term viability of the product line [157]. In that sense,
the SPL scope is a core asset of the domain engineering activity [157].

Determining the scope of the system, or scoping, is an activity that bounds a system or
set of systems by defining those behaviors or aspects that are “in” and those behaviors or
aspects that are “out”, in such a way that the product line satisfies its business goals.

Northrop and Clements [157] define scope as a description of the products that will
constitute the product line or that the product line is capable of including. So, in a simple
form, the scope may consist of an enumerated list of product names. For John and Eisenbarth
[109]

Scope

“Product Line Scoping (PLS) is the process of identifying and bounding
capabilities (products, features) and areas (subdomains, existing assets) of
the product line where investment into reuse is economically useful and
beneficial to product development.”

In summary,

PLS =
n⋃

i=1

Fi , Si ,Ai ∈ P

with

F : Features,

S : Subdomains,

A: Assets,

P : Products of the Product Line,

n: number of the products.

Scoping is one of the first activities to be done when a new SPL is started, because Scope
processit consolidates knowledge about the domain that is needed to start other activities in the

SPL. Scoping is an activity that must occur in a continuous way during the life cycle of the
SPL [110], due to new business opportunities, market and technology trends, new insights,
the organization’s market position [60], and new market demands [234], among others.

A core task in scoping is identifying which future components, i.e., functionalities in the
SPL, are likely to have a high return on investment [195]. It is not enough to identify potential
products for them to be included within the reuse infrastructure. In this sense, candidate
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products must not only share commonalities but also be sufficiently different to justify the
investment in SPL, and at the same time their differences must not be so drastic that may
make their engineering from a common infrastructure simply not economically feasible [69].
If the scope is chosen to be too big, investment will be wasted on assets that will later on
not be reused at all or at least not sufficiently often to pay back the initial investment. On
the other hand, if the scope is chosen too small, components meant to be reusable will be
designed in such a way that they do not support reuse across all the relevant products, or
else certain reuse opportunities will be missed [157, 195].

The scope process can be split into activities that belong to three categories as shown in
Figure 4.2, obtained from [109].

Product Line
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Domain Experts
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Figure 4.2: Generic Scoping Process

These categories are:

1. Identification activities: They list and describe the respective elements, as shown in
the first row of Figure 4.2.

2. Assessment activities: They judge the appropriateness of the elements (e.g., subdo-
mains of the product line) against a set of standardized factors (e.g., amount of vari-
ability) and produce a ranking between the elements based on this judgment. They are
shown in the second row of Figure 4.2.

3. Optimization activities: They do not only produce a ranking but try to improve the
setup of the product line (e.g., by finding an optimized combination of features for the
product line products from a marketing point of view). They are shown in the third
row of Figure 4.2.

There are several kinds of scoping classifications. John et al. [110], Schmid [195] and van der Scoping
classifi-
cationLinden [234] discuss the first three variants of scoping; Schmid et al. [196] add the fourth

one:

• Product family scoping: This aims at identifying the particular products that ought to
be developed as well as the features they should provide.
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• Domain scoping: This is the task of bounding the domains (i.e., coherent clusters of
functionality) that are supposed to be relevant to the product line.

• Asset scoping: This aims at identifying the particular implementation components (i.e.,
functional parts of the product line) that should be developed in a reusable manner.

• Life cycle scoping: This aims at reviewing the SPL with respect to evolving require-
ments and vice versa.

On the other hand, Czarnecki and Eisenecker [60] identified two kinds of scope with
respect to the software systems in the domain:

• Horizontal scope (system category scope): Addresses the question “How many different
systems are in the domain?”

• Vertical scope (per-system scope): Addresses the question “Which parts of these sys-
tems are in the domain?”

These classifications can be integrated by noting that Product family scoping is related
to Czarnecki and Eisenecker’s Horizontal scope, and that Asset scoping is related to Vertical
scope.

The scope process defines three product categories. The SPL scope includes all products
consistent with the variability defined by the SPL’s core assets. To avoid losing business
opportunities and maximize the benefits, the SPL scope should be near both the market
interests of the company and the full range of functionalities provided by the current products.
The markets of interest restrict the scope to a new category that includes only those products
that are interesting, marketable or economically viable. The last category includes only
those products that have been actually built. Finally, there may be existing products that
utilize custom assets requiring out-of-scope variations. In this case, the SPL scope may be
augmented to include these features, if economically feasible. These categories are illustrated
in Figure 4.3, taken from Gorton [90].

Out−of−scope

variation can be

supported by

custom assets All possible products

in Markets of Interest

Scope of SPL

(All possible products within

Variation supported by core assets)

All Possible Products

Actual Products

Figure 4.3: The scope of an SPL

58



4.1 The Domain Analysis Stage

As part of the scope process, it is necessary to identify the domain’s stakeholders [51, Stake-
holders60, 154]. This identification is not a static process consisting of just documenting who the

stakeholders are, but rather it is a dynamic process of incorporating everyone involved in the
domain. Scoping requires participation from a wide range of stakeholders including managers,
developers, customers, users, methodologists, and subject-matter experts. Without sufficient
stakeholder participation, it could be impossible to develop the domain model, the product
line architecture and other core assets.

Inputs from stakeholders are required to avoid building an inappropriate scope for the
SPL. Also, their involvement increases the awareness of product line efforts [157]. Some au-
thors such as [22, 69] rely on information provided by stakeholders in the scoping, even though
they do not explicitly perform a stakeholder identification activity. Furthermore, Niemelä
and Immonen [154] state the importance of defining a stakeholders list to be able to access
their domain knowledge. The scope process proposed in this thesis builds a stakeholders list
similar to Niemelä and Immonen, i.e., a list that considers three types of stakeholders: busi-
ness stakeholders, domain stakeholders (domain experts) and product stakeholders. These
stakeholder categories are used in Section 4.2.1.1.

The scoping involves gathering information from different sources, such as existing sys-
tems, domain knowledge, and documentation, among others. Therefore, it is necessary to
iterate and contrast all available information. Figure 4.4 represents the evolution of a product Scope

evolutionline scope as a function of time [51].

c da b

Figure 4.4: Evolution of a SPL Scope

The square in part a of Figure 4.4 represents every possible software system in the domain.
Part b shows the system space divided into three parts: systems that are outside the SPL
scope (gray), systems that are inside (white), and systems that may or may not be inside
the scope (black). The process continues narrowing down the “not sure” space by carefully
defining more of the “out” and “in” spaces, until conceptually it looks like part c. Part d
shows a completely precise scope, where the products that are “in” and “out” of the scope
of the SPL have been totally defined.

It seems part c is more desirable than part d, because d is more constrained than c and
may cause the organization to lose business opportunities previously unpredicted.

According to the process described in the two previous paragraphs, it is clear that scoping
is one of the most critical success factors in building a SPL [182]:

1. It influences the development effort during later changes of the reusable platform (com-
mon assets of the whole SPL for supporting software development for several products).
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4.2 Domain Analysis Method for the Meshing Tool Domain

Scoping represents the planning of reuse and therefore influences ROI.

2. If it is performed according to the customers’ needs, it enables a short time to market
and low development costs.

3. By planning reusability, it leads to a higher process maturity for the reusable platform.
Thus, software quality and evolvability are improved. Evolvability enables a longer
usage time for the parts of the SPL and therefore influences the ROI too.

A recurrent question is the difference between requirements and scope. Clements [47] Require-
ments vs
Scopegives some ideas:

• Scope includes aspects of the system that would not appear in even the most complete
requirements specification, aspects related to business goals or construction constrains.

• They are defined at different times. The scope is defined early enough so that a business
case can be built and used to see if the SPL is economically viable. The requirements
are specified as a prelude to actual development.

• Scope and requirements have different consumers. The scope is written for people such
as marketers, who need to see what they will be asked to sell but do not require full
statements of product behavior. The requirements specification is used by the architect
and the developers of core assets and products who do need to know exact behavior.

• There is no mandate for the scope to be completely precise. Furthermore, a completely
precise scope overly constrains the SPL development process.

4.2 Domain Analysis Method for the Meshing Tool Do-

main

This section describes the domain analysis method proposed in this thesis for the meshing
tool domain. It is divided into four subsections. First, the process for producing the SPL
domain model is presented and the domain model is formalized using Z schemas. Then, the
process for determining the SPL scope is shown. Finally, several domain analysis methods
are discussed, as well as other approaches that have been used to build meshing tools.

4.2.1 Domain Model Construction Process

Processes are defined by identifying roles, artifacts and activities. The artifacts are those
work products that need to be generated in order to complete the domain model. Activities
are those that are carried out by the stakeholders to build the artifacts. This section describes
each of these elements, identifies both the relevant stakeholders and their respective roles,
and includes an activity diagram to depict the complete process.
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4.2.1.1 Stakeholders

Building a domain model for a complex domain is hard, so people involved should have a
clear idea about the role they should play. In any SPL, stakeholders can be classified into
three groups [154]: business, domain, and product stakeholders. The following list specifies
relevant stakeholders for each group specifically for the meshing tool domain. This list is
by no means exhaustive, as domain stakeholders and domain experts will be specific to each
particular domain.

• Business Stakeholders: Customers, end users.

• Domain Stakeholders (Domain Experts)

– Semiconductors modeling: Physicist, electrical engineer, computational engineer.

– Tree growth modeling: Forest engineer, biologist.

– Car design modeling: Physicist, mechanical engineer, computational engineer,
mathematician.

– Facial modeling: Computational engineer, film producer.

– Atmospheric phenomena modeling: physicist, geophysicist, meteorologist.

• Product Stakeholders: Domain analysts, product managers, family architects, product
architects, component designers, component developers, component integrators, prod-
uct developers, product maintainers.

For the process of building a domain model for the meshing tool SPL, the most relevant
stakeholders are the domain experts, who provide all the domain knowledge, and the domain
analysts, who put together all the knowledge in a structured and organized way.

4.2.1.2 Artifacts

This thesis defines a domain model based on goals, scenarios and features, similar to Park
et al. [167], and adds a lexicon for describing the concepts within the domain. Figure 4.5
summarizes the different elements of the domain model and their relationships, which are
formalized in Section 4.2.2.

The approach followed in this thesis considers not only the feature model as the main
artifact of the DA process, but also the goals, scenarios, actions and lexicon. These elements
and the relationships among them allow preserving explicitly the rationale for building both
the domain model and the domain scope. This approach is quite suitable for the meshing
tool domain, because it is a well established domain, with a very well-known terminology,
and the existence of already developed applications, in which the use scenarios are easy to
find.
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Optional
Alternative
Common

given

refined

achieved/achieve

fulfilled/enable

composed

described/describerequire/required

Action

LexiconScenarioGoal Feature

Business goal

Figure 4.5: Domain Model Artifacts

The business goal states the purpose for developing products as part of a product family
and thus gives context to the domain model artifacts. The business goal is unique for the
whole SPL, but there may be several particular goals. As the business goal is not part of
the domain model, it will not be formalized as the rest of the domain artifacts mentioned in
Section 4.2.2.

The set of goals identified as part of the domain model must fulfill the purpose of the
business goal as a whole. These goals are stated in natural language, as they are provided
mainly by the domain expert in her/his own terms.

Scenarios can be typically divided into development scenarios, which are those followed
whenever a product of the SPL is being built, and use scenarios, which are followed by
particular products while they are being executed. This thesis considers only use scenarios,
and uses structured natural language to establish scenarios as a sequence of atomical actions,
similarly to Kim et al. [119]. This decision is made considering that, in general, it is easier to
review already developed applications and register the sequences of actions and conforming
scenarios than to find correctly documented applications and to find in that documentation
the actions followed to develop the applications. Meshing tools are not the exception. A
large variety of meshing tools can be found in Schneiders [200], and most of them do not
include complete development documentation.

In this particular domain, those data storage, parameters, functionalities or user interac-
tions identified for the potential products in the SPL are considered features; they may be
either common for all products in the SPL (mandatory), optional or alternative. Features are
generally inspired by components already developed and present in existing products as well
as by concepts from the application domain. As is usual practice in SPL development, this
thesis documents software features using a feature model which includes a tree-like structure
as well as a series of constraints among the included features [60, 115]. In other domains,
such as Computer Supported Cooperative Work (CSCW), it is common to find other kinds
of features, such as communication, interoperability, and awareness, among others [97]. Ap-
plying the DA approach presented in this thesis to the CSCW domain requires evaluating
how well this approach fits the CSCW domain. As a result, some changes may be required.
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The lexicon is, by definition, a natural language explanation of the concepts involved in
the domain. This work proposes that at least all identified features should be described in
the lexicon.

4.2.1.3 Activities

Even though the existing literature is rich in proposals for domain model specification, it is
sorely lacking in the description of the actual steps to be performed in order to build the
model. In contrast, this work proposes a rigorous process for guiding the activities that need
to be carried out in order to build this model. This process is specified using the UML
activity diagram shown in Figure 4.61.

Stakeholder identification is the first activity in the process of building the domain model,
so as to extract their knowledge and use it building in the domain model and the SPL scope
building. It is an important activity in the DA because it determines the people involved
in the development and use of the different SPL products. The stakeholders also define
the business goal, taking into account their knowledge about the domain and the software
products to be developed.

The domain experts and the domain analysts should interact in order to identify and
specify goals, features, scenarios, actions, and terms of the lexicon. To this end, a variety
of sources of information may be considered complementing the domain experts’ knowledge
such as available components developed within the domain, external information (e.g. emerg-
ing technologies within a domain, market information and literature) and optionally systems
information (e.g. system documentation and existent systems developed in the domain). Ad-
ditionally, considering that the domain model process is part of the domain analysis process,
which in turn is an iterative process, it is necessary to consider the features out of the scope
as an optional input to the domain model: they are useful when new products are being
evaluated for their incorporation to the SPL scope, as part of the product derivation process
(Section A.2).

Once the first set of goals, scenarios, actions, features and lexicon is available, the domain
analyst needs to establish the relationships among these model elements. The most important
relationships are between goals and scenarios, between actions and features, and among
features themselves.

Once these activities are done, the domain expert checks for completeness by analyzing if
the model elements captured are enough for building all the expected products. Meanwhile
the domain analyst checks for consistency by verifying that the domain model satisfies all
the consistency conditions. If any of these conditions (completeness or consistency) does not
hold, then the process should iterate. Otherwise the domain model can be considered to be
ready and we can proceed to the next step in the SPL development.

1An early version of the domain analysis process was validated in November 2007 by Todd L. Veldhuizen
from Electrical and Computer Engineering Department, University of Waterloo.
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Figure 4.6: Domain Model Construction Process

4.2.2 Domain Model Definition

The proposed domain model includes features, goals, scenarios and lexicon, along with the
relationships among these elements. The lexicon defines the domain vocabulary, and allows
a better and common understanding for all stakeholders involved in the domain [60]. Several
other authors agree on the need for a lexicon in the development of the SPL [115, 129, 214,
246]. This work requires the lexicon define at least all features.
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The definitions of features, goals and scenarios are inspired by and adapted from Park
et al. [167]. In the context of a product line, a goal is an objective of the business, the
organization or the systems that some stakeholder hopes to achieve with that product line.

A scenario is a possible behavior limited to a set of interactions with the purpose of
achieving some goals with a product of the product family. Consequently goals can be
achieved through the execution of scenarios. Scenarios capture real requirements as they
describe real situations or concrete behaviors in terms of actions. Thus, a scenario is generally
composed of a sequence of one or more actions corresponding to user or system interactions
with products in the product line.

Features are characteristics and abstractions of product functionalities, parameters, data
storages and user interactions in a SPL visible to stakeholders, and thus they can be viewed
as effects achieved by some product behavior (external or internal). As such, a feature is
an attribute of a system that directly affects end-users [115]. Product features are related
to scenarios through actions, i.e., features are required to implement actions. Features are
defined as part of the lexicon.

4.2.2.1 Domain Model Formal Definition

The proposed domain model formal definition uses Z schemas for defining the elements that
form part of the domain model and their relationships.

In particular, the use of Z schemas to describe the domain model mainly aims to describe
properly, rigourously and in a non-ambiguous manner the relationships among the different
artifacts belonging to the domain model, which were sketched in Figure 4.5. There are several
approaches to describe the particular artifacts. For example, Kim et al. [120] and Rolland
et al. [187] present approaches for goals and scenarios that add structure and rigor, preserving
proximity with the stakeholders by the use of natural language. For the feature model, a non
exhaustive list of approaches can be obtained from Classen et al. [46], Czarnecki et al. [61]
and Janota et al. [107]. The list ranges from graphical (FODA [115]), textual (FMP [2]) and
formal (TVL [46]). However, there are no unique approaches to describe the integration of
all the domain model’s artifacts used in this thesis in a suitable, non-ambiguous and rigorous
fashion. The only exception may be the work of Kaindl [114].

Since features can be defined as mandatory (commonalities), or optional and/or alterna-
tive (variabilities), this work defines Feature as a name and a type, as specified in the Feature
schema.

TYPEF ::= GroupedFeature | SolitaryFeature | RootFeature

Feature
name : seq char
type : TYPEF
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This thesis also considers GOAL, ACTION, and DESCRIPTION as primitive types, and
it defines SCENARIO as a sequence of ACTION.

[GOAL,ACTION ,DESCRIPTION ]

SCENARIO == seq ACTION

DomainModel
Goals : PGOAL
Scenarios : P SCENARIO
Features : PFeature
Actions : PACTION
Lexicon : Feature 7→ DESCRIPTION
By Scenario : GOAL↔ SCENARIO [a]
By Feature : SCENARIO ↔ Feature [b]

Actions =
⋃

s∈Scenarios ran s [e]
dom Lexicon ⊆ Features [f]
dom By Scenario ⊆ Goals [g]
ran By Scenario ⊆ Scenarios [h]
dom By Feature ⊆ Scenarios [i]
ran By Feature ⊆ Features [j]

The schema DomainModel defines the elements that form part of the domain model. In
this schema the variables are Goals, Scenarios, Features, Actions and Lexicon. The schema
also includes the relationships between goals and scenarios (By Scenario [a]), and between
scenarios and features (By Feature [b]), both inspired by the work of Kaindl [114].

Notice that defining the Lexicon as a partial function from Feature to DESCRIPTION is
a simplification, since it would eventually be necessary to define other concepts of the appli-
cation domain as well. Defining the Features just as a set of Feature is also a simplification
because it does not include the feature model structure.

The invariants that any DomainModel must satisfy are those stated in the lower part
of the schema. The identified actions are those derived from the defined scenarios [e]. The
Lexicon includes the definition of some of the identified features [f], as there may be some
features that are not defined yet. Only those goals, scenarios and features that have been
identified as part of the DomainModel can be related by the By Scenario and By Feature
relations [g,h,i,j].

Domain Models also include constraints on their elements. The ConstrainedDomainModel
extends the DomainModel with the Requires [c] and Excludes [d] relationships that establish
that two features must be together in a product, or cannot be together in a product, re-
spectively. Both, Requires and Excludes, can only relate already identified Features [k,l,m,n].
Although these relationships are not used for consistency checking, they are very important
for characterizing the domain and for correct product instantiation.
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ConstrainedDomainModel
DomainModel
Requires : Feature ↔ Feature [c]
Excludes : Feature ↔ Feature [d]

dom Requires ⊆ Features [k]
ran Requires ⊆ Features [l]
dom Excludes ⊆ Features [m]
ran Excludes ⊆ Features [n]

4.2.2.2 Consistent Domain Model Formal Definition

A consistent domain model is one that may be used as a basis for subsequent steps within
the SPL development. Although we may have a transient inconsistent domain model, in
the end it needs to be consistent. The ConsistentDomainModel schema refines the Con-
strainedDomainModel schema by adding new constraints. It includes the previous schema
ConstrainedDomainModel, and also includes the definition of another relationship (Attached
[o]) between Actions and Features.

ConsistentDomainModel
ConstrainedDomainModel
Attached : ACTION ↔ Feature [o]

dom Lexicon = Features [p]
dom By Scenario = Goals [q]
dom By Feature = ran By Scenario = Scenarios [r]
dom Attached = Actions [s]
ran Attached = Features [t]

Within a ConsistentDomainModel, all identified Features are described in the Lexicon [p],
all identified Goals have a series of related Scenarios [q], all identified Scenarios contribute
to a certain goal and may also be fulfilled with the set of identified Features [r]. Finally, all
identified Actions are attached to at least one feature [s], and all Features are attached to at
least one action [t]. These conditions are used for consistency checking, which is one of the
termination conditions of the proposed process.

4.2.3 Scope Construction Process

The scope construction process is executed once the domain model construction has finished.
From a theoretical point of view, separating these two processes is understandable, as it seems
that they can be developed in parallel. However, experience in building domain models and
scope suggests that both processes must be carried out sequentially, as all iterations with
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stakeholders occur in the domain model construction process, and the domain model that is
an input to the scoping construction process must be a finished artifact.

4.2.3.1 Artifacts

The SPL Scope is constituted by the Business Goal, the Feature Model and the Product
Map. Clements [51] states that the scope is refined in terms of products’ observable behav-
iors and quality attributes but does not include goals and scenarios from the domain model.
This thesis expands the work done by Rossel et al. [188]: it formally defines relationships
among goals, scenarios, and features, and therefore the domain designer can derive behavior
and quality attributes from features, if necessary. These three elements are considered scope
elements because each one of them constrains the domain one more level, starting from the
business goal that is wide but delimited and finishing with the product map that is narrow
but coherent with the necessities of the stakeholders.

It is widely accepted that the feature model and the product map are part of the SPL
Scope, as can be seen by reviewing the domain analysis methods mentioned in Section 4.2.4.
On the other hand, several authors [51, 66, 69, 157, 182, 193, 195] talk about the importance
of the business goal in the scoping. Some authors take a different perspective to working
with business goals [66, 69, 193, 195]. They identify several business goals and operationalize
them into a set of benefit functions. This thesis deals with only one business goal, which in
turn gives the context for the domain model and the SPL scope.

The business goal is given by the stakeholders. The feature model is generated by the
domain model process. The product map must be built by the domain experts and analysts.
This work borrows several ideas for product map construction from Schmid [195] and DeBaud
and Schmid [69]. Furthermore, it adopts the idea of extending the feature model with optional
extra-functional features such as cost, time and development resources from Trinidad et al.
[233]. These extra-functional features may sometimes be hard or impossible to determine
accurately for every feature in a given product. However, as cost and development time
information are useful when defining the products in the scope, this thesis incorporates this
information into the product map instead of into the feature model. Moreover, if the feature
diagram is large, drawing the diagram with extra-functional features can be difficult and
cumbersome.

Sub- Extra-F. F. (Opt.) Existing Planned Potential
Domain Feature Priority Time Cost P1 P2 P3 P4

Sub- Feature 1.1 4 3 days 100 US$ X — X X
Domain 1 Feature 1.2 1 6 days 200 US$ — X — —

Feature 1.3 3 2 days 80 US$ — X — X
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Sub- Feature n.1 2 10 days 300 US$ X — X X
Domain n Feature n.2 5 4 days 100 US$ X X X —

. . . . . . . . . . . . . . . . . . . . . . . .

Table 4.1: Product Map

Table 4.1 presents the format of the product map. The columns hold the software prod-
ucts, and the rows hold all features. Stakeholders fill the table, indicating which features are
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present in which products.

Similarly to other authors [22, 66, 69, 195], three types of products were identified:

1. Existing products: Products that have been developed prior to the start of the SPL
project.

2. Planned products: Products where the requirements are rather clear, but development
has not yet started.

3. Potential products: Products for which no clear requirements exist yet, but these prod-
ucts are seen as relevant, for example, because they address new market segments.

These kinds of products fit well with the meshing tool domain, as there are several already
existing meshing tools, and it is easy to deduce their features. Similarly, and considering the
previously identified existing products, several more features can be derived or expanded
from them to constitute the planned products. Finally, potential products arise from the
feature model and market necessity.

Once the features for each product are established, the stakeholders must prioritize the
features so as to know which features will be implemented as part of the next development
cycle, which features will be implemented in a later development cycle, or which ones will
not be implemented for the moment [182]. Feature prioritization is also used by Czarnecki
and Eisenecker [60] and de Almeida et al. [66].

How to assign priorities to the features? Obviously, this is a subjective activity which
depends on the expertise of the stakeholders involved in the process. The following paragraph
gives some guidelines for helping stakeholders in this activity.

• If the feature is present in many products, then its priority is high.

• If the feature is important for developing several products, then its priority is high.

• If the feature is only present in potential products, then its priority is low.

• If the feature is mandatory, then its priority is high.

• If the feature is optional, then its priority is low.

Finally, the extra-functional features in the product map, such as time and development
costs, must be filled. As with feature priorities, these values must be decided by the stake-
holders, and will be useful when building a production plan in the domain design step.

The scope definition process described above is Feature Oriented : it first identifies the
characteristics that are needed in the SPL, considering several kinds of inputs as shown in
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Figure 4.6. Then, it summarizes those characteristics found in the domain analysis process
in a table such as Table 4.1. In contrast, PuLSE-Eco is a Product Oriented process where
the first step is to identify the products and their characteristics [69]. PuLSE-Eco uses a
table similar to Table 4.1 at the beginning of its process, and later iterates over this table to
build the scope. Finally, Niemelä and Immonen [154] describe a Goal Oriented process for
determining the scope.

The scoping presented in this thesis seems more time-consuming and resource-intensive
than PuLSE-Eco. Not only must it determine the features, but it also must determine
scenarios, actions, goals and lexicon, while guaranteeing consistency and completeness. Nev-
ertheless, it benefits from these actions by generating a domain model and a SPL scope that
are consistent and with a high probability complete, consistency and completeness being two
qualities that are difficult to reach at the same time.

4.2.3.2 Activities

The activities for the scoping process are shown in the UML activity diagram of Figure 4.7.

SPL Scope

Build

Product Map

Build

:SPL Scope

Add to Reuse

InfrastructureInfrastructure

:Reuse

:Product Map

Knowledge

:Stakeholders’
:Domain Model

:Business Goal
:Domain Model

:Features

Figure 4.7: Scoping Construction Process

The first activity is building the product map; it is carried out taking into account the
stakeholders’ knowledge and the domain model artifacts produced during the process de-
scribed in Section 4.2.1.3.

70



4.2 Domain Analysis Method for the Meshing Tool Domain

The main artifacts considered from the domain model are the feature model and the
scenarios. The features are incorporated in the product map for each SPL product. Any
given product is defined completely by its features. The scenarios illustrate the diverse
relationships among features, and the global behavior of each product. Additionally, the
goals contextualize the products.

Once the product map is finished, the scope is completely defined, because the other two
artifacts that compose the scope, i.e., the feature model and the business goal, have also been
already developed.

4.2.4 Related Work

This section discusses several techniques for domain analysis in general and meshing tool
domains, as well as other approaches that have been used to build meshing tools.

Coplien et al. [57] propose SCV (Scope, Commonalities and Variabilities), a method
for conceptually addressing domain analysis within SPL. FAST [246], FORM [116] and
PuLSE [24] are notations and techniques proposed for the application of SCV to any ap-
plication domain and generally cover the whole domain engineering stage. All these methods
propose well-defined processes for building the domain model.

This thesis’s approach goes a step further by formalizing the domain model definition and
also precisely defining iteration/termination conditions for the proposed process. Further-
more, it does not need to tailor the approach for the specific application domain because it
has been specifically created for the meshing tool domain.

Smith and Chen [212] have applied SCV to the meshing tool domain using FAST. Even
though their approach is systematic, they do not take full advantage of meshing tool do-
main characteristics because they apply a general DA method for scientific computing soft-
ware [211, 214]. In particular, binding time for variabilities in meshing tools is fixed: which
features are included is always decided at product design time, and which particular imple-
mentation for each chosen feature is decided at compilation time. This default binding time
leads to a simpler DA process and more compact documentation, and also allows making
decisions at a higher level of abstraction, thus yielding simpler tools with the potential for
improved performance.

Kim et al. [119] propose a DA method based on goals and scenarios. It involves four infor-
mation levels: business, service, interaction and internal, each of them refining the previous
one. Due to the number of information levels, this method is appropriate for characterizing
domains where the domain expert has little experience in software development. Meshing
tool experts are usually involved in software development even though they are not always
knowledgeable in software engineering, so it is possible to simplify the domain model and the
process for building it. The process proposed in this thesis includes the business goal as a
driver for identifying domain model artifacts of the SPL and defines a single level where the
complete domain model is defined. Park et al. [167] propose using features, scenarios and
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goals for capturing the characteristics of the domain. In both cases, as their approach is gen-
eral for any domain, their method involves three successive specification levels. Even though
the methods of Kim et al. [119] and Park et al. [167] are iterative, they do not define a clear
termination condition so as to determine whether the desired domain elements’ quantity and
quality have been reached.

Niemelä and Immonen [154] introduce the QRF (Quality Requirements of a software
Family) method, which explicitly focuses on how quality requirements have to be defined,
represented and transformed into architectural models. This method is appropriately struc-
tured and each step is clearly defined. Even though this method can be used to define the
meshing tool domain model, it needs tailoring because it was proposed for a software dis-
tribution domain. Moreover, it requires the existence of concrete products, and in the case
of the meshing tool domain this condition has been identified as optional. Finally, there is
no clear distinction between the problem space and the solution space, due to its focus on
transforming requirements to architectures. This can represent a risk for stakeholders lacking
previous experience in the task of capturing quality requirements.

Douta et al. [79] present an approach to commonality and variability analysis called
CompAS for the specific domain of computer-assisted orthopaedic surgery. This approach
focuses in the analysis of the evolution of the domain to effectively determine which features
should be included as common or variable. The method bases its source of information
for building the domain model on publicly available literature (e.g. books, articles and
standards). CompAS suggests that the domain analyst should regularly ask the domain
expert for a correct, consistent and complete functional decomposition. The approach of
this thesis assigns to the domain expert a relevant role as part of the process of building the
domain model. However, it agrees with Douta et al. [79] on the convenience of counting on
a domain specific process.

Smith and Yu [215] provide a document-driven approach for generating a family of parallel
meshing tools. The information used is similar to that included in this thesis’s model, but
the process they present is mainly a waterfall. In contrast, the process presented in the
thesis is iterative and the model is built incrementally so that feedback can be systematically
incorporated.

Smith and Chen [213] researched meshing tool requirements with a SPL perspective, but
no procedure is provided for using the products of this method for actually building meshing
tools. Also, Bastarrica et al. [20] propose a product line architecture for the meshing tool
domain, but do not focus on a systematic DA method.

4.3 Contributions of this Chapter

In this chapter, a complete process with activities, roles, input and output artifacts, and clear
termination conditions was presented for domain analysis. The process was divided in two
subprocess: one for building the domain model and an other for building the domain scope.

72



4.3 Contributions of this Chapter

Both were modeled using UML activity diagrams.

The domain model was defined using not only feature models, the most widely accepted
model for representing the common and variable aspects of the domain, but also considering
the inclusion of other elements such as goals, scenarios, actions and a lexicon, which provide
the support and rationale for discovering the features. Even though the inclusion of goals,
scenarios and actions in the domain model and their relationships have been used in other
domains, they were never used in the meshing tool domain. Furthermore, the inclusion of
the lexicon in the domain model is a novelty.

Several formal languages have been used to represent feature models. However, the rela-
tionships among all elements of the domain model have rarely been formalized. In this work,
these relationships are formalized using Z language. Thus, the domain analyst can iterate
through several inconsistent domain models, using the formal consistency conditions, until
he verifies that the domain model satisfies all consistency conditions. This iterative process
can lead to domain model completeness if the captured domain model elements are sufficient
for building all expected products.

On the other hand, the domain scope is built using the domain model produced in the
previous process plus the identified business goal and the product map. Even though the
business goal exists as an important concept in the domain, it is not always considered
explicitly as a part of the scope. In the approach presented in this thesis, this goal is the
first element that helps limit the domain.

The product map is built considering the feature model and the existing products or those
to be produced. This is a big difference with respect to other approaches for scope definition,
because in general they are product oriented, i.e., they need the existence of several products
for defining the scope, instead of the approach presented here that is feature oriented, i.e., it
needs the definition of features of the products, currently existing or not.

Finally, the product map considers optional extra-functional features such as cost, time
and development resources, usually known but not generally explicitly used. These are
typically found in the feature model instead of the product map. The change aims to maintain
the documentation and the feature model manageable.
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Chapter 5

Applying the Domain Analysis
Method

In the following sections, an application example of the domain analysis construction process
described in Chapter 4 is presented. All activities are covered and all outputs of each ac-
tivity are produced. Specific artifacts of both domain model and scope are described, and a
consistency and completeness analysis is presented. In particular, the completeness analysis
considers two real meshing tools. Finally, the product map is filled in the scoping, taking
into account some existing meshing tools.

5.1 Meshing Tool Domain Model

In this section, the proposed process for building the meshing tool domain model1 is applied.
First, the main domain concepts are introduced as part of the lexicon. This section focuses
on the business goal, defining particular goals, scenarios and features. Several features are
defined as terms of the lexicon. The relationships between goals, scenarios and features are
established. Then, the process continues with a second iteration mainly because the feature
model is found to be incomplete and inconsistent. Thus, the process improves the feature
model, adding more features, defining them in the lexicon, and also relating them according
to Requires and Excludes.

The relationships among goals, features and scenarios are stated in tables to aid con-
sistency checks. Only when the domain experts and the domain analysts intuitively think
that the model is ready, they proceed to check for termination conditions. Thus the domain
analysts check for domain model consistency using the constraints established in the Consis-
tentDomainModel schema, and the domain experts check for completeness by determining if

1An early version of the domain model was validated in November 2007 by Todd L. Veldhuizen from
the Electrical and Computer Engineering Department and R. Bruce Simpson from the Cheriton School of
Computer Science, both from University of Waterloo.
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the SPL’s candidate tools can be built with the documented elements.

The domain model is restricted to meshing tools used in applications that require mainly
unstructured meshes for representing the domain to be discretized. Unstructured meshes
need very sophisticated algorithms and data structures for their generation and manipulation,
and there are several generation methods. The modeling process will also assume that the
geometry of the domain is already given as an input and that the output of the meshing tool
is the discretization of the domain with the respective physical values, if they are given as
part of the input. The problems involved in geometry modelers and numerical solvers that
usually work in cooperation with the meshing tools are out of the scope of this thesis.

5.1.1 Lexicon

The lexicon includes the definition of the terms that are identified as essential within the
application domain. These definitions allow the stakeholders to understand the basic concepts
and share a common language while building and/or using a product.

This section describes part of the vocabulary used in the meshing tool domain. Even
though it is not exhaustive, it makes it easier to understand the domain, and the knowledge
it contains helps delimit the scope of the SPL.

Mesh: A mesh is a discretization of a domain geometry into simple cells. A mesh is composed
of vertices (nodes) defined by points, edges defined by segments, faces (in 3D) defined
by triangles or quadrilaterals, elements defined by triangles and/or quadrilaterals (2D
elements) and tetrahedra and/or hexahedra (3D elements). An element represents the
smallest discretization unit and it is of the same dimension as the mesh, i.e., either 2D
or 3D. Meshes are usually classified into structured meshes and unstructured meshes.
Structured meshes are composed by elements that are similar in shape and size, while
unstructured meshes are composed by elements of different size and/or shape.

Meshing Tool: It is a piece of software for generating and managing meshes. In general,
meshes are easy to generate but their quality strongly degrades as domain geometry
complexity increases, as point density can vary in a very irregular way in different
regions of the mesh. Automatically generating these meshes usually requires designing
and implementing complex algorithms and data structures [78].

Geometry: It is the description of the domain shape. There are different methods for
specifying the domain geometry: boundary representation (b-rep), constructive solid
geometry (CSG) and a domain discretization representation (dd-rep). A b-rep describes
the boundary of the domain, e.g., a closed set of contiguous segments (simple polygon
in 2D), or a closed set of non-overlapping polygons (simple polyhedron in 3D). A CSG is
defined by the composition of a set of predefined primitives, e.g., circles and rectangles
in 2D, or spheres and hexahedra in 3D. A dd-rep represents the domain by using a set
of simple non-overlapping elements. A mesh is a kind of dd-representation.
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(Quality) Criterion : This concept represents how good the user expects the final mesh to
be. For example, if the quality criterion is Minimum Angle equal to 30, all the elements
of a mesh (triangles o quadrilaterals) should have a minimum angle greater or equal to
30 degrees.

Refinement criterion: These are criteria that control parameters such as the number
of points inserted in a certain process, or the size of the mesh elements, such as
Maximum Edge Length (all the edges must have a length less or equal than a
threshold value) or Maximum Area (all the elements must have an area less or
equal than a threshold value).

Improvement criterion: These are criteria that control the quality of the mesh ele-
ments (usually the more equilateral an element the better). Two example criteria
are: Minimum Angle (the minimum angle of the whole mesh must be greater or
equal to a threshold value), and Maximum Aspect Ratio (the ratio between the
longest and shortest edges length of the element must be less than or equal to a
threshold value).

Optimization criterion: This type of criterion is used by optimization algorithms.
These algorithms only move the mesh points so that an optimized mesh can be
achieved.

Derefinement criterion: This type of criterion allows the user to eliminate elements
of the mesh when the mesh is too dense. For example, triangles whose area is too
small can be eliminated by specifying a Minimum Area criterion.

Algorithm: The meshing tools users usually input a domain geometry, some physical values
associated to this geometry, and some quality criteria, in order to get an appropriate
mesh to simulate some phenomena that occurs in this domain as output. In order
to generate an adequate mesh, almost all meshing tools require one or more of the
following algorithms:

Generate initial mesh: The meshing tool takes a domain geometry as input and
generates a discretization that represents the geometry as precisely as possible. It
may have the same number of final points as the input geometry or a different
one.

Refinement: This process divides coarse elements into smaller ones according to cer-
tain refinement criteria. For example, if the Maximum Edge Length criterion is
specified, the chosen algorithm divides (refines) all the elements whose longest
edge is larger than the specified Maximum Edge Length value.

Improvement: This process improves the quality of the mesh by applying a given
algorithm, which in turn may require the insertion of additional points. For ex-
ample, to improve the mesh in order to fulfill the Delaunay condition (Delaunay
algorithm), the minimum angle of the mesh is increased without inserting new
points. However if the Voronoi point insertion [190] algorithm is applied, new
points are inserted.

Optimization: This process improves mesh quality without inserting new points, sim-
ply by moving existing mesh points in an adequate way so as to improve the quality
of the resulting elements according to some optimization criteria.
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Derefinement: This process guides the generation of a coarser mesh in regions with
too many mesh points. For examples, if the Minimum Edge Length criterion is
specified, all edges whose length is less than the Minimum Edge Length value are
eliminated.

Move boundary: All the previous algorithms work over fixed geometries, i.e., the shape of
the domain does not change after applying any of these algorithms. However, there are
applications where the geometry may change; for example, while modeling a growing
tree. Thus, this concept refers to algorithms that manage geometry changes.

Evaluate: Generates statistics of the mesh. For example number points, edges and faces,
size of the edges, area of the triangles, and minimum angle of each triangle, among
others.

Postprocess: Represents additional information that is generated depending, for example,
on the numerical method that will be used. Also included here is the generation of a
quadrilateral mesh from a triangulation and viceversa.

Visualize: Represents tools that allow to visualize a mesh. This feature can be integrated
in the mesh generator.

Input: Represents the geometry and physical values of the domain to be discretized.

Output: Represents the mesh that the mesh generator has built according to the specified
input and criteria specified by the user.

Region: Represents the part of the domain where an algorithm will be applied.

User interface: The interaction between a user and a software system is done by means of
the user interface (UI). In this sense, the UI provides both input and output facilities.
The first one permits entering information or manipulating the software system, and the
second one permits obtaining results of those inputs. According to Sommerville [217],
there are at least four primary styles of interaction with the UI: direct manipulation,
menu selection, form fill-in and command language.

Command Language: The user puts a special command and associated parameters
to indicate the system what to do.

Menu selection: The user selects a command from a list of possibilities. This list is
commonly represented by a menu.

Direct manipulation: The user interacts directly with objects on the screen. This
style usually involves a pointing device such as a mouse that indicates the object
to be manipulated and the action to be done with that object.

Form fill-in: The user fills in the fields of a form.

5.1.2 Goals

In this thesis, the business goal and a set of particular goals for this domain are identified.
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5.1.2.1 Business goal

The business goal, i.e., the goal for developing the meshing tool SPL, can be stated as follows:

• Developing new meshing tools for different applications with minimum effort.

This business goal recognizes the complexity of building meshing tools in general, and
supports the application of the SPL approach for their construction.

5.1.2.2 Goals

Goals define what stakeholders want to achieve through the software product line. This work
has identified several particular goals for the Meshing Tool domain. Here, six goals that
implicitly describe both the context and the quality attributes of the software product line
it would like to develop are presented.

G1 : Generation of meshes for diverse domain geometries that fulfill certain given criteria
in specific regions of the domain depending on the particular application requirements.

G2 : Generation of meshes with the minimum amount of points that fulfill the application
requirements.

G3 : Generation of meshes in a reasonable CPU time.

G4 : Generation of meshes using an efficient memory management.

G5 : Scalability in the number of mesh points.

G6 : Generation of meshes that fulfill the requirements of a particular numerical method.

5.1.3 Scenarios and actions

This section details a list of use scenarios for particular meshing tools as well as their corre-
sponding sequences of actions. Notice that actions that take part in different scenarios have
the same identification whenever they are identical. Even though a 2D domain is considered,
the scenarios can also be applied to a 3D sub-domain, taking note of particular differences,
for instance, types of algorithms that work in only one dimension but not in the other one.

S1 : Generate quality Delaunay meshes for piecewise linear complex (PLC) or planar straight
line graph (PSLG) domains.
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A1 : Apply an algorithm for reading the PLC or PSLG geometry in the corresponding
format.

A2 : Apply the Delaunay algorithm in order to generate the initial mesh.

A3 : Select refinement and/or improvement criteria, and regions where they will be
applied.

A4 : Apply the Voronoi Point Insertion algorithm using the specified quality criteria
and regions.

A5 : If desired, evaluate the quality of the mesh elements.

A6 : Store the mesh in a specified output format.

A7 : Visualize the mesh.

S2 : Generate quality meshes with the minimum number of final mesh points.

A8 : Apply an algorithm for reading the geometry in the corresponding format.

A9 : Apply an algorithm to generate the initial mesh.

A10 : Select refinement, improvement and/or optimization criteria, and regions where
they will be applied.

A11 : Apply the refinement, improvement and/or optimization algorithm that mini-
mizes the number of inserted points using the specified quality criteria and regions.

A12 : If necessary, apply a derefinement algorithm using the specified derefinement
criterion and region.

A6 : Store the mesh in a specified output format.

A7 : Visualize the mesh.

S3 : Generate meshes with approximated quality as fast as possible.

A8 : Apply an algorithm for reading the geometry in the corresponding format.

A9 : Apply an algorithm to generate the initial mesh.

A13 : Select improvement criteria and regions where they will be applied.

A14 : Apply the fastest improvement approximated algorithm using the specified
quality criteria and regions.

A6 : Store the mesh in a specified output format.

A7 : Visualize the mesh.

S4 : Generate meshes with minimal quality that optimize the memory used.

A8 : Apply an algorithm for reading the geometry in the corresponding format.

A9 : Apply an algorithm to generate the initial mesh.

A3 : Select refinement and/or improvement criteria and regions where they will be
applied.

A15 : Apply a memory efficient refinement and/or improvement algorithm using the
specified quality criteria and regions.

A6 : Store the mesh in a specified output format.

A7 : Visualize the mesh.
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S5 : Generate large meshes in a reasonable CPU time.

A8 : Apply an algorithm for reading the geometry in the corresponding format.

A9 : Apply an algorithm to generate the initial mesh.

A16 : Select refinement criteria and a region where they will be applied.

A17 : Apply a refinement algorithm that scales with the number of points using the
specified criteria and regions.

A6 : Store the mesh in a specified output format.

A7 : Visualize the mesh.

S6 : Generate meshes for a numerical method that requires specific information (postpro-
cess).

A18 : Read an already generated mesh.

A19 : Store the mesh in its internal representation.

A20 : Apply postprocessing to the mesh.

A6 : Store the mesh in a specified output format.

A7 : Visualize the mesh.

S7 : Evaluate meshes.

A18 : Read an already generated mesh.

A19 : Store the mesh in its internal representation.

A21 : Evaluate the quality of the mesh.

A6 : Store the mesh in a specified output format.

A7 : Visualize the mesh.

S8 : Adapt and improve the quality of an already generated mesh so that its minimum
angle is less than a certain value in the whole mesh.

A18 : Read an already generated mesh.

A19 : Store the mesh in its internal representation.

A22 : Select the minimum angle criterion and a region where it will be applied.

A23 : Apply the Lepp-Delaunay algorithm using the specified quality criterion and
region.

A5 : If desired, evaluate the quality of the mesh elements.

A6 : Store the mesh in a specified output format.

A7 : Visualize the mesh.

5.1.4 Features

Features are obtained both from the concepts defined as part of the lexicon and from actions
that are required for carrying out the identified scenarios. These features are organized
according to a feature model, identifying commonalities and variabilities. In this process,
new features may also be identified and added to the model. Once the feature model is built,
the Requires and Excludes relationships between features are established.
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5.1.4.1 Feature diagram

Figures 5.1, 5.2, 5.3 and 5.4 show the feature model. The feature constraints are detailed in
Section 5.1.4.2. According to Figure 5.1, the features User Interface, Input, Output and
Mesh are common to any meshing tool. Region, Generate initial mesh, Algorithms,
Evaluate, Criterion, Move boundary, Postprocess and Visualize are optionals, i.e.,
they may or may not be present in a particular meshing tool. Moreover, any subset or all
of the interaction styles for user interfaces Command language, Menu selection, Direct
manipulation and Form fill-in may be present in a particular tool. Finally, a meshing
tool must work either with meshes in two dimensions (2D Mesh) or three dimensions (3D
Mesh).

Even though meshes of different dimensions are never mixed in a particular product, the
feature model as shown captures the knowledge of the whole meshing tool domain, making
it reusable for building meshing tools of different dimensions. Figures 5.2, 5.3 and 5.4 refine
some of the features in Figure 5.1.
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5.1.4.2 Feature constraints

Feature models sometimes must contain additional constraints [60] or composition rules [115]
that cannot be expressed only with solitary or grouped features in a plain feature diagram.
These constrains are organized in Table 5.1. It shows some of the identified Requires and Ex-
cludes relationships. When managing 2D Refine algorithms it is necessary to deal with 2D
Meshes, and this is established with a Requires relationship. Excludes constraints are related
to combinations that are meaningless, and so they must not be considered simultaneously
for a particular product. For example, a refinement algorithm such as 2D Longest-edge
bisection that works in two dimensions needs a mesh of Triangles. On the other hand,
a refinement algorithm such as 2D Lepp-bisection is excluded when dealing with regions
that have Rectangles.

Feature Constraint Feature

2D Mesh REQUIRES 2D Gim
2D Refine REQUIRES 2D Mesh
2D Derefine REQUIRES 2D Region
2D Improve REQUIRES 2D Criterion
2D Voronoi point insertion REQUIRES Triangle
2D Lepp-bisection REQUIRES Triangle
2D Four-triangle bisection REQUIRES Triangle
2D Longest-edge bisection REQUIRES Triangle
2D Lepp-Delaunay REQUIRES Triangle
3D Voronoi point insertion REQUIRES Tetrahedron
3D Lepp-bisection REQUIRES Tetrahedron
3D Longest-edge bisection REQUIRES Tetrahedron
3D Lepp-Delaunay REQUIRES Tetrahedron
2D Lepp-bisection EXCLUDES Rectangle
Move boundary EXCLUDES Criterion
Move boundary EXCLUDES Region
Postprocess EXCLUDES Criterion
Postprocess EXCLUDES Region
Quadtree EXCLUDES Triangle
Octree EXCLUDES Tetrahedron

Table 5.1: Constraints among features

Even though it is possible to find other constraints between features, such as “composed
of”, “implemented by” and “generalization/specialization”, presented by Lee et al. [129], this
thesis only uses Requires and Excludes [63, 115] because they are easily applied to the Meshing
Tool domain, mainly because these products’ features are functionalities, parameters, data
storages and user interactions, and the mentioned relationships are established naturally.
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5.1.5 Domain Model Consistency

Table 5.2 shows the relationships between goals and scenarios (By-Scenario relationship [a]
in the DomainModel schema). The table shows that all goals are achieved by at least one
scenario, and that all scenarios contribute to the achievement of at least one goal, fulfilling
condition [q] in ConsistentDomainModel.

Scenario Goals

S1 G1, G2, G6
S2 G1, G2, G5, G6
S3 G1, G2, G3, G6
S4 G1, G2, G4
S5 G1, G3, G4, G5, G6
S6 G6
S7 G1, G2, G6
S8 G1, G6

Table 5.2: Relationships between Scenarios and Goals

Table 5.3 (relationship Attached [o]) shows that all actions are satisfied by features in
the feature model, fulfilling condition [s]. All features identified as required for fulfilling the
actions are already part of the feature model (condition [t]). By construction, the set of
actions is the union of all actions required for fulfilling the specified scenarios (condition [e]).
Thus, the domain model is consistent.

For simplicity, Table 5.3 shows only 2D features. As the scenarios and actions in Sec-
tion 5.1.3 show, 3D features can also be considered. If this is the case, Table 5.3 can be easily
be modified to include these features.

Action Features

A1 2D Input
A2 2D Delaunay, 2D Mesh
A3 2D Region, 2D Refinement criterion, 2D Improvement criterion
A4 2D Voronoi point insertion, 2D Refinement criterion, 2D Improvement criterion, 2D Region, 2D Mesh
A5 Evaluate, 2D Mesh
A6 2D Output, 2D Mesh
A7 Visualize, 2D Mesh
A8 2D Input
A9 2D Gim, 2D Mesh
A10 2D Region, 2D Refinement criterion, 2D Improvement criterion, 2D Optimization criterion
A11 2D Refine, 2D Improve, 2D Optimize, 2D Criterion, 2D Region, 2D Mesh
A12 2D Derefine, 2D Derefinement criterion, 2D Region, 2D Mesh
A13 2D Region, 2D Improvement criterion
A14 2D Approximate Lepp-Delaunay, 2D Improvement criterion, 2D Region, 2D Mesh
A15 2D Refine, 2D Improve, 2D Criterion, 2D Region, 2D Mesh
A16 2D Region, 2D Refinement criterion
A17 2D Refine, 2D Criterion, 2D Region, 2D Mesh
A18 2D Input, 2D Mesh
A19 2D Mesh
A20 Postprocess, 2D Mesh
A21 Evaluate, 2D Mesh
A22 2D Minimum angle, 2D Whole domain
A23 2D Lepp-Delaunay, 2D Minimum angle, 2D Whole domain, 2D Mesh

Table 5.3: Relationship between Actions and Features
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5.1.6 Domain Model Completeness

In order to check for completeness, a domain expert checked if two meshing tools, Trian-
gle [206] and TetGen [208], could be built with the elements specified in the domain model.
It is assumed that these two tools are within the SPL scope, and as such it should be possible
to build them with the elements identified as part of the domain model of this SPL.

This is a strong assumption, because a SPL exists in a specific application domain and
all possible products to be built with the SPL must share preimplemented components (or
source code), and such thing is not necessarily true for Triangle and TetGen. However, as
an exercise and with the goal of evaluating the domain model completeness, it is possible to
think that these applications are within the scope of the same SPL defined in this thesis. It
must be noted that the number of applications needed to evaluate completeness is not related
to the break-even point at which SPL is less expensive than single system development, i.e.,
approximately three systems (applications), which is shown in Figure 2.3. Completeness is
checked by determining if the SPL’s candidate tools can be built with the specified domain
model elements. If there are several preexisting products in the domain of interest, the
completeness check must consider all of them. On the other hand, if the stakeholders have
already considered planned and potential products, they must also be taken in to account
during the completeness checking activity. The approach presented in this thesis deals with
both these cases and combinations thereof.

All features are highlighted and those that are not present in the feature diagram yet
(Figures 5.1 to 5.4) also have an * attached.

5.1.6.1 Triangle

Triangle is a well known open source 2D mesh generator that allows the user to generate
quality 2D triangulations. As input it can read either a Geometry* defined by a boundary
representation (b-rep*) or an already generated mesh (dd-rep*). In order to Generate
initial mesh, it provides two variations: the Constrained Delaunay* algorithm and
the Conforming Delaunay* algorithm. The Mesh is formed by Triangle, Edge* and
Vertex*. As Criterion, it provides two alternatives: Maximum area and Minimum
angle. As Refine, it provides the Voronoi point insertion algorithm to generate refined
meshes. The same algorithm can be used as an implementation of Improve. The Region
is always the Whole domain. There are two algorithms available for Postprocess: one
for Generating and storing the Voronoi diagram* of the generated triangulation, and
another for Check mesh consistency*. As Format* of Output, it can be the Triangle*
format (.node and .ele), or the Object File Format*. The first one requires that the
Visualize be ShowMe* and the second one requires Geomview*.

The related scenarios are: S1, S3, S4, S5, S6, S8.

The goals are: G1, G2, G3, G4, G5, G6.
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5.1.6.2 TetGen

TetGen is a 3D meshing tool developed by Hang Si, at the research group of Numerical
Mathematics and Scientific Computing at Weierstrass Institute in Germany. This tool al-
lows generating good quality and adaptive tetrahedral meshes suitable for numerical methods,
such as finite element or finite volume methods. The tool has a User Interface driven by
a Command language that permits doing all actions provided by the tool. The domain
Geometry* can be specified by using a simple b-rep* or a piecewise linear complex PLC*.
The Mesh is formed by several Tetrahedron, Triangle, Edge*, and/or Vertex*. There
are several available input and output Format*s: the Object File Format*, the TetGen
Format* (.node, .face and .ele), and the Plyhedral Format*, among others. For Gener-
ate initial mesh, there is a Conforming Delaunay* algorithm. To Refine and Improve
the Whole domain of the Mesh, the Voronoi point insertion algorithm is implemented.
As Refinement Criterion, Maximum volume is considered. Furthermore, as Improve-
ment Criterion, Maximum radius-edge ratio is considered. The Postprocess is done
through the Generating and storing the Voronoi diagram* algorithm. Finally, it is
also possible to Evaluate and Visualize the mesh whenever the user requires it. Specifically
for visualization, both Geomview* and TetView* are used.

The related scenarios are: S1, S5, S6, S7.

The related goals are: G1, G2, G5, G6.

5.1.6.3 Domain Model Completeness Evaluation

From the previous paragraphs, it can be seen that the domain model presented in Section 5.1.4
is incomplete, and missing all those features having an * attached. However, the iterative
nature and structured notation of the proposed DA process allows the missing features to be
easily added to the feature model, and the scenarios and goals can be adjusted accordingly.

Figure 5.5 shows the result of adding sub-features to the existing feature model as a
result of this completeness evaluation, For example, three new subfeatures are added to
the Visualize feature: ShowMe, TetView and Geomview. Similarly for 2D and 3D,
the Object File Format, and Triangle Format subfeatures are added to the Format
feature, and the Plyhedral Format subfeature is added only in the 3D case. Likewise, the
corresponding subfeatures for the Postprocess feature are added as well. Other features,
such as Node, Vertex and Physical value for the Mesh feature, are not present and can
be incorporated in a next version of the feature model. This iterative process continues until
the completeness condition is satisfied.

According to the process described, adding these new features forces a new iteration of
the process. The inclusion of new elements in the domain model can affect the model’s
consistency, as these new features may need new scenarios and goals. As an example, for
the Triangle tool, adding new subfeatures to the Visualize feature requires a variation S1’
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Figure 5.5: Added features according to completeness evaluation

of the scenario S1 which in turn incorporates several other new actions (A1’, A3’, A7’), as
shown below.

S1’ : Generate quality Delaunay meshes for piecewise linear complex (PLC) domains.

A1’ : Apply an algorithm for reading the PLC geometry in the Triangle format.

A2 : Apply the Conforming Delaunay algorithm in order to generate the initial mesh.

A3’ : Select the Minimum angle criterion, and the Whole domain region where it will
be applied.

A4 : Apply the Voronoi Point Insertion algorithm using the specified quality criteria
and regions.

A5 : If desired, evaluate the quality of the mesh elements.

A6 : Store the mesh in a specified output format.

A7’ : Visualize the mesh using ShowMe.

Notice that the description for S1’ is identical to that of S1, but they are still different
since they have a different sequence of actions. In the case of TetGen, something similar
occurs.

Even though reaching a domain model that is both complete and consistent may seem
to be an endless task, the completeness and consistency conditions shown in Section 4.2.2
indicate where to concentrate the model construction efforts.

5.2 Meshing Tool Scope

For building the scope, it is necessary to count on some artifacts that form the domain model.
According to Figure 4.7, a complete domain model is necessary for producing the product
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map, and the feature model and the business goal are necessary for producing the scope.
Furthermore, as it was described in Section 4.2.3.2, it is useful to consider the goals and
scenarios. They contextualize and show the global behavior of each product.

As an example, tables 5.4 and 5.5 present the Meshing tool product map. These tables
do not include the optional extra-functional features column for time and development cost
present in Table 4.1. Priority is ranked from 1 (lowest priority) to 5 (highest priority).

Tables 5.4 and 5.5 present meshing tool products taken from the state of the practice in
the meshing tool area, and also include some products that have not been created yet. In
particular, products P1 to P6 were identified from Bastarrica and Hitschfeld-Kahler [18].
Products P7 to P12 were identified from Contreras [55] and Contreras et al. [56].

The product map’s main assumptions are two: that the feature model presented in pre-
vious sections is complete, and that products P1 to P12 are in the SPL scope.

Considering the Tables 5.4 and 5.5 and other antecedents, it is possible to affirm:

• Such as it was mentioned in previous paragraphs, products P1 to P3 and P7 to P9 exist.
In particular, products P1 and P7 correspond to characteristics of Triangle [206] and
TetGen [208], respectively. The rest of the products have been developed by Hitschfeld-
Kahler’s research group and mentioned in Bastarrica and Hitschfeld-Kahler [18], but
no open source code has been released and no tool was sold. They were all developed
with academic purposes.

• For the 2D sub-domain, several features have only been considered for the Planned
and Potential products in Table 5.4, such as 2D Optimization Criterion, 2D Optimize
algorithms, and 2D Region different from 2D Whole domain. This means that those
features are not “popular” among existing products but are necessary for planned and
potential products.

• In general, mesh users can be divided in two big groups: those who use quadrilateral or
hexahedron meshes, and those who use triangle or tetrahedron meshes. The products
presented in both tables are focused on the second group. Furthermore, there are
based on the open source code of the Triangle and TetGen mesh generators. The
products specified in the tables can be used for modeling or simulation with finite
element methods or finite volume methods, with the addition of some postprocessing2.

• By taking into account the users’ needs, several different meshing tools can be gener-
ated. It is not mandatory to consider all features in all products. For example, P2 is
the product with the smallest number of features selected in the Table 5.4, and it is a
totally operative product.

2Nancy Hitschfeld-Kahler. Personal communication, October 2012. On Mesh Elements.
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5.3 Contributions of this Chapter

In this chapter, the processes for building both the domain model and the domain scope
presented in Chapter 4 were applied completely and carefully. In this sense, every single ele-
ment was built, including those in the domain model, such as feature model, goals, scenarios,
actions, and lexicon, and those in the domain scope, such as business goal, feature model,
and product map.

Thus, the practical applicability of the domain analysis process described in the previous
chapter was shown. The formal modeling of the relationships among the different elements of
the domain model allows verifying the consistency of the model. Furthermore, the complete-
ness of the model can be checked taking existing meshing tools into account. The iterative
nature of the domain analysis process permits easily adding additional elements to the domain
model, in case of being necessary.

Finally, the rationale for building both the domain model and the domain scope is pre-
served explicitly, through the different domain elements, and the relationships shown in the
previous chapter.
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Sub- Existing Planned Potential
Domain Feature Priority P1 P2 P3 P4 P5 P6

User Interface 5 X X X X X X
Command Language 3 X X X
Menu Selection 5 X X X X X
Direct Manipulation 1 X X
Form Fill-in 1 X X

2D 2D Gim 3 X X X X X
Delaunay 2D 3 X X X X X

Algorithm 5 X X X X
2D Optimize 1 X

2D Laplacian 1 X
2D Refine 3 X X X X

2D Lepp-Delaunay 3 X X X
2D Voronoi point insertion 3 X

2D Improve 3 X X X X X
2D Lepp-Delaunay 3 X X X X X
2D Voronoi point insertion 3 X X X

2D Input 5 X X X X X X
2D Geometry 5 X X X X X X

b-rep 3 X X
dd-rep 5 X X X X X X

2D Format 3 X X X X X
Object File Format 3 X X X X X

2D Output 5 X X X X X X
dd-rep 5 X X X X X X
2D Format 5 X X X X X X

Object File Format 5 X X X X X X
2D Criterion 3 X X X X

2D Optimization Criterion 1 X X X
2D Minimum angle 1 X X
2D Maximum angle 1 X X

2D Refinement Criterion 3 X X X X
2D Maximum area 3 X
2D Maximum edge length 3 X X X

2D Improvement Criterion 3 X X X X
2D Minimum angle 3 X X X X X
2D Maximum angle 3 X X X X

2D Region 3 X X X X X X
2D Whole domain 3 X X X X X X
2D Point 1 X X
2D Line 1 X X
Rectangle 1 X X
2D Circle 1 X X

Move Boundary 1 X X
Visualize 3 X X X X X
Postprocess 1 X X X X
2D Mesh 5 X X X X X X

Triangle 5 X X X X X X

Table 5.4: Product Map for 2D Meshing Tools
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Sub- Existing Planned Potential
Domain Feature Priority P7 P8 P9 P10 P11 P12

User Interface 5 X X X X X X
Command Language 3 X X X
Menu Selection 3 X X X
Direct Manipulation 1 X X
Form Fill-in 1 X

3D 3D Gim 1 X X X
Delaunay 3D 1 X X X

3D Algorithm 5 X X X X
3D Refine 5 X X X X

3D Voronoi point insertion 3 X X X
3D Lepp-bisection 3 X X

3D Input 5 X X X X X X
3D Geometry 5 X X X X X X

b-rep 5 X X X X
dd-rep 5 X X X X X

3D Format 5 X X X X X X
Object File Format 5 X X X X X X

3D Physical properties 3 X X
3D Output 5 X X X X X X

dd-rep 5 X X X X X X
3D Format 5 X X X X X X

Object File Format 5 X X X X X X
3D Physical properties 5 X X

3D Criterion 5 X X X X X
3D Refinement Criterion 3 X X X X X

3D Volume longest edgeˆ3 ratio 3 X X
3D Radius-edge ratio 3 X X X X X

3D Region 5 X X X X X X
3D Whole domain 5 X X X X X X

Evaluate 1 X X X
Visualize 5 X X X X X X
3D Mesh 5 X X X X X X

Tetrahedron 5 X X X X X X

Table 5.5: Product Map for 3D Meshing Tools
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Chapter 6

Domain Design for the Meshing Tool
Domain

Domain Design (DD) is the second stage in the domain engineering activity. The main
purpose of DD is to develop an architecture for the SPL [58, 60]. To reach this objective, the
Domain Design process takes its inputs from the Domain Analysis stage and the knowledge
gained in that process.

Section 6.1 discusses the product architecture, both for single system and SPL.

Section 6.2 describes in more detail the domain design process and its activities.

6.1 Generalities

6.1.1 Product Architecture

There are several definitions for software architecture. For example, Medvidovic et al. [138]
present an elaborate definition, which states that a software system’s architecture is the set of
principal design decisions about the system. These decisions encompass every aspect of the
system under development, such as system structure, system functional and non-functional
properties, and system interaction, as well as the system development process itself and the
system’s business position. For these authors, which design decisions must be included in
the architecture is determined by a negotiation process among the system’s stakeholders.

Bass et al. [17] define the software architecture of the program or computing system as Software
architec-
turethe structure or structures of the system, which comprise software elements, the externally

visible properties of those elements, and the relationships among them. In this definition,
the externally visible properties are those assumptions that other elements can make of an

92



6.1 Generalities

element, such as its provided services, performance characteristics, fault handling, and shared
resource usage, among others.

For the purpose of this thesis, Bass et al.’s definition is more appropriate as it takes into
account the existence of multiple views that help understand and specify a system, and it
also takes the existence of an software architecture for granted, even though it may not be
designed explicitly.

Several authors [74, 77, 82, 203, 240] concur on the myriad benefits of having a correct
and understandable architecture defined before the product development process. However,
the architecture itself does not resolve all problems in the development life cycle [139]. For
instance, the simple and explicit use of the architecture neither guarantees a quality software
development process nor the quality of the final product.

According to Niemelä and Immonen [154], the main goals of the software architecture Software
architec-
ture
purpose

are to provide an overview of the software structure and its components, to classify these
components into generic and specific categories, to describe the responsibilities and contexts
of components, and to safeguard the balance of business and technical issues.

For these authors, building the architecture is an essential activity: it provides a means to
reason about and prioritize quality attributes, manage development team members, establish
work divisions, map responsibilities to services/components and vice versa, map functional
and quality requirements to components/services, and cluster the components to be devel-
oped.

The software architecture greatly influences the final quality of the system, because it can
inhibit or enable its quality attributes [17, 82]. Thus, an important task when building the
architecture is not only to design it so as to achieve the specified functionality, but also to
design it so as to incorporate quality attributes into it.

6.1.1.1 Quality Attributes

A quality attribute is a property of a software product by which its quality will be judged
by some stakeholder or stakeholders. Quality attribute requirements such as those for per-
formance, security, modifiability, reliability, and usability have a significant influence on the
software architecture of a system [201]. Then, it is important to understand how quality
attributes interact with and constrain each other, and how they affect the achievement of
other quality attributes in a particular software architecture [154].

Several authors [16, 76, 106] have defined and categorized quality attributes. For example, Categories

Bass et al. [16] categorize quality attributes into observable via execution or operational
such as performance, security, availability, usability and functionality, and not observable
via execution or development attributes such as modifiability, portability, reusability,
integrability and testability. On the other hand, the ISO 9126-1 [106] standard defines a
software quality model with six categories of characteristics: functionality, reliability,
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usability, efficiency, maintainability and portability, where each one is also divided
into subcategories.

Lists of quality attributes, with detailed descriptions of each one, can be found in Barbacci
et al. [10], Bass et al. [17], Clements et al. [48], Dobrica and Niemelä [76], and ISO 9126-1
[106].

6.1.1.2 Viewtypes, styles and views

Depending on the complexity of the systems developed and the number of quality attributes
to be considered, it can be necessary to use different software architecture views. Figure 6.1,
structured from the classification of Clements et al. [48], shows the viewtypes and styles.
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Figure 6.1: Viewtypes and Styles

The three viewtypes —module, component-and-connector, and allocation— correspond
to three perspectives an architect must consider when designing a system. These viewtypes
represent the three kinds of decisions involved in architectural design [48]. The decision to
be taken can be formulated as a question, where the viewtype is the answer:

1. How is it structured as a set of implementation units? Module.

2. How is it structured as a set of elements that have runtime behavior and interactions?
Component-and-connector.

3. How does it relate to non-software structures in its environment? Allocation.

A style or pattern is a specialization of a viewtype and shows an interaction pattern
and recurrent structure, independent of any system. Each viewtype has many associated
styles, as shown in Figure 6.1. A style defines a family of architectures that satisfy some
constraints. Styles allow applying specialized design knowledge to a particular class of sys-
tems [48]. Furthermore, a system is not necessarily and/or exclusively built from a single
style; the architecture of a system can be constituted by several styles.

Usually it is not possible to describe a system in a single way; it is necessary to have more
than one view of the system. Views are a representation of a set of system elements and
the relationships among them. Different views highlight different quality attributes: each
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view emphasizes certain aspects of the system and minimizes or ignores others [48]. In any
case, the views used to document an architecture must be only those necessary to properly
understand and describe the system, i.e., if two views are enough to completely describe
a system, then including additional views for documentation purposes only is unnecessary,
because those additional views are not adding any more information that is important for
the stakeholders1.

The previous discussion is applicable to software architectures in general, focusing on the
development of single products. In the following section, product line architectures (PLA)
for software product lines are discussed.

6.1.2 Product Line Architecture

A PLA is a core asset for all the products in a SPL. It explicitly provides variation mechanisms
that support diversity among the products in the software product line [202]. Furthermore,
it defines the concepts and structure necessary to achieve variation in features of variant
products while achieving maximum sharing parts in the implementation [108]. The PLA has
to include and handle an explicit representation of the variability it covers, and it guides the
developers in the product specialization work [60, 125].

Taylor et al. [226] define a PLA or reference architecture as

Product
line
architec-
ture“the set of principal design decisions that are simultaneously applicable

to multiple related systems, typically within an application domain, with
explicitly defined points of variation.”

Design decisions cover every aspect of the system under development, including system
structure, functional behavior, interaction, non-functional properties, and system implemen-
tation [226].

The most important reusable asset within a SPL is the product line architecture (PLA)
since it is shared by all the products; it is developed as part of the domain engineering
process and it is used as a roadmap in the application engineering for building each product
supported by the SPL [82, 125, 157, 164].

The importance of the PLA lies in its ability to reduce the complexity and cost of develop-
ing and maintaining products of the SPL. Also, it facilitates the production of documentation,
training materials, and product literature [74]. Moreover, the PLA involves not only the de-
cisions about many of the quality attributes for the system, but also integrates them with
the variations of the SPL [125]. This, in turn, can be a challenge because quality properties
may vary for different products belonging to the SPL [154].

1Krzysztof Czarnecki. Personal communication, October 2007. On Redundant Views in Software Product
Architecture.
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A good PLA enables organizations to accelerate the introduction of new products and
improve their quality, reengineer legacy systems, and manage and enhance the needs of
product variations; however, technically excellent product line architectures generally can
fail due to: they are not effectively used; some are developed but never used; others lose
value as product teams stop sharing the common architecture; still others achieve initial
success but fail to keep up with a rapidly growing product mix; sometimes the architecture
deterioration is not noticed at first, hidden by what appears to be a productivity increase [74].

It is very common that the development of the SPL requires an architecture-centric ap-
proach in which the PLA captures both the commonalities and the variabilities present in
the different products [164]. Taking into account this approach, it is possible to reach the
trinity of software development [134]: Software

development
trinity

1. Better: It promotes designs that improve requirements consistency and traceability.

2. Cheaper: It encourages strong interface definition and control, reducing the need for
nonessential or redundant code, and it helps communication among stakeholders.

3. Faster: Once standard components are architecturally compliant, they can be con-
structed and reused easily.

The goal of the PLA is to incorporate variability within the architecture, defined as the
ability of an artefact to be efficiently extended, changed, customized or configured for use in
a particular context [224]. Bachmann and Bass [9] enumerate sources of variation, such as
variations in function, data, control flow, technology, quality goals, and in the environment.
These authors also presented a classification for variations:

• A variation can be optional.

• A variation can be an instance out of several alternatives.

• A variation can be a set of instances out of several alternatives.

These authors’ view is similar to the feature model presented in Section 5.1.4. The
following section presents several notations that can be used to describe the PLA and allow
describing architectural variability.

6.1.2.1 Architecture Description Language (ADL)

An ADL is a formal notation with a well-defined semantics, whose primary purpose is to
represent the architecture of software systems [8]. Medvidovic and Taylor [140] provide an
alternative definition: an ADL is a language that provides features for modeling a software ADL

definitionsystem’s conceptual architecture, distinguished from the system’s implementation.
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Choosing or building an appropriate ADL for a particular domain is a tough task, re-
quiring a good domain characterization. Consequently, many ADLs have been developed,
each one focused on a different application domain and its characteristics. Medvidovic and
Taylor [140] and Asikainen et al. [8] compare and characterize several ADLs, many of them
not necessarily suitable for SPL. Some ADLs that are suitable for building the SPL archi-
tecture, both for general purpose and/or specific domains, are: Koala [241], Koalish [7],
ADLARS [11], ALI [12, 13], and xADL [64].

Koala, described by van Ommering et al. [241], was developed by Philips Electronics to
help them specify and manage their consumer electronics products that work with embedded
software. This ADL is based mainly on components that have interfaces as their explicit con-
nection points. Koala components are units of design, development and reuse. A component
communicates with this environment through interfaces, which are a small set of semantically
related functions.

A component description language is used to describe component boundaries. Both pro-
vides and requires interfaces are detailed. Furthermore, it is possible to indicate if a compo-
nent contains other components inside it. Similarly, a simple interface definition language is
used to describe the interfaces, which uses C-like function signatures.

Koala is graphic too. Koala’s graphical notation permits product design, making com-
ponents look like integrated circuit chips and configurations look like electronic circuits. In-
terfaces are represented as pins on the chip; the triangles designate the direction of function
calls.

The two main characteristics of the Koala language are switches and optional interfaces.
Both are important because the first ones are architectural constructs that represent variation
points, and the second ones permit to have several components providing similar, but not
identical, services. So, those special constructs support product line variability.

Koalish was developed by Asikainen et al. [7], and it is focused on configurable software
product families (CSPF). This subclass of software product families has the property that
members of the family can be deployed in such a way that there is no need for coding within
components, and little need for adding glue code between components.

Koalish is based on Koala [241], and it adds new variation mechanisms to Koala, namely
the possibility of selecting the number and type of parts of components, and writing con-
straints that must hold for each member of the CSPF. This ADL works mainly with the
idea of configurable products, i.e., each individual product is adapted to the requirements
of a particular customer order. The possibilities for adapting the configurable product are
predefined in a configuration model that explicitly and declaratively describes the set of legal
particular product members. The configurations intend to serve as descriptions of individual
systems in CSPFs.

Some concepts from Koala were not considered in Koalish. One of the omitted concepts
was modules. Unfortunately, the concept of module is relevant in the meshing tool domain,
according to the identified features listed in Section 4.2.1.2: all data storage, parameters,
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functionalities and user interactions, should be encapsulated into modules. Without the
module concept it is very difficult to build architectures for meshing tools using this ADL.

ADLARS [11] is an ADL designed to support the description of families of software
systems. Particularly, it was designed for defining the product line reference architecture.
The emphasis of this ADL, according to its authors, is on capturing architectural relationships
between product features and the software architecture. In this sense, the assumption made
is that a feature model for the application domain will be available before the architecture
design process. Thus, one of the main characteristics of this ADL is that it produces reference
architectures from the feature model. In this way, it is natural to pass from the domain
analysis to the domain design stage considering that features both in the domain model and
the product line architecture are mandatory, optional or alternative, i.e, that features in both
stages have a similar associated semantic.

ADLARS is both a graphical and textual ADL, which potentiality allows its use by
stakeholders with different backgrounds. The textual notation combines both formal and
informal elements. For example, it is possible to have components and subcomponents, and
it provides explicit representation for mandatory, optional and alternative features in the
architecture. On the other hand, the graphical notation mainly represents features associated
with particular components, and these features are represented as color-coded ellipses with
different colors for mandatory, optional or alternative features.

ALI [12, 13] is an extensible ADL for industrial applications based on ADLARS [11]. It
comprises seven parts: meta types, which provide a notation for capturing meta-information;
interface types, which provide a notation for creating types of interfaces; connector types,
where architectural connectors are defined; component types, where architectural components
are defined; pattern templates, where design patterns are defined; features, where the system
features are catalogued; and system, where the system architecture is described.

According to the authors of ALI, the main characteristics of this ADL are flexible interface
description, architectural pattern description, formal syntax for capturing meta information,
and linking the feature and architecture spaces. Furthermore, it supports the relationship
between components, connectors, and patterns in an architecture description and features
in the feature model using first order logic. These relationships allow capturing complex
situations that might arise between the two artifacts in real-life systems.

In contrast to ADLARS, ALI only has a formal textual notation. Even though this char-
acteristic has several advantages, as it allows architectural analysis and potential automation,
it is not easy for every stakeholder to use it. It is necessary to count with a proper CASE
toolset to use it, but that tool does not currently exist.

Dashofy et al. [64] proposed xADL 2.0, which is an infrastructure for development of XML-
based architecture description languages. In this sense, xADL provides facilities for defining
customized ADLs, and it is useful for modeling software architectures in many domains.

xADL has three basic components for modeling architectures: components, connectors,
interfaces, and links. Components may define a compositional structure and they are the
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loci of computation in the architecture. Interfaces are connection points of components
and connectors. Connectors are the loci of communication in the architecture, and allow
communication between components. Finally, links are connections between elements that
define the topology of the architecture.

xADL allows modeling variability through the optional elements, variant types, and op-
tional variant elements. Optional elements may or may not be included in an individual
system. Variant types are related to choosing one out of two or more elements. Optional
variant elements are the combination of optional elements and variant types.

This ADL has tool support by means of ArchStudio [5]. ArchStudio is an environment of
integrated tools for modeling, visualizing, analyzing and implementing software and system
architectures, and it is based on the Eclipse open development platform.

Even though xADL has both textual and graphical notations, it is difficult to represent
alternative features of a system as the feature model proposes. The graphical notation can
be used with mandatory and optional features of the system.

∆-MontiArc [92], based on a previous work of the same authors [93], is a delta-oriented
variability modeling language explicitly designed to represent architectural variability. In
delta modeling, a set of systems is described by a designated core system and a set of system
modifications (deltas) of the core product to obtain other products. ∆-MontiArc contains
operations specifically built to model architectural variability, such as add, modify, replace
component, among others. Even though this approach has several good properties such as
human readability and incremental model building, it does not permit structuring variabilities
in the same way that feature models do. Indeed, a delta model lies in the solution space, since
it describes the variability of the artifacts that are transformed by deltas, and a feature model
lies in the problem space, where the variability of the requirements is formulated2. This could
be considered as a disadvantage from a design point of view because it is harder to establish
the correspondence between the source model (requirement) and the target model (design).
Furthermore, the same authors established that “delta models...are independent of product
features specified in feature models” and “a product configuration (i.e. particular product)
is independent of product features”.

In [94], the authors extended their work by introducing hierarchical variability model-
ing concepts. Even though this work explicitly incorporates concepts of commonality and
variability, it seems to be difficult to establish a complete system with those commonalities
and variabilities, because the main idea of the approach is centered in components, with an
implementation point of view.

6.1.2.2 PLA Assessment

Architecture evaluation should be a standard part of every architecture-based development
methodology. The purpose of architecture assessment is to analyze the software architecture

2Ina Schaefer. Personal communication, October 2012. On Delta Model
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in order to identify potential risks and verify that the quality requirements have been taken
into account in the design [77].

Bass et al. [17] state that having an effective technique to assess a candidate architecture
and accept it as good before the implementation stage is of great economic value. Moreover,
the authors enumerate at least five benefits that can be derived from holding architectural Assessment

benefitsinspections: financial benefits, rationale capture, early detection of problems with the existing
architecture, validation of requirements, and architecture improvement.

The PLA is shared by all SPL products and is used as a roadmap in the application engi-
neering for building each product. Thus, its quality must be assessed early in the development
process.

There are several methods for assessing software architectures, for both single product
architectures (SPA) and for product line architectures (PLA). Dobrica and Niemelä [77]
survey eight of the most representative methods for assessing single product architectures,
among them the popular SAAM and ATAM [49]. Unfortunately, these methods cannot be
applied directly to PLA assessment: if a product line is developed using a single product
architecture, it may happen that some specific quality attributes considered for a single
product cannot be directly generalized for all family products. Moreover, the number of
quality attribute scenarios in a PLA assessment is generally larger and more complex than
in a SPA assessment [164].

PLA assessment is outside the scope of this thesis. However, interested parties can refer
to Korhonen and Mikkonen [125], which present an approach for estimating the adaptability
of a SPA to a PLA, Maccari [135], which presents a method mainly centered in requirement
evolution in a product family, and Gannod and Lutz [89], which present an approach for
architectural analysis of product lines. Of particular relevance is the method presented
by Olumofin and Mǐsić [164], which is based on ATAM [17].

6.2 Domain Design Method in the Meshing Tool Do-

main

This thesis proposes two alternatives for domain design development, specifically centered in
the domain architecture, which are shown in Figure 6.2.

The deductive process for building the reference architecture has two main activities.
First, the domain model is built, with a special emphasis in the feature model. Then, a
product line architecture is generated using this model as a basis and any particular single
product architecture is derived from it, as needed. This approach is presented in Section 6.2.1.

The transformational process is an alternative approach which also requires the construc-
tion of the domain model and then generates a feature model configuration, specifying the
features present in the feature model that are present in a particular single product archi-
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Figure 6.2: Overview of Domain Design Process

tecture. In contrast to the deductive process, a product line architecture is not generated
explicitly, but rather it is implied by the superposition of all generated single product archi-
tectures. This approach is presented in Section 6.2.2.

6.2.1 Deductive Process

In this section, we present the overall deductive process for the domain design stage.

The domain design process is modeled as an activity diagram which has three main
activities: determining the quality attributes, producing the architecture including both
structural and a behavioral views, and assessing the architecture. An overview of this process
is shown in Figure 6.3.

The activities and input artifacts of this process are subordinated to the existence of the
artifacts produced during the domain analysis stage, and therefore, they are specific to the
meshing tool domain. The first activity, called Do Quality Analysis, consists of deducing the
quality attributes necessary for building the PLA using the goals identified in the domain
analysis step as the starting point. The identified quality attributes are prioritized.

The second activity is Generate Architectural Views. This activity is composed internally
by two macro activities. The first one generates a structural view of the PLA, and the second
one generates a behavioral view by building the state machine. If necessary, other structural
views can be developed during the building of the PLA.

Once the structural and the behavioral views are built and they satisfy both the func-
tional and quality attributes required by stakeholders, it is necessary to do an architectural
assessment in the third activity called Assess PLA, by using an assessment method suitable
for PLAs.

In the following sections, the first two activities are described in detail.

101



6.2 Domain Design Method in the Meshing Tool Domain

Attributes

:Quality

Analysis
Do Quality

:SPL Scope
Information

:Systems

Components

:Available

Knowledge

:Stakeholders’

Attributes

:Quality

:Domain Model

:Domain Model

:Goals

Knowledge

:Stakeholders’

:Domain Model

:Scenarios

Generate Architectural Views

[Final]

:Structural Views

[Final]

:Behavioral View

Infrastructure

:Reuse Add to Reuse

Infrastructure

[Candidate]

:Behavioral View

[Candidate]

:Structural Views

Knowledge

:Stakeholders’

[else]

[assessment OK]

Assess PLA

Deliver PLA
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6.2.1.1 Quality Analysis

Similarly to Niemelä and Immonen [154], a Quality Analysis is performed to deduce the qual-
ity attributes using the goals from the domain model identified during the domain analysis
stage. This in turn helps the stakeholders transition from the analysis level to the design
level, by exposing them to the existing relationships among goals and other domain model
elements such as features, scenarios and lexicon.
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This analysis uses the quality attributes and definitions established by Bass et al. [17]
and Dobrica and Niemelä [76]. These qualities attributes are: Performance, Security, Avail- Quality

attributesability, Reliability, Usability (Learnability, Efficiency, Memorability, Error avoidance, Er-
ror handling, Satisfaction), Modifiability, Maintainability, Flexibility, Scalability, Portability,
Reusability, Integrability, Interoperability and Testability.

The product line architect must analyze every goal in the domain model independently.
Each goal should address at least one quality attribute, and any quality attribute can be
addressed by more than one goal. Even though this activity is done mainly by the domain
architect, it could be worked on by some or all SPL stakeholders.

Typical issues that can arise when analyzing goals are when the same quality attribute
is deduced from all goals, and when it is not possible to deduce quality attributes from the
current goals. In both cases, it is necessary to review or rebuild the goals, as well as all
artifacts from the domain analysis, such as the domain model and the SPL scope.

Once the quality attributes are identified, they must be validated and prioritized. Both
these activities must involve all stakeholders, as the quality attributes drive the building of
the PLA and thus must properly represent the tradeoffs made by the stakeholders. In this
sense, all stakeholders must agree on the quality attributes deduced from the goals and their
relative importance.

6.2.1.2 Architectural Views Generation

Building the PLA is an inherently creative process, highly dependent on the architects’
experience. DeBaud et al. [68] state that it is not possible to operationalize the building of
the PLA.

This work proposes the construction of both a structural view and a behavioral view
of the architecture. A pre-requisite to the architectural views generation is understanding
how each architectural style addresses the quality attributes [90]. Several structural views
can be built and their styles can be chosen from among several existing styles. This thesis
also defines the construction of an explicit behavioral view, also called control view. This
view is represented using the Data Flow architectural style [204]. For simplicity, only the
state machine is provided, following the examples of Clements et al. [48] and Muccini and
Bucchiarone [149], which also document behavior by means of state machines.

Figure 6.4 presents in detail the Generate Architectural Views activity shown in Figure 6.3.

The left-hand branch of Figure 6.4 illustrates the construction of architectural structural
views, which is briefly described in the following paragraphs.

In the Select Architectural Styles activity, the architects use those quality attributes iden-
tified during the Do Quality Analysis activity of Figure 6.3 to decide which styles are more
suitable for representing the architecture. This is not a trivial task, and there are several
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Figure 6.4: Generate Architectural Views activity

works that address this issue: Kim et al. [121] presents a classification that relates archi-
tectural styles and quality attributes; Clements et al. [48] analyze each style showing what
quality attribute is better supported by which style; Niemelä et al. [155] relate architectural
styles to quality attributes for systems in the wireless service domain; Gorton [90] describes
how architectural styles address common quality attributes.

The architect must only choose among those styles related to the Module and Component-
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and-connector viewtypes. The Allocation viewtype can be discarded, because the meshing
tool domain usually involves relatively few stakeholder types and small to medium develop-
ment teams, and its scope is not centered on distributed systems, i.e., they run in a single
computer system3. Also, several final components have already been developed, and their
assembly can be done automatically.

The Select Scenarios and Select Features activities are iterative processes, in which an
initial group of scenarios and features are chosen by using the By Feature relationships estab-
lished in the domain model. Initially, a subset of all scenarios may be chosen, and expanded
later in subsequent iterations, maybe by adding other scenarios and features not linked by the
By Feature relationship. Features and/or scenarios may be added by themselves, that is, not
necessarily in pairs. Thus, the architect is free to emphasize certain aspects in each activity
iteration but, in the end, all features and scenarios must be present in the architecture.

Once all scenarios and features are selected, the architect builds the structural views
taking into account additional information such as the Stakeholders’ Knowledge, Available
Components, Systems Information, and SPL Scope, as shown in Figure 6.4. These views
must now be checked for consistency and completeness.

The right-hand branch of Figure 6.4 illustrates the construction of the architectural be-
havioral view. The process is similar to the construction of the structural view.

Building an architectural behavioral view is critical to the thesis’s approach: it helps
understand and review how the meshing tools work, it is useful for building other architectural
views, and it explicitly shows system behavior. Furthermore, the resulting behavioral view
can be used in the Domain Implementation stage to develop an automated tool for building
each particular SPL product.

A consistency check is necessary to guarantee that, for each scenario or feature selected,
the corresponding and related features or scenarios have been considered in the architecture.
A completeness check is necessary to guarantee that every feature, scenario, and additional
information is considered in the architecture, and if those elements are enough for building all
the expected products. Consequently both the software architect and the relevant stakehold-
ers must participate in the Check Consistency and Check Completeness activities and agree
with their results. If the results are unsatisfactory, the whole process is repeated iteratively.

Once a consistent and complete architecture is built, the complete PLA can be assessed.

6.2.2 Transformational Process

As described in the previous section, the software architect has a huge responsibility on the
success of the SPL. Even if he or she has a well-documented domain analysis at hand, if the
PLA is not appropriate, all resulting products will be flawed. This makes the PLA design

3Nancy Hitschfeld-Kahler. Personal communication, May 2008. On Viewtypes in Meshing Tool Domain.
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task a difficult and critical one. What is even worse, if the SPL scope evolves over time, the
PLA may become inadequate and, as the rationale of the PLA design is usually lost in the
design process, a new PLA should be redesigned from scratch [74].

An alternative is to build only single product architectures, but this approach does not
reuse software and, more importantly, does not rely on existing domain knowledge, forcing
system developers to reinvent potentially reusable architectural decisions over and over again.

A third approach consists of capturing all relevant domain knowledge in a common feature
model that captures commonalities and variabilities in the domain analysis stage, which is
used as the basis for several single product architectures. In this approach, a PLA is not built
explicitly. Rather, the superposition of all SPAs generated from the same feature model can
be thought of as implicitly defining a PLA. This is valid in the meshing tool domain because
the features represent functionality, user interactions, parameters or data storage, and these
elements can be mapped easily to architectural elements.

This section, then, describes the application of model-driven engineering (MDE) tech-
niques to systematize the Domain Engineering stage so as to enable the automation of the
Application Engineering stage [199]. To this end, the features in the feature model are con-
sidered to represent functional areas, and architectural decisions are explicitly recorded as a
set of model transformation rules attached to each feature or cohesive set of features. These
transformation rules express how to build the fragment of the PLA that provides the func-
tional areas that take care of the given features, and that organizes the identified components
in a way that they address the quality attributes impacting the features, provided that cer-
tain quality attributes are specified in the form of goals. In particular, the transformation
rules are expressed using ATL (ATLAS Transformation Language). According to Jouault ATL

et al. [113], ATL is a a domain-specific language for specifying model-to-model transforma-
tions buildt upon the OCL formalism. ATL is a hybrid language that provides a mixture of
declarative and imperative constructs. On the one hand, the declarative style is based on
specifying relations between source and target patterns and tends to be closer to the way
the developers perceive a transformation. On the other hand, the imperative style is based
on constructs for specifying sequences of instructions such as conditions, loops, assignments,
among others.

Once the functionality of a new product is defined by a feature model configuration, the
single product architecture can be automatically derived from it, and the product implemen-
tation supporting such an architecture can also be automatically generated.

The process is based on the following four main ideas [169]:

Features represent functionality: Feature models are constrained to include only those
features representing functionality, user interactions, parameters or data storages. Fea-
ture models express variability only at the functional level, and not at the quality
attribute level. Quality requirements are documented in a separate artifact.

Features lead component architecture construction: Each feature that may be selected
as part of a product inspires a set of architectural decisions that guides the construction
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of part of the architecture of a product that includes that feature. Decisions are made
locally to each particular feature, only considering its direct member features.

Record the architecting activity, not the architecture: For each feature in the fea-
ture model, the set of decisions involved in providing this feature by the architecture
is preserved. Such decisions are explicitly recorded as the set of actions that must be
performed to build a SPA so as to support the feature. These actions are described in
terms of model transformation rules that output a fragment of the SPA model when
the particular feature is present in the product.

Incrementally develop the product line: The defined Domain Engineering artifacts are
built incrementally. While a complete feature model is usually built during the Domain
Analysis stage, other artifacts can be produced incrementally by addressing only those
features that are required by each particular product under development.

In the following sections, each step of this approach is presented, for both the Domain
Engineering and Application Engineering stages.

6.2.2.1 Domain Analysis

As mentioned above, the goal of this activity is to produce a feature model where features
represent functionality and lead component architecture construction. This in turn leads
to a feature model where leaf nodes must represent either a specific functionality provided
by a product, a parametrization of such a functionality, user interaction, or access to data
storage, and also can be encapsulated in a single coherent functional unit. Also, the model’s
internal features (i.e., those with subfeatures) represent functional areas of the SPL that can
be provided by means of the interaction or combination of the functionality provided by the
features they depend on, i.e., their children features.

A particular feature model complying with the previous restrictions can be built by using
a metamodel. The metamodel is necessary due to the use of MDE techniques. Thus, it is
important to count on a feature model metamodel for describing the elements that are part
of it. Other stages can use the domain model as an input. In particular, the domain design
stage uses the feature model metamodel for building the transformation rules that permit
transforming feature models to the product line architecture. Moreover, the application
requirements stage use the feature model metamodel for transforming the feature model into
a feature model configuration, i.e., a particular instance or product of all possible products
from the feature model.

In this thesis, a simplification of the metamodel proposed by Czarnecki et al. [62] is used.
The simplified metamodel is illustrated in Figure 6.5.

In simple terms, the feature diagrams shown in Figures 5.1 to 5.4 conform to the fea-
ture model metamodel of Figure 6.5. Indeed, the metamodel presents the elements that are
part of the feature model. The root feature is Meshing Tool. Command language is
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Figure 6.5: Feature Model Metamodel

a grouped feature in the feature group User Interface. Examples of solitary features are
Input, Region, Output and Evaluate. Feature diagram references allow reusing or mod-
ularizing feature models, specially when it is necessary to modularize a large feature model
over different diagrams. References are not present in the feature diagrams of Figures 5.1
to 5.4.

6.2.2.2 Domain Design

The goal of the Domain Design stage is to record all architectural decisions made to address
the functionality and variability represented by every feature in the architecture. Figure 6.6
illustrates this stage. This figure is very similar to Figure 6.3, which presented the Do-
main Design process with explicit PLA. In the transformational process, however, no PLA
is explicitly generated, but rather can be thought of as being implicit in the architecture
transformation rules shown.

The top half of Figure 6.6 represents the inputs to the domain design process. Given that
the features included in the feature model represent functional aspects, the tree-structure of
the feature model is used as a guide to organize the decision making activity and modularize
the architectural decisions. This thesis’s approach is to explicitly record the architecting
activity, not the architectural products. Quality attributes and existing implementation
assets are also considered, mainly when recording design decisions associated to those features
near the root of the feature model.

The bottom half of Figure 6.6 presents the Build Model Transformations activity, which
iteratively produces a Feature-to-Architecture Transformation Rule artifact, and records the
architecting activity. These transformation rules are expressed in terms of the metamodel
shown in Figure 6.7.

In this metamodel, a PLA element is formed by a set of declarations and a top feature.
Every declaration corresponds to a general declaration that can be used by the rules attached

108



6.2 Domain Design Method in the Meshing Tool Domain

Information

:Systems

Components

:Available
:SPL Scope

:Domain Model

:Scenarios Knowledge

:Stakeholders’

Analysis
Do Quality

:Domain Model

:Goals

Select

Architectural Styles

Styles

:Architectural

Attributes

:Quality

Knowledge

:Stakeholders’

Attributes

:Quality

Add to Reuse

Infrastructure Infrastructure

:Reuse

Rule
Deliver

:Feature to Architecture

Transformation Rule

[Final]

:Feature to Architecture

Transformation Rule

[Candidate]

Build Model

Transformations

[else]

[complete]

Figure 6.6: Domain Design Process with Implicit Architecture

to each feature. Every feature has a distinct name, when is used for matching purposes with
the features in an input feature configuration model. Every feature also has an associated
set of rules to indicate how it affects an output single product architecture (both structural
and behavioral views) when the given feature is present in a feature configuration model.
Declaration and rule metaclasses are abstract for portability purposes.

6.2.2.3 Application Requirements

The goal of application requirements is the selection of the desired features for a particular
product. These features are selected from those provided by the SPL, considering variability
constraints. Thus, a Feature Model Configuration defines which configuration of the
Feature Model represents the product to be developed and consists of Features com-
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posed by subfeatures. A Feature Model Configuration is an instance of the metamodel
in Figure 6.8; the Feature Model constrains which Feature Model Configurations
can be actually defined.

Figure 6.8: Feature Model Configuration Metamodel

6.2.2.4 Application Design

The goal of the Application Design stage is to define the single product architecture for the
particular product being developed, considering its desired features as defined in a feature
configuration model. The architectural decisions made during the Domain Design stage are
used to produce a single product architecture. In particular, the architecture is derived using
only those model transformation rules corresponding to the features included in the feature
model configuration of the product under development.

To this end, a meta-transformation is defined, which takes a particular Feature-to-Architecture
Transformation Rule artifact targeting a given Model-Driven Engineering (MDE) technology,
e.g. ATL, and produces a Feature-to-Architecture Transformation for that MDE technology.
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A specific meta-transformation is required for each MDE technology used to specialize a
Feature-to-Architecture Transformation Rule.

Given the ATL specialization, the corresponding meta-transformation that transforms
a Feature-to-Architecture Transformation Rule artifact to an ATL transformation is imple-
mented. This derived transformation is then applied to the feature model configuration to
obtain the particular single product architecture. By this means, the Application Design
stage is fully automated. The resulting architecture has two views: a structural view and a
behavioral view. The first one is an instance of the metamodel in Figure 6.9, and the second
one is an instance of the metamodel in Figure 6.10.
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The single product architecture structural view metamodel presents the elements that are
part of a product architecture structural view. It has standard elements such as components,
interfaces and connectors, that are considered for the representation of the single product
architecture structural view shown in the following chapter. Similarly, the single product
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architecture behavioral view metamodel presents the elements that are part of a product
architecture behavioral view. In this case, states and transitions are part of the representation
of the single product architecture behavioral view shown in the following chapter.

6.3 Contributions of this Chapter

In this chapter, a complete process with activities, roles, input and output artifacts, and
clear termination conditions was presented for the domain design stage. The process was
divided into two subprocess: one for building an explicit product line architecture and another
for building an implicit product line architecture. Both were modeled using UML activity
diagrams.

Two views were considered for building the product line architecture in the domain design
process: a structural view and a behavioral view. Even though in theory both views are
recognized as essential, in practice only the structural one has that status. In this thesis
both the structural and the behavioral view are mandatory. The behavioral view allows
understanding how meshing tools work.

Also, several authors explain the benefits of considering different architectural styles into
the architectural views, but only some of them detail or explain the necessary activities
for developing each one. This thesis presents a detailed process which is a road map that
considers the relevant quality attributes to be considered in the architecture of the SPL,
starting from the goals identified in the domain analysis stage.

Another difference with respect to other approaches is that the quality attributes are
incorporated in early stages of the software development life cycle, which permits a bet-
ter structuring, understanding, modeling and integration with other requirements. This is
because the quality attributes are deduced from the goals which are identified during the
domain analysis stage.

Finally, quality attributes are considered in the feature model, but only for the transfor-
mational process for deducing the architecture.
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Chapter 7

Applying the Domain Design Process

In this chapter, the application of the domain design process described in Chapter 6 is
presented. First, Section 7.1 describes the application of the deductive process for obtaining
a product line architecture. Then, Section 7.2 shows the application of the transformational
process to obtain a Feature-to-Architecture Transformation Rule artifact that is
used to generate a specific single product architecture.

7.1 Deductive Process

7.1.1 Quality Attribute Deduction

The quality attributes are deduced from the goals defined in the domain model which was
obtained in the domain analysis stage. Section 5.1.2 identifies the relevant goals, which were
previously presented by Rossel et al. [188]. Table 7.1 shows the deduced quality attributes.

Goal Quality Attribute(s)
G1 Satisfaction (usability), Reliability
G2 Satisfaction (usability), Reliability
G3 Performance, Efficiency (usability)
G4 Performance, Efficiency (usability)
G5 Scalability, Flexibility
G6 Satisfaction (usability), Reliability

Table 7.1: Correspondence between Goals and Quality Attributes

Every goal should have at least one quality attribute associated with it, but a goal may
have have several different associated quality attributes.

These quality attributes are then validated by the domain stakeholders. Bastarrica and
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Hitschfeld-Kahler [18] state that Performance is a priority attribute. Furthermore, Bastar-
rica et al. [20] establish Performance and Flexibility as priority attributes as well. Finally,
Satisfaction can be deduced from several goals, implying that it is also an important quality
attribute. Then, taking previous research and stakeholder-provided information into ac-
count, the quality attributes were prioritized from high to low priority order as: Satisfaction,
Reliability, Scalability, Performance, Efficiency, and Flexibility.

7.1.2 Meshing Tools Structural View

The product line architecture1 shown in this and the following section relies on the feature
model already presented in Figure 5.1.

Figure 7.1 shows the structural view for the meshing tool domain. Figure 7.2 presents the
User Interface component in detail, while Figure 7.3 presents a detailed view of the Algorithm
component.
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Figure 7.1: Structural View

The notation used for describing the product line architecture is inspired by the graphical
notation of two ADLs presented in Section 6.1.2.1, according to their strengths: ADLARS [11]
and xADL [64]. Furthermore, a new element is incorporated for alternative components:
group cardinality, such as is presented in Figure 7.2 and 7.3 for User Interface component
and Algorithm component respectively. This group cardinality works in a similar way to the
group cardinality in a feature diagram.

The architectural style is defined through a tradeoff between stakeholders’ needs and
considering the quality attributes identified and presented in Section 7.1.1. As mentioned in

1An early version of the PLA structural view was validated in November 2007 by Todd L. Veldhuizen
from the Electrical and Computer Engineering Department and R. Bruce Simpson from the Cheriton School
of Computer Science, both from University of Waterloo.
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Section 6.2.1.2, the selection of the most suitable architectural style for each architectural
view is done considering four authors: Clements et al. [48], Gorton [90], Kim et al. [121]
and Niemelä et al. [155]. Furthermore, the stakeholders’ knowledge is important when all
relevant information about the relationship between quality attributes and architectural styles
is not available. In this case, the layer architectural style was chosen because it reflects
Satisfaction and Flexibility well, it is neutral about Scalability, and according to Bastarrica
et al. [20], the layer style does not degrade significantly the Performance when considering
the meshing tool domain.

Even though Reliability is better reflected in the blackboard architectural style, and Effi-
ciency is not promoted in the layer style, the final decision considers only one style, although
that decision can be changed as a result of an architectural assessment.

The decision to use the layer style in the structural view is made considering the quality
attributes, the prioritization that was done in the previous paragraphs, and the experience
of the architect. There, Satisfaction is the quality attribute with the highest priority, and
such as was mentioned, layer reflects well this quality attribute.

If only one quality attribute is considered, other styles can be chosen. For example, if only
Performance is considered when selecting the architecture style, then, according to Clements
et al. [48], one option is the pipe-and-filter style, even though Kim et al. [121] established
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that pipe-and-filter does not reflect Performance well. Moreover, pipe-and-filter style must
be avoided if interaction between components is required [226], which is the case of meshing
tools. If either of the Reliability, Satisfaction or Performance quality attributes is considered,
a blackboard style [48, 121] is a good option. If either Reliability, Scalability or Performance
is chosen, a N-tier style [48, 90] is a good option. In particular, a 3-tier style is recommended
when it is necessary to process, store and retrieve significative amounts of data, and each
tier is in charge of one of them [48, 226].

In the end, the architect is free to choose any of the previously mentioned styles, or even
a hybrid style, according to which quality attribute(s) is (are) more important in each case.

For the structural view, the feature diagram presented in Figure 5.1 was considered,
specifically the features belonging to the first level, i.e., those nearest to the Meshing Tool
root. The features are distributed in three layers: User Interface, Processing and Mesh. The
first and the last layer are directly related to the features of the same name. The remaining
features correspond to the other components in the processing layer.

This correspondence is possible because the features represent functionality, user inter-
actions, parameters or data storage (see Section 4.2.1.2), characterizations that are suitable
and useful when defining architectural components. Furthermore, there is a correspondence
between mandatory features, optional and grouped features, and mandatory, optional, and
grouped components.

According to the previous paragraph, it is possible to have components inside other
components, as is shown in Figure 7.2 and Figure 7.3 for the User Interface and Algorithm

components, respectively. Sub-components conform to components in the same way that
sub-features conform to features in the feature diagram. Constraints such as Requires and
Excludes are considered in the behavioral view.

When a component is being considered for its inclusion in the PLA, the Available Com-
ponents, the Systems Information, the SPL Scope, and the Stakeholders’ Knowledge shown
in the center of Figure 6.4 is also reviewed. Furthermore, the scenarios are also reviewed
regarding their relationship with features when considering them for the construction of the
structural views.

7.1.3 Meshing Tools Behavioral view

Figure 7.4 shows the behavioral view for the meshing tool domain as a state machine.

Similarly to the structural view, the behavioral view considers the feature diagram pre-
sented in Figure 5.1, specifically the features belonging to the first level, i.e., the nearest to
the Meshing Tool root.

In the behavioral view case, scenarios identified during the domain analysis stage are very
important, because they reflect the behavior of the different possible meshing tools. Further-
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Figure 7.4: Behavioral View

more, the relationship By Feature, defined in Section 4.2.2.1 and exemplified in Table 5.3,
clearly establishes which features must be considered in the behavioral view, taking into
account the selected scenarios.

This behavioral view reflects all potential interactions between the components identified
in the structural view through the feature model. Furthermore, as a characteristic of the
state machine, the different features can be mapped into this view, considering if they are
mandatory, optional and/or alternative features. For example, the feature Generate initial
mesh is optional because it is possible to load a generated mesh directly from the input in a
suitable format, and Input is mandatory because always is necessary to load the geometry
or the mesh that represents the domain itself. In the state machine, this situation is shown
through the states 2 , 3 and 4 . If a meshing tool needs only to load the mesh and does not
need to generate it, the state machine provides the transition from state 2 to state 4 . On
the other hand, if a meshing tool needs to generate an initial mesh, then the state machine
provides the transition from state 2 to state 3 and the transition from state 3 to state 4. .
An analogous process is followed for the other features.

The constraints Requires and Excludes constrains the possible transitions between states.
These are not shown in Figure 7.4 because they are not present at the first level in the feature
diagram.

Even though the quality attributes also drive the construction of the behavioral view,
according to Clements et al. [48] this view permits reasoning about the completeness, cor-
rectness and the quality attributes of the system, because it is possible to simulate the
behavior of all products in the SPL through this view.
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Finally, this behavioral view can change as a result of an architectural assessment.

7.2 Transformational Process

7.2.1 Domain Analysis

In the Domain Analysis stage, the FeaturePlugin tool developed by Antkiewicz and Czarnecki
[2] was used to convert the feature model shown in Figure 5.1 to a XML representation. Also,
a text-to-model transformation was developed [169] for transforming the XML file produced
by the FeaturePlugin tool to the corresponding model instance of the metamodel shown in
Figure 6.5.

7.2.2 Domain Design

In the Domain Design stage, a Feature-to-Architecture Transformation Rule
artifact is built iteratively. First, we use a transformation to create an initial version of
this artifact from the feature model, which contains only the defined features and their
member relationships. Then, the artifact is manually duplicated and augmented to include
the required declarations, together with the rules for each feature. This artifact duplication
is necessary because of the existence of two architectural views, and the declarations and
the rules for each feature are different in each view, due to the nature of the structural
and behavioral views. The Feature-to-Architecture Transformation Rule artifact
conforms to the ATL specialization of the metamodel illustrated in Figure 6.7. Figure 7.5
presents a fragment of the rule for the Meshing Tool feature, expressed in ATL, for the
structural view.

The rule corresponds to the Meshing Tool feature (line 1) in the case where the optional
Algorithms feature is selected (line 2); f represents the Feature element of the source
Feature Model Configuration. This rule encodes which architectural patterns govern
the overall structure of the product architectures; in this case study, a hybrid architectural
style, based on the 3-tier pattern where the two bottom-most tiers follow the blackboard
pattern, is applied [34]. The architectural style was chosen considering the elements exposed
in Section 7.1.2. In this case, it was considered appropriate to change the style from layer to
the hybrid architectural style mentioned, because the 3-tier and blackboard styles reflect well
the quality attributes identified in Section 7.1.1 for this SPL. The rule requires a component
c to be present in the target Product Architecture Structural View model (line
5-8), with the same name as the feature and whose subcomponents are those generated by the
rules corresponding to the subfeatures of f (line 6). The connectors for c are those defined in
this rule. The figure includes two examples: a connector linking the User Interface and
Input subcomponents (lines 9-13), and several connectors linking the User Interface to
each provided interface of the Algorithms component (lines 14-18).
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1 ATLRule for ’Meshing Tool’ {
2 filter f.members→select(fi |fi.name = ’Algorithms’)→notEmpty();
3 variable inames : Sequence(String) = thisModule.getAlgorithmFeatures(f)→collect(fa |fa.name)→asSequence();
4 out {
5 c : PAMM!Component (
6 name ←f.name, components ←f.members,
7 connectors ←Set{xinput, xgenerate, xgeneratemesh, xoutput, xoutputmesh, xalg, xalgmesh}
8 ),
9 xinput : PAMM!Connector (

10 name ←’Input’, kind ←#Assembly,
11 source ←c.components→any(ci |ci.name = ’User Interface’).required→any(ii |ii.name = ’IInput’),
12 target ←c.components→any(ci |ci.name = ’Input’).provided→first()
13 ),
14 xalg : distinct PAMM!Connector foreach(iname in inames) (
15 name ←iname, kind ←#Assembly,
16 source ←c.components→any(ci |ci.name = ’User Interface’).required→any(ii |ii.name = ’I’ + iname),
17 target ←c.components→any(ci |ci.name = ’Algorithms’).provided→any(ii |ii.name = ’I’ + iname)
18 ),
19 ...
20 }
21 }

Figure 7.5: Feature-to-Architecture Transformation Rule for the Meshing Tool Feature,
Structural View Part

Similarly, Figure 7.6 presents a fragment of the rules artifact for the Meshing Tool and
Output features for the behavioral view.

1 ATLRule for ’Meshing Tool’ {
2 out {
3 s1 : PABvMM!Initial (number ←’1’),
4 s2 : PABvMM!Normal (number ←’2’),
5 t1 : PABvMM!Transition (
6 sourceStatenumber ←s1.number, event ←’select dimension’, targetStatenumber ←s2.number
7 )
8 }
9 }

10

11 ATLRule for ’Output’ {
12 out {
13 s1 : PABvMM!Normal (number ←’4’),
14 s2 : PABvMM!Final (number ←’5’),
15 t1 : PABvMM!Transition (
16 sourceStatenumber ←s1.number, event ←’apply output’, targetStatenumber ←s2.number
17 ),
18 s3 : PABvMM!Final (number ←’5’),
19 s4 : PABvMM!Final (number ←’5’),
20 t2 : PABvMM!Transition (
21 sourceStatenumber ←s3.number, event ←’apply output’, targetStatenumber ←s4.number
22 )
23 }
24 }

Figure 7.6: Feature-to-Architecture Transformation Rules, Behavioral View Part

The rules artifact corresponds to the Meshing Tool feature (line 1) and the Output
feature (line 11). In this case, both features were selected in the source Feature Model
Configuration, because they are mandatory. This artifact has the necessary rules for
building the corresponding product architecture behavioral view such as a state machine. In
the case of the Meshing Tool feature, the rule requires two states s1 and s2 to be present in
the target Product Architecture Behavioral View model (lines 3-4). The transition
between s1 and s2 states is defined in this rule (line 5). In the case of Output feature, the
rule requires four states and two transitions. The transition t1 (line 15) with its corresponding
states s1 and s2 (lines 13-14) and the transition t2 (line 20) with its corresponding states
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s3 and s4 (lines 18-19) are triggered by the same apply output event. Those transitions
are necessary because the apply output event aims to a Final state, and once this Final
state is reached, the automaton can remain in this state. More ATL rules can be found in
the Appendix C.

7.2.3 Application Requirements

In the Application Requirements stage, the FeaturePlugin tool is used to create the feature
model configuration defining the desired features for the new product being built; Figure 7.7
illustrates an example of the selected features. A text-to-model transformation is used to
obtain this model as an instance of the metamodel shown in Figure 6.8.

Figure 7.7: Feature Model Configuration for a Meshing Tool

7.2.4 Application Design

In the Application Design stage, the meta-transformation is used to generate the Feature-
to-Architecture Transformation artifact from the Feature-to-Architecture
Transformation Rule, both for the structural and behavioral view. These transfor-
mations are then applied to the feature model configuration to automatically generate the
product architecture. Figure 7.8 illustrates a fragment of the resulting product architecture
structural view generated by the rule shown in Figure 7.5, applied to the feature model
configuration shown in Figure 7.7. The meshing tool component is composed by the sub-
components generated by the rules attached to the subfeatures of the meshing tool feature.

Similarly, Figure 7.9 illustrates the resulting product architecture behavioral view gen-
erated by the rule shown in part by Figure 7.6, applied to the feature model configuration
shown in Figure 7.7. Not all possible transitions are present in the figure because the feature
model configuration does not consider all features present in Figure 5.1.
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7.2.5 Adding Quality Attributes to the Feature Model

The approach described in the previous sections automates the application requirements
and application design stages, in the context of software product lines. This approach only
considers variability at the functional level. Thus, the resulting single product architectures
are guided by a single architectural style shared among all products of the SPL. It is commonly
agreed that the quality of a software application not only depends on its functionality but
also on other relevant quality attributes such as maintainability, performance, modularity,
portability and usability, among others [177, 217, 226]. This section extends the previous work
by considering variability at the quality attribute level. In this case, different architectural
styles may be used to guide the design structure of different products, making apparent the
need to structure and document the architectural knowledge appropriately so that software
reuse is feasible [189].

In order to consider variability at the quality attribute level, the functional feature model
of section 4.2.1.2 shown in Figure 5.1 is augmented by adding two quality attributes re-
quirements: Mesh Processing Response Time and Mesh Processing Distribution. The former
is mandatory because all products must comply with a specified mesh processing response
time, and the latter implies a mandatory choice between Distributed and Non-Distributed
processing, i.e., which represents a variability at the quality level. Again, the FeaturePlugin
tool is used to define this feature model and a text-to-model transformation was developed
to transform the XML file produced by the FeaturePlugin tool to the corresponding model
of the metamodel in 6.5. Figure 7.10 shows the modified feature model.

Regarding the Feature-to-Architecture Transformation Rule artifact, specif-
ically the rule for the Non-Distributed feature, it organizes the components according to the
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3-tiers and blackboard patterns by connecting the User Interface component with the in-
terfaces in the second tier (the knowledge sources), and also connects the second tier with the
Mesh component, which plays the role of a blackboard. The resulting product architecture
is shown in Figure 7.8, which is similar to the product architecture that can be derived from
the product line architecture presented in Bastarrica et al. [20].

If the Distributed feature is chosen instead, almost all rules may be reused, and only the
rule covering the distribution itself would be different. In this case, the product architecture
is organized following a relaxed 4-tier architecture. A master-slave pattern [34] is used in the
second tier. The Mesh component in the fourth tier acts as a blackboard and is connected
with knowledge sources in both the second and third tiers. So, the rule adds a Master Tool

component that is in charge of dividing the mesh, distributing it among the Slave Tools, and
combining the results. The transformation rule also adds the Slave Tool component that is
in charge of applying the algorithms contained in the Algorithms component to a part of the
Mesh. There may be several of these components at runtime, and as such there may be several
of these processes in a process view. The rule also connects the User Interface component
with the non-distributed knowledge sources and with the Master Tool, and connects the
Master Tool to the Slave Tool and vice versa, and connects both these components to the
Algorithms component. Finally, the rule also connects the knowledge sources to the Mesh

component, applying the blackboard pattern. The resulting product architecture is depicted
in Figure 7.11.

Adding a quality attribute to the feature model at this level is a hard task. If the impact
of the quality attribute to be added is felt only by certain components, then it may be
simple to construct a transformation rule artifact that takes the new quality attribute into
account. In the previous example, adding the Mesh Processing Distribution quality attribute
affects the architecture mainly in the Algorithms component (see Figure 7.8), by adding two
components, i.e., the Master Tool and Slave Tool components (see Figure 7.11). Other
quality attributes may have a more transversal impact on almost all software architecture
components. In this case, constructing the transformation rule artifacts may be considerably
harder.
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Finally, if other structural and/or behavioral views must be added, they must be specified
in the transformation rules. In particular for this example, the product architecture behav-
ioral view is the same shown in Figure 7.9, essentially because the behavior of this product
is the same.

7.3 Contributions of this Chapter

In this chapter, the process for building the product line architecture presented in Chapter 6
was applied completely and carefully for a meshing tool product line. In this sense, both
the structural and behavioral views were built. Moreover, the two processes described for
building the product line architecture –deductive and transformational– were applied. With
these results, it is possible to establish for the meshing tool domain an effective process
that permits building the domain design from artifacts produced during the domain analysis
process.

The quality attributes, important elements of any product or product line architecture,
are deduced from goals shown in Section 5.1.2.2. Even though doing a quality analysis from
goals is not new, the novelty in this case is given by the relationships established among the
different domain model elements in Section 4.2.2.1 and how the domain model elements are
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mapped to the architecture.

At the same time, the transformational process for building the product line architecture
was specified using ATL rules. These rules allow building several single product architectures,
according to the needs of the stakeholders and to the set of features they select for producing
the feature model configuration. Furthermore, these rules are useful for the creation of several
more rules, which in turn permit instantiating other more sophisticated product architectures,
including both product architecture structural and behavioral views.

Finally, a feature model with quality attributes was produced. Even though in the litera-
ture it is a known fact that it is possible to do so, it is not a common practice. Furthermore, in
this thesis, a product architecture was derived considering quality attributes, and it is shown
how to derive different architectures depending on which quality attribute was chosen.
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Chapter 8

Conclusions and Future Work

8.1 Results

In the previous chapters, a software product line process specially suited to the meshing tool Work
summarydomain has been presented, and its characteristics have been specified using a model based

on features, scenarios, goals and lexicons. The domain engineering phase described in this
thesis covers mainly the first two stages of a SPL process, that is, the domain analysis and
domain design stages, in accordance to the objectives defined in Section 1.2.2. Nevertheless,
Appendix A gives an overview of the complete SPL process for the meshing tool domain,
covering all stages in both the domain engineering and application engineering phases through
activity diagrams.

8.1.1 Objectives

The objectives defined in Section 1.2.2 were fulfilled completely. In the following paragraphs,
the chapter and/or section of the thesis where the objectives were fulfilled are indicated.

Objective 1 Identify the characteristics of meshing tools and of the way they are built:
Section 1.1.1, Chapter 3.

Objective 2 Develop a DA process, describing the sequence of activities, artifacts and roles
involved: Chapter 4.

Objective 3 Identify architectural needs of meshing tools, considering the shared quality
attributes: Section 5.1.2.2, Section 7.1.1.

Objective 4 Develop a DD process, describing the sequence of activities, artifacts and roles
involved, in a manner consistent with the DA process: Chapter 6.

Objective 5 Validate the proposed DA and DD processes: Chapter 5, Chapter 7.
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8.1.2 Publications

The following list enumerates the publications produced as a result of this research, and
indicates the corresponding thesis sections, where applicable.

• Pedro O. Rossel, Daniel Perovich, and Maŕıa Cecilia Bastarrica. Reuse of Architectural
Knowledge in SPL Development. In Proceedings of the 11th International Conference
on Software Reuse (ICSR 2009), volume 5791 of Lecture Notes in Computer Science,
pages 191-200. Springer, September 2009.

This paper corresponds to Section 6.2.2 Transformational Process, and
Section 7.2.5 Adding Quality Attributes to the Feature Model.

• Daniel Perovich, Pedro O. Rossel, and Maŕıa Cecilia Bastarrica. Feature Model to
Product Architectures: Applying MDE to Software Product Lines. In Proceedings
of the Joint Working IEEE/IFIP Conference on Software Architecture 2009 & Euro-
pean Conference on Software Architecture 2009 (WICSA/ECSA 2009), pages 201-210.
IEEE, September 2009.

This paper corresponds to Section 6.2.2 Transformational Process, and
Sections 7.2.1 Domain Analysis to 7.2.4 Application Design.

• Pedro O. Rossel, Maŕıa Cecilia Bastarrica, and Nancy Hitschfeld-Kahler. A Systematic
Process for Defining Meshing Tool Software Product Line Domain Model. In Proceed-
ings of the 12th Workshop on Requirements Engineering (WER’09), pages 103-114,
July 2009.

This paper corresponds to Section 1.1.1 Meshing Tools, 4.2.1 Domain
Model Construction Process, 4.2.2 Domain Model Definition, 4.2.4 Related
Work, and Sections 5.1.1 Lexicon to 5.1.5 Domain Model Consistency.

• Maŕıa Cecilia Bastarrica, Nancy Hitschfeld-Kahler, Pedro O. Rossel, and César Castro.
Rapidly Generating Different Meshing Tools. In Proceedings of the 10th US Interna-
tional Congress on Computational Mechanics. 2.18.3 Trends in Unstructured Mesh
Generation. July 2009.

• Cecilia Bastarrica, Sebastián Rivas, and Pedro O. Rossel. From a Single Product
Architecture to a Product line Architecture. In Proceedings of the XXVI International
Conference of the Chilean Computer Science Society (SCCC’07), pages 115-122. IEEE
Computer Society, November 2007.

This paper corresponds to Section 6.1.2.2 PLA Assessment.

• Maŕıa Cecilia Bastarrica, Sebastián Rivas, and Pedro O. Rossel. Designing and Im-
plementing a Product Family of Model Consistency Checkers. In Proceedings of the
Quality in Modeling Workshop at MoDELS 2007, ACM/IEEE 10th International Con-
ference on Model Driven Engineering Languages and Systems, pages 36-49, October
2007.
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This paper corresponds to Section 6.1.2.2 PLA Assessment.

• Maŕıa Cecilia Bastarrica, Nancy Hitschfeld-Kahler, and Pedro O. Rossel. Architecting
a Family of Meshing Tools. In Second Chilean Workshop on Numerical Analysis of
Partial Differential Equations (WONAPDE 2007), pages 94-95. January 2007.

This paper corresponds to Section 1.1.1 Meshing Tools, 6.1.2 Product Line
Architecture, and 7.1.2 Meshing Tools Structural View.

• Maŕıa Cecilia Bastarrica, Nancy Hitschfeld-Kahler, and Pedro O. Rossel. A Meshing
Tool Product Line Architecture. In Proceedings of the IFIP 19th World Computer
Congress. First International Workshop on Advanced Software Engineering (IWASE
2006), volume 219 of IFIP International Federation for Information Processing, pages
1-15. Springer, August 2006.

This paper corresponds to Section 1.1.1 Meshing Tools, 3.9 Develop-
ing Meshing Tools, 6.1.2.1 Architecture Description Language (ADL) and
7.1.2 Meshing Tools Structural View.

• Maŕıa Cecilia Bastarrica, Nancy Hitschfeld-Kahler, and Pedro O. Rossel. Product Line
Architecture for a Family of Meshing Tools. In Proceedings of the 9th International
Conference on Software Reuse (ICSR 2006), volume 4039 of Lecture Notes in Computer
Science, pages 403-406. Springer, June 2006.

This paper corresponds to Section 1.1.1 Meshing Tools, 3.9 Developing
Meshing Tools, and 7.1.2 Meshing Tools Structural View.

8.2 Contributions of this thesis

In the domain analysis stage, a rigorous process is presented, complete with activities, roles, Domain
analysis
stageclear termination conditions and a formalization of the model specified in the formal language

Z. The model ensures the consistency among domain elements, and completeness with respect
to the products that are intended to be developed. The process can be customized so as to
avoid those activities that are not relevant to the particular domain, such as determining the
binding time of the identified variabilities.

The process of building a domain model must necessarily address both model completeness
and consistency. Deciding when requirements are complete is generally a difficult issue. The
termination conditions provided in the domain analysis process presented in this thesis give
a systematic means for verifying if the elements included in the domain model allow building
all the products within the SPL scope.

Defining a domain model that is complete for all potential meshing tools is impractical.
The objective, then, is to build a domain model that is complete enough to allow building
a series of planned products. The domain model and the scope shown meet this goal, and
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the iterative nature of the proposed process makes the domain model easily extendable when
needed, by adding particular scenarios, features, goals and lexicons, as was shown in Sec-
tion 5.1.6.3. It should be possible to build the planned products with the specified elements.

The domain model construction process must also ensure the consistency among all
requirement elements. The proposed formalization of the domain model allows iterating
through several inconsistent domain models, using the formal consistency conditions until a
consistent domain model is established. Allowing the temporal existence of inconsistent do-
main models gives flexibility to the modeling process and permits model improvement while
the modelers gain knowledge about the domain.

Building a good feature model for complex domains is a difficult task. Moreover, domain
experts tend to think in terms of goals and scenarios. The approach presented in this thesis
provides a framework and a process to guide the knowledge acquisition and recording in a
natural way. Currently, there are only a handful of methods that consider scenarios and goals
as part of the domain model, taking advantage of the relationships among scenarios, goals and
features. The formalization of these relationships, their definition and the rationale about
the domain that they support are crucial for building the domain model. This formalization
is one of the main contributions of this thesis.

The SPL scope is built using artifacts produced for the domain model and an additional
artifact, the product map. This is a relatively standard artifact, but in this work, it incor-
porates other characteristics such as cost and time of development of core assets, which are
generally known but not usually used explicitly for building the scope. In our case, these two
characteristics are very important when determining the best order for developing the core
assets.

In the domain design stage, most traditional approaches to SPLs build the product line Domain
design
stagearchitecture using the feature model as a basis, where features are usually associated to

concrete software modules. This thesis follows a similar approach, and also considers the
inclusion of quality attributes as variation points. Quality attributes were not considered
initially in the feature model, but rather affected the product through their presence in the
goals. Further experience with the domain guided their inclusion in the feature model so
they can directly affect the PLA.

Even though there is plenty of knowledge about the meshing tool domain, it is not easy to
know the necessary steps for building a PLA. To aid in this task, this thesis provides activity
diagrams which are based on experience in building meshing tools SPAs and the existing
relationships between domain model elements and the architectural styles, quality attributes
and views.

Designing a PLA that considers functional variabilities of all potential products in the SPL
is a complex task, and considering variabilities at the quality level is even more complex. This
thesis provides a systematic approach to defining an explicit PLA that considers functional
variabilities and an implicit PLA that considers both functional and quality variabilities, and
that also enables automatic product architecture generation.
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8.2 Contributions of this thesis

Both structural and behavioral views for the explicit architecture are provided. Even
though the literature broadly explains the benefits of having both kinds of views, in practice
it is common to find architectures with only structural views. The mandatory behavioral
view is important to the thesis’s approach, because it helps understand and review how the
meshing tools work, it is useful for building other architectural views, and it explicitly shows
system behavior.

The implicit PLA is built incrementally. Only those features that are present in already
existing products need to have their associated rules. Thus, the SPL scope can evolve without
losing the design effort already invested: as new features are added or modified, only their
rules need to be added or updated, respectively. However, in certain cases, these changes
may force a review of the rules affecting other features, but the divide-and-conquer strategy
used for the design phase makes this task easier. In most cases, the architectural knowledge
associated to each feature can be directly reused.

The systematic building of the software architecture leads to consistency between require-
ments specified in the form of the feature model. Also, the sequence of model transformations
applied in the design process enables traceability, another desirable quality.

Finally, some objections that may be raised regarding the process described in this thesis
are described and addressed in the following paragraphs.

A few comments regarding the DA stage include that, from a documentation perspec-
tive, the quantity of elements of the domain model may be considered excessive by some
stakeholders, that consistency and completeness verification is a rather tedious activity, and
that managing the different domain model elements may be error prone, given the current
shortage of automated tools. A possible solution is the automatization of all or part of the
DA process.

In the DD stage, the relationships of the different elements that participate in the PLA
must be formalized, and the termination conditions for the completeness and consistency of
the architecture must be established. Even though the different elements used to build the
architecture are the same for building the domain model and their relationships have already
been documented, other architectural particular elements may arise, for example, issues of
architectural style.

As SPL approaches are centered in architecture, it is highly recommended to assess the
PLA. The transformational approach described does not provide an explicit PLA, but rather
an implicit PLA is defined instead by the Feature-to-Architecture Transformation
Rule artifact. Therefore, this implicit PLA cannot be assessed with traditional methods.
The transformational process generates explicit single product architectures that can be
assessed using traditional methods, but this can be expensive if the number of products in
the SPL is large. Nevertheless, representative product architectures can be automatically
generated so as to perform architecture assessment.

The definition of the transformation rules is not a trivial task, and the definition of trans-
formation rules for several tools can be considered a hard and creative activity. Therefore,
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it is difficult to express some of the activities in the the UML activity diagram depicted
in Figure 6.6, specifically the Build Model Transformations activity, in more detail, as this
activity is of an unstructured nature.

The complete process for developing a meshing tool SPL works well because this domain
is stable and known. If these conditions are modified because of environmental variables,
then the construction of the domain model, scope, and architecture of the SPL can change.
This would, in turn, imply changes to the UML activity diagrams of both the DA and DD
stages presented in the Chapter 4.2 and 6.2 respectively, and to the activity diagram of the
derivation process presented in Section A.2.

Finally, a Meshing Tool Generator application was developed by Dı́az [73] following the Meshing
tool
generatordomain model structured in this thesis and its related works. This generator allows stake-

holders to automatically create meshing tool applications. The generator can produce two
kinds of mesh generators (Tree Growth Simulator and Generic Mesh Generator), it can use
several different input/output files for the mesh, and it can apply different algorithms to the
mesh (refine, derefine, among others), considering different quality mesh criteria. In particu-
lar, Dı́az’s work compares six products, describing two of them in detail. In this comparison
only final product size and compilation time were considered. Execution time was omitted
because it was similar among the different applications.

This Meshing Tool Generator validates the domain model built in this thesis, even though
the complete process presented in this thesis was not applied to construct the generator. Fur-
ther work is needed to apply the complete process described in this thesis, strongly considering
the product line architecture.

8.3 Knowledge Transfer to Other Domains

Knowledge developed or obtained during the thesis’s process is amenable for transfer to other
domains. However, it is difficult to provide enough evidence to validate effective knowledge
transfer from the meshing tool domain to other domains, because basically only the meshing
tool domain has been explored. In this sense, a lot of work is required, and this issue is
outside the scope of the thesis.

8.3.1 Domain Analysis

The domain model construction process, sketched in Figure 4.6, is a structured and detailed
process that can be used in other domains, as the activities considering actors and elements
can be present in any domain: stakeholders, developed systems, and components as a product
of the development process, among others. Furthermore, the domain model itself contains
artifacts such as goals, features, scenarios, actions and a lexicon, that can be and have been
used in several different domains [167, 187, 226, 250]. Finally, consistency and completeness
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checking are activities highly required by any model or requirements document for any kind
of system. The domain model is not the exception. In particular, the domain model formal
definition, shown in Section 4.2.2.1 helps in the consistency and completeness checking, and
it is sufficiently general for any domain.

To be able to apply this process to other domains, it must be noted that data storage,
parameters, functionalities and user interactions were considered valid abstractions for the
feature model in the meshing tool domain, as was mentioned in Section 4.2.1.2. Therefore,
in the new domain, the existence of these abstractions is required.

The domain scope definition process shown in Figure 4.7 is applicable to other domains
too. Its elements (the business goal, the feature model and the product map) are widely used
separately in many domains for SPL developments, with some minor differences [51, 195].
The idea of integrating these three elements into the scope is novel, and this integration leads
to a clearer understanding of the domain and all products supported by the SPL.

8.3.2 Domain Design

Similarly to the domain analysis stage, the process shown in Figure 6.3 for building both
structural and behavioral view is transferrable to other domains. This process considers
actors and elements that can be present in any domain: architects, domain experts, qual-
ity attributes, developed systems, and components as a product of the development process,
among others. The deduction of quality attributes from goals, as explained in Section 6.2.1.1,
is not a standard form to obtain them, but a similar process has been applied in another
domain [154]. The selection of scenarios and features from the domain model, and other ele-
ments such as domain scope and developed systems, is an important guideline that facilitates
building the product line architecture, because it specifies explicitly which elements must be
considered.

On the other hand, the transformational process for building the product architecture
can be transferrable to other domains. Furthermore, the metamodels can be used almost
without changes. However, it is necessary to consider that the features used in the feature
model, input element for this process, must be data storage, parameters, functionalities and
user interactions. Finally, all transformation rules must be built from scratch.

8.4 Future Work

Regarding future work, there are several development avenues to be pursued both in the
immediate future and in forthcoming work. The following paragraphs describe some of these
ideas.

This thesis focuses its endeavor in the domain analysis and domain design stages. The
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next step is to proceed to the domain implementation stage. Here there are two possible
lines of inquiry. First, a domain-specific language (DSL) can be used to take advantage of
the abstractions found in a specific domain, and to produce particular products for that
domain. Losilla et al. [132] and Vicente-Chicote et al. [243] present examples of this ap-
proach. In regard to the thesis, there has been initial work toward building a DSL for the
meshing tool domain using the feature model and the behavioral view as a basis, and the
Graphical Modeling Framework from Eclipse (GMF, http://www.eclipse.org/gmf/) as a DSL
development tool, with promising results. In this sense, a domain model and the product
line architecture are the basis for building any DSL for the meshing tool domain. Without
these artifacts, DSL construction is a very hard task. Secondly, building meshing tool domain
applications following the approach presented in this thesis necessarily requires a repository
of pre-built and pre-tested software components. These components can be obtained from
previous system developments or can be built from scratch.

Regarding the domain analysis stage, both goals and scenarios have been written using
natural language, without any predefined structure. This, in turn, does not permit their
automatized validation. This can be improved by imposing a structure upon these goals and
scenarios, thus also making it possible to advance in their formalization through Z schemas.
This issue has been explored by Basili et al. [15] and Rolland et al. [187].

In a similar manner, there are no explicit relationships between the business goals and
any element of the domain model. It seems that relationships can be naturally established
between the business goals and the domain model goals. These relationships can be captured
and formalized as Z schemas.

In the domain design stage, there are two interesting areas worth exploring. The trans-
formational process shown in Section 7.2.5 includes quality attributes in the feature model
and shows how to use them to deduce reasonable architectures. The next step is to change
the deductive process so that it too can include quality attributes in the feature model. This,
in turn, will also require changes to the domain model definition and the domain analysis
process.

This work is oriented to the definition of processes aimed at generating reasonable product
line architectures, and no formal assessment of the resulting architectures is done. There-
fore, the application of a formal architectural assessment method such as the one presented
by Olumofin and Mǐsić [164] is needed.

The formalization of the relationships among domain design artifacts is a pending task.
Even though there are several explicit relationships among some elements that participate
in the product line architecture, as stated in Section 6.2 for goals and quality attributes,
quality attributes and architectural styles, features and components in a structural view, and
features and transitions in a behavioral view, it is not clear at all how to organize them in a
coherent Z schema, in order to provide conditions for consistency and completeness checking
of the architectural views.

Considering the statements in previous paragraphs related to the formalization of several
artifacts and relationships, it is possible to apply formal methods to the SPL. This idea is
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not new [107] and has gained strength in recent years [192]. In that sense, HATS (Highly
Adaptable and Trustworthy Software Using Formal Models) [44, 45] is a methodology that
integrates established formal methods such as TVL (Textual Variability Language) [46] and
ABS (Abstract Behavioral Specification language) [112] in almost all stages of the SPL de-
velopment life-cycle. This is several steps ahead of the formalization proposed in this thesis.
However, if the HATS approach is to be applied to the meshing tool domain model, there
are some issues to be decided: how well HATS adapts to the domain, its abstractions and
characteristics; what domain model artifacts besides the feature model (goals, scenarios, ac-
tions and lexicon) used in this thesis can be modeled and formalized in HATS; and what
relationships among domain model artifacts can and must be modeled and formalized in
HATS.

Finally, the methodology applied in this thesis to the meshing tool domain can be extended
to other domains, as mentioned in Section 8.3. For example, there is work in progress on
modifying the activity diagrams of the domain analysis stage presented in this thesis to aid
their application to software process lines. Additionally, there is interest in applying this
methodology to the mobile collaborative applications domain, work which is currently at the
domain analysis stage.
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[3] Apel, S. and Kästner, C. 2009. An Overview of Feature-Oriented Software Develop-
ment. Journal of Object Technology 8:49–84.

[4] Arango, G. 1994. A Brief Introduction to Domain Analysis. In Proceedings of the 1994
ACM Symposium on Applied Computing (SAC ’94), pp. 42–46. ACM Press.

[5] ArchStudio 4 2006. ArchStudio 4. Software and Systems Architecture Develop-
ment Environment. Institute for Software Research, University of California, Irvine.
http://www.isr.uci.edu/projects/archstudio/.

[6] Ardis, M., Daley, N., Hoffman, D., Siy, H., and Weiss, D. 2000. Software
product lines: a case study. Software: Practice and Experience 30:825–847.

[7] Asikainen, T., Soininen, T., and Männistö, T. 2003a. A Koala-Based Approach
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Murphy, and M. Pezzè (eds.), Proceedings of the 34th International Conference on Software
Engineering (ICSE 2012), pp. 1619–1621. IEEE.

[230] Thiel, S., Ferber, S., Fischer, T., Hein, A., and Schlick, M. 2001. A Case
Study in Applying a Product Line Approach for Car Periphery Supervision Systems. In
Proceedings of In-Vehicle Software 2001 (SP-1587), pp. 43–55.

[231] Tolvanen, J.-P. and Kelly, S. 2005. Defining Domain-Specific Modeling Lan-
guages to Automate Product Derivation: Collected Experiences. In [160], pp. 198–209.

[232] Trigaux, J.-C. and Heymans, P. 2003. Software Product Lines: State of the art.
Technical Report EPH3310300R0462/215315, FUNDP Insitut d’Informatique Namur.

[233] Trinidad, P., Benavides, D., and Ruiz-Cortés, A. 2004. Improving Decision
Making in Software Product Lines Product Plan Management. In Proceedings of the V
ADIS 2004 Workshop on Decision Support in Software Engineering.

[234] van der Linden, F. 2002. Software Product Families in Europe: The Esaps & Café
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[242] Čeh, I., Črepinšek, M., Kosar, T., and Mernik, M. 2011. Ontology driven
development of domain-specific languages. Computer Science and Information Systems
8:317–342.

[243] Vicente-Chicote, C., Moros, B., and Toval, A. 2007. REMM-Studio: an In-
tegrated Model-Driven Environment for Requirements Specification, Validation and For-
matting. Journal of Object Technology 6:437–454.

[244] Visser, E. 2008. WebDSL: A Case Study in Domain-Specific Language Engineer-
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Appendix A

Meshing Tool Derivation Process

The product derivation is an important process of any SPL development process, because it
permits obtaining the particular products of the line. In this sense, the specific steps to be
followed by the stakeholders must be clearly specified, as well as the relationships among the
processes of the SPL development process, such as domain analysis, domain design, among
others.

In the following sections, a product derivation process suitable for meshing tool domain
is presented, considering products that are inside and outside the SPL scope.

A.1 Introduction

A specific domain has several sub-domains inside of it, and each of them has some associated
functionalities. Additionally, it is relatively easy to see that in a domain there are several
software products that usually do not cover all the functionalities present in each sub-domain.
Figure A.1 shows the existing relationship between sub-domains and products in a particular
domain [194] .

products

domains

Figure A.1: Relationship between Domains and Products

The product line is composed of the combination of all products of the domain, and
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several sub-domains are necessary for having the functionalities that compose the products.

With the above in mind, it is easy to understand the difficulties that specialists and
stakeholders have for producing software products. Indeed, as presented in Chapter 2, SPL
developments have big challenges, and to achieve the goals imposed by those challenges
it is necessary to count on a suitable infrastructure. Furthermore, an appropriate model
supporting the reuse infrastructure is needed.

In the context of SPL, when a new product is developed (or derived), all stages of the
application engineering process are used. Therefore, all reuse infrastructure, core assets and
underlying process model are ready for carrying out this activity. Product derivation is the
complete process of constructing a product from product family software assets [70], and
its goal is to build the product by reusing the reuse infrastructure as much as possible and Product

derivation
purposeminimizing the amount of product-specific development required [163].

In general, a product derivation (or instantiation) process could be in a range from manual
to automatic: all intermediate values are allowed. In that sense, Figure 2.6 (in Section 2.5) is
valid. It is important to put attention in the derivation process, and consider that a tool may
help increase efficiency and deal with product derivation complexity [163]. With an automatic
o semiautomatic derivation process, it is more likely to have components integration activity
or configuration scripts than a complete development process.

In general, any derivation process begins with a customer request that can be satisfied Product
derivation
processby the SPL. This is the case when the requested product is in the scope of the SPL, i.e the

SPL is able to produce the required product. The specification for the requested product is
built. In some developments that use feature models, a feature model configuration is derived.
Then, the product architecture is instantiated according to the reference architecture, product
specification and feature configuration. Finally, from the product architecture and core assets
produced in the domain implementation, the product is assembled. Generally, an integration
test and acceptance test is carried out before the product is delivered to users. Figure A.2
summarizes this [180]. Irrelevant parts of the original variability model must be pruned, and
additional project-specific knowledge needs to be incorporated to the model, adapting and
augmenting it.

project

knowledge

added specific

adapted/

customized

derivation

project x

model for

pruned

original variability model

Figure A.2: Project-specific derivation models
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According to O’Leary et al. [163] there are several key activities to be considered in a Product
derivation
activitiesproduct derivation process:

• Preparing for Derivation: Due to the need of collaboration between customers and
developers, customer requirements need to be translated into internal organizational
languages. Furthermore, it is necessary to define roles, e.g. who is in charge of product
derivation to fulfill product requirements. Finally, there must be some guidance for
decision-makers.

• Product Derivation/Configuration: Product derivation is an iterative process that
starts with the selection and/or customization of the core assets. Sometimes it is
impossible to resolve all variabilities in one single step, and it is necessary to build a
configuration that partially implements the software product. Then, additional devel-
opment will be required.

• Additional Development/Testing: When a component is developed or adapted due to
new requirements, then rigorous testing is necessary. The component must be inte-
grated with the rest of the components of the reuse infrastructure.

Some authors [70, 153, 163] agree with the idea of having several activities inside of the
product derivation process. Deelstra et al. [70] established a generic process for derivation
that consists of two phases: an initial and an iterative one. Sometimes the initial phase is Product

derivation
phasesenough to produce a particular product. However, in many cases one or more cycles of the

iterative phase are required.

1. Initial phase: The input to this phase is a set of customer requirements. With these,
a first derivation is produced, considering three alternatives: assembly, which involves
the assembly of the subset of shared core assets to the initial software product con-
figuration; configuration selection, which involves the selection of a closest matching
existing configuration; and hybrid, which is a mix of the previous two alternatives. The
initial phase concludes with an initial validation of the built product for determining if
it adheres to the requirements.

2. Iterative phase: Many times, the initial derivation obtained from the previous phase
does not implement the desired product. Then, several cycles through the iterative
phase are needed to produce the correct product. This may happen due to the fol-
lowing reasons: requirements may change during derivation; the configuration may not
completely provide the required functionality or some of the selected components sim-
ply can not work together at all; or the core assets used to derive the configuration
may have changed during product derivation. During the iterative phase, the product
configuration is modified and validated until the product is ready.

The product derivation process presented by Deelstra et al. [70] is generic and applicable
to any domain. However, there are few approaches and tools available for product deriva-
tion [162, 179]. It is possible to find some approaches that are particular to a SPL approach.
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Some of them are PuLSE-I [23], and DOPLERUCon [180, 179]. A good review was conducted
by O’Leary [162] and more approaches can be found there. Moreover, some tools have been
developed by Nestor et al. [153] and Rabiser et al. [180] for helping in the production of the
software products. Finally, O’Leary [162] presents a generic approach for product derivation.

Because product derivation is a process prone to errors, it is convenient to have tools that
support the product derivation process. The tools must deal with [153]:

• The complexity of the SPL in terms of variation points, variants and dependencies;

• The large number of implicit properties or dependencies associated with variation points
and variants.

Furthermore, as Hunt [102] established, it is necessary to determine the set of assets that
will be used to build specific product. If the size and complexity of the SPL grow and with
it the reuse infrastructure, then it will be difficult to derive products from the infrastructure.
It is necessary, as Hunt manifests, to organize the core assets according to some criteria:

• Natural division.

• Easy to find components.

• Generally applicable.

• Reasonably sized groups.

• Similarly sized groups.

In summary, a product derivation process must be specific enough to be useful but not too
specific, but finding the right balance between specific and generic is a hard task [163]. This
thesis is in the same line with this idea and proposes a product derivation process considering
both domain engineering and application engineering phases. The process is showed in the
following Section.

A.2 Products Derivation Process

A.2.1 Considerations

The product derivation process that will be presented in the following sections is not a
complete or standard derivation process. This is because a complete derivation process is
not part of this thesis (see Section 1.2 and Figure 1.3). However, the diagrams are shown

157



A.2 Products Derivation Process

for completeness, i.e., it is better to show the complete process to understand its stages and
their interactions, what is the real sequence for instantiating a product, and for future works.

The derivation process that will be presented in the following section corresponds to
the “Preparing for Derivation” activity, and half of the “Product Derivation/Configuration”
activity proposed by O’Leary et al. [163], and presented in Section A.1. The third activity
“Additional Development/Testing” is not considered because the SPL model of this thesis
does not produce final software products.

A.2.2 Activity Diagram

The product derivation process is depicted in Figure A.3. This diagram includes both the
domain engineering and application engineering phases and their stages. This process is very
similar to any other process of product derivation. In this sense, the presented process is
general enough to use it as a guide for derivation in other domains but specific to the meshing
tool domain, since it considers the necessary inputs and outputs for it at each stage.

Chapters 4 and 6 presented in more detail each one of the domain engineering stages.
Application engineering stages will be commented in the following sections.

A.2.3 Applications in the SPL Scope

The product derivation process begins when a customer requests a product that can be built
by the SPL, that is, the required product is within the scope of the SPL.

The derivation process starts with activity 1 of Figure A.3: “Check Requirements in
relation to SPL Scope”. This consists of five other activities presented in Figure A.4.

The product analysts review wether both the business goal and the feature model cover the
current needs of the product. Because the product required is within the scope, the product
map is verified and updated with the product needs, and a feature model configuration is
established according to customer needs. These artifacts were detailed in Chapter 4.

The feature configuration model is used as input for the application design stage. In
this stage, the product designer needs to check if all domain design artifacts, i.e. product
line architecture, state machine, production plan and transformation rules, were built during
the domain design stage. This check occurs in activity 2 : “Check Domain Design Artifacts
Built”. It is highly probable that all these artifact exist in the Reuse Infrastructure artifacts
since the product is in the scope.

Then, the product designer proceeds with the “Application Design Instantiation” activity
( 3 ), which is shown in Figure A.5.
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Figure A.3: Product Derivation Process

This activity can be carried out in two ways: through the use of the product line archi-
tecture, or through a model transformation. With the first alternative, several artifacts are
necessary: the feature model configuration, the architectural structural views, and the be-
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Figure A.5: Application Design Instantiation

havioral view. The product designer takes all the artifacts and proceeds to instantiate them,
producing a particular product architecture. On the other hand, if the second alternative is
chosen, a model transformation is applied over the feature model configuration and a unique
artifact is built: the product architecture. The choice of one or the other alternative in the
application design instantiation is related to which kind of Domain Design activity (12) was
conducted. The two options were exposed in detail in Chapter 6.

The artifacts produced in activity 3 are input to the application coding stage. The prod-
uct implementer needs to check first if all domain implementation artifacts were developed.
This is carried out during activity 4 : “Check Domain Implementation Artifacts”. The ar-
tifacts to be checked are preimplemented components, generic code generators, and specific
product generators. Similar to activity 2 , since the product is within the scope, it is highly
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probable that all those artifacts exist in the Reuse Infrastructure artifact, because they were
built during the domain implementation stage. The product implementer proceeds with 5 :
the “Generate Application” activity shown in Figure A.6.
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Figure A.6: Generate Application

Again, this activity may be carried out in two ways: through the use of a generic code
generator, or through a specific product generator built by model transformation. The choice
of one or the other alternative for generating the application is related to which kind of Do-
main Implementation activity (13) was conducted. With the first alternative several artifacts
are needed: the generic code generator, the components for building the application, and
the architecture of the product. The product implementer takes all these artifacts and with
the generic code generator produces an untested application. If the other option is chosen,
only the components, the architecture of the product and the specific product generator are
needed to produce an untested application.

The resulting application is tested in activity 6 : “Test Application”. This activity is not
documented in this thesis. It is known that there are a variety of product tests [217]. This
activity could consider at least two of those tests:

• System testing: Test the application as a whole. The focus is on testing component
interactions.

• Acceptance testing: Test the application to decide whether or not it is ready to be
accepted by the system developers and deployed in the customer environment.

Moreover, in the “Testing” practice area Northrop and Clements [157] discuss other suit-
able tests for SPL.

Finally, if the application overcomes the test activity, and therefore is ready to be used, the
application is delivered to the customer ( 7 ). On the other hand, if the application presents
some problems during testing, it is necessary to evaluate those problems with activity 14.
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These problems could be produced because something was missing or was wrong in the do-
main analysis, domain design or domain implementation stages, and therefore it is necessary
to restart all product derivation processes, or go back to where the problem was produced, i.e,
domain analysis activity ( 8 ), domain design activity (12) or domain implementation activity
(13).

A.2.4 Applications out of the SPL Scope

The derivation process starts with activity 1 (Figure A.3) “Check Requirements in relation
to SPL Scope”. If the requested product can not be built by the SPL, it because the product
is not aligned to the business goal defined for the SPL or it has some characteristics that
are out of the scope of the SPL. This is shown in Figure A.4. In both cases is necessary
that the domain analysts review the domain analysis activity, considering the features that
are out of the scope, or modifying the business goal. The domain analysis activity ( 8 ),
which was described in Chapter 4, would permit incorporating new customer needs to the
SPL, therefore expanding the SPL scope. Once domain analysis is finished and both domain
model and SPL scope have been incorporated to the reuse infrastructure, it is necessary to
evaluate if all requirements are included in these artifacts, because some features may not
included due to consistency of the domain model, problems in the business goal, or the cost
of some of the components in the product map. The evaluation occurs in activity 9 , and if
it is successful, the product is added to the SPL scope, and a feature configuration model
is built in activity 11. But, if something was wrong in the domain analysis activity and the
application will be not considered in the scope of the SPL, it is necessary to return the reuse
infrastructure to the previous state, i.e., before of the domain analysis for new customer
needs. This is carried out in activity 10 by the domain analysts.

A.2.5 Domain Design Artifacts Missing

Once the application requirements stage has finished successfully, the application design
stage begins with activity 2 . If this activity, done by the product designers, does not find
all necessary artifacts for an adequate application design instantiation activity ( 3 ), then
the domain design activity (12), described in Chapter 6, must be carried out by the domain
designer.

A domain design activity must be conducted with the goal of incorporating all aspects of
the application. It has many associated activities, dealing with the creation of the product
line architecture, the production plan, the state machine and model transformation rules.
When the domain design activity has finished successfully, then activity 3 can be initiated.
On the other hand, if some problems were detected during the domain design stage, and it
was impossible to reflect all customer needs in the design, activity 10 is done, returning the
reuse infrastructure to the previous state, i.e, before of the domain analysis for new customer
needs. The activity is carried out by the domain analysts and the domain designers in their
respective stages.
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A.2.6 Domain Implementation Artifacts Missing

The application coding stage begins with activity 4 when the product implementer checks
if all domain implementation artifacts were developed in such a way the generation of the
products will be the result of using both available components and code generators. If some
component or generator was not developed, then the domain implementation activity (13),
must be done by the domain implementers.

Domain Implementation has two main activities. One of them is implementing and modi-
fying preimplemented components, and the other one is creating the different code generators.
When the domain implementation activity finishes correctly, then all artifacts are ready to
be used to generate the application in activity 5 . If some problems were produced in the
domain implementation, and it was impossible to create some components or generators, it
is necessary to return the reuse infrastructure to the previous state, using activity 10 for that
purpose. The activity is carried out by the domain analysts, the domain designers and the
domain implementers in their respective stages.

A.2.7 About Feedback

Feedback is an important aspect in SLP development. It permits to add requirements or
features not considered initially in the SPL.

The SPL method presented in this thesis considers two kinds of feedback, mentioned in
Section 2.5: horizontal and vertical. Figure A.3 explicitly shows these types of feedback.

Horizontal feedback is done through customer needs in the application requirements stage.
New requirements not considered in the SPL can be incorporated following path 1 - 8 - 9 -11,
which is considered the first vertical feedback.

New features need support from the reuse infrastructure. Here, two more vertical feed-
backs are produced: the second one in the application design following the path 2 -12- 3 , and
the third one in the application coding following path 4 -13- 5 .

Finally, three more vertical feedbacks are produced once the product or application is
tested: the fourth one is 6 -14- 8 - 9 -11, the fifth one is 6 -14-12- 3 , and the last one is 6 -14-13- 5 .
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Approaches for Building a SPL

There are several SPL approaches. Some of them are general, i.e., they can be used in any
domain, any size of project or any quantity of individual products to produce, and others
are specific, i.e., they can be used in specific domains because they were built specifically for
taking advantage of certain aspects of the particular domains.

In the next sections, some general SPL approaches will be presented.

B.1 PuLSE

The PuLSE (Product Line Software Engineering) methodology [22] has been developed at the
Fraunhofer Institute for Experimental Software Engineering, and it is a systematic approach What is

PuLSEfor developing a software product line. The PuLSE methodology enables the conception and
deployment of software product lines within a large variety of organizational contexts. In
fact, Knauber et al. [123] report that this methodology is not only relevant for big companies
but also for small and medium-sized companies.

Figure B.1 presents the phases and components of the methodology [22]. The Deployment
Phases gathers the PuLSE life-cycle phases; the Technical Components is a set of compo-
nents that gives support to PuLSE life-cycle phases; the Support Components includes a set
components that give additional information to SPL development process.

According to Trigaux and Heymans [232], this methodology may be described as follows: PuLSE
description

• PuLSE provides a complete framework that covers the whole SPL development life
cycle, including reuse infrastructure construction, usage, and evolution.

• PuLSE is modular and customizable: It consists of six technical components that can
be selected and instantiated in order to satisfy the needs of specific companies.
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Figure B.1: PuLSE Overview

• PuLSE can be introduced incrementally by augmenting existing software development
processes and products with product line specific aspects step by step.

One of the important features of PuLSE is that all elements of the methodology are PuLSE
documenta-
tionappropriately documented through several articles [22, 24, 23, 68, 69, 193, 195, 198], with

explanations about the components. An example of this is the use of diagrams, as is presented
in Figure B.2, obtained from Bayer et al. [22], for showing and describing the process and
their interactions.

In the following sections each of the three elements of the methodology will be explained,
according to Bayer et al. [22] and Trigaux and Heymans [232].

B.1.1 Deployment Phases

Deployment phases describe the activities performed to set up and use the product line and
represent the logical stages of SPL. The phases are four:

1. Initialization: In this phase, an instance of the PuLSE methodology is produced and
tailored to the organizational context in which it will be applied.

2. Infrastructure Construction: The purpose of this phase is to construct the product line
infrastructure. It implies building a scope model and the definition of the product line
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Figure B.2: PuLSE Usage Phase

architecture. This phase is decomposed in three parts, each of them performed by a
technical component:

(a) PuLSE-Eco helps to determine an economic viable scope for the product line.

(b) PuLSE-CDA is used to elicit and articulate product line concepts and their inter-
relationships.

(c) PuLSE-DSSA is applied to define a software reference architecture for the product
line.

3. Infrastructure Usage: This phase aims at specifying, instantiating, and validating one
member of the product line. This encompasses the instantiation of the product line
model and the reference architecture, the creation and/or reuse of products that con-
stitute the instance, and validation of the resulting product.

4. Infrastructure Evolution and Management: The purpose of this phase is to monitor and
control the evolution of the product line infrastructure which is built in the Construction
phase.

B.1.2 Technical Components

Technical components provide the technical know-how needed to operationalize the product
line development and are used throughout the Deployment Phases. The components are six:
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B.1 PuLSE

1. Customizing (BC): Baselining and Customization is used to create an instance of the
PuLSE method that is tailored to a specific organization context.

2. Scoping (Eco): Economic Scoping is concerned with an economic analysis of the product
line. The goal is to identify candidate reusable assets that provide a high economic
benefit to the organization at a low risk.

3. Modeling (CDA): Customizable Domain Analysis is a domain analysis approach that
can be modified following the various characteristics of an organization. This tech-
nical component is essentially composed of requirements and knowledge engineering
techniques.

4. Architecting (DSSA): Domain Specific Software Architecture is used to develop a ref-
erence software architecture for all products in the product line. This reference archi-
tecture covers current and future applications of the product line as described by a
product line model.

5. Instantiating (I): Instantiation is concerned with product instance development, i.e.,
deriving a concrete product from the product line infrastructure. The key elements
include instance planning, instantiation of domain model and reference architecture, as
well as product construction.

6. Evolving and managing (EM): Evolution and Management describe how to integrate
new products in the product line, and deal with configuration management issues as
products accrue over time. This activity focuses on three main goals: managing the
instantiation of the PuLSE process, defining feedback processes that allow continuous
optimization of both the processes and the product line artifacts, and defining and
realizing an appropriate configuration management strategy.

B.1.3 Support Components

Support components are packages of information, or guidelines, that enable a better adap-
tation, evolution, and deployment of the product line. These components are used by the
other elements of the PuLSE methodology. The components are three:

1. Project entry points, which describe standard situations where PuLSE can be applied,
and it helps to integrate PuLSE into a specific company context.

2. Maturity scale, which is designed to help an organization to adopt the methodology
step by step. It drives towards the usage and integration of the different PuLSE phases
and components so as to help an enterprise ultimately function fully according to a
product line mode.

3. Organization issues, which provide guidelines to set up and maintain the right organi-
zation structure for developing and managing product lines.
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B.2 Framework for Software Product Line Engineering

The framework for software product line engineering was developed by Pohl et al. [174], and
descriptions of industrial case studies using the approach can be found in van der Linden
et al. [236].

This framework is based on two development processes: domain engineering and ap-
plication engineering. These processes are similar to traditional ones, as was explained in
Section 2.5.

The framework is shown in Figure B.3, obtained from Pohl et al. [174].

Figure B.3: The Two-life-cycle Model of Software Product Line Engineering

The upper part of the figure presents the domain engineering process. It is composed of
five sub-processes: product management, domain requirements engineering, domain design,
domain realization, and domain testing. On the other hand, in the lower part of figure,
the application engineering process is presented. It is composed of the following four sub-
processes: application requirements engineering, application design, application realization,
and application testing.

Similarly to other approaches that use domain and application engineering phases, several
artifacts are developed from each one of the sub-processes for each phase, and the artifacts
produced by the domain engineering are used as a base for producing individual products
during application engineering.

168



B.2 Framework for Software Product Line Engineering

As in any SPL development method, variability is an important concept. Figure B.4,
obtained from Pohl et al. [174], presents the graphical notation used for representing the
existing variability in a family of products.

Figure B.4: Graphical Notation for Representing Variability

In summary, the variation point describes where differences exist in the final systems;
the variant represents the different possibilities that exist to satisfy a variation point; the
variability dependencies and alternative choice are used as a basis to represent the different
choices (variants) that may fill a variation point, and the latter includes a cardinality which
determines how many variants can be selected simultaneously; artifact dependencies describe
dependencies among variation points or variants and other requirements, design, realization
or test artifacts; constraint dependencies describe dependencies among certain variant se-
lections: requires means that the selection of a specific variant may require the selection of
another variant, and excludes means that the selection of a specific variant may prohibit the
selection of another variant.

This notation is very similar to others sketched by authors as Kang et al. [115], Czarnecki
and Eisenecker [60] and Czarnecki et al. [62]; in essence they consider the same elements
considered by them. Probably, Pohl et al. [174]’s notation is less compact than others, and
it could present some disadvantages when it is necessary to model a complex domain. On the
other hand, this notation permits traceability between the variability model and the different
artifacts produced on each one of the stages of the framework, which is an aspect that is not
considered by the other authors.

There are some important elements used in the description of the framework. Figure B.5,
obtained from van der Linden et al. [236], presents the four concepts that need to be consid-
ered in the product line engineering: Business, Architecture, Process and Organization.

The concepts are defined briefly as follows:

• Business: the costs and profits of the software, the application strategy and the pro-
duction planning.
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B.2 Framework for Software Product Line Engineering

Figure B.5: BAPO Model

• Architecture: the technical means to build the software.

• Process: the roles, responsibilities and relationships within software development.

• Organization: the people and organizational structures that execute the software de-
velopment.

As was shown in Figure B.5, the four concepts of BAPO are all interrelated, and if some
changes are applied in one concept then those changes induce changes in other concepts.
The arrows denote the order the elements should be to traversed in: Business is the most
influential factor, architecture reflects these business concepts in software structure and rules,
processes enable the development of the software, based on the architecture, and finally,
organization hosts this process, assigning units and people who are responsible for business,
architecture and process [236]. More details about BAPO can be found in van der Linden
et al. [235].

Considering the above, this framework has some principles that are fundamental to its
success. Two of them are business centric and architecture centric. The first one takes into
account that product line engineering can only be successful if the reuse infrastructure is
an adequate instrument to incorporate new products onto the market efficiently. The reuse
infrastructure must be considered in the long term. For that, it is important to define the
scope of the SPL, so the SPL can achieve the business goals and quality goals. In other
words, the SPL must support all the defined goals, for each of the products that are in the
scope of the SPL. The second one relies on the fact that there is no need to develop several
components that address the same or similar functionality and differ only with respect to
the environment they work in. In this principle it is necessary to define a product line
architecture (reference architecture) in a way that this architecture allows taking advantage
of commonalities among the individual products or systems.

In the following sections the stages of the framework are presented [174, 236].
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B.2.1 Product Management

The product management stage deals with the economic aspects of the SPL. It aims at
identifying the major commonalities and variabilities among the products. Its main concern
is the management of the product portfolio of the organization, employing scoping techniques
to define which products are in the scope and which products are not.

The input to this stage consists of the organizational goals defined by top management.
The output is a product roadmap that determines the common and variable features of
future products as well as a schedule with their planned release dates. Additionally, a list
of existing products and development artifacts that can be reused and incorporated to the
reuse infrastructure is provided.

B.2.2 Domain Requirements Engineering

The domain requirements engineering stage is in charge of eliciting and documenting the com-
mon and variable requirements of the SPL. An initial variability model is built for supporting
the other development stages.

The input to this stage consists of the product roadmap. The output comprises reusable
requirements and the variability model of the product line. The output does not include the
requirements specification of a particular product.

B.2.3 Domain Design

The main concern of the domain design stage is to build the product line architecture, pro-
viding the base for the next stages. The architecture provides a common high-level structure
for all product line applications.

The input to this stage consists of the domain requirements and the variability model
from the domain requirements engineering stage. The output is the reference architecture.

B.2.4 Domain Realization

The domain realization stage covers both detailed design and implementation of the common
and variable reusable software components.

The input to this stage consists of the product line architecture, including a list of reusable
software artifacts to be developed in the domain realization stage. The output is mainly
composed of the detailed design and implementation of reusable components.
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B.2.5 Domain Testing

The domain testing stage is in charge of validation and verification of reusable components
built in the domain realization stage, and the building of the reusable test artifacts to reduce
effort during application testing.

The input to this stage are all artifacts developed in the previous stages. The outputs
are the test results of the tests performed and the reusable test artifacts.

This stage is difficult mainly because there are no applications or systems to be tested.
Only component tests are possible, integration tests are not.

B.2.6 Application Requirements Engineering

The application requirements engineering stage is centered in the production of the appli-
cation requirements specification (individual product) by the identification of the specific
requirements. It starts from the existing commonalities and variabilities model.

The input to this stage are the domain requirements (variability model) and the product
roadmap. Sometimes, there may be additional specific requirements from a customer for
the particular application that are not present in the variability model. The output is the
requirements specification for the particular application.

B.2.7 Application Design

The application design stage produces an instance of the product line architecture, according
to the requirements identified in the previous step. It selects and configures the required
parts of the product line architecture and incorporates application specific adaptations.

The input to this stage is the product line architecture and the application requirements
specification. The output is the architecture for the particular application.

B.2.8 Application Realization

The application realization stage develops the final implementation of the product, taking into
account its requirements and architecture, reusing and configuring the existing components
and building new components for product-specific functionality, if needed. In general, this
stage can be seen as an assembly of components for building the product.

The input consists of the application architecture and the reusable components produced
during the domain realization stage. The output consists mainly of an executable product.
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B.2.9 Application Testing

This stage considers the verification and validation of the application that was generated in
the previous stage.

The input to this stage mainly consists of the implemented application and the reusable
test artifacts developed in the domain testing stage. The output is a test report with the
results of all tests that have been performed.

B.3 Comments About the Approaches

There are several other software reuse approaches that have similarities with SPL, such as
RiDE (The RiSE Process for Domain Engineering) by de Almeida [65], or The 3-Tiered
Methodology by Krueger [128], but they are not as popular or widely used. Furthermore, it
is highly probable that in the future the quantity of SPL methodologies will increase. Any
new methodology must at least consider the three categories of SPL approaches described
by Krueger [127]: software mass customization, minimally invasive transitions, and bounded
combinatorics.

Considering each one of the approaches presented in Section B.1 and Section B.2, it is
possible to establish that:

• The two approaches are sufficiently general as to consider their use in any domain.

• Their stages or practice areas cover almost any need in a development.

• Both input and output artifacts, are suitably and explicitly described.

• It is clear, from one stage to other one, which artifacts are inputs and outputs from
which stage.

On the other hand, there are some aspects of the previous SPL approaches presented that
make it difficult to apply them in any context or domain. Several of those aspects have been
mentioned by other authors, and they are summarized in the next list:

• As they are general, it is necessary to tailor them for a specific domain. Unfortunately,
it is not always clear what aspects, process, or artifacts of the methodologies will be
used, and what can be omitted. In particular, Trigaux and Heymans [232] mention
that SEI Framework must be tailored to the needs of specific projects.

• According to de Almeida [65], there are no step by step guidelines for customizing
the SEI frameworks, or specific ways of performing the activities. The same issue
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happens in PuLSE framework. Even though PuLSE itself has a technical component
to customize it and produce an instance of it for the domain context in which it will be
applied, it requires complete knowledge and experience with the PuLSE methodolgy
for producing correct PuLSE instantiations.

• Authors such as Capilla and Dueñas [39] and Nedstam and Staples [151] believe that
SEI Framework and PuLSE are too cumbersome to be effectively used by small and
medium sized companies.

Considering the previous points, and taking into account that sometimes it is not nec-
essary to consider all activities or steps in a SPL approach [39], it is possible to think in
light-weight product-line approaches, or also in specific domain product-line approaches. Other

SPL
approachesThe next is a non exhaustive list of them. The analysis is not a deep one; more information

about each one of them can be found in the respective reference.

1. Capilla and Dueñas [39] present a light-weight SPL model applied to the Web do-
main, mainly centered in evolution and maintenance. The idea of this approach is
that existing web sites can be re-engineered without employing complex processes (e.g
domain analysis or scope definition), reducing the initial investment barrier caused by
the introduction of a SPL, by evolving the product line from already existing products.

2. Nunes et al. [159] developed an approach for the Multi-agent Systems (MAS) domain.
MAS addresses the development of complex and distributed systems based on their
decomposition into autonomous and pro-active agents, which together compose a Multi-
agent System. An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators [191].

The approach covers all domain engineering process, using an UML-based notation,
and it aggregates some activities that are specific to model software agents and their
variabilities.

3. Thiel et al. [230] present the application of SPL concepts to Car Periphery Supervision
systems, which is a limited and non complex domain, with the objective of reusing both
software and hardware components. The authors follow standard software development
procedures, only applying some stages of an SPL approach with successful results.

4. Zhang and Jarzabek [251] developed XML-based Variant Configuration Language
(XVCL), which permits building product line assets as a set of x-frames that are ca-
pable of accommodating both commonality and variability in a domain. X-frames
represent domain knowledge in the form of product line assets. Specific systems can be
constructed by composing and adapting x-frames.

XVCL is a general-purpose mark-up language developed for configuring variants in
domain model, program code, test cases, and other kinds of documents. This approach
has been applied to different domains.

Taking into account the previous discussion, the need for developing specific SPL ap-
proaches that consider the special characteristics of some domains and take advantages of
their particularities is clear.
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Finally, it is possible to find other approaches for software reuse, in particular centered in
the domain analysis stage. These specific methods were analyzed in page 71 of Section 4.2.4.
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Appendix C

ATL Transformation Rules

The following sections show some ATL rules built for the domain design stage for the archi-
tecture building transformational process in Section 7.2.2. Section C.1 shows ATL rules that
allow building the architecture structural view, while Section C.2 presents rules for building
the architecture behavioral view.

C.1 Rules for the Structural View

Listing C.1: CSG Rule for the Structural View

rule rCSG{
from

f : FCMMM!Feature (f.name = ’CSG’)
to

c : PAMM!Component (name <− f.name, provided <− ip, required <− ir),
ip : PAMM!Interface (name <− ’IGeometry’),
ir : PAMM!Interface (name <− ’IGenerate’)

}

Listing C.2: Generate initial mesh Rule for the Structural View

rule rGenerate initial mesh{
from

f : FCMMM!Feature (f.name = ’Generate initial mesh’)
to

c : PAMM!Component (
name <− f.name,
components <− f.members,
provided <− ip,
required <− ir,
connectors <− Set{xp, xr}),

ip : PAMM!Interface (name <− ’IGenerate’),
ir : PAMM!Interface (name <− ’IMesh’),

176



C.2 Rules for the Behavioral View

xp : PAMM!Connector(
name <− c.components−>first().name + ’ Generate’,
kind <− #Delegate,
source <− ip,
target <− c.components−>first().provided−>first()),

xr : PAMM!Connector(
name <− c.components−>first().name + ’ Mesh’,
kind <− #Delegate,
source <− c.components−>first().required−>first(),
target <− ir)

}

Listing C.3: Refine Rule for the Structural View

rule rRefine{
from

f : FCMMM!Feature (f.name = ’Refine’)
to

c : PAMM!Component (
name <− f.name,
provided <− ip,
required <− ir),

ip : PAMM!Interface (name <− ’IRefine’),
ir : PAMM!Interface (name <− ’IMesh’)

}

C.2 Rules for the Behavioral View

Listing C.4: Meshing Tool Rule for the Behavioral View

rule rMeshingTool{
from

f : FCMMM!Feature (f.name = ’Meshing Tool’)
to

s1 : PABvMM!Initial (number <− ’1’),
s2 : PABvMM!Normal (number <− ’2’),
t1 : PABvMM!Transition(

sourceStatenumber <− s1.number,
event <− ’select dimension’ ,
targetStatenumber <− s2.number)

}
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Listing C.5: CSG Rule for the Behavioral View

rule rCSG{
from

f : FCMMM!Feature (f.name = ’CSG’)
to

s1 : PABvMM!Normal (number <−’2’),
s2 : PABvMM!Normal (number <−’3’),
t1 : PABvMM!Transition(

sourceStatenumber <−s1.number,
event <− ’load input’ ,
targetStatenumber <−s2.number)

}

Listing C.6: Generate initial mesh Rule for the Behavioral View

rule rGenerate initial mesh{
from

f : FCMMM!Feature (f.name = ’Generate initial mesh’)
to

s1 : PABvMM!Normal (number <−’3’),
s2 : PABvMM!Normal (number <−’4’),
t1 : PABvMM!Transition(

sourceStatenumber <−s1.number,
event <− ’produce initial mesh’,
targetStatenumber <−s2.number)

}

Listing C.7: Refine Rule for the Behavioral View

rule rRefine{
from

f : FCMMM!Feature (f.name = ’Refine’)
to

s1 : PABvMM!Normal (number <−’4’),
s2 : PABvMM!Normal (number <−’4’),
t1 : PABvMM!Transition(

sourceStatenumber <−s1.number,
event <− ’refine mesh’,
targetStatenumber <−s2.number)

}

Listing C.8: Output Rule for the Behavioral View

rule rOutput{
from

f : FCMMM!Feature (f.name = ’Output’)
to

s1 : PABvMM!Normal (number <−’4’),
s2 : PABvMM!Final (number <−’5’),
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t1 : PABvMM!Transition(
sourceStatenumber <−s1.number,
event <− ’apply output’,
targetStatenumber <−s2.number),

s3 : PABvMM!Final (number <−’5’),
s4 : PABvMM!Final (number <−’5’),
t2 : PABvMM!Transition(

sourceStatenumber <−s3.number,
event <− ’apply output’,
targetStatenumber <−s4.number)

}
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