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RESUMEN

Este trabajo se concentra principalmente en estudiar el método de reducción de Lyapunov-Schmidt
y sus aplicaciones al estudio de existencia de soluciones a problemas semilineales eĺıpticos. En
particular, utilizamos exitosamente este método para estudiar la ecuación de Allen-Cahn

∆u+ u(1− u2) = 0, en RN

en diferentes contextos. La geometŕıa de los conjuntos de nivel de soluciones enteras de esta
ecuación, presenta una estructura variada y compleja. En particular, esta ecuación esta presente
en la famosa conjetura de E. De Giorgi, la cual afirma que si la dimensión del espacio es tal que
2 ≤ N ≤ 8, las soluciones acotadas de esta ecuación que son monótonas en una dirección, tienen por
conjuntos nivel a una familia de hiperplanos paralelos entre si, es decir, la solución depende sólo de
una variable. Gran progreso se ha alcanzado en la demostración de esta conjetura durante las últimas
decadas. La monotońıa de las soluciones esta relacionada con sus propiedades de estabilidad. En
el programa de entender el conjunto de soluciones enteras de esta ecuación, es interesante estudiar
soluciones que tienes ı́ndice de Morse finito, de las cuales para nuestro conocimiento, pocos ejemplos
se conocen hasta ahora.

En la primera parte de esta investigación, utilizamos el método de reducción, en esencia no
variacional, para construir una familia de soluciones acotadas axialmente simétricas a la ecuación
de Allen-Cahn en R3, con la propiedad de tener multiples transiciones sobre una dilatación grande
de una catenoide. De nuestro desarrollo, se evidencia contundentemente que estas soluciones tienen
indice de Morse grande a medida que la catenoide se vuelve más y más dilatada.

Motivados por este descubrimiento y utilizando el mismo método, continuamos este trabajo
construyendo una nueva familia de soluciones axialmente simétricas a la ecuación de Allen-Cahn
en R3, cuyo conjunto nodal consiste en dos componentes conexas que provienen del grafico y su
reflexión respecto al eje z, de una solución suave y radialmente simétrica de la ecuación de Liouville
en R2. De igual forma, encontramos fuerte evidencia para afirmar que el ı́ndice de Morse de esta
familia de soluciones es finito.

Luego, presentamos el estudio de la ecuación no homogénea de Allen-Cahn en R2, en la cual pre-
sentamos otra aplicación del método reducción construyendo, bajo ciertas condiciones geométricas,
una familia de soluciones cuyos conjuntos nodales, fuera de una bola grande de R2, tienen dos
componentes conexas que son asintóticamente semirectas no paralelas entre si.

Finalmente, y en contraste, consideramos el contexto variacional presentando resultados de exis-
tencia de multiples soluciones para un sistema eĺıptico de ecuaciones con un acoplamiento simétrico.
La aplicación del método de reducción variacional, permite luego aplicar de forma clásica el teorema
de paso de montaña simétrico. La importancia del método de reducción, en este caso, radica en que
las propiedades de simétria del sistema de ecuaciones, las cuales provienen de la forma del sistema,
en lugar de las nolinealidades, son heredadas por ecuación reducida.
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ABSTRACT

This work mainly focuses in studying the Lyapunov-Schmidt reduction method and its applications
to the study of existence of solutions to semilinear elliptic problems. In particular, we use this
method successfully to study the Allen-Cahn equation

∆u+ u(1− u2) = 0, en RN

in different settings. The geometry of the level sets of entire solutions to this equation presents a
very rich and complex structure. In particular, this equation is present in the famous conjecture
due to E. De Giorgi, which says that, if the dimension of the ambient space is such that 2 ≤ N ≤ 8,
then entire bounded solutions which are monotone in one direction, must have a family of parallel
hyperplanes by level sets, in other words, the solution must depend on one variable. Great progress
has been achieved in the proof of this conjecture in the last decades. Monotonicity of solutions is
related with their stability properties. In the program of understanding the set of entire solutions
to this equation, it is interesting to study entire solutions with finite Morse index, of which, to our
knowledge, few examples are known so far.

In the first part of this research, we use the reduction method, in a non-variational scheme, to
construct a family of of bounded and axially symmetric solutions to the Allen-Cahn equation in
R3, having multiple transition layers over a large dilation of a catenoid. From our developments,
we find strong evidence to claim that these solutions have large Morse index, as the catenoid we
consider becomes more and more dilated.

Motivated by this finding and using the same method, we continue this research constructing a
new family of bounded axially symmetric solutions to the Allen-Cahn equation in R3, with nodal
set having two connected components being the graph and its reflection against the z axis, of a
entire smooth axially symmetric solution to the liouville equation in R2. Likewise, we find strong
evidence to say that the Morse index of this family of solutions is finite.

Next, we present the study of the Inhomogeneuos Allen-Cahn equation in R2, in which we present
another application of the reduction method by constructing, under certain geometrical conditions,
a family of solutions whose nodal sets, outside a large ball in R2, has two connected components
which are asymptotically two non-parallel half lines.

Finally, and in contrast, we consider the variational setting, presenting results on existence of
multiple solutions of a elliptic system with a symmetric coupling. The application of the variational
reduction method, allows us to apply in a standard fashion the symmetric mountain pass theorem.
The importance of the reduction method in this case, is that the properties of symmetry of the
elliptic system , which come from the form of the system rather than the nonlinearities, are inherited
by the reduced equation.
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interés en este trabajo aśı como sus valiosos comentarios y sugerencias.
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durante mi incipiente camino en la investigación. Sin la ayuda que me brindaste, esto hubiese
sido sólo una posibilidad y no una realidad. Al Profesor Bernhard Ruf, le debo una mención muy
importante y afectuosa por su hospitalidad durante mi estad́ıa en Europa y por su frecuente ánimo
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en mi y me ayudaron a recargar bateŕıas para continuar con esta investigación. A mis amigos Maria
Clara , Natalia, Luis y Juan Carlos Lopez y Duver Quintero les agradezco por los momentos de
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Chapter 1

Introduction

This thesis work is mainly devoted to study existence and asymptotic behavior of solutions to the
classic semilinear elliptic equation

∆u− F ′(u) = 0, in RN (1.1)

where the function F is the balanced and bi-stable twin-pit

F (u) :=
1

4
(1− u2)2, −F ′(u) = u− u3. (1.2)

Equation (1.1) is known as the Allen-Cahn equation and it arises in the gradient theory of phase
transitions by Allen and Cahn [1], where (1.1) is the prototype equation for the continuous modeling
of phase transition phenomena finding applications on material sciences, superconductivity, popu-
lation dynamics and biological patterns formation, see for instance [40]. In this physical model, the
function u is meant to represent the phase of a material in a given point of RN .

Equation (1.1) is also related to the energy functional

Jα(v) =

∫

Ω

α

2
|∇v|2 +

1

α
F (v) (1.3)

whose Euler-Lagrange equation corresponds exactly to the equation

α2∆v − F ′(v) = 0, in Ω.

Let us assume for the moment that Ω ⊂ RN , is an open set containing the origin and N ≥ 2.
From (1.2), we observe that the constant functions v = ±1, minimize Jα in Ω. They corresponds to
stables phases of a material placed in the region Ω. It is of interest to analyze configurations where
two phases of a material, say +1 and −1, coexist in this region Ω, and which are separated by an
interface (N −1)−dimensional. The phase is idealized as an α−regularization of a discrete function
having the form

v∗ = χΛ − χΩ−Λ (1.4)
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where Λ ⊂ Ω and ∂Λ = M corresponds to the idealized interface separating both phases. Observe
that any function having the form (1.4) minimizes the second term in (1.3), while the gradient term
makes an α−regularization of v∗ a test function for which the energy is bounded and proportional
to the area of the interface M , so that, in addition to minimizing approximately the second term in
(1.3), stationary configurations vα, should also select asymptotically interfaces M that are stationary
for surface area, namely, minimal hypersurfaces. This intuition on the Allen-Cahn equation gave
an important impulse to the calculus of variations, motivating the development of the theory of
the Γ−convergence in the 1970’s. Modica [32], proved that a family of local minimizers vα of Jα,
with uniformly bounded energy, must converge in L1

loc−sense to a function of the form (1.4), where
M = ∂Λ minimizes perimeter and hence, being a generalized minimal hypersurface. Modica’s result
is based upon the intuition that, if M happens to be a smooth orientable surface, then the transition
from the equilibria −1 to 1, of vα, should take place along the normal direction to Mα and where
vα should take the approximate form vα(x) = w(z), where z corresponds to the normal direction
to M . Consequently, the function w should solve the ODE problem

w′′ − F ′(w) = 0, in R, w(±∞) = ±1. (1.5)

A solution to (1.5) indeed exists. Even more this solution is strictly increasing and uniquely deter-
mined up to translations by

w(t) = tanh

(
t√
2

)
, t ∈ R.

This convergence shows an important connection between solutions to equation (1.1) and the theory
of minimal hypersurfaces.

If we take such a critical point vα, and we scale it around 0 ∈ Ω by setting uα(x) = vα(αx), we
see that uα satisfies equation

∆uα + uα(1− uα)2

in the expanding domain α−1Ω, so that proceeding formally and letting α → 0, we end up with
equation (1.1) in the entire space RN . The Interface for uα should thus be around the asymptotically
flat minimal surface Mα = α−1M . From the fact that vα(x) = w(z) and for α > 0 small, observe
that

Jα(vα) ≈ Area(M)

∫

R
[
1

2
|w′|2 + F (w)] (1.6)

which is what makes plausible that M is a minimal for the Area functional. Results similar to
Modica’s hold true for critical points not necessarily minimizers, see [37], [41], and for stronger
notions of convergence, see [4], [5]. To be more precise, the condition of local minimizers can be
relaxed to a family of critical points with uniformly bounded energy, as was proved in [27]. In this
case, the authors showed that the convergence of the interface remains under an integer multiplicity,
which takes into account the possibility of multiple transitions layers converging to the same set of
minimal perimeter.

The considerations mentioned above, led E. De Giorgi to formulate in 1978 the following cele-
brated conjecture concerning entire solutions to the equation (1.1), which is in parallel to Bernstein’s
conjecture theorem for minimal hypersurfaces.

De Giorgi’s Conjecture: The level sets of a bounded entire solution u to (1.1), which is in
addition monotone in one direction, must be hyperplanes, at least for dimension N ≤ 8.
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This conjecture, basically states that, up to translations and rotations of RN , u(x) = w(xN ),
where w is determined by (1.5). The conjecture was proved in dimension N = 2 by Ghoussoub and
Gui, see [21] in dimension N = 3 by Ambrosio and Cabré, see [2], and in dimensions 4 ≤ N ≤ 8 by
Savin, under the additional assumption

lim
xN→±∞

u(x′, xN ) = ±1

see [38]. Recently in [16], it was constructed a counter-example to this conjecture in dimension
N ≥ 9, using Infinite dimensional Lyapunov-Schmidt reduction, monotone in the xN direction and
whose zero level set is close to a large dilation of the Bombieri-De Giorgi-Giusti minimal graph that
disproves Bernstein’s conjecture in high dimensions, see [3]. On the other hand, the monotonicity
of u implies that the scaled function u(α−1x) are in some suitable sense, local minimizers of Jα.
Even more, the level sets of u are all graphs. Indeed, without loss of generality assume ∂xNu > 0,
in RN , then it is not hard to check that the linearized operator L := ∆ − F ′′(u) satisfies maximum
principle. This implies stability of u in the sense that the quadratic form

B(ψ,ψ) :=

∫

RN
|∇ψ|2 + F ′′(u)ψ2

is positive, for all ψ ∈ C∞c (RN ). Let us remark that stability is at the core of the proof of the
conjecture in dimensions N = 2, 3, where is used to control at infinity the Dirichlet integral, actually
it turns out that ∫

BR(0)
|∇u|2 = O(R2) (1.7)

which intuitively says that the level sets of u must have a finite number of components outside a
large ball, which are all asymptotically flat. The question if stability is sufficient to conclude (1.7),
remains open. Actually, it is believed that property (1.7) is equivalent to F inite Morse Index of
the solution u. The Morse index of a entire bounded solution u to (1.1) is defined as the maximal
dimension of a vector space E of compactly supported functions such that

B(ψ,ψ) < 0, ∀ψ ∈ E − {0}.

Strikingly, there are basically no examples of finite Morse index solutions to (1.1) in dimension 3,
and the connection between Allen-Cahn equation and the theory of minimal surfaces has only been
partially explored to produced more examples of finite Morse index solutions.

As remarked in [11], Morse index is a natural element regarding classification of entire bounded
solutions to (1.1). This is of course, the natural step to follow beyond De Giorgi’s conjecture,
towards the understanding of the geometrical structure of solutions to (1.1).

From the comments made above and highlighting relation (1.6), we are led to the question of
existence of minimal hypersurfaces with finite Morse index. Let us restrict ourselves to dimension
N = 3 and to minimal surfaces with finite total Gaussian curvature. For more than a century there
were only two known examples of minimal surfaces of finite total curvature, namely the catenoid
and the helicoid. The first nontrivial example was found by Costa in 1981, see [10], [23]. The Costa
surface is a genus one, minimal, complete and properly embedded surface. It has three connected
components outside some compact set, say a large ball, for which two of these components are
asymptotically catenoids with the same axis of symmetry, while the remaining one is asymptotically
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a plane, perpendicular to the axis of symmetry of the catenoidal ends. Later, Hoffman and Meeks
generalized Costa’s construction by exhibiting a genus k, embedded, minimal surface with three
ends and with the same look as the Costa genus one surface outside a large ball, see [24], [25],
[26]. Many other examples of this kind of surfaces, with multiple connected components outside
a compact set, either asymptotically catenoidal or flat, have been found, see for instance [28], [30]
and references there in.

Recently, a new family of finite Morse index bounded solutions of equation (1.1) in R3, was
found in [14] . Each one of these solutions has the property that its nodal set is close to a large
dilation of a fixed, complete, embedded and nondegenerate minimal surface and along the normal
direction of this large dilation of the surface it has the one dimensional profile of the heteroclinic
solution w, to (1.5). Their Morse index coincides with the index of the surface, which is counted
as i = 2l − 1, where l ∈ N is the genus of the surface. In this regard solutions with Morse index
1, associated to the catenoid and Morse index k for k ≥ 3, associated to the Costa-Hoffman-Meeks
surface do exist.

A natural question that rises is wether the construction of solutions to (1.1) with multiple
transitions ”close” to a complete embedded minimal surfaces of finite total curvature, can be carried
out, under the same conditions as in [14]. One of the goals of this thesis is to give a partial answer
to this question by constructing a family of bounded solution to problem (1.1) with an arbitrary
finite number of transitions layers near a large dilation of a catenoid in R3.

We make use of an Infinite Dimensional Lyapunov Schmidt Reduction, in the spirit of the
pioneering work due to Floer and Weinstein, see [20]. As we will see throughout the construction,
this solution is expected to have large Morse index. Taking into account the result in [1], no gap
condition is required.

Entire solutions with multiple transition layers to (1.1) in R2 were found in [12]. In this case
the nodal set of the solutions consists on multiple asymptotically straight lines, not intersecting
themselves, whose locations are governed by the Toda system of ODEs.

As a byproduct of this result, we also present a new familiy of solutions to equation (1.1) in
R3, with the property that its zero level set, outside a large ball, has four logarithmical divergent
connected components. The interfaces of this solution take places near the graph of a radially
symmetric solution to the Toda System in R2 and expected to have Morse index 2. This represents
the missing Morse index mentioned above.

In this work we also consider the following variations of equation (1.1). We consider the problem
of finding bounded solutions to

α2div(a(x)∇u)− F ′(u) = 0, in R2 (1.8)

where where a is a smooth positive potential, bounded away from zero and α > 0 is a small
parameter. The function F is as in (1.2). The potential a(x) can be thought as the square root of
a nontrivial metric in R2, hence endowing the space with geodesics that may not be straight line
segments. In this regard, there are some related results for the equation

α2∆gu− V (z)F ′(u) = 0, in M

4



where M is a smooth riemannian manifold and N is a minimal submanifold of M .

In [36], Pacard and Ritoré consider the case V (z) = 1, and the setting where M is a compact
manifold, establishing that, associated to a non-degenerate minimal submanifolds a solution with
a single interface exists. Existence of a solution with multiple interfaces was found in [15], but the
nature of this solution differs drastically from that one in [36]. While the solution found by Pacard
and Ritoré exists for every α > 0 small enough, the solution with arbitrary multiple transitions
exists for α > 0 small enough but away from certain values where a shift on index occurs.

We also mention the work done by B.Lai and Z.Du in [19] where a family of solutions with a
single transition is constructed. Additionally L.Wang and Z.Du dealt in [18] with the same problem,
considering multiple transitions this time. In both works minimality and nondegeneracy properties
of N , are with respect to the weighted area functional

∫
M V 1/2. In the same line, it is worth to

mention a recent work due to Z.Du and C.Gui [17] where they build a smooth solution to the
Neumann problem

α2∆u− V (z)F ′(u) = 0 in Ω,
∂u

∂n
= 0 on ∂Ω

having a single transition near a smooth closed curve Γ ⊂ Ω, nondegenerate geodesic relative to
the arclength

∫
Γ V

1/2. Here, Ω is a smooth bounded domain in R2, and V is an uniformly positive
smooth potential.

Restricting ourselves to the case where M = R2 and using the same scheme as in [16], we present,
for every α > 0 small, a family of solutions to equation (1.8) having a single transition layer near
a planar curve Γ, which is minimal and nondegenerate respect to the length functional

∫
Γ a(x)

and which in addition, outside a large ball, it has two asymptotically a half lines as connected
components.

We remark that, up to this point, all of our contributions make use of the Lyapunov-Schmidt
reduction method in a non-variational essence. We finish this thesis work by presenting existence
of solutions multiple solutions to a system of PDEs with symmetric coupling using a variational
reduction technique together with symmetric mountain pass theorem, in the same spirit of the works
of [7],[9],[8].

It is well-known that a symmetry in a differential equation generates the existence of multiple
solutions. Consider e.g. the superlinear and subcritical equation

−∆u = f(u) , in Ω , u|∂Ω = 0 , (1.9)

where f ∈ C(R) is a superlinear and subcritical nonlinearity. If f(u) is an odd function, then the
equation has the symmetry u 7→ −u. Index theories (e.g. the Krasnoselskii genus), show that this
symmetry implies the existence of infinitely many solutions for this equation. We consider systems
of the following form




−∆u+ g(v) = 0
−∆v + g(u) = 0 in Ω,

u = v = 0 on ∂Ω,
(1.10)

where Ω ⊂ RN , N ≥ 2, is a bounded domain with smooth boundary and g : R −→ R is a C1-
function satisfying some assumptions to be specified later, but is not required to be odd. Note that
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this system allows the following symmetry:

T1 : (u, v) 7→ (v, u).

Thus, one may try to proceed similarly as for equation (1.9) by defining a suitable index. However,
one encounters two major problems. First, the functional associated to the system (1.10) is strongly
indefinite. Second, the group T has an infinite-dimensional fixed point space, given by the pairs of
functions of the form {(u, u)}. We overcome these difficulties by performing an infinite dimensional
Lyapunov-Schmidt reduction (following Castro-Lazer [7]). Surprisingly, the resulting reduced func-
tional has the classical Z2-symmetry {id,−id} and so classical variational methods for the existence
of multiple solutions can be employed.

The structure of the thesis is as follows. Chapter two is concerned with the construction of
solutions to equation (1.1) with multiple catenoidal transitions. Chapter 3 continues with the
construction of solution to (1.1) having two transitions near a solution of the Toda system of PDEs
in R2. Next, in chapter 4, we present the predicted existence result for equation (1.8).

We devote also one appendix to a detailed discussion on the variational reduction method applied
to a system of PDEs.
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Chapter 2

Multiple Catenoidal Ended Solutions
to the Allen-Cahn Equation in R3

In this chapter we consider bounded, entire solutions to the Allen-Cahn equation

∆u+ u(1− u2) = 0, in R3. (2.1)

Consider a catenoid M in R3, which is a minimal surface in R3. We prove that for every α > 0 small
enough and every integer m ≥ 2, there exists a bounded solution uα in R3, having m transitions
layers diverging logarithmically from M . These solutions inherit also the axial symmetry of the
catenoid M . Our construction is a first generalization of the construction done in [14].

2.1 Statement of the main result

In what follows we denote x = (x1, x2, x3) points in x ∈ R3, and for such points, we write

R(x) = |(x1, x2)| =
√
x2

1 + x2
2.

Let M denote a catenoid in R3, which is the surface of revolution with the catenary curve C as
profile curve. We observe that M divides R3 into two connected components, say S+ and S−, where
we choose S+ to be the component containing the axis of symmetry, namely the x3-axis.

The mapping Y : R× (0, 2π)→ R3, defined by

Y (y, θ) := (
√

1 + y2 cos θ,
√

1 + y2 sin θ, log(y +
√

1 + y2)).

gives coordinates on the catenoid in terms of the angle of rotation, and the signed arch-length
variable of the catenary curve.
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The unit normal vector to M , pointing towards S−, is then given by

ν(y, θ) =
1√

1 + y2
(cos θ, sin θ,−y).

Let us now consider a large dilation of the catenoid M , given by

Mα = α−1M

for any small positive number α. We parameterize Mα by Yα : (y, θ) 7→ α−1Y (αy, θ) and we define
associated local Fermi coordinates in R3,

Xα(y, θ, z) = α−1Y (αy, θ) + zν(αy, θ), |z| < η

α
+

1

2α
log(1 + y2).

The result we prove in this chapter is the following:

Theorem 2.1.1. Let N = 3 and M be a catenoid in R3. Then for all sufficiently small α > 0 there
exists a bounded solution uα to problem (1.1) such that

uα(x) =

m∑

j=1

(−1)j−1w (z − hj(αy)) +
(−1)m−1 − 1

2
+ o(1), as α→ 0

for x = Xα(y, θ, z), |z| < η
α + 1

2α log(1 + y2). These solutions have the additional properties that
they are axially symmetric and they converge to ±1 away from Mα, i.e

uα(x) = uα(R(x), x3), u2
α(x)→ 1, as dist(x,Mα)→∞, for x = (x1, x2, x3).

In addition, the location of the interfaces h′js is governed by the Jacobi-Toda system of PDEs on
M ,

α2
(
∆Mhj + |AM |2hj

)
− a0

[
e−
√

2(hj−hj−1) − e−
√

2(hj+1−hj)
]

= 0

where a0 > 0 is a constant and

hj+1 − hj ≥ log

(
1

α

)
+ log (1 + (αy)) .

Remark 2.1.1: The proof of Theorem 2.1.1, as mentioned before, relies on an infinite dimensional
reduction procedure, for which the choice of a ”good” approximation to a solution is of vital impor-
tance. The proof also combines elements from the analysis made in [14] and [16] for one transition
in a noncompact setting and [15] for multiple transition for the compact setting. We remark that,
contrary to the compact case treated [15], no gap condition is required in this setting. This is due
to the fact that we are looking for solutions with high symmetry. From the proof we will see that
there is high evidence that this solutions have finite Morse index which goes to infinity as α > 0
goes to zero.

Remark 2.1.2: Another important ingredient in the proof of Theorem 2.1.1, is the nondegeneracy
of the catenoid. To make this more precise, let us consider the Jacobi operator of the catenoid

J (h) = ∆Mh+ |AM |2h,
8



where |A2
M | = −2KM is the euclidean norm of the second fundamental form of M . M is nondege-

nerate, in the sense that the bounded kernel of J consists exactly on the jacobi fields z1, z2, z3,
associated to the translation along the coordinates axis, where

zi(x) = ν(x) · ei, for every x ∈M, i = 1, 2, 3.

When working in the space of function in M which depend only on R(x) and with derivatives
decaying as R(x) → ∞, it turns out that J is then invertible. So M is isolated in a smooth
topology.

This kind of nondegeneracy is expected to hold true for complete embedded minimal surfaces
with finite total curvature, but it is known to hold true not only for the catenoid, but for some other
important cases, such as the Costa-Hoffman-Meeks surface of genus k. Nondegeneracy has been a
used as a tool to construct new minimal surfaces, see for instance [22], [31], and also to construct
solutions to the Allen-Cahn equation over compact manifold, see [36].

2.2 Geometrical setting near a dilated catenoid

In this section we compute the euclidean Laplacian in R3, in a neighborhood of the dilated catenoid
Mα.

Let C denote the catenary curve in R2, which is the parameterized curve

γ(s) = (cosh(s), s), s ∈ R

and for which we can compute explicitly the corresponding signed arch-length variable as

y(s) =

∫ s

0
‖γ′(ζ)‖dζ = sinh(s).

Setting s(y) = log(y +
√

1 + y2), for y ∈ R, we can parameterize C by

γ(s(y)) =
(√

1 + y2, log (y +
√

1 + y2)
)
, y ∈ R.

Let us now consider the catenoid M in R3, with C as profile curve. The mapping Y : R×(0, 2π)→ R3

defined by

Y (y, θ) :=
(√

1 + y2 cos θ ,
√

1 + y2 sin θ , log(y +
√

1 + y2)
)
,

gives local coordinates on M in terms of the signed arch-length variable of the curve C and the
angle of rotations around the x3-axis which, in our setting, corresponds to the axis of symmetry of
M . Observe also that, for y = (y1, y2, y3) = Y (y, θ) ∈M ,

r(y) := |(y1, y2)| =
√

1 + y2.

We introduce local Fermi coordinates

X(y, θ, z) = Y (y, θ) + zν(y, θ), y ∈ R, θ ∈ (0, 2π), z ∈ R.
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This map defines a smooth local change of variables onto the open neighborhood of M , given by

N :=

{
Y (y, θ) + zν(y, θ) : |z| < η +

1

2
log(1 + y2)

}

for some small, but fixed η > 0. Observe that |z| = dist(x,M), for every x ∈ N with x = X(y, θ, z).

Let us compute the euclidean Laplacian in N , in terms of these local coordinates from the
formula

∆X =
1√

det(g)
∂i(
√

det(g)gij∂j), i, j = y, θ, z

where gij = ∂iX · ∂jX corresponds to the ij-th entry of the metric g on N and gij = (g−1)ij .

Computing the metric g, we find that

g =



gyy 0 0
0 gθθ 0
0 0 gzz


 =




(
1− z

1+y2

)2
0 0

0 (1 + y2)
(

1 + z
1+y2

)2
0

0 0 1




so that √
det(g) =

√
1 + y2

(
1− z2

(1 + y2)2

)
.

Since

∆X =
1√

det(g)

[
∂y(
√

det(g)g−1
yy ∂y) + ∂θ(

√
det(g)g−1

θθ ∂θ) + ∂z(
√

det(g)∂z)
]

we find by a direct computation that

∆X = ∂zz + ∂yy +
y

1 + y2
∂y +

1

1 + y2
∂θθ −

2z

(1 + y2)2
∂z + D (2.1)

where
D = z a1(y, z) ∂yy + z a2(y, z) ∂θθ + z b1(y, z) ∂y + z3 b2(y, z) ∂z

and the functions ai(y, z), bi(y, z) are smooth with

|ai| + |y Dyai| = O(|y|−2), |b1| + |y Dyb1| = O(|y|−3)

|b2| + |y Dyb2| = O(|y|−8),

as |y| → ∞, uniformly on z in the neighborhood N of M . Actually, it is not hard to check that,
inside N and for i = 1, 2, it holds that

ai(y, z) = ai, 0(y) + z ai, 1(y, z), b1(y, z) = b1, 0(y) + z b1, 1(y, z),

b2(y, z) = b2, 0(y) + z2 b2, 1(y, z),

where

ai, 0(y) =
(−2)i−1

(1 + y2)i
, b1, 0(y) = − 2y

(1 + y2)2
, b2, 0(y) = − 2

(1 + y2)4
,
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and
|ai, 1|+ |y Dyai, 1| = O(|y|−(4+2i)), |b1, 1|+ |y Dyb1, 1| = O(|y|−5)

|b2, 1|+ |y Dyb2, 1| = O(|y|−12).

Let us now consider a large dilation of the catenoid M , given by

Mα = α−1M

for a small positive number α. We parameterize Mα by Yα : (y, θ) 7→ α−1Y (αy, θ) and define
associated local Fermi coordinates

Xα(y, θ, z) = α−1Y (αy, θ) + zν(αy, θ)

on the neighborhood Nα = α−1N of Mα. Observe that

Nα =

{
Yα(y, θ) + zν(αy, θ) : |z| < η

α
+

1

2α
log(1 +

(
αy)2

)}

Scaling formula (2.1) we find that

∆Xα = ∂zz + ∂yy +
α2y

1 + (αy)2
∂y +

α2

1 + (αy)2
∂θθ −

2α2z

(1 + (αy)2)2
∂z +Dα (2.2)

where

Dα = α z a1(αy, αz) ∂yy + α3 z a2(αy, αz) ∂θθ + α2 z b1(αy, αz) ∂y + α4 z3 b2(αy, αz) ∂z.

Let us consider next an arbitrary smooth function h : R → R and local coordinates near Mα,
defined as

Xα,h(y, θ, t) = α−1Y (αy, θ) + (t+ h(αy)) ν(αy, θ)

onto the region Nα, which can be described as

Nα =

{
Xα,h(y, θ, t) / |t+ h(αy)| ≤ η

α
+

1

α
log(

√
1 + (αy)2 )

}
.

Observe that for x ∈ Nα, we have x = Xα(y, θ, z) = Xα,h(y, θ, t), which means t = z − h(αy).
We will often emphasize the description of the region Nα in terms of the local coordinates Xα,h by
writing Nα,h.

We compute directly, from expression (2.2), the Euclidean Laplacian in these new coordinates.

Lemma 2.2.1. On the open neighborhood Nα,h of Mα in R3, in the coordinates x = Xα,h(y, θ, t),
the Euclidean Laplacian has the following expression:

∆Xα,h = ∂tt + ∂yy +
α2y

1 + (αy)2
∂y +

α2

1 + (αy)2
∂θθ

− α2

{
h′′(αy) +

αy

1 + (αy)2
h′(αy) +

2(t+ h)

(1 + (αy)2)2

}
∂t

− 2αh′(αy) ∂ty + α2[h′(αy)]2 ∂tt + Dα,h (2.3)
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where

Dα,h = α(t+ h)a1(αy, α(t+ h)) (∂yy − 2αh′(αy)∂yt − α2h′′(αy)∂t + α2[h′(αy)]2∂tt)

+ α3(t+ h)a2(αy, α(t+ h))∂θθ

+ α2(t+ h)b1(αy, α(t+ h)) (∂y − αh′(αy)∂t)

+ α4(t+ h)3b2(αy, α(t+ h)) ∂t. (2.4)

Proof. Set z = t+ h(αy) and consider a function U ∈ C2(Nα,h). From the previous comments, we
know that U can be expressed in the coordinates Xα,h as well as in the coordinates Xα. So, setting

U(Xα(y, θ, z)) = u(y, θ, z) and U(Xα,h(y, θ, t)) = v(y, θ, t)

and from the definition of Xα,h, we see that u(y, θ, z) = v(y, θ, z − h(αy)).

From this and formula (2.2), to compute the Euclidean Laplacian in the local coordinates Xα,h,
it remains to express the partial derivatives of u, in terms of the partial derivatives of v. We directly
compute

∂zu = ∂tv, ∂zzu = ∂ttv

∂θu = ∂θv, ∂θθw = ∂θθv

∂yu = ∂yv − αh′(αy)∂tv

∂yyu = ∂yyv − 2αh′(αy)∂tyv − α2h′′(αy)∂tv + α2[h′(αy)]2∂ttv.

Substituting these partial derivatives into formula (2.2) and using that z = t + h, we get
expression (2.3).

Remark 2.2.1: The Laplace-Beltrami operator of the dilated catenoid Mα, in the coordinates
Yα(y, θ), corresponds to the differential operator

∆Mα = ∂yy +
α2y

1 + (αy)2
∂y +

α2

1 + (αy)2
∂θθ

with the convention that M = M1. On the other hand, since each one of these dilated catenoids is
a minimal surface, we have that the Gaussian curvature, KMα of Mα, is given by the relation

2KMα(y) = − 2α2

(1 + (αy)2)2
= −|AM (αy)|2, y ∈ R

where |AM (y)| is the norm of the second fundamental form of the catenoid M .

With this comments, we can write the euclidean Laplacian in expression (2.3), as follows

∆Xα,h = ∂tt + ∆Mα − α2
{

∆M h + (t+ h)|AM |2
}
∂t

− 2αh′(αy) ∂ty + α2[h′(αy)]2 ∂tt + Dα,h (2.5)

where the functions h, ∆Mh, |AM |2 are evaluated in αy.
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2.3 The Jacobi-Toda system on the catenoid

In this section, we study solvability of the nonlinear system

α2
(
∆Mhj + |AM |2 hj

)
− a0[e−

√
2(hj−hj−1) − e−

√
2(hj+1−hj)] = α2gj , in M, j = 1, . . . ,m (2.1)

in the class of axially symmetric functions on M , where α > 0 is a small parameter and a0 a positive
constant. We also consider axially symmetric even right-hand sides gj satisfying

‖ gj ‖p,µ := ‖(1 + r(y)µ)gj‖Lp(M) <∞, 1 < p ≤ ∞. (2.2)

The strategy to solve nonlinear problem (2.1) is to look for

h = (h1, h2, . . . , hm)

with the form

hj(y) =

(
j − m+ 1

2

)
σα + qj(y), j = 1, . . . ,m (2.3)

where the constant σ = σα solves the algebraic equation

α2σ = a0 e
−
√

2σ

so that, σα is a smooth function of α, satisfying the asymptotic expansion

σα = log

(√
2 a0

α2

)
− log

(
log

(√
2 a0

α2

))
+O

(
log log log 1

α2

log log 1
α2

)
. (2.4)

In what follows, we omit the explicit dependence of σ respect to α, and so we write σ instead of σα.

Setting δ = σ−1
α , plugging expression (2.3) into (2.1) and dividing by σα, we find that system

(2.22) becomes

δ
(
∆Mqj + |AM |2 qj

)
−
[
e−
√

2(qj−qj−1) − e−
√

2(qj+1−qj)
]

+

(
j − m+ 1

2

)
|AM |2 = δ gj , in M

(2.5)

where we make the convention that

−∞ = q0 < q1 < q2 < · · · < qm < qm+1 = +∞.

We decoupled system (2.5) by considering the auxiliary functions

vj = (qj+1 − qj) , j = 1, . . . ,m− 1, vm =
m∑

i=1

qj , v0 = vm+1 = +∞. (2.6)

Let us denote

v =




v1
...

vm−1


 , ev =




ev1

...
evm−1


 , 1 =




1
...
1


 .
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With this definitions and notations, system (2.5) can be written as

δ
(
∆Mv + |AM |2 v

)
+ C · e−

√
2 v + |AM |2 1 = δ q, in M (2.7)

∆Mvm + |AM |2 vm = qm, in M, (2.8)

where C is the constant, invertible matrix

C =




−2 1 0 · · · 0
1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 −2 1
0 0 · · · 1 −2



.

and where we have denoted

qj = gj+1 − qj , j = 1, . . . ,m− 1, qm =
m∑

i=1

gj , q =




q1
...

qm−1


 .

Since we want vm to be bounded and small, invertibility theory for equation (2.8) is required.
Regarding this matter, we state the following lemma.

Proposition 1. Le q be an axially symmetric even function such that ‖ q ‖p,µ <∞, for 2 ≤ p ≤ ∞
and 2 < µ < 3. Then, there exists an axially symmetric even function v, solving

∆M v + |AM |2 v = q, in M

and satisfying the following estimate

‖v‖2,p,µ ≤ C ‖q‖p,µ (2.9)

where
‖v‖2,p,µ := ‖v‖L∞(M) + ‖rβ−1(y)Dv‖L∞(M) + ‖D2v‖p,µ.

In order to keep the presentation as clear as possible, we postpone the proof of this proposition
until section 2.4.

Observe that we only need to take care of system (2.7). In order to solve this system, we look
for a solution v, having the particular form

v = ω(y, δ) + ζ

with
ω(y, δ) = v0(y) + δ v1(y).

To find what v0 and v1 should be, we denote

E(ω, δ, y) := δ
(
∆Mv + |AM |2 v

)
+ C · e−

√
2 v + |AM |2 1 (2.10)
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and for ω = v0 + δ v1 , we observe that expression (2.10) becomes

E(ω, δ, y) = C · e−
√

2 v0
+ |AM |2 1

+ δ
(
∆M v0 + |AM |2 v0

)
+ δ Dv

(
C · e−

√
2 v
)

v=v0
· v1

+ δ2
(
∆M v1 + |AM |2 v1

)

+C ·
[
e−
√

2 (v0+δv1) − e−
√

2 v0 − δ Dv

(
e−
√

2 v
)

v=v0
v1
]
. (2.11)

We want E(v0 + δv1, δ, y) to be as close to zero as possible, so that, proceeding formally by taking
δ → 0 in expression (2.11), we find that v0 must be the solution to the algebraic equation

C · e−
√

2 v0
+ |AM |2 1 = 0. (2.12)

We recall that in coordinates

|AM (y)|2 =
2

(1 + y2)2
, y = Y (y, θ).

From this, we find that v0 = (v0
1, . . . , v

0
m−1) is given by

v0
j (y) = − 1√

2
log

(
1

2
|AM (y)|2(m− j)j

)
, 1 ≤ j ≤ m− 1.

Since

v0
j (y) = − 1√

2
log ((m− j)j) +

1√
2

log
(
|AM |−2

)
,

we can write

v0 =
1√
2

log
(
|AM |−2

)
1 + c0 (2.13)

for some constant vector c0. Observe that

∆Mv0 + |AM |2v0 = |AM |2
(
2 1 + v0

)
. (2.14)

Next, with this choice of v0, we divide expression (2.11) by δ and we take δ → 0 to obtain that v1

must solve the algebraic equation
(
∆M v0 + |AM |2 v0

)
+ Dv

(
C · e−

√
2 v
)

v=v0
· v1 = 0. (2.15)

Observe that

Dv

(
C · e−

√
2 v
)

v=v0
= −
√

2 |AM |2 C · diag
(

(m− j)j
2

)

(m−1)×(m−1)

(2.16)

=
√

2 |AM |2




−2a1 a2 . . . . . . 0 0
a1 −2a2 . . . . . . 0 0
0 a2 2a3 . . . 0 0
...

...
. . .

. . .
... 0

0 0 . . . am−3 −2am−2 am−1

0 0 . . . 0 am−2 −2am−1



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where

aj =
(m− j)j

2
, j = 1, . . . ,m− 1.

It follows that

−C · diag
(

(m− j)j
2

)

(m−1)×(m−1)

1 = 1.

From this, we find that v1 is given by

√
2C · diag

(
(m− j)j

2

)

m−1

v1 =


2




1
...
1


+ v0




from where

v1 = −
√

2




1
...
1


+

1√
2

[
C · diag

(
(m− j)j

2

)

(m−1)×(m−1)

]−1

v0

v1 = −
√

2




1
...
1


 − 1

2
log
(
|AM |−2

)



1
...
1


 + c1 (2.17)

for some constant vector c1. Thus, we have obtained that

ω(y, δ) =
1√
2

(
1− δ√

2

)
log
(
|AM (y)|−2

)



1
...
1


+ c0 + δ c1

and observe that v0 and v1 were chosen in such a way that

E(w, δ, y) = δ2
(
∆M v1 + |AM |2 v1

)

+C ·
[
e−
√

2 (v0+δv1) − e−
√

2 v0 − δ Dv

(
e−
√

2v
)

v=v0
δv1
]
. (2.18)

Hence, from (2.13), (2.17) and (2.18) and a direct computation we get the pointwise estimate in M

|E(w, δ, y)| ≤ Cδ2|AM |2(1−δ) [1 + | log
(
|AM |2

)
|+O(| log

(
|AM |2

)
|2)
]

and consequently, for any 1 < p ≤ ∞ and any µ such that 2 < µ < 4− 4δ, we obtain that

‖E(w, δ)‖p,µ ≤ C δ2. (2.19)

To verify this last claim, notice that |AM |2 ∼ O(r(y)−4) and that
∣∣∣e−
√

2 (v0+δv1) − e−
√

2 v0 − δ Dv

(
e−
√

2v
)

v=v0
δv1
∣∣∣ ≤ C δ2|AM |2|v1|2

since we can use Taylor expansion, up to second derivatives, in the region of M where

δ log(|AM |2) ≤ K1
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for some K1 independent of δ and y. This actually occurs in the large region determined by

r(y) ≤ e
K1
4δ , y ∈M

while in the remaining part of M , we use the fast decay of |AM |2 to get that

∣∣∣e−
√

2 (v0+δv1) − e−
√

2 v0 − δ Dv

(
e−
√

2v
)

v=v0
δv1
∣∣∣ ≤ C |AM |2eδ log(r4(y)).

≤ C r(y)−2−β e(−2+β+4δ)
K1
4δ ≤ r(y)−2−βe−

c1
δ

which is exponentially small in δ, provided that we choose β so that 2 < µ < 4− 4δ. Clearly, (2.19)
follows at once from these remarks.

Next, we linearize system (2.7) around the approximate solution ω(y, δ), we have found above.
Let us recall that

ω(y, δ) =
1√
2

(
1− δ√

2

)
log
(
|AM (y)|−2

)



1
...
1


+ c0 + δ c1 (2.20)

and as stated above we look for a solution to (2.7) of the form

v = ω + ζ.

Linearizing E(ω + ζ, δ, y) around ω(y, δ), we find that ζ must solve the system

δ
(
∆Mζ + |AM |2 ζ

)
+Dv

[
C · e−

√
2 v
]

v=ω
ζ =

− E(ω, δ)−
(
C · e−

√
2(ω+ζ) −C · e−

√
2ω −Dv

[
C · e−

√
2 v
]

v=ω
ζ
)

+ δ q, in M. (2.21)

Let us observe that

Dv

[
C · e−

√
2 v
]

v=v0+δv1
= Dv

[
C · e−

√
2 v
]

v=v0

+ C ·
([
Dve

−
√

2 v
]

v=v0+δv1
−Dv

[
e−
√

2 v
]

v=v0

)
.

Using (2.16) and that

∥∥∥∥C ·
([
Dve

−
√

2 v
]

v=v0+δv1
−Dv

[
e−
√

2 v
]

v=v0

)∥∥∥∥
∞,µ
≤ Cδ (2.22)

we can write system (2.21) as

Lδ(ζ) = −E(ω, δ) − Q(ω, ζ) + δ q, in M. (2.23)

where
Lδ(ζ) := δ

(
∆Mζ + |AM |2 ζ

)
−
√

2|AM |2C ·A(y, δ) ζ

17



A(y, 0) := diag

(
(m− j)j

2

)

(m−1)×(m−1)
∥∥ |AM |2 (A(·, δ)−A(·, 0))

∥∥
∞,µ ≤ C δ, 2 < µ ≤ 4− 4δ

and
Q(ω, ζ) := C · e−

√
2(ω+ζ) −C · e−

√
2ω −Dv

[
C · e−

√
2 v
]

v=ω
ζ.

Hence, we need solvability theory for the linear equation

Lδ(ζ) = q, , in M (2.24)

in the class of axially symmetric even functions. The following proposition provides this suitable
linear theory needed to solve system (2.23)

Proposition 2. For every δ > 0 small enough and any given vector function q with

‖ q ‖p,µ <∞

for 2 ≤ p ≤ ∞ and µ > 5
2 , there exists a unique solution ζ to system (2.24) satisfying the estimate

‖ζ‖∗,δ ≤ Cδ−
3
4 ‖q‖p,µ (2.25)

where

‖ζ‖∗,δ := δ‖D2ζ‖p,β + δ
1
4 ‖(1 + r(y))D ζ‖L∞(M) + ‖ log( r(y) + 2 )−1 ζ‖L∞(M). (2.26)

We remark that the constant C > 0 in proposition 2 does not depend on δ but rather on µ > 5
2 .

We provide the proof of this result also in section 2.4.

With the aid of proposition 2 we can recast system(2.23) as a fixed point problem. For a given
vector function q with

‖ q ‖p,µ <∞, 2 ≤ p ≤ ∞, 5

2
< µ

let us denote ζ = Tδ(q), the solution given in proposition 2, and let us write

R(ζ) := T−1
δ [δ q − E(ω, δ)−Q(ω, ζ)]

so that (2.23) becomes the fixed point problem

ζ = R(ζ)

posed in the Banach space X of smooth vector functions ζ for which

‖ζ‖X := ‖ζ‖∗,δ <∞.

From (2.19), we obtain that

‖Tδ[E(ω, δ) ] ‖X ≤ C δ
5
4 .

On the other hand, proceeding as did to verify (2.19), for any 5
2 < µ < 4− 4δ, any p ≥ 2 and any ζ

such that
‖ζ‖X ≤ Cδ

5
4 (2.27)
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we obtain that

‖Tδ[Q(ω, µ)] ‖X ≤ Cδ−
3
4 ‖Q(ω, ζ) ‖p,µ

≤ Cδ−
3
4
(
‖ζ‖2X + ‖(log(r(y) + 2))−1ζ‖∞ ‖(1 + r(y))Dζ‖∞

)

= O(δ
3
2 ).

This follows from the fact that

‖(1 + r(y))Dζ‖L∞(M) ≤ Cδ.

Finally, we check on the Lipschitz character of Q(ω, ζ), respect to ζ, we simply observe that for
ζ1, ζ2 satisfying (2.27), we have

Q(ω, ζ1)−Q(ωζ2) =

C ·
[
e
√

2(ω+ζ1) − e
√

2(ω+ζ2) −Dv(e−
√

2 v)v=ω(ζ1 − ζ2)
]
O(|AM |2(1−δ))

From this and proceeding again as in (2.19), we obtain that

‖Q(ω, ζ1)−Q(ω, ζ2)‖∞,µ ≤ C δ‖ζ1 − ζ2‖X . (2.28)

This implies that

‖R(ζ1)−R(ζ2)‖X ≤ Cδ−
3
4 ‖Q(ω, ζ1)−Q(ω, ζ2)‖∞,µ ≤ C δ

1
4 ‖ζ1 − ζ2‖X .

Hence a direct application of contraction mapping principle gives us the following proposition.

Proposition 3. For every δ > 0 small enough and every vector function q such that for 2 ≤ p ≤ ∞
and µ such that 5

2 < µ < 3 and C > 0 independent of δ

‖ q ‖p,µ ≤ Cδ

there exists a unique axially symmetric even solution ζ to the system

Lδ(ζ) = −E(ω, δ) − Q(ω, ζ) + δ q, in M

satisfying that

‖ζ‖∗,δ ≤ K̃ δ
5
4

and
‖ζ1 − ζ2‖∗,δ ≤ K̃δ

1
4 ‖q1 − q2‖p,µ

where we recall that

‖ζ‖∗,δ := δ‖D2ζ‖p,β + δ
1
2 ‖(1 + r(y))D ζ‖L∞(M) + ‖ log( r(y) + 2 )−1 ζ‖L∞(M).
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2.4 The Jacobi operator and the linear Jacobi-Toda op-

erator on the Catenoid.

This section is devoted to prove propositions 1 and 2. First, we develop solvability theory for the
equation

JM (v) = ∆Mv + |AM |2v = q, in M, (2.1)

Operator JM in equation (2.1) corresponds to the jacobi operator of the catenoid. We study
this equation for functions v depending only on the arch-length variable of the catenary.

It is well known that the catenoid M is L∞-nondegenerate, in the sense that the only bounded
solutions to the equation

JM (v) = ∆Mv + |AM |2v = 0, in M,

are the functions zi = ν · ei, for i = 1, 2, 3, where e1, e2, e3 corresponds to the canonical basis in R3.

The functions z1, z2, z3 corresponds to the bounded jacobi fields of the catenoid arising from
translations. One can check directly that, among these bounded jacobi fields of M , z3(y) is the only
one that is axially symmetric. We notice that, in the coordinates y = Y (y, θ), z3 has the explicit
expression

z3(y) =
y√

1 + y2
, y ∈ R.

One can easily find a logarithmic jacobi field with logarithmic growth, associated to the dilation of
the catenoid M , namely

z4(y) := Y (y, θ) · ν(y, θ), y ∈ R.

One can also deduce the existence of z4, using the reduction of order formula with the ansatz

z4(y) = 1 + s(y)z3(y), y 6= 0.

Either way, we find that

z4(y) = 1− ln(y +
√

1 + y2)
y√

1 + y2
, in y ∈ R.

We compute the derivatives of z3 and z4, respect to y, so we get

∂y z
′
3(y) = − 1

(1 + y2)
3
2

= O
(
|y|−3

)
(2.2)

∂y z
′
4(y) = − ln

(
y +

√
1 + y2

) (
1 + y2

)− 3
2 − y

1 + y2
= O(|y|−1). (2.3)

Using the function z3, z4 and the variations of parameters formula, we can set one inverse to
the equation (2.1) as follows. For any function q satisfying that

‖q‖p,µ := ‖(1 + r(y)µ)q‖Lp(M) <∞
20



we define J −1(q) := v, where

v(y) := −z3(y)

∫ y

0

√
1 + ξ2q(ξ)z4(ξ)dξ + z4(y)

∫ y

−∞

√
1 + ξ2q(ξ)z3(ξ)dξ. (2.4)

Formula (2.4) defines a function v that solves equation (2.1). We next prove that, under the
orthogonality condition ∫ ∞

−∞

√
1 + ξ2q(ξ)z3(ξ)dξ = 0 (2.5)

this solution is unique in the class of bounded functions with v′(0) = 0 and the following lemma
gives us an estimate on the size of J −1.

Lemma 2.4.1. Let q be an axially symmetric function satisfying condition (2.5), and such that
‖q‖p,µ < ∞, for 2 ≤ p ≤ ∞ and 2 < µ < 3. Then, the function v, given by formula (2.4), defines
an axially symmetric solution to

∆Mv + +|AM |2v = q, in M,

such that v′(0) = 0 and the following estimate holds true

‖v‖2,p,µ ≤ C ‖q‖p,µ (2.6)

where
‖v‖2,p,µ := ‖v‖L∞(M) + ‖rµ−1(y)∇v‖L∞(M) + ‖D2v‖p,µ.

Proof. Take p, p′ > 1 such that 1
p + 1

p′ = 1. From Hölder inequality, we see that

∣∣∣∣
∫ y

0

√
1 + ξ2 z4(ξ) q(ξ) dξ

∣∣∣∣ ≤
∫ y

0

√
1 + ξ2 |z4(ξ)| |q(ξ)| dξ ≤ C ‖q‖p,µ

(∫ y

0
(1 + |ξ|)(1−µp′)|z4(ξ)|p′dξ

) 1
p′
.

Since, for any κ1, κ2 > 0 there exists a constant C = C(κ1, κ2) > 0, such that for every y > 1 we
have that ∫ y

0
(1 + |ξ|)−κ1 |z4(ξ)|κ2dξ ≤ C

[
1 +

∫ y

1
ξ−κ1 lnκ2(ξ)dξ

]
,

and ln(ξ)/ξ
κ1
κ2 → 0, as ξ → ∞, we obtain that for p > 1, µ > 2

(
1− 1

p

)
and some ε > 0 small

enough such that 2− µp′ + ε < 0, we obtain that

(∫ y

0
(1 + |ξ|)(1−µp′)|z4(ξ)|p′dξ

) 1
p′
≤ C

(∫ y

0
(1 + |ξ|)(1+ε−µp′)dξ

) 1
p′

≤ C

(∫ ∞

0
(1 + |ξ|)(1+ε−µp′)dξ

) 1
p′
<∞.

We conclude, changing C to a larger one if necessary, that

∣∣∣∣
∫ y

0

√
1 + ξ2 z4(ξ) q(ξ) dξ

∣∣∣∣ ≤ C ‖q‖p,µ , y ∈ R
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where the constant C clearly depends only on p and µ.

On the other hand, we observe that from the orthogonality condition (2.5) we have that

∫ ∞

y

√
1 + ξ2 z3(ξ) q(ξ) dξ = −

∫ y

−∞

√
1 + ξ2 z3(ξ) q(ξ) dξ

Hence, we estimate the integral ∫ ∞

y

√
1 + ξ2z3(ξ)q(ξ)dξ

only for positive values of the argument y. Observe that, proceeding as above and since we are
assuming that µp′ > 2(1− 1

p) + 1, we obtain that

∣∣∣∣
∫ ∞

y

√
1 + ξ2 z3(ξ) q(ξ) dξ

∣∣∣∣ ≤ C ‖q‖p,µ
(∫ ∞

y
(1 + |ξ|)(1−µp′)dξ

) 1
p′

≤ C ‖q‖p,µ (1 + |y|)
2−µp′
p′

≤ C ‖q‖p,µ (1 + |y|)2−µ.

From (2.2)-(2.3) and the estimates above, we conclude directly from formula (2.4) that

‖v‖L∞(M) + ‖(1 + r(y)µ−1)Dv‖L∞(M) ≤ C‖q‖p,µ.

To get the whole estimate, we simply notice that, since for y = Y (y, θ) we have that |AM (y)|2 ∼
O(|y|−4) as |y| → ∞, we obtain that

∫

M
(1 + |y|µ)p |AM (y)|2p |v(y)|p dVM ≤ C‖v‖pL∞(M)

∫

M
(1 + r(y))(µ−4)p.

Since (µ− 4)p < −2, we obtain that

‖ |AM |2v ‖p,µ ≤ C ‖v‖L∞(M) ≤ C ‖q‖p,µ.

Finally, to get the whole estimate, we see from the equation that

∆M v = −|AM |2 v + q, in M

and so,
‖D2v‖p,µ ≤ C

(
‖ |AM |2v ‖p,µ + ‖q‖p,µ

)
≤ C ‖q‖p,µ.

This completes the proof of the estimate.

Remark 2.4.1: To prove lemma 2.4.1, we simply notice that an even axially symmetric function
q in L1(M), automatically satisfies the orthogonality condition (2.5). In such a case, formula (2.4)
defines an even function.

Finally, in order to solve (2.23), we study the first the linear system

δ∆M ζ + |AM |2(−
√

2C ·A(y, 0) + δ I) ζ = q, in M (2.7)
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where we recall that

A(y, 0) = diag

(
(m− j)j

2

)

(m−1)×(m−1)

.

A direct computation shows that the numbers

1,
1

2
, . . . ,

m− 1

m

are the m−1 eigenvalues of the matrix −C, we observe that −C is symmetric and positive definite.
Let us then, write

ζ = [−C]
1
2ψ, q = [−C]

1
2 q̃.

We see that (2.7) becomes

δ∆M ψ + |AM |2(δI + B)ψ = q̃, in M. (2.8)

where the matrix B is given by

B =
1√
2

[−C]
1
2diag ((m− j)j)(m−1)×(m−1) [−C]

1
2 .

Next, we consider the eigenvectors e1, . . . , em−1, of the matrix B, i,e

B · ei = λiei, i = 1, . . . ,m− 1

and we write

ψ =
m−1∑

i=1

ψi ei, q̃ =
m−1∑

i=1

q̃i ei.

Hence, system (2.7) decouples into m− 1 scalar equations, namley

δ∆M ψi + |AM |2(λi + δ)ψi = q̃i, in M, i = 1, . . . ,m− 1. (2.9)

Of vital importance is the fact that the eigenvalues λ1, . . . , λm−1 are indeed positive, a fact that
makes invertibility of each equation in (2.9) a very delicate matter.

Hence, we study solvability theory for the model linear equation

Lδ(ψ) = q, in M (2.10)

Lδ(ψ) := δ∆Mψ + λ|AM |2 ψ, λ > 0. (2.11)

Since we are working in a symmetric class, we use the variations of parameters formula, for which
precise information on the kernel of (2.11) is needed. We assume also without any lose of generality
that λ = 1.

We study smooth axially symmetric solutions to the equation

Lδ ψ = 0, in M (2.12)

So, we can thought of ψ as a function of the arc-length i.e for y ∈M

ψ(y) = ψ(y), y = Y (y, θ), y ∈ R
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for which the (2.12) corresponds to the ODE

δ

(
ψ′′(y) +

y

1 + y2
ψ′(y)

)
+

2

(1 + y2)2
ψ(y) = 0, y ∈ R.

We analyze this operator in a region where the operator is oscillatory in character, an effect coming
from δ, and on another region where the small parameter δ has no effect at all so the operator
resembles the euclidean radial Laplacian.

First, we denote yδ > 0 the real number such that
√

1 + y2
δ = 1√

δ
and we pass to the sphere S2

by making the change of variables

y = tan(θ), for 0 < θ < θδ

where the number θ < θδ is such that yδ = tan(θδ), 0 < θδ <
π
2 . Next, we look for a solution to

(2.12) with the form
ψ(y) = ϕ(θ), for 0 < θ < θδ

so that the function ϕ solves the equation

∂θθ ϕ(θ)− tan(θ) ∂θ ϕ(θ) +
2

δ
ϕ(θ) = 0. (2.13)

In order to eliminate first derivative term in (2.13), we assume further that

ψ(y) = ϕ(θ) =
1√

cos(θ)
φ(θ).

Hence, we find that φ must solve the ODE

∂θθ φ(θ) +

(
2

δ
+

1

4

(
1 + sec2(θ)

))
φ(θ) = 0. (2.14)

Finally, we make one more assumption on the form of ψ, namely

ψ(y) =
1√

cos(θ)
φ(θ) =

1√
cos(θ)

γ

(
θ√
δ

)
, for 0 < θ < θδ. (2.15)

Scaling equation (2.14), we obtain that γ = γ(s), solves

∂ss γ(s) +

([
1 +

δ

4

]
+
δ

4
sec2(

√
δ s)

)
γ(s) = 0, for 0 < s <

θδ√
δ
.

Now, let us prove that γ(s) and ∂s γ(s) are uniformly bounded. To do so, we consider the pointwise
energy

J(s) := |∂s γ(s)|2 +

[
1 +

δ

4

]
|γ(s)|2.

Observe that

∂s J(s) = −2∂s γ(s) γ(s)
δ

4
sec2(

√
δ s).
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Hence, for constant C > 0 independent of δ > 0, it follows that

|∂s J(s)| ≤ C J(s)
δ

4
sec2(

√
δ s)

and consequently

0 ≤ J(s) ≤ J(0) + C
δ

4

∫ s

0
J(ξ) sec2(

√
δ ξ) dξ, for 0 < s < sδ

where we have set sδ by θδ =
√
δ sδ. Using Gronwall’s inequality, we find that

J(s) ≤ J(0) exp

(
C
δ

4

∫ sδ

0
sec2(

√
δ ξ) dξ

)
. (2.16)

We compute explicitly the integral in (2.16) to find that

δ

4

∫ sδ

0
sec2(

√
δ ξ) dξ =

√
δ

4
tan(
√
δ sδ) =

√
δ

4
tan(θδ) ≤ c0

where c0 does not depend on δ > 0. Hence we find that

J(s) := |∂s γ(s)|2 +

[
1 +

δ

4

]
|γ(s)|2 ≤ C J(0), 0 < s <

θδ√
δ
.

Pulling back the change of variables, we obtain from (2.15) that

|ψ(y)| ≤ C 1√
cos(θ)

= C
(
1 + y2

) 1
4 ≤ C

δ
1
4

, for 0 ≤
√

1 + y2 ≤ 1√
δ
. (2.17)

In particular we find from (2.15) that ψ(0) = γ(0). As for the derivatives of ψ, we compute explicitly
again from (2.15), to find that

(1 + y2) ∂y ψ(y) =
1√
δ

∂s γ
(

θ√
δ

)

√
cos(θ)

+
sin(θ) γ

(
θ√
δ

)

2 cos
3
2 (θ)

. (2.18)

This implies that

(1 + y2) |∂y ψ(y)| ≤ C (1 + y2)
1
4√

δ
(1 + |y|) . (2.19)

In particular, we obtain from (2.18) that ∂y ψ(0) = δ−
1
2 ∂s γ(0). We can take fundamental set of

(2.12), ψ1,1(y), and ψ1,2(y), satisfying (2.17)-(2.19) and with wronski determinant given by

W (ψ1,1, ψ1,2) =
δ−

1
2√

1 + y2
, for 0 <

√
1 + y2 ≤ 1√

δ
.

Next, in this inner region, we solve (2.10) by choosing ψ1(y) to be defined by the formula

ψ1(y) = − 1√
δ
ψ1,1(y)

∫ y

0

√
1 + ξ2 ψ1,2(ξ) q(ξ)dξ +

1√
δ
ψ1,2(y)

∫ y

0

√
1 + ξ2 ψ1,1(ξ) q(ξ)dξ (2.20)
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Proceeding as in lemma (2.4.1), we observe that for 2 ≤ p ≤ ∞ and µ > 5
2

∣∣∣∣
∫ y

0

√
1 + ξ2 ψ1,i(ξ) q(ξ) dξ

∣∣∣∣ ≤
∫ y

0

√
1 + ξ2 |ψ1,i(ξ)| |q(ξ)| dξ ≤ C ‖q‖p,µ

(∫ y

0
(1 + |ξ|)(1+ p′

2
−µp′)dξ

) 1
p′
.

Directly from this inequality and using (2.17)-(2.19), we find that
∣∣∣∣ψ1,i(y)

∫ y

0

√
1 + ξ2ψ1,j(ξ) q(ξ)dξ

∣∣∣∣ ≤ Cδ−
1
4 ‖q‖p,µ, i, j = 1, 2, i 6= j.

and consequently, since we are taking µ > 5
2 , we get that

δ
1
4

√
1 + y2 |ψ′1(y)| + |ψ1(y)| ≤ Cδ− 3

4 ‖q‖p,µ, |y| ≤ c0√
δ
.

In particular, we observe that

δ−
1
2 ‖(1 + r(y))Dψ1‖L∞(Mδ) + ‖ψ1‖L∞(Mδ) ≤ Cδ−

3
4 ‖q‖p,µ (2.21)

where

Mδ :=

{
y = Y (y, θ) :

√
1 + y2 ≤ c0√

δ
, θ ∈ (0, 2π)

}
.

Concerning the outer region, let us consider the change of variables y = sinh(t) and let us choose
Tδ > 0 so that δ cosh2(Tδ) = 2. Hence looking for solutions to (2.12) such that ψ(y) = φ(t), we see
that the function ϕ must satisfy equation

∂ttφ+ pδ(t)φ = 0, pδ(t) := 2δ−1 sech2(t) t > Tδ (2.22)

we state the following lemma

Lemma 2.4.2. The linear ODE has two linearly independent solutions, φ1(t), φ2(t), satisfying that

φ1(t) = 1 + o(1), ∂tφ1(t) = o(1), for t > Tδ (2.23)

φ2(t) = t+O(1), ∂tφ2(t) = 1 + o(1), for t > Tδ (2.24)

provided δ is small enough, which amounts to the fact that Tδ is large enough.

Proof. First let us look for a solution φ(t) to the equation having the form φ(t) = tv(t). Computing
the equation for v(t) we find that

∂t(t
2 ∂tv(t)) + pδ(t)t

2 v(t) = 0.

Setting z(t) = t2 ∂tv(t), we obtain the first order system IVP for z(t) and v(t)

∂t z(t) = −pδ(t) t2v(t), ∂t v(t) =
1

t2
z(t), z(Tδ) = z0, v(Tδ) = v0.

Integrating each equation on the system, we find that

z(t) = z0 −
∫ t

Tδ

pδ(τ)τ2v(τ)dτ, v(t) = v0 +

∫ t

Tδ

1

τ2
z(τ)dτ.
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Hence, using this integral formulas and Fubini’s theorem, we obtain the integral representation for
z(t)

z(t) = z0 − v0

∫ t

Tδ

pδ(τ)τ2dτ −
∫ t

Tδ

1

τ2
z(τ)

∫ t

τ
pδ(s)s

2ds dτ

Next, we prove that z(t) is bounded. First observe that

0 ≤
∫ t

Tδ

pδ(τ)τ2dτ ≤
∫ ∞

Tδ

pδ(τ)τ2dτ ≤ Cδ−1T 2
δ e
−2Tδ ≤ T 2

δ

where C > 0 is independent of δ, provided δ > 0 is small enough. On the other hand,

|z(t)| ≤ C(|z0|+ δ−1|v0|) +

∫ t

Tδ

pδ(τ)|z(τ)|dτ.

Directly from Gronwall inequality we obtain that,

|z(t)| ≤ C(|z0|+ δ−1|v0|) exp

(∫ t

Tδ

pδ(τ)dτ

)

and since ∫ ∞

Tδ

pδ(τ)dτ ≤ C

δ
e−2Tδ

then for Tδ large enough or equivalently, δ small enough, and taking v0 = 0, we find that

|z(t)| ≤ C|z0|.

Plugging this into the integral formula for z(t) we observe that

z(t) = z0 +

∫ t

Tδ

z(τ)
1

τ2

∫ t

τ
pδ(s)s

2ds dτ.

Since z(t) is bounded, we obtain that

z(∞) = lim
t→∞

z(t) = z0 +

∫ ∞

Tδ

z(τ)
1

τ2

∫ ∞

τ
pδ(s)s

2ds dτ

We write then, without any loss of generality

z(t) = 1 +

∫ ∞

t
z(τ)

1

τ2

∫ t

τ
pδ(s)s

2ds dτ

from where we observe that

|z(t)− 1| ≤ C pδ(t) ≤
C

δ
e−2|t|.

From the integral formula for v(t) we obtain that

v(t) = v(∞) +

∫ ∞

t
z(τ)

1

τ2
dτ = v(∞) +O

(
1

t

)
.
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So we observe that

φ(t) = t+O(1), t > Tδ, ∂tφ(t) = v(t) + t ∂tv(t) = 1 +O
(

1

t

)
.

Finally, from the reduction of order formula we find the second solution from φ(t), satisfying that

φ̃(t) = φ(t)

∫ ∞

t

1

φ(τ)2
dτ = 1 +O

(
1

t

)
, ∂tφ̃(t) = ∂tφ(t)

∫ ∞

t

1

φ(τ)2
dτ +

1

φ(t)
= O

(
1

t

)
.

This concludes the proof of the lemma.

In order to find the exact behavior of the bounded solutions to equation (2.12) in the outer
domain, we still need one more lemma.

Lemma 2.4.3. Assume φ(t) is a bounded solution to the equation (2.4.2) for t > Tδ, then, the
following estimate holds true

|∂tφ(t)| ≤ C‖φ‖L∞(Tδ,∞) pδ(t), t > Tδ. (2.25)

Proof. First observe that for t > Tδ

∂tφ(t) = ∂tφ(Tδ)−
∫ t

Tδ

pδ(τ)φ(τ)dτ.

Since pδ(t) decays fast and φ(t) is uniformly bounded, ∂tφ(∞) exists, so we can actually write

∂tφ(t) = ∂tφ(∞)−
∫ ∞

t
pδ(τ)φ(τ)dτ.

Let us prove that ∂tφ(∞) = 0. To see this, we simply integrate again to obtain

φ(t) = φ(Tδ) + ∂tφ(∞)(t− Tδ) −
∫ t

Tδ

∫ ∞

τ
pδ(s)φ(s)ds dτ.

Observe that
∣∣∣∣
∫ t

Tδ

∫ ∞

τ
pδ(s)φ(s)ds dτ

∣∣∣∣ ≤ C‖φ‖L∞(Tδ,∞)

∫ ∞

Tδ

pδ(τ)dτ ≤ C‖φ‖L∞(Tδ,∞)pδ(Tδ).

Hence this estimate and the formula for φ(t) imply that ∂tφ(∞) = 0. So we obtain that

∂tφ(t) = −
∫ ∞

t
pδ(τ)φ(τ)dτ

from where
|∂tφ(t)| ≤ C‖φ‖L∞(Tδ,∞) pδ(t), for t > Tδ.
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Next, we solve (2.10) in remaining part of M , where it certainly resembles Poisson equation.
Since we are working in the class of axially symmetric even functions, we must study the following
IVP

Lδ(ψ2) = q, ψ2(yδ) = ψ1(yδ), ψ′2(yδ) = ψ′1(yδ), in M −Mδ (2.26)

Hence, from lemmas (2.4.2) and (2.4.3) we can take two linearly independent elements of the kernel
of Lδ in M −Mδ, say ψ2,1(y) and ψ2,2(y) satisfying that

ψ2,1(yδ) = 1, ∂yψ2,1(yδ) = 0, ψ2,2(yδ) = 0, ∂yψ2,2(yδ) = δ
1
4 .

Observe that the wronskian of this fundamental set, W := W (ψ2,1, ψ2,2) = δ
1
4√

1+y2
and

|ψ2,i(y)| + δ(1 + |y|)3|∂yψ2,i(y)| ≤ Cδ i−1
4 ln

(
y +

√
1 + y2

)
, |y| ≥ c0√

δ
, i = 1, 2.

Hence, we solve this problem by setting the variations of parameters formula as follows

ψ2(y) = ψ1(yδ)ψ2,1(y) + δ
1
4ψ′1(yδ)ψ2,2(y) +

− δ− 3
4 ψ2,1(y)

∫ y

yδ

√
1 + ξ2 ψ2,2(ξ) q(ξ)dξ + δ−

3
4 ψ2,2(y)

∫ y

yδ

√
1 + ξ2 ψ2,1(ξ) q(ξ)dξ.

Proceeding as above, we get that

‖(1 + r(y))Dψ2‖L∞(M−Mδ) + ‖ log(2 + |y|)−1 ψ2‖L∞(M−Mδ) ≤ Cδ
3
4 ‖q‖p,µ (2.27)

Writing ψ = χMδ
ψ1 + χM−Mδ

ψ2 and putting together, estimate (2.21) and (2.27) we obtain that
√
δ‖(1 + r(y))Dψ2‖L∞(M) + ‖ log(2 + |y|)−1 ψ2‖L∞(M) ≤ Cδ

3
4 ‖q‖p,µ (2.28)

Finally, observe that for 2 ≤ p ≤ ∞, µ < 3 and some ε > 0 arbitrarily small, we have that
∫

M
(1 + |y|µ)p |AM (y)|2p |ψ(y)|p dVM ≤ C‖(log(r(y) + 2)−1 ψ‖L∞(M)

∫

M
(1 + |y|)(µ−4−ε)p.

Since (µ− 4)p < −2, we obtain that

‖ |AM |2ψ ‖p,µ ≤ C ‖(log(r(y) + 2)−1 ψ‖L∞(Mδ) ≤ C δ−
3
4 ‖q‖p,µ.

and so, from (2.10)

‖ψ‖∗,δ ≤ Cδ−
3
4 ‖q‖p,µ

where
‖ψ‖∗,δ = δ‖D2 ψ‖p,µ + δ

1
2 ‖(1 + r(y))Dψ‖L∞(M) + ‖ log(2 + r(y))−1 ψ‖L∞(M).

Now, we prove Proposition 2. Since this linear equation can be written as the fixed point problem

ψ = L−1
δ [q] − L−1

δ

[
−|AM |2(A(y, δ)−A(y, 0)ψ)

]

and as we observed before, it hold that
∥∥ |AM |2 (A(·, δ)−A(·, 0))

∥∥
p,µ
≤ Cδ.

then a direct application of the contraction mapping principle, in the norm (2.26) for ψ, completes
the proof of the proposition 2.

Finally we estate an useful lemma that we borrow from section 8 in [14].
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Lemma 2.4.4. Assume g(y, t) is a function defined in Mα × R and for which

sup
(y,t)∈Mα×R

(1 + r(αy)µ)eρ|t|‖ψ‖Lp(B1(y,t)) <∞

for some ρ, µ > 0 and p > 2. The function defined in M as q(y) :=
∫

R g
( y
α , t
)
w′(t)dt satisfies

‖q‖p,β ≤ C sup
(y,t)∈Mα×R

(1 + r(y)µ)eρ|t|‖ψ‖Lp(B1(y,t))

provided

µ > β +
2

p
.

We refer the reader to lemma 8.1 in [14] for a detailed proof.

2.5 Approximation of the solution

In order to define the approximate solution to problem (2.1), we first observe that the heteroclinic
solution to

w′′(s) + f(w(s)) = 0, t ∈ R, f(w) = w(1− w2)

is given explicitly by

w(s) = tanh

(
s√
2

)
, s ∈ R

has the asymptotic properties

w(s) = 1 − 2 e−
√

2 s + O
(
e−2
√

2|s|
)
, s > 1

w(s) = −1 + 2 e−
√

2 s + O
(
e−2
√

2|s|
)
, s < −1

w′(s) = 2
√

2 e−
√

2 |s| + O
(
e−2
√

2|s|
)
, |s| > 1.

(2.1)

We assume that the location of these interfaces are determined by m embedded surfaces, each
of which corresponds to the normal graph over M , of axially symmetric even smooth functions
hi ∈ C2(M), i = 1, . . . ,m. We write in coordinates Y (y, θ)

hj (Y (y, θ)) = hj(y), y ∈ R, θ ∈ (0, 2π), j = 1, . . . ,m.

We assume further that

−∞ ≡ h0 < h1 < . . . < hm < hm+1 ≡ +∞, in M. (2.2)

and that every hj has the form

hj(y) =

(
j − m+ 1

2

)[
σ +

√
2

(
1− 1

σ

)
log
(
1 + y2

)]
+ vj(y), y ∈ R (2.3)
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for some functions v1, . . . , vm ∈ C2(M) satisfying the apriori estimate

σ−
1
2 ‖(1 + r(y))Dvj‖L∞(M) + ‖( log(2 + r(y) )−1 vj‖L∞(M) ≤ K σ

5
4 , j = 1, . . . ,m (2.4)

for some universal constant K, that will be determined later, and where we recall that σ is the
unique positive real number that solves the algebraic equation

α2 σ =
√

2 a0 e
−
√

2σ. (2.5)

so that

σ = log

(√
2 a0

α2

)
− log

(
log

(√
2 a0

α2

))
+O

(
log log log 1

α2

log log 1
α2

)
. (2.6)

We observe from (2.2)-(2.3)-(2.4) that for every fixed j = 1, . . . ,m− 1 and y ∈M ,

hj+1(y)− hj(y) ≥ σ +
√

2

(
1− 1

σ
−O(σ−

5
4 )

)
log
(
1 + y2

)
, y = Y (y, θ) ∈M. (2.7)

In the region Nα, using the local coordinates x = Xα(y, θ, z), we consider as a first local approxi-
mation

U0(x) =
m∑

j=1

wj
(
z − hj(αy)

)
+

(−1)m−1 − 1

2
, wj(s) = (−1)j−1w(s). (2.8)

Observe that, for points x = Xα(y, θ, z) ∈ Nα, for which z is close enough to hj(αy), we have that

U0(x) ≈ wj
(
z − hj(αy)

)
.

For l = 1, . . . ,m fixed, we consider the set

Al =

{
Xα(y, θ, z) : |z − hl(αy)| ≤ 1

2

[
σ +

√
2

(
1− 1

σ
+O(σ−

5
4 )

)
log
(
1 + (αy)2

)]}
.

From (2.3)-(2.6) it is direct to check that Al ⊂ Nα, for every α > 0 small enough. Setting t =
z − hl(αy), the set Al can also be describe in terms of the local coordinates Xα,hl(y, θ, t) as

Al =

{
Xα,hl(y, θ, t) : |t| ≤ 1

2

[
σ +

√
2

(
1− 1

σ
+O(σ−

5
4 )

)
log
(
1 + (αy)2

)]}
.

Next, with the aid of lemma 2.2.1, we compute the error of the approximation defined in (2.8)

S(U0) = ∆U0 + U0(1− U2
0 ), in Nα.

We collect all the computations of the error in the following lemma.

Lemma 2.5.1. For l = 1, . . . ,m and every x ∈ Al, x = Xα,hl(y, θ, t), we have that

(−1)l−1 S(U0) = −α2
(
∆Mhl + |AM |2hl

)
w′(t)+ 6

(
1− w2(t)

) [
e−
√

2t e−
√

2(hl−hl−1) − e
√

2t e−
√

2(hl+1−hl)
]

− α2 |AM |2 t w′(t) + α2 [h′l ]
2w′′(t) − α3(t+ hl) a1(αy, α(t+ hl))h

′′
l w
′(t)
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− α2
(
∆Mhj − α (t+ hl) a1(αy, α(t+ hl))h

′′
j

)
w′j(t+ hl − hj) +

+ Rl(αy, t, v1, . . . , vm, Dv1, . . . , Dvm) (2.9)

where Rl = Rl(αy, t, p, q) is smooth on its arguments and

|DpRl(αy, t, p, q)| + |DqRl(αy, t, p, q)| + |Rl(αy, t, p, q)| ≤ C α2+τ (1 + |αy|)−4e−ρ |t| (2.10)

for some τ > 0 small and some 0 < ρ <
√

2 and where

p = (v1, . . . , vm), q = (Dv1, . . . , Dvm).

Proof. We denote

E1 = f
(

(−1)l−1 U0

)
, E2 = ∆Xα,hl

[
(−1)l−1 U0(x)

]

and we observe that, since x = Xα,hl(y, θ, t)

(−1)l−1U0(x) = −wj (t+ hl − hl−1) + w(t) − wj (t+ hl − hl+1)

+
∑

|j−l|≥2

wj (t+ hl − hj) +
(−1)m−1 − 1

2
.

We first compute E1. We begin noticing that

(−1)l−1f (U0) = (−1)l−1


f (U0(x))−

m∑

j=1

f (wj (t+ hl − hj) )




+
m∑

j=1

(−1)l−1f (wj (t+ hl − hj)) .

Assume for the moment that 2 ≤ l ≤ m− 1 and observe that for 1 ≤ j < l, it holds that

t+ hl(αy)− hj(αy) ≥ (l − j)
[
σ +
√

2

(
1− 1

σ
+O(σ−

5
4 )

)
log(1 + (αy)2)

]
+ t

≥ 1

2

[
σ +
√

2

(
1− 1

σ

)
log(1 + (αy)2)

]

while for l < j ≤ m, it holds that

t+ hl(αy)− hj(αy) ≤ −1

2

[
σ +
√

2

(
1− 1

σ
+O(σ−

5
4 )

)
log(1 + (αy)2)

]
.

Using the asymptotic behavior of w(s) from (2.1), we find that

w(t+ hl − hj) = 1− 2 e−
√

2 te−
√

2 (hl−hj) +O
(
e−2
√

2 |t+hl−hj |
)
, 1 ≤ j < l
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w(t+ hl − hj) = −1 + 2 e
√

2 te
√

2 (hl−hj) +O
(
e−2
√

2 |t+hl−hj|
)
, l < j ≤ m.

Notice also that for |j − l| ≥ 1, we have that

|hl − hj | = |l − j|
[
σ +
√

2

(
1− 1

σ
+O(σ−

5
4 )

)
log(1 + (αy)2)

]

Hence, we obtain for |j − l| ≥ 2, for some ε ∈ (0, 1) small, that

|t+ hl − hj | ≥ |l − j|
[
σ +
√

2

(
1− 1

σ
+O(σ−

5
4 )

)
log(1 + (αy)2)

]
− |t|

≥
(

2− 1 + ε

2

)[
σ +
√

2

(
1− 1

σ

)
log(1 + (αy)2)

]
+ ε |t|.

On the other hand, since f(s) = s(1− s2), for s ∈ R, it holds that

0 ≤ |f(s)| ≤ |1− s||1 + s|, s ∈ [−1, 1].

From this remarks, we conclude that there exist τ > 0 and 0 < ρ <
√

2 such that

0 ≤ |f(wj(t+ hl − hj))| ≤ C e−
√

2 |t+hl−hj |

≤ Cα2+τ (1 + |αy|)−4 e−ρ |t|.

So, we get the estimate
∣∣∣∣∣∣
∑

|j−l|≥2

f(wj(t+ hl − hj))

∣∣∣∣∣∣
≤ C max

|j−l|≥2
e−
√

2 |t+hl−hj | ≤ Cα2+τ (1 + |αy|)−4 e−% |t|.

From (2.3) and the previous estimate, we observe that

(−1)l−1


f (U0(x))−

m∑

j=1

f (wj (t+ hl − hj) )


 =

(−1)l−1f (U0(x)) + f(w(t+ hl − hl−1)) − f(w(t)) + f(w(t+ hl − hl+1)) +

+ Rl,1(αy, t, v1, . . . , vm) (2.11)

where

Rl,1 = Rl,1(αy, t, p), |DpRl,1(αy, t, p)| + |Rl,1(αy, t, p)| ≤ Cα2+τ (1 + |αy|)−4 e−ρ |t|.

Let us now denote

a1 = w(t+ hl − hl−1)− 1, a2 = w(t+ hl − hl+1) + 1.

From the mean value theorem, we can choose numbers si = si(t, αy, h1, . . . , hm) ∈ (0, 1), for i = 1, 2,
such that

f(w(t+ hl − hl−1)) = f(1) + f ′(1)a1 +
1

2
f ′′(1 + s1 a1) a2

1

f(w(t+ hl − hl+1)) = f(−1) + f ′(−1)a2 +
1

2
f ′′(−1 + s2 a2) a2

2.
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Proceeding in a similar fashion, there exists s3 ∈ (0, 1), so that

(−1)l−1f (U0(x)) = f(w) + f ′(w)
[
(−1)l−1U0(x)− w(t)

]

+
1

2
f ′′
(
w + s3

[
(−1)l−1U0(x)− w(t)

]) [
(−1)l−1U0(x)− w(t)

]2
.

Hence, we obtain that
(−1)l−1f (U0(x)) = f(w)− f ′(w)(a1 + a2)

+ f ′(w)
∑

|j−l|≥2

(−1)j−l[w(t+ hl − hj)− sign(l − j)]

+
1

2
f ′′[w + s3

(
(−1)l−1U0 − w

)
]


 ∑

|j−l|≥1

(−1)j+lw(t+ hl − hj)− sign(l − j)




2

.

This means that we can write

(−1)l−1f (U0(x)) = f(w) − f ′(w)(a1 + a2) + Rl,2(αy, t, v1, . . . , vm) (2.12)

where

Rl,2 = Rl,2(αy, t, p), |DpRl,2(αy, t, p)| + |Rl,2(αy, t, p)| ≤ Cα2+τ (1 + |αy|)−4 e−ρ |t|. (2.13)

Hence, putting together (2.11)-(2.13) and using that F ′(1) = F ′(−1), we get that

(−1)l−1f (U0) =

m∑

j=1

(−1)l−1f (wj (t+ hl − hj)) +
[
f ′(1)− F ′(w)

]
(a1 + a2)

+
1

2

[
f ′′(1 + s1a1)a2

1 + F ′′(1 + s2a2)a2
2

]
+

+ Rl,1(αy, t, v1, . . . , vm) + Rl,2(αy, t, v1, . . . , vm)

from where we obtain that

(−1)l−1f (U0) =

m∑

j=1

(−1)l−1f (wj (t+ hl − hj)) +

+ 6
(
1− w2(t)

) [
e−
√

2 te−
√

2 (hl−hl−1) − e
√

2 te−
√

2 (hl+1−hl)
]

+ Rl(αy, t, v1, . . . , vm) (2.14)

where

Rl = Rl(αy, t, p), |DpRl(αy, p)| + |Rl(αy, t, p)| ≤ Cα2+τ (1 + |αy|)−4 e−ρ |t|. (2.15)

The remainder cases, namely l = 1 and l = m, are treated in an similar fashion, replacing the term

e−
√

2 te−
√

2 (hl−hl−1) − e
√

2 te−
√

2 (hl+1−hl)
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by the respective terms

− e
√

2 te−
√

2 (h2−h1), l = 1

and
e−
√

2 te−
√

2 (hm−hm−1), l = m.

So far, we have only written the term E1 in a convenient way. We still have to compute E2. In
order to do so, we write

E2 = ∆Xα,hl
w(t) +

∑

|j−l|≥1

∆Xα,hl

[
(−1)l−1wj(t+ hl − hj)

]

= E21 + E22.

Directly from lemma 2.2.1, we obtain that

E21 = w′′(t) − α2
(
∆Mhl + |AM |2hl

)
w′(t)− α2|AM |2t w′(t) + α2[h′l ]

2w′′(t)

−α3(t+ hl) a1(αy, α(t+ hl))
{
h′′l w

′(t)− [h′l ]
2w′′(t)

}

−α3(t+ hl) b1(αy, α(t+ hl))h
′
l w
′(t)− α4(t+ hl)

3 b2(αy, α(t+ hl))w
′(t).

Notice that, using assumptions (2.3)-(2.4), we can write E21 as follows

E21 = w′′(t) − α2
(
∆Mhl + |AM |2hl

)
w′(t)− α2|AM |2t w′(t) + α2[h′l ]

2w′′(t)

− α3(t+ hl) a1(αy, α(t+ hl))h
′′
l w
′(t) + Q21(αy, t, vl, Dvl) (2.16)

where
Q21 = Q21(αy, t, p, q)

and for some 0 < ρ
√

2,

|DpQ21(αy, t, p, q)| + |DqQ21(αy, t, p, q)| + |Q21(αy, t, p, q)| ≤ Cα3(1 + |αy|)−4eρ t. (2.17)

Next, we compute E22. Since we are using the local coordinates x = Xα,hl(y, θ, t), it holds that

∂t [wj(t+ hl − hj)] = w′j(t+ hl − hj), ∂tt [wj(t+ hl − hj)] = w′′j (t+ hl − hj)

∂y [wj(t+ hl − hj)] = αw′j(t+hl−hj)·(h′l−h′j), ∂ty [wj(t+ hl − hj)] = αw′′j (t+hl−hj)·(h′l−h′j)

∂yy [wj(t+ hl − hj)] = α2w′′j (t+ hl − hj) · (h′l − h′j)2 + α2w′j(t+ hl − hj) · (h′′l − h′′j ).
Hence, by a direct computation and using the convention that we are summing over repeated indices,
we find that

(−1)l−1E22 = w′′j (t+ hl − hj)

− α2
[

∆Mhj + |AM |2(hl + t)
]
w′j(t+ hl − hj) + α2

[
h′j
]2
w′′j (t+ hl − hj)

− α3 (t+ hl) a1(αy, α(t+ hl))
[
h′′j w

′
j(t+ hl − hj)− [h′j ]2w′′j (t+ hl − hj)

]

− α3 (t+ hl) b1(αy, α(t+ hl))h
′
j w
′
j + α4 (t+ hl)

3 b2(αy, α(t+ hl))w
′
j(t+ hl − hj).
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Using the fact that, for ε ∈ (0, 1) and |j − l| ≥ 1, so that

|t+ hl − hj | ≥ |l − j|
[
σ +
√

2

(
1− 1

σ
+O(σ−

5
4 )

)
log(1 + (αy)2)

]
− |t|

≥
(

1− 1 + ε

2

)[
σ +
√

2

(
1− 1

σ

)
log(1 + (αy)2)

]
+ ε |t|

and proceeding as above, we can write E22 as follows

(−1)l−1E22 = w′′j (t+ hl − hj)−

− α2
(
∆Mhj − α (t+ hl) a1(αy, α(t+ hl))h

′′
j

)
w′j(t+ hl − hj)

+ Q22(αy, t, v1, . . . , vm, Dv1, . . . , Dvm) (2.18)

where
Q22 = Q22(αy, t, p, q)

and for some 0 < ρ <
√

2,

|DpQ22(αy, t, v, q)| + |∇qQ22(αy, t, p, q)| + |Q22| ≤ C α2+τ (1 + |αy|)−4e−ρ |t|. (2.19)

Setting Rl = Rl + Q21 + Q22, we have that Rl = Rl(αy, t, p, q) is smooth on its arguments and

|DpRl(αy, t, p, q)| + |DqRl(αy, t, p, q)| + |Rl(αy, t, p, q)| ≤ C α2+τ (1 + |αy|)−4e−ρ |t|

for some τ > 0 small and some 0 < ρ <
√

2. Putting together (2.14)-(2.16)-(2.18), we obtain that

(−1)l−1 S(U0) = −α2
(
∆Mhl + |AM |2hl

)
w′(t) + 6

(
1− w2(t)

) [
e−
√

2t e−
√

2(hl−hl−1) − e
√

2t e−
√

2(hl+1−hl)
]

− α2 |AM |2 t w′(t) + α2 [h′l ]
2w′′(t) − α3(t+ hl) a1(αy, α(t+ hl))h

′′
l w
′(t)

− α2
(
∆Mhj − α (t+ hl) a1(αy, α(t+ hl))h

′′
j

)
w′j(t+ hl − hj) +

+ Rl(αy, t, v1, . . . , vm, Dv1, . . . , Dvm)

and the proof of the lemma is complete.

The approximation U0 is so far defined only on the neighborhood Nα of Mα. Let us consider a
non-negative function β ∈ C∞(R) such that

β(s) =

{
1, |s| ≤ 1
0, |s| ≥ 2

and consider the cut-off function defined by

βα(x) = β(|z| − η

α
− 2
√

2 (m+ 1) log(r(αy)) + 3), x = Xα(y, θ, z) ∈ Nα.

We see that βα is supported in a region that expands logarithmically in r(αy). With the aid of
this function, we set up as approximation in R3, the function

w(x) = βα(x)U0 + (1− βα(x))
U0

|U0|
, x ∈ R3. (2.20)
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Let H be the function

H(x) =

{
1, x ∈ S+

α

(−1)m, x ∈ S−α
where S±α = α−1S±, S± being the two connected components of R3 −Mα for which S+

α is the
component containing the x3−axis. We compute the new error as follows

S(w) = ∆w + F (w) = βα(x)S(U0) + E

where
E = 2∇βα∇U0 + ∆βα(U0 − H) + F (βαU0 + (1− βα)H)− βαF (U0).

Due to the choice of βα(x) and the explicit form the term E has, the error created only takes into
account values of βα for x ∈ R3 in the region

|z| ≥ η

α
+ 4 ln(r(αy))− 2, x = Xα(y, θ, z)

and so, we get the following estimate for the term E

|Dy E| + |E| ≤ Ce− ηα r−4(αy).

We observe that the error E decays rapidly and is exponentially small in α > 0, so that its contri-
bution is negligible.

2.6 The Proof of theorem 2.1.1.

The proof of Theorem 1 is quite technical and so, we prefer to sketch the steps of the proof and
leave the detailed proofs of the propositions and lemmas mentioned here, for subsequent sections.

First, we introduced the norms we will use to set up an appropriate functional analytic scheme
for the proof of Theorem 2.1.1. Let us denote

R(x) =
√
x2

1 + x2
2, x = (x1, x2, x3) ∈ R3

and let us define for α > 0, µ > 0, σ ∈ (0, 1) and g(x), defined in R3, the norm

‖g‖p,µ,∼ := sup
x∈R3

(1 +R(αx))µ ‖g‖Lp(B1(x)). (2.1)

We also consider for α > 0, 0 < ρ <
√

2, µ > 0 and functions g = g(y, t) and φ = φ(y, t), defined
for every (y, t) ∈Mα × R, we define the norms

‖g‖p,µ,ρ := sup
(y,t)∈Mα×R

(1 + r(αy))µe ρ |t|‖g‖Lp(B1(y,t)) (2.2)

‖φ‖∞,µ,ρ := ‖(1 + r(αy)µ)e ρ |t|φ‖L∞(M) (2.3)

‖φ‖2,p,µ,ρ := ‖D2 φ‖p,µ,ρ + ‖Dφ‖∞,µ,ρ + ‖φ‖∞,µ,ρ. (2.4)

37



Finally, for functions v and q defined in M , recall that we are considering the norms

‖q‖p,µ := ‖(1 + r(y)µ)q‖Lp(M) (2.5)

‖v‖∗,δ := ‖D2v‖p,µ + ‖(1 + r(y))D v‖L∞(M) + ‖ log( r(y) + 2 )−1 v‖L∞(M). (2.6)

Now, in order to prove Theorem 2.1.1, let us look for a solution to equation (2.1) of the form

U(x) = w(x) + ϕ(x)

where w(x) is the global approximation defined in (2.20) and φ is going to be chosen small in the
norm (2.4). Hence, for U(x) being a genuine solution to (2.1), we see that ϕ must solve the equation

∆ϕ + f ′(w)ϕ + S(w) +N(ϕ) = 0, in R3.

or equivalently

∆ϕ + f ′(w)ϕ = −S(w)−N(ϕ)

= −βα S(U0)− E −N(ϕ) (2.7)

where
N(ϕ) = f(w + ϕ)− f(w)− f ′(w)ϕ.

To solve equation (2.7), we consider again the function β(s) from the previous section, and we define
for l = 1, . . . ,m and n ∈ N, the cut off function for x = Xα,hl(y, θ, t) ∈ Nα,hl

ζ l,n (x) = β

(
|t| − 1

2

[
σ +

√
2

(
1− 1

σ

)
log
(
1 + (αy)2

)]
+ n

)
.

Observe that for k 6= l, ζl,3 · ζk,3 = 0. Now we look for a solution ϕ(x) with the particular form

ϕ(x) =
m∑

j=1

ζ j,3 (x)ϕj(y, z) + ψ(x)

where the functions ϕj(y, z) are defined in Mα × R and the function ψ(x) is defined in the whole
R3. So, from equation (2.7) we find that

m∑

j=1

[
ζj,3 ∆Nαϕj + 2∇ζj,3 · ∇Nαϕj + φj∆ζj,3 + f ′(w)ζj,3φj

]

+ ∆ψ + f ′(w)ψ + S(w) +N


ψ +

m∑

j=1

ζj,3ϕj


 = 0.

Notice that ζj,2 · ζj,3 = ζj,3, so we can write the previous equality as

m∑

j=1

ζj,3
[
∆Nαϕj + f ′(ζj,2w)ϕj + ζj,2S(w) + ζj,2N(ϕj + ψ) + ζj,2(f ′(w) + 2)ψ

]
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+ ∆ψ − [2− (1−
m∑

j=1

ζj,3)(f ′(w) + 2)]ψ + (1−
m∑

j=1

ζj,3)S(w)

+

m∑

j=1

2∇ζj,3 · ∇Nαϕj + ϕj∆ζj,3 + (1− ζj,3)N [ψ +

m∑

i=1

ζi,2ϕi] = 0.

Hence, to construct a solution to (2.7), we need to solve the system of PDEs

∆Nαϕl + f ′(ζl,2w)ϕl = − ζl,2S(w) − ζl,2N(ϕl + ψ)

− ζl,2(f ′(w) + 2)ψ, in |t| ≤ ρα(y), l = 1, . . . ,m (2.8)

∆ψ −


2−


1−

m∑

j=1

ζj,2


 (f ′(w) + 2)


ψ = −


1−

m∑

j=1

ζj,2


S(w)−

−
m∑

j=1

2∇ζj,2 · ∇Nαϕj − ϕj∆ζj,2 −


1−

m∑

j=1

ζj,3


N

[
m∑

i=1

ζi,2ϕi + ψ

]
, in R3. (2.9)

where

ρα(y) =
1

2

[
σα −

√
2

(
1− 1

σα

)
log
(
1 + (αy)2

)]
, y = Yα(y, θ) ∈Mα

Now, we extend equation (2.8) to the whole Mα × R. Let us set for l = 1, . . . ,m

Bl := ζl,2[∆Nα,hl − ∂tt −∆Mα ]

where we recall that in the local coordinates Yα(y, θ), we have that

∆Mα = ∂yy +
α2y

1 + (αy)2
∂y +

α2

1 + (αy)2
∂θθ.

Recall also that the differential operator ∆Mα is nothing but the Laplace-Beltrami operator of the
catenoid. Observe also that Bl vanishes in the domain

|t| ≥ 1

2

[
σα + 2

(
1− 1

σα

)
ln
(
1 + (αy)2

)]
− 1.

Hence, instead of equation (2.8), we consider the equation

∂ttφl + ∆Mαφl + f ′(wl(t))φl = −Sl(w)−Bl(φl)

− [F ′(ζl,2w)− F ′(wl(t))]φl − ζl,2(F ′(w) + 2)ψ − ζl,2N(φl + ψ), in Mα × R (2.10)

where, setting z = t+ hl, we choose in the local coordinates

φl(y, t) = ϕl(y, z), x = Xα(y, θ, z) = Xα,hl(y, θ, t)

and where we have denoted

(−1)l−1Sl(w) := −α2
(
∆Mhl + |AM |2hl

)
w′(t)
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+ 6
(
1− w2(t)

)
ζl,2

[
e−
√

2t e−
√

2(hl−hl−1) − e
√

2t e−
√

2(hl+1−hl)
]

− α2 |AM |2 t w′(t) + α2 [h′l ]
2w′′(t)

+ ζl,2
[
−α3(t+ hl) a1(αy, α(t+ hl))h

′′
l w
′(t)−

− α2
(
∆Mhj − α (t+ hl) a1(αy, α(t+ hl))h

′′
j

)
w′j(t+ hl − hj) + Rl

]
(2.11)

where
Rl = Rl(αy, t, v1, . . . , vm, Dv1, . . . , Dvm)

and
|DpR(αy, t, p, q)| + |DqR(αy, t, p, q)| + |R(y, t, p, q)| ≤ Cα2+τrα(y)−4e−ρ|t|. (2.12)

Observe that Sl(w) coincides with S(U0) where ζl,2 = 1, but we have basically cut-off the parts
in S(U0) that, in the local coordinates Xα,hl , are not defined for all t ∈ R.

We decompose this error into two parts

Sl(w) = Sl,1(αy)w′(t) + Sl,2 (2.13)

where
(−1)l−1Sl,1 = −α2

(
∆Mhl + |AM |2hl

)
, Sl,2 = Sl(w)− Sl,1(αy)w′(t).

Using 2.11 and 2.12, we compute directly the size of this error to obtain that for some 0 < ρ <
√

2
we have that

‖Sl,2‖p,2,ρ ≤ Cα2−τ (2.14)

for some universal constant C > 0 and some τ > 0 but arbitrarily small. This is and easy compu-
tation since the support of ζl,2 is contained in a region of the form

|t| ≤ 1

2

[
σα + 2

(
1− 1

σα

)
ln
(
1 + (αy)2

)]
.

We also obtain the same estimate for Sl(w)

‖Sl(w)‖p,2,ρ ≤ Cα2. (2.15)

Hence we solve system (2.9)-(2.10). We first solve equation (2.9), using the fact that the potential
2 − (1 −∑m

j=1 ζj3)(F ′(w) + 2) is uniformly positive, so that the linear operator there behaves like
∆R3 − 2. A solution ψ = Ψ(φ1, . . . , φm) is then found using contraction mapping principle. We
collect this discussion in the following proposition, that will be proven in detail in section 5.

Proposition 4. Assume µ > 0, 0 < ρ <
√

2, p > 2 and let the functions h′js be as in (2.2)-(2.4).
Then, for every α > 0 sufficiently small and for m fixed functions φ1, . . . , φm, satisfying that

‖φj‖2,p,µ,ρ ≤ 1, j = 1, . . . ,m
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equation (2.9) has a unique solution ψ = Ψ(φ1, . . . , φm). Even more, the operator ψ = Ψ(φ1, . . . , φm)
turns out to be lipschitz in every φj. More precisely, ψ = Ψ(φ1, . . . , φm) satisfies that

‖ψ‖X := ‖D2ψ‖p,µ,∼ + ‖(1 +Rµα(x))Dψ‖L∞(R3) + ‖(1 +Rµα(x))ψ‖L∞(R3)

≤ C


α2+τ + ατ

m∑

j=1

‖φj‖2,p,µ,ρ


 (2.16)

and
‖Ψ(φj)−Ψ(φ̂j)‖X ≤ Cατ‖φj − φ̂j‖2,p,µ,ρ. (2.17)

Hence, using Proposition 4, we solve equation (2.10) with ψ = Ψ(φ1, . . . , φm). Let us set

Nl(φ1, . . . , φl, . . . , φm) := Bl(φl) + [F ′(ζl,2w)− F ′(w(t))]φl

+ ζl,2(F ′(w) + 2)Ψ(φ1, . . . , φm) + ζl,2N [φl + Ψ(φ1, . . . , φm)].

So, setting Φ = (φ1, . . . , φm), we only need to solve

∂ttφl + ∆Mαφl + F ′(wl(t))φl = −Sl(w)− Nl(Φ), in Mα × R (2.18)

for every l = 1, . . . ,m.

To solve problem (2.18), we solve a nonlinear problem in φl, in such a way that we eliminate
the parts of the error that do not contribute to the projections onto w′(t). Using the fact that the
error S(U0) has the size

‖Sl(w) + α2(∆Mhl + |AM |2hl)‖p,2,ρ ≤ α2− τ , τ ∈ (0, 1) (2.19)

and as we will see in section 2.7, Nl(φ) satisfies that

‖Nl(Φ)‖p,4,ρ ≤ Cα3−τ

and is Lipschitz with small Lipschitz constant, a direct application of the contraction mapping
principle in a ball of radius O(α2−τ ) in the norm ‖φl‖2,p,2,ρ, allows us to solve the projected system

∂ttφl + ∆Mαφl + F ′(wl(t))φl = −Sl(w)− Nl(Φ) + cl(y)w′(t), in Mα × R. (2.20)

∫

R
φl (y, t)w

′(t)dt = 0, l = 1, . . . ,m. (2.21)

where

cl(y) =

∫

R
[Sl(w) + Nl(Φ)]w′(t)dt, ∀ l = 1, . . . ,m.

This solution φl, defines a Lipschitz operator φl = Φl(v1, . . . , vm) for the product norm

‖(v1, . . . , vm)‖∗ :=

m∑

j=1

‖vj‖∗,δ.

This information is collected in the following proposition.
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Proposition 5. Assume 0 < µ ≤ 2, 0 < ρ <
√

2 and p > 2. For every α > 0 small enough,
there exists an universal constant C > 0, such that system (2.20)-(2.21) has a unique solution
(φ1, . . . , φm) = Φ(v1, . . . , vm), satisfying

‖Φ‖2,p,2,ρ ≤ Cα2−τ

and
‖Φ(v1, . . . , vm)− Φ(v̂1, . . . , v̂m)‖2,p,2,ρ ≤ C α2−τ‖(v1, . . . , vm)− (v̂1, . . . , v̂m)‖∗,δ.

To conclude the proof of Theorem 2.1.1, we adjust the vector function v = (v1, . . . , vm) in such
a way that

cl(y) =

∫

R
[Sl(w) + Nl(Φ)]w′(t)dt = 0, ∀ l = 1, . . . ,m.

We find that making this projection zero is equivalent to solve the nonlinear and nonlocal equation

α2
(
∆Mhl + |AM |2 hl

)
− a0[e−

√
2(hl−hl−1) − e−

√
2(hl+1−hl)]

= α2Gl,1(v) + α2Gl,2(v) (2.22)

where

α2Gl,1(v) :=

∫

R
ζj2
[
−α3(t+ hj) a1(αy, α(t+ hj))h

′′
jw
′(t)−

− α2
(
∆Mhj − α (t+ hl) a1(αy, α(t+ hl))h

′′
j

)
w′j(t+ hl − hj) + Rl

]
w′(t)dt

α2Gl,2(v) :=

∫

R
Nl(Φ)w′(t)dt.

where we set Φ = (Φ1, . . . ,Φm) and the constant a0 is given by

(∫

R
(w′(t))2dt

)
a0 =

∫

R
6(1− w2(t)) e−

√
2 tw′(t)dt.

From lemma 2.4.4 we have that for any p > 2 and 0 < µ < 4− 2
p

∥∥∥∥
∫

R
Nl(Φ)w′(t)dt

∥∥∥∥
p,µ

≤ Cα3−τ

so that
‖Gl,2(v)‖p,µ ≤ Cα1−τ .

On the other hand,

‖Gl,2(v)−Gl,2(v̂)‖p,µ ≤ Cα−1‖Φ(v)− Φ(v̂)‖p,2,ρ ≤ Cα1−τ‖v − v̂‖∗,δ

Finally, using
Q(v) := Gl,1(v) +Gl,2(v)
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and lemmas 1 and 3, we see that a direct application of contraction mapping principle for a vector
function v in the ball

‖(v1, . . . , vm)‖∗ :=

m∑

j=1

‖vj‖∗,δ ≤ Kσ−
5
4

for some K > 0 chosen large and independent of α > 0, yields the existence of functions v1, . . . , vm
satisfying (2.4), so that

cl(y) =

∫

R
[Sl(w) + Nl(Φ)]w′(t)dt = 0, ∀ l = 1, . . . ,m

and this completes the proof of the theorem. In subsequent section we present the proofs of the
auxiliary results mentioned this section.

2.7 Gluing reduction and solution to the projected prob-

lem.

In this section, we prove propositions 4 and 5. The notations we use in this section have been set
up in sections 5 and 6.

We begin by fixing functions φ1, . . . , φm such that ‖φl‖2,p,µ,ρ ≤ 1 for l = 1, . . . ,m, we solve
problem (2.9). Observe that there exist constants a < b, independent of α, such that

0 < a ≤ Qα(x) ≤ b, for every x ∈ R3

where we set

Qα(x) = 2−


1−

m∑

j=1

ζj2


[F ′(w) + 2

]
.

Using this remark we study the problem

∆ψ −Qα(x)ψ = g(x), x ∈ R3 (2.1)

for a given g = g(x) such that

‖g‖p,µ,∼ := sup
x∈R3

(1 +Rµ(αx))‖g‖Lp(B1(x)).

Solvability theory for equation (2.1) is collected in the following lemma whose proof follows the
same lines as in lemma 7.1 in [14] and lemma 5.1 in [16].

Lemma 2.7.1. Assume p > 2 and µ ≥ 0. There exists a constant C > 0 and α0 > 0 small enough
such that for 0 < α < α0 and any given g = g(x) with ‖g‖p,µ,∼ < ∞, equation (2.1) has a unique
solution ψ = ψ(g), satisfying the a-priori estimate

‖ψ‖X ≤ C‖g‖p,µ,∼
where

‖ψ‖X := ‖D2ψ‖p,µ,∼ + ‖(1 +Rµα(x))Dψ‖L∞(R3) + ‖(1 +Rµα(x))ψ‖L∞(R3).
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Now we prove Proposition 4. Denote by X, the space of functions ψ ∈ W 2,p
loc (R3) such that

‖ψ‖X < ∞ and let us denote by Γ(g) = ψ the solution to the equation (2.1) from the previous
lemma. We see that the linear map Γ is continuous i.e

‖Γ(g)‖X ≤ C‖g‖p,µ,∼.

Using this we can recast (2.9) as a fixed point problem, in the following manner

ψ = −Γ




1−

m∑

j=1

ζj2


S(w) + g1 +


1−

m∑

j=1

ζj2


N

[
m∑

i=1

ζi3φ+ ψ

]
 (2.2)

where

g1 =

m∑

j=1

2∇ζj2 · ∇Nαϕj + ϕj∆ζj2.

Under conditions (2.3)-(2.4) and max1≤l≤m ‖φl‖2,p,µ,ρ ≤ 1, we estimate the size of the right-hand
side in (2.2).

Recall that S(w) = βα(x)S(U0) + E, where

|Dy E| + |E| ≤ Ce− ηα r−4(αy).

So, we estimate directly using (2.15), to get
∣∣∣∣∣∣


1−

m∑

j=1

ζj2


S(w)

∣∣∣∣∣∣
≤ C

m∑

j=1

α2(1 + r(αy))−2e−ρ|t| (1− ζj2)

≤ Cα2+τ (1 + r(αy))−4+τ ,

this means that ∣∣∣∣∣∣


1−

m∑

j=1

ζj2(x)


S(w)

∣∣∣∣∣∣
≤ Cα2+τ (1 +Rα(x))−4+τ .

Consequently we get, for µ ≤ 4 that
∥∥∥∥∥∥


1−

m∑

j=1

ζj,2


S(w)

∥∥∥∥∥∥
p,4−τ,∼

≤ Cα2+τ

.

As for the second term in the right-hand side of (2.2), the following holds true

|2∇ζj,2 · ∇φj + φj∆ζj,2| ≤ C(1− ζj2)(1 + rµ(αy))−1e−ρ|t|‖φj‖2,p,µ,ρ

≤ Cατ (1 + rµ+2−τ (αy))−1‖φj‖2,p,µ,ρ.

for some 0 < τ < 1, provided 0 < ρ <
√

2. This implies that

‖2∇ζj,2 · ∇φj + φj∆ζj,2‖p,µ+2−τ,∼ ≤ Cατ
m∑

j=1

‖φj‖2,p,µ,ρ.
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Finally we must check the lipschitz character of (1−∑m
j=1 ζj2)N [

∑m
i=1 ζi2φi +ψ]. Take ψ1, ψ2 ∈ X.

Then 
1−

m∑

j=1

ζj2



∣∣∣∣∣N
[
m∑

i=1

ζi2φi + ψ1

]
−N

[
m∑

i=1

ζi2φi + ψ2

]∣∣∣∣∣ ≤

≤


1−

m∑

j=1

ζj2



∣∣∣∣∣F (w +

m∑

i=1

ζj1φi + ψ1)− F (w +

m∑

i=1

ζi1φi + ψ2)− F ′(w)(ψ1 − ψ2)

∣∣∣∣∣

≤ C


1−

m∑

j=1

ζj2


 sup

s∈[0,1]

∣∣∣∣∣
m∑

i=1

ζi1φi + sψ1 + (1− s)ψ2

∣∣∣∣∣ |ψ1 − ψ2|

≤ Cατ

(
m∑

i=1

‖φi‖∞,µ,ρ + ‖ψ1‖X + ‖ψ2‖X
)
|ψ1 − ψ2|

So, we see that

∥∥∥∥∥∥


1−

m∑

j=1

ζj2


N

[
m∑

i=1

ζi2φi + ψ1

]
−


1−

m∑

j=1

ζj2


N

[
m∑

i=1

ζi2φi + ψ2

]∥∥∥∥∥∥
p,2µ,∼

≤ Cατ‖ψ1 − ψ2‖∞,2µ.

In particular, we take advantage of the fact that N(ϕ) ∼ ϕ2, to find that

∥∥∥∥∥∥


1−

m∑

j=1

ζj2


N

(
m∑

i=1

ζi2φi

)∥∥∥∥∥∥
p,2µ,∼

≤ Cα2τ
m∑

j=1

‖φj‖22,p,µ,ρ .

Consider Γ̃ : X → X, Γ̃ = Γ̃(ψ) the operator given by the right-hand side of (2.2). From the
previous remarks we have that Γ̃ is a contraction provided α is small enough and so we have found
ψ = Γ̃(ψ) the solution to (2.9) with

‖ψ‖X ≤ C


α2+τ + ατ

m∑

j=1

‖φj‖2,p,µ,ρ




We can check directly that Ψ(Φ) = ψ is Lipschitz in Φ = (φ1, . . . , φm), i.e

‖Ψ(Φ1)−Ψ(Φ2)‖X ≤

C

∥∥∥∥∥∥


1−

m∑

j=1

ζj2



[
N

(
m∑

i=1

ζi2φi 1 + Ψ(Φ1)

)
−N

(
m∑

i=1

ζi2φi 2 + Ψ(Φ2)

)]∥∥∥∥∥∥
p,2µ,∼

≤ Cατ (‖Ψ(Φ1)−Ψ(Φ2)‖X + ‖Φ1 − Φ2‖2,p,µ,ρ)
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Hence for α small, we conclude

‖Ψ(Φ1)−Ψ(Φ2)‖X ≤ Cατ‖Φ1 − Φ2‖2,p,µ,ρ.

Now we solve system

∂ttφl + ∆Mαφl + F ′(wl(t))φl = −Sl(w)− Nl(φl) + cl(y)w′(t), in Mα × R.
∫

R
φl(y, t)w

′(t)dt = 0.

To do so, we need to study solvability for the linear equation

∂ttφ+ ∆Mαφ+ F ′(w(t))φ = g(y, t) + c(y)w′(t), in Mα × R (2.3)

∫

R
φ(y, t)w′(t)dt = 0. (2.4)

Solvability of (2.3)-(2.4) is based upon the fact that the heteroclinic solution w(t) is nondegen-
erate in the sense, that the following property holds true.

Lemma 2.7.2. Assume that φ ∈ L∞(R3) and assume φ = φ(x1, x2, t) satisfies

L(φ) := ∂ttφ+ ∆R2φ+ F ′(w(t))φ = 0, in R2 × R. (2.5)

Then φ(x1, x2, t) = C w′(t), for some constant C ∈ R.

For the detailed proof of this lemma we refer the reader, for instance, to lemma 5.1 in [14],lemma
6.1 in [16] and references therein. The linear theory we need to solve system (2.21), is collected in
the following proposition, whose proof is again contained in essence in lemma 5.2 in [14] and lemma
6.2 in [16].

Proposition 6. Assume p > 2, 0 < ρ <
√

2 and µ ≥ 0. There exist C > 0, an universal constant,
and α0 > 0 small such that, for every α ∈ (0, α0) and any given g with ‖g‖p,µ,ρ < ∞, problem
(2.3)-(2.4) has a unique solution (φ, c) with ‖φ‖p,µ,ρ <∞, satisfying the apriori estimate

‖D2φ‖p,µ,ρ + ‖Dφ‖∞,µ,ρ + ‖φ‖∞,µ,ρ ≤ C‖g‖p,µ,ρ.

Using Proposition 6, we are ready to solve system (2.20)-(2.21). First, recall that as stated in
(2.14)

‖Sl(w) + α2(∆Mhl + |AM |2hl)‖p,2,ρ ≤ Cα2−τ (2.6)

From the discussion in 6.2, we have a nonlocal operator ψ = Ψ(φ1, . . . , φm). Recall that for Φ =
(φ1, . . . , φm),

Nl(Φ) := Bl(φl) +
[
F ′(ζl2w)− F ′(wl(t))

]
φl + ζl2[F ′(w) + 2]Ψ(Φ) + ζl2N(φl + Ψ(Φ)).

Let us denote
N1(Φ) := Bl(φl) +

[
F ′(ζl2w)− F ′(wl(t))

]
φl
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N2(Φ) := ζl2 [F ′(w) + 2] Ψ(Φ), N3(Φ) := ζl2N(φl + Ψ(Φ)).

We need to investigate the Lipschitz character of Ni, i = 1, 2, 3. We begin with N3. Observe that

|N3(Φ1)−N3(Φ2)| = ζl2|N(φl1 + Ψ(Φ1))−N(φl2 + Ψ(Φ2))|

≤ Cζl2 sup
τ∈[0,1]

|τ(φl1 + Ψ(Φ1)) + (1− τ)(φl2 + Ψ(φl2))| · |φl1 − φl2 + Ψ(Φ1)−Ψ(Φ2)|

≤ C [|Ψ(Φ2)|+ |φl1 − φl2|+ |Ψ(Φ1)−Ψ(Φ2)|+ |φl2|] · [|φl1 − φl2|+ |Ψ(Φ1)−Ψ(Φ2)|] .
This implies that

‖N3(Φ1)−N3(Φ2)‖p,2µ,ρ ≤

≤ C


α2+τ +

m∑

j=1

‖φj1‖p,µ,ρ +

m∑

j=1

‖φj2‖p,µ,ρ


 ·

m∑

j=1

‖φj1 − φj2‖p,µ,ρ .

Now we check on N1(Φ). Clearly, we just have to pay attention to Bl(φl). But notice that Bl(φl)
is linear on φl and

Bl(φl) = −α2

{
h′′l (αy) +

αy

1 + (αy)2
h′l(αy) +

2(t+ hl)

(1 + (αy)2)2

}
∂tφl

−2αh′l(αy)∂tyφl + α2[h′l(αy)]2∂ttφl +Dα,hl(φl),

where the differential operator Dα,hl is given in (2.4). Hence, from the assumptions (2.2)-(2.7) made
on the functions v′js, we have that

‖N1(Φ1)−N1(Φ2)‖p,2+µ,ρ ≤ Cα‖Φ1 − Φ2‖p,µ,ρ.

Then, assuming that max1≤j≤m ‖φj‖2,p,µ,ρ ≤ Aα2−τ , we have that

‖Nl(Φ)‖p,2+µ,ρ ≤ Cα3−τ

Setting T (g) = φ the linear operator given by the Lemma 6, we recast problem (2.20) as the
fixed point problem

φl = T (−Sl(w)− Nl(Φ)) =: Tl(Φ), l = 1, . . . ,m.

in the ball
Bα :=

{
(φ1, . . . , φm) : ‖φj‖2,p,2,ρ ≤ Aα2−τ , j = 1, . . . ,m

}

where, clearly we are working in the space of function Φ ∈W 2,p
loc (Mα × R), endowed with the norm

‖Φ‖∗∗ :=

m∑

j=1

‖φj‖2,p,2,ρ.

Observe that

‖Tl(Φ1)− Tl(Φ2)‖∗∗ ≤ C ‖Nl(Φ1)− Nl(Φ2)‖p,4,ρ ≤ C α ‖Φ1 − Φ2‖∗∗, Φ1,Φ2 ∈ Bα.
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On the other hand, because C and K are universal constants and taking A large enough independent
of α > 0, we have that

‖Tl(Φ)‖∗∗ ≤ C (‖Sl(w)‖p,2,ρ + ‖Nl(Φ)‖p,4,ρ) ≤ Aα2−τ , φ ∈ Bα.

Hence, the mapping T = (T1, . . . , Tm) is a contraction from the ball Bα onto itself. From the
contraction mapping principle we get a unique solution

Φ = Φ(v1, . . . , vm)

as required. As for the Lipschitz character of Φ(v1, . . . , vm) it comes from a lengthy by direct
computation from the fact that

‖Φ(v1, . . . , vm)− Φ(ṽ1, . . . , ṽm)‖2,p,2,ρ ≤ C
m∑

j=1

‖Sj(w, v1, . . . , vm)− Sj(w, ṽ1, . . . , ṽm)‖p,2,ρ +

+

m∑

j=1

‖Nj( Φ(v1, . . . , vm) )−Nj( Φ(ṽ1, . . . , ṽm) )‖p,4,ρ.

We left to the reader to check on the details of the proof of the following estimate

‖Φ(v1, . . . , vm)− Φ(ṽ1, . . . , ṽm)‖2,p,2,ρ ≤ Cα2−τ
m∑

j=1

‖vj − ṽj‖∗,δ.

for (v1, . . . , vm) and (ṽ1, . . . , ṽm) satisfying (2.3) and (2.4). This completes the proof of proposition
5 and consequently the proof of Theorem 2.1.1.
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Chapter 3

Two Logarithmical Ended Solutions to
the Allen-Cahn Equation in R3

In this section, we sketch the construction of a family of bounded axially symmetric solutions to

∆u+ u(1− u2) = 0, in R3. (3.1)

whose zero level set is close to a radially symmetric solution of the Toda system of PDEs in R2 and
so that, outside of a compact set, has four logarithmical connected components. This is another
step in the program towards the study and the classification of finite Morse index solutions to (3.1),
since these solutions are expected to have Morse index 2. Much of the developments done in this
chapter are similar to those done in previous sections.

3.1 Statement of the main result

In order to state our main result, we consider a smooth radially symmetric solution (q1, q2) of the
Toda System

∆ q1 + a0e
−
√

2 (q2−q1) = 0, in R2 (3.1)

∆ q2 − a0e
−
√

2 (q2−q1) = 0, in R2. (3.2)

where a0 > 0 is a positive constant to be determined. To be more precise, we assume that −q1 =
q2 = q, and the function q is a solution to the Liouville equation

∆ q − a0e
−2
√

2 q = 0, in R2 (3.3)

q(0) = a > 0, ∂r q(0) = 0 (3.4)

given explicitly by

q(r, ρ) =
1

2
√

2
log

(√
2 a0

4 ρ

(
1 + ρ r2

)2
)
. (3.5)
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From the fact that q(0) = a > 0, we obtain

log

(√
2 a0

4 ρ

)
=

2 a√
2
.

We remark that, for every α > 0, the functions

−
√

2

2
log

(
1

α

)
+ q1(αr),

√
2

2
log

(
1

α

)
+ q2(αr), r > 0.

are also smooth radially symmetric solutions to (3.4)-(3.5). Now, for α > 0 small, consider two
smooth parameter functions v1, v2 satisfying that for j = 1, 2

‖vj‖∗ := ‖D2vj‖∞,2,σ + ‖(1 + |x′|)Dvj‖L∞(R2) + ‖ log(2 + |x′|)vj‖L∞(R2) = O(ατ1) (3.6)

for some τ1 ∈ (0, 2), and let us define the functions

f1α(r) := −
√

2

2
log

(
1

α

)
+ q1(αr) + v1(αr)

f2α(r) :=

√
2

2
log

(
1

α

)
+ q2(αr) + v2(αr).

and denote Mjα the graph of the function fjα. The main result we present in this section is the
following.

Theorem 3.1.1. For all sufficiently small α > 0 there exists an smooth axially symmetric bounded
solution uα to problem (3.1) such that

uα(x′, z) = w
(
z − f1α(αx′)

)
− w

(
z − f2α(αx′)

)
− 1 + o(1), as α→ 0

for x = (r cos θ, r sin θ, z), |z| < η
α + 1

2α log(1 + (αr)2). These solutions have the properties that
they are axially symmetric and they converge to ±1 away from the graphs of the functions fjα, i.e

uα(x′, z) = uα(|x′|, z) = uα(|x′|,−z), u2
α(x)→ 1, as dist(x,Mjα)→∞, for x = (x′, z).

In addition, the location of the interfaces f′jαs is governed at main order by the Toda system on R2,
i.e

∆R2q1 + a0 e
−
√

2(q2−q1) = 0, ∆R2q2 − a0 e
−
√

2(q2−q1) = 0

and

f2α − f1α ≥
√

2 log

(
1

α

)
+ log

(
1 + |αx′|

)
.

3.2 Toda system in R2 and its linearization

In this part we describe the Toda System of PDEs, that will govern the location of the interfaces
of the solution, namely

∆ f1 + a0e
−
√

2 (f2−f1) = g1, in R2 (3.1)

∆ f2 − a0e
−
√

2 (f2−f1) = g2, in R2. (3.2)
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where a0 > 0 is a positive constant. Let us look for an radially symmetric smooth solution to
(3.1)-(3.2) having the form

f1(x′) = q1(x′) + v1(x′), f2(x′) = q2(x′) + v2(x′), x′ ∈ R2 (3.3)

where

∆ q1 + a0e
−
√

2 (q2−q1) = 0, in R2 (3.4)

∆ q2 − a0e
−
√

2 (q2−q1) = 0, in R2. (3.5)

As mentioned before, let us assume further that −q1 = q2 = q, so that the function q must be a
solution to the Liouville equation

∆ q − a0e
−2
√

2 q = 0, in R2 (3.6)

q(0) = a > 0, ∂r q(0) = 0 (3.7)

It is known that every radially symmetric solution to (3.1)-(3.7) is given by

q(r, ρ, γ) =
1

2
√

2
log

(√
2 a0

4 ρ γ2

(
1 + ρ r2γ

)2
)

+
(2γ − 2)

2
√

2
log (r) (3.8)

Since we are looking for smooth solutions, this forces γ = 1, so that

q(r, ρ) =
1

2
√

2
log

(√
2 a0

4 ρ

(
1 + ρ r2

)2
)
. (3.9)

From the fact that q(0) = a > 0, we obtain

log

(√
2 a0

4 ρ

)
=

2 a√
2
.

Observe that ρ is a free parameter depending on the initial condition (3.7).

Linearizing (3.1)-(3.2) around the exact solution (q1, q2), and decoupling this equation as we did
in section 2.2, we obtain the nonlinear system

∆ v1 +
√

2 a0e
−
√

2 (q2−q1)v1 + N(v1) = g̃1, in R2 (3.10)

∆ v2 = g̃2, in R2 (3.11)

where we consider right-hand side functions gj satisfying that

‖g̃j‖∞,β,σ : ‖(1 + |x|β)g̃j‖C0,σ(R2) <∞, j = 1, 2

for some σ ∈ (0, 1) and β ≥ 0 and where we have denoted

N(v1) = −e−2
√

2 q
[
e−
√

2 v1 − 1 +
√

2 v1

]
. (3.12)
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Let us consider first the linear system associated to (3.10)-(3.11), namely

∆ v1 +
√

2 a0e
−
√

2 (q2−q1)v1 = g̃1, in R2 (3.13)

∆ v2 = g̃2, in R2 (3.14)

Since our setting is radially symmetric, we deal with this system using variations of parameters
formula. Setting r = |x′|, we observe that (3.14) has a radially symmetric smooth solution given by

v2(r) :=

∫ ∞

r
ξ log(ξ) g̃2(ξ)dξ + log(r)

∫ r

0
ξ g̃2(ξ) dξ

Clearly v2 is smooth and taking β > 2, we see directly from this formula that

‖v2‖∗ ≤ C‖q2‖∞,β,σ

where
‖v2‖∗ := ‖D2v2‖∞,2,σ + ‖(1 + |x′|)Dv2‖L∞(R2) + ‖ log(2 + |x′|)v2‖L∞(R2). (3.15)

Next we solve equation (3.13). Taking derivatives respect to ρ and γ in (3.8), we find that the
functions

ψ1(r) =
1− ρ r
1 + ρ r2

, ψ2(r) =
log(r) (ρ r2 − 1)

1 + ρ r2
− 1 (3.16)

span the kernel of (3.13). Observe that ψ2 is clearly singular at the origin. Observe also that

∂r ψ1(r) =
4ρ r

(1 + ρ r2)2
, ∂r ψ2(r) =

−1 + ρ2 r4 + 4ρ r2 log(r)

r(1 + ρ r2)2
(3.17)

From (3.17) we find that

|∂r ψ1(r)| ≤ C r

1 + r4
, |∂r ψ2(r)| ≤ C

r
, r > 0. (3.18)

We set as right inverse for (3.13) the function

v1(r) = ψ1(r)

∫ ∞

r
ξ ψ2(ξ) q1(ξ) dξ + ψ2(r)

∫ r

0
ξ ψ1(ξ) q1(ξ) dξ

Using (3.18), we directly observe that ∂rv2(0) = 0 and it can be checked that

‖v1‖∗ ≤ C‖q1‖∞,β,σ

provided that β > 2.

With this discussion, we are now in position to invert the linear system (3.10)-(3.11). We collect
this information in the following lemma

Lemma 3.2.1. Assume σ ∈ (0, 1) and β > 2 and consider a vector function (g̃1, g̃2) satisfying that

‖g̃j‖∞,β,σ ≤ Cακ1
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for some small parameter α > 0 and some κ1 > 0. Then system (3.10)-(3.11) has a unique solution
(v1, v2) satisfying that

‖vj‖∗ ≤ C max
k=1,2

‖g̃k‖∞,β,σ, j = 1, 2.

Even more this solution turns out to be Lipschitz in the vector function (g̃1, g̃2), namely

‖vj − v̂j‖∗ ≤ C max
k=1,2

‖g̃k − ĝk‖∞,β,σ, j = 1, 2.

The proof of this lemma is straightforward from the previous comments and proceeding as in
section 2.4. Let us remark that in the case where g̃j , j = 1, 2, are nonlocal operator in (v1, v2)
having small Lipschitz character a direct application of Banach fixed point theorem will also lead
to the existence of a unique solution to (3.10)-(3.11).

3.3 Approximate solution to the projected problem

Now that we have described the location of the nodal set of our solution, we proceed to set up our
approximation. Consider a radially symmetric solution (q1, q2) to the system

∆ q1 + a0e
−
√

2 (q2−q1) = 0, ∆ q2 − a0e
−
√

2 (q2−q1) = 0, in R2.

where a0 > 0 is a positive constant to be determined. Recall from the previous section that
−q1 = q2 = q, and the function q is a solution to the Liouville equation

∆ q − a0e
−2
√

2 q = 0, in R2, q(0) = a > 0, ∂r q(0) = 0 (3.1)

given explicitly by

q(r, ρ) =
1

2
√

2
log

(√
2 a0

4 ρ

(
1 + ρ r2

)2
)
. (3.2)

We remark again that, for every α > 0, the functions

−
√

2

2
log

(
1

α

)
+ q1(αx′), =

√
2

2
log

(
1

α

)
+ q2(αx′), r > 0.

are also smooth radially symmetric solutions to (3.1)-(3.2).

Now, for α > 0 small, consider two smooth parameter functions v1, v2 satisfying that for j = 1, 2

‖vj‖∗ := ‖D2vj‖∞,2,σ + ‖(1 + |x′|)Dvj‖L∞(R2) + ‖ log(2 + |x′|)vj‖L∞(R2) ≤ Kατ1 (3.3)

for some τ1 ∈ (0, 2), where K > 0 and τ1 will be chosen later and independent of α > 0 small. Let
us consider again the functions

f1α(x′) = −
√

2

2
log

(
1

α

)
+ q1(αx′) + v1(αx′)
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f2α(x′) =

√
2

2
log

(
1

α

)
+ q2(αx′) + v2(αx′).

Proceeding as we in the proof of Theorem 2.1.1. we write

wj(x) := (−1)j−1w(z − fjα(x′)), x = (x′, z) ∈ R3

and we consider as local approximation the function

U0(x) = w1(x) + w2(x)− 1, x ∈ R3. (3.4)

Proceeding as in section 2.5, let us next consider sets

Aj :=

{
x = (x′, z) : |z − fjα(x′)| ≤ f2α(x′)− f1α(x′)

2

}
, j = 1, 2.

Writing z = t+ fjα(x′), we notice that Aj can be described as

Aj :=

{
x = (x′, t) : |t| ≤ f2α(x′)− f1α(x′)

2

}
, j = 1, 2.

Hence we can estate the following lemma regarding the error of this approximation in the set Aj .

Lemma 3.3.1. For l = 1, 2 and every x ∈ Al, x = (x′, t), we have that

(−1)l−1 S(U0) = −∆R2flα(x′)w′(t) + 6
(
1− w2(t)

)
e−
√

2t e−
√

2(f2α−f1α)

+ |∇ flα |2w′′(t)− ∆R2fjαw
′
j(t+ flα − fjα) − |∇(fjα − flα)|2w′′j (t+ flα − fjα)

− |∇ flα |2w′′(t+ flα − fjα) + Rl(αx
′, t, v1, v2, Dv1, Dv2) (3.5)

where Rl = Rl(αy, t, p, q) is smooth on its arguments and

|DpRl(αy, t, p, q)| + |DqRl(αy, t, p, q)| + |Rl(αy, t, p, q)| ≤ C α2+τ (1 + |αy|)−4e−ρ |t| (3.6)

for some τ > 0 small and some 0 < ρ <
√

2 and where

p = (v1, v2), q = (Dv1, Dv2).

The proof of this lemma follows the same lines of lemma (3.3.1), with no significant changes
and actually with easier computations of the laplacian, so we leave its verification to the reader.

Next step, consists on defining the global approximation to the solution. We simply consider
a smooth cut-off function β ∈ C∞c (R), such that β(t) = 1, for |t| ≤ 1/2 and β(t) = 0, for |t| ≤ 1.
Now, for α > 0 small we define the cut-off function and consider the cut-off function defined by

βα(x) = β(|z| − η

α
− 6
√

2 log(|αx′|+ 3), x = (x′, z) ∈ R3.

We see that βα is supported in a region that expands logarithmically in |αx′| and we consider as
global approximation the function

w(x) := βα(x)U0(x) + (1− βα(x))(−1). (3.7)
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We compute the new error as follows

S(w) = ∆w + F (w) = βα(x)S(U0) + E

where
E = 2∇βα∇U0 + ∆βα(U0 + 1) + F (βαU0 − (1− βα))− βαF (U0).

Due to the choice of βα(x) and the explicit form the term E has, the error created only takes into
account values of βα for x ∈ R3 in the region

|z| ≥ η

α
+ 4 ln(|αx′|)− 2, x = (x′, z) ∈ R3

and so, we get the following estimate for the term E

|Dx′ E| + |E| ≤ Ce− ηα (1 + |αx′|)−4.

We observe that the error E decays rapidly and is exponentially small in α > 0, so that its contri-
bution is negligible.

3.4 Outline of the Lyapunov-Schmidt Reduction

Since we want to measure how far is approximation (3.7) from being a genuine solution to our
problem, we need to find an appropriate functional setting to work with. In order to do so, let us
consider a weight function Wµ,c :=

∑2
j=1Wµ,c,j designed in the following way. First

Wµ,c,j(x
′, z) := (1 + |αx′|µ) ec|z−fα(x′)|, (x′, z) ∈ Aj

while in the lower part of R3 − (A1 ∪A2), we consider Wµ,c satisfying that

c (1 + |αx′|µ+2) ≤Wµ,c(x
′z) ≤ C (1 + |αx′|µ+2).

Observe in this case that |z| = dist(M1α, x). We ask for the same behavior in the upper part of
R3 − (A1 ∪A2) with the corresponding changes.

Hence, for φ an axially symmetric function, respect to the z-axis, and abusing notation already
introduce in the previous section we define the weighted norms

‖φ‖
C0,σ
µ,c (R3)

:= sup
x∈R3

Wµ,c(x) ‖φ‖C0,σ(B1(x)). (3.1)

‖φ‖∞,µ,c := ‖Wµ,c(x)φ‖L∞(R3). (3.2)

Some remarks are in order. Observe that the weight functionWµ,x(x), basically measures polynomial
decay in |αx′| and exponential decay along the z direction associated to each one of the surfaces
Mjα. Hence, it is clear that the norms defined in (3.1)-(3.2) also depend on α > 0, though this
dependence is not explicit in the definition.
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Next, let us recall that our goal is to find an axially symmetric solution to the problem

S(U) = ∆U + U(1− U2) = 0, in R2 × R

which is close to the function w defined in (3.7). A crucial observation we make is that, under
assumptions (3.5), directly from lemma (3.3.1) and the choice of the functional setting, the error
created by the function w has the size

‖S(w)‖
C0,σ
µ,c (R3)

≤ Cα2(1− τ0) (3.3)

where µ ∈ (0, 2], 0 < c <
√

2 and τ0 = c
2
√

2

We proceed as we did in section 2.6, without no further changes. In fact most of the developments
here, are a repetition of what has already done, with basically the same estimations. Hence, we
rather prefer to give an outline of the scheme.

Define for l = 1, 2 and n ∈ N, the cut off function for x = (x′, t+ flα) ∈ R2

ζ l,n (x) = β

(
|t| − 1

2

[
f2α(x′)− f1α(x′)

]
+ n

)
.

As before, we look for a solution to (3.1) of the form

U = ζ1,3(x)ϕ1 + ζ2,3(x)ϕ2 + ψ

so that we fall into a system of elliptic PDES for ϕ1, ϕ1 and ψ similar to (2.9)-(2.10).

The linear theory needed to solve this problem is a copy of the one sketched in section 2.7, for
the system

∂ttφl(x
′, t) + ∆R2φl(x

′, t) + F ′(w(t))φl(x
′, t) = g(x′, t) + cl(x

′)w′(t), ∈ R2 × R (3.4)

∆ψ(x)− 2ψ(x) = h(x), x ∈ R3 (3.5)

in the class of axially symmetric functions and in the topology induced by the norms defined in
(3.1)-(3.2). As we already saw, the Lyapunov-Schmidt reduction scheme is based upon the fact that
we can find right hand-sides to (3.4)-(3.5) so that the functions cl(x

′) = 0, l = 1, 2.

3.5 Solving the reduced problem

Let us recall that
w(x) := βα(x)U0(x) + (1− βα(x))(−1) (3.1)

where
U0(x) = w1(x) + w2(x)− 1, wj(x) := (−1)j−1w(zj − fjα(x′)), x ∈ R3 (3.2)

and
βα(x) = β(|z| − η

α
− 6
√

2 log(|αx′|+ 3), x = (x′, z) ∈ R3.

for a cut-off function β ∈ C∞c (R), such that β(t) = 1, for |t| ≤ 1/2 and β(t) = 0, for |t| ≤ 1.

We estate it in the following proposition, in order to collect estimates regarding (3.3).
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Proposition 7. Assume c ∈ (0,
√

2) and τ2 > 0 are fixed and satisfying that

τ2 ∈
(

c

2
√

2
, 1

)
.

Assume that the functions fjα satisfy condition (3.5). The there exists a constant C > 0 independent
of α > 0 such that

‖S(w)‖
C0,σ

2,c (R3)
≤ Cα2(1−τ2). (3.3)

and
‖S(w, v)− S(w, ṽ)‖

C0,σ
2,c (R3)

≤ Cα2(1−τ2)‖v − ṽ‖∗. (3.4)

where

‖v‖∗ :=
2∑

j=1

‖D2vj‖∞,2,λ + ‖(1 + |x|)Dvj‖L∞(R2) + ‖ log(2 + |x|)vj‖L∞(R2) (3.5)

Remark: This estimate does not use the fact that the vector function (f1, f2) is an exact
solution of the Toda system (3.1)-(3.2).

In what comes next, we derive the system that governs the location of the interfaces, namely a
system of PDE’s that will guarantee that

cj(x
′) = 0, j = 1, 2.

In order to determine this functions, let us multiply the equation (3.5) by ζl,2(x)wj and we integrate
in t to get that at main order

−
∫

R
S(w)ζj,2w(t)dt−O(α2+τ (1 + |αx′|)−3) = cj(x

′)
∫

R
w2
j ζj,2dt.

Hence using lemma 3.3.1, and setting

c∗ :=

∫

R
|w′(t)|2dt, a0 =

∫

R
(1− w2(t))w′(t)e−

√
2 tdt

we find that

cj(x
′) = −α2c∗∆R2fjα(x′) + (−1)j a0 e

−
√

2(f2α−f1α) +O(α2+τ (1 + |αx′|)−3).

It is not hard to check from 3.3.1 that the error involved in this system has Lipschitz constant of
order O(α2+τ ). Hence we see that making (c1(x′), c2(x′)) = (0, 0) is equivalent to a system of the
form

∆ f1 + a0e
−
√

2 (f2−f1) = G1(v1, v2), in R2 (3.6)

∆ f2 − a0e
−
√

2 (f2−f1) = G2(v1, v2), in R2. (3.7)

With similar estimations to those in proposition (5) we find that the functions Gj satisfy the
following estimates

‖Gj(v1, v2)‖∞,σ,3 ≤ Kακ1

‖Gj(v1, v2)−Gj(ṽ1, ṽ2)‖∞,σ,3 ≤ Cακ1‖(v1, v2)− (ṽ1, ṽ2)‖∗
As mentioned before a direct application of Banach Fixed point theorem finishes the proof.
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Chapter 4

Two ended solution for the
Inhomogeneous Allen-Cahn equation
in R2

In this chapter we consider the equation

α2 div(a(x)∇u(x)) + a(x)f(u) = 0, in R2, f(u) = u(1− u2) (4.1)

where the function a(x) is a smooth positive function, and we construct a new family of solutions,
whose zero level set has, outside any large ball, two asymptotically half lines as connected compo-
nents. As far as our knowledge goes, little is known about entire solutions to (4.1) in the case that
a(x) is not identically constant, having a single transition close to a noncompact curve.

4.1 Statement of the main result

In this part, we will consider a smooth noncompact simple curve Γ = γ(R), where γ : R→ Γ ⊂ R2

is parameterized by arc-length. We denote by ν : Γ → R2 the choice of the normal vector to Γ, so
that the curve is positively oriented. Points x ∈ R2 that are δ−close to this curve, with δ small, can
be represented using Fermi coordinates as follows

x = γ(s) + z · ν(s) =: X(s, z), |z| < δ, s ∈ R.

so that, the map x 7→ (s, z) defines a local diffeomorphism. Any smooth curve δ−close to Γ in a
Cm−topology can be parameterized by

γh(s) = γ(s) + h(s)ν(s)
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where h is a small Cm−function. The weighted length of Γh is given by

lΓ(h) :=

∫

Γh

a(x)d~r =

∫ +∞

−∞
a (γh(s)) |γ̇h(s)|ds

=

∫ +∞

−∞
a(s, h(s))|γ̇ + hν̇ + h′ν|ds.

Since |γ̇| = 1 and ν̇(s) = k(s)γ̇(s), where k is the signed curvature of Γ, we find that

lh(h) =

∫ +∞

−∞
a(s, h(s))[(1 + kh)2 + |h′|2]ds.

We say that Γ is a stationary curve respect to the function a(x), if and only if,

l′Γ[h] =

∫

Γh

(∂za(s, 0) + a(s, 0)k(s))h(s)ds = 0, ∀h ∈ C∞c (R).

This is equivalent to say that the curve Γ satisfies

∂za(s, 0) = k(s)a(s, 0), s ∈ R. (4.1)

Regarding the stability properties of the stationary curve Γ and the second variation of the length
functional lΓ,

l′′Γ(h, h) =

∫ +∞

−∞

(
a(s, 0)|h′(s)|2 + [∂zza(s, 0)− 2k2(s)]h2(s)

)
ds

we have the Jacobi operator of Γ, corresponding to the linear differential operator

Ja,Γ(h) = h′′(s) +
∂sa(s, 0)

a(s, 0)
h′(s)−

[
∂zza(s, 0)− 2k2(s)

]
h(s). (4.2)

We say that the stationary curve Γ is also nondegenerate respect to the potential a(x), if and only
if, the bounded kernel of Ja,Γ is the trivial one. The nondegeneracy condition basically implies that
Ja,Γ has an appropriate right inverse, so that the curve is isolated in a properly chosen topology.

In order to state the main result of this chapter, let us first list our set of assumptions on the
function a(x) and the curve Γ. As for the function a : R2 → R, we assume that

a ∈ C5(R2), 0 < m < a(x) ≤M (4.3)

for some positive constants m,M . Assume also that in the local Fermi coordinates

|kΓ(s)|+ |k′Γ(s)|+ |k′′Γ(s)| ≤ C

(1 + |s|)1+α
(4.4)

for some α > 0. In particular, condition (4.4) implies that

γ̇± := lim
s→±∞

γ̇(s)

are well defined directions in R2. We must assume further the non-parallelism condition

− 1 ≤ 〈γ̇+, γ̇−〉 < 1. (4.5)
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From condition (4.5), we have that the mapping x = X(s, z) provides local coordinates in a region
of the form

Nδ := {x = X(s, z) : |z| < δ + c0|s|}
where c0 > 0 is a small constant. Finally, abusing notation, by setting a(s, z) = a(X(s, z)), we
assume that

|∇s,za(s, z)| ≤ C

(1 + |s|)1+α
, |D2

s,z a(s, z)| ≤ C

(1 + |s|)2+α
(4.6)

where α > 0 is as in (4.4). Next, we proceed to state the main result.

Theorem 4.1.1. Assume that a(x) is a smooth potential and let Γ be a smooth stationary and
nondegenerate simple curve respect to the length functional

∫
Γ a(x). Assume also that conditions

(4.3)-(4.6) are satisfied. Then for any α > 0 small enough, there exists a smooth bounded solution
uα to the inhomogeneous Allen-Cahn equation (4.1), such that

uα(x) = w

(
z − h(s)

α

)
+ O(α2), for x = X(s, z), |z| < δ (4.7)

where the function h satisfies
‖h‖C1(R) ≤ Cα.

This solution converges to ±1, away from Γ, namely

u2
α(x)→ ±1, dist(Γ, x)→∞.

Remark 4.1.1: Throughout the proof of this theorem, we obtain an explicit description for uα
and its derivatives. We apply infinite dimensional reduction method in the spirit of the pioneering
work due to Floer and Weinstein [20]. The presentation follows the same structure as in Chapter 2.
Section 4.2 deals with the geometrical setting need to set up the proof of theorem 4.1.1. Section 4.3
is devoted to find a good approximation of a solution to (4.1). Next, we sketch the proof of theorem
4.1.1 in section 4.4, while leaving complete details for subsequent sections. In section 4.5 we present
the invertibility theory for the Jacobi operator of the curve Γ and we give some examples for the
function a(x) and the curve Γ, where our result applies.

4.2 Geometrical background

In this section we write,in some appropriate coordinate system, the differential operator

α2∆x̄u+ α2∇x̄a
a
· ∇x̄u (4.1)

involved in equation (4.1). First, observe that the obvious scaling x̄ = αx and setting v(x) := u(αx),
transforms (4.1) into

∆xv + α
∇x̄a
a
· ∇xv (4.2)
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Let us consider a large dilation of the curve Γ, namely Γα := α−1Γ, for α > 0 small. Next, we
introduce local translated Fermi coordinates near Γα

Xα,h(s, t) = Xα(s, t+ h(αs))

=
1

α
γ(αs) + (t + h(αs)) ν(αs) (4.3)

where h ∈ C2(R) is a bounded function. From assumption (4.5), we see that the mapping Xα,h(s, t)
gives local coordinates in the region

Nα,h =

{
x = Xα,h(s, t) ∈ R2 : |t+ h(αs)| < δ

α
+ c0|s|

}

which is a dilated tubular neighborhood around Γα translated in h.

Now, we give an expression for the euclidean laplacian in terms of the coordinates Xα,h. The
proof goes as in section 2.2, so we leave details for the reader.

Lemma 4.2.1. On the open neighborhood Nα,h of Γα, the euclidean laplacian has the following
expression when is computed in the coordinate x = Xα,h(s, t) reads as

∆Xα,h = ∂tt + ∂ss − 2αh′(αs)∂st − α2h′′(αs)∂t + α2|h′(αs)|2∂tt

−α[k(αs) + α(t+ h(αs))k2(αs)] · ∂t +Dα,h(s, t) (4.4)

where

Dα,h(s, t) := α(t+ h)A0(αs, α(t+ h))[∂ss − 2αh′(αs)∂ts − α2h′′(αs)∂t + α2|h′(αs)|2∂tt]
+ α2(t+ h)B0(αs, α(t+ h))[∂s − αh′(αs)∂t]
+ α3(t+ h)2C0(αs, α(t+ h))∂t (4.5)

for which

A0(αs, α[t+ h(αs)]) = 2k(αs) + αO(|[t+ h(αs)]k2(αs)|) (4.6)

B0(αs, α[t+ h(αs)]) = k̇(αs) + αO(|(t+ h(αs))k̇(αs) · k2(αs)|) (4.7)

C0(αs, α[t+ h(αs)]) = k3(αs) + αO(|(t+ h(αs))k4(αs)|) (4.8)

are smooth functions and these relations can be derived.

Next, we derive an expression for the second term in equation (4.2), in terms of the Fermi
coordinates. We collect the computations in the following lemma, whose proof is also left to the
reader since it is a straight forward calculation using the chain rule.

Lemma 4.2.2. In the open neighborhood Nα,h of Γα, we have the validity of the following expression

α
∇Xa
a
· ∇Xα,h = α

[
∂ta

a
(αs, 0) + α(t+ h(αs))

(
∂tta

a
(αs, 0)−

∣∣∣∣
∂ta

a
(αs, 0)

∣∣∣∣
2
)]

∂t
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+ α
∂sa

a
(αs, 0)[∂s − αh′(αs) · ∂t] + Eα,h(s, t)

where

Eα,h(s, t) := α2(t+ h(αs))D0(αs, α(t+ h))[∂s − αh′(αs) · ∂t]

+ α3(t+ h(αs))2F0(αs, α(t+ h))∂t (4.9)

and for which the next functions are smooth

D0(αs, α(t+ h)) = ∂t

[
∂sa

a

]
(αs, 0) + αO

(
(t+ h(αs))∂tt

[
∂ta

a

])

+A0(αs, α(t+ h)) · ∂sa
a

(αs, α(t+ h)) (4.10)

F0(αs, α(t+ h)) =
1

2
∂tt

[
∂ta

a

]
(αs, 0) + αO

(
(t+ h(αs))∂ttt

[
∂ta

a

])
(4.11)

and where A0(αs, α(t+ h)) given by (4.6). Further, these relations can be differentiated.

Using lemmas 4.2.1 and 4.2.2, the fact that the curve Γ satisfies condition (4.1), we can write
expression (4.2) in coordinates x = Xα,h(s, t) as

∆Xα,h + α
∇Xa(αx)

a(αx)
· ∇Xα,h =

∂tt + ∂ss + α
∂sa

a
(αs, 0)∂s

−α2

{
h′′(αs) +

∂sa

a
(αs, 0)h′(αs) +

[
2 k2(αs)− ∂tta

a
(αs, 0)

]
h(αs)

}
∂t

−α2

[
k2(αs)− ∂tta

a
(αs, 0) +

∣∣∣∣
∂ta

a
(αs, 0)

∣∣∣∣
2
]
t ∂t − 2αh′(αs)∂st + α2|h′(αs)|2∂tt

+α(t+ h(αs))A0(αs, α(t+ h))[∂ss − 2αh′(αs)∂ts − α2h′′(αs)∂t + α2|h′(αs)|2∂tt
+ α2 (t+ h(αs))B̃0(αs, α(t+ h))[∂s − αh′(αs)∂t] + α3(t+ h(αs))2C̃0(αs, α(t+ h))∂t (4.12)

where
B̃0(αs, α(t+ h)) := B0(αs, α(t+ h)) +D0(αs, α(t+ h)) (4.13)

C̃0(αs, α(t+ h)) := C0(αs, α(t+ h)) + F0(αs, α(t+ h)). (4.14)

4.3 Approximation of the solution and preliminary dis-

cussion

To begin with, let us consider the parameter function h ∈ C2(R), for which we assume further
h = h(s) the apriori estimate

‖h‖
C2,λ

2+α,∗(R)
:= ‖h‖L∞(R) +‖(1 + | s |)1+αh′‖L∞(R) + sup

s∈R
(1 + | s |)2+α‖h′′‖C0,λ(s−1,s+1) ≤ Kα (4.1)
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for a certain constant K > 0 that will be chosen later, but independent of α > 0.

Let us consider w(t), the solution to the ODE

w′′(t) + w(t)(1− w2(t)) = 0, w′(t) > 0, w(±∞) = ±1.

So, in the region Nα,h, we choose as first approximate for a solution to (4.1), the function

u0(x) := w(z − h(αs)) = w(t), x = Xα,h(s, t) ∈ Nα,h (4.2)

where z = t+ h(αs) designates the normal coordinate to Γ. Setting

S(v) := ∆xv + α
∇x̄a
a
∇xv + v(1− v2) = 0, in R2 (4.3)

and using expression (4.12), we compute the error S(u0) in the region Nα,h to find that

S(u0) = −α2Ja[h](αs)w′(t)− α2

[
2k2(αs) − ∂tta

a
(αs, 0)

]
tw′(t) + α2|h′(αs)|2w′′(t)

+ α(t+ h(αs))A0(αs, α(t+ h))[−α2h′′(αs)w′(t) + α2|h′(αs)|2w′′(t)]

+ α2(t+ h(αs))B̃0(αs, α(t+ h))
(
−αh′(αs)w′(t)

)

+ α3(t+ h(αs))2C̃0(αs, α(t+ h))w′(t) (4.4)

with A0, B0, C̃0 are given in (4.6)-(4.13)- (4.14), respectively.

Now, for every fixed s ∈ R, let us consider the L2-projection, given by

Π(s) :=

∫ +∞

−∞
S(u0)(s, t)w′(t)dt

where for simplicity we are assuming that coordinates are defined for all t, since the difference with
the integration taken in all the actual domain for t produces only exponentially small terms. From
(4.4), we observe that

Π(αs) = −α2Ja[h](αs)

∫

R
|w′(t)|2dt

−α3

∫

R
(t+ h)A0(αs, α(t+ h))

[
h′′(αs) |w′(t)|2 − |h′(αs)|2w′′(t)w′(t)

]
dt

− α3

∫

R

[
(t+ h)B̃0(αs, α(t+ h))h′(αs) − (t+ h)2C̃0(αs, α(t+ h))

]
|w′(t)|2dt (4.5)

where we have used that
∫ +∞
−∞ t|w′(t)|2dt = 0,

∫ +∞
−∞ w′′(t)w′(t)dt = 0, to get rid of the terms of

order α2.

Making this projection equal to zero is equivalent to the nonlinear differential equation for h

Ja,Γ[h] = h′′(s) +
∂sa(s, 0)

a(s, 0)
h′(s)−Q(s)h(s) = G0[h] , ∀s ∈ R (4.6)
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where we have set

Q(s) =
∂tta(s, 0)

a(s, 0)
− 2k2(s)

and G0 consists in the remaining terms of (4.5). G0 is easily checked to be a Lipschitz in h, with
small Lipschitz constant. Here is where the nondegeneracy condition on the curve Γ makes its
entrance, since we need to invert the operator Ja,Γ, in such way that equation (4.6) can be set as a
fixed problem for a contraction mapping of a ball of the form (4.1).

It will be necessary to pay attention to the terms

α2

[
∂tta(s, 0)

a(s, 0)
− 2k2(s)

]
tw′(t), α3C0(αs, α[t+ h(αs)])w′(t) (4.7)

since they are involved in the size of S(u0) up to O(α2) and because the solvability of the nonlinear
Jacobi equation (4.6) depends strongly on the fact that the error created by our choice of the
approximation, is sufficiently small in α > 0. Let us mention that the second term in (4.7) must be
improve only due to technical reason concerning our choice of the functional analytical scheme. We
improve our choice of the approximation throughout the following argument. Let us consider the
ODE

ψ′′0(t) + f ′(w(t))ψ0(t) = tw′(t)

which has a unique bounded solution with ψ0(0) = 0, given explicitly by the variation of parameters
formula

ψ0(t) = w′(t)
∫ t

0
|w′(s)|−2ds ·

∫ t

−∞
s|w′(s)|2ds.

Since
∫

R s|w′(s)|2ds = 0, the function ψ0(s) satisfies that ψ0(t) ∼ e−
√

2|t| as |t| → ∞.

Analogously, consider g(t) := t2w′(t) and note that we can write

g = Cgw
′ + g⊥

where g⊥ denotes the orthogonal projection of g onto w′ in L2(R), given by

g⊥(t) := t2w′(t)−
(∫

R
τ2|w′(τ)|2dτ/

∫

R
|w′(τ)|2dτ

)
w′(t).

Thus by setting

ψ1(t) = w′(t)
∫ t

0
|w′(s)|−2ds ·

∫ t

−∞
g⊥(t) · w′(s)ds

this formula not only provides a bounded solution of ψ′′1(t)+f ′(w(t))ψ1(t) = g⊥(t), since
∫

R g⊥(t)w′(t)dt =

0, but also provides a solution with exponential decay ψ1(t) ∼ e−
√

2|t| as |t| → +∞, given that g⊥
exhibits this exponential decay. Hence, we choose as new approximation, the function

u1(s, t) := u0(s, t) + ϕ1(s, t) = w(t) + ϕ1(s, t) (4.8)

where

ϕ1(s, t) := α2

[
2k2(αs)− ∂tta(αs, 0)

a(αs, 0)

]
ψ0(t)

−α3

[
k3(αs) +

1

2
∂tt

(
∂ta

a

)
(αs, 0)

]
ψ1(t) (4.9)
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which can be easily seen to behave like ϕ1(s, t) = O(α2(1+|αs|)−2−αe−
√

2|t|), thanks to assumptions
(4.4)-(4.6) we have made on the curve Γ and the potential a, and to the previous observation on
ψ0(t), ψ1(t).

Now, to analyze the error terms created by the Allen-Cahn equation (4.3) on the second ap-
proximation u1(s, t), note that

S(u0 + ϕ1) = S(u0) + ∆xϕ1 + α
∇x̄a
a
∇xϕ1 + f ′(u0)ϕ1 + +N0(ϕ1) (4.10)

where

N0(ϕ1) = f(u0 + ϕ1)− f(u0)− f ′(u0)ϕ1 (4.11)

From the definition of ϕ1, we find that

S(u1) = S(u0) + α2

[
2k2(αs)− ∂tta(αs, 0)

a(αs, 0)

]
tw′(t)

−α3

[
k3(αs) +

1

2
∂tt

(
∂ta

a

)
(αs, 0)

]
g⊥(t)

+

[
∆x + α

∇x̄a
a
∇x − ∂tt

]
ϕ1 + N0(ϕ1). (4.12)

Analyzing the new error created by ϕ1, we readily check using the expansions for the differential
operators (4.4)-(4.9) and the definition (4.11), that

[
∆x + α

∇x̄a
a
∇x − ∂tt

]
ϕ1 + N0(ϕ1) = −α4Q′′(αs)ψ0) + α4

[
Ja[h](αs)− tQ(αs)

]
Q(αs)ψ′0

− α4

(
∂sa(αs, 0)

a(αs, 0)
Q′(αs)ψ0 + 2h′1(−Q′(αs)ψ′0) + |h′1|2Q(αs)ψ′′0

)

+ O(α4)w(t)(−Q(αs)ψ0)2 + O(α5(1 + |αs|)−4−αe−
√

2|t|) (4.13)

where we recall the convention

Q(s) =
∂tta(s, 0)

a(s, 0)
− 2k2(s), s ∈ R. (4.14)

and have used that the error terms in the differential operator evaluated in ϕ1, associated to
A0(αs, α(t+ h)), B̃0(αs, α(t+ h)), C̃0(αs, α(t+ h)) behave like O(α5(1 + |αs|)−4−2αe−

√
2|t|), given

that h has a bounded size is αs by (4.1), and since ϕ1(s, t) has smooth dependence in αs with size

O(α2(1 + |αs|)−2−αe−
√

2|t|).

Therefore, the error (4.13) is can be written as
[
∆x + α

∇x̄a
a
∇x − ∂tt

]
ϕ1 +N0(ϕ1) = α4Q(αs)ψ′0(t)h′′(αs) +R0(αs, t, h) (4.15)

where the function R0 = R0(αs, t, h(αs), h′(αs)) has Lipschitz dependence in variables h, h′ on the
ball

‖h‖L∞(R) + ‖(1 + |s|1+α)h′‖L∞(R) ≤ Kα.
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Moreover, under our set of assumptions and the observation made on ψ0, it turns out that for any
λ ∈ (0, 1):

‖R0(αs, t, h)‖C0,λ(B1(s,t)) ≤ Cα4(1 + |αs|)−4−αe−
√

2|t|.

With this remarks, we can write the error of u1, in (4.12) as

S(u1) = −α2Ja[h](αs)w′(t) + α4Q(αs)ψ′0(t)h′′(αs)

− α3(t+ h)A0(αs, α(t+ h))h′′(αs)w′(t) + R1(αs, t, h(αs), h′(αs)) (4.16)

where

R1 = α2|h′|2w′′(t) +R0(αs, t) + α3(t+ h)A0(αs, α(t+ h))|h′|2w′′(t)

− α3(t+ h)B̃0(αs, α(t+ h))h′w′(t) + α4(t+ h)O

(
∂ttt

(
∂ta

a

)
+ k4

)
t2w′(t). (4.17)

Furthermore, R1 = R1(αs, t, h(αs), h′(αs)) satisfies that

|∂ıR1(αs, t, ı, )|+ |∂R1(αs, t, ı, )|+ |R1(αs, t, ı, )| ≤ Cα4(1 + |αs|)−2−2αe−
√

2|t|

with the constant C above depending on the number K of condition (4.1), but independent of α > 0.

We can summarize this discussion by saying that

S(u1) + α2Ja[h](αs)w′(t) = O(α4(1 + |αs|)−2−αe−
√

2|t|), x = Xα,h(s, t) ∈ Nα,h. (4.18)

The approximation u1(x) in (4.8) will be sufficient for our purposes. However, it is defined only in
the region

Nα,h =

{
x = Xα,h(s, t) ∈ R2/ |t+ h(αs)| < δ

α
+ c0|s| =: ρα(s)

}
(4.19)

Since we are assuming that Γ is a connected and simple and that it also possesses two ends departing
from each other, it follows that R2 \Γα consists of precisely two components S+ and S−. Let us use
the convention that να points towards S+. The previous comments allow us to define in R2 \Γα the
function

H(x) :=

{
+1 if x ∈ S+

−1 if x ∈ S− (4.20)

Let us consider η(s) a smooth cut-off function with η(s) = 1 for s < 1 and = 0 for s > 2, and define

ζ3(x) :=

{
η(|t+ h(αs)| − ρα(s) + 3) if x ∈ Nα,h

0 if x /∈ Nα,h
(4.21)

where ρα is defined in (4.19).

Next, we consider as global approximation the function w(x) defined as

w := ζ3 · u1 + (1− ζ3) · H (4.22)
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where u1(x) is given by (4.8). Using that H(α−1 x̄) is an exact solution to (4.1) in R2 \ Γ, the error
of global approximation can be computed as

S(w) = ∆xw + α
∇x̄a
a
∇xw + f(w) = ζ3S(u1) + E (4.23)

where S(u1) is computed in (4.16) and the term E is given by

E = ∆xζ3(u1 − H) + 2∇xζ3∇x(u1 − H) + (u1 − H)
∇x̄a
a
∇xζ3

+ f
(
ζ3u1 + (1− ζ3)H

)
− ζ3f(u1) (4.24)

It is worth to mention that the from the form of the neighborhood Nα,h in (4.19), and from the
choice of u1, one can readily check that for every x = Xα,h ∈ Nα,h

|u1(x)− H(x)| ≤ e−
√

2|t+h(αs)|, ρα − 2 < |t+ h(αs)| < ρα − 1

and therefore
|E| ≤ C e−

√
2|t+h(αs)| ≤ Ce−

√
2δ/α · e−c|s|e−σ|t|

for some 0 < σ <
√

2 and c > 0 small.

4.4 The proof of Theorem 4.1.1

In this section we sketch the proof of theorem 4.1.1 leaving the detailed proofs of every proposition
mentioned here for subsequent sections.

We look for a solution u of the inhomogeneous Allen-Cahn equation (4.2) in the form

u = w + ϕ (4.1)

where w is the global approximation defined in (4.22) and ϕ is small in some suitable sense. We
find that ϕ must solve the following nonlinear equation

∆xϕ+ α
∇x̄a
a
∇xϕ+ f ′(w)ϕ = −S(w) − N1(ϕ) (4.2)

where

S(w) := ∆xw + α
∇x̄a
a
∇xw + f(w) (4.3)

N1(ϕ) := f(w + ϕ)− f(w)− f ′(w)ϕ (4.4)

We introduce several norms that will allow us to set up an appropriate functional scheme to solve
(4.2). Let us consider η(s), a cut-off function with η(s) = 1 for s < 1 and η = 0 for s > 2, we define

ζn(x) :=

{
η (|t+ h(αs)| − ρα(s) + n) if x ∈ Nα,h

0 if x /∈ Nα,h
(4.5)
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where ρα and Nα,h are set in (4.19). Let us consider λ ∈ (0, 1), b1, b2 > 0 fixed and satisfying that
b21 + b22 < (

√
2− τ)/2 for τ > 0. Define the weight function K(x), for x = (x1, x2), as follows

K(x) := ζ2(x)
[
eσ|t|/2(1 + |αs|)µ

]
+ (1− ζ2(x))eb1|x1|+b2|x2|. (4.6)

For a function g(x) defined in R2, we set the norms

‖g‖L∞K (R2) := sup
x∈R2

K(x)‖g‖L∞(B1(x)) (4.7)

‖g‖
C0,λ
K (R2)

:= sup
x∈R2

K(x)‖g‖C0,λ(B1(x)) (4.8)

On the other hand, consider α > 0 and certain µ ≥ 0, 0 < σ <
√

2. For functions g(s, t) and φ(s, t)
defined in whole R× R, we set

‖g‖
C0,λ
µ,σ(R2)

:= sup
(s,t)∈R×R

(1 + |αs|)µeσ|t|‖g‖C0,λ(B1(s,t)) (4.9)

‖φ‖
C2,λ
µ,σ(R2)

:= ‖D2φ‖
C0,λ
µ,σ(R2)

+ ‖Dφ‖L∞µ,σ(R2) + ‖φ‖L∞µ,σ(R2) (4.10)

Finally, given α > 0 and λ ∈ (0, 1), consider,for a function f defined in R, the norm

‖f‖
C0,λ

2+α,∗(R)
:= sup

s∈R
(1 + |s|)2+α‖f‖C0,λ(s−1,s+1). (4.11)

Recall also that the parameter function h(s) satisfies for some λ ∈ (0, 1)

‖h‖
C2,λ

2+α,∗(R)
≤ Kα

where

‖h‖
C2,λ

2+α,∗(R)
:= ‖h‖L∞(R) + ‖(1 + |s|)1+αh′‖L∞(R) + ‖h′′‖

C0,λ
2+α,∗(R)

. (4.12)

In order to solve (4.2), let us look for a solution ϕ of problem, having the form

ϕ(x) = ζ3(x)φ(s, t) + ψ(x), for x ∈ R2 (4.13)

where φ is defined in Γα×R and ψ is defined in entire R2. Using that ζ3 · ζ4 = ζ4, we get that (4.2)
reads as

S(w + ϕ) = ζ3

[
∆xφ+ α

∇x̄a
a
∇xφ+ f ′(u1)φ

]

+ ζ4

[
[f ′(u1)− f ′(H(t))]ψ +N1(ψ + φ) + S(u1)

]

+∆xψ + α
∇x̄a
a
∇xψ + [(1− ζ4)f ′(u1) + ζ4f

′(H(t))]ψ + (1− ζ3)S(w)

+(1− ζ4)N1(ψ + ζ3φ) + 2∇xζ3∇xφ+ φ∆xζ3 + αφ
∇x̄a
a
∇xζ3

where H(t) is some increasing smooth function satisfying

H(t) =

{
+1 if t > 1
−1 if t < −1.

(4.14)
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In this way, we will have constructed a solution ϕ = ζ3φ+ψ to problem (4.2) if we require that the
pair (φ, ψ) satisfies the coupled system below

∆xφ+ α
∇x̄a
a
∇xφ+ f ′(u1)φ

+ ζ4[f ′(u1)− f ′(H(t))]ψ + ζ4N1(ψ + φ) + S(u1) = 0 for |t| < δ

α
(4.15)

∆xψ + α
∇x̄a
a
∇xψ + [(1− ζ4)f ′(u1) + ζ4f

′(H(t))]ψ + (1− ζ3)S(w)

+ (1− ζ4)N1(ψ + ζ3φ) + 2∇xζ3∇xφ+ φ∆xζ3 + αφ
∇x̄a
a
∇xζ3 = 0, in R2 (4.16)

Next, we will extend equation (4.15) to entire R× R. To do so, let us set

B(φ) = ζ0B̃0(φ) := ζ0[∆x − ∂tt − ∂ss]φ (4.17)

where ∆x is expressed in local coordinates, using formula (4.4), and B(φ) is understood to be zero
for |t+ h(αs)| > ρα(s, t)− 2. Thus equation (4.15) is extended as

∂ttφ+∂ssφ+ α
∇x̄a
a
∇xφ+ B(φ) + f ′(w(t))φ = −S̃(u1)

−
{

[f ′(u1)− f ′(w)]φ+ ζ4[f ′(u1)− f ′(H(t))]ψ + ζ4N1(ψ + φ)
}
, in R× R (4.18)

where we have denoted

S̃(u1)(s, t) = −α2Ja[h](αs)w′(t) + α4Q(αs)ψ′0(t) · h′′(αs)

+ ζ0

{
α3(t+ h)A0(αs, α(t+ h))h′′(αs) · w′′(t) +R1

}
. (4.19)

Recall from (4.17) that
R1 = R1(αs, t, h(αs), h′(αs))

satisfies

|∂ıR1(αs, t, ı, )|+ |∂R1(αs, t, ı, )|+ |R1(αs, t, ı, )| ≤ Cα4(1 + |αs|)−2−2αe−
√

2|t|. (4.20)

We notice thatS̃(u1) coincides with S(u1) in the region where ζ0 ≡ 1, while outside the support of
ζ0 the terms of S(u1) which are not defined for all t, are cut off.

To solve the resulting system (4.16)-(4.18), we focus first on solving equation (4.16) in ψ for a
fixed and small φ. We make ue of the important observation that the term [(1−ζ4)f ′(u1)+ζ4f

′(H)],
is uniformly negative and so the operator in (4.16) is qualitatively similar to ∆x +α∇x̄a/a ·∇x− 2.
A direct application of the contraction mapping principle lead us to the existence of a solution
ψ = Ψ(φ), according to the next proposition whose detailed proof is carried out in Section 4.5.
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Proposition 8. Let λ ∈ (0, 1), σ ∈ (0,
√

2), µ ∈ (0, 2+α). There is α0 > 0, such that for any small
α ∈ (0, α0) the following holds. Given φ with ‖φ‖

C2,λ
µ,σ(R2)

≤ 1, there is a unique solution ψ = Ψ(φ)

to equation (4.16) with

‖ψ‖X := ‖D2ψ‖
C0,λ
K (R2)

+ ‖Dψ‖L∞K (R2) + ‖ψ‖L∞K (R2) ≤ Ce−σδ/2α (4.21)

Besides, Ψ satisfies the Lipschitz condition

‖Ψ(φ1)−Ψ(φ2)‖X ≤ Ce−σδ/2α‖φ1 − φ2‖C2,λ
µ,σ(R2)

(4.22)

where the norms L∞K , C
0,λ
K , C2,λ

µ,σ are defined in (4.7)-(4.8)-(4.10).

Using proposition 8, we solve (4.18) replacing ψ with the nonlocal operator ψ = Ψ(φ). Setting

N(φ) := B(φ) + α
∇x̄a
a
∇xφ+ [f ′(u1)− f ′(w)]φ

+ ζ4[f ′(u1)− f ′(H(t))]Ψ(φ) + ζ4N1(Ψ(φ) + φ) (4.23)

our problem is reduced to find a solution φ to the following nonlinear, nonlocal problem

∂ttφ+ ∂ssφ+ f ′(w)φ = −S̃(u1)− N(φ) in R× R. (4.24)

Before solving (4.24), we consider the problem of finding a (φ, c) a solution to the following nonlinear
projected problem





∂ttφ+ ∂ssφ+ f ′(w)φ = −S̃(u1)− N(φ) + c(s)w′(t) in R× R
∫

R
φ(s, t)w′(t)dt = 0, ∀s ∈ R.

(4.25)

Solving problem (4.25) amounts to eliminate the part of the right hand side in (4.24), that do not
contribute to the projections onto w′(t), namely

∫
R[S̃(u1) +N(φ)]w′(t)dt. Since, we have that

‖S̃(u1) + α2Ja[h](αs) · w′(t)‖
C0,λ
µ,σ(R2)

≤ Cα4 (4.26)

and due to the fact that N(φ) defines a contraction within a ball centered at zero with radius O(α4)
in norm C1, we conclude the existence of a unique small solution of problem (4.25) whose size
is O(α4) in this norm. This solution φ turns out to define an operator in h, namely φ = Φ(h),
which exhibits a Lipschitz character in norms ‖ · ‖

C2,λ
µ,σ(R2)

. We collect the discussion in the following

proposition.

Proposition 9. Given λ ∈ (0, 1), µ ∈ (0, 2 + α] and σ ∈ (0,
√

2), there exists a constant K > 0
such that the nonlinear projected problem (4.25) has a unique solution φ = Φ(h) with

‖φ‖
C2,λ
µ,σ(R2)

≤ Kα4. (4.27)

Besides Φ has small a Lipschitz dependence on h satisfying condition (4.1), in the sense

‖Φ(h1)− Φ(h2)‖
C2,λ
µ,σ(R2)

≤ Cα3‖h1 − h2‖C2,λ
µ,∗(R)

(4.28)

for any h1, h2 ∈ C2,λ
loc (R) with ‖hi‖C2,λ

µ,∗(R)
≤ Kα.
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The proof of this proposition is left to section 4.5, where a complete study of the linear theory
needed to solve is discussed.

In order to conclude the proof of Theorem 4.1.1, we have to adjust the parameter function h so
that the nonlocal term

c(s)

∫

R
|w′(t)|2dt =

∫

R
S̃(u1)(αs, t)w′(t)dt+

∫

R
N(Φ(h))(s, t)w′(t)dt (4.29)

becomes identically zero, and consequently we obtain a genuine solution to equation (4.1). Setting
c∗ :=

∫
R |w′(t)|2dt, using expression (4.19), and carrying out the same computation we did in (4.5),

we obtain that
∫

R
S̃(u1)(αs, t)w′(t)dt = −c∗α2Ja[h](αs) + c∗α2G1(h)(αs) (4.30)

where

c∗G1(h)(αs) := αh′′(αs)
∫

R
ζ0(t+ h)A0(αs, α(t+ h))w′′(t)w′(t)dt

+ α2Q(αs)h′′(αs)
∫

R
ψ′0(t)w′(t)dt+ α−2

∫

R
ζ0 R1(αs, t, h, h′)w′(t)dt (4.31)

and we recall that R1 is of size O(α4) in the sense of (4.20). Thus setting

c∗G2(h)(αs) := α−2

∫

R
N(Φ(h))(s, t)w′(t)dt, G(h)(αs) := G1(h)(αs) +G2(h)(αs) (4.32)

it turns out that equation (4.29) is equivalent to

c(s) · c∗ = −c∗α2Ja,Γ[h](αs) + c∗α2G1(h)(αs) + c∗α2G2(h)(αs)

Therefore the condition c(s) = 0 is equivalent to the following nonlinear problem on h

Ja,Γ[h](αs) = h′′(αs) +
∂sa(αs, 0)

a(αs, 0)
h′(αs)−Q(αs)h(αs) = G[h](αs), in R (4.33)

Consequently, we will have proved Theorem 4.1.1, if we find a function h, solving equation (4.33).

Hence, we need to devise a corresponding solvability theory for the linear problem

Ja[h](s) = f(s), in R (4.34)

and we look for suitable conditions on the curve and on the potential a, that guarantees the property
already stated. The next result addresses this matter.

Proposition 10. Given α > 0, λ ∈ (0, 1), and a function f with ‖f‖
C0,λ

2+α,∗(R)
<∞, assume that Γ

is a smooth curve satisfying (4.1). If, Γ is nondegenerate respect to the potential a and conditions
4.3- hold, then there exists a unique bounded solution h of problem (4.34), and exists a positive
constant C = C(a,Γ, α) such that

‖h‖
C2,λ

2+α,∗(R)
≤ C‖f‖

C0,λ
2+α,∗(R)

(4.35)

with the norms defined in (4.11)-(4.12).
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In section 4.4, we study in detail the proof of this proposition. For the time being, let us note
that, G is a small operator of size O(α) uniformly on functions h satisfying (4.1). Hence Proposition
10 plus the contraction mapping principle yield the next result, which ensures the solvability of the
nonlinear Jacobi equation. Its detailed proof can be found in section 7.

Proposition 11. Given α > 0 and λ ∈ (0, 1), there exist a positive constant K > 0 such that for
any α > 0 small enough the following holds. There is a unique solution h of (4.33) on the region
(4.12), namely ‖h‖

C2,λ
2+α,∗(R)

≤ Kα.

and this concludes the proof of Theorem 4.1.1. The rest of the chapter is devoted to give fairly
detailed proofs of every result mentioned here.

4.5 The Jacobi Operator Ja,Γ
This section is meant to provide a complete proof of proposition 11. Recall that the Jacobi operator
of the curve Γ associated to the potential a, corresponds to the linear operator

Ja,Γ[h](s) = h′′(s) +
∂sa(s, 0)

a(s, 0)
h′(s)−Q(s)h(s) (4.1)

where we recall that

Q(s) :=
∂tta(s, 0)

a(s, 0)
− 2k2(s) (4.2)

Recall also that we are assuming the curve Γ to be nondegenerate, which means that the only
bounded solution to

Ja,Γ[h](s) = 0, ∀s ∈ R

is the trivial one.

In order to find accurate information on the kernel of (4.1), we consider the auxiliary equation

d

ds

(
p(s)

d

ds
h

)
− q(s)h = 0, in R (4.3)

where we assume that p, q : R→ R satisfy the following

p ∈ C1[0,+∞) ∩ L∞[0,+∞), q ∈ C1[0,+∞) (4.4)

p(s) ≥ p0 > 0, ∀s ≥ 0 (4.5)

lim
s→±∞

p(s) =: p(±∞) > 0 (4.6)

|p(s)|+ (1 + |s|)2+α|p′(s)| ≤ C, ∀s ≥ 0 (4.7)

|q(s)|+ |q′(s)| ≤ C

1 + |s|2+α
, ∀s ≥ 0 (4.8)
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for some constants α > −1, β0 > 0 and C > 0.

The first result concerns the decay for the derivative of a solution to the auxiliary equation,
provided that p and q decay sufficiently fast.

Lemma 4.5.1. Suppose α > −1, and consider a one-sided bounded solution h ∈ L∞[0,∞) of (4.3),
for which functions p and q fulfill (4.4) to (4.8). Then there is a constant C = C(p, q, α, h) > 0
such that

|h′(s)| ≤ C

|s|1+α
, ∀s > 0

where C(p, q, α, h) = ‖p−1‖L∞[0,∞)‖h‖L∞[0,∞)‖(1 + |s|)2+αq‖L∞[0,∞).

Proof. Observe first that thanks to assumptions (4.4)-(4.6), it holds

p(s) = p(+∞)−
∫ +∞

s
p′(ξ)dξ (4.9)

Now, since h solves the equation, then for s1 > s2 > 0 we have

|p(s1)h′(s1)− p(s2)h′(s2)| ≤
∫ s2

s1

|q(s)h(s)|

≤ ‖h‖L∞[0,∞)‖(1 + |s|)2+αq‖L∞[0,∞)

∣∣∣∣
∫ s2

s1

1

1 + |ξ|2+α
dξ

∣∣∣∣

≤ C(q, h)

∣∣∣∣
1

|s1|1+α
− 1

|s2|1+α

∣∣∣∣

where C(q, h) := C ·‖h‖L∞[0,∞)‖(1+|s|)2+αq‖L∞[0,∞) ∈ R is fixed. In particular using that 1+α > 0,
it follows that

lim
s1→+∞

|p(s1)h′(s1)| ≤ |p(s2)h′(s2)|+ C(q, h)
1

|s2|1+α
< +∞

which implies that p(+∞)h′(∞) ∈ R. From this, we can rewrite equation (4.3) in its integral form

p(s)h′(s) = p(+∞)h′(+∞)−
∫ +∞

s
q(ξ)h(ξ)dξ. (4.10)

but using (4.9), we find that

p(+∞)h′(s)− h′(s)

∫ +∞

s
p′(ξ)dξ = p(+∞)h′(+∞)−

∫ +∞

s
q(ξ)h(ξ)dξ

and so

p(+∞)h′(s) = p(+∞)h′(+∞) + h′(s)
∫ +∞

s
p′(ξ)dξ −

∫ +∞

s
q(ξ)h(ξ)dξ.
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Integrating again between 0 and s, we obtain an expression for the solution h of (4.3)

p(+∞)h(s) = p(+∞)h(0) + p(∞)h′(+∞)s

+

∫ s

0
h′(ξ)

∫ +∞

ξ
p′(τ)dτdξ

︸ ︷︷ ︸
I

−
∫ s

0

∫ +∞

ξ
q(τ)h(τ)dτdξ

︸ ︷︷ ︸
II

(4.11)

Let us estimate these integrals. We first estimate integral I

|I| ≤
∫ s

0
|h′(ξ)|

∫ +∞

ξ
|p′(τ)|dτ

≤ C‖h′‖L∞[0,∞)‖(1 + |s|2+α)p′‖L∞[0,∞)

∫ s

0

∫ +∞

ξ

1

1 + |τ |2+α
dτdξ

≤ Ch′,p′,α
∫ s

0

1

1 + |ξ|1+α
dξ = O(1 + |s|−α)

where Ch′,p′,α := C‖h′‖L∞[0,∞)‖(1 + |s|2+α)p′‖L∞[0,∞). In the same way, we estimate II

|II| ≤
∫ s

0

∫ +∞

ξ
|q(τ)| |h(τ)|dτdξ

≤ C‖h‖L∞[0,∞)‖(1 + |s|2+α)q‖L∞[0,∞)

∫ s

0

∫ +∞

ξ

dτdξ

1 + |τ |1+α

≤ Ch,q,α(1 + |s|)−α

with Ch,q,α := C‖h‖L∞[0,∞)‖(1 + |s|)2+αq‖L∞[0,∞).

Since h is bounded, we deduce from (4.11) that

O(1) = p(+∞)h(0) + p(+∞)h′(+∞)s + O(1 + |s|−α). (4.12)

Dividing (4.12) by bs > 0 and taking s→ +∞, we get that

0 = p(+∞)h′(+∞)

provided that α > −1. From (4.6), it follows that h′(+∞) = 0. In particular, the latter fact
together with formula (4.10), imply that

p(s)h′(s) =

∫ ∞

s
q(ξ)h(ξ)dξ

and consequently

|h′(s)| ≤ C‖p−1‖L∞[0,∞)‖h‖L∞[0,∞)‖(1 + |s|2+α)q‖L∞[0,∞)
1

1 + |s|1+α

which completes the proof of the estimate.
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The core of this section is reflected in the next result.

Lemma 4.5.2. Let α > 0, and suppose function q satisfies (4.4)-(4.8). Then the equation

u′′(s)− q(s)u(s) = 0, in R (4.13)

has two linearly independent smooth solutions u, ũ, so that as s→ +∞

u(s) = s + O(1) + O(|s|−1−α), ũ(s) = 1 + O(|s|−1 + |s|−α) (4.14)

u′(s) = 1 + O(|s|−1 + |s|−α), ũ′(s) = O(|s|−1 + |v|−1−α) (4.15)

Proof. To begin with, we look for a solution u(s) = sv(s), so that, multiplying equation (4.13) by
s, we find that v satisfies

d

ds

(
s2v′(s)

)
− q(s)s2v(s) = 0 (4.16)

Now, consider the functions

x(s) := s2v′(s), y(s) := v(s) (4.17)

so that, equation (4.16) becomes the linear system of differential equations





x′(s) = q(s)s2y(s)

y′(s) =
1

s2
x(s)

, ∀s ∈ [s0,+∞) (4.18)

Integrating this system between s0 and s we obtain the identities

y(s) = y(s0) +

∫ s

s0

1

ξ2
x(ξ)dξ

x(s) = x(s0) +

∫ s

s0

q(ξ)ξ2y(ξ)dξ (4.19)

In particular, we deduce an explicit formula for y(s), given by

y(s) = y(s0) + x(s0)

(
1

s0
− 1

s

)
+

∫ s

s0

y(τ)q(τ)τ2

(
1

τ
− 1

s

)
dτ (4.20)

In this way, we can estimate y(s) for s ≥ s0 as

|y(s)| ≤ |y(s0)|+ |x(s0)|
(

1

s0
− 1

s

)
+

∫ s

s0

|y(τ)| |q(τ)|τ
(

1− τ

s

)
dτ.

From Gronwall’s inequality we find the estimate

|y(s)| ≤
(
|y(s0)|+ 2|x(s0)|

s0

)
exp

(∫ s

s0

|q(τ)|τ
(

1− τ

s

)
dτ

)
(4.21)
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Notice that, for any s ≥ τ > s0 :
∣∣τ
(
1− τ

s

)∣∣ ≤ 2τ = O(τ). This fact combined with the decay of
q(s), leads to

|y(s)| ≤ Cq,α(|y(s0)|+ 2

s0
|x(s0)|)

where Cq,α := C‖(1 + |s|)2+αq‖L∞[s0,+∞)

∫∞
s0
|τ |−1−αdτ . From (4.20) it follows that for any s1 >

s2 ≥ s0 > 0:

|y(s1)− y(s2)| ≤ |x(s0)|
(

1

s2
− 1

s1

)
+ C

∫ s1

s2

|q(τ)|τdτ

implying that y(+∞) ∈ R. Moreover, same formula (4.20) yields

y(+∞) = y(s0) +
x(s0)

s0
+

∫ +∞

s0

y(τ)q(τ)τdτ

which allows us to write

y(s)− y(+∞) = −x(s0)

s0
−
∫ s

s0

y(τ)q(τ)
τ2

s
dτ −

∫ +∞

s
y(τ)q(τ)τdτ

In particular, by choosing the constants to be y(+∞) = 1, x(s0) = 0, we finally deduce

y(s) = 1−
∫ s

s0

y(τ)q(τ)
τ2

s
dτ −

∫ +∞

s
y(τ)q(τ)τdτ (4.22)

Additionally, the derivative y′(s) = v′(s) can be obtained from x(s) using relation (4.19), as

v′(s) =
x(s)

s2
=

0

s2
+

1

s2

∫ s

s0

q(ξ)ξ2y(ξ)dξ. (4.23)

Now that y(s) is bounded in [s0,+∞), similar arguments as in section 2.4 imply the same estimates
for the integrals in (4.22)-(4.23), since

∣∣∣∣
∫ +∞

s
y(τ)q(τ)τdτ

∣∣∣∣ = O(|s|α),

∣∣∣∣
∫ s

s0

y(τ)q(τ)
τ2

s
dτ

∣∣∣∣ = O(|s|−1 + |s|−α)

From these estimates, we conclude that

v(s) = y(s) = 1 + O(|s|−1 + |s|−α)

v′(s) = O(|s|−2 + |s|−1−α)

So the asymptotic behavior of the first solution follows, as α > 0 and by definition of u:

u(s) = s
(
1 + O(|s|−1 + |s|−α)

)
= s + O(1 + |s|1−α)

u′(s) = v(s) + sv′(s) = 1 + O(|s|−1 + |s|−α)
, s ≥ s0

which finishes the analysis of the profile of the first solution found to equation (4.13).
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To conclude, we find ũ using reduction of order formula, to find that

ũ(s) =

(∫ ∞

s
u−2(ξ)dξ

)
· u(s)

and directly from this, one gets

ũ(s) = C(s)u(s) = 1 + O(|s|−1 + |s|−α)

ũ′(s) = C ′(s)u(s) + C(s)u′(s) = O(|s|−1 + |s|−2 + |s|−1−α)
, for s >> s0

which concludes the proof of Lemma 4.5.2.

Now proceed to state the main result of this section, which characterize the profile of the kernel
of the Jacobi operator.

Proposition 12. Let Γ ⊂ R2 be a stationary non-degenerate curve as in respect to a. Assume also
that conditions (4.3)-(10) are satisfied, for α > 0 and additionally the potential stabilizes on the
curve at infinity, namely

a(±∞, 0) := lim
s→±∞

a(s, 0) > 0 ∈ R. (4.24)

Then, there are two linearly independent elements in the kernel of h1, h2 of (4.1) satisfying that

hi(s) = |s|+ O(1) + O(|s|−1 + |s|−α)

h′i(s) = O(1) + O(|s|−1 + |s|−1−α)
, as (−1)is→ +∞ (4.25)

and they are bounded functions as (−1)i+1s → ∞. Furthermore, in the region where the latter
happens, it holds

|hi(s)|+ (1 + |s|1+α)|h′i(s)| ≤ C, as (−1)i+1s→ +∞ (4.26)

Proof. We look for solutions h(s) = a(s, 0)−1/2 ·u(s) to (4.1), which means that u solves the auxiliary
equation

u′′(s)− q̃(s)u(s) = 0, in R

where

q̃(s) : =
∂tta(s, 0)

a(s, 0)
− 2k2(s) +

1

2

∂ssa(s, 0)

a(s, 0)
− 1

4

∣∣∣∣
∂sa(s, 0)

a(s, 0)

∣∣∣∣
2

.

Now, thanks to the assumptions we have made on a(s, t) and Γ, it follows that

(1 + |s|)2+α|q̃(s)| ≤ C.

Therefore, applying lemma 4.5.2 on the region [0,+∞), we deduce the existence of two solutions
linearly independent of equation (4.5) in R, denoted by u(s) and ũ(s), which satisfies the right-sided
asymptotic behavior as s→ +∞

u(s) = s+ O(1) + O(|s|1−α), ũ(s) = 1 + O(|s|−1 + |s|−α) (4.27)

u′(s) = 1 + O(|s|−1 + |s|−α), ũ′(s) = O(|s|−1 + |s|−1−α).
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Applying Lemma 4.5.2 again, but this time on the region (−∞, 0], we obtain two other solutions
v(s) and ṽ(s) linearly independent of equation (4.5) in R, that now satisfy the left-sided asymptotic
behavior as s→ −∞

v(s) = |s|+ O(1) + O(|s|1−α), ṽ(s) = 1 + O(|s|−1 + |s|−α)

v′(s) = 1 + O(|s|−1 + |s|−α), ṽ′(s) = O(|s|−1 + |s|−1−α).
(4.28)

We remark that the non-degeneracy of curve Γ, implies that ũ(s) cannot be bounded on (−∞, 0].
Recall also that {u, ũ} and {v, ṽ} represent two different basis of the vector space of solutions to
the equation (4.5). So that, for some constats αi4, for i = 1, ·, 4, we have that

∀s ∈ R : u(s) = α1v(s) + α2ṽ(s), ũ(s) = α3v(s) + α4ṽ(s). (4.29)

From the previous discussion about ũ, we observe that not only that ũ grows at most at a linear
rate on (−∞, 0], but also that the non-degeneracy property implies α3 6= 0. Hence, the function
h1(s) := α−1

3 a(s, 0)−1/2ũ(s) belongs in the kernel of Ja,Γ, satisfying (4.25)-(4.26) for i = 1.

The same argument can be applied to ṽ(s) to find the function h2(s) := a(s, 0)−1/2u(s) be-
having as predicted and clearly, being linear independent with h1. This completes the proof of the
proposition.

Once we have described the kernel of (4.1), it is straightforward to check the following proposi-
tion, whose proof is left to the readers.

Proposition 13. Under the same set of assumptions as in proposition 12 and given α > 0, λ ∈ (0, 1)
and a function f with ‖f‖

C0,λ
2+α,∗(R)

< +∞, then the equation

Ja[h](s) = f(s), s ∈ R

has a unique bounded solution, given by the variation of parameters formula

h(s) = −h1(s)

∫ s

−∞
a(ξ, 0)h2(ξ)f(ξ)dξ − h2(s)

∫ +∞

s
a(ξ, 0)h1(ξ)f(ξ)dξ (4.30)

In addition, there is some positive constant C = C(a,Γ, α) such that

‖h‖
C2,λ

2+α,∗(R)
≤ C‖f‖

C0,λ
2+α,∗(R)

(4.31)

where

‖h‖
C2,λ

2+α,∗(R)
:= ‖h‖L∞(R) + ‖(1 + |s|)1+αh′‖L∞(R) + sup

s∈R
(1 + |s|)2+α‖h′′‖C0,λ(s−1,s+1)

4.6 Gluing reduction and solution to the projected prob-

lem

This section is devoted to give fairly detailed proves of propositions 8 and 9. In what follows, we
refer to the notation and to the objects introduced in sections 3 and 4.
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In this part we prove proposition 8. To do so, let us first consider the linear problem

∆xψ + α
∇x̄a
a
∇xψ −Wα(x)ψ = g(x), in R2 (4.1)

where
−Wα(x) := [(1− ζ4)f ′(u1) + ζ4f

′(H(t))].

Observe that the dependence in α is implicit on the cut-off function ζ4, defined in (4.5).

Let us observe that for any α > 0 small enough, the term Wα satisfies the global estimate
0 < β1 < Wα(x) < β2 for a certain positive constants β1, β2. In fact, we can chose β1 :=

√
2 − τ

for any arbitrary small τ > 0. To address the study of this equation, recall the definition of the
weighted norms:

‖g‖L∞K (R2) := sup
x∈R2

K(x)‖g‖L∞(B1(x)), ‖g‖
C0,λ
K (R2)

:= sup
x∈R2

K(x)‖g‖C0,λ(B1(x))

with K is given by (4.6).

Lemma 4.6.1. For any λ ∈ (0, 1), there are numbers C > 0, and α0 > 0 small enough, such that for
0 < α < α0 and any given continuous function g = g(x) with ‖g‖

C0,λ
K (R2)

< +∞, the equation (4.1)

has a unique solution ψ = Ψ(φ) satisfying the a priori estimate:

‖ψ‖X := ‖D2ψ‖
C0,λ
K (R2)

+ ‖Dψ‖L∞K (R2) + ‖ψ‖L∞K (R2) ≤ C‖g‖C0,λ
K (R2)

(4.2)

The proof of this lemma follows the same lines of lemma 4.1 in [16] with no significant changes.
We leave details to the reader, but we do comment on the estimate

‖ψ‖L∞K (R2) ≤ C‖g‖C0,λ
K (R2)

(4.3)

for α > 0 small enough and any bounded solution ψ of (4.1). It follows directly from a sub-
supersolution scheme, using that b21 + b22 < (

√
2− τ)/2 and the fact that the function

ψ0(x) := eR0‖ψ‖∞ ·
{
ζ3(x)[e−σ|t|/2(1 + |αs|)−µ] + (1− ζ3(x))e−b1|x1|−b2|x2|

}

ca be readily checked to be a positive supersolution of (4.1), provided that R0 > 0 sufficiently large.

Hence, we can use the maximum principle within the annulus BR1(~0) \ BR0(~0) with a barrier

function of the form ψ0 + θe
√
β1/2(|x1|+|x2|) for θ > 0 small, to find that

K(x)|ψ(x)| ≤M‖ψ‖L∞(R2) ≤ M̃‖g‖C0,λ
K (R2)

, x ∈ R2.

Now we have all the ingredients need for the proof of proposition 8. Let us set ψ := Υ(g) the
solution of equation (4.1) predicted by lemma 4.6.1. We can write problem (4.16) as a fixed point

problem in the space X of functions ψ ∈ C2,λ
loc (R2) with ‖ψ‖X <∞, as

ψ = Υ(g1 +G(ψ)), ψ ∈ X (4.4)
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where

g1 := (1− ζ3)S(w) + 2∇xζ3∇xφ+ φ∆xζ3 + αφ
∇x̄a
a
∇xζ3,

G(ψ) := (1− ζ4)N1(ψ + ζ3φ).

Consider µ ∈ (0, 2+α), σ ∈ (0,
√

2) and α > 0 fixed and a function h satisfying (4.12). Consider
also a function φ = φ(s, t), satisfying ‖φ‖

C2,λ
µ,σ(R2)

≤ 1.

Note that the derivatives of ζ3 are nontrivial only within the region ρα−2 < |t+h(αs)| < ρα−1,
with ρα defined in (4.19). Taking into account the weight K(x) (4.6), we find that

K(x)

∣∣∣∣2∇xζ3∇xφ+ φ∆xζ3 + αφ
∇x̄a
a
∇xζ3

∣∣∣∣ ≤ CaK(x)e−σ|t|(1 + |αs|)−µ‖φ‖
C2,λ
µ,σ(R2)

≤ Ca e−σδ/2αeσ/2(−c0|s|+2+|h|)‖φ‖
C2,λ
µ,σ(R2)

provided that

c0 <
b2δ

a2
,

c0 θ

1− θ ≤ b2

conditions that holds, since we can take c0 > 0 small enough,independent of α > 0 and θ small
depending maybe on c0. At the end, there are some constants c̃0 and δ̃ > 0, depending on Γ and
a(x, y), such that the right hand side satisfies for x ∈ R2

∥∥∥∥2∇xζ3∇xφ+ φ∆xζ3 + φ
∇x̄a
a
∇xζ3

∥∥∥∥
C0,λB(x,1)

≤ Ca,Γ e−σδ̃/αe−c̃0|x|‖φ‖C2,λ
µ,σ(R2)

where these constants are explicitly δ̃ := δ − c0a2/b2, c̃0 := σθc0/b2, and where we emphasize that
Ca,Γ does not depend on α.

Expressions (4.23)-(4.24) for S(w), imply that ‖S(w)‖
C0,λ

µ,
√

2
(R2)
≤ Cα3. In particular, the expo-

nential decay exhibited by w′, w′′, ψ0, ψ1 in t−variable imply

|(1− ζ3)S(w)| = |(1− ζ3)ζ3S(u1) + (1− ζ3)E| ≤ Ca e−
√

2|t|(1 + |αs|)−2−α

Now since this error term is vanishing everywhere but on the region ρα − 2 < |t+ h(αs)| < ρα − 1,
we can use the definition (4.6) of the weight function K(x) to prove that

K(x)|(1− ζ3)S(w)(x)| ≤ eσ|t|/2(1 + |αs|)µ−2−α Cae−σ|t|/2e−(
√

2−σ/2)|t|

≤ Cae−(
√

2−σ/2)(δ/α+c0|s|−|h|−2) ≤ Ce−σδ̃/α

where we have used the expression (4.19) for ρα, and we set δ̃ := (
√

2/σ − 1/2)δ >> δ/2.
Further, the regularity in the s−variable of the functions involved in g1, imply that

‖g1‖C0,λ
K (R2)

≤ Ce−σδ/2α

On the other hand, consider the set for A > 0 large

Λ = {ψ ∈ X : ‖ψ‖X ≤ A · e−σδ/2α} (4.5)
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The definitions of N1 in (4.4) and G in (4.6), lead us to the following computations

(1− ζ4)|N1(Ψ(φ1) + ζ3φ1)−N1(Ψ(φ2) + ζ3φ2)| ≤

Cw(1− ζ4) sup
t∈(0,1)

|tΨ(ψ1) + (1− t)Ψ(ψ2) + ζ3(tφ1 + (1− t)φ2)| · |Ψ(ψ1)−Ψ(ψ2)|

together with

|G(ψ1)−G(ψ2)| ≤ (1− ζ4) sup
ξ∈(0,1)

|DN1(ξψ1 + (1− ξ)ψ2 + ζ3φ)[ψ1 − ψ2]|

≤ C‖f ′′(w)‖∞(1− ζ4) sup
ξ∈(0,1)

|ξψ1 + (1− ξ)ψ2 + ζ3φ| · |ψ1 − ψ2|

The latter, plus the regularity in the s−variable leads the Lipschitz character of G:

‖G(ψ1)−G(ψ2)‖
C0,λ
K (R2)

≤ CAe−σδ/α‖ψ1 − ψ2‖C0,λ
K (R2)

while
‖G(0)‖

C0,λ
K (R2)

≤ Cw‖(1− ζ4)ζ2
3φ

2‖
C0,λ
K (R2)

≤ Ce−σδ/α

In order to use the fixed point theorem, we need to estimate the size of the nonlinear operator

‖Υ(g1 +G(ψ))‖X ≤ ‖Υ(g1 +G(ψ)−G(0))‖X + ‖Υ(G(0))‖X
≤ C(‖g1‖C0,λ

K (R2)
+ ‖G(ψ)−G(0)‖

C0,λ
K (R2)

+ ‖G(0)‖
C0,λ
K (R2)

)

≤ C(Ca e
−σδ/2α + e−σδ/α‖ψ‖

C0,λ
K (R2)

)

≤ Ce−σδ/2α(1 + ‖ψ‖X)

additionally, we also have

‖Υ(g1 +G(ψ1))−Υ(g1 +G(ψ2))‖X ≤ C‖G(ψ1)−G(ψ2)‖
C0,λ
K (R2)

≤ Ce−σδ/α‖ψ1 − ψ2‖X

where in both inequalities we used that Υ is a linear and bounded operator.

This means that the right hand side of equation (4.4) defines a contraction mapping on Λ into
itself, provided that the number A in definition (4.5) is taken large enough and ‖φ‖

C2,λ
µ,σ
≤ 1. Hence

applying Banach fixed point theorem follows the existence of a unique solution ψ = Ψ(φ) ∈ Λ.

In addition, it is direct to check that

‖Ψ(φ1)−Ψ(φ2)‖X ≤ Ca e−σδ/2α‖φ1 − φ2‖C2,λ
µ,σ(R)

+ C e−σδ/α‖Ψ(φ1)−Ψ(φ2)‖X (4.6)

from where the Lipschitz dependence (4.22) of Ψ(φ) follows and this concludes the proof of Lemma
8

The purpose of the whole section is to give a proof of proposition 9, which deals with the
solvability of the nonlinear projected problem (4.25) for φ.
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At the core of the proof of proposition 9, is the fact that the heteroclinic solution w(t) of the
ODE

w′′(t) + w(t)(1− w2(t)) = 0, w′(t) > 0, w(±∞) = ±1

is L∞−nondegenerate in the sense of the following lemma.

Lemma 4.6.2. Let φ be a bounded and smooth solution of the problem

L(φ) = 0 in R2 (4.7)

Then necessarily φ(s, t) = Cw′(t), with C ∈ R.

For a detailed proof of this lemma we refer the reader to lemma 6.1 in [16] and references there
in.

Next, let us consider the linear projected problem





∂ttφ+ ∂ssφ+ f ′(w)φ = g(s, t) + c(s)w′(t) in R× R
∫

R
φ(s, t)w′(t)dt = 0, ∀s ∈ R

(4.8)

Assuming that the corresponding operations can be carried out, for every fixed s, we can multiply
the equation by w′(t) and integrate by parts, to find that

c(s) = −
∫

R g(s, t)w′(t)dt∫
R |w′(t)|2dt

(4.9)

Hence, if φ solves problem (4.8), then φ eliminates the part of g which does not contribute to the
projection onto w′(t). This means, that φ solves the same equation, but with g replaced by g̃, where

g̃(s, t) = g(s, t)−
∫

R g(s, τ)w′(τ)dτ∫
R |w′(τ)|2dτ w′(t). (4.10)

Observe that the term c(s) in problem (4.25) has a similar role, except that we cannot find it so
explicitly, since this time the PDE in φ is nonlinear and nonlocal.

Now, we show that the linear problem (4.8) has a unique solution φ, which respects the size of
g in norm (4.9), up to its second derivatives. We collect the discussion in the following proposition,
whose proof is basically that contained in proposition 6.1 in [16] and proposition 4.1 in [14].

Proposition 14. Given µ ≥ 0 and 0 < σ <
√

2, there is a constant C > 0 such that for all
sufficiently small α > 0 the following holds. For any g with ‖g‖

C0,λ
µ,σ(R2)

< ∞, the problem (4.8)

with c(s) defined in (4.9), has a unique solution φ with ‖φ‖
C2,λ
µ,σ(R2)

<∞. Furthermore, this solution

satisfies the estimate

‖φ‖
C2,λ
µ,σ(R2)

≤ C‖g‖
C0,λ
µ,σ(R2)

. (4.11)
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Now, we are in a position to proof proposition 9. Recall from section 4, that proposition 9 refers
to the solvability of the projected problem

∂ttφ+ ∂ssφ+ f ′(w)φ = −S̃(u1)− N(φ) + c(s)w′(t) in R× R
∫

R
φ(s, t)w′(t)dt = 0, for all s ∈ R.

(4.12)

where we recall that

N(φ) := B(φ) + [f ′(u1)− f ′(w)]φ+ α∇x̄a/a · ∇xφ︸ ︷︷ ︸
N1(φ)

+

ζ4[f ′(u1)− f ′(H(t))]Ψ(φ)︸ ︷︷ ︸
N2(φ)

+ ζ4N1(Ψ(φ) + φ)︸ ︷︷ ︸
N3(φ)

(4.13)

considering that the operators N1 and B are given in (4.4)-(4.17).

Let us define φ := T (g) as the operator providing the solution predicted in proposition 14. Then
(4.12) can be recast as the fixed point problem

φ = T (−S̃(u1)− α2Ja,Γ[h]w′(t)− N(φ)) =: T (φ), ‖φ‖
C2,λ
µ,σ(R2)

≤ Kα4 (4.14)

Claim 1. Given α > 0, 0 < µ < 2 + α and 0 < σ <
√

2, there is some constant C > 0, possibly
depending on the constant K of (4.12) but independent of α, such that for M > 0 and φ1, φ2

satisfying

‖φi‖C2,λ
µ,σ(R2)

≤Mα4, i = 1, 2.

then the nonlinearity N behaves locally Lipschitz, as

‖N(φ1)− N(φ2)‖
C0,λ
µ,σ(R2)

≤ Cα ‖φ1 − φ2‖C2,λ
µ,σ(R2)

(4.15)

where the operator N is given in (4.13).

To prove this claim, we analyze each of its components Ni from (4.13). Let us start with N1.
Note that its first term corresponds to a second order linear operator with coefficients of order α
plus a decay of order at least O((1 + |αs|)−1−α). In particular, recall from (4.17) that B = ζ0B̃0,
where in coordinates [∆x − ∂tt − ∂ss] amounts

B̃0 =− 2αh∂st − α[k(αs) + α(t+ h)k2(αs)]∂t + α(t+ h)A0(αs, α(t+ h))

· [∂ss − 2h′∂t + α2|h′|2∂tt] + α2(t+ h)B0(αs, α(t+ h))[∂s − αh′∂t] (4.16)

− α2h′′∂t + α2|h′|2∂tt

+ α3(t+ h)2C0(αs, α(t+ h))∂t (4.17)

Analyzing each term, leads to

‖B(φ)‖
C0,λ
µ,σ(R2)

≤ Cα‖φ‖
C2,λ
µ,σ(R2)

.
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Thus, N1 satisfies

‖N1(φ)‖
C0,λ
µ,σ(R2)

≤ Cα‖φ‖
C2,λ
µ,σ(R2)

. (4.18)

On the other hand, consider functions φi, with

‖φi‖C2,λ
µ,σ(R2)

≤Mα3, i = 1, 2

Now, let us analyze N2, by noting that for any (s, t) ∈ R2 the definition (4.8) implies that

‖N3(φ1)− N3(φ2)‖
C0,λ
µ,σ(R2)

≤ C sup
(s,t)∈R2

e(σ/2−
√

2)|t| sup
x∈R2

K(x)‖Ψ(φ1)−Ψ(φ2)‖C0,λ(B1(x))

≤ C‖Ψ(φ1)−Ψ(φ2)‖
C0,λ
K (R2)

= Ce−σδ/2α‖φ1 − φ2‖C2,λ
µ,σ(R2)

. (4.19)

In order to analyze N4, note that the definition (4.4) of N1 also implies

|N4(φ1)− N4(φ2)| ≤ |ζ4N1(Ψ(φ1) + φ1)− ζ4N1(Ψ(φ2) + φ2)|

≤ Cζ4 sup
ξ∈(0,1)

|ξ(Ψ(φ1) + φ1) + (1− ξ)(Ψ(φ2) + φ2)| · (|φ1 − φ2|+ |Ψ(ψ1)−Ψ(ψ2)|)

taking into account the region of R2 we are considering, it is possible to make appear de weight
K(x) in (4.6). Therefore thanks to the hypothesis on φi and Lemma 8, we obtain

‖N4(φ1)− N4(φ2)‖
C0,λ
µ,σ(R2)

≤ C sup
(s,t)∈R2

{
eσ|t|/2[‖φ1‖C0,λ(B1(s,t)) + ‖φ2‖C0,λ(B1(s,t)) + ‖Ψ(φ1)‖C0,λ(B1(x)) + ‖Ψ(φ2)‖C0,λ(B1(x))]

· eσ|t|/2(1 + |αs|)µ[‖φ1 − φ2‖C0,λ(B1(s,t)) + ‖Ψ(φ1)−Ψ(φ2)‖C0,λ(B1(x))]

}

≤ C sup
(s,t)∈R2

{[
‖φ1‖C2,λ

µ,σ(R2)
+ ‖φ2‖C2,λ

µ,σ(R2)
+K(x)(‖Ψ(φ1)‖C0,λ(B1(x)) + ‖Ψ(φ2)‖C0,λ(B1(x)))

]

·(e−σ|t|/2‖φ1 − φ2‖C0,λ
µ,σ(R2)

+K(x)‖Ψ(φ1)−Ψ(φ2)‖C0,λ(B1(x)))

}

≤ C(‖φ1‖C2,λ
µ,σ(R2)

+ ‖φ2‖C2,λ
µ,σ(R2)

+ ‖Ψ(φ1)‖X + ‖Ψ(φ2)‖X)[‖φ1 − φ2‖C0,λ
µ,σ

+ ‖Ψ(φ1)−Ψ(φ1)‖X ]

≤ 2C(α3 + e−σδ/2α)
{
‖φ1 − φ2‖C2,λ

µ,σ(R2)
+ e−σδ/2α‖φ1 − φ2‖C2,λ

µ,σ(R2)

}
(4.20)

To reach a conclusion, we note from (4.18)-(4.19) and (4.20) that choosing α > 0 small enough we
obtain the validity of inequality (4.15). The proof of Claim 1 is concluded. �

To conclude the proof of proposition 9,we make the observation that the formula (4.19) and
estimate (4.20) ensure that, for any 0 < µ ≤ 2 + α, σ ∈ (0,

√
2) and λ ∈ (0, 1) it holds

‖S̃(u1) + α2Ja[h] · w′‖
C0,λ
µ,σ(R2)

≤ Cα4 (4.21)
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Let us assume now that φ1, φ2 ∈ Bα, where

Bα := {φ ∈ C2,λ
loc (R2) / ‖φ‖

C2,λ
µ,σ(R2)

≤ Kα4}

for a constant K to be chosen. Note that using Claim 1, we are able to estimate the size of N(φ)
for any α > 0 sufficiently small, as follows

‖N(φ)‖
C0,λ
µ,σ(R2)

≤ C‖N(0)‖
C0,λ
µ,σ(R2)

+ Cα‖φ‖
C2,λ
µ,σ(R2)

= C‖ζ4[f ′(u1)− f ′(H)]Ψ(0) + ζ4N1(Ψ(0))‖
C0,λ
µ,σ(R2)

+ Cα‖φ‖
C2,λ
µ,σ(R2)

≤ C sup
t∈R

e−σδ/2α · ‖Ψ(0)‖X + ‖Ψ(0)‖2X + CKα5

≤ C̃α5 ∀φ ∈ Bα (4.22)

for some constant C̃, independent of K.

Then from the estimates (4.21)-(4.22) follows that the right hand side of the projected problem
(4.12) defines an operator T applying the ball Bα into itself, provided K is fixed sufficiently large
and independent of α > 0. Indeed using the alternative definition of T , and Proposition 14, we can
easily find an estimate for the size of φ, through

‖T (φ)‖
C2,λ
µ,σ(R2)

= ‖T (−S̃(u1)− α2Ja[h]w′ − N(φ))‖
C2,λ
µ,σ(R2)

≤ ‖T‖(‖S̃(u1) + α2Ja[h]w′‖
C0,λ
µ,σ(R2)

+ ‖N(φ)‖
C0,λ
µ,σ(R2)

) ≤ Cα4

Further, T is also a contraction mapping of Bα in norm C2,λ
µ,σ provided that µ ≤ 2 + α, since Claim

(1) asserts that N has Lipschitz dependence in φ:

‖T (φ1)− T (φ2)‖
C2,λ
µ,σ(R2)

= ‖ − T (N(φ1)− N(φ2))‖
C2,λ
µ,σ(R2)

≤ C‖N(φ1)− N(φ2)‖
C0,λ
µ,σ(R2)

≤ Cα ‖φ1 − φ2‖C2,λ
µ,σ(R2)

So by taking α > 0 small, we can use the contraction mapping principle to deduce the existence of
a unique fixed point φ to equation (4.14), and thus φ turns out to be the only solution of problem
(4.12). This justify the existence of φ, as required.

On the other hand, the Lipschitz dependence (4.28) of Φ in h, follows from the fact that

‖T (Φ(h1))− T (Φ(h2))‖
C2,λ
µ,σ(R2)

≤ C(‖S̃(u1, h1)− S̃(u1, h2)‖
C0,λ
µ,σ(R2)

+ ‖N(Φ1)− N(Φ1)‖
C0,λ
µ,σ(R2)

)

A series of lengthy but straightforward computations, leads to (4.28) and so the proof is complete.

4.7 The proof of proposition 11

In this section, we will finish the proof of Theorem 4.1.1 by proving proposition 11. Recall that the
reduced problem (4.33) reads as

Ja[h](αs) := h′′(αs) +
∂sa(αs, 0)

a(αs, 0)
h′(αs)−Q(αs)h(αs) = G(h)(αs) in R (4.1)

85



where Q(s) was defined in (4.2), and the operator G = G1 +G2 was given in (4.31)-(4.32).

We will make use of the following technical lemma, whose proof is left to the reaader.

Lemma 4.7.1. Let Θ = Θ(s, t) be a function defined in R × R, such that, for any λ ∈ (0, 1),
µ ∈ (1, 2 + α] and σ ∈ (0,

√
2)

‖Θ‖
C0,λ
µ,σ(R2)

:= sup
(s,t)∈R×R

eσ|t|(1 + |αs|)µ‖Θ‖C0,λ(B1(s,t)) < +∞

Then the function defined in R as

Z(αs) :=

∫

R
Θ(s, t)w′(t)dt

satisfies for some constant C = C(w, µ, σ) > 0 the following estimate:

‖Z‖
C0,λ
µ,∗(R)

≤ Cα−1‖Θ‖
C0,λ
µ,σ(R2)

(4.2)

Let us apply Lemma (4.7.1) to the function Θ(s, t) := N(Φ(h))(s, t), to estimate the size of the
operator G2 in (4.32), where we recall that

G2(h)(αs) := c−1
∗ α−2

∫

R
N(Φ(h))(s, t)w′(t)dt.

We can estimate the size of the projection of N using the previous estimate (4.2), and the bound
(4.22) for the size of N:

‖G2(h)‖
C0,λ
µ,∗(R)

≤ Cα−3‖N(Φ(h))‖
C0,λ
µ,σ(R2)

≤ Cα2 (4.3)

Likewise, for φi = Φ(hi), i = 1, 2 it holds similarly that

‖G2(h1)−G2(h2)‖
C0,λ
µ,∗(R)

≤ Cα−3‖N(φ1)− N(φ2)‖
C0,λ
µ,σ(R2)

Nonetheless, using (4.15) and proposition 9, it follows that

‖N(φ1)− N(φ1)‖
C0,λ
µ,σ(R2)

≤ Cα4‖h1 − h2‖C2,λ
µ,∗(R)

.

The previous estimates allow us to deduce

‖G2(h1)−G2(h2)‖
C0,λ
µ,σ(R2)

≤ Cα‖h1 − h2‖C2,λ
µ,∗(R)

.

Furthermore, from (4.3) we also have that

‖G2(0)‖
C0,λ
µ,∗(R)

≤ Cα2 (4.4)

for some C > 0 possibly depending on K.
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Next, we consider

c∗G1(h1) = αh′′1(s)

∫

R
ζ0(t+ h1)A0(s, α(t+ h1))w′′(t)w′(t)dt

+ α2Q(s)h′′1(s)

∫

R
ψ′0(t)w′(t)dt+ α−2

∫

R
ζ0 R1(s, t, h1, h

′
1)w′(t)dt

It is direct to check, from (4.6) and (4.17) the following estimate on the Lipschitz character for
G1(h)

‖G1(h1)−G1(h2)‖
C0,λ
µ,∗(R)

≤ Cα‖h1 − h2‖C2,λ
µ,∗(R)

.

Now, a simple but crucial observation we make is that

c∗G1(0) = α−2

∫

R
ζ0 R1(αs, t, 0, 0)w′(t)dt

has the size

‖G1(0)‖
C0,λ
µ,∗(R)

≤ Cα−2‖R1‖C0,λ
µ,σ(R)

≤ C2α (4.5)

for some constant C2 independent of K in (4.1). Therefore, the entire operator G(h) inherits a
Lipschitz character in h, from those of G1, G2:

‖G(h1)− G(h2)‖
C0,λ
µ,∗(R)

≤ Cα‖h1 − h2‖C2,λ
µ,∗(R)

. (4.6)

Further, estimates (4.4)-(4.5) imply that G is such

‖G(0)‖
C2,λ
µ,∗(R)

≤ 2C2α (4.7)

Now let h = T (f) be the linear operator defined in Proposition 10, and let G be the nonlinear
operator given in (4.32). Consider the Jacobi nonlinear equation (4.1), but this time written as a
fixed point problem: Find some h such that

h = T (G(h)), ‖h‖
C2,λ

2+α,∗(R)
≤ Kα (4.8)

Observe that

‖T (G(h))‖
C2,λ

2+α,∗(R)
≤ C

(
‖G(h)− G(0)‖

C0,λ
2+α,∗(R)

+ ‖G(0)‖
C0,λ

2+α,∗(R)

)

≤ C α
(

1 + ‖h‖
C2,λ

2+α,∗(R)

)

where we made use of (4.6)-(4.7). Observe also that

‖T (G(h1))− T (G(h2))‖
C2,λ

2+α,∗(R)
≤ C‖G(h1)− G(h2)‖

C0,λ
2+α,∗(R)

≤ Cα‖h1 − h2‖C2,λ
2+α,∗(R)

Hence choosing K > 0, large enough but independent of α > 0, we find that if α is small, the
operator T ◦ G is a contraction on the ball ‖h‖

C2,λ
2+α,∗(R)

≤ Kα. As a consequence of the Banach’s

fixed point theorem, obtain the existence of a unique fixed point of the problem (4.8). This finishes
the proof of Proposition 11 and consequently, the proof of our theorem.
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4.8 Examples

To get a better understanding of the geometrical settings of this chapter, we present some examples
that portray the nature of the curves and of the potentials we are thinking of, and how they interact
in a way that they meet all the hypotheses of Theorem 4.1.1.

In what follows, we will admit curves that can be represented as the graph of some function.
Let us consider a smooth function f : R→ R, f = f(x), and a parameterized curve Γ := {γ(x)/ x ∈
R} ⊂ R2 such that

γ(x) = (x, f(x)), γ̇(x) = (1, f ′(x)) (4.1)

In addition we choose the normal ν of Γ oriented negatively, meaning that the wedge product
γ̇(x)× ν(x) points in the opposite direction than e3, the generator of the z−axis in R3. This forces

ν(x) =
1√

1 + |f ′(x)|2
(f ′(x),−1)

Let us also consider a potential defined in Euclidean coordinates a = a(x,y), adopting the
convention where (x,y) := (x̄, ȳ), which satisfies all the hypothesis (4.3)-(4.6) supposed for this
Chapter.

Recall from the criticality condition (4.1), that in order for Γ to be a stationary curve with
respect to the weighted arc-length la,Γ, is necessary that the potential a and the curvature k satisfy
the equation

∂ta(s, 0) = k(s) · a(s, 0) , a.e. s ∈ R (4.2)

Denoting X(x, t) := γ(x) + tν(x), we can now set the potential written in this coordinates as

ã(x, t) := a ◦X(x, t) = a

(
x +

tf ′(x)√
1 + |f ′(x)|2

, f(x)− t√
1 + |f ′(x)|2

)
(4.3)

Accordingly, relation (4.3) implies that the criticality condition (4.2) amounts to the following
equation in Euclidean coordinates

∂xa(x, f(x))f ′(x)√
1 + |f ′(x)|2

− ∂ya(x, f(x))√
1 + |f ′(x)|2

=
f ′′(x)

(1 + |f ′(x)|2)3/2
· a(x, f(x)) (4.4)

where it has been used the classical formula for the curvature of Γ as given in (4.1),

k(x) = f ′′(x)(1 + |f ′(x)|2)−3/2

Example 1: The x-axis

For the sake of simplicity, let us find a some particular kind of stationary curve. We will be interested
in finding Γ ⊂ R2 as a straight line on the Euclidean plane, further, we want this line to be the
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x-axis. Nonetheless, the stationarity of this line must be with respect to some nontrivial potential
a(x,y) 6≡ 1 that does not represent the classic Euclidean metric in R2, case in which all straight
lines are trivially known as stationary curves.

With this purpose, let us set the function f(x) ≡ 0 in (4.1), implying that Γ =
−→
0X. In particular,

adopting the convention ei := (δi1, δi2) with δij denoting the Kronecker delta, we have on the curve
that ν(x) ≡ e2, thus the Fermi coordinates are reduced simply to the Euclidean coordinates, namely
X(x, t) = xe1 + te2 = (x, t).

In this simplified context, it turns out that the criticality condition (4.4) is reduced to

−∂ya(x, 0) = 0, ∀x ∈ R (4.5)

Therefore, we only need to find a nontrivial potential ã(x, t) = a(x,y) in such way the x-axis
becomes a stationary curve, and also a nondegenerate curve.

Claim 2. Given any α > 0, the following potential

a(x,y) :=
1

(1 + |x|)2+α
·
(

y2

cosh(y)

)
+ 1 (4.6)

satisfies all the requirements previously indicated, in relation with the curve Γ =
−→
0X.

Proof.-
Let us note that a(x,y) is smooth, globally bounded, and bounded below far away from zero.

Further, it is direct that
−→
0X is a stationary curve relative to la,Γ since solves equation (4.5)

∂ya(x,y) =
1

(1 + |x|)2+α

(
2y − y2 sinh(y)

cosh2(y)

)
⇒ ∂ya(x, 0) = 0, ∀x ∈ R

Now to see that
−→
0X is a nondegenerate curve, just note that the potential achieves it minimum

exactly on the region defined by the x-axis, and moreover, around this curve the potential is strictly
convex in the y-direction. The latter translates in the fact that ∂yya(x, 0) > 0, given

∂yya(x,y) =
1

(1 + |x|)2+α

(
2− 2y sinh(y)− y2 cosh(y)

cosh2(y)
− 2(2y − y2 sinh(y)) sinh(y)

cosh3(y)

)

⇒ ∂yya(x, 0) =
2

(1 + |x|)2+α
> 0, ∀x ∈ R

Taking this into account, note that a(x,y) and k(x) ≡ 0 are such that term

Q(x) :=
∂yya(x, 0)

a(x, 0)
− 2k2(x)

fulfills the following conditions

Q(x) > 0, and |Q(x)| ≤ 2

(1 + |x|)2+α
, ∀x ∈ R
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Hence we deduce that Γ =
−→
0X is a nondegenerate curve with respect to the potential a(x,y) given

in (4.6), finishing the proof of Claim 2. �

Using the software MATLAB v2010, we plot the potential on the square [−10, 10] × [−10, 10],
and we illustrate in color red the respective stationary curve Γ.
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Figure 1: Potential a(x,y) (4.6) with geodesic Γ = ~0X, for α = 10−2.

Example 2: Asymptotic straight line

This time we consider a different type of curve Γ ⊂ R2. For ω 6= 0, let us set function f(x) :=√
1 + ω2x2, so that Γ converges asymptotically to straight lines as |x| → ∞. We have to exhibit

some nontrivial potential a(x,y) for which Γ be nondegenerate geodesic relative to the arclength∫
Γ a(~x). Since this curve is not exactly a straight line, we don’t get any simplification of the Fermi

coordinates X(x, t). Therefore, we will assume a weaker dependence of the potential in Euclidean
variables, namely a = a(y). Note that

f ′(x) =
ω2x√

1 + ω2x2
, f ′′(x) =

ω2

(
√

1 + ω2x2)3/2
,

f ′′(x)

1 + |f ′(x)|2 =
ω2

f3(x) + ω2f(x)(f2(x)− 1)
(4.7)

So, given the dependence of a only on y−variable, criticality condition (4.4) amounts to

a′(f(x))

a(f(x))
=

−f ′′(x)

1 + |f ′(x)|2 = g(f(x)) (4.8)

with g(y) := −ω2[(1 + ω2)y3 − ω2y]−1.
We can solve directly this ordinary differential equation (4.8), for a in y−variable.

log(a(y)) =

∫
g(y)dy +M ⇔ a(y) = M exp

(∫ −ω2dy

(1 + ω2)y3 − ω2y

)
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This integral can be computed using partial fraction decomposition, noting the factorization y3 −
ω2/(1 + ω2)y = y(y − y+)(y − y−) in which y± := ±ω(

√
1 + ω2)−1. Then,

A

y
+

B

y − y+
+

C

y − y−
=

(A+B + C)y2 + (−y−B − y+C)y − ω2/(1 + ω2)A

y3 − ω2/(1 + ω2)y

which leads to a linear system, solved by A = 1, B = −1
2 , C = −1

2 . Hence we obtain

a(y) = M exp

(∫
dy

y
−
∫

dy

2(y − y+)
−
∫

dy

2(y − y−)

)
=

My√
(y − y+)(y − y−)

For this construction, we will need to consider a slight modification of function a as follows. We
say that the potential â : R2 → R is an admissible left-extension of function a(x, y), provided
that I) â be smooth bounded function, of at least C2(R2) class. II) â(x, y) = a(x, y) for points with
y ≥ ω2/(1+ω2). III) â is uniformly positive, bounded below away from zero. We state the following

Claim 3. Given |ω| ≤ 1/
√

2, any admissible left-extension of the potential given below

a(x,y) :=

√
1 + ω2y√

(1 + ω2)y2 − ω2
(4.9)

induces a metric in R2 for which Γ =
{

(x,
√

1 + ω2x2)
}
x∈R

is a nondegenerate geodesic.

Proof.-
Regardless the value of the parameter ω 6= 0, it can be readily checked that within the region y ≥
2ω/
√

1 + ω2, function (4.9) is smooth, bounded, and uniformly positive. Moreover, this potential
satisfies the asymptotic stability on the curve Γ, since f(x)→ +∞ as |x| → +∞ and additionally

lim
y→+∞

a(x,y) = 1, ∀x ∈ R. The previous construction of a(x,y) was intended to build a potential

satisfying the criticality condition (4.8) for the curve generated by f(x) =
√

1 + ω2x2. Thus Γ is a
geodesic for the arclength

∫
Γ a(~x). All these features of a ensure that any admissible left-extension

will provide a potential with the desired properties to induce a smooth metric in R2, fulfilling
hypothesis (4.1) of Theorem 4.1.1. Notwithstanding, in order to estimate the derivatives of ã we
need to compute first

∂xã(x, 0) = a′(f(x))f ′(x), ∂tã(x, 0) = −a′(f(x))[1 + |f ′(x)|2]−1

∂xxã(x, t) = a′′(f(x))|f ′(x)|2 + a′(f(x))f ′′(x), ∂ttã(x, t) = (−1)2a′′(f(x))[1 + |f ′(x)|2]−1

∂xtã(x, t) = −a′′(f(x))f ′(x)/[1 + |f ′(x)|2]− 2a′(f(x))f ′(x)f ′′(x)/[1 + |f ′(x)|2]2

Moreover a tedious but simple calculation shows that

a′(y) =
−ω2
√

1 + ω2

(y2 + ω2(y2 − 1))3/2
, a′′(y) =

3ω2(1 + ω2)3/2y

[(1 + ω2)y2 − ω2]5/2

Therefore, taking into account the decay (4.7) of f(x) and its derivatives, follows that this potential
satisfies condition (10) of Theorem 4.1.1, for α = 2 > 0. It only remains to prove the nondegeneracy
property of the curve Γ. It can be checked the positiveness of the term Q(x), in fact

2k2(x) =
2|f ′′(x)|2

(1 + |f ′(x)|2)3/2
=

2ω2

(1 + (ω2 + ω4)x2)3
, ∂ttã(x, 0) = a′′(f(x))

1 + ω2x2

1 + (ω2 + ω4)x2
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so by the definition Q(x) = ∂ttã(x, 0)/ã(x, 0)− 2k2(x) we obtain

Q(x) ≥ min{1, ‖a‖−1
∞ }

(
3ω2(1 + ω2)3/2

√
1 + ω2x2

[(1 + ω2)(1 + ω2x2)− ω2]5/2
· 1 + ω2x2

1 + (ω2 + ω4)x2
− 2ω2

(1 + (ω2 + ω4)x2)3

)

> Ca

(
3ω2(1 + ω2)3/2(1 + ω2x2)1/2

(1 + ω2)5/2(1 + ω2x2)5/2
− 2ω2

(1 + (ω2 + ω4)x2)3

)

≥ Ca
(

3ω2

(1 + ω2)(1 + ω2x2)2
− 2ω2

(1 + ω2x2)3

)
=

Caω
2

(1 + ω2x2)2

(
3

1 + ω2
− 2

1 + ω2x2

)

Hence choosing ω ∈ R \ {0} with |ω| ≤ 1/
√

2, we get that Q(x) > 0 in the entire domain R. Finally
the term Q(x) decays polynomially at a rate O((1 + |x|)−4) as a consequence of the decay of the
potential and the squared curvature, which finishes the proof of Claim 3. �

Remark 1. We emphasize the fact that the criticality condition for Γ and the nondegeneracy
property are tested only within the semi-space y ≥ 1, which involve only the part (4.9) of the
admissible left-extension, since â(x,y) = a(y) in this region and the curve complies |f(x)| ≥ 1.

Using the software MATLAB v2010, we plot an admissible left-extension of the potential on
the square [−10, 10] × [−10, 10], and we illustrate in color red the respective stationary curve

Γω :=
{

(x,
√

1 + ω2x2) : x ∈ R
}

.
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Figure 2: Potential â(x,y) (4.9) with Γω as nondegenerate geodesic, for ω = 1/2.
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Chapter 5

Conclusions

General Conclusions

The Lyapunov-Schmidt reduction method has proven to be a very versatile and useful tool to prove
existence of solutions to semilinear elliptic equations. In this thesis work we took advantage of this
method in different scenarios, where the method granted either qualitative properties or asymptotic
behavior of the solutions we have found.

In this regard, the families of solutions found in chapters 2 and 3 do enjoy axial symmetry,
though the linear theory, associated to the projected problems there, did not make use of this
special property. This is due to the invariance of the laplacian under rotations and the invariances
of the surfaces from where the whole scheme is built.

An important aspect of the existence results we present in chapters 2,3 and 4, is the lack of
compactness in the domain. This of course makes the analysis of linear operators more involved.
We took advantage of the fact that the reduced problems, in the three chapters, were in essence
odes and in this setting explicit right inverses for linear operators can be found from variations of
parameters formula.

Another remark is in order. In the introduction we paid special attention to the relation between
Allen-Cahn equation and minimal surfaces. We remark that, even for solutions with multiple
transitions layers, minimal surfaces are the candidates to be nodal sets, or to be close to nodal sets
of solutions to the Allen-Cahn equation, though we have not stressed this out explicitly.
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Conclusions from chapter 2

In the introduction we mentioned that the next step in generalizing De Giorgi’s conjecture consists
on understanding and classifying entire solutions to

∆u+ u(1− u2) = 0, in RN

having finite Morse index. The geometry of level sets for this type of solutions, as we have seen, is
very rich and nontrivial. In chapter 2, we constructed a new family of solutions to the Allen-Cahn
equation with any arbitrary number of transition layers diverging logarithmically from a catenoid.
From the fact that the linear operator associated to the reduced problem enjoys the form

δ∆Mh+ |AM |2 h = q, δ → 0.

and as we saw the inverse of this operator may blow up as δ → 0, it is expected that the Morse
index of this family of solutions also blows up as the catenoid becomes more dilated.

A natural question that arises from this chapter is whether the construction can be taken into
the setting of more complicated minimal surfaces, where no axially symmetry is present. A first
step on this issue would be to investigate for instance the Costa-Hoffman-Meeks minimal surface,
which is invariant under a the discrete group of dihedral symmetries and reflections.

Conclusions for chapter 3

The Lyapunov-Schmidt reduction scheme done for the construction of the family of solutions from
chapter 3, follows basically the same lines of the construction in chapter 2. The main difference is
of course the reduced problem. While in chapter 2, we needed to find an explicit solution of the
Jacobi- Toda system through an approximation scheme, in chapter 3, a smooth radially symmetric
solution to Liouville equation is available. Another important difference in both reduced problems
comes from the linear Jacobi-Toda operator from chapter 2 and the Liouville linearized operator in
chapter 3. Though the topologies where we invert are very much alike, the nature of both operator
is very different.

Hence, together with the family of solutions from chapter 2, with two catenoidal transitions, at
a first glance would seem to be very much alike since they both have logarithmical ends, but they
are expected to differ strongly on its Morse index. Verifying this last statements should be of course
the next step on the program presented in chapters 2 and 3.

Conclusions for chapter 4

In the introduction we mentioned the relation between the solutions of the inhomogeneous Allen-
Cahn equation (1.8), and the properties of the potential a(x) involved in this PDE. This opened a
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question about the existence of a smooth bounded solution u with transition near a given noncom-
pact curve Γ ⊂ R2. More specifically, in determining sufficient conditions on a(x) and Γ in order
to build such solutions. In this direction, Theorem 4.1.1 provides some specific conditions on both,
the potential a(x, y) and the curve Γ, of which we point out the following:

� The smoothness and the uniform positiveness of the potential a(x, y),

� The polynomial decay along the curve of the potential, and the decay of curvature kΓ,

� The stationarity of Γ relative to la,Γ plus a nondegeneracy, in relation to the existence of
bounded kernel of the Jacobi operator Ja[h].

Furthermore as expected, it turns out that the solution u depends strongly on the potential a(x).
Indeed, the construction method forces the solution u to depend on some perturbation h, that is
ultimately determined by a(x); h needs to solve the nonlinear Jacobi equation (4.33).

A precise qualitative description is presented in Proposition 12, for the asymptotic behavior of
a solution to Ja,Γ[h] = 0, provided some conditions on the coefficients of the equation. The study
of the kernel of the Jacobi operator is the key aspect from which we obtain the desired invertibility.
Proposition 13 assures the sufficiency for the variation of parameters formula, to provide a smooth
bounded solution of Ja,Γ[h] = f , for a locally Hölder right-hand side decaying polynomially. Further,
the polynomial decay is inherited to h′ and h′′ as stated in (4.31). In addition, the last Proposition
also shows a high regularity for the solution here provided, unlike what presented on classical
contexts of invertibility, where the inverse of JM is usually defined in functional spaces of weaker
regularity.

The nondegeneracy condition of Γ supposed in Theorem 4.1.1, basically implies that the curve
Γ is isolated in some proper topology, so we do not have bounded kernel.This assumptions is a
simplification the study of the invertibility theory of the Jacobi operator in our case. It would be
interesting to study if the same results holds when removing this condition.

In another topic, it is worth mentioning a previous stage of this study, where we dealt with a
slight simplification of the context in this thesis work. It was studied the existence of a solution u
to the inhomogeneous Allen-Cahn equation (4.1), in the case where the potential a : R2 → R has
the form a(x) = 1 + χ(x), where function χ has compact support. An interesting result arose from
this analysis, characterizes the nondegeneracy condition of the unbounded curve Γ in terms of the
solvability of an related ODE in a compact domain. More explicitly, we proved

Proposition 15. Let Γ be an unbounded curve, intersecting the set Ω := supp(χ) ⊂ R2. Assume
that the portion of Γ contained in Ω is parametrized as Γ∩Ω := γ([s1, s2]). Then Γ is a nondegenerate
curve with respect to the arclength

∫
Γ a(x), if and only if, the following Neumann boundary value

problem {
Ja,Γ[h](s) = 0, in (s1, s2)

h′(s1) = h′(s2) = 0
(5.1)

does not have the eigenvalue λ = 0.
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From this fact we can easily describe the kernel of Ja,Γ, since the nontrivial behavior of a
bounded basis h1, h2 it only could arise on the compact portion Ω, depending on the existence
of the eigenfunction associated to λ = 0. Another appealing geometrical property arisen in this
context is related to the stationarity for geodesics. It can be shown, using a similar argument
than carried out in [12] for the analysis of the nondegeneracy in R2 on a bounded domain, that a
necessary condition for a curve Γ to be geodesic related to the length

∫
Γ a(x), is that Γ must cross

perpendicularly the boundary ∂Ω, which requires that on each point of intersection P ∈ Γ ∩ ∂Ω the
tangent vector t̂ of the curve must be perpendicular to the normal of the boundary νΩ.

On the other hand, we must say that the two examples 4.8-4.8 exhibited in Chapter 4.2 con-
stitutes a major contribution to the understanding of Differential Geometry in relation to Partial
Differential Equations. There are only a few examples of this kind in the literature, because of
the difficulty in finding nontrivial geometrical configurations in which geodesic curves which are
non-degenerate with respect to some arclength

∫
Γ a(x).

There are natural extensions of this work, that can lead to future works. One open problem
consists in a variant of this work, on the existence of smooth bounded solutions u to the inhomo-
geneous Allen-Cahn equation (4.1) with multiple transitions near an noncompact curve Γ, whose
positions are expected to be governed by a Toda-type system. Some other cases consist in the study
of the same equation in a variety of settings, where the potential a(x) is less smooth or has some
singularities, or where the uniform positiveness does not hold.

Concluding remarks

We finish this chapter first, refereing the reader to the discussion presented in the Appendix A,
where multiplicity results are given for a nonlinear system of PDE’s with symmetric coupling as
applications of a variational form of the Lyapunov-Schmidt reduction method. At the core of this
variational reduction is the structure of the equation

−∆u = f(u), ∈ Ω

for Ω ⊂ RN bounded and smooth, and f an even super linear and subcritical nonlinearity. This fact
is striking since it comes directly from the structure of the system rather than the nonlinearity.

One of the interesting cases that are yet to be solved, is the case of asymptotically linear f ,
having slope λ that do not cross any eigenvalues of the −∆.
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Abstract

Multiplicity results are proved for the nonlinear elliptic system




−∆u+ g(v) = 0

−∆v + g(u) = 0 in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary and g : R −→ R is a

nonlinear C1-function which satisfies additional conditions. No assumption of symmetry

on g is imposed.

1This work was supported by Progetto UniALA, offered by Fondazione Cariplo and Universit degli
Studi di Milano in 2010. The first author was also partly funded by the chilean grant MECESUP, proyect
UCH0607.

Preprint submitted to Elsevier September 6, 2012



Extensive use is made of a global version of the Lyapunov-Schmidt reduction method due

to Castro and Lazer and of symmetric versions of the Mountain Pass Theorem.

Keywords: Elliptic system, Lyapunov-Schmidt reduction method, Mountain Pass

Theorem.

1. Introduction

It is well-known that a symmetry in a differential equation often generates the existence

of multiple solutions. Consider e.g. the superlinear and subcritical equation

−∆u = f(u) , in Ω , u|∂Ω = 0 , (1.1)

where f ∈ C(R) is a superlinear and subcritical nonlinearity. If f(u) is an odd function,

then the equation has the symmetry u 7→ −u. Using the concept of index theories (e.g.

the Krasnoselskii genus), one shows that this symmetry implies that the equation has

infinitely many solutions.

In this article we consider a semilinear elliptic system in which the symmetry is not given

by an odd nonlinearity, but by a symmetric coupling. We consider systems of the following

form




−∆u+ g(v) = 0

−∆v + g(u) = 0 in Ω,

u = v = 0 on ∂Ω,

(1.2)

where Ω ⊂ RN , N ≥ 2, is a bounded domain with smooth boundary and g : R −→ R is

a C1-function satisfying some assumptions to be specified later, but is not required to be

odd. Note that this system allows the following symmetry:

T1 : (u, v) 7→ (v, u).
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Indeed, looking at the associated functional (supposing it is well-defined)

J(u, v) =

∫

Ω

∇u · ∇v +

∫

Ω

G(u) +

∫

Ω

G(v) , (1.3)

where G(s) =
∫ s

0
g(t)dt is the primitive of g, we see that this functional is invariant under

the group action T = {id, T1}.

Thus, one may try to proceed similarly as for equation (1.1) by defining a suitable index.

However, one encounters two major problems. First, the functional is strongly indefinite

due to the first term in the functional. Second, the group T has an infinite-dimensional

fixed point space, given by the pairs of functions of the form {(u, u)}. We overcome these

difficulties by performing an infinite dimensional Lyapunov-Schmidt reduction (following

Castro-Lazer [5]). Surprisingly, the resulting reduced functional J̃ has the classical Z2-

symmetry {id,−id} (although, as we emphasize, no oddness assumption is taken for the

nonlinearity), and so classical variational methods for the existence of multiple solutions

can be employed.

We will denote by 0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · the sequence of eigenvalues of −∆

with zero Dirichlet boundary condition in Ω. Also, {ϕj}j will denote an orthonormal

basis, in H1
0 (Ω), of eigenfunctions of −∆ in Ω with Dirichlet boundary condition. We will

study the existence of multiple solutions for problem (1.2) under three different sets of

conditions. For the first two sets, we assume g satisfies

(g0) g(0) = 0 and

(g1) inft∈R g′(t) > −λ1.

First, we consider the superlinear setting, in which we assume

(g2) There exists a positive constant C such that

|g(t)| ≤ C(1 + |t|p), where p ∈ (1, N+2
N−2

) for all t ∈ R, and
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(g3) There exists R > 0 such that 0 < µG(t) ≤ tg(t), for |t| > R, where µ > 2.

Secondly, we also consider the asymptotically linear setting, in which g is assumed to

satisfy

(g4) g′(∞) := lim|t|→∞
g(t)
t
∈ (λk, λk+1) for some k ≥ 1.

Our main results read as follows.

Theorem A. (superlinear case) If g satisfies (g0) − (g3), problem (1.2) has infinitely
many solutions.

We observe that conditions (g2) and (g3) include the “classical” nonlinearity g(t) = t|t|p−1.

But we emphazise that Theorem A holds true for a more general kind of nonlinearities,

e.g. g(t) = (t+)p − (t−)q, for t ∈ R and 1 < p, q < (N + 2)/(N − 2), without any further

restriction on p and q.

In the asymptotically linear framework we have the following analogue of Theorem A.

Theorem B. (asymptotically linear case) Assume g satisfies (g0)− (g1) and (g4). If, in
addition, g′(0) < λj for j ≤ k, then problem (1.2) has (at least) 2(k − j + 1) nontrivial
solutions.

On the other hand, we consider a third setting, in which we only assume

(g5) supt∈R g
′(t) < λ1.

We observe that under condition (g5), system (1.2) is equivalent to the system





−∆u = h(v)

−∆v = h(u) in Ω,

u = v = 0 on ∂Ω,

(1.4)
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where h = −g satisfies inf h′ > −λ1. We point out that (1.4) is the very analogue in

systems of the single-equation problem (1.1). In this direction we prove the following

result which shows that system (1.2) (or, equivalently, system (1.4)) has a strong hidden

symmetry.

Theorem C. Assume g satisfies (g5). Then (u, v) is a solution of (1.2) if and only if
u ≡ v and

−∆u+ g(u) = 0 , in Ω , u|∂Ω = 0 . (1.5)

In other words, under condition (g5), solving system (1.2) is equivalent to solving the
single-equation problem (1.5).

System (1.2) is Hamiltonian and our approach to it is variational, i.e. we define an energy

functional J : H1
0 (Ω)×H1

0 (Ω) −→ R by

J(u, v) =

∫

Ω

(∇u · ∇v +G(u) +G(v)) dζ,

where G(t) :=
∫ t

0
g(s)ds. Assuming either (g2) or (g4), this functional is of class C1 (see

[11]) and

∂uJ(u, v)ϕ =

∫

Ω

(∇ϕ · ∇v + g(u)ϕ) dζ, ∀u, v, ϕ ∈ H1
0 (Ω), (1.6)

and

∂vJ(u, v)ψ =

∫

Ω

(∇u · ∇ψ + g(v)ψ) dζ, ∀u, v, ψ ∈ H1
0 (Ω). (1.7)

Thus, because of classical regularity theory (see [9]), critical points of J agree with classical

solutions of problem (1.2). We then prove Theorem A and B showing the existence of

critical points of J . Because of the form of the system

(u, v) is a solution of (1.2) if and only if (v, u) is a solution of (1.2), (1.8)

as can be easily verified. This fact provides some symmetry on the functional J when it

is written in appropriate coordinates.

The paper is organized as follows: in Section 2 we recall the Castro-Lazer version of

the Lyapunov-Schmidt reduction method in an abstract setting. We then show that our
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functional J satisfies the conditions of such setting. In Section 3 we prove Theorem A

and in Section 4 we prove Theorem B. In proving them, we recall and use appropriate

symmetric versions of the Mountain Pass Theorem of Ambrosetti and Rabinowitz. Finally,

in Section 5 we prove Theorem C.

2. Preliminaries

We begin by stating a global version of the Lyapunov-Schmidt method (see [4] and [5]).

Lemma 2.1. Let H be a real separable Hilbert space. Let Z and W be closed subspaces
of H such that H = Z ⊕W . Let J : H −→ R a function of class C1. If there exist m > 0
and σ > 1 such that

〈∇J(z + w)−∇J(z + w1),w−w1〉 ≥ m‖w−w1‖σH ∀z ∈ Z ∀w,w1 ∈ W (2.1)

then:

(i) There exists a continuous function φ : Z → W such that

J(z + φ(z)) = min
w∈W

J(z + w).

Moreover, given z ∈ Z, φ(z) is the unique element of W such that

〈∇J(z + φ(z)),w〉 = 0 ∀w ∈ W. (2.2)

(ii) The functional J̃ : Z → R, defined by J̃(z) := J(z+ φ(z)) for z ∈ Z, is of class C1.
Moreover,

DJ̃(z)h = 〈∇J̃(z),h〉 = 〈∇J(z + φ(z)),h〉 ∀z,h ∈ Z. (2.3)

(iii) Given z ∈ Z, z is a critical point of J̃ if and only if z+φ(z) is a critical point of J .

Assuming (g1) and either (g2) or (g4), we intend to apply Lemma 2.1 to the functional

J : H1
0 (Ω)×H1

0 (Ω) −→ R defined as

J(u, v) =

∫

Ω

(∇u · ∇v +G(u) +G(v)) dζ,
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where G(t) :=
∫ t

0
g(s)ds. First, it is well-known that assuming either (g2) or (g4), this

functional is of the class C1 (see [11]) and

∂uJ(u, v)ϕ =

∫

Ω

(∇ϕ · ∇v + g(u)ϕ) dζ, ∀u, v, ϕ ∈ H1
0 (Ω), (2.4)

and

∂vJ(u, v)ψ =

∫

Ω

(∇u · ∇ψ + g(v)ψ) dζ, ∀u, v, ψ ∈ H1
0 (Ω). (2.5)

Let us take H = H1
0 (Ω) × H1

0 (Ω) equipped with the inner product 〈(u1, v1), (u2, v2)〉 =

〈u1, u2〉H1
0

+ 〈v1, v2〉H1
0
. Here, 〈f1, f2〉H1

0
=
∫

Ω
∇f1 · ∇f2. Let us define W := {w = (w,w) :

w ∈ H1
0 (Ω)} and Z := {z = (z,−z) : z ∈ H1

0 (Ω)}. Then H1
0 (Ω)×H1

0 (Ω) = Z ⊕W . Let

us verify (2.1). Let z ∈ Z and w,w1 ∈ W . Then

〈∇J(z + w)−∇J(z + w1),w−w1〉

= 〈∇J(z + w,−z + w)−∇J(z + w1,−z + w1), (w − w1, w − w1)〉

= [∂uJ(z + w,−z + w)− ∂uJ(z + w1,−z + w1)](w − w1)

+[∂vJ(z + w,−z + w)− ∂vJ(z + w1,−z + w1)](w − w1)

= 2

∫

Ω

|∇(w − w1)|2 +

∫

Ω

[g(z + w)− g(z + w1)](w − w1)

+

∫

Ω

[g(−z + w)− g(−z + w1)](w − w1).

Because of (g1), there exists ε ∈ (0, λ1) such that g′(t) ≥ −λ1 + ε for all t ∈ R. Thus, the

Mean Value Theorem, the previous identities, and Poincare Inequality give us

〈∇J(z + w)−∇J(z + w1),w−w1〉

≥ 2

∫

Ω

|∇(w − w1)|2 + 2(−λ1 + ε)

∫

Ω

(w − w1)2

≥ 2

∫

Ω

|∇(w − w1)|2 + 2
(−λ1 + ε)

λ1

∫

Ω

|∇(w − w1)|2

= 2
ε

λ1

∫

Ω

|∇(w − w1)|2 =
ε

λ1

‖w−w1‖2
H .
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We have then verified the hypotheses of Lemma 2.1. Thus, there exist a continuous

function w ≡ φ : Z −→ W and a functional J̃ : Z −→ R which satisfy (i), (ii) and (iii).

Because of (iii), our concern becomes the existence of critical points of the functional J̃ .

Observe that, given z = (z,−z) ∈ Z, w(z) = (w(z), w(z)) and

J̃(z) = J(z + w(z),−z + w(z))

=
∫

Ω
[|∇w(z)|2 − |∇z|2 +G(z + w(z)) +G(−z + w(z))] dζ.

(2.6)

The symmetry of problem (1.2) expressed by condition (1.8) is translated into the following

lemma.

Lemma 2.2. If g satisfies (g1) and either (g2) or (g4), then the function w ≡ φ and the

functional J̃ are even.

Proof. Let z = (z,−z) ∈ Z. First, let us verify that

〈∇J(−z + w(z), z + w(z)), (ϕ, ϕ)〉 = 0 , ∀ ϕ ∈ H1
0 (Ω)

which, by uniqueness in (i) of Lemma 2.1, implies that w(z) = w(−z). Indeed, observe
that

〈∇J(−z + w(z), z + w(z)), (ϕ, ϕ)〉
= ∂uJ(−z + w(z), z + w(z))ϕ+ ∂vJ(−z + w(z), z + w(z))ϕ

=

∫

Ω

∇ϕ · ∇(z + w(z)) + g(−z + w(z))ϕdζ +

∫

Ω

∇(−z + w(z)) · ∇ϕ+ g(z + w(z))ϕdζ

=

∫

Ω

∇ϕ · ∇(−z + w(z)) + g(z + w(z))ϕdζ +

∫

Ω

∇(z + w(z)) · ∇ϕ+ g(−z + w(z))ϕdζ

= ∂uJ(z + w(z),−z + w(z))ϕ+ ∂vJ(z + w(z),−z + w(z))ϕ

= 〈∇J(z + w(z),−z + w(z)), (ϕ, ϕ)〉 = 0 , ∀ ϕ ∈ H1
0 (Ω).

Hence, given z ∈ H1
0 (Ω),

J̃(−z) = J(−z + w(−z), z + w(−z))

= J(−z + w(z), z + w(z))

=
∫

Ω
(|∇w(z)|2 − |∇(−z)|2 +G(−z + w(z)) +G(z + w(z)))dζ

= J(z + w(z),−z + w(z))

= J̃(z).
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Remark 1: Observe that from condition (g1) and Lemma 2.1, we conclude that the set

of candidates to be solutions of (1.2) is contained in the graph {z + w(z) : z ∈ Z}. From

condition (g0) we have w(0) = 0. Hence, combining these two facts, we observe that

under (g0) − (g1) the unique solution (u, v) of (1.2) with u ≡ v, i.e living in the set of

fixed points of the action group, is the trivial one. Compare this with Theorem C.

3. Proof of Theorem A

Throughout this section we assume g satisfies (g0), (g1), (g2) and (g3). To prove Theorem

A we make use of the following version of the Symmetric Mountain Pass Theorem (see e.

g. [11]). We recall that if E is a Banach space and I ∈ C1(E,R), a sequence {en} in E

is a (PS)-sequence for the functional I, provided that

∀n ∈ N, |I(en)| ≤ C and DI(en) −→ 0, n→∞. (3.1)

The functional I is said to satisfy the (PS)-condition on E if every (PS)-sequence in E

has a convergent subsequence.

Theorem 3.1. Let E = E1 ⊕ E2 be an infinite dimensional Banach space, where E1 is
a finite dimensional subspace. Let us assume I ∈ C1(E,R) is even, satisfies the Palais-
Smale condition and I(0) = 0. Assume, in addition, I satisfies:

(I1) There exist positive constants α and ρ such that I|∂Bρ∩E2 ≥ α.

(I2) For each finite dimensional subspace X ⊂ E there exists an R = R(X) > 0 such
that I|X\BR(0) ≤ 0.

Then I possesses an unbounded sequence of critical values.

We apply Theorem 3.1 to the functional −J̃ . To this end, let j ∈ N such that g′(0) < λj.

We take E1 := 〈(ϕ1,−ϕ1) . . . , (ϕj−1,−ϕj−1)〉 ⊂ Z and E2 = E⊥1 ⊂ Z.

Claim 1: Under assumptions (g0)-(g3) functional −J̃ satisfies (I1).
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Proof. Let us consider the functional F : H1
0 (Ω) −→ R defined as

F (z) = −J(z,−z) =

∫

Ω

(|∇z|2 −G(z)−G(−z)) dζ

=

∫

Ω

(
1

2
|∇z|2 −G(z)) dζ +

∫

Ω

(
1

2
|∇(−z)|2 −G(−z)) dζ.

Because of hypothesis (g0) and the variational characterization of λj (see [11] or [6]),

F |〈ϕ1...,ϕj−1〉⊥ has a strict local minimum at zero and there exist positive constants α and

ρ such that

F (z) ≥ α ∀z ∈ ∂Bρ ∩ 〈ϕ1 . . . , ϕj−1〉⊥ ⊂ H1
0 (Ω).

Hence, for each z = (z,−z) ∈ ∂B√2ρ ∩ E2 ⊂ Z,

−J̃(z) = − min
w∈H1

0 (Ω)
J(z + w,−z + w) ≥ −J(z,−z) = F (z) ≥ α. �

Claim 2: Under assumptions (g0)-(g3) the functional −J̃ satisfies (I2).

Proof. Let X be a finite dimensional subspace of Z. Then, there exists a constant γX > 0

such that ‖z‖2 ≤ γX‖z‖2
L2 for all z = (z,−z) ∈ X. Using hypothesis (g3) and integrating,

G(t) ≥ a|t|µ − b

where a > 0 and b > 0 are constants. Since µ > 2, given any α > 0, there exists a

constant Cα such that

a|t|µ − b ≥ α

2
t2 + Cα

(for this, simply consider h(t) := a|t|µ− α
2
t2− b, which is bounded below and continuous).

Thus,

G(t) ≥ α

2
t2 + Cα ∀t ∈ R.

Therefore, given z = (z,−z) ∈ X, w(z) = (w(z), w(z)),

G(z + w(z)) +G(−z + w(z)) ≥ α

2
(z + w(z))2 +

α

2
(−z + w(z))2 + 2Cα.
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We then have

−J̃(z) =

∫

Ω

[|∇z|2 − |∇w(z)|2 −G(z + w(z))−G(−z + w(z))] dζ

≤ γX

∫

Ω

z2dζ − α
∫

Ω

z2dζ − α
∫

Ω

(w(z))2dζ − 2Ĉα

≤ (γX − α)

∫

Ω

z2 − 2Ĉα .

Thus, taking α > γX , we have that

−J̃(z) −→ −∞ , as ‖z‖ → ∞, z ∈ X.

Since, X is arbitrary we have verified (I2). �

It remains to show that J̃ satisfies the Palais-Smale condition.

Lemma 3.1. Under the assumptions (g0)-(g3) the functional J̃ satisfies the (PS)-condition.

Proof. Observe that from (2.2) and (2.3), it suffices to verify that J satisfies the Palais-
Smale condition. Let {(un, vn)}n ⊂ H1

0 (Ω) × H1
0 (Ω) be a (PS)-sequence. We want to

extract a strongly convergent subsequence. Due to the form of DJ , the compactness on
the Sobolev Embeddings and Vainberg’s Lemma (see e.g. [10]), we just have to prove
that {un}n and {vn}n are bounded sequences in H1

0 (Ω).

Condition (3.1) implies that there exists a sequence {εn}n, εn > 0 and εn → 0+ so that

|DJ(un, vn)[φ, ψ]| ≤ εn(‖φ‖+ ‖ψ‖), ∀φ, ψ ∈ H1
0 (Ω). (3.2)

We take as test functions φ = 1
2
un and ψ = 1

2
vn to get

C +
εn
2

(‖un‖+ ‖vn‖)

≥ 1
2
DJ(un, vn)[un, vn]− J(un, vn)

=

∫

Ω

{−G(vn)−G(un)}+
1

2

∫

Ω

{g(un)un + g(vn)vn}

≥ 1

2

∫

Ω

{g(vn)vn − µG(vn)}+
1

2

∫

Ω

{g(un)(un)− µG(un)}

+
(µ

2
− 1
)∫

Ω

{G(vn) +G(un)}.
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So, changing the constant C if necessary, we find by (g3) that
∫

Ω

G(un) +G(vn) ≤ C [1 + εn(‖un‖+ ‖vn‖)]. (3.3)

Since {J(un, vn)}n is bounded, we can choose a large positive constant C such that
∣∣∣∣
∫

Ω

∇un · ∇vn +

∫

Ω

G(un) +G(vn)

∣∣∣∣ ≤ C. (3.4)

Because of hypothesis (g3), |G(t)|−G(t) = 0, for every |t| ≥ R, so it is a bounded function.
Thus, we get from (3.3) and (3.4) that

∣∣∫
Ω
∇un · ∇vn

∣∣ ≤
∫

Ω
|G(un)|+ |G(vn)|+ C

≤
∫

Ω
G(un) +G(vn) + C

≤ C[1 + εn(‖un‖+ ‖un‖)].

(3.5)

From (3.2), testing against [φ, ψ] = [un, vn], we obtain
∣∣∣∣2
∫

Ω

∇un · ∇vn +

∫

Ω

g(un)un + g(vn)vn

∣∣∣∣ ≤ εn(‖un‖+ ‖un‖).

So, by (3.5) we obtain
∫

Ω

g(un)un + g(vn)vn ≤ C[1 + εn(‖un‖+ ‖un‖)]. (3.6)

On the other hand, using again (3.2) and testing against [φ, ψ] = [0, un], we have
∣∣∣∣
∫

Ω

|∇un|2 + g(vn)un

∣∣∣∣ ≤ εn‖un‖. (3.7)

Now let us estimate the second term in left-hand side of inequality (3.7). Using Hölder
inequality we have

∣∣∣∣
∫

Ω

g(vn)un

∣∣∣∣ ≤
(∫

Ω

|g(vn)|1+ 1
p

) p
1+p
(∫

Ω

|un|1+p

) 1
1+p

(3.8)

Now note that for suitable positive constants c, d1, d2,

|g(t)|1+ 1
p ≤ c |g(t)||t|+ d1 ≤ c g(t) + d2. (3.9)
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Indeed, the first inequality in (3.9) follows from hypothesis (g2), since

|g(t)| 1p ≤ C |t|+ d :

- for |t| ≥ 1

|g(t)|1+ 1
p ≤ C |g(t)| |t|+ d |g(t)|

≤ C |g(t)| |t|+ d |g(t)| |t|.
- for |t| ≤ 1 we see that |g(t)| is simply bounded. So the first inequality in (3.9) holds.
As for the second inequality in (3.9), we write

|g(t)| |t| = g(t) · t+ |g(t)| |t| − g(t) · t,
and observe that, because of (g3), |g(t)| |t| − g(t) · t = 0, for |t| ≥ R. So this difference
remains bounded in R and the inequality holds.

From (3.6), (3.8) and (3.9), we get that

|
∫

Ω

g(vn)un| ≤
(
c

∫

Ω

g(vn)vn + d2

) p
1+p‖un‖L1+p

≤
(
C[1 + εn(‖un‖+ ‖vn‖)]

) p
1+p‖un‖.

Then, by (3.7),
∫

Ω

|∇un|2 ≤ εn‖un‖+ (C[1 + εn(‖un‖+ ‖vn‖)])
p

1+p ‖un‖.

In a similar fashion, taking [φ, ψ] = [vn, 0] in (3.2), we get the analogous estimate
∫

Ω

|∇vn|2 ≤ εn‖vn‖+ (C[1 + εn(‖un‖+ ‖vn‖)])
p

1+p ‖vn‖.

Joining these two estimates we obtain

‖un‖2 + ‖vn‖2 ≤ εn(‖un‖+ ‖vn‖) + C (‖un‖+ ‖vn‖)
2p+1
1+p +K.

Since 2p+1
1+p

< 2, the sequence {(un, vn)}n is bounded in H and the proof of the lemma is
complete.

4. Proof of Theorem B

Throughout this section we assume that g satisfies (g0), (g1) and (g4). To prove Theorem

B we make use of the following version of the Symmetric Mountain Pass Theorem (see

e.g. [2], [3], and [12]).
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Theorem 4.1. Let E = E1⊕E2 be a real Banach space, where E1 is a finite dimensional
subspace. Let X ⊂ E be a finite dimensional subspace of E such that dimE1 < dimX.
Suppose that I ∈ C1(E,R) is an even functional, satisfying I(0) = 0 and

(I ′1) There exists a positive constant ρ such that I|∂Bρ∩E2 ≥ 0.

(I ′2) There exists M > 0 such that maxz∈X I(z) < M .

If I satisfies the Palais-Smale condition at level c, for every c ∈ [0,M ], then I possesses
(at least) dimX − dimE1 pairs of nontrivial critical points.

As in Section 3, we take E1 := 〈(ϕ1,−ϕ1) . . . , (ϕj−1,−ϕj−1)〉 and E2 = E⊥1 . As we proved

in the previous section, the fact that −J̃ satisfies (I ′1) comes from hypothesis (g0) and the

variational characterization of the eigenvalues, i.e. the local structure of the functional

around zero in this case is similar to that of the superlinear setting.

Claim: Under hypotheses (g0), (g1) and (g4), the functional −J̃ satisfies (I ′2).

Proof. Let us take X = 〈(ϕ1,−ϕ1) . . . , (ϕk,−ϕk)〉. Since g′(∞) > λk, taking a number

α ∈ (λk, g
′(∞)) it follows that

G(t) >
α

2
t2 + Cα ∀t ∈ R.

The remaining of this proof is very similar to the proof of Claim 2 in Section 3 by simply

using the inequality

‖x‖2 ≤ λk

∫

Ω

x2 ∀x ∈ 〈ϕ1, ..., ϕk〉.

From this, given z = (z,−z) ∈ X,

−J̃(z) ≤ (λk − α)‖z‖2
L2 + C̃α −→ −∞ as ‖z‖ → ∞, z ∈ X . �

It remains to show that J̃ satisfies the Palais-Smale condition. In this case, we follow

the ideas of the corresponding proof for the problem with one equation and asymptotic

(nonresonant) nonlinearities, although our proof requires a bit more of technicalities.
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Lemma 4.1. Under assumptions (g0), (g1) and (g4) the functional J̃ satisfies the (PS)-
condition.

Proof. As before, from (2.2) and (2.3), it suffices to verify that J satisfies the Palais-Smale
condition. We take a (PS)-sequence {(un, vn)}n in H1

0 (Ω)×H1
0 (Ω) and again it is sufficient

to prove that this sequence is bounded. In this case, we argue by contradiction. Let us
assume that {‖(un, vn)‖}n is not bounded. Passing to a subsequence, denoted the same
for simplicity of notation, we can say that either ‖un‖ → ∞ or ‖vn‖ → ∞. We claim that

(I) if ‖un‖ → ∞, then there exists a subsequence ‖vnk‖ → ∞, and

(II) if ‖vn‖ → ∞, then there exists a subsequence ‖unk‖ → ∞.

Indeed, let us prove (I) arguing by contradiction. If ‖un‖ → ∞ and ‖vn‖ ≤ C, then,
passing to a subsequence we have that

vn ⇀ v, in H1
0 (Ω)

vn → v, in Lr(Ω)

un
‖un‖ ⇀ ū, in H1

0 (Ω)

un
‖un‖ → ū, in Lr(Ω), for r ∈ [1, 2N

N−2
).

There exists a sequence {εn}n, εn > 0 and εn → 0+ so that

|DJ(un, vn)[φ, ψ]| ≤ εn(‖φ‖+ ‖ψ‖), ∀φ, ψ ∈ H1
0 (Ω). (4.1)

Testing ∂vJ(un, vn) against un
‖un‖ and using (4.1) we get that

∣∣∣∣‖un‖+

∫

Ω

g(vn)
un
‖un‖

∣∣∣∣ ≤ εn.

From (g4), |g(t)| ≤ C(1 + |t|) for all t ∈ R. Using Vainberg’s Lemma (see [10]) we have
that ∫

Ω

g(vn)
un
‖un‖

−→
∫

Ω

g(v) ū

and so we get

‖un‖ −→ −
∫

Ω

g(v) ū, as n→∞.

This contradicts our initial assumption. We proceed in an analogue way to prove (II)
and therefore the claim is proved.

Now, using the claim, and passing to a subsequence, we can assume without loss of
generality that:

‖un‖ → ∞ and ‖vn‖ → ∞.
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Hence, there exist u, v ∈ H1
0 (Ω) such that

un
‖un‖ ⇀ ū, in H1

0 (Ω)

un
‖un‖ → ū, in Lr(Ω)

vn
‖vn‖ ⇀ v̄, in H1

0 (Ω)

vn
‖vn‖ → v̄, in Lr(Ω), for r ∈ [1, 2N

N−2
).

We claim that {‖un‖}n and {‖vn‖}n go to infinity at the same rate. More precisely, we
claim that

lim
n→∞

‖un‖
‖vn‖

= 1. (4.2)

To prove this claim, we first test ∂uJ(un, vn) against vn
‖vn‖ and then divide by ‖un‖ to get

∣∣∣∣
‖vn‖
‖un‖

+

∫

Ω

g(un)

‖un‖
· vn
‖vn‖

∣∣∣∣ ≤
εn
‖un‖

. (4.3)

Assumption (g4) implies that g(t) = g′(∞)t+ γ(t), where γ(t) = o(t), as |t| → ∞. Then,
∫

Ω

g(un)

‖un‖
vn
‖vn‖

= g′(∞)

∫

Ω

vn
‖vn‖

un
‖un‖

+

∫

Ω

γ(un)
vn

‖vn‖‖un‖
. (4.4)

Now we show that ∫

Ω

γ(un)
vn

‖vn‖‖un‖
−→ 0.

Indeed, just observe that given ε > 0 arbitrary, there exists T ≥ 0 such that
∣∣∣∣
γ(t)

t

∣∣∣∣ < ε, for |t| ≥ T.

On the other hand, γ(t) = g(t)− g′(∞)t is continuous in [−T, T ] and so it is bounded in
[−T, T ]. Thus, it follows that

∫

Ω

∣∣∣∣γ(un)
vn

‖vn‖‖un‖

∣∣∣∣ ≤
∫

{|un|>T}
+

∫

{|un|≤T}

≤ ε

∫

Ω

∣∣∣∣
un
‖un‖

vn
‖vn‖

∣∣∣∣+
CT
‖un‖

∫

Ω

∣∣∣∣
vn
‖vn‖

∣∣∣∣

≤ Cε+
CT
‖un‖

C

≤ 2Cε, for n large enough.

Hence, we can take the limit in (4.4) to get
∫

Ω

g(un)

‖un‖
vn
‖vn‖

−→
∫

Ω

g′(∞) ū v̄.
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This and (4.3) give
‖vn‖
‖un‖

−→ −
∫

Ω

g′(∞) ū v̄. (4.5)

Arguing in a similar fashion, but now testing ∂vJ(un, vn) against un
‖un‖ , we also obtain

‖un‖
‖vn‖

−→ −
∫

Ω

g′(∞) ū v̄, (4.6)

which together with (4.5) implies that actually
∫

Ω
g′(∞) ū v̄ = −1 and therefore the claim

is proved.

Let us now take φ ∈ H1
0 (Ω). Using (4.1) we have that
∣∣∣∣
∫

Ω

∇φ · ∇
(

vn
‖vn‖

)
+
g(un)

‖vn‖
φ

∣∣∣∣ −→ 0. (4.7)

Due to the weak convergence of vn
‖vn‖ to v̄, we know that

∫

Ω

∇φ · ∇
(

vn
‖vn‖

)
−→

∫

Ω

∇φ · ∇v̄. (4.8)

On the other hand, (4.2) implies that
∫

Ω

g(un)

‖vn‖
φ −→

∫

Ω

g′(∞) ū φ. (4.9)

To see why this is true, it is enough to notice that
∫

Ω

g(un)

‖vn‖
φ =

∫

Ω

g(un)

‖un‖
· ‖un‖‖vn‖

φ =
‖un‖
‖vn‖

∫

Ω

g′(∞)un + γ(un)

‖un‖
φ

and arguing as above, it can be proved that
∫

Ω
γ(un)
‖un‖ φ −→ 0.

From (4.7), (4.8) and (4.9), we have proven that

∀φ ∈ H1
0 (Ω) :

∫

Ω

∇v̄ · ∇φ+ g′(∞) ū φ = 0. (4.10)

Using (4.5) and reasoning analogously, we also get that

∀φ ∈ H1
0 (Ω) :

∫

Ω

∇ū · ∇φ+ g′(∞) v̄ φ = 0. (4.11)

From relations (4.10) and (4.11), testing both integrals against φ = v̄ + ū we obtain
∫

Ω

|∇(ū+ v̄)|2 = −g′(∞)

∫

Ω

(v̄ + ū)2.
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Since g′(∞) > 0, v̄ = −ū. Replacing this in any of the relations (4.10) or (4.11) we get
that ū = −v̄ ∈ H1

0 (Ω) is a weak solution, and actually a classical one, to the problem
{
−∆u = g′(∞)u in Ω

u = 0 on ∂Ω.

This, as well as (4.5) and (4.6), imply that g′(∞) = λj for some j ∈ N. This contra-
dicts hypothesis (g4). Hence, a contradiction is reached assuming that {‖(un, vn)‖}n is
unbounded, and the conclusion of the lemma follows.

5. Proof of Theorem C

Assume condition (g5). Let us assume (u, v) is a solution of (1.2). Multiply the first

equation in (1.2) by u − v, and then multiply the second equation by u − v. Taking the

difference of both results, we get
∫

Ω

|∇(u− v)|2 + (g(v)− g(u))(u− v) = 0

or, equivalently, ∫

Ω

|∇(u− v)|2 =

∫

Ω

(g(u)− g(v))(u− v).

Because of Mean Value Theorem and (g5), we have that
∫

Ω

|∇(u− v)|2 ≤ (λ1 − ε)
∫

Ω

(u− v)2,

for some small ε > 0. From Poincar’s Inequality we conclude that u ≡ v.
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