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ALGUNOS RESULTADOS TEÓRICOS Y NUMÉRICOS EN PROCESAMIENTO DE
IMÁGENES DIGITALES

El objetivo principal del presente trabajo es el estudio, tanto teórico como numérico,
de métodos de procesamiento de imágenes orientados al área de las señales e imágenes
con texturas.

Se comienza con una revisión de conceptos básicos tanto en procesamiento de imágenes,
como en herramientas matemáticas de interés, se exploran trabajos previos que motivan
buena parte de esta memoria. En particular los trabajos de filtros no locales, formulados
por Buades en 2005 y los funcionales no locales del tipo Mumford-Shah, formulados por
Jung et al. en 2011, además de varios trabajos clásicos del área del cálculo de variaciones
ligados al procesamiento de imágenes. Más adelante, se explora en detalle el problema de
segmentación, estableciendo una definición concreta y ejemplos de aplicación, presentando
luego el funcional de Mumford-Shah. Se analiza la limitación de este funcional desde el
punto de vista numérico para realizar segmentación y por esto se introduce el funcional
de Ambrosio-Tortorelli, donde destacan sus resultados más importantes, en particular la
Γ-convergencia al funcional de Mumford-Shah relajado.

Como desarrollo central, se trabajó el problema de segmentación no local, considerando
el funcional planteando por Jung et al. en 2011. Se prueba que en el caso unidimensional el
funcional no es adecuado en el sentido del Γ-límite obtenido, el cual no penaliza el conjunto
de discontinuidades de la señal u. A partir de esto, se propone un funcional modificado
que, bajo ciertas suposiciones sobre la función de peso no local w(x, y), permite obtener
un término que es equivalente como semi-norma a la semi-norma de Slobodeckij, lo que
implica que el funcional quede definido en el espacio Hs × H1, donde Hs es el espacio
de Sobolev fraccionario con s ∈ (1/2, 1). Se prueba rigurosamente la Γ-convergencia a
un funcional que se puede interpretar como el funcional de Mumford-Shah relajado con
gradiente no local. Este resultado es relevante porque en este caso el Γ-límite sí penaliza
el conjunto de discontinuidades de la señal u, que es el comportamiento deseado para
estos funcionales. A continuación, se exponen las llamadas funciones de Gabor general-
izadas, para ser utilizadas en la aproximación de una señal, utilizándose como ejemplo
las splines exponenciales (complejas), que corresponden a funciones trigonométricas con
soporte compacto, permitiendo aproximar una señal en diferentes niveles de resolución.

Finalmente, se presenta la implementación numérica de los modelos considerados, par-
tiendo por filtros no locales, modelos de segmentación local y no local, y concluyendo con
la aproximación por splines exponenciales. Se exponen simulaciones numéricas que per-
miten comparar diversos métodos además de explorar las ventajas y limitaciones de cada
método en particular, concluyendo que existe evidencia de que estos métodos efectiva-
mente permiten mejorar el análisis de señales e imágenes que contienen texturas.
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Chapter 1

Introduction

The present work consists, mainly, in the development of theoretical and numerical
results in the study of a new functional proposed in the field of image processing. Basically
the considered functional is an approximation, in some sense that we will specify later, of
the well-known Mumford-Shah functional used widely in image processing, the objective
of this functional is to perform a task called segmentation, which basically consists in
the recognition of edges of the different objects in a (digital) image. In this case, we want
to prove some essential results which leads to correctness of the numerical tasks which are
performed in the practice. We also perform numerical experiments in order to verify the
known numerical results and also to study how this methods perform in the practice.

This chapter is intended to introduce the basic terminology that will be used in this
work, in a mathematical and descriptive way.

1.1 Digital Images

A natural question when one work in mathematics with images is: What is a digital
image?

A digital image, or discrete image also, is obtained (from the continuous world) by
sampling and quantization. Certainly this depends on the acquisition devices, for example
on CCDs (Charge-Coupled Device) for digital cameras. The basic idea to acquire is to
superimpose a regular grid on an analogue image, and assign a number to each square
on the grid, that represents some feature in order to characterize the actual image, an
example for this number could be the average brightness in each square. The squares
are called pixels, and they are the smallest elements in an image, its assigned value is
usually the grey-level or brightness. Notice that this quantities in the practice are always
bounded and moreover, usually takes integer values between 0 and 255.

To describe a pixel, depending on the way we want to represent an image, we may
need different channels or bands, in fact, if we want an image on grey-scale we just need
one channel, but if we want a color image we will need three channels: red, green and blue.

The final characteristic of an image is its size or resolution. This is the number of rows
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1.1. Digital Images Chapter 1

and columns in the image, this is simply the size of the regular grid we superimpose on
the analogue image. Notice that this characteristic depends on the acquisition device and
is not relative to the real image itself.

So, one can describe a digital image as the discretization of an analog image. In a
mathematical setting could be described as follows:

Definition 1.1.1 (Image). A digital image can be defined as a function u ∈ L∞(Ω) (in
the case of grey-scale digital image) or u ∈ (L∞(Ω))3 (in the case of color images), where
Ω is a bounded set, specifically, in our context: Ω = [0, N − 1] × [0,M − 1] where N,M
are the numbers of rows and columns in the image, u takes values only on the points
(n,m) ∈ Ω where n,m are integers between 0 and N and 0 and M respectively.

Notice that this definition could be completely defined by a matrix, but we prefer to
describe the image in a continuous setting, because in the theoretical problems we will
work with continuous models.

Figure 1.1: Example of a digital image: Notice that a digital image is nothing but a two-dimensional
array of pixels where each pixel/point has an assigned brightness value.

It is natural to notice that digital images are just an approximation of reality, we
have a size and representation measures that depends on the acquisition devices, so, for
example, if the size of the digital image is low, the approximation of the real image in the
moment that the picture is taken, will be low in comparison from a digital image with a
bigger size, which will be able to retain more specific details, moreover, we just have a
finite number of possible values for each pixel, and finally we have to consider that the
digitalization process carries random noise, so, the digitalization process is limited by its
own restrictions. Reality have infinite choices, digitalization just a finite ones.

2



1.2. Image Representation Chapter 1

Figure 1.2: Example Digital Image Defects: (a) low resolution which can distort objects - (b) low contrast
which can ’hide’ objects - (c) small elements which can be loss - (d) strong transitions between objects

Due to these restrictions, several processes or tasks have been developed in order
to improve the quality of a given digital image, these tasks are usually formulated in
a mathematical continuous setting, rather than the discrete one represented in a digital
image. The use of continuous setting is focused in to be able to apply all the mathematical
results available from optimization, partial differential equations and functional analysis,
areas where image processing tasks could be formulated. Notice that obviously in the
practice we will work with discrete evaluations of the involved image functions.

1.2 Image Representation

Our first definition of an image is the formalization of what we seen in the practice.
In order to be able to handle this images in the usual image tasks, we need to represent
them in a more specific ways, in order to have an appropiated mathematical definition for
the tasks involved. Here we present several representations for digital images:

• Random fields: In this case, an observed image u0 is modeled as the sampling of
a random field. Images are modeled by some Gibbs/Markovian random fields [30].
The statistical properties of fields are often established through a filtering technique
and learning theory. This modeling is the ideal approach for describing natural
images with several patterns such as trees and mountains.

• Wavelet Representation: An image is often acquired from the responses of a
collection of microsensors, either digital or biological. It has been realized, supported
with experiments, such that local responses can be well approximated by a functions
called wavelets, this functions can be described as a ‘brief oscillation’ (like the one
can see on a seismograph or heart monitor). This representation is highly useful for
multiscale structures [40], and is used in widely known compression protocols such
as JPEG2000. The theory that have been started by this representation is highly

3



1.3. Classical Issues on Image Processing Chapter 1

active and pushed forward by the generation of several new models coming from the
idea involved of wavelet representations.

• Regularity Spaces: In order to be able to use the rich structure and results from
Sobolev Spaces, is conventional to consider an image u in the Sobolev space H1(Ω),
or more generally, u ∈ W 1,p(Ω) for some p ∈ [1,∞]. This model works well for
homogeneous regions, but it is insufficient as a global image model, since it ‘smears’
an important visual cue: the edges. In order to find them, there exists some models
that are defined precisely for images in this representation: the ‘object-edge’ model
of Mumford and Shah [41] and the Bounded Variation image model of Rudin, Osher
and Fatemi [42].

In this work we will consider the Regularity Spaces representation of images when
we deal with the variational formulation of the segmentation problem, and also we will
consider a ‘Wavelet-like’ representation of images in order to ‘decompose’ it in several
structures that are of our interest.

1.3 Classical Issues on Image Processing

In this section we will present the classical image processing issues, in order to improve
the quality of a given digital image, we will start defining in an abstract idea the Image
processing concept which follows the ideas given in [23].

An Image Processor could be understand as an abstract input-output system:

Q0 → Image Processor T → Q

where the input data Q0 could be an observed or measured single image (or a series
of images, in the case of Movie purposes), and the output Q = (q1, q2, . . .) contains the
targeted image features.

Essentially, an image processor is the link between Computer Vision, which we un-
derstand as the field that tries to reconstruct the 3-D world from observed 2-D images
and Computer Graphics, which tries to design 2-D scene images to simulate the 3-D world.

As a basical example we can consider the image processor T as the human visual sys-
tem, in this case the input Q0 represents the image sequence projected onto the retina,
and the output Q contains all the major features that are relevant to our daily life, pass-
ing by the most basical features as relative orders, shapes and grouping rules to the most
specifical features that help to classify or identify patterns and objects.

We will present the most important image processing tasks as a particular image
processors, detailing the input and output associated:

• Denoising and Deblurring: Image blur and noise are the most commom problem
in photography, which came from the nature of the acquisition devices and the
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1.3. Classical Issues on Image Processing Chapter 1

discretization of the image to become a digital one. Image deblurring is the process
of recovering a sharp image from an input image corrupted by blurring and noise,
where the blurring is due to convolution with a known or unknown kernel. The task
associated with deblurring and denoising can be stated with:

Q0 : u0 = K ∗ u+ n

where u is the ‘original’ image, K is a blurring kernel, and n is the noise model, and

Q : clean and sharp u

• Inpainting: Image inpainting, also known as image interpolation, is the process
of reconstructing lost or corrupted parts of an image. This is an important in-
verse problem with many applications, for example: removal of scratches in old
photographs or filling-in missing blocks in unreliably transmitted images. The task
associated with Inpainting can be stated with:

Q0 : u0|Ω\D

where Ω is the original domain of u and D is the ‘missing’ part, and

Q : entire image u|Ω

• Super-Resolution: This task corresponds to the reconstruction of a high resolution
image from a filtered and down-sampled (i.e. reduced resolution) image. This task
have many applications in video. The task associated with Super-Resolution can be
stated with:

Q0 : u0

Q : multiscale images (uλ1 , uλ2 , . . .)

• Segmentation: Images are the proper 2-D projections of the 3-D world which
contains several objects. In order to (approximately) reconstruct the 3-D world the
first step is to identify the regions in which each object belongs. The problem of
segmentation is to identify this regions. This problem have a lot of applications
in a wide variety of fields, such as computer vision, medical image processing and
military image processing. The task associated with Segmentation can be stated
with:

Q0 : u0

Q : the boundary of objects, the objects, and their associated regions: Γ, (uk,Ωk)

here Γ represents the set of boundaries of the objects, Ωk represents a subset of the
image domain Ω and uk represents the values of u in Ωk, i.e. the image of the object
in the region Ωk.

As we mentioned in the first section, in this work we will focus on Image Segmentation,
studying a classical method to perform it, and a new method which promises to perform
better than the classical ones in an important class of images.

5



1.4. Texture in Images Chapter 1

1.4 Texture in Images

One of the motivations of this work is to improve the classical denoising and segmen-
tation models in order to get better results in images with texture, which we can define
informally as a repetitive structure in an image, this kind of images is strongly usual in
natural environments and usual methods tend to have trouble to deal with them.

Figure 1.3: The change between different textures

Try to characterize the texture concept takes relevance when we talk about segmen-
tation, because our first impression is that the human eye recognizes the change between
different textures, which can be related by the segmentation procedure itself, see Figure
1.3.

Define texture is a difficult task, because we don’t have a precise and unique math-
ematical definition or a clear concept. The basic idea is that the texture can be seen
as a repetition of basic texture elements called texels or textons made of pixels whose
placement obey some rule.

Let us give some recompilations ideas about textures:

1. The textured region can contain texture elements of various sizes, each of which can
itself be textured.

2. The order consists in the nonrandom arrangement of elementary parts.

3. The parts are roughly uniform entities having approximately the same dimension
everywhere within the textured region.

4. A region in an image has a constant texture if a set of local statistics or other
properties of the picture function are constant, slowly varying, or approximately
periodic.

Notice that this characterizations of texture have some similarities with the idea of
noise in an image, and naturally some differences, this become a problem for the common
methods of denoising and segmentation for images with texture, specially with ones from
natural environments. The classical methods tend to fail in this tasks because the associ-
ated methods usually identify texture as noise, which leads to a loss of information of the
texture on the outputs of the image processors.
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1.5 Objectives of this Work

We conclude this chapter listing the main objectives of this work:

• Review the actual works on denoising and non-local segmentation proposed models
for textured images.

• Study the non-local segmentation proposed model in order to obtain theorical results
about the functionals involved.

• Build implementations for denoising and non-local segmentation proposed models
to perform a numerical testings for this methods in order to understand them and
discover their advantages from the classical models.

• Propose and implement a new (approximated) representation of images in 1-Dimension,
in order to be able to decompose them in resolution levels and identify ‘hidden’ tex-
tures.

• Finally, concluding from all the previous objectives, describe suitable methods to
process 1-D and 2-D images in order to understand better the textures in them.

7



Chapter 2

Preliminaries: Mathematical Tools
for Image Processing

In this chapter, we will review some theoretical results and definitions, that will be
used in this work, and also we review some interesting mathematical models.

We start reviewing some theoretical tools that we will use in this work. Firstly we
review the classical tool from calculus of variations, the called Direct Method of Caluclus
of Variations. This is the classical method to prove the existence of solutions on problems
that involve the minimization of a functional, defined in a suitable space. Secondly we
present and review some properties of a variational convergence: the called Γ-convergence,
we have to use this tool, because when we want to approximate some functional with a
numerical bad-behavior by a family of a well-behaved ones. We cannot expect to have
strong convergence of the functionals, this requirement is almost impossible in general,
and also is much more than we need, the idea of Γ-convergence is to ensure convergence
of minima, which is the only thing we will need in our context. Finally we also include
some tools of interest like Euler-Lagrange equations and some useful lemmas.

After the mathematical introduction, we will review some interesting works : we start
with an article published in 2005 by Antoni Buades [19], the importance of this article
is the proposal of a new denoising filter which is designed to work with textures. The
main feature of this filter is the ability to denoise correctly images with texture, a task
in which the common filters fail due to their local nature. This feature is based on the
nature of the filter itself, Buades propose a filter based on replace the value of a fixed pixel
by averages of pixels in the whole image, this non local behavior retains textures and do
not consider them as noise unlike the classical filters which consider texture as noise and
therefore delete them in denoising process. This model may seem away from the purpose
of this work, but this filter is the basis of all the work on non-local image tasks, due to the
simplicity of the involved formulas and the ability of them to capture texture on images
without consider them as noise.

Finally we review an article published in 2011 by M. Jung, X. Bresson, T. Chan
and L. Vese [34], in this article the authors propose a new functional designed to have
a better performance in images with texture, they propose an Ambrosio-Tortorelli-like
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functional, changing the local behavior of the functional replacing the regularization term
in the image by a non-local regularization term, this one is based on the Buades filter
due to their great performance on images with texture. This model seems to work great
numerically in images with texture in some common image processing tasks, but nothing
as been proved about the functional itself. This is the starting point for our work, because
we already know that the functional seems to work great numerically (something that we
will check in this work), but theoretical results has not been proved yet.

2.1 The Direct Method of Calculus of Variations

The typical problem of the calculus of variations is to minimize an integral of the form:

F (u) :=
∫

Ω
f(x, u(x),∇u(x))dx,

where Ω is an open subset of RN , usually Ω is also bounded, the minimization is among
functions u : Ω→ R, belonging to some suitable function space, and usually satisfying a
boundary condition, for example a Dirichlet boundary one: u(y) = g(y) y ∈ ∂Ω.

Thus, the problem is
min
u∈C

F (u)

The classic way to prove that this problem have solution is the procedure called the
direct method of the calculus of variations, the idea is very simple:

We have to take a minimizing sequence (un)n ⊂ C, i.e.:

lim
n→∞

F (un) = inf
u∈C

F (u)

and show that some subsequence of (un) converges to a minimizer u ∈ C.

In order to make this strategy successful, we need several conditions to be met:

1. Some compactness condition has to hold so that a minimizing sequence contains a
convergent subsequence. Notice that this requires a careful selection of a suitable
topology on C (Notice this also implies that we may need to change the suitable
space C when we want to prove the existence of minimizers for the functional without
knowing in principle the ‘good’ space).

2. The limit u of such subsequence should be contained in C, i.e. a closedness condition
on C.

3. Some lower semicontinuity condition of the form

F (u) ≤ lim inf
n→∞

F (un) if un converges to u

has to hold, in order to ensure that the limit of a minimizing sequence is indeed a
minimizer for F
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Notice that the conditions 1 and 2 suggest that we need to consider a space C which
is not too restrictive, but, in the other hand, to hold the condition 3 we may need to
consider a topology in C which is more restrictive. So, we have to make a balance in the
choice of the topology in C (and even in the choice of the space itself).

We will follow this method in order to prove the existence of solution for some func-
tionals of our interest, moreover, we will face the difficulty of chosing a suitable space C
due to the problems that we will face to establish the conditions 1, 2 and 3.

There are several conditions for which we can ensure the existence of solutions for the
typical problem of the calculus of variations using the direct method, we don’t expose
them here because this results will not apply in our context but the interested reader
could find them in [2] pp. 11-16, [33] Chapter 4 and [25] Chapter 3.

2.2 Γ Convergence

In this section we will review the definition and main properties of the Γ-convergence
that we will use in this work.

Let (X, d) be a metric space, and let fj : X → R a family of functions.

We need first to recall the definition of a lower semicontinuous function:

Definition 2.2.1. We say that a function f : X → R is (sequentially) lower semi-
continuous (or lsc) in x ∈ X, if and only if ∀ (xj)→ x we have:

f(x) ≤ lim inf
j

f(xj)

or equivalently,
f(x) = min{lim inf

j
f(xj) : (xj)→ x},

we will say that f is lsc in X if it is ∀x ∈ X.

Given this definition, we can provide the definition of the Γ-convergence:

Definition 2.2.2. We say that the sequence (fj) Γ-converges to a function f∞ : X → R
if ∀x ∈ X we have:

1. (lim inf inequality): ∀(xj)→ x : f∞(x) ≤ lim infj fj(xj)

2. (lim sup inequality): ∃(xj)→ x : f∞(x) ≥ lim supj fj(xj)

if this conditions hold, we say that f∞ is the Γ-limit of (fj) and we denote it as

f∞ = Γ− lim fj.

10
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Notice that if (xj) satisfies the second condition of the definition we have, for this
sequence:

f∞(x) ≤ lim inf
j

fj(xj) ≤ lim sup
j

fj(xj) ≤ f∞(x)⇒ f∞(x) = lim
j
fj(xj)

So, we can replace the second condition of the definition by:

2′. (existence of a recovery sequence) ∃(xj)→ x : f∞(x) = limj fj(xj)

Notice that the Γ-limit, if it exists, is unique and lower semi-continuous. Moreover,
every sequence fj admits a subsequence which Γ-converges.

In the case where the family of functions depends on a continuous parameter, we have
to make a precise definition of the Γ-convergence, obviously this definition will rely on the
Γ-convergence for a discrete sequence of functions, and for this case we have the following
definition:

Definition 2.2.3. We say that fε : X → R Γ-converges when ε→ 0 to f0 if:

∀(εj)→ 0 we have: Γ− lim
j
fεj = f0

Let us enounce now the principal properties of the Γ-convergence:

Proposition 2.2.4. Assume that fj : X → R Γ-converges to f . Then, the following
statements hold:

1. If g : X → R is a continuous function, then fj + g Γ-converges to f + g.

2. Let tj → 0. Then, every cluster point of the sequence of sets

{x ∈ X : fj(x) ≤ inf
X
fj + tj}

minimizes f .

3. Assume that the functions fj are lower semicontinuous and for every t ∈ [0,∞)
there exists a compact set Kt ⊂ X with:

{x ∈ X : fj(x) ≤ t} ⊂ Kt ∀j ∈ N.

Then, the functions fj have minimizers in X, and any sequence xj of minimizers of
fj admits subsequence converging to some minimizer of f

There are many characterizations of Γ-convergence and many other properties of in-
terest about it, we just need the ones presented here in order to prove the Γ-convergence
for some family of functionals of our interest, so, for more information of this variational
convergence we suggest the refer the reader to check the following references: [14], [13],
[9].
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2.3 Some useful results

In this section we review some results of interest, that will be useful in our work, first
of all we review the well known Euler-Lagrange equations and then we define some other
result of interest.

2.3.1 Euler-Lagrange Equations

Using the Direct Method of the calculus of variation we can prove the existence of
solution for the problem

min
u∈C

F (u) = min
u∈C

∫
Ω
f(x, u(x),∇u(x))dx (P ),

the obvious question after the existence of the solution will be how to characterize it.
This is important, because this is the fundamental step in order to develop computational
methods to compute numerical simulations in the case of functionals which represents
some real problems.

A classic result in the field of the calculus of variations give us the called Euler-Lagrange
equations, and could be considered as the necessary first order conditions for functional
minimization problems, the result can be stated as follows:

If we denote f : Ω× Rm × Rm → R such that: (x, u, v) 7→ f(x, u, v) then:

Theorem 2.3.1. Suppose that f ∈ C1(Ω × Rm × Rm;R). If u ∈ C1(Ω,Rm) is a solution
of (P ), then ∂vf(x, u(x),∇u(x)) is differentiable and we have:

d

dt

∂f

∂v
(x, u(x),∇u(x)) = ∂f

∂u
(x, u(x),∇u(x)), x ∈ Ω (2.1)

this second order equations on u are known as the Euler-Lagrange equations for the problem
(P ).

This result is also valid with less regular minimizer u, for example, the equations are
also valid if f is superlinear (i.e. f(x, y) ≥ a+b||y||p with p > 1), in this case the minimizer
u is just Lipschitz, but the equations still holds.

2.3.2 The Fundamental Lemma of Calculus of Variations

The following result is a little lemma used in the proof of the theorem of the Euler-
Lagrange equations.

Lemma 2.3.2. Let f be a function of class C1 on the interval (a, b) such that:∫ b

a

f(x)h(x)dx = 0

for all functions h(x) of class C1 on the interval (a, b) such that h(a) = h(b) = 0. Then
f(x) = 0 in [a, b].
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This result was generalized by du Bois-Reymond in the following version

Lemma 2.3.3. Suppose f is in L1
loc(Ω), where Ω ⊂ RN is an open set. If∫

Ω
f(x)h(x)dx = 0

for all h ∈ C∞0 (Ω), then f(x) = 0 a.e. in x ∈ Ω.

These lemmas allow us to rewrite Euler-Lagrange equations for complicated functionals
in a simpler PDE formulation, we refer to [2] pp. 19-22 and [25] pp. 47-60 for details.

2.4 The Non Local Denoising Filter

In [20] the author develop a new denoising method which is able to handle textured
signal/images, this denoising filter is essentially a nonlocal one in the sense that it re-
places a pixel value with a mean of other similar (in a sense which we will explore later)
pixels but with no spatial restriction. In this section we will review this important work
to explore its main results.

2.4.1 Introduction: Neighborhood Filters and NL-means

We will say that a filter (for images or videos) is a neighborhood/NBH filter, if this
reduces the noise by averaging similar pixels. Note that, we can use another statistical
estimates like the median.
General CCD noise models are signal dependent, fortunately, two pixels, which received
the same energy from the outdoor scene, undergo the same kind of perturbations and
therefore have the same noise model.

We will accept the following general assumption, which is the basic idea where this
models relies:

Assumption: At each energy level the noise model is additive and white, then denois-
ing can be achieved by first finding out the pixels which received the same original energy,
and then, averaging their observed grey levels.

Since the original values of the image are lost, the filters proceed by picking for each
pixel i, the set of pixels Ni, spatially close to i with similar grey value. The NBH filters
proceed by replacing the grey level of i, which will be denoted u(i), by the average

NF (u(i)) = 1
|Ni|

∑
j∈Ni

u(j).

Under the assumption that the pixels of Ni have the same energy as i, we have that,
NF (u(i)) is a denoised version of u(i).
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Most popular NBH filters are: σ−filter (see [38]), SUSAN (see [44]) and the bilateral
filter (see [45]), where the neighborhoods are Gaussian in space and grey level.

In contrast, the Non-local means, proposed by Buades et al. in 2005 (see [19]), is based
in the following idea:

He extends the concept of neighborhood to a wide class, in a method which is called
non-local means (NL-means). These algorithms defines the neighborhood Ni of i under
the following condition:

j ∈ Ni iff the grey level of a whole window around j is close to the grey level of the
window around i. In simple words, we are relaxing the spatial constraint of the classical
neighborhood filters.

2.4.2 Comparison Principles

A systematic comparison of the huge variety of denoising methods is requested. The
authors consider that visual comparison of artificially noisy images with their denoised
version is subjective, which is a usual technique, moreover, this comparison method de-
pends strongly on the choice of the image, and does not permit to address the main issues:
the loss of image structure in noise and the creation of artifacts.

The authors propose three comparison principles aiming at more objective bench-
marks.

1. The first principle states that noise and only noise should be removed from an im-
age. It has to be perceptually tested directly on an image, with no artificial noise
added, then the idea is to compare the difference between the image and its de-
noised version for each method. We will call this difference method noise. With this
comparison method, it is much easier to evaluate whether a method noise contains
some structure removed from the image or not.

2. The second principle, which we will call noise to noise, relies on the idea that a
denoising algorithm transforms a white noise into a white noise. This may be seen
as a paradoxical requirement, but it is a good way to characterize artifact-free al-
gorithms. Also, we have a powerful mathematical tools for testing: Mathematical
analysis and Fourier spectrum testing.

3. The third principle, which we will call statistical optimality, it is restricted to neigh-
borhood filters, and is based to the question if a given NBH filter is able or not to
retrieve faithfully the neighborhood Ni of any pixel i.
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2.4.3 Noise Model

In this section we study barely a classic model for noise, this is the model for the CCD
devices and the main result of this model is an hypothesis that will made the NBH filters
useful for denoising.

In CCD devices, we have three kinds of noise:

1. Shot Noise: This noise is proportional to the square root of the number of incoming
photons in the captors during the exposure time, namely:

n0 =
√

Φ t

hν
· A · η = C

√
Φ,

where Φ is the light power, hν the photon energy, t the exposure time, A the pixel
area, and η the quantum efficiency. Joining all constants in C we have the last
formula, where Φ can be understood as the true image.

2. Dark or Obscurity Noise: We will denote this noise as n1, and it is due to spurious
photons produced by the captor itself. We can assume the dark noise to be white,
additive and with zero mean.

3. Read out Noise: We will denote this noise as n2, and it is another electronic additive
and signal independent noise. Can be assumed to have zero mean.

Also, we have to consider another correction, a gamma correction, which is a nonlinear
increasing contrast change, we will denote it as a function f applied to the noisy image.
It is applied as an internal adjustment in rendering of images through photography, tele-
vision and computer imaging. Usually we take: f(x) = xα with α ∈ (0, 1)

Summarizing we have:

u(i) = f(Φ(i) + c
√

Φ(i) + n1(i) + n2(i)).

When Φ(i) is large the shot noise
√

Φ(i) dominates n1 and the signal Φ(i) dominates
n2, thus we have that

u(i) ∼ f(Φ(i)) + f ′(Φ(i))(C
√

Φ(i) + n1(i) + n2(i)) =: f(Φ(i)) + n(i).

If Φ(i) is small with respect to n1(i) + n2(i):

n(i) ∼ u(i) ∼ f(n1(i) + n2(i)),

in the particular, and interesting, case of α = 1/2 we have:

n(i) ∼


n0(i) bright parts of the image

√
n1(i) + n2(i) dark parts of the image
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In all these cases the noise is signal dependent but independent at different pixels.

In the following we aim at recovering f(Φ(i)), i.e. the true image up to the unknown
gamma correction. The approximations we made for u(i) and the white noise and inde-
pendence assumptions on n0, n1, n2 legitimate the following important hypothesis:

Hyphotesis: In a digital image, the noise model at each pixel i only depends on the
original pixel value Φ(i) and it is additive. Let Ni be the set of pixels with the same
original value as i. Then n(j), j ∈ Ni is independent and identically distributed. (i.i.d.).

Remark 2.4.1. This hypothesis leads us to gives a proof of the correctness of NBH (and
NL-means) algorithms:

Given a pixel i, let j ∈ Ni all the pixels that follow the same model of i, i.e.,

∀j ∈ Ni : u(j) = v(i) + n(j),

where v(i) is a deterministic function, n(j) are i.i.d. noise.

Then, considering the denoising filter:

NF (u(i)) := 1
|Ni|

∑
j∈Ni

u(j),

thanks to the hypothesis and variance formula for independent variables, we have that,

NF (u(i)) = v(i) + ñ(i),

where,
V ar(ñ(i)) = 1

|Ni|
V ar(n(i)) ≤ V ar(n(i)),

i.e., these filters reduce the variance of the residual noise.

2.4.4 General Neighborhood Filters
2.4.4.1 Local NBH Filters

We will present these filters in order or complexity. The first one, and then the most
primitive, is based in replacing the color of a pixel with an average of the nearby pixels
colors, i.e., Ni is just a spatial neighborhood. The filtered value for the pixel x is given
by

Mρ(u(x)) = 1
πρ2

∫
R2
e
− |x−y|

2

ρ2 u(y)dy,

where ρ is a control parameter, roughly, the size of the neighborhood. The problem of
this filter relies on the case when a spatially closer pixels of the pixel i do not have similar
colors as i. When the color is replaced by an average of very distinct colors, it produces
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blurring in the border of the transition of colors.

This suggests the need of a model which includes a weight to discard closer, but too
much different pixels, for the averaging, this is the idea for the Sigma filter (see [38], [46]):
Average neighboring pixels which have a similar color value, thus the filtered value is given
by

NFh,ρ(u(x)) = 1
C(x)

∫
Bρ(x)

e−
|u(x)−u(y)|2

h2 u(y)dy.

Only pixels inside Bρ(x) are averaged, h controls the color similarity, that is, roughly
speaking, the tolerance for the color similarity, and C(x) a is normalization factor.

Later, to avoid the dependence on a Ball Neighborhoods, we have the filters SUSAN [44]
and bilateral [45], where the ball neighborhoods are replaced by exponential penalization
on space, i.e., we have bilateral Gaussian depending on both space and grey level, that is,

SNFh,ρ(u(x)) = 1
C(x)

∫
R2
e
− |x−y|

2

ρ2 · e−
|u(x)−u(y)|2

h2 u(y)dy.

Another way to avoid the blurring of the spatial filteringMρ is considering a statistical
correction due to Lee in 1980 (see [37]):

LMρ(u(x)) =Mρ(u(x)) + σ2
x

σ2
x + σ2 (u(x)−Mρ(u(x))),

where
σ2
x = max

(
0, 1
πρ2

∫
R2
e−
|x− y|2

ρ2 (u(y)−Mρ(u(x)))2dy − σ2
)
.

The idea of this correction is based on the following observation: When the Gaussian
mean is performed on an edge, the variance of the performed mean can become larger
than the variance of the noise, this phenomena is not desired, and the correction tries to
avoid this.

Bilateral filters anyway have a better performance than Lee’s correction. A small
comparison of this neighborhood filters can be seen on the original works, and gives us
non fully acceptable results: Gaussian filtering don’t maintain sharp edges, anisotropic
filter removes small details and fine structures, Lee’s statistical filter leave some areas
untouched, then noisy, sigma and bilateral creates irregularities on the edges. This com-
parison make the needs to consider a new model.

2.4.4.2 Non Local Averaging

As we said before, the main idea of this model is based on the simply observation that,
the most similar pixels to a given pixel have no reason to be close of it, for example in
periodic patterns, then the idea is to construct a filter which consider pixels with neigh-
borhoods with similar average values as the neighborhood of the original pixel, then we do
not have spatial constraint.

17



2.4. The Non Local Denoising Filter Chapter 2

Then, the proposed formula is:

NL(u(x)) = 1
C(x)

∫
Ω

exp
(
−gρ ∗ |u(x+ ·)− u(y + ·)|2(0)

h2

)
u(y)dy (2.2)

where gρ is a Gaussian kernel with standard deviation ρ, C(x) is the normalizing factor,
h acts as a filtering parameter and

gρ ∗ |u(x+ ·)− u(y + ·)|2(0) =
∫
R2
gρ(t)|u(x+ t)− u(y + t)|2dt.

This last formula reveals the most important characteristic of this filter, NL replace the
value of u(x) by a weighted mean of u(y). The weight is relevant only if a Gaussian win-
dow around y is similar to the same window around x. This is the concept of self-similarity.

NL-means works great with text images, but is limited when an image have structured
noise, like JPEG compression, in that case NL loose details. More specific information
can be seen on the original paper.

2.4.5 Principles for Denoising Algorithms Evaluation

We will enounce the formal assertions for this principles that we mentioned before in
the introduction.

2.4.5.1 Method Noise

As we said before, the idea of this principle is to evaluate if an algorithm just removes
noise, or it also removes some structure of the image.

Definition 2.4.2. Let u be am image, not necessarily noisy, and Dh a denoising operator
depending on h. The method noise of u is the image difference:

n(Dh, u) = u−Dh(u)

and the formal principle will be:

Principle 1: For every denoising algorithm, the method noise must be zero if the
image contains no noise, and should be in general an image of independent zero-mean
random variables.

Examples of the evaluation of algorithms under this principle can be seen on the
original paper, anyway, roughly speaking, the NL-means have the best results for this
principle.
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2.4.5.2 Noise to Noise Principle

As we said before, the idea of this principle is: accepting that no algorithm can re-
move all the noise from an image, at least we want to transform noise in noise with less
variance. This is a way to check if an algorithm reduces the noise, and also do not create
artifacts on images.

Principle 2: A denoising algorithm must transform a white noisy image into a white
noisy image, with lower variance.

As we said before, this principle have a good way to be checked: Studying the Fourier
transform of denoised image, because we know that the Fourier Transform of a white
Gaussian noise is a white Gaussian noise, so, visualizing the Fourier Transform of the
denoised image, we will see if it remains as a white Gaussian noise, or it have changed in
wrong way, creating artifacts.

Several algorithms have been checked with this principle, that can be seen on the
original paper, bilateral filters and NL-means report the best results.

2.4.6 Statistical Optimality

We will understand statistical optimality as the ability of a generalized neighborhood
filter to find the right set of pixels Ni, performing the average yielding the new estimate for
u(i), obviously, this principle will be useful just for neighborhood, or averaging in general
methods.

Principle 3: A generalized neighborhood filter is optimal, if it finds for each pixel i,
all and only the pixels j, having the same model as i.

Obviously is impossible to check if the pixels in Ni satisfy Φ(j) = Φ(i), then in general
this condition is relaxed to check if the pixels j are likely to have the same value as i.
Examples are given in the original paper, anyway, this principle is more useful for movie
denoising.

2.4.7 Numerical Examples

In what follows we will present some numerical examples performed in [19]
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Figure 2.1: Comparison of neighborhood filters. From top to bottom and left to right: noisy image
(with gaussian noise with σ = 15), Gaussian filtering, anisotropic filtering, Lee’s statistical filter, sigma
or bilateral filter and the NL-means algorithm. All methods except the Gaussian filtering maintain sharp
edges. However, the anisotropic filtering removes small details and fine structures. These features are
nearly untouched by Lee’s statistical filter and therefore completely noisy. The comparison of noisy grey
level values by the sigma or bilateral filter is not so robust and irregularities are created on the edges.
The NL-means better cleans the edges without losing too many fine structures and details.

Figure 2.2: Method noise experiment on Lena (gray levels only). From top to bottom and left to right:
original image, Gaussian mean, mean curvature motion, total variation minimization, translation invariant
soft and hard thresholding, bilateral filter and NL-means
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Figure 2.3: Noise to noise principle: Upper images: Application of the denoising algorithms to a noise
sample. From left to right and top to bottom: noise sample, filtered noise by the Gaussian filtering, total
variation minimization, hard wavelet thresholding, bilateral filter and the NL-means algorithm. The
parameters of each algorithm have been tuned in order to have a filtered noise of standard deviation 2.5.
For the neighborhood or bilateral filter the research zone has been fixed to 21 × 21 and for NL-means
we have used the whole image. Therefore, only the h parameter has been tuned in order to obtain the
desired standard deviation Lower Images: Noise to Noise principle: Fourier transforms of the filtered
noises displayed in the upper images. The Fourier transform of a Gaussian white noise is a Gaussian
white noise

21



2.5. Non Local Mumford-Shah Regularizers for Color Image Restoration Chapter 2

2.5 Non Local Mumford-Shah Regularizers for Color
Image Restoration

In [34] the authors develop several functionals based on approximations of the original
Mumford-Shah functional with nonlocal characteristics incorporated, this nonlocal char-
acteristics are based on the work of Buades et al. [19] and Gilboa et al. [31]. In this
section we will review this important work to explore its main results.

It is important to incorporate the nonlocal characteristics in new models, because this
performs better, than local methods, in image denoising and restoration when the image
have textures, for example, local methods usually consider textures as noise, and then, in
denoising tasks this algorithms just remove the textures.

The authors presents non local extensions for the widely known approximations for
the Mumford-Shah functional, this approximations are due to Ambrosio-Tortorelli and
Shah, with the primary objective of better restoration of fine structures and textures.
The functionals proposed in this paper are the starting point of our work, because the
proposed functionals are just used in [34] in a numerical way, moreover, the authors use
this functionals for different image tasks than the one of our interest.

2.5.1 Introduction - Background

First of all, we need to recall some basic results and concepts about image regulariza-
tion methods. We will extend this concepts in later chapters, but we will to introduce
them slightly now, to define the model in what we will work.

2.5.1.1 Local Regularizers

The basic Mumford-Shah regularizating functional is used commonly in segmentation
and restoration algorithms, it is given by the following formulation:

Given u : Ω→ R and K its edge set, the MSH1 regularizer is:

JMSH1(u,K) = β

∫
Ω\K
|∇u|2dx+ α

∫
K

dH1,

where |∇u| =
√
u2
x1 + u2

x2, x = (x1, x2), H1 is the 1-D Hausdorff measure and Ω ⊂ R2 is
the open image domain.

Notice that the first term enforces u to be smooth everywhere, except on the edge set
K, and the second term enforce to minimize the total length of edges.

In general is very hard to minimize this functional, due to its non convexity. A way to
solve this problem is to consider another functionals (with better structure) which approx-
imate this one in some sense that asserts that the minimum points of this new functionals
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approximates the minimum points of the original one.

Ambrosio and Tortorelli approximated the Mumford-Shah functional by considering
a sequence of more regular functionals, denoted by Jε, which converges to JMSH1 in the
sense of Γ-convergence. The idea of this functional is to approximate the edge set K by
a smooth function v, the approximation is given by:

JMSH1

ε (u, v) = β

∫
Ω
v2|∇u|2dx+ α

2

∫
Ω

(
ε|∇v|2 + (v − 1)2

ε

)
dx,

where 0 ≤ v(x) ≤ 1 represents the edges: v(x) ∼ 0 if x ∈ K = Su (discontinuity set of
u), v(x) ∼ 1 otherwise; ε is a small positive constant, α, β positive weights.

If we add a fidelity term to this functional we have that a minimizer u = uε of JMSH1
ε

approaches a minimizer of JMSH1 as ε→ 0.

Another approach is given by Shah, using the total variation regularization proposed
in image restoriation mainly by Rudin, Osher and Fatemi, this is very useful due to its
benefits of preserving edges and convexity.

The total variation regularization is defined in the following way: given a locally
integrable function u define:

JTV (u) = sup
{∫

Ω
u∇ · φdx : φ ∈ C1

c (Ω,R), ||φ||L∞(Ω) ≤ 1
}
,

which coincides with
∫

Ω
|∇u|dx when u ∈ W 1,1(Ω).

Based on this approach, Shah proposed a modified version of Ambrosio-Tortorelli
approximation, by replacing the term |∇u|2 by |∇u| in the first term, then, the Shah
approximation for the Mumford-Shah functional is given by:

JMSTV
ε (u, v) = β

∫
Ω
v2|∇u|dx+ α

∫
Ω

(
ε|∇v|2 + (v − 1)2

4ε

)
dx.

This functional Γ-converges to the JMSTV functional given by:

JMSTV = β

∫
Ω\K
|∇u|dx+ α

∫
K

|u+ − u−|
1 + |u+ − u−|

dH1 + |Dcu|(Ω)

where u+, u− denotes the values of u at each side of K and Dcu is the Cantor part of
Du. This last functional is very similar with the total variation of u ∈ BV (Ω), that can
be written for K = Ju as:

JTV = β

∫
Ω\K
|∇u|dx+ α

∫
K

|u+ − u−|dH1 + |Dcu|(Ω).

The only difference is that the MSTV regularizer does not penalize the jump part, as
much as, the TV regularizer does.
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These functionals are considered only for monochromatic images, but is naturally
extended to color images by Blomgren and Chan, which propose a color TV regularization
by coupling the channels, i.e., considering:

JTV =
∫

Ω
||∇u||dx =

∫
Ω

√
|∇uR|2 + |∇uG|2 + |∇uB|2dx.

Bar et al. in [11] extend this idea for the Mumford-Shah approximations for color
images, by replacing |∇u| by ||∇u|| in JMSH

ε and JMSTV
ε . Notice that the scalar-valued

edge map v is common for the three channels and provides the necessary coupling between
colors.

2.5.1.2 Nonlocal Methods

As we seen before in review of the paper of Buades et al. the importance of nonlocal
methods is based on their well adaptation to texture denoising in contrast to standard
local methods. Recall that the basic idea is, to extend the concept of neighborhood filters
which replace the value of a pixel with an average of its spatial neighbors, the nonlocal
filters extend this concept to the one of patch-similarity, i.e., we will replace the value of
a pixel for an averaging of pixels which have similar patch values, and then, the spatial
restriction is relaxed. The classical filter for this task is the NL-means filter due to Buades
et al. [19]:

NL(f(x)) = 1
C(x)

∫
Ω

exp
(
−da(f(x), f(y))

h2

)
f(y)dy

da(f(x), f(y)) =
∫
R2
ga(t)||f(x+ t)− f(y + t)||2dt

where da is the patch distance, f is the image to be filtered and ga is a Gaussian kernel
with standard deviation a, which determines the patch size.

2.5.1.3 Nonlocal Regularizers

The idea of this regularizers is to see the nonlocal filtering as a quadratic regularization
based upon a nonlocal graph (a graph with weights). The most important contributions
on this field are given by Gilboa and Osher.

We will need some operators from this theory, the so-called non local differential op-
erators over graphs, proposed for image processing by Gilboa and Osher in [31].

Let u : Ω → R and w : Ω × Ω → R be a non negative and symmetric weighted
functions. We define the non local gradient vector ∇wu : Ω× Ω→ R as:

(∇wu)(x, y) = (u(y)− u(x))
√
w(x, y),

and the norm of the nonlocal gradient of u is defined by:

|∇wu|(x) :=

√∫
Ω

(u(y)− u(x))2w(x, y)dy
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We also define the non local divergence of the vector ~v : Ω× Ω→ R by:

(divw~v)(x) :=
∫

Ω
(v(x, y)− v(y, x))

√
w(x, y)dy

Inspired in this operators, Gilboa and Osher in [31] proposed the following general
form for nonlocal regularizing functionals:

J(u) =
∫

Ω
φ(|∇wu|2)dx,

where s 7→ φ(s) is positive, increasing and convex in
√
s, and φ(0) = 0.

If φ(s) =
√
s, they propose the NL/TV (NonLocal Total Variation) regularizer:

JNL/TV (u) =
∫

Ω
|∇wu|dx =

∫
Ω

√∫
Ω

(u(y)− u(x))2w(x, y)dydx,

which coincides, in the 2D local case, to JTV (u) =
∫

Ω |∇u|dx

2.5.2 Proposed Nonlocal Mumford-Shah Regularizers

Based on the above approximations, the authors propose nonlocal versions of the ap-
proximating functionals of Ambrosio-Tortorelli and Shah to the Mumford-Shah functional.
It is important to recall that they also incorporate the vector case, i.e. color images, in
their formulation, in the way as we seen above.

Then, the general model proposed by the authors is:

JNL/MS(u, v) := β

∫
Ω
v2φ(||∇wu||2)dx︸ ︷︷ ︸
F
NL/MS
reg

+ α

2

∫
Ω

(
ε|∇v|2 + (v − 1)2

ε

)
dx︸ ︷︷ ︸

FAT

= F
NL/MS
reg (u, v) + FAT (v),

(2.3)

where u : Ω → R3, v : Ω → [0, 1], and φ(s) = s or φ(s) =
√
s, the first choice

correspond to NL/MSH1 and the second to MS/TV , i.e.,

JNL/MSH1(u, v) := β

∫
Ω
v2||∇wu||2dx︸ ︷︷ ︸
F
NL/MS
regAT

+α2
∫

Ω

(
ε|∇v|2 + (v − 1)2

ε

)
dx

= F
NL/MS
regAT (u, v) + FAT (v)

(2.4)

JNL/MSTV (u, v) := β

∫
Ω
v2||∇wu||dx︸ ︷︷ ︸
F
NL/MS
regS

+α2
∫

Ω

(
ε|∇v|2 + (v − 1)2

ε

)
dx

= F
NL/MS
regS (u, v) + FAT (v),

(2.5)
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and recall that:

||∇wu||(x) =
√ ∑

i=R,G,B

|∇wui|2(x) =
√ ∑

i=R,G,B

∫
Ω

(ui(x)− ui(y))2w(x, y)dy.

As we said before, adding a fidelity term to this functionals, we will be able to perform
a specific restoration task, we will discuss this in the next section.

As an additional remark the authors recall that in the practice the weight function
that will be used is the classic NL-means weight (given an image q):

w(x, y) = exp
(
−da(q(x), q(y))

h2

)
da(q(x), q(y)) =

∫
R2
ga(t)||q(x+ t)− q(y + t)||2dt

(2.6)

and we use search windows S(x) = {y / |x− y| ≤ r}.

The functional JNL/MS(u, v) is the most important functional of this work, we will try
to study it in the context of segmentation (i.e. with a L2 similarity term) in a theoretical
way. This is motivated because in numerical testings this functional seems to approximate
in a good way the original Mumford-Shah segmentation functional, but nothing has been
proved before about the theoretical properties of this functional, this will be the central
objective of this work and also, we will perform independent numerical testings for this
functional and we will try to improve its performance for some tasks of our interest.
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Chapter 3

The Segmentation Problem

3.1 Introduction to the Problem of Segmentation

Segmentation of an image can be understood basically as the process of partitioning
a digital image into multiple sets of pixels. The goal of this process is to simplify and/or
change the representation of an image into something, that is more meaningful and easier
to analyze. More precisely, in this process we could assign a label to each pixel in an
image, such that pixels with the same label share a common visual characteristic, for
example: color, intensity, texture.

Segmentation is the key process in order to differentiate objects in a digital image,
practical applications of image segmentation are:

1. Medical Imaging: Location of tumors and other pathologies, Measure tissue volumes,
Computer-guided surgery.

2. Satellite Imaging: Location and classification of several objects: roads, forests, etc.

3. Human recognition: Face, iris and fingerprint recognition.

4. Military Imaging and Surveillance: Camouflage recognition.

and, in general, any application which needs the identification of objects in a digital image.

In order to develop models for image segmentation, it is important to get a clear and
precise objective of what can lead us to differentiate one region or object from another.

Let’s review a simple example for this purpose, which is presented in [10] Chapter 4:
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Figure 3.1: Edges and Derivatives

We can see in Figure 3.1 that an effective way to differentiate regions in an image is
detecting the edges or contours of each physical object. Edge detection has been studied
widely in computer vision. The classical approaches are based on local differential prop-
erties of an edge, for instance, as we see on the Figure 3.1, on the first and/or second
derivatives of the image. The consideration of a regularization, applying a convolution
mask, of the input image (second row of images) is based on the fact that this process
enhance edges.

This idea can be resumed as follows: Starting from an image u0, we look for a pair
(u,K), such that, u is a nearly piecewise constant approximation of u0 and K which cor-
responds to the set of edges. This idea was proposed by Mumford and Shah in 1989, and
will be our choice to work with.

It is important to notice that there are other ways to perform segmentation, the de-
cision of which one we use depends of the objective of the process: differentiate physical
objects or reveal object structure for example. In the first case, one can consider a big
curve K which encloses the group of objects to be differentiated and make it evolve, with
some defined criteria, until it reaches the boundary of each object. This idea was proposed
by Kass, Witkin and Terzopoulos in [35] and it is called active contours, but we won’t
work with that.

In our case, the edge detection will be our principal objective, so, we will start exploring
the best way to perform segmentation based on edge detection: Considering the Mumford
and Shah Functional.
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3.2 Mumford-Shah Functional

Let Ω ⊂ RN an open and bounded set, with N = 2, 3 and u0 is the input image, which
we can assume, without loss of generality, such that, 0 ≤ u0(x) ≤ 1, a.e. x ∈ Ω.

We will search for a pair (u,K), where K ⊂ Ω is the set of discontinuities, which
will represent the edges of the objects, such that, minimizes some functional that we will
define before.

The idea of this functionals is to define a minimization problem in which the following
conditions prevail:

1. u is closer to u0.

2. u is constant in regions away from the set K.

3. The length of the set K is the minimum possible.

Considering these conditions, Mumford and Shah proposed the following functional,
known as the Mumford and Shah Functional:

F (u,K) =
∫

Ω\K
(u− u0)2dx+ α

∫
Ω\K
|∇u|2dx+ β

∫
K

dσ (3.1)

where α and β are nonnegative constants, and
∫
K

dσ is the length of K. This func-
tional is defined in [? ].

Then, the segmentation problem can be solved, in this model, by solving the following
variational problem:

To find suitable (u,K) such that minimizes F (u,K).

Notice that, if we want to apply the direct method of the calculus of variations, we
need to define a correct spaces for the function u and for the edge set K. It is clear that we
cannot impose that K to be in the space of piecewise C1,1 curves, since one cannot hope
to obtain compactness properties, and hence any existence theorem with this restriction.
Regularity issues about K should be studied a posteriori. To overcome this difficulty we
have to look for solutions in a wider class of sets of finite length. We will define the length
of K as its (N − 1)-dimensional Haussdorf measure HN−1(K), this is the classical way to
extend the notion of length to nonsmooth sets.

Considering this relaxation, we have to rewrite the Mumford and Shah functional as:

F (u,K) =
∫

Ω\K
(u− u0)2dx+ α

∫
Ω\K
|∇u|2dx+ βHN−1(K). (3.2)

It is interesting to see that this functional is minimal, in the sense that, if we remove
one of the terms involved, then inf F (u,K) = 0 and we could get trivial solutions. For
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example, if we remove the first term, then u = constant and K = ∅ is a solution, and if
we remove the second term, then u = u0 and K = ∅ is a solution. Notice also that, in
principle, we have u ∈ H1(Ω).

In the next sections we will discuss how the minimization problem have to be defined,
in order to, at least, expect non trivial solutions and then we will review some results
about the existence of solutions.

3.3 Spaces of Work: BV (Ω), SBV (Ω) and GSBV (Ω)

In order to have good properties on the functionals involved in this chapter, we will
have to consider this functionals defined on some function spaces which are not the clas-
sical spaces like the Sobolev ones.

First of all we need to define some preliminary things: Given Ω ⊂ RN and u : Ω →
[−∞,+∞] a measurable function, we define the approximate upper limit of u at x ∈ Ω
as:

u+(x) := inf
{
t ∈ [−∞,+∞] : lim

ρ↓0

|{y : u(y) > t} ∩Bρ(x)|
ρN

= 0
}

where Bρ(x) is the ball of radius ρ centered at x and |E| denotes the Lebesgue measure
of the set E. The approximate lower limit u−(x) is defined in the same way:

u−(x) := −(−u)+(x)

The set:
Su = {x ∈ Ω : u−(x) < u+(x)}

is the set of essential discontinuities of u, it is a (Lebesgue)-negligible Borel set. If
x 6∈ Su, we say that u is approximately continuous at x and we write:

ũ(x) = u−(x) = u+(x) = aplimy→xu(y)

The first space that we will define is the space of bounded variation functions: BV (Ω),
this space is well known from measure theory and will be the starting point to define the
most interesing spaces to work with:

Definition 3.3.1. Let u ∈ L1(Ω); we say that u is a function of bounded variation in Ω
if the distributional derivative of u is representable by a finite Radon measure in Ω, i.e.
if: ∫

Ω
u
∂φ

∂xi
dx = −

∫
Ω
φdDiu ∀φ ∈ C∞c (Ω), i = 1, . . . , N (3.3)

for some RN -valued measure Du = (D1u, . . . , DNu) in Ω. The vector space of all
functions of bounded variation in Ω is denoted by BV (Ω)

Notice that this definition is equivalent to the following one
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Definition 3.3.2. Let u ∈ L1(Ω); Then u is a function of bounded variation in Ω if the
distributional derivative of u is a vector valued measure with finite total variation in Ω.
Where total variation is defined by:

V (f,Ω) := sup
{∫

Ω
udivϕdx : ϕ ∈ [C1

c (Ω)]N , ||ϕ||∞ ≤ 1
}

An important theorem about this spaces is the following one:
Theorem 3.3.3. If u ∈ BV (Ω), the set Su is countably (HN−1, N − 1)-rectifiable, i.e.:

Su =
⋃
i≥1

Ki ∪N

where HN−1(N ) = 0 and each Ki is a compact subset of a C1-hypersurface Γi.
A consequence of this, is that there exists a Borel function νu : Su → SN−1 such that

HN−1-a.e. in Su the vector νu(x) is normal to Su at x in the sense that it is normal to Γi
if x ∈ Ki. For every u, v ∈ BV (Ω), we must therefore have νu = ±νv, HN−1-a.e. in Su∩Sv.

Notice that, for every u ∈ BV (Ω), the measure Du can be decomposed as follows:

Du = ∇u(x)dx+ (u+ − u−)νuHN−1xSu + Cu (3.4)

where ∇u is the approximate gradient of u, defined a.e. in Ω by:

aplimy→x
u(y)− u(x)− 〈∇u(x), y − x〉

|y − x|
= 0

and HN−1xSu is the restriction of the N − 1 dimensional Hausdorff measure to the set
Su, and Cu is the Cantor part of the measure Du, which is singular with respect to the
Lebesgue measure and such that |Cu|(E) = 0 for any E with HN−1(E) <∞.

This decomposition lead us to define the space of Special functions of Bounded Vari-
ation, denoted by SBV (Ω):
Definition 3.3.4. We say that a function u ∈ BV (Ω) is a special function of bounded
variation if Cu = 0 where Cu is the same as in 3.4. This condition means that the singular
part of the distributional derivative Du is concentrated on the jump set Su. This vector
space is denoted by SBV (Ω)

This space is not trivial, in the sense that we can find a function u such that
u ∈ BV (Ω) \ SBV (Ω), the classical example is to take u as the well known Cantor-Vitali
function.

Finally we define the define the space of Generalized SBV functions:
Definition 3.3.5. We say that a measurable function u : Ω→ [−∞,+∞] is a generalized
SBV function if for any k > 0 the function uk = (−k ∧ u)∨ k ∈ SBV (Ω), where X ∧ Y =
min(X, Y ) and X ∨ Y = max(X, Y ). We denote this vector space by GSBV (Ω).

This last two spaces were defined by Ambrosio in [4] in order to obtain compactness
theorems to work in the minimization of functionals in free-discontinuity problems.

An extensive treatment of this spaces can be found in [7] in chapters 3 and 4.
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3.3.1 Existence of Minima

If we want to apply the direct method of the calculus of variations, it is necessary
to find a suitable topology, such that, we can ensure the lower semicontinuity of F and
compactness of the minimizing sequence. Notice that we have two unknowns in the
functional u and K, which have a very different nature, u is a function defined on a N
dimensional space, and K is an (N − 1) dimensional set. So, we will have a big difficulty
in our purpose, basically based on the term HN−1(K). Because we have the following
known result about the Hausdorff’s measure:

Theorem 3.3.6. Let E be a Borel set of RN , with topological boundary ∂E, then, the
map

E → HN−1(∂E)

is not lower semicontinuous with respect to any compact topology.

Due to this result, it is necessary to find another formulation for F (u,K). A new, and
suitable, formulation involves the use of the space BV (Ω) that we defined before. The
idea is that we can identify the set of edges K with the jump set of u, denoted by Su, this
allows us to eliminate the unknown K. Then, we have to consider the functional:

G(u) :=
∫

Ω
(u− u0)2dx+ α

∫
Ω
|∇u|2dx+ βHN−1(Su) (3.5)

Since we have removed the problem of the set K, now we have a functional depending
just on the function u, by passing to the space BV (Ω). Unfortunately if we want to
minimize G in BV (Ω) we will have the following bad behaviour: There exists functions
on BV (Ω), for example the Cantor-Vitali function v∗, such that, they are non constant,
continuous and with approximate derivative equal to zero a.e., thus we have:

G(v∗) =
∫

Ω
(v∗ − u0)2dx ≥ inf

u∈BV (Ω)
G(u) ≥ 0,

but it can be proved that this kind of functions are dense in L2(Ω) so, in that case we
have:

inf
u∈BV (Ω)

G(u) = 0,

this implies in particular, that the infimum cannot be achieved in BV (Ω) in general.
Details can be seen on [5].

In order to avoid this bad behavior, we have to work in the space SBV (Ω), the space
of Special Functions of Bounded Variation, that we defined before. Recall that the only
difference of this space in comparison with BV (Ω) is that, in SBV (Ω) we force that these
functions to have support outside Cantor-like sets. So, the suitable space for the functional
3.5 will be SBV (Ω), and using the following compactness theorem on this space we can
conclude, using the direct method of calculus of variations, the existence of minimizers
for G(u):
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Theorem 3.3.7. Let un ∈ SBV (Ω) be a sequence of functions such that there exists a
constant C with |un(x)| ≤ C <∞ a.e. x ∈ Ω and∫

Ω
|∇un|2dx+HN−1(Sun) ≤ C.

Then there exists a subsequence unk converging a.e. x to a function u ∈ SBV (Ω).
Moreover ∇unk converges weakly in L2(Ω)N to ∇u and

lim infHN−1(Sunk ) ≥ HN−1(Su).

Finally, we want to relate the minima of G(u) and minima of F (u,K), which is the
original functional. Ambrosio in [3] have proved the following theorem:

Theorem 3.3.8. Let K ⊂ Ω be a closed set, such that, HN−1(K) < ∞ and let u ∈
H1(Ω \K) ∩ L∞(Ω). Then u ∈ SBV (Ω) and Su ⊂ K ∪R with HN−1(R) = 0.

This theorem leads us to relate the minima of the following problems:

inf
u,K

{
F (u,K), u ∈ H1(Ω \K) ∩ L∞(Ω), K ⊂ Ω, K closed, HN−1(K) <∞

}
(P1)

and
inf
u
{G(u), u ∈ SBV (Ω) ∩ L∞(Ω)} (P2)

in the following way:

Notice that, from Theorem 3.2.3 we have:

inf P2 ≤ inf P1,

but from Theorem 3.2.2, applied to a minimizing sequence of (P2), such that,

|un|L∞ ≤ |u0|L∞ ,

which is always satisfied by a truncation argument, we have a solution u for (P2). For
such minimizer De Giorgi et al proved in [27] Lemma 5.2 that:

HN−1((Ω ∩ Su) \ Su)) = 0

So, setting K = Ω ∩ Su we get a solution of (P1) and finally we can conclude that:

min(P1) = min(P2)

3.3.2 Approximation Schemes

We have established the existence of minimizers for the Mumford-Shah functional
F (u,K), in order to compute minimizers we would like to have optimality conditions
associated with this functional, this is possible and, in fact, there exists results of this
conditions, but due to the numerical complexity of this conditions (specially in order to
reproduce conditions for the set K), we will prefer to avoid this results. Moreover, our
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approach in order to compute numerically minimizers for this functional will be based in
compute the minimizers for a suitable family of functionals Fε, which Γ-converges to the
Mumford-Shah functional F (u,K).

The main advantage of consider this approach is that we can work with sequence of
functionals Fε which have better properties (for example, we can define this sequence of
functionals on Sobolev spaces, and in this case we can develop computational algorithms
based on solving Euler-Lagrange equations which are suitable in this case) to work with.
The convergence of Fε to F as ε→ 0 will be understood in the Γ-convergence sense.

There are several approaches to approximate the functional F (u,K), for example:

1. Approximation by elliptic functionals:
In this approach the set Su (or K) is replaced by an auxiliary variable v, which is a
function, that approximates the characteristic function 1Scu , so, v(x) ∼ 0 if x ∈ Su
and v(x) ∼ 1 if x 6∈ Su. There are several functionals for this purpose, the most
important is the functional defined by Ambrosio and Tortorelli in [6]:

Fε(u, v) =
∫

Ω
(u− u0)2dx+

∫
Ω
v2|∇u|2dx+

∫
Ω

(
ε|∇v|2 + 1

4ε(v − 1)2
)
dx (3.6)

we will discuss about how this functional Γ-converge to G(u) in the next section.

2. Approximation by finite-difference schemes:
This could be seen as the most natural way to approximate the Mumford-Shah
functional, in the sense that this could be seen as a numerical discretization of the
functional. The idea is to consider u(x) as a discrete image defined on a mesh with
step h and F h as the discrete version of the Mumford-Shah functional. The most
successful works with this kind of approximation are made by Chambolle, which
defines this kind of approximation on [21] and then proved the Γ-convergence of a
proposed functional of this kind in [22].
An example family of functionals of this type are the following: In the 1D case, let:

ghk a reasonable discretization of the input image u0, uh = (uhk)kh∈Ω

Then: F h(uh) = h
∑

kWh

(
uhk+1−u

h
k

h

)
+h
∑

k(uhk−ghk )2. WhereWh(t) = min(t2, 1/h),
and he proved that F h Γ-converges to

F (u) =
∫

Ω
(u− u0)2dx+

∫
Ω\Su

(u′)2dx+ |Su| u ∈ GSBV (Ω)

We will focus in the study of the Γ-convergence for the case of approximation func-
tionals, in specific in the Ambrosio-Tortorelli functional of approximation, because this
functional is very similar to the functional that we will study in the later chapters, more-
over, the techniques to prove the Γ-convergence of our objective functional will be similar.
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3.3.3 Γ Convergence in the case of Ambrosio-Tortorelli func-
tional

As we detailed before, the key point of the Γ convergence is the fact that this kind
of convergence is able to ensure the convergence of minima, in the sense that if Fε Γ
converges to F , then if we have a sequence of minimizers of the family Fε then the limit
of that sequence is a minimizer of F .

In this section we will briefly describe the Γ convergence to the Mumford-Shah func-
tional of the Ambrosio-Tortorelli functional, in order to study this convergence we will
need to convince in first place that the Ambrosio-Tortorelli functional (or a modification,
as we see later) actually have minimizers, otherwise the most important property of the
Γ convergence will be satisfied trivially, and this process will have no value.

In the following discussion we will consider the Ambrosio-Tortorelli functional defined
in 3.6

3.3.3.1 Existence of Minima for Fε

Given ε > 0 we have that Fε(u, v) is well defined in C = {(u, v) ∈ H1(Ω)2 | 0 ≤ v ≤ 1},
moreover, is easy to see that the functional is weakly lower semicontinuous on C. In order
to apply the direct method of the calculus of variations it suffices to bound (on C) the
minimizing sequence (unε , vnε ) independently of n. Is easy to bound in L2(Ω) the sequences
unε , v

n
ε and ∇vnε , but we don’t have a direct bound for ∇unε (because we have no control

on the term
∫

Ω(vnε )2|∇unε |2dx).

The natural question arises: How to fix this problem?

The solution is quite simple: we just have to modify slightly the functional Fε(u, v),
let us consider the perturbed functional:

F̃ε(u, v) = Fε(u, v) + o(ε)
∫

Ω
|∇u|2dx (3.7)

With this small modification, the functional F̃ε is coercive on C, and in this case we
can apply the direct method of the calculus of variations. We resume this result on the
following theorem:

Theorem 3.3.9. Given u0 ∈ L∞(Ω), the problem

inf
C
F̃ε(u, v)

admits a solution (uε, vε) which satisfy: |uε|L∞ ≤ |u0|L∞.

Proof. This is just an application of the direct method of the calculus of variations 2.1.
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Notice that in this way we are able to ensure something that the functional Fε was
unable to (and, in fact, can be proved that the original functional will not be able):
The ‘sequence of minimizers’ (uε, vε)ε for the functionals F̃ε converge, as ε→ 0 to a limit
(u, v) ∈ H1(Ω)2, this behaviour is needed, because the result for the minimizers of F (u,K)
asserts that u ∈ H1(Ω \K), then, in order to study Γ convergence, we need at least that
the limit of the sequence of minimas for each F̃ε lives on the space of the minimas for the
original functional.

Then we can conclude that this modification solves two problems: Ensures the exis-
tence of minima and forces the limit of the sequences of minima for the approximating
functional lives on the appropiate space.

3.3.3.2 The Γ Convergence Theorem

In this section we finally enounce the most important theorem for the classical Ambrosio-
Tortorelli functional: The Γ convergence of F̃ε to the Mumford-Shah functional.

Theorem 3.3.10. Let Ω ⊂ RN be an open set, and let F̃ε : L1(Ω) × L1(Ω) → [0,∞]
defined by:

F̃ε(u, v) =


∫

Ω(u− u0)2dx+
∫

Ω v
2‖∇u‖2dx+

∫
Ω

(
ε|∇u|2 + 1

4ε(1− v)2) dx
if (u, v) ∈ H1(Ω)2, 0 ≤ v ≤ 1
+∞ otherwise

and Let F : L1(Ω)2 → [0,∞] be defined by

G(u, v) =
{∫

Ω(u− u0)2dx+
∫

Ω ‖∇u‖
2dx+HN−1(Su) if u ∈ GSBV (Ω) and v = 1 a.e.

+∞ otherwise

Then F̃ε(u, v) Γ converges to G(u, v) in the L1(Ω) × L1(Ω) topology. Moreover, F̃ε
admits a minimizer (uε, vε) such that, up to subsequences, uε converges in L1(Ω) to a
minimizer of G, u ∈ SBV (Ω), and

inf F̃ε → inf G(u, v)

There are several proofs for this result, the only difference is the topology and gener-
ality used on each cases, detailed references are: [6] Theorem 1.1, [14] Theorem 8.1 and
[13] Theorem 3.15.
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Chapter 4

The Non Local Segmentation
Problem

4.1 The Non-Local Ambrosio-Tortorelli Functional

As we mentioned before in 2.5, in order to perform several image processing tasks
including the advantages of Buades-like denoising filters, we can consider the functional
2.4 with a suitable similarity term, which, in order to perform segmentation, is:

Jsim(u) := β

∫
Ω

(u− u0)2dx

where u0 is the input image for the segmentation.

Therefore, the functional on study will be, given a bounded interval Ω ⊂ R:

FNLAT
ε (u, v) := α

∫
Ω
v2|∇wu|2dx+ ν

2

∫
Ω
ε|∇v|2 + (1− v)2

ε
dx+ Jsim(u)

= α

∫
Ω
v2|∇wu|2dx+ ν

2

∫
Ω
ε|∇v|2 + (1− v)2

ε
dx+ β

∫
Ω

(u− u0)2dx

= Gε(u, v) + Jsim(u)

(4.1)

recalling that the non-local gradient norm is defined by:

|∇wu|2(x) =
∫

Ω
(u(y)− u(x))2w(x, y)dy

For a suitable weight function w(x, y) (typically the Buades non-local denoising filter
weight function given by 2.6), we will study how the non-local gradient function should
be (re)defined in order to obtain interesting theorical properties. Notice that in general
we will work with the term Gε(u, v) due to the continuity of Jsim(u) in L2 (and therefore
L1)

The minimization of this functional will reveal the non-local segmentation of the image
u0, in this chapter we will study this functional, we will explain why the classical formula-
tion for this functional is not appropiate for Γ-convergence purposes, we will re-define the
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formulation in order to obtain interesting results in Γ-convergence sense and we finally
prove this important results.

We will first reviewing the classical assumptions that we consider on the weight func-
tion w(x, y) and study briefly the behaviour of the non-local gradient, next we will define
the spaces of work in this chapter, after that we will review some results on ‘Perimeter-
like’ functionals that will be useful for our main proof and then we will study why we
have to redefine the non-local functional. Finally we will prove the Γ-convergence result
for the modified functional.

4.2 Some assumptions on w(x, y) and behaviour of
|∇wu|2(x)

In this section we will study briefly the behaviour of the term |∇wu|2(x), in order to
understand ‘how it works’, this will let also to ‘begin to see’ that the classical formulation
of the functional is not enough for Γ-convergence purposes and is the starting point to
believe that the term should be redefined. We will also enounce some assumptions that
we will use in the rest of this chapter, some of them will let us to model some terms in a
more representative way, other will let us to simplify the original model.

4.2.1 Assumptions on w(x, y)

We first have to notice that, usually, the weight function w(x, y) will be chosen such
that: Given an image/signal u0, that will be segmented, the function w(x, y) is constructed
by 2.6, after the construction of w (which depends on u0) the minimization process never
deal again with a ‘reconstruction’ or ‘update’ of w(x, y), thus, the first assumption for
theorical purposes will be:

The function w(x, y) is fixed in the minimization process

We also consider, due to classical form of w(x, y) given by 2.6, that, if Ω is a bounded
set, then:

0 < m := inf
(x,y)∈Ω

w(x, y) < M := sup
(x,y)∈Ω

w(x, y) <∞ (4.2)

We finally describe a few classical assumptions on w(x, y) which are valid not only for
the one given by 2.6, we will assume that:

w(x, y) = w(y, x) ∀x, y ∈ Ω, w(x, x) = 1 ∀x ∈ Ω,
∫

Ω
w(x, y)dy = 1 ∀x ∈ Ω (4.3)
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4.2.2 A small review of |∇wu|2(x)

In this section we will explore slightly the behaviour of the term |∇wu|2 under the
classical definition, and also we will explore the behaviour under a redefinition of the
term, that will be justified later.

If we consider the classical definition of |∇wu|, we have:

|∇wu|2(x) =
∫

Ω
(u(y)− u(x))2w(x, y)dy

then we have that, if u ∈ L2(Ω) (then in L1(Ω) due to the boundness of Ω):

|∇wu|2(x) =
∫

Ω
(u2(y)−2u(x)u(y)+u2(x))w(x, y)dy ≤M(‖u‖L2 +u2(x)|Ω|−2u(x)‖u‖L1)

Then
|∇wu|2 <∞ a.e.

this is due by the boundness of w(x, y) (recall, from measure theory, that a function
in L1(Ω) with Ω bounded is finite a.e.). This behaviour is ‘undesired’ in the sense that
the finiteness of this term depend only on the finiteness of u, therefore, this ‘gradient-like’
term does not replicate the undefinition of the classical derivatives when we deal with
finite discontinuities (which are our point of study, in the practice).

Moreover, if we define the space:

Jw(Ω) = {u ∈ L2(Ω) : |∇wu|2 ∈ L2(Ω)} (4.4)

We have that Jw(Ω) = L2(Ω), in fact, let u ∈ L2(Ω):∫
Ω
|∇wu|2dx =

∫
Ω

∫
Ω

(u2(y)− 2u(x)u(y) + u2(x))w(x, y)dydx

≤ M

∫
Ω

∫
Ω
u2(y)− 2u(x)u(y) + u2(x)dydx

= M

∫
Ω
‖u‖2

L2 + |Ω|u2(x)dx− 2
∫

Ω
u(x)

∫
Ω
u(y)dydx

≤ M

(
2|Ω|‖u‖2

L2 + 2
∫

Ω
|u|(x)

∫
Ω
|u|(y)dydx

)
= M

(
2|Ω|‖u‖2

L2 + 2‖u‖2
L1

)
<∞

This is also an ‘undesired’ behaviour, because the space becomes ‘too large’, and as
we will see later, the functional defined in this way will have a ‘bad Γ-limit’ in a sense
which we will explain later.

Now consider the following definition for the non-local gradient norm:

|∇wu|2(x) =
∫

Ω

|u(y)− u(x)|2
|y − x|α

w(x, y)dy (4.5)
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where α is a positive fixed number that we will choose later, and w(x, y) satisfy the
same assumptions given in 4.2.1, and usually is taken as the non-local denoising filter
weight 2.6. Notice that, considering this definition, we ‘replicate’ a sort of derivative
norm plus ‘non-local terms’, let us see how it behaves with a simple example:

Let Ω = (−1, 1), and u(x) = H(x) = 1[0,∞)(x), the Heaviside (right-continuous) step
function, let us compute the non-local gradient norm defined in this way, for this function
in the point x = 0 which is a point of discontinuity of u:

|∇wu|2(0) =
∫ 1

−1

(u(y)− 1)2

|y|α
w(x, y)dy

=
∫ 0

−1

1
|y|α

w(x, y)dy

≥ m

∫ 0

−1

1
|y|α

dy = m

∫ 1

0

1
yα
dy =∞ if α > 1

therefore, at least if we choose α > 1 (and we will choose it for the rest of this section),
this gradient-like term is able to recover a classical behaviour of the normal derivative:
it becomes undefined when the function is discontinuous. Notice that this behaviour is
present (using a similar argument) for any function with isolated finite discontinuities.

Also, notice that if we have: |∇wu|2(x) = 0 then:

(u(y)− u(x))2

|y − x|α
= 0 a.e.

and we get that u(y) = u(x) a.e. in Ω, therefore, if the non-local gradient is 0 in some
point, then the function is constant a.e. in Ω.

So, the question that arises now is what topology we endow to this space, and if we can
recognize this space to someone ‘known’ one, to answer this questions first let us define:

|u|J = ‖|∇wu|‖L2 =
(∫

Ω
|∇wu|2(x)dx

)1/2

=
(∫

Ω

∫
Ω

(u(y)− u(x))2

|y − x|α
w(x, y)dydx

)1/2

(4.6)
we have the following result about this operator:

Proposition 4.2.1. Let | · |J be the operator defined by 4.6, with w : Ω × Ω → R a
non-negative and symmetric function (i.e. w(x, y) = w(y, x)). then | · |J is a seminorm
in Jw(Ω).

Proof. To see this first notice that |λu|J = |λ||u|J is trivial, then the only thing we have
to check is the triangle inequality, i.e. we have to prove that:

∀u, v ∈ Jw(Ω) : |u+ v|J ≤ |u|J + |v|J (4.7)
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in order to prove this let us recall, to simplify the notation w̃(x, y) = w(x, y)
|y − x|α

, notice
that the proof is unreleavant due to the independence of this function from the functions
taken in the seminorm. Now let us see that:

|u+ v|J = ‖|∇w(u+ v)|‖L2 =
(∫

Ω
|∇w(u+ v)|2(x)dx

)1/2

=
(∫

Ω

∫
Ω

((u+ v)(y)− (u+ v)(x))2w̃(x, y)dydx
)1/2

=
(∫

Ω

∫
Ω

[(u(y)− u(x))2 + (v(y)− v(x))2 + 2(u(y)− u(x)) · (v(y)− v(x))]

w̃(x, y)dydx
)1/2

Let us focus on the last term in the inner integral:∫
Ω

(u(y)− u(x)) · (v(y)− v(x))w̃(x, y)dy =
∫

Ω
(u(y)− u(x))

√
w̃(x, y) · (v(y)− v(x))

√
w̃(x, y)dy

≤
(∫

Ω
[(u(y)− u(x))

√
w̃(x, y)]2dy

)1/2

·(∫
Ω

[(v(y)− v(x))
√
w̃(x, y)]2dy

)1/2

=
(∫

Ω
(u(y)− u(x))2w̃(x, y)dy

)1/2

·(∫
Ω

(v(y)− v(x))2w̃(x, y)dy
)1/2

= |∇wu| · |∇wv|

The inequality is due to Cauchy-Schwartz inequality.
Now, we can notice that:

|u+ v|2J = ‖|∇wu|‖2
L2 + ‖|∇wv|‖2

L2 + 2
∫

Ω
(u(y)− u(x)) · (v(y)− v(x))w̃(x, y)dy

≤ ‖|∇wu|‖2
L2 + ‖|∇wv|‖2

L2 + 2‖|∇wu| · |∇wv|‖L1

≤ ‖|∇wu|‖2
L2 + ‖|∇wv|‖2

L2 + 2‖|∇wu|‖L2 · ‖|∇wv|‖L2 = (‖|∇wu|‖L2 + ‖|∇wv|‖L2)2

Where the first inequality comes from the previous computation and the second by
Hölder inequality.

Finally, taking root we have:

|u+ v|J ≤ ‖|∇wu|‖L2 + ‖|∇wv|‖L2 = |u|J + |v|J

From which we conclude that |u|J is a seminorm.
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Thank to the previous result, we can endow Jw(Ω) the topology generated by the
norm:

‖u‖J = ‖u‖L2 + |u|J = ‖u‖L2 + ‖|∇wu|‖L2

Is easy to prove (using the completeness of L2 and the dominated convergence theo-
rem) that (Jw(Ω), ‖ · ‖J) is a Banach space.

Now notice that:

m

∫
Ω×Ω

(u(y)− u(x))2

‖y − x‖α
dydx ≤ |u|2J ≤

∫
Ω×Ω

(u(y)− u(x))2

‖y − x‖α
dydx

Then, the norm ‖·‖J is equivalent to the norm of the Fractional Sobolev spaceW s,p(Ω)
which is given by:

‖u‖pW s,p = ‖u‖Lp +
∫

Ω×Ω

|u(x)− u(y)|p
|x− y|n+sp dydx

when the dimension is n = 1, p = 2 and s ∈ (0, 1) we get that α = 1 + 2s > 1. Then,
in the unidimensional case we have that

Jw(Ω) = W s,2(Ω) = Hs(Ω)

and our parameter α > 1 becomes to α = 1 + 2s, s ∈ (0, 1).

This spaces have a rich structure and known properties, we will try to explore them
in order to restrict s (and α) to the maximal interval in which this spaces let us obtain
results of interest.

From this little discussion we can see that modifying the non-local gradient norm term
we get a ’closer’ extension of the classical derivative norm, we will discuss the consequences
of how define the term later.

4.3 The Spaces of Work

Here we will describe formally the space W s,p(Ω) in which the non-local functional is
well defined.

Definition 4.3.1. Let Ω be a general, possibly non smooth, open set in Rn. Fix s ∈ (0, 1).
For any p ∈ [1,∞), we define the fractional Sobolev space W s,p(Ω) as:

W s,p(Ω) =
{
u ∈ Lp(Ω) : |u(x)− u(y)|

|x− y|
n
p

+s ∈ L
p(Ω× Ω)

}
(4.8)

Notice that this is a space between Lp(Ω) and W 1,p(Ω), this space is endowed with the
norm:

‖u‖W s,p =
(
‖u‖Lp +

∫
Ω×Ω

|u(x)− u(y)|p
|x− y|n+sp dydx

) 1
p

(4.9)
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where the term

[u]W s,p(Ω) :=
(∫

Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp dxdy

) 1
p

(4.10)

is the Gagliardo semi-norm of u.

Notice that this space is Banach, also if we take p = 2, we use the notation:

W s,2(Ω) = Hs(Ω)

this space is a Hilbert space with the natural inner product.

We also need to define the space of piecewise fractional Sobolev functions in 1 dimen-
sion:

Definition 4.3.2. We will say that u ∈ PW s,p(a, b) if there exists a = t0 < t1 < . . . <
tN < tN+1 = b such that u ∈ W s,p(ti−1, ti), ∀i ∈ {1, . . . , N}. In this definition Su is
interpreted as the minimal of such sets of points, and u ∈ L2(a, b) is defined piecewise on
(a, b) \ Su.

The choice of s ∈ (0, 1) is not decorative, it can be proved (see [17] Proposition 2) that
if s ≥ 1 and u is a measurable function such that:∫

Ω

∫
Ω

|u(x)− u(y)|p
|x− y|n+sp dxdy <∞

then u is constant a.e. in Ω, therefore if s ≥ 1 the space W s,p(Ω) defined in this way
becomes trivial. To generalize Sobolev fractional space for s > 1 another definition is
needed, this topic can be seen on detail in [29] pp. 9-10.

This spaces, like the integer exponent Sobolev spaces, have interesting and useful
properties, which we enounce now starting with the result that W s′,p is continuously
embedded in W s,p when s ≤ s′

Proposition 4.3.3. Let p ∈ [1,∞) and 0 < s ≤ s′ < 1. Let Ω be an open set in Rn and
u : Ω→ R be a measurable function. Then

‖u‖W s,p(Ω) ≤ C‖u‖W s′,p(Ω)

for some suitable positive constant C = C(n, s, p) ≥ 1. In particular,

W s′,p(Ω) ⊂ W s,p(Ω)

Moreover, if Ω is a set of class C0,1 with bounded boundary we get that:

‖u‖W s,p(Ω) ≤ C‖u‖W 1,p(Ω)

In particular,
W 1,p(Ω) ⊂ W s,p(Ω)
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The proof of this result can be found in [29] Proposition 2.1.

Now we enounce one of the most useful results for this spaces, this result in particular
is needed in order to prove the Γ-convergence and will lead to make a choice about the
exponent s ∈ (0, 1)

Theorem 4.3.4. Let Ω ⊂ Rn be an extension domain for W s,p (i.e. a domain in which
we can extend a function u to whole Rn preserving the regularity, for example a Lipschitz
domain) with no external cusps and let p ∈ [1,∞), s ∈ (0, 1) such that sp > n. Then,
there exists C = C(n, s, p,Ω) such that

‖f‖C0,β(Ω) ≤ C‖f‖W s,p(Ω)

for any f ∈ Lp(Ω), with β := s− n/p

The proof of this result can be found in [29] Theorem 8.2.

The 1 dimensional version of this result is enounced and proved in [43] Corollary 26,
as:

Theorem 4.3.5. Given I an interval of R, assume s > 1/p, (s ∈ (0, 1), p ∈ (1,∞]).
Then:

W s,p(I) ⊂ C0,s−1/p(I)

and
‖f‖C0,s−1/p(I) ≤

36
s(s− 1/p)‖f‖W

s,p(I) ∀f ∈ W s,p(I)

if I is unbounded 36 may be replaced by 6.

Notice that, in order to use this theorem, we need to consider s > 1/2, then, we will
consider for the rest of this work:

s ∈ (1/2, 1), α ∈ (2, 3)

Therefore, in what follows we will consider the non-local gradient functional defined
by:

|∇wu|2(x) =
∫

Ω

|u(y)− u(x)|2
|y − x|α

w(x, y)dy =
∫

Ω

|u(y)− u(x)|2
|y − x|1+2s w(x, y)dy (4.11)

with α ∈ (2, 3) or equivalently s ∈ (1/2, 1).

4.4 Preliminary Results on ‘Perimeter Like’ Func-
tionals
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In order to prove a Γ-convergence result for the functional defined before, we will
need two results that arises from the study of the Γ-convergence for ‘Phase-transition
Problems’, this is, from functionals which satisfies the following form: If v ∈ H1(a, b):

Lε(v) =
∫

Ω

(
W (v)
ε

+ ε|v′|2
)
dt

and Lε(v) = +∞ if v 6∈ H1(a, b).

Where W : R→ [0,∞) is a C1 function such that the set Z = {W = 0} is a finite set
of points, and:

lim sup
|s|→∞

W (s) > 0

The idea of this kind of functionals is to approximate the so called ‘Phase-transition
energies’ which are of the form:

F (v) =
∑
t∈S(v)

θ(v−(t), v+(t)) v ∈ PC(a, b), v(t) ∈ Z a.e.

where: PC(a, b) is the set of piecewise constant functions in (a, b), v+(t) is the limit
from the right of v in t (resp. v−(t) is the limit from the left of v in t), Z is some fixed
set, baptized as the set of phases of v.

In this case, the function θ : Z × Z → [0,∞] is set to:

θ(w, z) = 2
∣∣∣∣∫ z

w

√
W (r)dr

∣∣∣∣
The key results which will help us to prove the Γ-convergence of the non-local func-

tional in 1-dimension are:

Lemma 4.4.1. If (εj)j is a sequence of positive numbers converging to 0 and such that
supj Lεj(vj) < +∞ then there exists a subsequence of (vj)j converging in L1(a, b) to some
function v ∈ PC(a, b) which satisfies v ∈ Z a.e., moreover, we get that for every η > 0
there exists a finite set S = Sη such that the oscillation of vj is definitively less than η on
each fixed compact subset of (a, b) \ S.

And the essential theorem which enounce the Γ-convergence result for the functionals
Lε

Theorem 4.4.2. Let W and Lε be defined as above. Then there exists the Γ-limit
Γ− limε→0+ Lε with respect to L1(a, b) convergence, and it equals the functional F defined
on L1(a, b) by:

F (v) =
{∑

t∈S(u) θ(u+(t), u−(t)) if u ∈ PC(a, b) and u ∈ Z a.e.

+∞ otherwise
(4.12)

where

θ(w, z) = 2
∣∣∣∣∫ z

w

√
W (r)dr

∣∣∣∣
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Notice that if W (v) = (1−v)2 then Z = {W = 0} = {1}, in that case the theorem asserts
that

F (v) = cW · |S(v)|

where cW = 2
∫ 1

0

√
W (s)ds = 2

∫ 1

0
|1− s|ds = 1.

The proof of this results can be found in [14] in Lemma 6.2 (and Remark 6.3) and
Theorem 6.4.

4.5 Reformulation of the Problem in the Continuous
Setting

As we seen before in 2.5 the functional defined by Jung et al. comes from a discrete
setting based on non-local operators defined by Gilboa and Osher in [31]. Is very impor-
tant to see that the definition in this way should be passed to continuous setting with
caution, in order to define a functional which have sense in the study of Γ-convergence.

The first important thing to recall, is the definition of the non local derivative: Let
Ω ⊂ RN , x ∈ Ω, u(x) a real function u : Ω→ R, then the non local derivative in direction
y is given by:

∂yu(x) := u(y)− u(x)
d(x, y) , y, x ∈ Ω

where 0 < d(x, y) ≤ ∞ is a positive measure defined between points x and y (notice
that they assume x 6= y, probably because in graphs where it is defined is useless to
define this quantity in x = y). They define, in order to keep standard notations related
to graphs, the weights as:

w(x, y) = d−2(x, y)

then 0 ≤ w(x, y) <∞, so we have:

∂yu(x) := (u(y)− u(x))
√
w(x, y), y, x ∈ Ω

The finiteness of w(x, y) deduced here leads to take this function as the non local
weight function defined in 2.4. This choice, for theorical purposes is not adequate in the
following sense:

We will prove that, if w(x, y) ∈ L∞(Ω× Ω) then the functional:

FNLAT
ε (u, v) = α

∫
Ω
v2|∇wu|2dx+ β

∫
Ω

(u− u0)2dx+ ν

2

∫
Ω
ε|∇v|2 + (1− v)2

ε
dx
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with
|∇wu|2(x) =

∫
Ω

(u(y)− u(x))2w(x, y)dy

Γ-converges (in a topology that we will specify later) to:

F (u, v) = α

∫
Ω
|∇wu|2dx+ β

∫
Ω

(u− u0)2dx

i.e. In the Γ-convergence sense we don’t measure the set of discontinuities of u, there-
fore we didn’t perform segmentation properly, due to the possibility of ‘Fractal’ sets with
same energy as non-fractal ones.

A brief explanation of this behaviour is based on noticing that the non-local gradient
norm, defined in the original way, is always a.e. finite, moreover, as we seen before, it
is finite even in the points of discontinuities of u, then, the set function v never needs
to vanish, then, v could be equal to 1 in Ω (and not only a.e.), which implies that no
segmentation is performed.

Using the properties of Γ-convergence and results about perimeter-like functionals, one
can prove the following theorem about the Γ-convergence for this case, we only deal with
the 1-dimensional case:
Theorem 4.5.1. Let Ω ⊂ R be an open interval, and let Fε : L1(Ω) × L1(Ω) → [0,∞]
defined by:

Fε(u, v) =


∫

Ω(u− u0)2dx+
∫

Ω v
2|∇wu|2dx+

∫
Ω

(
ε|∇v|2 + 1

ε
(1− v)2) dx

if (u, v) ∈ L2(Ω)×H1(Ω), 0 ≤ v ≤ 1
+∞ otherwise

with w(x, y) ∈ L∞(Ω× Ω), and let F : L1(Ω)2 → [0,∞] be defined by

F (u, v) =
{∫

Ω(u− u0)2dx+
∫

Ω |∇wu|2dx if u ∈ L2(Ω) and v = 1 a.e.
+∞ otherwise

Then Fε(u, v) Γ converges to F (u, v) in the L1(Ω)× L1(Ω) topology.
We left the proof pending until the end of this chapter, due to the similarity of the

proof from the main theorem of this chapter.

This theorem asserts that, without redefining the ‘non-local gradient norm’ term the
model becomes useless in the sense of Γ-convergence, briefly this term regularizes ‘too
much’, in the sense that the convergence is to a unrelevant functional, because v don’t
need to ‘jump’ in order to control the term |∇wu| in the discontinuities of u, therefore, the
Γ-limit don’t considerate the jump set size, and therefore, no segmentation is performed.

Then, we need to introduce a term which include all the good behaviour of the non-
local denoising function but also penalizes discontinuities with unbounded terms, as we
seen before this leads to propose the following |∇wu|2 form:

|∇wu|2(x) =
∫

Ω

(u(y)− u(x))2

|y − x|α
w(x, y)dy, w(x, y) ∈ L∞(Ω× Ω), α ∈ (2, 3)
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Usually w(x, y) will be the standard non-local weight function introduced by Buades
et al. given by 2.6 (notice that, this implies the assumptions proposed in 4.2.1 for w(x, y))
and the norm involved is the usual on each dimension. Notice that considering this term
the non-local part of the functional becomes to:

F
NL/MS
regAT (u, v) =

∫
Ω
v2|∇wu|2dx

=
∫

Ω
v2(x)

∫
Ω

(u(y)− u(x))2

|y − x|1+2s w(x, y)dydx

This functional is defined in Hs(Ω) × H1(Ω). For technical purposes we will assume
that s ∈ (1/2, 1).

4.6 Γ-Convergence in 1-Dimensional Case

With this tools we can finally enounce the key theorem of this chapter, but first of
all, let us define the notation for this section, given Ω = (a, b) a bounded interval and
s ∈ (1/2, 1) fixed, let:

Gε(u, v) =

α
∫ b

a

v2|∇wu|2dt+ β

2

∫ b

a

(
ε|v′|2 + 1

ε
(1− v)2

)
dt if (u, v) ∈ Hs(a, b)×H1(a, b)

+∞ otherwise
(4.13)

G(u, v) =

α
∫ b

a

|∇wu|2dt+ β|S(u)| if u ∈ PHs(a, b) and v = 1 a.e.

+∞ otherwise
(4.14)

Theorem 4.6.1. The functionals Gε : (L1(Ω))2 → [0,+∞] defined by 4.13 Γ-converge as
ε→ 0+ to the functional G : L1(Ω)2 → [0,+∞], defined by 4.14.

Proof. Given I ⊂ (a, b) define the functionals depending on set I:

Gε(u, v; I) =

α
∫
I

v2|∇wu|2dt+ β

2

∫
I

(
ε|v′|2 + 1

ε
(1− v)2

)
dt if (u, v) ∈ Hs(I)×H1(I)

+∞ otherwise
(4.15)

G(u, v; I) =

α
∫
I

|∇wu|2dt+ β|S(u) ∩ I| if u ∈ Hs(I) and v = 1 a.e.

+∞ otherwise
(4.16)

Let us see the lim inf inequality, the idea involved (as in the classical Ambrosio-
Tortorelli functional) is to study the inequality near ‘regular points’ (where the non local
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gradient is well defined) of u and ‘discontinuity points’ of u (where the non local gradient
explodes and therefore v is forced to become 0) separately, for simplicity the proof is given
for α = β = 1:

Let εj → 0+, uj → u and vj → v in L1(a, b). Up to a subsequence (by a classical
theorem of measure theory) we can suppose uj → u and vj → v a.e. and:

lim
j
Gεj(uj, vj) < +∞ (4.17)

Because in the other case the Γ-convergence is trivial.

Notice that v = 1 a.e., in fact vj → 1 in L2(a, b), if not:
∫

Ω(1− vj)2dt 6→ 0 and in that
case: Gεj(uj, vj)→ +∞, and the convergence is trivial again.

Now, we can see in the notation of Lemma 4.4.1 that we have

sup
j
Lεj(vj) <∞

then, the Lemma 4.4.1 applies with Z = {1} and W (s) = (1 − s)2 for the sequence
(vj)j, so, we have that there exists a finite set S such that ∀I ⊂⊂ (a, b) \ S we have:√

1
2 < vj < 2−

√
1
2 on I

In virtue of this we get:

m

2 sup
j

[uj]2Hs(I) ≤
1
2 sup

j

∫
I

|∇wuj|2dt ≤ sup
j

∫
I

v2
j |∇wuj|2dt ≤ sup

j

∫
Ω
v2
j |∇wuj|2dt <∞

Therefore, recalling that Hs(I) is a Hilbert space, we have that there exists u ∈ Hs(I)
such that uj ⇀ u in Hs(I). Using that vj → 1 in L2(I) we have:

[u]2Hs(I) ≤ lim inf
j

∫
I

∫
I

|uj(x)− uj(y)|2
|x− y|1+2s v2

j (x)dxdy

≤ 1
m

lim inf
j

∫
I

v2
j (x)

∫
I

|uj(x)− uj(y)|2
|x− y|1+2s w(x, y)dydx

= 1
m

lim inf
j

∫
I

v2
j (x)|∇wuj|2(x)dx

≤ 1
m

lim inf
j

∫
Ω
v2
j (x)|∇wuj|2(x)dx <∞

Noticing that this estimate is independent of I we get that u ∈ PHs(a, b) moreover,
thanks to theorem 4.3.5 we have that u is continuous in I, therefore Su ⊂ S (then S 6= ∅).
Notice also that (due to the equivalence of norms):∫

I

|∇wu|2dt ≤ lim inf
j

∫
I

v2
j |∇wuj|2dt ≤ lim inf

j
Gεj(uj, vj; I) (4.18)

Concluding the lim inf inequality for regular points of u.
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In the case of the discontinuity points the inequality follows as the same as for the
Ambrosio-Tortorelli case:

Let t ∈ Su, then there exists t1j , t2j , sj such that t1j < sj < t2j and:

lim
j
t1j = lim

j
t2j = lim

j
sj = t, lim

j
vj(t1j) = lim

j
vj(t2j) = 1 and lim

j
vj(sj) = 0

This is justified by the a.e. convergence of vj to 1 and to the fact that t ∈ Su: If not,
let us consider I ⊂⊂ (a, b) such that t ∈ I, and define L := lim infj inft∈I v2

j (t). If L > 0
(i.e. we can’t construct the sequences) we have:

m[uj]2Hs(I) ≤
∫
I

|∇wuj|2dt ≤
1
L

∫
I

v2
j |∇wuj|2 ≤

1
L

∫
I

|∇wuj|2 ≤
C

L

But this implies, as before, that u ∈ Hs(I) and then again by theorem 4.3.5 we have
that u is continuous in I, but that implies that t 6∈ Su, which is a contradiction.

Now, assuming the existence of the sequences, using the inequality a2 + b2 ≥ 2ab and
the change of variables formula we have:

lim inf
j

1
2

∫ sj

t1j

(
1
ε

(1− vj)2 + ε|v′j|2
)
dt ≥ lim inf

j

∫ sj

t1j

(1− vj)|v′j|dt

≥ lim inf
j

∣∣∣∣∣
∫ sj

t1j

(1− vj)v′jdt

∣∣∣∣∣
= lim inf

j

∣∣∣∣∣
∫ vj(sj)

vj(t1j )
(1− s)ds

∣∣∣∣∣
=

∣∣∣∣∫ 0

1
(1− s)ds

∣∣∣∣ = 1
2

and

lim inf
j

1
2

∫ t2j

sj

(
1
ε

(1− vj)2 + ε|v′j|2
)
dt ≥ lim inf

j

∫ t2j

sj

(1− vj)|v′j|dt

≥ lim inf
j

∣∣∣∣∣
∫ t2j

sj

(1− vj)v′jdt

∣∣∣∣∣
= lim inf

j

∣∣∣∣∣
∫ vj(t2j )

vj(sj)
(1− s)ds

∣∣∣∣∣
=

∣∣∣∣∫ 1

0
(1− s)ds

∣∣∣∣ = 1
2

Using this argument on each t ∈ Su and noticing that 4.18 is valid ∀I ⊂⊂ (a, b) we
conclude the lim inf inequality, to get this define for all ν > 0 the sets:

Iν := (a, b) \ (Su + [−ν, ν]) and Ĩν = (Su + (−ν, ν)) ∩ (a, b)
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Then, we get by 4.18: ∫
Iν

|∇wu|2 ≤ lim inf
j

Gεj(uj, vj; Iν)

and, from the previous inequality for discontinuity points applied to each one of them:(
1
2 + 1

2

)
· |Su| ≤ lim inf

j
Gεj(uj, vj; Ĩν)

then: ∫
Iν

|∇wu|2 + |Su| ≤ lim inf
j

Gεj(uj, vj; Iν) + lim inf
j

Gεj(uj, vj; Ĩν)

≤ lim inf
j

Gεj(uj, vj)

Letting ν → 0 we conclude the lim inf inequality.

For the lim sup inequality, we need to notice first that without loss of generality we
can suppose (a, b) = (−1, 1), u ∈ PHs(−1, 1) such that Su = {0} (the finiteness of Su is
needed, if not the inequality is trivial), then ‘the recovery sequence’ can be constructed
as follows:

The idea for uε is just to build it as a regularization of u around the point of discon-
tinuity, in order to do it is sufficient to build uε ∈ H1(−1, 1) such that uε(t) = u(t) if
|t| > ε2 and if |t| ≤ ε2 we consider the regularized function (we regularize as usual by
convolving with a regularization Kernel).

The idea for vε is to build it such that it is 1 ‘away from the discontinuity’, 0 in the
discontinuity, regularized in order to get a well defined functional, and defined carefully
in order to have a controlled ‘length-term’, the construction follows as: Let T > 0, and
fix ν > 0, consider v ∈ H1(0, T ) such that:∫ T

0
((1− v)2 + |v′|2)dt ≤ 1 + ν

and v(0) = 0, v(T ) = 1; now set:

vε(t) =


0 if |t| ≤ ε2

v

(
|t| − ε2

ε

)
if ε2 < |t| < ε2 + εT

1 if |t| ≥ ε2 + εT
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Notice that, from this definition naturally vε → 1 a.e., also we have:

Gε(uε, vε) =
∫ 1

−1
v2
ε |∇wuε|2 + ε

2v
′2
ε + 1

2ε(1− vε)2dt

=
∫ −ε2

−1
v2
ε |∇wu|2dt+

∫ 1

ε2
v2
ε |∇wu|2dt+

∫ ε2

−ε2
v2
ε |∇wuε|2dt

+
∫ 1

−1

ε

2v
′2
ε + 1

2ε(1− vε)2dt

≤
∫ −ε2

−1
|∇wu|2dt+

∫ 1

ε2
|∇wu|2dt+

∫ ε2

−ε2
|∇wuε|2dt

+
∫ 1

−1

ε

2v
′2
ε + 1

2ε(1− vε)2dt

In order to bound the terms of vε first notice that:

• The term (1− vε)2 is 0 if |t| ≥ ε2 + εT , is 1 if |t| ≤ ε2 and ranges values in (0, 1) if
ε2 < |t| < ε2 + εT .

• The term |v′ε|2 is 0 if |t| < ε2 or |t| > ε2 + εT otherwise is not 0 due to the regularity
of vε.

From this, we can deduce that:∫ 1

−1

ε

2v
′2
ε + 1

2ε(1− vε)2dt = 2
∫ ε2+εT

ε2

ε

2v
′2
ε dt+ 1

2ε

(
2
∫ ε2

0
1dt+ 2

∫ ε2+εT

ε2
(1− vε)2dt

)

= ε

∫ ε2+εT

ε2
v′2ε dt+ ε+ 1

ε

∫ ε2+εT

ε2
(1− vε)2dt

Notice that

v′ε(t) = d

dt

(
v

(
t− ε2

ε

))
= 1
ε
v

(
t− ε2

ε

)
, t ∈ (0, 1)

Then

ε

∫ ε2+εT

ε2
v′2ε dt+

1
ε

∫ ε2+εT

ε2
(1−vε)2dt =

∫ ε2+εT

ε2

1
ε
v′2
(
t− ε2

ε

)
dt+1

ε

∫ ε2+εT

ε2

(
1− v

(
t− ε2

ε

))2

dt

By change of variables formula, we get:∫ ε2+εT

ε2

1
ε
v′2
(
t− ε2

ε

)
dt =

∫ T

0
v′2(u)du

1
ε

∫ ε2+εT

ε2

(
1− v

(
t− ε2

ε

))2

dt =
∫ T

0
(1− v(u))2du

Then∫ 1

−1

ε

2v
′2
ε + 1

2ε(1− vε)2dt = ε+
∫ T

0
v′2(u)du+

∫ T

0
(1− v(u))2du ≤ ε+ 1 + ν
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Therefore:

lim sup
ε→0

Gε(uε, vε) ≤ lim sup
ε→0

∫ −ε2

−1
|∇wu|2dt+

∫ 1

ε2
|∇wu|2dt+

∫ ε2

−ε2
|∇wuε|2dt+ ε+ 1 + ν

=
∫ 1

−1
|∇wu|2dt+ 1 + ν

Where the last equality is just an application of dominated convergence theorem. Since
this is valid for all ν > 0 we conclude that:

lim sup
ε→0

Gε(uε, vε) ≤
∫ 1

−1
|∇wu|2dt+ 1 = G(u, v)

Which is the lim sup inequality in this case.

With this two inequalities we conclude the desired Γ-convergence, and therefore we
conclude the proof of the theorem.

To conclude this chapter we prove the pending Theorem 4.5.1, using most of the same
arguments as in the previous proof, recall that this theorem asserts that if we consider
the original non-local gradient term then the Γ-convergence becomes trivial, in the sense
that no discontinuities of u have been measured.

Proof of Theorem 4.5.1.

By the continuity of the fidelity term on L2(Ω) (therefore on L1(Ω)) we just have to
focus on the two later terms of the functional.

Following the same prodecure as the previous proof we get that, up to subsequence,
uj → u, vj → 1 a.e. and in L2(Ω), moreover, up to subsequence (again) we have that (vj)
is in L∞(Ω) and:

lim
j
Fεj(uj, vj) <∞

As we have done before, thank to Lemma 4.4.1 we have the existence of a finite set S
such that ∀I ⊂⊂ (a, b) \ S we have√

1
2 < vj < 2−

√
1
2 on I

The idea is to prove that Su is not contained in S.
In virtue of this we get:

0 ≤ m

2 sup
j

∫
I

∫
I

(uj(y)− uj(x))2dydx = m sup
j

(
|I|‖uj‖2

L2(I) −
∫
I

uj(x)dx
∫
I

uj(y)dy
)

≤ 1
2 sup

j

∫
I

|∇wuj|2dt

≤ sup
j

∫
I

v2
j |∇wuj|2dt

≤ sup
j

∫
Ω
v2
j |∇wuj|2dt <∞
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Therefore (noticing that the sequence uj is in L1(Ω)), we have that there exists u ∈
L2(I) such that uj ⇀ u in L2(I). Using that vj → 1 in L2(I) and dominated convergence
theorem, we have:∫

I

|∇wu|2dt ≤ lim inf
j

∫
I

v2
j |∇wuj|2dt ≤ lim inf

j

∫
Ω
v2
j |∇wuj|2dt

Notice that in this case we can’t conclude anything about the continuity of u in I, this
just let us to deduce that:∫

I

|∇wu|2dt ≤ lim inf
j

∫
I

v2
j |∇wuj|2dt ≤ lim inf

j
Fεj(uj, vj; I) (4.19)

Concluding the lim inf inequality for points of u outside the finite set S constructed
by the lemma 4.4.1.

Since the last steps don’t imply continuity of u in the interval I, this procedure is valid
for all points on (a, b) \ S, even for ones in Su.

Applying the same limit procedure as before we conclude the lim inf inequality.

The lim sup inequality is easier because we can take vε ≡ 1 and uε ≡ u, then the
inequality becomes trivial. This concludes the desired proof.

54



Chapter 5

Gabor Functions and Additional
Texture Features

In this part we will try to improve the detection of textures by considering the so
called Gabor functions additionally to just considering the non local segmentation of
the image.

This extra step is motivated by the signal phase analysis that could be done easily
when the signal is a linear combination of Gabor functions, this analysis can reveal the ex-
istence of some special kind of texture, the one based on putting togheter the same image
structure, but displaced in some phase. It also adds a more realistic setting, because the
Gabor functions are considered a good model for the way that the human vision process
an image.

We will first detail what specifically what is a Gabor function, then we will explain our
specific work: approximate a signal by ‘Gabor-like’ functions, and finally we will describe
the process performed to include this new feature in our task, including some numerical
examples in one dimension.

5.1 Gabor Functions - Mathematical Definition

The Gabor function, also known as Gabor atom, was proposed by Denis Gabor in
1946, the idea is to build a family of functions from translations and modulations of a
generating function.

So, given a function g ∈ L2(R), and constants a, b ∈ R we consider the family, called
Gabor Functions generated by the function g by:

gl,n(x) = g(x− al)e2πibnx, −∞ < l, n <∞

Is important to notice that this family of functions could be a basis for L2(R) (but is
not required) depending of the parameters g, a, b.
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5.2. Approximating a Signal by Gabor Functions Chapter 5

Unlike Fourier Series, this functions are not necessarily a basis for some function
space, and also, the functions generated by g may have a compact support, which is
highly realistic for image-signal representation purposes.

5.2 Approximating a Signal by Gabor Functions

Given a signal u ∈ L∞(R) (with compact support, in fact), we would like to approxi-
mate it by the family of Gabor Functions defined above, in some norm. So, we would like
to write:

u(x) ∼
∑
l,n∈N

cl,n · gl,n(x) =: Gc(x)

where the coefficients cl,n are such that the distance in some norm between u and G
is minimized, i.e. we choose the sequence of coefficients c = (cl,n) such that:

||u−Gc|| = min
c
||u−Gc||

In a discretized setting (the one in we work actually) we will have the discretized do-
main: (xi)Ni=1 and the corresponding values of the signal: ui = u(xi), i ∈ {1, . . . , N}, so,
the problem becomes a distance between a finite number of points (instead of distances
between functions in a infinite dimensional space), and the problem is now a finite dimen-
sional one. For example, if we want the approximation on norm 2 (known as least squares
approximation) we have:

||u−Gc|| =
N∑
i=1

(ui −Gc(xi))2 = min
c

N∑
i=1

(ui −Gc(xi))2

Moreover, if we have a finite family of functions, that will be our usual setting, due to
the compact support of the signal, we have a simpler version of the problem, because we
have:

Gc(x) =
l∑

i=1

ci · gi(x)

where gi is indexed in some compatible way to order the subscripts l ∈ {1, . . . ,m1}, n ∈
{1, . . . ,m2}.

With this notation, the problem can be rewritten in a explicit way as:

min
c=(ci)

||u− Ac||

where A is a matrix of size (Number of functions of Gabor function family×N) were
each row have the structure:

Ai = (c1g1(xi), c2g2(xi), . . . , cMgM(xi))

where M is the number of functions in the Gabor function family.
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5.3. Basis Pursuit Denoising Chapter 5

This is the general setting for function approximation in our context, in our case,
we will have a large number of functions (much larger than the number of samples from
our signal), so, the approximation scheme should be taken carefully, because an unsmart
choice of parameters and methods could lead to a computationaly expensive process. This
specific problem is known as a basis pursuit denoising and we will discuss it in the next
section.

5.3 Basis Pursuit Denoising

In this special scheme of approximation we have a large number of basis functions, the
goal is to find a good fit of the given signal as a linear combination of a small number
of the basis functions. This is called basis pursuit since we are selecting a much smaller
basis to model the data.

So, if we call F the set of linear combinations of Gabor function family functions (i.e.
F = span({gi})), we want to find a function f ∈ F such that:

f fits the data well, i.e. f(xi) = ui

and
f =

∑
i∈B

ci · gi, with B = {i | ci 6= 0}

B is the set of indices of the chosen basis elements, as a sparse description of the data.

This representation is useful in our case because with appropiate Gabor function as-
sociated we can study the predominant phases of a given signal, which could be very
useful in order to detect some texture structure in a signal, additionaly with the non local
segmentation.

In order to ensure that the number of non-zero coefficients is small (this is usu-
ally known as find a sparse description of the signal) we will have to perform a pre-
approximation step, so, we first solve the following problem:

min
c

N∑
i=1

(f(xi)− ui)2 + γ||c||1 ⇔ min
c

N∑
i=1

 |F|∑
j=1

cjgj − ui

2

+ γ‖c‖1 (5.1)

where γ > 0 is a parameter used to trade off the quality of the fit to the data, and the
sparsity of the coefficients. We can use the solution of this problem as a solution of the
original problem, or perform a new minimization (a refinement of the first minimization),
in order to ensure that we choose the best fit approximation. So, if ĉ is the coefficient
vector solution of the first minimization problem, then we set B̂ = {i | ĉi 6= 0} and then
we solve the least-squares problem:

min
N∑
i=1

(f(xi)− ui)2 (5.2)

57



5.4. Setting up our Problem, Exponential Splines Chapter 5

with variables ci, i ∈ B̂, and ci = 0 if i 6∈ B̂. A more detailed treatment of this kind
of problems can be found in [12] in Chapter 6 and in the article [24].

5.4 Setting up our Problem, Exponential Splines

In our case, we will work with the following family of functions:

φk,p(x) = cos(π/2 · (x− p)) sin(π/2 · k · (x− p)) · 1(|x− p| ≤ 1/k)

ψk,p(x) = cos(π/2 · (x− p)) cos(π/2 · k · (x− p)) · 1(|x− p| ≤ 1/k)

with k = 22, 23, . . . , 28, p = p(k) = 0, 1/k, . . . , (k − 1)/k

This functions are the real and imaginary part of the complex Gabor function family:

Ψk,p(x) = cos(π/2 · (x− p))eiπ/2·k·(x−p) · 1(|x− p| ≤ 1/k) (5.3)

which is a particular case of the so-called exponential splines. The choice of this func-
tions is based on the good properties of this ones, for example: φ′k,p(x) = C · ψk,p(x).
Moreover, this function family could be understood as a Gabor function family, so, it
could be considered as a good modelling for human vision (i.e. how our eyes process-
approximate the signals from the exterior).

The different values for k means that we allow to have different levels of resolution
(higher the k, higher level of resolution for the approximations), this is a very important
setting, because with this we are able to distinguish what level of resolution is predominant
on the signal, and moreover, distinguish if some elements on the signal are on a different
level of resolution, for example, some particular texture which can be considered as noise
by usual methods. A more detailed discussion of the exponential splines can be found on
the following references: [8], [28].
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Chapter 6

Numerical Implementation

In this chapter we describe how to implement the diverse tasks that we focused in this
work. We start implementing the Non Local denoising filter proposed by Buades that
we studied in chapter 2 in order to study if this denoising filter does in fact work better
with textures than the classical filters, after that we focus our attention in implementa-
tions for Segmentation, local and non-local in order to study how this tasks perform in
textured signals and images. We describe in a separate section how to implement the
construction of weight function w(x, y) involved in computations for non local methods,
showing two algorithms which makes the construction of this function, the most com-
putationally demanding, faster than just considering a complete computations. Finally
we study how to implement the approximation of signals by a family of specific Gabor
functions, the so called (Complex Exponential)-Trigonometric Splines, in order to study
how this approximations reveals more information about the texture on example signals.

6.1 Non Local Denoising Filter

As we reviewed on Chapter 2, the Non Local denoising filter is based on the equation
2.2, in order to perform a numerical implementation we need to consider a discrete version
of this filter.

Then, in the discrete case we have the following formulation:

Consider a discrete noisy image u0 = {u0(i)/i ∈ Ω}, in this context, the estimated
value NL(u0)(i) is computed as a weighted average of all the pixels in the image, i.e.
considering:

NL(u0)(i) = u(i) = 1
C(i)

∑
j∈Ω

w(i, j)u0(j) (6.1)

where w(i, j) must be a sort of discretization of the continuous formula described
before, it intends to measure the similarity between pixels i and j; in a general context
we have to consider w(i, j) such that:∑

j∈Ω

w(i, j) = 1 0 ≤ w(i, j) ≤ 1
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6.1. Non Local Denoising Filter Chapter 6

The (sort of) discretization of the weight function is:

w(i, j) = 1
Z(i)e

−
||u0(Ni)−u0(Nj)||22,a

h2

where Z(i) is a normalization factor, || · ||2,adenotes the Euclidean weighted distance
(by a Gaussian kernel of standard deviation a) and Ni denotes a “neighborhood” of the
pixel i, centered at it, usually this neighborhood is a square of length 2m, then u0(Ni) is
a vector, so, the idea of this discretization is to compare the patch centered on i between
the one centered on j.

The important thing here is the weight function w(x, y) this contains the formula
which perform the “averaging” term. This function is considered in other context to per-
form segmentation (using it in the so called non-local gradient or weighted gradient as
we seen before). Then, is important to follow the behaviour of this function in the task
of denoising, because we have to check that, if we consider a new weight function (we
may need to modify the original NL-means weight function for theorical or computational
purposes), in fact still have the main characteristic we want: preservation of textures in
denoising procedure. Then, is important to have an implementation of this algorithm, in
order to have a checkpoint for next steps of this work.

In the case of one dimensional denoising a ‘primitive’ implementation can be con-
structed just by implementing the formula 6.1, but if we want to perform the denoising
with a 2D images we need to try to reduce the number of calculations, as we seen before,
the original filter involves a high number of calculations (at least 2N2 for each pixel if N
is the number of pixels of the image). In order to do that, we will follow the “faster” ver-
sion of NL-means proposed by Buades in [18] Section 3.7, which try to reduce calculations:

Let I a grid of pixels, choose a subset {i1, . . . , ik} ⊂ I . Consider B = {i / ||i|| ≤ m},
and then define: Wk = ik + B. The idea is to divide I in non-disconnected regions such
that: I = ∪iWi and Wi ∩Wi+1 6= ∅. The idea is to define NL-means for the Wk objects
(the so called vectorial NL-means) and then defining the NL-means for a fixed pixel as
the average of the vectorial NL-means where this pixel belongs.

Let us define the vectorial NL-means, for each Wk as:

NL(Wk) = 1
Ck

∑
j∈I

u0(Wj)e−
||u0(Wk)−u0(Wj)||22

h2

Where Ck is a normalization parameter.

Notice that in this case, the norm involved is the usual, since we restore at the same
time the whole neighborhood and do not want to give any privilege to any point in par-
ticular.

Finally, in order to restore the value at a pixel i, we must consider all Wk containing
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i, so, if we define: Ai = {k / i ∈ Wk}, we have to define:

NL(u0)(i) = u(i) = 1
|Ai|

∑
k∈Ai

NL(Wk)(i) (6.2)

Which is the final formula that we will consider in order to perform non local denoising
in 2D setting. Examples are given in 1 and 2 Dimensions in the next chapter.

6.2 Segmentation using Ambrosio-Tortorelli Approx-
imation

Let us consider the following generalized version of Ambrosio-Tortorelli functional with
constants α, β in order to penalize more/less the regularization or the boundary search:

FAT
ε (u, v) = α

∫
Ω
v2|∇u|2dx+ β

∫
Ω

(u− u0)2dx+ ν

2

∫
Ω
ε|∇v|2 + (1− v)2

ε
dx (6.3)

In order to minimize this functional we will try to search for local minima based in a
fixed point iteration method, this method is based on solving numerically the first order
conditions (Euler-Lagrange equations, which will lead to solve two vector equations) for
the functional in an alternate scheme, which have the following basic idea:

1. Consider initial conditions (given by some usual condition, which we will explain
later) u0 and v0

2. While the relative error of iterations (i.e. the relative error between the new itera-
tion and the old one) is bigger than a tolerance, do the following:

Consider (un, vn) the values of u and v in the n-th iteration:

(a) Solve the equation related to the first order condition in u, considering v = vn
fixed. Call the solution û.

(b) Solve the equation related to the first order condition in v, considering u = un
fixed. Call the solution v̂.

(c) Assign: un+1 = û and vn+1 = v̂

3. Finally, return (û, v̂).

Notice that any numerical method to minimize this functional have a high dependence
of the initial conditions, specially in our case, because FAT

ε is not convex in (u, v) and the
related Euler-Lagrange equations have in general multiple solutions. Then, the choice of
initial conditions could be essential, we will detail later the choice of them. In order to
define precisely the numerical algorithm we need to compute the Euler-Lagrange equations
for this functional, which we are going to deduce in the following section.
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6.2.1 Euler-Lagrange Equations

The idea is to compute the first order conditions for this functional, we will understand
the ‘first order condition’ as the equations derived from imposing the Gateaux derivative
for 6.3 on u and v as 0. Recall that this is a necessary condition to be a local minima.

We resume this equations in the following theorem:

Theorem 6.2.1. The First order conditions (or Euler-Lagrange equations) for the func-
tional defined by 6.3 with (u, v) ∈ H1(Ω)2 are:

div(v2∇u)− β

α
(u− u0) = 0 in Ω, (6.4)

∆v + (1− v)
ε2 − 2α · v|∇u|2

νε
= 0 in Ω. (6.5)

Proof. Recall that the Gateaux derivative of a functional J(u, v) at u in the direction ϕ
is:

DuJ(u, v)[ϕ] = lim
t→0

J(u+ tϕ, v)− J(u, v)
t

analogously we can define DvJ(u, v)[ϕ]. So, in the case of FAT
ε (u, v) we have to

compute:

DuF
AT
ε (u, v)[ϕ] = lim

t→0

FAT
ε (u+ tϕ, v)− FAT

ε (u, v)
t

and
DvF

AT
ε (u, v)[ϕ] = lim

t→0

FAT
ε (u, v + tϕ)− FAT

ε (u, v)
t

So, let us compute in the first case:

FAT
ε (u+ tϕ, v)− FAT

ε (u, v) = α

∫
Ω

(v2|∇(u+ tϕ)|2 − v2|∇u|2)dx

+β
∫

Ω
((u+ tϕ)− u0)2 − (u− u0)2dx

Notice that:
|∇(u+ tϕ)|2 − |∇u|2 = |∇u|2 + 2t∇u∇ϕ+ ε2 + t2|∇ϕ|2 − |∇u|2

= 2t∇u∇ϕ+ t2|∇ϕ|2

Also notice that:
((u+ tϕ)− u0)2 − (u− u0)2 = (u+ tϕ)2 − 2(u+ tϕ)u0 + u2

0 − u2 + 2uu0 − u2
0

= u2 + 2tuϕ+ t2ϕ2 − 2uu0 − 2tϕu0 + u2
0 − u2 + 2uu0 − u2

0

= 2t(u− u0)ϕ+ t2ϕ2

Then we get:

FAT
ε (u+ tϕ, v)− FAT

ε (u, v) = α

∫
Ω
v2 · (2t∇u∇ϕ+ t2|∇ϕ|2)dx+ β

∫
Ω

2t(u− u0)ϕ+ t2ϕ2dx

Therefore:
FAT
ε (u+ tϕ, v)− FAT

ε (u, v)
t

= α

∫
Ω
v2 · (2∇u∇ϕ+ t|∇ϕ|2)dx+ β

∫
Ω

2(u− u0)ϕ+ tϕ2dx
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Then, by a standard application of Dominated Convergence Theorem we have:

lim
t→0

FAT
ε (u+ tϕ, v)− FAT

ε (u, v)
t

= α

∫
Ω

2v2 · ∇u∇ϕdx+ β

∫
Ω

2(u− u0)ϕdx

But by Green Identity and noticing that ϕ ∈ C∞0 in ∂Ω

lim
t→0

FAT
ε (u+ tϕ, v)− FAT

ε (u, v)
t

= α

∫
Ω
−2div(v2 · ∇u) · ϕdx+

∫
∂Ω

2αv2∂nu · ϕdS

+ β

∫
Ω

2(u− u0)ϕdx

=
∫

Ω
(−2αdiv(v2 · ∇u) + 2β(u− u0))ϕdx

Then, because we are imposing the first order condition, we have:

DuF
AT
ε (u, v)[ϕ] = 0 ∀ϕ ∈ C∞0 (Ω)

Noticing that this is valid for all ϕ ∈ C∞0 (Ω), we can conclude using 2.3.3 that:

2β(u− u0)− 2αdiv(v2 · ∇u) = 0 in Ω

which can be rewritten as:

div(v2∇u)− β

α
(u− u0) = 0 in Ω

Now, for DvF
AT
ε let us compute:

FAT
ε (u, v + tϕ)− FAT

ε (u, v) = ν

2

∫
Ω
ε(|∇(v + tϕ)|2 − |∇v|2) + (1− v − tϕ)2 − (1− v)2

ε
dx

+ α

∫
Ω

((v + tϕ)2 − v2)|∇u|2dx

Notice that:

(v + tϕ)2 − v2 = 2vtϕ+ t2ϕ2

|∇(v + tϕ)|2 − |∇v|2 = |∇v|2 + 2t∇v · ∇ϕ+ t2|∇ϕ|2 − |∇v|2

= 2t∇v · ∇ϕ+ t2|∇ϕ|2

(1− v − tϕ)2 − (1− v)2 = −2(1− v)tϕ+ t2ϕ2

Then we get:

FAT
ε (u, v + tϕ)− FAT

ε (u, v) = α

∫
Ω

(2vtϕ+ t2ϕ2)|∇u|2dx+ ν

2

∫
Ω
ε(2t∇v · ∇ϕ+ t2|∇ϕ|2)dx

− ν

2

∫
Ω

2(1− v)tϕ+ t2ϕ2

ε
dx
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Therefore:

FAT
ε (u, v + tϕ)− FAT

ε (u, v)
t

= α

∫
Ω

(2vϕ+ tϕ2)|∇u|2dx+ ν

2

∫
Ω
ε(2∇v · ∇ϕ+ t|∇ϕ|2)dx

− ν

2

∫
Ω

2(1− v)ϕ+ tϕ2

ε
dx

Using again the Dominated Convergence Theorem, we get that:

lim
t→0

FAT
ε (u, v + tϕ)− FAT

ε (u, v)
t

= α

∫
Ω

2v|∇u|2ϕdx+ ν

∫
Ω
ε · ∇v · ∇ϕdx

− ν

∫
Ω

(1− v)ϕ
ε

dx

Using Green Identity again and noticing that ϕ ∈ C∞0 , in ∂Ω:

lim
t→0

FAT
ε (u, v + tϕ)− FAT

ε (u, v)
t

= α

∫
Ω

2v|∇u|2ϕdx− ν
∫

Ω
ε ·∆v · ϕdx

+ ν

∫
∂Ω
ε · ϕ · ∂nvdS − ν

∫
Ω

(1− v)ϕ
ε

dx

=
∫

Ω
2αv|∇u|2ϕdx− νε ·∆v · ϕdx

+
∫

Ω
−ν (1− v)ϕ

ε
dx

Then, because we are imposing the first order condition, we have:

DvF
AT
ε (u, v)[ϕ] = 0 ∀ϕ ∈ C∞0 (Ω)

we can conclude using again 2.3.3 that:

2αv|∇u|2 − νε∆v − ν (1− v)
ε

= 0 in Ω

which can be rewritten as:

∆v + (1− v)
ε2 − 2α · v|∇u|2

νε
= 0 in Ω

6.2.2 Implementation

In order to implement a numerical method to solve the equations, we need to discretize
them. Considering a classical finite differences derivatives [1] we are able to reduce each
equation to a linear system. Considering the discretizations (with unit step and proper
extension to the boundaries i.e. reflecting the image or signal):

∂u

∂x
(i, j) = ui+1,j − ui−1,j

2
∂u

∂y
(i, j) = ui,j+1 − ui,j−1

2
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∂2u

∂x2 (i, j) = ui+1,j − 2ui,j + ui−1,j
∂2u

∂y2 (i, j) = ui,j+1 − 2ui,j + ui,j−1

where u(i, j) = ui,j.

We have to solve numerically the following equations:

• For a fixed v = vn, solve for u:

In 1-Dimension:

2vv′u′ + v2u′′ − β

α
(u− u0) = 0 ∀i ∈ Ω

In 2-Dimensions:

∂xv
2 · ∂xu+ ∂yv

2 · ∂yu+ v2(∂xxu+ ∂yyu)− β

α
(u− u0) = 0 ∀(i, j) ∈ Ω

which, in a discretized setting leads to:

In 1-Dimension:

2vi
(
vi+1 − vi−1

2

)(
ui+1 − ui−1

2

)
+ v2

i (ui+1 − 2ui + ui−1)− β

α
ui = β

α
u0i ∀i ∈ Ω

In 2-Dimensions:(
v2
i+1,j − v2

i−1,j

2

)(
ui+1,j − ui−1,j

2

)
+ v2

i,j(ui+1,j − 2ui + ui−1,j)+

+
(
v2
i,j+1 − v2

i,j−1

2

)(
ui,j+1 − ui,j−1

2

)
+ v2

i,j(ui,j+1 − 2ui,j + ui,j−1)− β

α
ui,j = β

α
u0i,j

This last equation is valid ∀(i, j) ∈ Ω.

Notice that in both cases we can rewrite, recalling that v = (vi) is fixed, the equations
in the form:

Au = β

α
u0

for suitable matrix A, which in 1-D case belongs toMN×N(R) whereN is the number
of points of the discretized domain Ω, notice that in this case the matrix have a tri-
diagonal structure. In 2-D the matrix A belongs toMNM×NM(R) where N,M are
identified with the number of integers of the discretized domain Ω according to
definition 1.1.1, is important to notice that in this case the matrix have a diagonal
by blocks structure. Notice also that in 2D case we don’t expand the derivative
∂xv

2 = 2v∂xv in order to reduce the number of computations involved.
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• For a fixed u = un, solve for v:

In 1-Dimension:

v′′ + (1− v)
ε2 − 2α

νε
· v(u′)2 = 0 ∀i ∈ Ω

In 2-Dimensions:

∂xxv + ∂yyv + (1− v)
ε2 − 2α

νε
· v((∂xu)2 + (∂yu)2) = 0 ∀(i, j) ∈ Ω

which, in a discretized setting leads to:

In 1-Dimension:

(vi+1 − 2vi + vi+1) + 1
ε21−

1
ε2vi −

2α
νε
· vi
(
ui+1 − ui−1

2

)2

= 0 ∀i ∈ Ω

In 2-Dimensions:

(vi+1,j − 2vi,j + vi−1,j)−
1
ε2vi,j −

2α
νε
· vi,j

(
ui+1,j − ui−1,j

2

)2

+

+(vi,j+1 − 2vi,j + vi,j−1)− 2α
νε
· vi,j

(
ui,j+1 − ui,j−1

2

)2

= − 1
ε21

Noticing now that u = (ui) is fixed, we can rewrite the two equations in the form:

Bv = 1
ε21

where 1 is a vector of the same dimension as v filled with ones.

Recall that the matrix B in 1-D case belongs toMN×N(R) where N is the number
of points of the discretized domain Ω, in this case the matrix have a tri-diagonal
structure. In 2-D the matrix B belongs toMNM×NM(R) where N,M are identified
as before, notice that B also have a diagonal by blocks structure.

Having a discretization defined, we just need to impose the initial conditions in order
to define completely our iterative discrete scheme to solve the equations.

As we said before, the choice of the initial conditions u0, v0 is extremely important,
due to the non-convexity of our functional. In image processing the usual choices as initial
conditions for image segmentation are:

u0 = u0 (the input image)
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v0 = 1
1 + 2ανε|∇u0|2

The initial condition for u is quite obvious, but let us see how to understand the choice
of v0. Consider the Euler-Lagrange equation for v:

∆v + ν
(1− v)
ε2 − 2αν · v|∇u|2

ε
= 0

which can be rewritten as:

v = 1 + ν−1ε2∆v
1 + 2αε|∇u|2

Since ε is small enough, then ε2 ∼ 0, and then we have, as initial state for the edge
function v:

v0 = 1
1 + 2αε|∇u0|2

which in 1-Dimension discrete version is:

v0
i = 2

2 + αε
(
u0
i+1 − u0

i−1
)2

and in 2-Dimension discrete version is:

v0
i,j = 2

2 + αε
[
(u0

i+1,j − u0
i−1,j)2 + (u0

i,j+1 − u0
i,j−1)2

]
With this conditions, the problem is completely defined, in 1 and 2-Dimensional set-

tings. Examples are provided in the next chapter.

6.3 Non Local Segmentation

Let us consider the following generalized version of the Non Local Ambrosio-Tortorelli
functional (with constants α, β in order to penalize more/less the regularization or the
boundary search):

FNLAT
ε (u, v) = α

∫
Ω
v2|∇wu|2dx+ β

∫
Ω

(u− u0)2dx+ ν

2

∫
Ω
ε|∇v|2 + (1− v)2

ε
dx (6.6)

recall that:

|∇wu|2(x) =
∫

Ω
(u(y)− u(x))2w(x, y)dy

where w ∈ L∞(Ω × Ω) is a weight function which measure the similarity between
neighborhoods of x and y. We also deal (in 1 Dimension only) with the case of:
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|∇wu|2(x) =
∫

Ω

(u(y)− u(x))2

|y − x|1+2s w(x, y)dy, s ∈ (1/2, 1)

We have to derive (analogously to the case of the classic AT functional) the first
order conditions (or Euler-Lagrange equations) to this functional in order to perform a
alternating scheme via fixed point iterations in order to obtain numerically a local minima
of this functional. In the next section we will prove the equations involved and in the
next one we detail the implementation in order to obtain local minimas numerically.

6.3.1 Euler-Lagrange Equations

Noticing that the functional change only in the gradient of u (to the non-local gradient),
is easy to convince that the Gateaux derivative for 6.6 in v is the same as the Gateaux
derivative for 6.3 except for the term |∇u|2, which changes to |∇wu|2, we resume the
equations in the following theorem.

Theorem 6.3.1. The First order conditions (or Euler-Lagrange equations) for the func-
tional defined by 6.6 with (u, v) ∈ L2(Ω)×H1(Ω) and respectively (u, v) ∈ Hs(Ω)×H1(Ω)
are:

LNL/MS(u, v) + β

α
(u− u0) = 0 in Ω, (6.7)

∆v + (1− v)
ε2 − 2α · v|∇wu|2

νε
= 0 in Ω. (6.8)

where

LNL/MS(u, v)(x) = −2
∫

Ω
(u(y)− u(x))w̃(x, y) · (v2(y) + v2(x))dy x ∈ Ω (6.9)

and

w̃(x, y) = w(x, y) if |∇wu|2(x) =
∫

Ω
(u(y)− u(x))2w(x, y)dy

w̃(x, y) = w(x, y)
|y − x|1+2s if |∇wu|2(x) =

∫
Ω

(u(y)− u(x))2

|y − x|1+2s w(x, y)dy

Proof. Notice that we just have to compute

DuF
NLAT
ε (u, v)[ϕ] = lim

t→0

FNLAT
ε (u+ tϕ, v)− FNLAT

ε (u, v)
t

because the computation of DvF
NLAT
ε (u, v)[ϕ] is exactly the same as for the Ambrosio-

Tortorelli functional, from which we get the second equation of the theorem.

68



6.3. Non Local Segmentation Chapter 6

Let us compute the derivative on u for the functional, for this, let us compute in the
first case:

FNLAT
ε (u+ tϕ, v)− FNLAT

ε (u, v) = α

∫
Ω

(v2|∇w(u+ tϕ)|2 − v2|∇wu|2)dx

+β
∫

Ω
((u+ tϕ)− u0)2 − (u− u0)2dx

Notice that:

|∇w(u+ tϕ)|2 − |∇wu|2 =
∫

Ω
w(x, y)

[
((u+ tϕ)(y)− (u+ tϕ)(x))2 − (u(y)− u(x))2] dy

=
∫

Ω
w(x, y)[2tu(y)ϕ(y) + t2ϕ2(y)− 2tϕ(y)u(x)− 2tϕ(x)u(y)

−2t2ϕ(x)ϕ(y) + t2ϕ2(x) + 2tu(x)ϕ(x)]dy

And:

((u+ tϕ)− u0)2 − (u− u0)2 = 2t(u− u0)ϕ+ t2ϕ2

Then we get:

FNLAT
ε (u+ tϕ, v)− FNLAT

ε (u, v) = β

∫
Ω

[2t(u− u0)ϕ+ t2ϕ2]dx+ α

∫
Ω
v2(x)

∫
Ω
w(x, y) ·

[2tu(y)ϕ(y) + t2ϕ2(y)− 2tϕ(y)u(x)− 2tϕ(x)u(y)
−2t2ϕ(x)ϕ(y) + t2ϕ2(x) + 2tu(x)ϕ(x)]dydx

Therefore:
FNLAT
ε (u+ tϕ, v)− FNLAT

ε (u, v)
t

= β

∫
Ω

2(u− u0)ϕ+ tϕ2dx+ α

∫
Ω
v2(x)

∫
Ω
w(x, y) ·

[2u(y)ϕ(y) + tϕ2(y)− 2ϕ(y)u(x)− 2ϕ(x)u(y)
−2tϕ(x)ϕ(y) + tϕ2(x) + 2u(x)ϕ(x)]dydx

Then, by a standard application of Dominated Convergence Theorem we have:

lim
t→0

FNLAT
ε (u+ tϕ, v)− FNLAT

ε (u, v)
t

= β

∫
Ω

2(u− u0)ϕdx+ α

∫
Ω
v2(x)

∫
Ω
w(x, y) ·

[2u(y)ϕ(y)− 2ϕ(y)u(x)− 2ϕ(x)u(y) + 2u(x)ϕ(x)]dydx

Therefore:

DuF
NLAT
ε (u, v)[ϕ] = β

∫
Ω

2(u− u0)ϕdx+ α

∫
Ω
v2(x)

∫
Ω
w(x, y) · [−2(ϕ(x)− ϕ(y))

·(u(y)− u(x))]dydx

But, notice that:∫
Ω
v2(x)

∫
Ω
w(x, y) · [−2(ϕ(x)− ϕ(y)) · (u(y)− u(x))]dydx =

69



6.3. Non Local Segmentation Chapter 6

∫
Ω
ϕ(x)

∫
Ω
v2(x)·[−2w(x, y)(u(y)−u(x))]dydx−

∫
Ω

∫
Ω
v2(x)·[−2ϕ(y)w(x, y)(u(y)−u(x))]dydx

Using Fubini Theorem we get:∫
Ω

∫
Ω
v2(x) · [−2ϕ(y)w(x, y)(u(y)− u(x))]dydx =

∫
Ω

∫
Ω
v2(y) · [−2ϕ(x)w(y, x)(u(x)− u(y))]dxdy

=
∫

Ω
ϕ(x)

∫
Ω
v2(y) · [2w(x, y)(u(y)− u(x))]dydx

Where we used that the weight function is symmetric: w(x, y) = w(y, x). Finally:

DuF
NLAT
ε (u, v)[ϕ] = β

∫
Ω

2(u− u0)ϕdx+ α

∫
Ω
ϕ(x)

∫
Ω
v2(x) · [−2w(x, y)(u(y)− u(x))]dydx

+α
∫

Ω
ϕ(x)

∫
Ω
v2(y) · [−2w(x, y)(u(y)− u(x))]dydx

Then, because we are imposing the first order condition, we have:

DvF
NLAT
ε (u, v)[ϕ] = 0 ∀ϕ ∈ C∞0 (Ω)

we can conclude using 2.3.3 that, ∀x ∈ Ω:

β(u−u0)+α
∫

Ω
v2(x)·[−2w(x, y)(u(y)−u(x))]dydx+α

∫
Ω
v2(y)·[−2w(x, y)(u(y)−u(x))]dydx = 0

Which can be rewritten as:
β

α
(u− u0)− 2

∫
Ω

(v2(x) + v2(y)) · [w(x, y)(u(y)− u(x))]dydx = 0 x ∈ Ω

or, in the notation of the theorem:

LNL/MS(u, v) + β

α
(u− u0) = 0 in Ω

Noticing that this computation is independent of w(x, y) (and of which |∇wu| we
choose) we cover the two cases with this computation.

Therefore we conclude the proof of the theorem.

6.3.2 Implementation

In this case we have to separate the implementation of 1-Dimensional and 2-Dimensional
due to the non-local operators involved on Euler-Lagrange equations. In 1-Dimensional
case we will follow the same prodecure to solve the equations: Alternating Minimization
on the discretized systems.

In 2-Dimensional case the treatment should be different, basically due to the non-local
terms present in the equations 6.7, if we try to follow the same structure (a direct fi-
nite differences discretization) the number of computations and the complex form of the
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matrices involved lead to fail a fixed point iterative scheme such as the used in classical
Ambrosio-Tortorelli scheme and 1D version of Non-Local segmentation. An extension of
a procedure used for non-local regularization (i.e. minimizing the functional without the
length function v) based on a technique called ‘Split-Bregman’ was developed in MOTIV
Laboratory from the Center of Mathematical Modelling, this method uses various simpli-
fications in order to get a reasonable computation times for the segmentation. We detail
this on further subsection.

Finally, is important to mention that in 1D case we deal with the two forms of |∇wu|
just by considering different weight functions, just as how we mentioned in the theorem.
Unfortunately in 2D we didn’t get proper implementation with the redefined functional,
then this experiment remains as a future work.

6.3.2.1 1D Implementation

Following the implementation of the Ambrosio-Tortorelli functional, the idea of an
implementation in this case is quite similar: We have to solve two equations depending
of u and v, this equations are not convex in the variable (u, v), but are convex when
we consider separate variables, then, the idea is again apply a alternating minimization
scheme. We will have some troubles dealing with the construction of the weight function
w, because the construction of the discretized version of this function involves a high
number of computations. We discuss in the next section briefly how to deal with this
problem, based on the ‘fast versions’ proposed by Gilboa and Osher in [31] Section 5.

The discretization of the functions involved in this minimization are:

Let uk the value of a pixel k in the image (1 ≤ k ≤ N) i.e. the discretization of u(x),
let hk,l be the discretized version of h(x, y) with x = k, y = l ∈ Ω.

Let wk,l the sparsely discrete version of the weight function w. We follow the same
notation for neighborhood sets as in [31], [20]: l ∈ Nk = {l : wk,l > 0}.

Then, we define ∇wd the discretization of ∇w as:

∇wd(uk) := (ul − uk)
√
wk,l l ∈ Nk

Recall that:

|h|k =
√∑

l

(hk,l)2 the magnitude of hk,l at k

Therefore, the discretization of |∇wu|2 in the pixel x = k ∈ Ω:

|∇wduk|2 =
∑
l

(ul − uk)2wk,l

Is important to notice that this discretizations are valid if w(x, y) is well defined for
each x, y ∈ Ω, otherwise (for example, if we consider w̃(x, y) = w(x, y)/(x − y)1+2s) we
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have to redefine the discretization.

Recall that we have to discretize the equations 6.7, we will follow the same scheme as
in the case of the Ambrosio-Tortorelli approximation, and we will study separately the
cases w̃(x, y) = w(x, y) and w̃(x, y) = w(x, y)/(x− y)1+2s, s ∈ (1/2, 1).

• If w̃(x, y) = w(x, y), for u = un fixed, we have to solve:

∆v + (1− v)
ε2 − 2α

νε
· v|∇wu|2 = 0

which becomes, for each i ∈ Ω:

(vi+1 − 2vi + vi−1)− 1
ε2vi −

2α
νε
vi|∇wdui|2 = − 1

ε2

Therefore, by the discretization of non-local gradient given before:

(vi+1 − 2vi + vi−1)− 1
ε2vi −

2α
νε
vi ·
∑
l

(ul − ui)2wk,i = − 1
ε2

which can be written in the form:

Av = 1
ε21

Is important to notice that in this case, A again have a tri-diagonal structure, this
is due that the non-local term is on u, which is fixed for this computation.

• If w̃(x, y) = w(x, y) ∈ L∞, for v = vn fixed, we have to solve:

LNL/MS(u, v) + β

α
(u− u0) = 0

first notice that:

LNL/MS(u, v)(x) = −2
∫

Ω
(u(y)− u(x))w(x, y) · (v2(y) + v2(x))dy

is discretized in x = i as (noticing that in the sum the term l = i vanishes):

LNL/MS(ui, vi) = −2
∑
l 6=i

(ul − ui)wli · (v2
l + v2

i )

therefore, we have that the discretized equation is, for each i ∈ Ω:

−2
∑
l 6=i

(ul − ui)wli · (v2
l + v2

i ) + β

α
ui = β

α
u0i
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this can be rewritten as, for each i ∈ Ω:

ui ·

(
β

α
+ 2

∑
l 6=i

wli · (v2
l + v2

i )
)

+
∑
l 6=i

ul ·
(
−2wli · (v2

l + v2
i )
)

= β

α
u0i

Which can be finally written in the form:

Bu = β

α
u0

Notice that in this case the non local term L(u, v) have a high influence on the
matrix structure of B, more specifically, the structure of B is highly determined by
the weights wli, thus, if we limitate this function to have a compact support around
each fixed i, then, the matrix B will have many diagonals as the width of the support.

• In the case that w̃(x, y) = w(x, y)/(x−y)1+2s we just have to introduce the following
changes:
For the equation with u = un fixed, we have to redefine the term |∇wdui|2, because
in its original form the terms of the sum may be singular when l = i, so, we define
it in the following way:

|∇wdui|2 =
∑
l

(ul − ui)2

|l − i|1+2swl,i =
∑
l 6=i

(ul − ui)2

|l − i|1+2s · wl,i + (u′i)2 · 1
δ

=
∑
l 6=i

(
ul − ui
l − i

)2

· pli +
(
ui+1 − ui−1

2

)2

· 1
δ

In this way this quantity is well defined, the idea behind this formula is noticing
that in the limit y → x the function w(x, y) becomes unbounded, but multiplying
it by (u(y)− u(x))2 we have, if u is regular enough that:

lim
y→x

(u(y)− u(x))2 w(x, y)
(y − x)2 = (u′(x))2w(x, x) = (u′(x))2

the last equality is due that we usually consider w(x, y) such that w(x, x) = 1 for
all x. At the same time we regularize the extra power 1

(y − x)2s−1 by replacing it

by the quantity 1
δ
with a small parameter δ.

Moreover, we conclude that, defined in this way, the non local gradient (in 1 dimen-
sion) is the classical local derivative plus some ‘non local’ terms, which is the precise
idea of this kind of operator.

In a similar way, if v = vn is fixed, we redefine the discretized term LNL/MS(u, v)
regularizing it, due to the unboundness in the term l = i, introducing again a small
parameter δ (usually 0.1):

LNL/MS(ui, vi) = −2
∑
l 6=i

ul − ui
(l − i)1+2s · wli · (v

2
l + v2

i )− 4ui
δ
· wii · v2

i

73



6.3. Non Local Segmentation Chapter 6

With this small changes the operators are well defined in the case of our study.

Finally, in order to perform the alternating minimization, in the same way as the
performed for local segmentation reviewed before, we strongly need a suitable initial
conditions, in this case we choose for initialization: u0 = u0 the input image, and the
same v0 as before:

v0 = 1
1 + 2αε|∇u0|2

6.3.2.2 2D Implementation

In this case, the segmentation is performed minimizing the Non-Local Shah approx-
imation of the Mumford-Shah functional also known as Total Variation Mumford Shah
approximation, i.e. minimizing the functional:

FNLTV
ε (u, v) = α

∫
Ω
v2|∇wu|dx+ β

∫
Ω

(u− u0)2dx+ ν

2

∫
Ω
ε|∇v|2 + (1− v)2

ε
dx

= α‖v2|∇wu|‖L1 + FAT (v) + β

∫
Ω

(u− u0)2dx

(6.10)

The choice of this functional is due to the existence of efficient implementations on
2-D variational denoising methods (i.e. minimization on u of FNLTV

ε (u, 1)), this lead to
propose an extension which presents very interesting results.

The method considered to perform the minimization is based on a technique known
as ‘Bregman iterations’ defined in [15], specifically an extension due to Goldstein and Os-
her known as ‘Split-Bregman method’ [32], which is specially useful for problems where
L1-like norms are involved (which is our case in u).

The idea involved in this optimization method is to transform the total variation
problem into an `1 norm minimization by introducing and auxiliary variable for the L1

norm, and then use an efficient algorithm to solve this new problem. Consider the discrete
problem:

min
u,v

α‖v2|∇wu|‖`1 + FAT
d (v) + β‖u− u0‖2dx (6.11)

We introduce the auxiliary variable d such that we solve the equivalent problem:

min
u,v,d

α‖v2d‖`1 + FAT
d (v) + β‖u− u0‖2dx s.t. d = |∇wu| (6.12)

To solve this problem, we first convert it into an unconstrained problem:

min
u,v,d

α‖v2d‖`1 + FAT
d (v) + β‖u− u0‖2dx+ λ

2‖d− |∇wu|‖2 (6.13)

Finally, this problem can be solved using the Split Bregman Iteration [47], [16] scheme:

(uk+1, vk+1, dk+1) = argminu,v,d α‖v2d‖`1 + FAT
d (v) + β‖u− u0‖2dx+ λ

2‖d− |∇wu| − bk‖2

bk+1 = bk + |∇wu
k+1| − dk+1

(6.14)
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The solution of this problem is obtained by performing an alternating minimization
process:

uk+1 = argminu β‖u− u0‖2dx+ λ

2‖d− |∇wu| − bk‖2

vk+1 = argminv α‖v2d‖`1 + FAT
d (v) + λ

2‖d− |∇wu| − bk‖2

dk+1 = argmind α‖v2d‖`1 + λ

2‖d− |∇wu| − bk‖2

bk+1 = bk + |∇wu
k+1| − dk+1

(6.15)

For more information of the method in a general context and convergence issues we
refer to the works: [32], [47], [15].

6.4 Computing weights

The most important and demanding in computational terms part of the non local
methods is the approximation of w(x, y) into a sparse discrete version wkl.

In [31] Section 3.1, the authors proposed two algorithms: the first, a semilocal one,
is proposed for denoising purposes; the second, a fully nonlocal based on random choices
instead of checking all the possibilities.

6.4.1 Semi-local version

Algorithm. For each pixel k:

1. Compute the similarity of all the patches in the window (Authors use 5×5 patch Bx

and 11× 11 window Ωw). Construct Nk by taking the m (Authors use m = 5) most
similar and the four nearest neighbors (for a connectedness necessary condition) of
the pixel.

2. Compute the weights wkl, l ∈ Nk using the desired weight function and set to zero
all the other connections. (i.e. wkl = 0, l 6∈ Nk)

3. Set wlk = wkl (symmetry of weight)

The complexity of this algorithm is O(N ×Windowsize × (Patchsize + logm)).

6.4.2 Fast approximation for the fully nonlocal version

The following algorithm is based on ideas presented in [39]. It is simpler and faster
but not accurate, anyway the results are better than the original fully nonlocal version.

Algorithm:
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1. Compute the mean and the standard deviation of all patches in the image. Create
a two dimensional bin table such that all patches in a bin are within a specific range
of mean and s.d. from each other. Both types of bins are spaced in h/2 increments.

2. To construct the set Nk: For each pixel k we consider the 9 bins around it (3 × 3
window in the table, this ensures that patches which are very similar are taken into
account). Pick randomly 3m patches from these bins, check their similarity to the
patch of pixel k and take the most similar m of them. Add to Nk also the four
nearest neighbors (for connectedness necessary condition)

3. Compute wkl as in the local algorithm.

6.5 Gabor Functions for Texture recognizion

Recall from 5.3 that we have to solve the problem 5.1, i.e.:

min
c=(ci)

N∑
i=1

(f(xi)− ui)2 + γ||c||1

solving this problem we get a sparse solution which approximates/regularizes the
known data (the input signal) by a given family of functions (in our case the Gabor
family/Exponential spline family), after that we also have to refine the minimization,
solving a least-square problem using only the non-null coefficients associated with the
active functions of the family which approximates the input data, i.e. solving:

min
N∑
i=1

(ci · g(xi)− ui)2

fixing ci = 0 as a constraint for ci obtained as 0 in the previous minimization problem.
The least-squares final problem is quite standard to solve numerically, due to its quadratic
programming structure, we solve it by standard solvers.

Solve the first minimization problem that we have to deal is quite more complicated
because its form is not (in principle) a known one. So, we first try to rewrite it on a
known form. For this, let us consider first the following problem:

min
x
‖Ax− b‖1

this problem can be formulated as an LP of the form:

min
x,y

1Ty

subject to − y ≤ Ax− b ≤ y

which can be rewritten in a single variable as:

min
x̃

cT x̃

subject to Ãx̃ ≤ b̃
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where: x̃ =
[
x
y

]
, c̃ =

[
0
1

]
, Ã =

[
A −I
−A −I

]
, b̃ =

[
b
−b

]
keeping this in mind, we can reformulate our basis pursuit problem as follows:

min
c=(ci)

N∑
i=1

(f(xi)− ui)2 + γ‖c‖1 ⇔ min
c=(ci)

‖Ac− u‖2
2 + γ‖c‖1

where A is the matrix of evaluations of the Gabor Family functions as we seen before
on 5.

Notice then, that we have that the problem:

min
c=(ci)

‖Ac− u‖2
2 + γ‖c‖1

without loss of generality we can consider γ = 1, notice that this problem is equivalent
to:

min
c,y

‖Ac− u‖2
2 + 1Ty

subject to − y ≤ c ≤ y

and this problem is equivalent to the following program:

min
c,y

cTATAc− 2uTAc+ 1Ty

subject to − y ≤ c ≤ y

Which can be formulated as a classical quadratic cone program if we take x̃ = [c, y]T ,
because in that case we have:

min
x̃

1
2 x̃

TPx̃+ c̃T x̃

subject to Gx̃ ≤ 0
(6.16)

where c̃ =
[
−2uTA

1

]
, G̃ =

[
I −I
−I −I

]
, P =

[
2ATA 0

0 0

]
.

This problem is solvable by the standard quadratic program solvers, there are many
choices for this and we choose the CVXOPT routines to perform this minimization.

Is important to mention that the computation can be strongly improved if we develop
a ‘customized’ solver for the system involved when one impose the KKT conditions for
this optimization problem, an example of this can be found in [26].

Summaring the structure of the implementation to perform the complete process of
Gabor Function approximation in order to study textures is:

1. Construct que matrix A composed by the evaluation of each Gabor Function over
the discretized points of the domain.
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2. Solve the basis pursuit problem, i.e. Given data u, we look for the solution (the
coefficients c) of: minc ‖Ac − u‖2

2 + ‖c‖1. This is performed by a computational
solver considering the quadratic program structure studied before. From this, we
get a solution ĉ.

3. Given the solution ĉ of the step before, let B̂ = {i | ĉi 6= 0}. Consider the least
squares problem:

min
c
‖Ac− u‖2

2

subject to ci = 0 if i 6∈ B̂. This final step is optional but ensures the optimal
choices for the coefficients in order to minimize the approximation in 2-norm. Call
the solution ĉ. The solution can be computed directly with quadratic programming
solvers.

4. Finally, return ĉ and reconstruct the signal computing the approximated signal
uapp = Aĉ.
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Numerical Examples

In this chapter we study some numerical examples in order to compare the perfor-
mance of several methods with ‘suitable signals/images’ which are intended to exploit the
most important properties of the studied methods.

In the 1-Dimensional setting, we will consider the following synthetic signals:

(a) (b)

Figure 7.1: Step signal without Texture. (a) Without noise. (b) With noise.
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(a) (b)

Figure 7.2: Step signal with Texture. (a) Without noise. (b) With noise.

The choice of this test signals is in order to study how the methods perform in specific
scenarios:

• In the signal without noise and texture: In order to experiment how the methods
perform in a ‘basic’ problem, in which the noise and texture are not involved.

• In the signal with noise but without texture: In order to experiment how the methods
perform in a ‘classical’ problem, no texture is included yet.

• In the signal with texture but without noise: In order to experiment how the methods
perform in a ‘target’ problem, without including the noise yet to discover how the
methods behave exclusively with the texture.

• In the signal with texture and noise: In order to experiemnt how the methods
perform in the ‘real-targetted’ problem.

We also consider in some examples shifted versions of this signals, in order to verify
the correctness of algorithms.

For the 2-Dimensional setting, we will consider the following ‘model’ images: a natural
one of a tiger in a natural enviroment and two synthetic images, a lion and a moose in a
textured space. Is important to mention that we also consider this images with its noisy
versions.
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Figure 7.3: 2D Natural Test Image: Tiger in natural enviroment

(a) (b)

Figure 7.4: 2D Artificial Test Images. (a) Lion (b) Moose

The artificial examples are devoted to explore the behaviour of the methods in a very
specific task, the recognizement of an object in a textured environment, the introduction
of noise is to explore the behaviour of the methods in ‘classical’ cases, and finally the
introduction of the natural image is to explore the full potential of the methods.

All the numerical examples have been performed in a PC with Microsoft Windows
7 powered by Intel i7 Processor. The coding language is Python bundled in Pythonxy
distribution. The optimization routines for Gabor Functions involved processes are from
the package CVXOPT.
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7.1 Non Local Denoising Filter

7.1.1 1-Dimensional Filter Examples

(a) (b)

Figure 7.5: 1D Example of Non Local denoising Filter: Signal without texture and noise.
(a) Denoising with Rectangular search window. (b) Denoising with Gaussian search window.

(a) (b)

Figure 7.6: 1D Example of Non Local denoising Filter: Signal with texture but without noise.
(a) Denoising with Rectangular search window. (b) Denoising with Gaussian search window.
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(a) (b)

Figure 7.7: 1D Example of Non Local denoising Filter: Signal with noise but without texture.
(a) Denoising with Rectangular search window. (b) Denoising with Gaussian search window.

(a) (b)

Figure 7.8: 1D Example of Non Local denoising Filter: Signal with noise and texture.
(a) Denoising with Rectangular search window. (b) Denoising with Gaussian search window.

From this simulations we can conclude that:

• In the basic case, the signal without texture and noise, the filter gives desirable
results with the two versions of search windows, in the sense that we recover the
original signal almost completely, naturally we see that in edges we get a kind of
‘regularization’.

• In the case of noisy signal with no texture, the filter also gives desirable results with
the two versions of search windows in the same sense as the before.

• In the case of textured signal the results let us discuss some important things. First
of all we discover that the Gaussian search window is not suitable for textured
signal denoising, since it ‘almost’ banish the amplitude of the texture, notice that it
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happens in both cases (with or without noise). We can see that in the case of using
a rectangular search window the denoising is quite good, the remotion of noise is
high with a little loss of amplitude of the texture, which is still recognizable.

Therefore, for the 1-Dimensional non-local denoising we can conclude that the better
choice of search windows are the rectangular ones, and this method is very effective for
textured images, even with noise we can recover the complete structure of the texture, and
in more simpler cases (images without texture) the original image is almost completely
recovered.

7.1.2 2-Dimensional Filter Examples
7.1.2.1 Artificial Example: Moose

(a) (b) (c)

Figure 7.9: 2D Example of Non Local denoising Filter: Artificial Moose with Gaussian noise (σ = 15).
(a) Original Image with noise added. (b) Filtered Image. (c) Difference Image between Original input
(without noise) and Filtered Image.

(a) (b) (c)

Figure 7.10: 2D Example of Non Local denoising Filter: Artificial Moose with Gaussian noise (σ = 30).
(a) Original Image with noise added. (b) Filtered Image. (c) Difference Image between Original input
(without noise) and Filtered Image.
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(a) (b) (c)

Figure 7.11: 2D Example of Non Local denoising Filter: Artificial Moose with Gaussian noise (σ = 50).
(a) Original Image with noise added. (b) Filtered Image. (c) Difference Image between Original input
(without noise) and Filtered Image.

7.1.2.2 Artificial Example: Lion

(a) (b) (c)

Figure 7.12: 2D Example of Non Local denoising Filter: Artificial Lion with Gaussian noise (σ = 15).
(a) Original Image with noise added. (b) Filtered Image. (c) Difference Image between Original input
(without noise) and Filtered Image.

(a) (b) (c)

Figure 7.13: 2D Example of Non Local denoising Filter: Artificial Lion with Gaussian noise (σ = 30).
(a) Original Image with noise added. (b) Filtered Image. (c) Difference Image between Original input
(without noise) and Filtered Image.
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(a) (b) (c)

Figure 7.14: 2D Example of Non Local denoising Filter: Artificial Lion with Gaussian noise (σ = 50).
(a) Original Image with noise added. (b) Filtered Image. (c) Difference Image between Original input
(without noise) and Filtered Image.

From this simulation of artificial images we can conclude that:

• In general, the quality of the denoising is good, we can see that most of the structure
of the image is recovered completely, even with higher noise settings.

• The compromised structure is the one involved with the edges of objects, increasing
the noise it becomes more notorious. Is important to notice that this structure is
compromised in amplitude in a moderated way, since in the filtered image we can
notice this structure anyways.

From this we can conclude that, at least in the case of artificial images, the non-local
denoising filter has a great performance, even with a high amount of noise the filter is
able to recover the original structure of the images.

7.1.2.3 Natural Example: Tiger

(a) (b) (c)

Figure 7.15: 2D Example of Non Local denoising Filter: Tiger with Gaussian noise (σ = 15).
(a) Original Image with noise added. (b) Filtered Image. (c) Difference Image between Original input
(without noise) and Filtered Image.
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(a) (b) (c)

Figure 7.16: 2D Example of Non Local denoising Filter: Tiger with Gaussian noise (σ = 30).
(a) Original Image with noise added. (b) Filtered Image. (c) Difference Image between Original input
(without noise) and Filtered Image.

(a) (b) (c)

Figure 7.17: 2D Example of Non Local denoising Filter: Tiger with Gaussian noise (σ = 50).
(a) Original Image with noise added. (b) Filtered Image. (c) Difference Image between Original input
(without noise) and Filtered Image.

From this simulation of natural images we can conclude that:

• The denoising is good for low-noise images, it recovers the most part of image and
regularize the boundary of objects (therefore, the amplitude of the image in the
boundary is lower), background objects are still recognizable.

• The denoising is bad for high-noise images, we can see that in this case the ‘principal
object’ is still recognizable, but almost all the background objects are lost, we also
have a lot of blurring in the filtered image. The difference image let us see that
basically ‘the whole image details’ are lost.

Finally, from the simulations we can conclude that the non-local denoising filter per-
forms a high quality recovery of the image with controlled levels of noise, in high-noise
situations the filter tends to lose all the background objects and introduce blurring in the
denoised image, for artificial images the filter even works great in high-noise situations,
and for real-enviroment images, with noise and texture it works successfully with reason-
able levels of noise, in all this situations the filter tend to lose amplitude at the boundary
of objects but the results are satisfactory.
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7.2 Segmentation using Ambrosio-Tortorelli Approx-
imation

7.2.1 1-Dimensional Segmentation Examples

(a) (b)

Figure 7.18: 1D Example of Numerical Ambrosio Tortorelli Segmentation: Signals without Noise.
(a) No Textured Signal. (b) Textured Signal.

(a) (b)

Figure 7.19: 1D Example of Numerical Ambrosio Tortorelli Segmentation: Noisy Signals.
(a) No Textured Signal. (b) Textured Signal.

From this simulation of 1D signals we can conclude that:

• In non-noisy signals the segmentation and regularization gives good results, each
discontinuity point is catched by the v function, anyway in the case of textured
signal v detect the discontinuity but it didn’t goes to zero as one could expect, this
phenomena is not isolated and is well known from 2D image segmentation.
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• In noisy signals the segmentation gives good results, the v function is very similar
to the non-noisy v obtained before, the regularization is poor in the case without
texture, we can see that regularized version is very ‘sharp’. In the case with texture
the regularization is a little better, the regularized version in this case don’t have
too much edges, but is not ‘optimal’, considering the original signal.

Although this is a very well known process we prefer to perform our own testing and
we can conclude that this task allows to get well regularized and segmented signal in the
case of non-noisy signals, and in the case of signals with noise we get some problems in
the regularized output, also, in the case of texture, the v function does not recognize very
well the discontinuities due to the texture in the sense that this ‘edge set function’ didn’t
goes to zero as one could expect.

7.2.2 2-Dimensional Segmentation Examples

(a) (b) (c)

Figure 7.20: 2D Example of Classical Ambrosio-Tortorelli Segmentation: Artificial Moose without Noise.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).

(a) (b) (c)

Figure 7.21: 2D Example of Classical Ambrosio-Tortorelli Segmentation: Artificial Moose with Noise.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).
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(a) (b) (c)

Figure 7.22: 2D Example of Classical Ambrosio-Tortorelli Segmentation: Artificial Lion without Noise.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).

(a) (b) (c)

Figure 7.23: 2D Example of Classical Ambrosio-Tortorelli Segmentation: Artificial Lion with Noise.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).

(a) (b) (c)

Figure 7.24: 2D Example of Classical Ambrosio-Tortorelli Segmentation: Artificial Tiger.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).
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(a) (b) (c)

Figure 7.25: 2D Example of Classical Ambrosio-Tortorelli Segmentation: Tiger with blur.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).

From this simulation of 2D signals we can conclude that:

• In artificial images, in noisy and non-noisy images the segmentation process didn’t
perform the segmentation in the sense we look for: The desired behaviour is to
detect the object ‘hidden’ in the texture, unfortunately in this case the segmentation
process only detect the change of intensity on the texture, no object is segmented
at all.

• In the natural image, the segmentation process results are very good in the natural
image without noise, the edge set function v is able to capture the main object and
some details of the texture, anyway some background objects are lost and a big part
of texture is also lost, the regularized image have good quality, with a little blurring.
Things become worse on the noisy (in this case blurry) image, the set function v
poorly get the boundary of the main object and the regularized image is more blurry
than the original version.

Therefore, from this simulations we can conclude that Ambrosio-Tortorelli segmenta-
tion is suitable for signals and images without noise, we can recover the most important
features of the images and the edge set function v recover the boundaries of the objects
and also of the textures, in general v takes values not closer to zero as one could want.
On the other hand, this segmentation is poor in noisy images, specially in noisy images
with texture, this kind of segmentation is unable to detect texture properly, the edge set
function v detect only main boundaries and the regularization is very poor. Unfortunately
this segmentation process is unable to ‘detect’ objects ‘hidden’ in a textured environment,
the process forces to segment each structure locally, therefore it segment each component
of the texture independently.
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7.3 Non Local Segmentation

7.3.1 1-Dimensional Segmentation Examples

(a) (b)

Figure 7.26: 1D Example of Numerical Non Local Segmentation: Signals without Noise.
(a) No Textured Signal. (b) Textured Signal.

(a) (b)

Figure 7.27: 1D Example of Numerical Non Local Segmentation: Noisy Signals.
(a) No Textured Signal. (b) Textured Signal.

From this simulation of 1D signals we can conclude that:

• In the ‘basic examples’ (the ones without noise) we get similar results as for the
classical segmentation, in the examples without noise we get almost identical results
for regularized signals, excepting for the textured signal in which the regularized
version also have lost amplitude in the texture, anyway, the edge set function v
recognize better the discontinuities associated with the texture, in the sense that in
this case the values of v are closer to zero compared to the original model.
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• In noisy examples the results are much more better, the regularized version is much
better than the obtained by the Ambrosio-Tortorelli segmentation, it is very similar
to the original signal, we’re still losing amplitude in the texture (which seems a lot
like the non local filtering that we have seen before), anyway the results are much
more better in texture recognition on edge set function v in the case of textured
images.

Therefore, we can see that this segmentation have some features that classical Ambrosio-
Tortorelli don’t have: It recognize better textured signals and performs the regularization
better than the original model, also the edge set function v recognize better the disconti-
nuities in the sense that the function is more closer to zero in the discontinuities than the
Ambrosio-Tortorelli segmentation. However it have some flaws like the ‘lose of amplitude’
in the textured zone, this is specially relevant in signals without noise, in this case the
original Ambrosio-Tortorelli segmentation performs better.

7.3.2 2-Dimensional Segmentation Examples

(a) (b) (c)

Figure 7.28: 2D Example of Non Local Segmentation: Artificial Moose without Noise.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).

(a) (b) (c)

Figure 7.29: 2D Example of Non Local Segmentation: Artificial Moose with Noise.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).
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(a) (b) (c)

Figure 7.30: 2D Example of Non Local Segmentation: Artificial Lion without Noise.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).

(a) (b) (c)

Figure 7.31: 2D Example of Classical Ambrosio-Tortorelli Segmentation: Artificial Lion with Noise.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).

(a) (b) (c)

Figure 7.32: 2D Example of Non Local Segmentation: Artificial Tiger.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).
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(a) (b) (c)

Figure 7.33: 2D Example of Classical Ambrosio-Tortorelli Segmentation: Tiger with blur.
(a) Original Image. (u0). (b) Regularized Image. (u). (c) Segmentated Image (set function v).

From this simulation of 2D signals we can conclude that:

• The segmentation in the case of artificial images brings very good results in all
cases, the segmentation is as expected: The ‘hidden’ object is properly segmented,
the non-local comparison between ‘image patches’ allows the process to recognize
the similarity of the repeated texture and only segment the transition zone when the
texture changes. The regularization is good excepting for some lose small structures
(specially in more noisy examples) which tend to be vanished in the background.

• In the natural example we get an excellent segmentation results also: the main object
is completely segmented, also its own texture is segmented, various objects of the
environment are segmented, specially the ones in the background. The regularization
is very good in the ‘clear’ image where we only get a small (like on the grass and
rocks) vanished structures.

• In the blurry example we still get the main object segmented, also we can still seg-
ment the main objects of the background, unfortunately the regularization increases
the blurring and the texture is not segmented anymore.

Finally, we can conclude that this non-local segmentation procedure have several ad-
vantages over the classical Ambrosio-Tortorelli segmentation, it brings much better results
segmentating objects which are embedded in a textured environment, it also brings much
better results when dealing with images in natural environment and in 1 dimension it is
able to segmentate and regularize the texture in this case. It is important to recall that in
1D we used a different functional that in 2D case, however, in both cases we are dealing
with non-local models, so we can state that non-local segmentation functionals perform
better than the local ones.
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7.4 Gabor Functions for Texture recognition
This numerical testing will be divided in two parts:

• In the first round of examples we run the optimization routine for the basis pur-
suit problem in order to obtain the approximation of the signal and division of
the approximated signal in different levels of resolution for the family of complex
exponential spline functions given by:

Ψk,p(x) = cos(π/2 · (x− p))eiπ/2·k·(x−p) · 1(|x− p| ≤ 1/k)

with k = 22, 23, . . . , 28, p = p(k) = 0, 1/k, . . . , (k − 1)/k.

We also compute this approximation with shifted signals, the purpose of this com-
putation is to estimate how much the associated coefficients change between the
original signal and the shifted signal.

• In the second round of examples we run the optimization routine just with the family
of the real part of the functions, i.e., with the family of the functions given by:

φk,p(x) = < (Ψk,p(x)) = cos(π/2 · (x− p)) sin(π/2 · k · (x− p)) · 1(|x− p| ≤ 1/k)

where <(z) denotes the real part of the complex number z, in this case we also
consider k = 22, 23, . . . , 28, p = p(k) = 0, 1/k, . . . , (k − 1)/k.

The idea of this division is to have a comparative example for the variation of the
coefficients due to the shift of a given signal, we want to see that our complex functions
led to have a more ‘stable’ approximation when we shift a signal than the functions
considered when we don’t introduce a complex counterpart, like Kingsbury have done in
his work about complex Wavelets in [36].
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7.4.1 Approximation and Decomposition for No Texture-No Noise
Image: Complex Exponential Spline

(a) Original Signal data (b) Shifted Signal data

Figure 7.34: Original and Approximated Signal - Input Signal without Texture and without Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.35: Superposed Signals and Error - Input Signal without Texture and without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.36: Reconstruction of the Signal for Resolution Levels: 1, 2, 3 - Input Signal without Texture
and without Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.37: Reconstruction of the Signal for Resolution Levels: 4, 5 - Input Signal without Texture and
without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.38: Reconstruction of the Signal for Resolution Levels: 6, 7 - Input Signal without Texture and
without Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.39: Amplitude of Active Functions in Resolution Levels: 1, 2, 3, 4 - Input Signal without Texture
and without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.40: Amplitude of Active Functions in Resolution Levels: 5, 6, 7 - Input Signal without Texture
and without Noise
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7.4.2 Approximation and Decomposition for No Texture-Noisy
Image: Complex Exponential Spline

(a) Original Signal data (b) Shifted Signal data

Figure 7.41: Original and Approximated Signal - Input Signal with Noise but without Texture

(a) Original Signal data (b) Shifted Signal data

Figure 7.42: Superposed Signals and Error - Input Signal with Noise but without Texture
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(a) Original Signal data (b) Shifted Signal data

Figure 7.43: Reconstruction of the Signal for Resolution Levels: 1, 2, 3 - Input Signal with Noise but
without Texture

(a) Original Signal data (b) Shifted Signal data

Figure 7.44: Reconstruction of the Signal for Resolution Levels: 4, 5 - Input Signal with Noise but without
Texture
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(a) Original Signal data (b) Shifted Signal data

Figure 7.45: Reconstruction of the Signal for Resolution Levels: 6, 7 - Input Signal with Noise but without
Texture

(a) Original Signal data (b) Shifted Signal data

Figure 7.46: Amplitude of Active Functions in Resolution Levels: 1, 2, 3, 4 - Input Signal with Noise but
without Texture
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(a) Original Signal data (b) Shifted Signal data

Figure 7.47: Amplitude of Active Functions in Resolution Levels: 5, 6, 7 - Input Signal with Noise but
without Texture
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7.4.3 Approximation and Decomposition for Texture-No Noise
Image: Complex Exponential Spline

(a) Original Signal data (b) Shifted Signal data

Figure 7.48: Original and Approximated Signal - Input Signal with Texture and without Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.49: Superposed Signals and Error - Input Signal with Texture and without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.50: Reconstruction of the Signal for Resolution Levels: 1, 2, 3 - Input Signal with Texture and
without Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.51: Reconstruction of the Signal for Resolution Levels: 4, 5 - Input Signal with Texture and
without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.52: Reconstruction of the Signal for Resolution Levels: 6, 7 - Input Signal with Texture and
without Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.53: Amplitude of Active Functions in Resolution Levels: 1, 2, 3, 4 - Input Signal with Texture
and without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.54: Amplitude of Active Functions in Resolution Levels: 5, 6, 7 - Input Signal with Texture and
without Noise
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7.4.4 Approximation and Decomposition for Texture-Noise Im-
age: Complex Exponential Spline

(a) Original Signal data (b) Shifted Signal data

Figure 7.55: Original and Approximated Signal - Input Signal with Texture and Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.56: Superposed Signals and Error - Input Signal with Texture and Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.57: Reconstruction of the Signal for Resolution Levels: 1, 2, 3 - Input Signal with Texture and
Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.58: Reconstruction of the Signal for Resolution Levels: 4, 5 - Input Signal with Texture and
Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.59: Reconstruction of the Signal for Resolution Levels: 6, 7 - Input Signal with Texture and
Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.60: Amplitude of Active Functions in Resolution Levels: 1, 2, 3, 4 - Input Signal with Texture
and Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.61: Amplitude of Active Functions in Resolution Levels: 5, 6, 7 - Input Signal with Texture and
Noise

From this first series of examples we can observe that:

• In general, for each example, the approximation is good, we can see that the point-
wise error is small on all the examples, the error becomes higher in discontinuity
points (which is natural due to the continuity of the approximating functions), this
last observation is specially notorious in the non-textured examples, for textured
ones the error seems to be equally distributed in the whole signal.

• Is interesting how the signal is decomposed on each level of resolution: the ‘general
features’ (like a flat section of the signal) are represented essentially in the lower
levels of resolution, we can notice this specially in no textured examples. On the
other hand, the ‘details’ of the signal (like the discontinuities) are represented essen-
tially on a higher levels of resolution, we can notice in the textured examples that
the texture structure is essentially distributed along specific levels of resolutions,
and is differentiable from the ‘strong discontinuities’ by noticing that this ones are
represented in some levels in which texture is not represented.

• We observe by comparing the noisy and non-noisy examples that this method is
able to ignore the noise of the signal, we get a very similar decomposition on noisy
and non-noisy examples, this is a very desirable behaviour because this imply that
the method is able to differentiate noise from texture, and therefore ignore the noise
from the decomposition of the signal in resolution levels.

• From the comparison of original signal and shifted signal, we get that, the coefficients
vary in a expected way: if we move the signal to the right, the coefficients on all
the resolution levels move to the right and the amplitude of the functions remain
‘relatively’ stable. Unfortunately this is not accure as one could expect: A shifted
signal may not have the same number of active functions on this process, i.e. the
method is not completely shift invariant. This phenomena could be explained by
noticing that this method is an approximation and the computational methods for
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computation applies some approximations which tend to have a different number of
active functions for each simulation.

From this observations we can conclude that this method is able to approximate with
a small error a signal, and we are able to decompose this signal on representative levels
of resolution which lead to ‘discover’ the structure of the original signal: We are able
to distinguish and separate the small details (like discontinuities, and texture) from the
‘general structure’ (flat or monotone regions), also, this approximation is stable, in the
sense of how the coefficients of each ‘basis function’ vary in the expected way when we
introduce a shift on the original signal. Unfortunately, the method is not shift invariant
because the number of active functions for a shifted signal in general is not the same as
the original signal.
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7.4.5 Approximation and Decomposition for Texture-Noise Im-
age: Real part of Complex Exponential Spline

The purpose of this particular example, in which we only consider the family of func-
tions given by the real part of our exponential splines to perform the basis pursuit problem,
is to compare ‘how much’ shift invariant is this standard family of functions in the basis
pursuit problem. We will measure this setting by studying how the coefficients vary in
the original signal approximation relative to the coefficients in the shifted signal approxi-
mation.

We only consider in this part only a signal with texture and noise, more examples can
be found in the Appendix A.

(a) Original Signal data (b) Shifted Signal data

Figure 7.62: Original and Approximated Signal - Input Signal with Texture and Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.63: Superposed Signals and Error - Input Signal with Texture and Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.64: Reconstruction of the Signal for Resolution Levels: 1, 2, 3 - Input Signal with Texture and
Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.65: Reconstruction of the Signal for Resolution Levels: 4, 5 - Input Signal with Texture and
Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.66: Reconstruction of the Signal for Resolution Levels: 6, 7 - Input Signal with Texture and
Noise

(a) Original Signal data (b) Shifted Signal data

Figure 7.67: Amplitude of Active Functions in Resolution Levels: 1, 2, 3, 4 - Input Signal with Texture
and Noise
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(a) Original Signal data (b) Shifted Signal data

Figure 7.68: Amplitude of Active Functions in Resolution Levels: 5, 6, 7 - Input Signal with Texture and
Noise

We also give the following resume table, in order to compare how does change the
number of active functions on each approximation when we shift a signal, from this we
can compare objectively the approximations with our proposed functions and a simpler
(and classical) family of functions.

Table 7.1: Comparison table for two families of functions.

No Noise Signal Noisy Signal
No Textured Textured No Textured Textured

Exp Spl Re(·) Exp Spl Re(·) Exp Spl Re(·) Exp Spl Re(·)
Level 1 - Orig 3 3 3 3 3 3 3 3

Level 1 - Shifted 2 2 3 1 2 2 3 1
Level 2 - Orig 5 5 4 4 4 4 3 4

Level 2 - Shifted 4 4 4 6 4 4 4 6
Level 3 - Orig 5 7 3 5 6 6 3 4

Level 3 - Shifted 4 2 3 3 4 3 3 3
Level 4 - Orig 4 3 10 8 3 4 8 7

Level 4 - Shifted 4 8 9 6 5 7 10 6
Level 5 - Orig 3 3 18 23 3 4 18 23

Level 5 - Shifted 4 4 17 22 5 5 20 22
Level 6 - Orig 1 4 1 3 1 4 1 3

Level 6 - Shifted 2 2 1 1 2 2 1 1
Level 7 - Orig 2 4 3 3 3 4 3 3

Level 7 - Shifted 4 4 4 4 4 4 4 4
Variation 7 15 3 12 9 10 6 10
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For this family of functions we can notice that:

• This functions are suitable to approximate the signals accurately, similarly to the
case of considering the full complex exponential splines. We can see that we get a
sort of decomposition of details and general parts of the signal in the different levels
of resolution.

• Unlike the previous family of functions, in this case the introduction of shifted signal
reveals that the coefficients become more ‘disorted’, the amplitudes tend to change
more than in the previous case, and we can see that for several resolution levels
the number of active functions changes much more as one could see on the case
of considering the family of complex exponential splines. Moreover, from the last
table we can see that the variation of the number of active functions on each level of
resolution in all considered cases, the ‘simpler’ family gets a higher variation than
the Exponential complex spline family.

Therefore, from this examples we can see that our proposed family of functions used to
approximate a signal via the basis pursuit problem are suitable for this task. The approx-
imation bring a small pointwise error in general and is a convenient way to decompose the
signal in several resolution levels in which we can clearly identify the several components
of a signal such that discontinuity points, textured structures and ‘main structures’ such
as flat sections.

Moreover, this family of functions have a good behaviour when we shift a signal,
unfortunately this approximation is not perfectly shift-invariant in the sense that when
we shift the signal, the approximating functions have some changes respecting to the
original approximating functions: the number of active functions slightly change and also
the amplitude of this functions change. Anyway, we have seen that our proposed functions
are better, in shift-invariance sense, in comparison with the family of only the real part
of this complex exponential splines.
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Chapter 8

Conclusions and Future Work

8.1 Main Results

The main topics and results given in this work are:

We studied a new way to perform segmentation of signals and images, specially focused
on treatment of signals and images with texture: The non-local segmentation. We took
the original non-local segmentation functional given by [34] and shown that this functional
is not suitable in the theorical sense of Γ-convergence for segmentation purposes.

We have redefined in the 1-dimensional case the non-local segmentation functional
in order to obtain an interesting Γ-limit, this functional is defined for the function u in
the fractional Sobolev space Hs for s ∈ (1/2, 1), we successfully proved, under several
assumptions given in 4.2.1, that the functional given by 4.13 Γ-converges in L1 topology
to functional 4.14.

We have performed several numerical testings devoted to explore the potential of
non-local methods in image processing. We started testing the non-local denoising filter
developed by Buades in order to study how this filter (which is a key component on non-
local segmentation) behaves in 1D and 2D, after that we perform numerical simulations
for Ambrosio-Tortorelli segmentation and Non-local segmentation to compare them, from
this we have deduced that non-local methods gives great results on textured image, spe-
cially segmentating ‘hidden objects’ in textured environments and segmentating ‘natural
environment’ images; in this cases the non-local segmentation performs much better than
the classical Ambrosio-Tortorelli method, in 1D case we also get much better results in
signals with texture, getting a better edge set v function and better regularized signal.

We also explored a method to ‘approximately separate’ a signal into its different lev-
els of resolution introducing a particular family of functions of the so-called complex-
exponential splines, an interesting behaviour is obtained: We are able to identify the
texture of a signal (even in a signal with noise) by its approximated version, in which
we can clearly identify the texture component in a specific level of resolution. We also
compare how much sensitive to shifted signals are the complex-exponential spline repre-
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sentation against the single (and classical) real part representation.

8.2 Future Work

The main open problem is how to extend the non-local functional defined in Fractional
Sobolev space to higher dimensions, this is not trivial since the definition of this spaces
relies strongly on the dimension, therefore, the functional may need to be changed in order
to work in an appropriately space. Naturally after this a study about the Γ-convergence
is needed.

The natural following step is to develop an efficient numerical implementation for
higher dimension segmentation in Fractional Sobolev space, it may be follow the same
procedure as the one shown in this work but this should be done with caution since it
may imply the computation of singular terms.

About the exponential splines, a generalization of this procedure could be a big prob-
lem of study, we only focused in a particular case in order to explore its possibilities in
order to ‘detect and classify’ texture and approximate signals in a fast and light way.
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Appendix A

Basis Pursuit for the Real Part of
Exponential Splines: More Examples

In this appendix we give more examples of the basis pursuit problem when we consider
the family of real part of complex exponential splines, for the sake of completeness and
in order to observe the same phenomena that we just have analyzed in 7.4.5.

A.1 Approximation and Decomposition for No Texture-
No Noise Image: Real part of Complex Expo-
nential Spline

(a) Original Signal data (b) Shifted Signal data

Figure A.1: Original and Approximated Signal - Input Signal without Texture and without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure A.2: Superposed Signals and Error - Input Signal without Texture and without Noise

(a) Original Signal data (b) Shifted Signal data

Figure A.3: Reconstruction of the Signal for Resolution Levels: 1, 2, 3 - Input Signal without Texture
and without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure A.4: Reconstruction of the Signal for Resolution Levels: 4, 5 - Input Signal without Texture and
without Noise

(a) Original Signal data (b) Shifted Signal data

Figure A.5: Reconstruction of the Signal for Resolution Levels: 6, 7 - Input Signal without Texture and
without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure A.6: Amplitude of Active Functions in Resolution Levels: 1, 2, 3, 4 - Input Signal without Texture
and without Noise

(a) Original Signal data (b) Shifted Signal data

Figure A.7: Amplitude of Active Functions in Resolution Levels: 5, 6, 7 - Input Signal without Texture
and without Noise
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A.2 Approximation and Decomposition for No Texture-
Noisy Image: Real part of Complex Exponential
Spline

(a) Original Signal data (b) Shifted Signal data

Figure A.8: Original and Approximated Signal - Input Signal with Noise but without Texture

(a) Original Signal data (b) Shifted Signal data

Figure A.9: Superposed Signals and Error - Input Signal with Noise but without Texture
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(a) Original Signal data (b) Shifted Signal data

Figure A.10: Reconstruction of the Signal for Resolution Levels: 1, 2, 3 - Input Signal with Noise but
without Texture

(a) Original Signal data (b) Shifted Signal data

Figure A.11: Reconstruction of the Signal for Resolution Levels: 4, 5 - Input Signal with Noise but
without Texture

130



A.2. Approximation and Decomposition for No Texture-Noisy Image: Real part of
Complex Exponential Spline Chapter A

(a) Original Signal data (b) Shifted Signal data

Figure A.12: Reconstruction of the Signal for Resolution Levels: 6, 7 - Input Signal with Noise but
without Texture

(a) Original Signal data (b) Shifted Signal data

Figure A.13: Amplitude of Active Functions in Resolution Levels: 1, 2, 3, 4 - Input Signal with Noise
but without Texture
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(a) Original Signal data (b) Shifted Signal data

Figure A.14: Amplitude of Active Functions in Resolution Levels: 5, 6, 7 - Input Signal with Noise but
without Texture
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A.3 Approximation and Decomposition for Texture-
No Noise Image: Real part of Complex Expo-
nential Spline

(a) Original Signal data (b) Shifted Signal data

Figure A.15: Original and Approximated Signal - Input Signal with Texture and without Noise

(a) Original Signal data (b) Shifted Signal data

Figure A.16: Superposed Signals and Error - Input Signal with Texture and without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure A.17: Reconstruction of the Signal for Resolution Levels: 1, 2, 3 - Input Signal with Texture and
without Noise

(a) Original Signal data (b) Shifted Signal data

Figure A.18: Reconstruction of the Signal for Resolution Levels: 4, 5 - Input Signal with Texture and
without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure A.19: Reconstruction of the Signal for Resolution Levels: 6, 7 - Input Signal with Texture and
without Noise

(a) Original Signal data (b) Shifted Signal data

Figure A.20: Amplitude of Active Functions in Resolution Levels: 1, 2, 3, 4 - Input Signal with Texture
and without Noise
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(a) Original Signal data (b) Shifted Signal data

Figure A.21: Amplitude of Active Functions in Resolution Levels: 5, 6, 7 - Input Signal with Texture
and without Noise

136


	Introduction
	Digital Images
	Image Representation
	Classical Issues on Image Processing
	Texture in Images
	Objectives of this Work

	Preliminaries: Mathematical Tools for Image Processing
	The Direct Method of Calculus of Variations
	 Convergence
	Some useful results
	Euler-Lagrange Equations
	The Fundamental Lemma of Calculus of Variations

	The Non Local Denoising Filter
	Introduction: Neighborhood Filters and NL-means
	Comparison Principles
	Noise Model
	General Neighborhood Filters
	Local NBH Filters
	Non Local Averaging

	Principles for Denoising Algorithms Evaluation
	Method Noise
	Noise to Noise Principle

	Statistical Optimality
	Numerical Examples

	Non Local Mumford-Shah Regularizers for Color Image Restoration
	Introduction - Background
	Local Regularizers
	Nonlocal Methods
	Nonlocal Regularizers

	Proposed Nonlocal Mumford-Shah Regularizers


	The Segmentation Problem
	Introduction to the Problem of Segmentation
	Mumford-Shah Functional
	Spaces of Work: BV(), SBV() and GSBV()
	Existence of Minima
	Approximation Schemes
	 Convergence in the case of Ambrosio-Tortorelli functional
	Existence of Minima for F
	The  Convergence Theorem



	The Non Local Segmentation Problem
	The Non-Local Ambrosio-Tortorelli Functional
	Some assumptions on w(x,y) and behaviour of |w u|2(x)
	Assumptions on w(x,y)
	A small review of |w u|2(x)

	The Spaces of Work
	Preliminary Results on `Perimeter Like' Functionals
	Reformulation of the Problem in the Continuous Setting
	-Convergence in 1-Dimensional Case

	Gabor Functions and Additional Texture Features
	Gabor Functions - Mathematical Definition
	Approximating a Signal by Gabor Functions
	Basis Pursuit Denoising
	Setting up our Problem, Exponential Splines

	Numerical Implementation
	Non Local Denoising Filter
	Segmentation using Ambrosio-Tortorelli Approximation
	Euler-Lagrange Equations
	Implementation

	Non Local Segmentation
	Euler-Lagrange Equations
	Implementation
	1D Implementation
	2D Implementation


	Computing weights
	Semi-local version
	Fast approximation for the fully nonlocal version

	Gabor Functions for Texture recognizion

	Numerical Examples
	Non Local Denoising Filter
	1-Dimensional Filter Examples
	2-Dimensional Filter Examples
	Artificial Example: Moose
	Artificial Example: Lion
	Natural Example: Tiger


	Segmentation using Ambrosio-Tortorelli Approximation
	1-Dimensional Segmentation Examples
	2-Dimensional Segmentation Examples

	Non Local Segmentation
	1-Dimensional Segmentation Examples
	2-Dimensional Segmentation Examples

	Gabor Functions for Texture recognition
	Approximation and Decomposition for No Texture-No Noise Image: Complex Exponential Spline
	Approximation and Decomposition for No Texture-Noisy Image: Complex Exponential Spline
	Approximation and Decomposition for Texture-No Noise Image: Complex Exponential Spline
	Approximation and Decomposition for Texture-Noise Image: Complex Exponential Spline
	Approximation and Decomposition for Texture-Noise Image: Real part of Complex Exponential Spline


	Conclusions and Future Work
	Main Results
	Future Work

	Bibliography
	Basis Pursuit for the Real Part of Exponential Splines: More Examples
	Approximation and Decomposition for No Texture-No Noise Image: Real part of Complex Exponential Spline
	Approximation and Decomposition for No Texture-Noisy Image: Real part of Complex Exponential Spline
	Approximation and Decomposition for Texture-No Noise Image: Real part of Complex Exponential Spline


