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Resumen

Esta tesis estudia un fenómeno cognitivo humano llamado Metáfora Conceptual en el contexto del apren-
dizaje y razonamiento de la Matemática. La metáfora permite el entendimiento de un concepto abstracto
llamado destino, e.g. números, en términos de un concepto mas concreto llamado fuente, e.g. un montón
de caramelos. A menudo, algunos razonamientos son llevados desde la fuente al destino permitiendo inferir
propiedades de este último. Esto es conocido como razonamiento por analogı́a.

Por un lado, evidencia empı́rica indica que la metáfora es capaz de potenciar el aprendizaje. Evidencia
convergente son los reportes de cientı́ficos que admiten el uso de analogı́as mientras están desarrollando sus
teorı́as. Por otro lado, algunas personas son contrarias al uso de analogı́as en educación. Ellos argumentan
que los polı́ticos y comunicadores usan analogı́as de manera que la audiencia llegue a conclusiones erroneas;
sugiriendo que las analogı́as afectan el razonamiento objetivo. Esta discusión pone de relieve la necesidad
de investigar el fenómeno para entender su alcance y sus limitaciones.

Este trabajo presenta un modelo formal para la metáfora que puede ser usado como un marco para
estudiar el aprendizaje por analogı́as. Debido a que el modelo es abstracto, el capı́tulo 1 es utilizado para
concretar las ideas: utilizamos nuestro formalismo para analizar en profundidad un ejemplo bien conocido.
Ası́ mismo, el capı́tulo 5 presenta formalizaciones de otras metáforas que son encontradas frecuentemente
en la enseñanza de la matemática.

El modelo formal es construido en el capı́tulo 4 donde la fuente y el destino de una metáfora son formal-
izados por un concepto clave llamado dominio. Algunos resultados de este capı́tulo son acompañados por
interpretaciones cognitivas, como por ejemplo, los teoremas 40, 41, 42, y la proposición 26, que pueden ser
vistos como una descripción de cómo una analogı́a llevarı́a razonamientos de la fuente al destino. Además,
los teoremas 30 y 31 sugieren mecanismos para el proceso de aprendizaje por analogı́a. Finalmente, el
capı́tulo 4 presenta algunas construcciones teóricas como productos y coproductos de dominios.

Nuestro modelo de metáfora relaciona dos dominios, cada uno definido como una mezcla de lenguaje
y semántica. La mayorı́a de los resultados del capı́tulo 4 necesitan la premisa de que los dos lenguajes
involucrados son “compatibles”. Matemáticamente, se necesita una función capaz de preservar la estructura
determinada por una operación sintáctica llamada sustitución. Aplicando teorı́a de grafos y teorı́a de la
unificación, esta noción de compatibilidad es caracterizada para el caso de los términos del lenguage en el
capı́tulo 2. En el capı́tulo 3, esta noción de compatibilidad es caracterizada para el caso de las fórmulas de
un lenguage mediante la adaptación de los métodos del capı́tulo anterior.

Finalmente, un apéndice (Relational Spaces) presenta otro enfoque para estudiar la metáfora. Allı́, los
dominios son definidos con la semántica solamente, ignorando el lenguage. La mayorı́a de los resultados en-
fatizados arriba se pierden o se debilitan sugiriendo que la información “abstracta” provista por los sı́mbolos
y la recursión provista por la gramática del lenguaje son necesarios para imitar el comportamiento de la
metáfora. Esta observación, junto con otros resultados, podrı́a indicar la existencia de una relación entre la
propiedad de recursión de los lenguages humanos 1 y la habilidad de aprender por analogı́as.

1Noam Chomsky sostiene que la recursión es el componente unicamente humano de la facultad del lenguage [49].

i



Summary

This thesis studies a human cognitive phenomenon called Conceptual Metaphor in the context of mathe-
matics learning and reasoning. Metaphor enables the understanding of an abstract concept called target, e.g.
numbers, in terms of a more concrete concept called source, e.g. piles of candies. Often, inferences from the
source are carried to the target and applied there yielding some conclusions about the target. This is known
as reasoning by analogy.

On the one hand, empirical evidence indicates that metaphor enhances learning and converging evidence
is provided by working scientists who report the use of analogies while developing their theories. On the
other hand, some people advise against its usage in education. They argue that politicians and communicators
often lead people into erroneous conclusions by using metaphor, and then, analogies undermine objective
reasoning. This discussion highlights the need for research to shed light into the learning mechanics under-
lying metaphor in order to understand its scope and limitations.

This work presents a formal model of metaphor which can be used as a framework to study learning by
analogy. Since the model is abstract, we use Chapter 1 to make ideas more concrete: we use our formalism
for analize deeply a well known example. Along these lines, Chapter 5 presents formalizations of other
metaphors frequently encountered in mathematics teaching.

The model is built in Chapter 4 where the source and the target of a metaphor are formalized by a key
concept named domain. Some results of this chapter are accompanied by cognitive interpretations, as for
example, Theorems 40, 41, 42, and Proposition 26 can be seen as descriptions of how an analogy carries
reasonings from its source to its target. Also, Theorems 30 and 31 suggest models for the process of learning
by analogy. Finally, Chapter 4 presents some theoretical constructions such as products and coproducts of
domains.

Our metaphor model relates two domains, each one defined as a mixture of language and semantics. Most
results of Chapter 4 need the premise that the two involved languages are “compatible”. Mathematically,
they need a map able to preserve the structure determined by a syntactical operation called substitution. This
compatibility notion is characterized for the case of language terms in Chapter 2 by applying unification
theory and graph theory. And in Chapter 3, this compatibility notion is characterized for the case of the
language formulas by adapting the methods of the previous chapter.

Finally, one Appendix (Relational Spaces) presents another approach to study metaphor. There, domains
are defined with semantics only, leaving language aside. Most of the results emphasized above are lost or at
least weakened, suggesting that the “abstract” information provided by symbols and the “recursion” provided
by the grammar of the language are necessary to mimic metaphor’s behavior. This observation, together with
other results of this thesis, might point to a relation between the recursion property of human languages2 and
the ability of learning by analogy.

2The linguist Noam Chomsky claims that recursion is the only human component of the faculty of language [49].
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del Departamento de Ingenierı́a Matemática (DIM). La idea principal era realizar investigación en el campo educativo
pero, a diferencia de otros enfoques, querı́an hacerlo utilizando el método cientı́fico y mediante el uso de modelos
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estudiarlo. Mi mente empezó a rondar obsesivamente la idea de Roberto. Acepté la propuesta.
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Algebraic Models of Conceptual Metaphor:
Contributions to the Understanding of

Mathematics Learning Processes.
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Chapter 1

Introduction and Motivation

And I cherish more than anything else

the Analogies, my most trustworthy

masters. They know all the secrets of

nature, and they ought to be least

neglected in Geometry.

Kepler

A growing body of evidence indicates that, for a country, high rates of education are essential
for achieving high levels of economic growth[46]. There is no debate on such claims, an effective
educational system make pupils become agents of positive change. Nonetheless, economics aside,
we believe it is important to make an analogous reflection at an individual level: people with access
to quality education are empowered for pursuing their own goals and achieve a good quality of life.

This thesis is aimed to contributing to the improvement of educational systems through a better
understanding of the human’s learning phenomenon. At least three crucial tasks could be enlight-
ened by such understanding: identification of good patterns for communicating knowledge, discov-
ery of principles for designing effective tools for teaching and learning, and pointing out strategies
for maintaining the learner engaged. Undoubtedly, the amount of work required to address any of
these issues puts them out of the scope of this thesis. However, problems of this magnitude might
be approached by institutions such as the CIAE (Center for the Advanced Reasearch in Education

2



of the University of Chile) whose creation has gathered a multidisciplinary team of researchers to
work around education themes.

This thesis studies a phenomenon that has been named Conceptual Metaphor1 by cognitive
scientists. We call it only metaphor or sometimes analogy. The referred subject is a vast domain
of knowledge and, to perform the present study, we have made some strong assumptions that shall
be signaled into the relevant contexts. But first, let us comment why we selected this subject of
study in preference to others: there are serious claims that postulate metaphor as the natural way
in which people learn to reason about concepts that are new or abstract. If these claims are right,
there are deep implications for education. And to this respect, the influential psychologist Steven
Pinker says [96]

I think that metaphor really is a key to explaining thought and language. The human mind

comes equipped with an ability to penetrate the cladding of sensory appearance and discern the

abstract construction underneath—not always on demand, and not infallibly, but often enough

and insightfully enough to shape the human condition. Our powers of analogy allow us to apply

ancient neural structures to newfound subject matter, to discover hidden laws and systems in

nature, and not least, to amplify the expressive power of language itself.

In brief, an analogy is a cognitive process that uses knowledge of an structure, named source

domain, as a guide to reason about another structure called target domain. This process is pervasive
in human thought for reasoning and in human language for comunication. And this might be the
cause that analogy has been claimed to be the core of human cognition (see for example [31, 71]).
Even if someone disagrees with such a high level of importance for analogy in human thought,
it is undeniable that the phenomenon has received plenty of attention from many researchers in
diverse fields such as poetics, linguistics, psichology, education [3, 98, 106, 53], cognitive science
[30, 51, 71] and artificial intelligence [92, 119, 81, 74, 42] among others.

This reveals a deep need, across related areas, for the creation of models that shed some light
into the understanding of the analogy phenomenon. As a manifestation of this need, one of the
33 basic research problems proposed for automated reasoning is exclusively devoted to analogy
[123, 124]. In this context, the main contribution of this thesis is a formalization of this cognitive
process together with some arguments for supporting the idea that such model might open up a way

1Literary metaphors like juliet is the sun or the world is a stage are different in nature and not relevant for this work.
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1.1. Metaphors and the Learning of Mathematics

for applying mathematical analysis on the study of the phenomenon (some previous attempts in the
path of formalizing the phenomenon can be found in [41, 40, 55]).

1.1 Metaphors and the Learning of Mathematics

A metaphor is a particular relation between a well known idea –such as three candies– and a new
or abstract idea —the number 3–. Experimental evidence shows that such mechanism can be used
succesfully to enhance methods for teaching and learning mathematics.

For instance, the chilean researcher Roberto Araya and his collaborators used videos to teach
how to solve algebraic equations to 236 students divided in two groups[3]. The first group was
taught with a classical symbolic strategy and the second one was taught by using balances in
equilibrium to introduce the concept of an equation. In a post-test, the second group performed
significantly better.

Furthermore, this study obtains a striking result: students with a below average mathematics
performance who watched the analogies video performed about the same as students with an above
average performance who watched the classical strategy. A study with similar characteristics is
reported in [98]. Complementary to this line of research, the psychologist Rafael Nuñez has iden-
tified some conceptual metaphors that seem to be at the heart of some mathematical concepts and
might be useful to teach (or learn) complex ideas such as continuous functions and infinity[89, 87].

More evidence comes from a classical study performed by the psychologist Robert Siegler
and his collaborators. In a serie of studies[101, 105], they show how children’s understanding
about walking along a path can be used to improve their number understanding. First, let us give
some context. In [104] Siegler shows that children represent numbers in a kind of “mental line of
numbers” which, over time, develops from a logarithmic representation to a linear one 2. Then, he
observes that arithmetic performance depends crucially on such representation: the more linear the
representation is, the better the performance becomes (see also [44]).

Without instruction, this change of representation is very limited and takes place over long

2A huge amount of evidence indicates that our understanding of numbers depends on two core systems that our
brain uses to represent numbers [23]. The above discussion refers to one called Aproximate Number System (ANS).
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Figure 1.1: Differences between the boards of the Siegler’s experiment.

periods of time. However, in [101, 105] Siegler triggers such change by means of a metaphor. He
designed two versions of a game called “The Great Race” (TGR). Both versions of the game had
many aspects in common: the boards were horizontal arrangements of ten squares with “start” and
“end” written before the left-most square and after the right-most square respectively, they were
designed to be played between the child and the experimentalist. The winner was the one who
arrived to the end square first, in each turn one player could move 1 or 2 squares towards the right.

The differences between the two versions were only that the first board had the numbers 1 -
10 listed from left to right, and when the players moved they had to recite the numbers they were
steping, for example, “three” and “four.” Whereas the second version of the game (thought as to be
used by a control group) had only colors in the squares, and when the players moved they had to
recite such colors, saying for example “blue” and “red” (See Figure 1.1).

The first graders who played the first version of the game, changed their internal logarithmic
representation for a linear one which led them to improve their performance in diverse numerical
tasks. The control group did not. The gains remained 9 weeks later. On another condition [105], a
third version of the game is based on a circular board divided in ten parts with numbers 1-10 listed
on them. The group which played this version of the game did not improve its representation or its
performance in the numerical tasks.

Because of the results, it is clear that the first version of the game helps learning. It is equally
clear that the second and third versions do not. By using the predictions of our model, the results
of these studies can be formally explained: in few words, the first version pinpoints the mean-
ingful matchups between the path and the numbers while the second version does not suggest such
matching. The third version makes such suggestion but supports misleading inferences when work-
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ing with numbers: in a circular board might be possible that the number 9 is at the left side of the
number 2 suggesting 3 that 9 would be lesser than 2, or that there are only two numbers4 between
9 and 2. Throughout this chapter we shall study the TGR metaphor (TGRM), i.e., the metaphor
underlying the first version of the TGR game. This running example shall enable us to present our
work.

1.2 Our Algebraic Approach to Formalize Metaphor

In this work we develop a formal model of metaphor in order to analyze the phenomenon. We adopt
this approach for several reasons; in particular because the authors are mathematicians. We do not
believe that this is the only approach, it might just be the more accesible to us. However, we believe
that a formal model can shed a good deal of light into the understanding of the phenomenon.

We have found almost no formal models of the phenomenon in the literature (however see
[41, 40, 55] and [84]). In particular, we have not found formal models that account for the properties
of metaphor that are related to human learning. For the sake of completeness of this work, some
computational models shall be analized in the first part of Chapter 2. Our aim in what follows is
to show the benefits of having formal models for phenomena by considering an education related
case.

The Flynn Paradox appears in the following manner. The psychologist Arthur Jensen argues
that widely accepted estimates of the heritability of IQ5 —the fraction of the variance of IQ in a
population caused by differences in genetic endowment— render environmental explanations of
large IQ differences between groups implausible [57]. On the other hand, James Flynn discovered
a substantial and long-sustained increase[25] in test scores measuring IQ. In simpler words, people
within a given generation are smarter than their parents. This effect, observed in many parts of the
world, has been named The Flynn Effect after his discoverer. This raises the Flynn Paradox: the

3Many studies [17] have provided evidence that people associate their left hand and left visual field with small
numbers and their right hand and right visual field with large numbers.

4In a circular board you can walk from the square labeled by 9 through two squares labeled by 10 and 1 to arrive at
the square labeled by 2.

5An intelligence quotient, or IQ, is a score derived from one of several standardized tests designed to assess intelli-
gence.
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fact that IQ gains are mainly environmental is pointed out by the Flynn Effect; Jensen’s analysis
suggests that such gains should not exist.

One of the most popular explanations of the rise in IQ, thus far, comes from a formal model pro-
posed in [19] by Dickens and Flynn. Such work challenges Jensen’s classical analysis by creating
a formal model which assumes a strong reciprocal causation between phenotypic IQ and environ-
ment. This reciprocal causation produces a environment/gene correlation which leads ultimately to
solve the paradox by showing how enviromental causes of the rise in IQ are compatible with large
estimates of heritability.

Our point here is that such correlation had been observed by other researchers (see [103]) pre-
vious to the introduction of the Flynn’s model. However, such correlation was ignored or badly
interpreted. The clue which leads Dickens and Flynn to draw conclusions essentially different
from the traditional ones is the analysis performed with the help of their formal model. This exam-
ple clarifies our argument: given certain assumptions, to draw logical conclusions is easier when a
formal model is available.

The model built in this thesis has an algebraic nature which describes a metaphor as a mapping
f : A→ B. Let us consider our formalization of the TGRM as an example: the elements of A are
the board squares without symbols on them, the elements of B are the numbers 1,2,3, ....,10, and f

is the map which matches each square of A with its respective numerical symbol (see Figure 1.2).
Because the sets A and B are not necessarily numerical sets, the analysis of our model shall require
methods borrowed from universal algebra, formal logic and category theory. Next paragraph shows
why.

Recall that the TGR game was designed to facilitate the learning of numbers. This is the main
reason why the set B has the standard structure of numbers including, but not limited to, (1) the
ordering, (2) the distance and (3) the successor operation. Notice how the design of the TGR board
gives to A some similar structure: firstly, there exists an order relation since the squares are ordered
from left to right. Secondly, there exist an operation which gives the notion of distance: the effort
of walking from one square to another square. Thirdly, a player move from one square to the next
one at the right because of the game’s rules. These structures can be studied by considering A and
B as algebras (in Universal Algebra) or by understanding them as models (in Formal Logic).

The core of our model is described as follows. Observe that, depending on the metaphor that
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is being analized, two elements of A might be related in a very specific way. The concern of our
model is to reveal if such relation is preserved through the map f : A→ B. For example, in the
formalization of the TGRM, the binary relation describing that square a1 is at the left of square a2

is preserved into a binary relation between numbers: the number printed on a1 is lesser than the
number printed on a2. Another example is that the operation which makes the player move one
square to the right is preserved into the successor operation of numbers.

The model presented here is able to represent a variety of metaphors since it has some “param-
eters” whose values can be “adjusted”. Such values are not numerical but strings of symbols6taken
from a first order language which plays the rol of a set of feasible values. For instance, when
formalizing the TGRM, we associate two first order languages LA and LB to the sets A and B re-
spectively. Our model’s construction ensures7 that every string of symbols from LA references8 one
relation defined on A. Figure 1.2 depicts a possible formalization of the TGRM. There, the lan-
guages LA and LB have been selected in an intuitive way. The elements of Π and Ψ are the values
of the “parameters” associated to such formalization.

Our next goal is to argue for the validity and usefulness of the model presented here. Developing
formal models is full of challenges and the first one is to find a set of assumptions which command
the essential behavior of the phenomenon. For highlighting the importance of this, notice that if
the premises are erroneous, the conclusions might be misleading. For example, Jensen’s argument
is based on the assumption that there is no correlation between IQ heritability and environment. As
we saw, such assumption yield the Flynn Paradox when contrasted to the collected data.

Thus, when the model’s predictions conflict with the phenomenon’s data, it is worth reviewing
the model’s premises. This points to a way of validating our formal model. The test is passed
if there is consistency between the phenomenon’s collected data and the model’s predictions9. In
what follows, we enumerate the assumptions that our model makes together with its predictions
and results as a way to give our readers information that permits them evaluate the model.

6Those are terms and formulas from formal logic.
7It shall be formalized later, but it is the standard way in which mathematical logic relates a language with a model

of the language.
8Notice the analogous way in which a spoken word or a image points to a concept in our mind.
9As an illustration of this, when Dickens and Flynn presented their model they wrote, “it predicts that even in

adults, radical environmental change should produce significant changes in IQ” and afterwards they suggested a way to
validate their model: “If we could test IQ before and after periods of incarceration, or before and after joining religious
cults that significantly restrict people’s control over their lifestyles, we might observe large changes in IQ surprising
from the perspective of the standard model.”
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Figure 1.2: The set Π contains elements from the language LA associated to A. In the same way,
the set Ψ contains elements from the language LB associated to B.

1.3 Hypotheses and Results of our Model

The aim of this section is to clarify our formalization and to signal the path for validating our
model. In first place we state the assumptions that our model makes and thereafter we provide
evidence supporting these scenarios. This process must be handled with care since it is not easy to
distinguish between assumptions that have been made on the phenomenon in order to make it simple
and susceptible of formalization and assumptions that have been imposed by the mathematical tools

that were used in the formulation of the model.

In second place, but more important for validation, we present some of the results of our model
together with (arguably) cognitive interpretations suggesting that some of the predictions of our
model are consistent with the observed behavior of metaphor. In what follows, in order to dif-
ferentiate between the two different conceptual systems involved in each metaphor, we shall call
metaphor’s source the (usually) more concrete one and metaphor’s target the (generally) new or
more abstract one.
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1.3.1 Hypothesis: A cognitive view of Metaphor

In the cognitive field there are two dominant views of metaphor. One of them is based on the idea
that metaphor is a comparison based on the similarity of two concepts. This idea is known as the
categorization theory of metaphor and proposses that metaphors are class-inclusion statements in
which the target is said to be a member of a category represented by the source. Since Amos Tver-
sky has shown [117] that people’s similarity judgments are assimetrical, this theory of metaphor
captures the non-symetrical behavior10 of metaphor.

However, our model assumes the second view of metaphor which is characterized by the struc-

ture mapping theory [30] introduced in 1983 by the psychologist Dedre Gentner as a framework for
studying analogy11. In what follows, we introduce Gentner’s theory by considering three spoken
expressions that might be used by the players of the TGR game:

1. Now we are tied since we are standing on the same number.
2. I am losing because the number I am standing on is at the left of the number you are on.
3. Go one number to the right, from square 3 to the next square 4.

These three expressions really allude to a single, unstated metaphor: ARITHMETIC IS A COM-
PETITION ALONG A PATH. Since it is literally impossible for a person to be standing up on a
number, the classical theory of metaphor would have said that the above statements are just or-
namented versions of other unstated assertions which really describe the situation. However, the
linguist George Lakoff and the philosopher Mark Johnson observed that these sort of expressions
are pervasive in everyday language. Based on this, they claimed that metaphor is a fundamental
mechanism for thinking and reasoning. As supporting evidence, Lakoff presents a vast collection
of conceptual metaphors such as LOVE IS A JOURNEY, ARGUMENT IS WAR, or CAUSES OF
BEHAVIOR ARE FORCES and its associated metaphorical expressions[70] (See Table 1.1).

Along these lines, but at the heart of learning mathematics, George Lakoff and Rafael Nuñez
suggest a way in which metaphor is seen as involved in the construction of mathematical knowledge
[71]. By using their ideas, the TGRM (or ARITHMETIC IS A COMPETITION ALONG A PATH)

10Metaphors are not fully reversible. Notice that “My lawyer is a shark” has definitely a meaning while “This shark
is a lawyer” (arguably) does not.

11It should be clear that there is certainly not a consensus among researchers about which of the two theories is more
convincing.
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Our relationship has hit a dead-end street. It’s stalled;
we can’t keep going the way we’ve been going.
It’s been a long, bumpy road. We’re spinning our wheels.
Our relationship is off the track. Look how far we’ve come.

Table 1.1: LOVE IS A JOURNEY’s metaphorical expressions taken from [72].

might be explained in the following way:

The two competitors are two different variables. The values taken by these two variables are the

positions on the board occupied by the two competitors during the game. The feeling of getting

ahead or falling behind while playing the game yields the comparison between two numbers.

The equality of two variables is seen as both competitors standing on the same position. The

successor of a number is seen as the square spatially adjacent at the right. Adding two numbers

can be represented by the distance gained by two consecutive walks. A substraction might be

seen as the distance left until the game’s goal.

It is clear that a metaphor links two different conceptual systems, as for example, the TGR
gaming and the numbers. Less clear is how such link is characterized. The structure mapping theory
of Gentner postulates that the core of such relation is determined systematically by a mapping
between the entities of the different domains. For example, the map depicted in Table 1.2 could
determine the TGRM. Furthermore, in a serie of studies, Gentner and her collaborators have shown
that a focus on relationships is the key to the power of analogy as a tool of reasoning [30, 33, 35]
(see also [52]).

Our model assumes that metaphor’s behaviour is governed by principles resembling12 those
postulated by Gentner. Additionally, the examples presented in Chapter 5 are based on construc-
tions given in [71] by Nuñez and Lakoff.

12Those principles are formalized in Chapter 4, Definition 28 and Definition 37.
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SOURCE TARGET
Child → Variable x
Opponent → Variable y
Child is loosing → x < y
Tied competitors → x = y
Child’s advance of one square to the right → x+1 (successor of x)
First square at the left of the board → Number 1
Seconth square at the left of the board → Number 2
.... → ...
n-th square of the board → Number n

Table 1.2: ARITHMETIC IS A COMPETITION ALONG A PATH’s ontological map.

1.3.2 Hypothesis: Representation of the Information

In this section we introduce some of the strongest assumptions of our model. First of all, notice
that conceptual metaphor is a highly complex process whose input is multimodal; this means that a
person which is processing a conceptual metaphor might be sending/receiving information through
multiple channels such as speaking, gesturing, hearing, watching or feeling and this is done by
means of words, sounds, touches, gestures, pictures, diagrams, etc. (see [88]). Observe how this
information is processed in parallel and thus it is hard to imagine how these different channels of
information are composed, integrated and codified. It is even harder to build a formal model of
this reality. Our formal model can not deal with such reality and just make the assumption that all
the information was previously integrated and flows through a single, serial channel that codifies
the information in the form of a language which, is non necessarily verbal but, has clear rules for
composing its elements.

Also, our model makes an assumption about the representation of information in the human
mind. The attentive reader might have noticed, from the brief descripition of our model in the
previous section, that the information is represented13 by a combination of (1) sets and (2) strings
of symbols where the first would be interpreted as the “semantic content” and the second as the
“symbolic referent”14. This assumption of our model can be grounded in the cognitive theory of
dual coding developed by Paivio [93] who claims that mental representations are coded in an analog

13See the formal definition of “domains” in Chapter 4, Definition 27 and Definition 35.
14See Appendix C for a model without a formal language.
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system and in a verbal-symbolic system. In order to formalize a metaphor, our model mimics these
two systems. The first by selecting a suitable set (together with the appropriate structure) and the
second by choosing a first order language suitable for the particular context.

Additionally, a very similar structure for the representation of information has been propposed
in the context of language. The psychologist Steven Pinker asserts in his book “Word and Rules”
that

... The human language system also appears to be built out of two kinds of mental tissue. It has

a lexicon of words, which refer to common things such as people, places, objects, and actions,

and which are handled by a mechanism for storing and retrieving items in memory. And it has

a grammar of rules, which refer to novel relationships among things, and which is handled by

a mechanism for combining and analyzing sequences of symbols.

Along the same lines, but in the specific context of spatial representations, Kosslyn et al. [65,
66] have shown that humans distinguish between categorical and coordinate spatial representations.
The coordinate system codes for spatial position in a quantitatively precise way (a coordinates set
sort) and the categorical system defines space in more qualitative and conceptually distinct classes
(for instance, left vs right, or above vs below).

1.3.3 Hypothesis: Independent Representations of Target and Source

Two opposite views of Conceptual Metaphor are widely spread in cognitive science. The first one
postulates that most metaphors in our language are dead. Simply put, it means that when someone
uses any of the metaphorical expressions in Table 1.1, as for example, “it has been a long, bumpy
road,” he is not thinking in a journey (not even unconsciously). He is thinking directly in terms of
love.

The second view was postulated by Lakoff and claims that the human mind can only think in
concrete experiences as objects, forces, sounds, images and that all other ideas are metaphorical
references to these basic scenarios. Under this theory we can not think of a relationship of love
without calling into mind some kind of journey. This implies that when someone says or hears a
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metaphorical expression from Table 1.1, she must be (might be in an unconscious manner) thinking
in a journey.

Some of the defenders of this last position have claimed that this is because, in our brain,
there is a single representation underlying these two concepts. For example, Walsh introduced
the ATOM theory (A Theory Of Magnitude) or the concept that a single underlying magnitude
representation in the brain links the three domains of space, time and number. The alternative
proposed by Dehaene S., Cohen L., and Pinel P. ([18] p. 120) posits that distinct representations
exist in the brain for the domains of space, time and number although some mechanisms are shared
between them.

In this context, recall that our proposal models a metaphor as a map from the metaphor’s source
to the metaphor’s target. The fact that, in our model, we can change the source’s structure (the
target’s structure) without affecting the target’s structure (the source’s structure) suggests that the
assumptions that our model makes are closer to Dehaene’s proposal than to Walsh’s view. This
might imply that our model would be consistent with assertions like (1) the representations of the
source and the target of a metaphor might be coded in different brain circuitry, (2) that they might be
accesed independently, and (3) that metaphor exists as a wealth of associations and inter-relations
between them.

We are aware that considerable controversy surrounds these assumptions. However, these as-
sumptions might be supported by the Glucksberg’s experiment 15 and the findings reported by

15The psychologists Boaz Keysar, Samuel Glucksberg and their collaborators showed chains of dead metaphorical
expressions built around a Conceptual Metaphor [60]:

“Love is a patient,” said Lisa. “I feel that this relationship is on its last legs. How can we have a strong
marriage if you keep admiring other women?” “It’s your jealously,” said Tom.

If Lakoff’s view is right, these expressions should be understood through metaphorical mappings and then, the subjects
would understand a new example, like “You’re infected with this disease”, more quickly than if it came out after a
bland lead-in that made no mention of the metaphor:

“Love is a challenge,” said Lisa. “I feel that this relationship is in trouble. How can we have a strong
marriage if you keep admiring other women?” “It’s yout jealously,” said Tom.

Contrary to the expected by Lakoff’s Theory, there were no difference between the understanding times. This suggests
that people ignored the source of the metaphor (patient) and was able to think directly on terms of the target: love.
However, in a third condition, the subjects were forced to activate the underlying conceptual metaphor because the
lead-in sentences had unconventional metaphorical expressions:

“Love is a patient,” said Lisa. “I feel that this relationship is about to flatline. How can we have a strong
marriage if you keep admiring other women?” “It’s your jealously,” said Tom.
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David Kemmerer who, along the lines of the TIME IS SPACE16 metaphor, has shown that some
patients with brain damage can lose their ability to understand prepositions for space, as in She’s

at the corner and She ran through the forest, while retaining their ability to understand the same
prepositions for time as in She arrived at 1:30 and She worked through the evening [60]. Other
pacients show the opposite pattern. Also, further evidence suggests that, in the brain, the number’s
representation can be disassociated from the representation of space (see [24]).

Additionally, in order to clarify this matter, we can consider evidence reported by Bowdle and
Gentner which suggests that metaphors, when used often enough, shift from being interpreted
through metaphorical mappings to being dead metaphors [32, 9]. They call this behaviour the

career of metaphor.

1.3.4 Two Problems related to Metaphor

We think that, in the context of learning, metaphor should be addressed with two different pers-
pectives. Next, we propose two problems that highlight the subtle differences between those per-
spectives. To exemplify them, we shall consider the TGR metaphor that was introduced previously.

The first analysis considers the point of view of a teacher and it might be necessary for under-
standing the design of the TGR game. Here, we want to think about how a metaphor is created

inside of the teacher’s mind in order to help his student to learn. In the teacher’s brain, the most
likely scenario is that the target’s metaphor is well coded and represented. Such target becomes the
input for a twofold problem: (i) choosing the metaphor’s source from a variety of well coded candi-
dates by (ii) pinpointing the structural similarities between each candidate and the target. Name this
the teacher’s metaphor problem. A solution for this problem, given a fixed learner, is a metaphor
able to help the learner to acquire knowledge of the target. For example, since playing the TGR
game led children to gain numerical knowledge, the board—and the rules—of the TGR game is a
solution for this problem.

This time readers understood the probe sentence about being infected with a disease more quickly, as quick as when
the story was about being literally infected with a real disease. The conclusions of the study are that people can read
through metaphorical expressions to the source and target of the underlying Conceptual Metaphor, but only when the
metaphor is fresh.

16It has been claimed that the abstract domain of time gets its relational structure from the more concrete domain of
space by the psychologist Lera Borditsky and her collaborators [77].
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For the second case, the emphasis is set on the learning process and the analysis seeks to elab-
orate an hypotesis that might explain the learner’s cognitive gains. Let us consider a learner and a
given metaphor together with its source and its target. Inside the learner’s mind, the most likely sce-
nario is that the metaphor’s source is well coded while the metaphor’s target has a faulty/incomplete
representation. In this case, we are interested in understand the process performed by the learner’s
brain that, by using the information provided by the metaphor, modifies its internal structures in
a way to obtain an “improved” representation of the metaphor’s target. We call it the learner’s

metaphor problem for later reference.

A solution for this problem might take the form of an algorithm whose inputs are: a source, a
target, and a metaphor between them. This algorithm has to change the encoding of some particular
structures of the target in order to mimic the associated structures of the source. Notice that the
TGR game together with those children showing gains of knowledge after playing it, show that this
problem actually has a solution: while the children were playing the game, their brains must have
made use of a solution of this problem in order to learn.

Also, it is worth observing that a combination of the two stated problems yields a third problem:
the researcher’s metaphor problem. A researcher, aiming to structure a fuzzy target in his mind,
creates his own17 metaphors by evaluating18 different metaphor’s sources.

1.3.5 Result: The Learner’s Metaphor Problem

The first step leading to a satisfactory solution for the learner’s metaphor problem should be a
proposal of the structures supporting it. That is to say, we must define precisely what is the source,

17Donald Schön recounts an engineering problem faced by the designers of the first paintbrushes made with synthetic
bristles[82]. Compared to brushes with natural bristles, the new ones glopped paint onto a surface unevenly, and none
of the improvements the engineers could think up (varying the diameter, splitting the ends like hairs) fixed the problem.
Then someone said, “You know, a paintbrush is a kind of pump!” When a painter bends the brush against a surface,
he forces paint through the spaces between the bristles, which act like channels or pipes. A natural brush, it turned
out, forms a gradual curve when it is bent against a wall, whereas the synthetic one formed a sharp angle, blocking
the channels like a crimp in a garden hose. By varying the density of the bristles along their lengths, the engineers got
the synthetic brush to curve more gently and thus to deliver paint more evenly. The crucial first step was the pump
metaphor, which got them to reconstruct a brush from one big paddle that whipes paint against the surface to a set of
channels that punt it out to their ends.

18It is clear that different sources might draw different conclussions. The researcher must experiment in order to
validate the source and identify the adequate conclussions.
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the target and the metaphor. In this aspect, we believe that our model makes a contribution in the
understanding of the learner’s metaphor problem. Furthermore, the proofs of theorems 30 and 31
in Chapter 4 can be seen as describing processes which might be consistent with solutions for such
problem. To support this affirmation, we present Theorem 31 in the context of the TGR game. We
warn the reader that such presentation might make Theorem 31 appear trivial but, such risk is taken
in order to aid the presentation.

Let us set the ideal scenario for this problem: On one hand, an ideal child knows everything
about walking along a path. Also, he knows the rules to play the TGR game. This means that he
knows that some squares are closer than others and—because of the game’s rules—that he must
walk only toward the right side of the board, etc. On the other hand, though he might name numbers
and even recognize their numerals, he might have no clue about their structure. That is to say, even
when he might recognize the symbol “3”, he does not know that the successor of 3 is 4, or that 2+3
=5, or that 5 is lesser than 819. For this discussion, let us assume that his numerical knowledge can
be depicted as the upper box of Figure 1.3.

�� ��1→ 2 3 4→ 5 8
⇓�� ��1→ 2→ 3→ ...→ 8→ 9→ 10

Figure 1.3: An interpretation of Theorem 31 as a solution of the learner’s metaphor problem in the context of the TGR game. Before playing,
the children only have some vague concept of some numbers and possibly a vague concept of “next” in numbers. Then, TGRM comes and the target
becomes like the box below. The arrows depict the action of the operation “next”.

Before presenting Theorem 31, let us introduce its two main hypotheses. In the context of the
TGR game, these would be that (i) the board of the TGR game can be “generated”, which means
that the player can visit all the squares of the board by walking one step at a time. The second
hypothesis would be that (ii) the child’s brain supports20 certain recursive symbolic operations.
This last hypothesis can be better understood as follows.

19We are describing an hypothetical student, real students might usually know at least some of these facts, depending
on their age and other factors.

20It is important to observe that such hypothesis is paraphrased “in the context of the TGR game” because we do not
assert or assume that a person is able to support infinite recursion. Actually, the mentioned hypothesis is imposed by
the mathematical tools that were used in the construction of the model. Since a formal language is embedded into our
model, its grammatical properties, such as the recursive generation of an infinite set of words, are reflected in the results.
However, we point out that (1) there is at least some evidence pointing that the brain has a mild capacity for carrying
on recursive processes until certain level and that (2) the linguist Noam Chomsky together with his collaborators claim
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x → x
goRight(x) → next(x)

goRight(goRight(x)) → next(next(x))
goRight(goRight(goRight(x))) → next(next(next(x)))

... → ...
goRight(goRight(...(goRight(x)))) → next(next(...(next(x))))

Table 1.3: The recursivity hypothesis of Theorem 31 contextualized to the TGRM.

In a formalization of the TGR metaphor, the operation that makes the child move (from one
square to another) is represented through a symbolic string21 such as goRight(x). This way, when x

is refering the first position from the left, goRight(x) refers the second position, goRight(goRight(x))

refers the third position and so on. Also, recall—from the TGR game—that when the child moves
from 3 to 4 he must recite “three” and then “four”, and that numbers 3 and 4 are printed in the third
and fourth squares respectively. These rules and perceptions might be creating (perhaps uncon-
sciously) an operation which for 1 returns 2, for 2 returns 3, for 3 returns 4 and so on. Thus, when
the child moves, the design of the TGR game highlights a correspondence between the “movement
operation” and an analogous operation in the realm of numbers. Our formalization would represent
such numerical operation by a string, let us say, next(x).

In this scenario, the recursivity hypothesis of Theorem 31 might be interpreted as that the
child’s brain supports the generation of the strings in Table 1.3 together with the depicted matches.
Theorem 31 assumes the two hypotheses above described and asserts that a more accurate repre-
sentation of the target can be built (see lower box of Figure 1.3). The proof of the theorem is based
on the idea that (1) for the game domain, the variable x is referencing the first square, (2) for the
numbers domain, the same string x is referencing the number 1, and (3) that strings of symbols
can be used to represent the missing numbers (if 3 were not present, it would be represented by
next(next(x)); if 4 was missing, it would be represented by next(next(next(x))), and so on) and
then—sort of—“copying” the source’s structure into the target. To work out this idea, the Theo-
rem’s proof makes use of some concepts from Category Theory, as for example, the building of a
quotient object.

that recursion is the only uniquely human component of the faculty of language [49]. These two points together with
the fact that our model, through recursion, represents accurately some instances of the phenomenon, might serve to
argue for a link between the capacity of analogize and certain recursive processes of the mind. A detailed discussion
of this subject is presented in Appendix B.

21This would be a term in formal logic.
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Let us make some comments about this process of “learning” described here. Observe that it
is based on syntactical operations which are independent of the context, and then, it is a general
process in the sense that it can be applied to any metaphor that, like the TGRM, is susceptible of
formalization. Also, consider that for the sake of clarity, the previous example is extremely simple:
it has a source and a target with ten elements each and the only operations involved are goRight and
next. However, Theorem 31 is general enough to handle any finite number of operations defined on
sources or targets with a countable number of elements on them.

On other aspect, many models of nature are obtained as solutions of optimization problems. In
a way, the model of “learning” presented here is not an exception. Theorem 31 ensures that the
new target satisfies a universal property22: the new metaphor’s target is characterized by its abil-
ity of representing all the information concerning the source’s relevant structure while having the
minimum number of elements. It can be thought of as an efficient storage of new information. This
might be not true for human learning and thus this shows a weakness of our model. This weak-
ness might be introduced by the simplification of the phenomenon, necessary to make metaphor
susceptible of analysis.

Along the same lines, the proof of Theorem 31 describes a static, one-step process. In Figure
1.3 the upper box represents the numbers’s understanding of the child. This process acts when the
child plays the TGR game by transforming the target in the lower box of Figure 1.3. In human
learning, the real process has some dynamics: the gains of knowledge are obtained over time and
after repeated applications of the metaphor. However, we believe that the proof of Theorem 31
might be a basis to generate models that include such dynamics.

�� ��1→ 2 3 4→ 8→ 5

Figure 1.4: Let us think about what happens when a metaphor tries to give the adequate structure to this set of “numbers”.

This section ends by posing a question for future research. Suppose that the child of our example
thinks that the number 8 is less than the number 5 (see Figure 1.4). It would be interesting to inves-
tigate what our model predicts (if it can) about what happens when the TGRM tries to re-structure
this faulty target. We believe that the answer might be related or interpreted as the psychological
term “cognitive dissonance.”

22Observe that universal properties in the language of category theory are viewed as some kind of the “most efficient
solution” for a problem.
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1.3.6 Limitation: The Teacher’s Metaphor Problem

The problem that we refer as the teacher’s metaphor problem is the most frequently issue discussed
in metaphor research. Our model can not account for this problem since we consider the source
and the target of metaphor as given. This way, we avoid dealing with the problem of how to select
an adequate source between many candidates. In our running example, the TGRM, the metaphor’s
source is not chosen between some candidates, is given beforehand.

In the same way, we consider the structural matches between source and target as given. This
means that, in our example of the TGRM, the model does not address the problem of finding out if
the operation goRight is matched with the relation next; such correspondence is given beforehand.
Despite that, our model makes a contribution by providing a definition which, given that goRight is
matched to next, enables us to identify a metaphor in the mapping that associates a number to each
square of the board.

However, some particular issues related to this problem can be enlightened by our model. For
example, the identification of some inference tools that metaphor can carry from the source to the
target. This particular contribution of this work is extense and possibly important and thus we have
devoted the entire next section to present the associated results. We continue this section by posing
two observations that are related to the teacher’s metaphor problem.

The first observation is that seems like that certain kind of information is never carried by the
metaphor from the source to the target. As far as we know, the reason is unknown. Let us exemplify
this conundrum with the TGR game. The metaphor’s game associates (or maps) the position of each
square with the numeral imprinted on the square. This is reflected in the fact that children in the
game group improve on the estimate the position of numbers on a numerical line. However, it
seems like that such positions are not associated with the square’s color, that is to say, children
would be unable to arrange colors on a line23 (and consider that the numeral is just a variation of
color). Somehow, the design of the game and its dynamics marks the imprinted numerals as salient
target’s features whose structure should be carried by the metaphor, and at the same time, leaves
the square’s colors as irrelevant features.

23However, see a neurological condition called synesthesia where letters or numbers are perceived as inherently
colored.
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The second observation refers to loose and overlapping analogies that might be even harmful
for teaching. This might happen when the selected source has some structure which, when trans-
ported through the metaphor, suggests that false statements in the target are true (or viceversa)
and thus misleads the reasoning of the learner. This feature of metaphor is real and, in a negative
sense, very powerful: some politicians, marketers and media make abuse of this characteristic of
metaphor in order to manipulate public opinion24. However, in the realm that interest us, this issue
is nicely approached in “The Stuff of Thought” written by Steven Pinker. The relevant paragraphs
are reproduced next.

Loose and overlapping analogies are also a mark of bad science writing and teach-
ing. The immune system is like a sentinel, except when it’s a lock and key; no, wait,
it’s a garbage collector! The best science writers, in contrast, pinpoint the meaningful
matchups in an analogy and intercept the misleading ones. In The Blind Watchmaker,
Richard Dawkins explains how sexual selection can produce flamboyant displays like
the outsize tail of a widowbird. Traits in males that are attractive to females can vary
wildly over the course of evolution, Dawkins notes, because there are many stable com-
binatios of a tail length preferred by females and an actual tail length in the population
(which is itself a compromise between the length preferred by previous generations of
choosy females and the length that is optimal for flight). Mathematicians call this “a
line of equilibria,” and to establish the conditions that produce it they require abstruse
equations. But Dawkins explains the idea as follows:

Suppose that a room has both a heating device and a cooling device, each with its own ther-

mostat. Both thermostats are set to keep the room at the same fixed temperature, 70 degrees

F. If the temperature drops below 70, the heater turns itself on and the refrigerator turns itself

off. If the temperature rises above 70, the refrigerator turns itself on and the heater turns it-

self off. The analogue of the widow bird’s tail length is not the temperature (which remains

constant at 70◦) but the total rate of consumption of electricity. The point is that there are lots

of different ways in which the desired temperature can be achieved. It can be achieved by both

devices working very hard, the heater belting out hot air and the refrigerator working flat out

to neutralize the heat. Or it can be achieved by the heater putting out a bit less heat, and the

cooler working correspondingly less hard to neutralize it. Or it can be achieved by both de-

vices working scarcely at all. Obviously, the latter is the more desirable solution from the point

of view of the electricity bill but, as far as the object of maintaining the fixed temperature is

24See the book “Manufacturing Consent” by Noam Chomsky.
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concerned, every one of a large series of working rates is equally satisfactory. We have a line

of equilibrium points, rather than a single point.

In the passages I have underlined,—says Pinker—Dawkins anticipates how his readers might

misconnect the entities in the world to the entitites in the analogy, and redirects their gaze to

the intended points of correspondence.

1.3.7 Result: Arguments to justify “Reasoning by Analogy”

Before entering into the discussion, let us get insight on the nature of metaphor by considering
examples of bad ones. Here are three outstanding examples which were taken from the widely
circulated list of the World’s Worst Analogies:

◦ John and Mary had never met. They were like two hummingbirds who had also never met.
◦ Her eyes were like two brown circles with big black dots in the center.
◦ The red brick wall was the color of a brick-red Crayola crayon.

The psychologist Steven Pinker suggests that the above expressions should not be considered as
metaphorical since they fail the test of supporting an inference. In these metaphors, knowing about
the source adds nothing to our knowledge of the target.

Along these lines, linking metaphors and reasoning, Dedre Gentner has noticed that many sci-
entific theories were first stated as analogies, and often are still best explained that way: heat is like
a fluid, evolution is like selective breeding, the atom is like a solar system, genes are like coded
messages [28]. Also, in [29] Gentner presents empirical evidence suggesting that inference patterns
are carried from the source to the target when using analogies. In general, the scientific community
recognizes that analogies play a key role in problem solving and science.

However, since metaphors can change people’s decisions or opinions by framing adequately
the subject,25 their powers have been used by politicians and marketers with controversial pur-

25The best way, Pinker suggests, to show the effects of framing is describing the Tversky and Kahneman’s 1981
study: identical events, different metaphors, flipped decision. They posed the following problem to a group of doctors
[115]: “A new strain of flu is expected to kill 600 people. Two programs to combat the disease have been proposed.”
One subgroup of them were then presented with the following decision:

If program A is adopted, 200 people will be saved, If program B is adopted, there is a one-third prob-
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poses. This fact has been used by detractors of the educational and explanatory usage of analogy
in education[43]. The scientist Bipin Indurkhya , who has studied metaphor in deep from a com-
putational perspective, makes this observation by pointing out the usual argument[56]:

... certain similarities are pointed out between the source and the target as a “justification” for

reaching an erroneous conclusion about the target.... an inference based only on some existing

similarity between the source and the target —and nothing else— is about as justified as a

random inference.

also, he suggests that the key of this controversy is the problem of justification of analogy. This
problem asks for a justification to trust in the inferences yielded by an analogy. It has been largely
discussed by many scholars but it has never been given a satisfactory answer (see discussion in
[56]). Our model of metaphor might help to end this discussion by showing that some inferences
given by an analogy can be justified.

Let us set ourselves in the context of the metaphor’s teacher problem, that is to say, in the
teacher’s head where the source and the target are totally structured. In this work, the first model
of metaphor is given through a concept named homomorphism (Definition 37, Chapter 4). This is
a map between the source and the target which ensures that the relevant facts of the source shall be
reflected in the relevant facts of the target.

ability that 600 people will be saved and two-thirds probability that no people will be saved. Which of
the two programs would you favor?

Most doctors in this group chose program A, the sure option, rather than program B, the risky one. The other subgroup
of doctors was presented with the following dilemma:

If program C is adopted, 400 people will die, If program D is adopted, there is a one-third probability
that nobody will die and a two-thirds probability that 600 people will die. Which of the two programs
would you favor?

If you are like most of the doctors who faced this choice, you become a gambler selecting program D, and avoid
program C, the sure option. Notice that both dilemmas above are exactly the same, but the below version is paraphrased
in a negative way (or as a loss) rather than the positive way (or a gain), saving people, which is used in the first version.
The difference in wording points to a difference in metaphors. Independently, has been show that people has an aversion
to loss, which means, for example, that people do not mind paying for something with a credit card even when they
are told that there is a discount for cash, but they do mind paying the same amount if they are told there is a surcharge
for using credit. The combination of people’s loss aversion with the effects of framing explains the paradoxical result:
the “gain” metaphor made the doctors risk-averse; the “loss” metaphor made them gamblers. Crucially, observe that
the decision that doctors made was not an everyday or random decision. It was a decision where human lives were at
stake.
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Let us exemplify this concept by the TGR metaphor. Select the binary relations (i) at the left

of, (ii) the equality of squares and (iii) the unary operation goRight as the three relevant relations
in the source. On the other hand, let us select the following relations in the target: (i) less than ,
(ii) the equality of numbers, and (iii) the unary operation next. In our formalism, the map f which
associates the board’s square a with the number na printed on it, is an homomorphism because it
satisfies three conditions: (1) whenever square a is at the left of square b, na is lesser than nb, (2) if
a and b are the same square, then their printed numbers are also the same, and (3) if the square b is
right-adjacent to the square a, then nb = na +1. Nothing else has to be checked to ensure that f is
a homomorphism between the game’s board and the numbers.

Significantly, our model predicts that along with these facts, other facts shall be brought from
the source to the target. We use the above example to illustrate the results of our model. To make
ideas concrete, we imagine that a child is playing the TGR game against an opponent.

An interpretation of Theorem 40 shall raise the following example. Assume that the child is at
square a and his opponent is in the right-adjacent square b. If the child advances one square and
reaches his opponent, this fact will be reflected (in the target) as a combination of the equality of
numbers and the successor operation: na +1 = nb.

Theorem 41 ensures that logical operators used in the source can be transported to the target.
For example, assume the child’s position is left-adjacent to the opponent’s position. Once the child
makes his next move, only two alternatives are possible:26 the opponent and the child share the
same position, or the opponent is at the left of the child. Let us denote: the child’s next position as
a and the opponent’s next position as b. These two exclusive possibilities raised in the source are
reflected in two exclusive alternatives in the target: na = nb, or nb < na.

Let us introduce Proposition 26 by the following example. Observe that in any state of the TGR
game, exactly one of the three following facts is true: the child is at the left of the opponent, the
opponent is at the left of the child, or both share the same position. Such fact shall be reflected in
the target as the trichotomy law: x < y, or y < x, or x = y holds for any pair (x,y) of numbers.

In order to exemplify another result, we want to observe that f is stronger than a homomor-
phism: it is what we call a formal metaphor (see Definition 38). Basically, this means that the

26In the game, each player can advance only one or two squares in each turn.
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relevant facts in the target are reflected at least once in the source. In more precise words, f

satisfies two additional conditions: (4) whenever na < nb, there exists squares a and b such that
f (a) = na, f (b) = nb and a is at the left of b. Finally, f satifies that (5) if na = nb, then there exists
squares a and b such that f (a) = na, f (b) = nb and a = b. Because of (4) and (5), we know that f

is a (formal) metaphor between the game’s board and the numbers27.

In this context, Theorem 42 ensures that a formal metaphor is able to carry tools of inference

from the source to the target. For example, assume that the child masters the following board’s rule
of inference: in the previous turn, my position a was at the left of my oponnent’s position b. In
this turn, we both moved one square to the right. Then, I am still at the left of my opponent. An
interpretation of the second literal of Theorem 42 suggests that metaphor carries this inference tool
to obtain the analogous (if-then) implication in the target: if na < nb, then na +1 < nb +1.

The above examples were given in order to exemplify some of our results. Since this is an
introductory discussion, we have not explicitated the hypotheses of these results. However, each
one of them needs some kind of recursivity hypothesis similar to the one discussed and exemplified
in the section devoted to the learner’s metaphor problem (see Table 1.3). Such hypotheses are
deeply analized in Chapter 2 and Chapter 3 by using formal methods. The results of these chapters
are not presented here because they, even when they do have a mathematical interest, have barely a
cognitive interpretation. The introduction of Chapter 2 provides a description of the mathematical
work done there.

1.3.8 Result: Tools for Designing Learning Materials

Observe how, in this introduction, we have analyzed in deep the TGR game together with its un-
derlying metaphor. We believe that this kind of analysis can be applied into the design of learning
and teaching materials. We have taken a first step in this direction: by using the definitions and
results presented in this work, we designed a game aimed to teach a mathematically complex sub-
ject: exponential functions. An exploratory study was performed with teenager students in order
to estimate the effects of such game in its academic performance. Encouragingly, the results are

27It might be worth pointing out that a formal metaphor is not equivalent to the algebraic notion of an “isomorphism”.
Formally, every isomorphism is a metaphor and every metaphor is a homomorphism, but the reversed implications are
not true.
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consistent with our proposal. We provide further details in Appendix A of this thesis for those
readers which are curious about the game, its metaphor-based design and the methodology of the
study.
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Chapter 2

Term Morphisms: Structure preserving
mappings for analogy models based on first
order languages

2.1 Abstract

Analogy models use knowledge about one structure (named source) as a guide to reason about an
unknown structure called target. When both structures are represented by descriptions, each one
written in its own formal language, the analogical reasoning process is based on a correspondence
relating strings of the source description with strings of the target description. In this work we
assume that such correspondence is a mapping F : S→ T , where S is the set of terms used in the
description of the source and T is the set of terms used in the description of the target. We generate
a larger set of terms S∗ by recursively combining the elements of S through substitution of terms.
Then, by using graph-based representations of terms, we find conditions that characterize those
mappings F : S→ T that can be extended to mappings F∗ : S∗→ T ∗ which preserve the structure
given by the substitution operation. Since these conditions might be hard to check by a computer, a
simple assumption on the set S enables us to use Unification Theory to formulate these conditions
in a more applicable way. We also provide an algebraic interpretation of analogies together with
examples in that context, in order to clarify the nature of the structure preserved by the mapping
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F∗ : S∗→ T ∗.

2.2 Introduction

For the purposes of this work, we use the terms analogy and metaphor indistinctly. Analogy has
received plenty of attention from many researchers in various fields of science. In fields related to
artificial intelligence, analogy models are used as tools for giving “reasoning habilities” to machines
(see [92, 119, 81, 74, 112]) giving rise to applications such as some expert systems and theorem
provers. Furthermore, one of the 33 basic research problems proposed for automated reasoning in
[123] is devoted to analogy (details in [124]). In fields like psichology and cognitive science, some
computational models for analogy have been developed in order to understand the human mind, as
for example in [34, 73, 113]. A review of computational models for analogy can be found in [64].

One of the most common approaches to implement those computational models and applica-
tions is to conceive analogy as involving a mapping between two objects S and T , called the source

and the target respectively. These objects can be (depending on the model) domains of knowledge,
theorems, formal knowledge, reasoning methods, proofs, etc. and the whole idea is to use some
knowledge about the source object S to represent, understand and process the (generally not well-
known) target object T . Notice that the mapping F : S→ T is a key ingredient of this kind of model
because it allows for some structure embedded into the source object to be projected into the target
object in order to facilitate its representation and processing.

Some ideas have been proposed to capture the laws which characterize the mapping F : S→ T .
Psychological principles governing the analogical process are proposed in [30] and used in [34] as
a basis to build a heuristic algorithm to obtain F ; [121] implements a corpus based algorithm that
would serve to build F ; [42] gives a heuristic algorithm based on a generalization of anti-unification

to determine such mapping; mathematical models for F : S→ T are presented in [55] and [54]
where S and T are represented by formal languages in the former and algebras in the latter; in
[116, 118] the authors formalize similarity (wich can be seen as a particular case of metaphor) with
mathematical tools and then support their conclusions with experimental evidence. The interest
on the mapping F : S→ T shown across different fields of science, suggests that the study of its
properties is an important subject in the path to understanding the phenomenon of analogy.
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In the present work, we have choosen a specific context to study some theoretical properties of
the mapping F : S→ T . Most analogy models represent each object by means of formal languages
([34, 7, 119, 81, 42]) i.e. they need a description of the source object in a source language and
a description of the target object in a target language. In those models, each “object” becomes
a collection of symbol strings formed according to the rules of its own (formal) language and
F : S→ T associates symbol strings of the source object description with symbol strings of the
target object description.

As an example of such context, [81] proposes an analogy based theorem prover. In that study,
a theorem and its proof are considered the source object. The target object is a theorem (similar to
the source theorem but slightly different) and the idea is to use the proof of the source theorem as
a “proof plan” which leads to the creation of a proof for the target theorem. In this case, the map-
ping F relates syntactic elements (definitions, axioms, formulas) of the source object to syntactic
elements of the target theorem. Thus, the theorem prover uses the structure embedded in the source
theorem proof, to create a proof for the target theorem.

In our research, we assume that S and T are sets of terms1 belonging to different First Order

Languages. As any other language, a first order language is recursive by definition, which implies
that terms belonging to a finite set S can be combined (by applying the language rules) to obtain a
countable set of terms S∗. The research question that we adress is whether there exists a mapping
F∗ : S∗ → T ∗ wich preserves the combination rules and extends F : S → T . In this study, we
use tree-based representations of terms to express conditions characterizing the extensibility of
mappings F : S→ T . Since these conditions turn out to be hard to check for a computer, we make
an assumption on the set S which enables us to use Unification Theory (see [75]) to express such
conditions in a way that, in some cases, a machine would find more useful.

We believe that the subject adressed in the above paragraph is important for three reasons. First,
if an analogy model uses a mapping F : S→ T which satisfies the assumptions of this work, then
the conditions we found could be checked in order to extend the model’s applicability by using
the mapping F∗ : S∗ → T ∗ instead of just the mapping F : S→ T . Second, the analysis made in
this study together with the proposed model for analogy could be used to shed some light on the
principles which rule the analogical process. For example, from our study it is clear that F : S→ T

is not extensible in case that a term s ∈ S∗ has two different tree-based representations a1,a2 wich

1This study can be extended to the case when S and T are sets of formulae.
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are related by F (in a specific sense) to two diferent terms t1, t2 ∈ T ∗. This theoretical property could
be compared with observed facts from real world analogies to investigate if they can be related and
interpreted. The third reason is an algebraic interpretation of this work which shall be discussed in
section 2.8.1.

2.3 First Order Languages and the Extensibility Problem

2.3.1 First Order Languages

A First Order Language L S is determined in a standard way (see [20, 58]) by giving a symbol set
S. The symbol set S is the disjoint union of a countable set of variables, a set of function symbols,
a set of relation symbols and a set of logical connectives. Throughout this work we assume that all
such languages are built over the same set V = {x1,x2,x3, ...} of variables. The set of terms of L S

is defined as the minimal set Term(L S) which satisfies:

1. if x ∈V , then x ∈ Term(L S), and

2. for any n∈N, if f ∈ S is an n-ary function symbol and t1, ..., tn ∈Term(L S), then f (t1, ...., tn)∈
Term(L S).

Since we are not going to deal with formulae here, it is not necessary to take into account the
set of relation symbols and the set of logical connectives. A mapping ρ : V → Term(L S) is called
a substitution if the set {v ∈V | v , ρ(v)} is finite. We denote a substitution by ρ = {v1← t1,v2←
t2, ...,vn ← tn} where ρ(vi) = ti , vi for i = 1, ...,n and ρ(v) = v otherwise. Observe that ρ can
always be extended in a unique way to a mapping ρ : Term(L S)→ Term(L S) by defining ρ(t)

as the term obtained by simoultaneously replacing in t each ocurrence of vi for ti. Sometimes, we
shall write tρ instead of writing ρ(t), or t

t1t2...tn
v1v2...vn

if we wish to make the substitution explicit. Let

Π ⊆ Term(L S) be a set of terms, we shall say “ρ in Π” when (Im(ρ) \V ) ⊆ Π, where Im(ρ) is
the image of ρ .

Definition 1. Given a non empty set Π⊆ Term(L S), the set of terms generated by Π is defined as
the minimal set Π∗ which satisfies the two following conditions:
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1. If x ∈V , then x ∈Π∗.

2. For any substitution ρ in Π∗ , if t ∈Π then tρ ∈Π∗.

It is worth observing that for any Π, V ⊆ Π∗. Additionally, observe that if Π =V0 where V0 is
any subset of V , then Π∗ =V . In what follows, let L S and L T be two first order languages which
should be interpreted as the “source language” and the “target language” respectively.

2.3.2 Statement of the Extensibility Problem

From now on, consider Π⊆ Term(L S) and Ψ⊆ Term(L T ) two sets that do not contain variables
(i.e. Π∩V = Ψ∩V = /0).

Definition 2. A mapping F : Π→Ψ which preserves variables is called a term translation, i.e. for
all t ∈Π

V (t) =V (F(t)) (2.1)

where V (t) denotes the set of variables which occur in the term t.

Example 1. Let S = {+, ·,0,1} and T = {∪,×, /0,a} be two symbol sets. Consider Π = {0,1,x1+

x2,x3 · x4,x1 + (x3 · x4)} and Ψ = {a× /0,a,x1 ∪ x2,(x3× x4)∪ x3,x1 ∪ (x3 ∪ x4)}. The bijective
mapping F : Π→ Ψ which assigns the i-th element of Ψ to the i-th element of Π (considering
the order in which the elements of sets were listed) satisfies the conditions to be called a term
translation.

Definition 3. We say that a term translation F∗ : Π∗→Ψ∗ is a term morphism from Π∗ to Ψ∗ when
it satisfies the following two conditions:

1. If x ∈V , then F∗(x) = x.

2. If t ′ ∈Π and ρ is a substitution in Π∗, then

F∗(t ′ρ) = F∗(t ′)(F∗ ◦ρ). (2.2)
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Observe that the last definition is not a classic notion, we define it in order to state our research
problem. In this work we intend to characterize the existence of a term morphism F∗ : Π∗→ Ψ∗

which extends a given term translation F : Π→ Ψ. For such morphism, equation (2.2) can be
rewritten as:

F∗(t ′ρ) = F(t ′)(F∗ ◦ρ) (2.3)

It is easy to find examples where a term translation F : Π→ Ψ can not be extended by any term
morphism (see example 6 in the appendix of this chapter). The following proposition, which can
be proved by straightforward computations, shows that a term morphism F∗ which extends a term
translation F is characterized by its effect on all those substitutions ρ such that Im(ρ)⊆Π∗.

Proposition 1. A term morphism F∗ : Π∗→Ψ∗ extends a term translation F : Π→Ψ if and only

if for any substitution ρ in Π∗, γ = F∗ ◦ ρ is a substitution in Ψ∗ and makes following diagram

commute:

Π
F //

ρ

��

Ψ

γ

��
Π∗

F∗ // Ψ∗

2.4 Tree Representations for Terms

Next, we introduce a representation of terms which enables us to handle different ways to build a
term t ∈ Π∗ by using recursive substitution. We denote a directed graph by a pair (N,E) where N

is the set of nodes and E is the set of arcs. A rooted directed tree is a directed graph G = (N,E)

which is connected, has no cycles and there exists a special node r called root from which all paths

of the graph are directed. By vu we shall mean the arc which begins at node v and ends at node u.
The set δ (v) = {vu ∈ E | u ∈ N } will be the set of arcs which begin at node v.

Definition 4. Let Π⊆ Term(L S)\V be a non empty set. A tree over Π is a 3-tuple (G,ν ,e) where
G = (N,E) is a rooted directed tree, ν : N→Π∪V and e : E →V are two mappings such that for
any node v ∈ N:

• if ν(v) ∈V then δ (v) = /0, and

• ν(v) ∈Π if and only if |δ (v)|= |V (ν(v))| and e(δ (v)) =V (ν(v)).
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2.4. Tree Representations for Terms

(a) (b)

(c)

(d) (e)

Figure 2.1: (a), (b) and (c) are proper trees, (c) is a fundamental tree, (d) and (e) are atomic trees,
for Π = {0,1,x1 + x2,x3 · x4}.

Given (G,ν ,e) a tree over Π, we shall often refer to ν(v) as the “label” of the node v. Anal-
ogously, we shall speak of the “label” on the arc uv, meaning e(uv). With this terminology, a
tree over Π is a rooted directed tree (N,E) with labels, such that every node v ∈ N has only two
alternatives (see Fig. 2.1):

1. if the label of v is a variable, it must be a leaf.

2. if the label of v is a non variable term t ∈Π, then (and only then) the arcs steming from v are
in 1-1 correspondence to the variables of t, via their labels.

When Π is clear from the context, we shall say “a tree” instead of “a tree over Π”. A tree which
has only one node (the root node) is called atomic, otherwise it is called proper. Notice that for any
atomic tree, the label of its only node is a variable or it is a term without variables. In the case of a
proper tree, the same condition is true for any leaf:

• v is a leaf if and only if its label is a variable or it is a term without variables.

A proper tree is fundamental if every arc rv (which begins at the root node) satisfies e(rv) =

ν(v). Observe that fundamental trees have only two levels. The root r is at first level, labeled by a
term t ∈Π, and each variable of t giving rise to a leaf in the second level (see Fig. 2.1 (c)).

Next, we give some definitions relating trees with terms in Π∗. Let a be a tree, we shall say
that x1, ...,xn are variables of a, for some x1, . . . ,xn ∈V , if and only if x1, . . . ,xn are labels of some
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2.4. Tree Representations for Terms

leaves of a. Let a′ be a tree with variables x1, ...,xn and let a1, . . . ,an be trees. We denote by a′ a1...an
x1...xn

the tree which results from replacing every leaf with label xi of a′ by the tree ai.

Define the set Π◦ as the set of all trees over Π. Observe that every proper tree a ∈ Π◦ can
be written as a = a′ a1...an

x1...xn
where a′ is a fundamental tree and a1, ...,an are trees. To see this, take

a′ as the fundamental tree determined by the node r (the root of a) and the edge set δ (r), while
a1, ...,an are the trees determined by the n = |δ (r)| children of r. We say that a′,a1, ...,an is the
decomposition of a. We have just sketched the proof of the following proposition:

Proposition 2. Every a ∈Π◦ is atomic or can be written as a = a′ a1...an
x1...xn

, where a′ is a fundamental

tree and a1, ...,an are trees.

This proposition will enable us to use induction to prove statements about elements of Π◦ by
defining the inductor of a ∈Π◦:

inductor(a) =

0 if a is fundamental,

length(a) otherwise .

where length(a) is the length of the longest path in a. We can apply induction by showing first that
a statement holds for any tree with inductor 0 (i.e. the atomic and fundamental trees). And then the
inductive step can be performed by observing that in any tree a = a′ a1...an

x1...xn
, the inductor of a′ is zero

and inductor(ai)< inductor(a) for i ∈ {1, ...,n}.

Let us link the above paragraphs to terms. First, we are going to define a “projection” map
π : Π◦→Π∗ in the following inductive way:

π(a) =


ν(r), if a is atomic or fundamental,

π(a′)
π(a1)...π(an)

x1...xn
, otherwise, where a′,a1, ..,an is the decomposition of a.

It is straightforward that this mapping is well defined and surjective.

Let us now introduce some concepts for trees which are analogous to concepts introduced for
terms. A tree-substitution in Π◦ is a function λ : V →Π◦ such that the set {λ (x) | x ∈V, π(λ (x)) ,

x} is finite. In analogy with term substitutions we are going to denote λ as {x1← a1, ...,xn← an}
where ai = λ (xi) for i ∈ {1, ...,n} and if x , xi for all i ∈ {1, ...,n}, then π(λ (x)) = x. A tree-
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2.5. First Characterization of Extensibility

substitution λ = {x1 ← a1, ...,xn ← an} can be applied to a tree a, meaning that any leaf of a

labeled by x is replaced by the tree λ (x). The tree obtained in this way shall be denoted by aλ , or
aa1...an

x1...xn
if we wish to make the tree-substitution explicit. The following property is straightforward.

Lemma 1. Let a′ ∈Π◦ be a tree and λ = {x1← a1, ...,xn← an} be a tree-substitution in Π◦, then

π(a′
a1...an

x1...xn
) = π(a′)

π(a1)...π(an)

x1...xn
.

From this lemma, it is clear that if F∗ is a term morphism which extends a term translation F ,
and a′,a1, ...,an is the decomposition of a, then:

F∗(π(a′
a1...an

x1...xn
)) = F(π(a′))

F∗(π(a1))...F∗(π(an))

x1...xn
. (2.4)

2.5 First Characterization of Extensibility

Definition 5. Let F : Π→ Ψ be a term translation. The tree map associated to F is the mapping
denoted by F◦ : Π◦→ Ψ◦ which takes a = (G,ν ,e) ∈ Π◦ and changes the node labels of the tree
by:

F◦(a) = (G,F ◦ν ,e) (2.5)

where F : Π∪V →Ψ∪V is the extension that acts as the identity on variables.

Thus, F◦ takes a tree a ∈ Π◦ and changes the label t ∈ Π∪V of each node to the label F(t) ∈
Ψ∪V , transforming a in a tree belonging to Ψ◦ (see Fig. 2.2). From the above definition, next
lemma follows in a straightforward way.

Lemma 2. Let a ∈Π◦. If a = a′ a1...an
x1...xn

, then F◦(a) = F◦(a′)F◦(a1)...F◦(an)
x1...xn

.

It is worth noticing that F◦(a) is a well defined tree over Ψ for every a∈Π◦. Therefore, (unlike
F∗) the tree map F◦ always exists. When F∗ does exist, next result describes its relation with F◦.

Lemma 3. Let F : Π→Ψ be a term translation. A map F∗ : Π∗→Ψ∗ is a term morphism which
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2.5. First Characterization of Extensibility

(a) (b)

(c)

(d) (e)

Figure 2.2: Outcomes of the tree map F◦ associated to F (from example 1) when it is applied on
trees depicted in figure 2.1.

extends F if and only if F∗ ◦π = π ◦F◦ i.e. the following diagram commutes:

Π◦
F◦ //

π

��

Ψ◦

π

��
Π∗ F∗

// Ψ∗

(2.6)

Proof. We use induction to prove that diagram 2.6 commutes necessarily when F∗ is a term mor-
phism. Let us take a ∈ Π◦. If inductor(a) = 0, a is an atomic or a fundamental tree. In either
case

F∗(π(a)) = F∗(ν(r)) = F(ν(r)) = π(F◦(a)).

To perform the inductive step, let us assume that inductor(a) = k > 0 and that the condition
follows necessarily for every tree of inductor less than k. Let a′,a1, ...,an be the decomposition of
a. Then:

F∗(π(a)) = F∗(π(a′)
π(a1)...π(an)

x1...xn
) = F(π(a′))

F∗(π(a1))...F∗(π(an))

x1...xn

since F∗ is a term morphism extending F . Using the induction hypotheses, the last expression is
equal to

π(F◦(a′))
π(F◦(a1))...π(F◦(an))

x1...xn
= π(F◦(a′

a1...an

x1...xn
)) = π(F◦(a)).
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2.5. First Characterization of Extensibility

Let us prove that the commutativity of diagram 2.6 is enough to ensure that F∗ is a term mor-
phism extending F . That F∗ is a term translation extending F follows directly from the definition of
F◦ and the commutation of diagram 2.6. Let us show that F∗ is a term morphism. Take t ∈Π∗ such
that t = t ′α for some t ′ ∈ Π and α = {x1← t1, ...,xn← tn} in Π∗. Take a′,a1, ...,an ∈ Π◦ where
a′ is fundamental and such that π(a′) = t ′ and for i ∈ {1, ..,n}, π(ai) = ti. Consider the following
computations:

F∗(t) = F∗(t ′α) = F∗(π(a′
a1, ...,an

x1, ...,xn
)) = π(F◦(a′

a1, ...,an

x1, ...,xn
))

= π(F◦(a′))
π(F◦(a1)), ...,π(F◦(an))

x1, ...,xn
= F(π(a′))

F∗(π(a1)), ...,F∗(π(an))

x1, ...,xn

= F(t ′)
F∗(t1), ...,F∗(tn)

x1, ...,xn
= F(t ′)(F∗ ◦α).

Therefore, F∗ is a term morphism which extends F . � �

The uniqueness of F∗, when it exists, comes as a straightforward corollary of this lemma, given
that the map π is surjective.

Proposition 3. Let F : Π→Ψ be a term translation. If there exists a term morphism F∗ : Π∗→Ψ∗

which extends F, then F∗ is unique.

Let us now define an equivalence relation “∼” in Π◦ by “a∼ b if and only if π(a) = π(b)”. We
denote the equivalence class of a by a. Let us consider the quotient set Π◦/ ∼ and its surjective
projection map p : Π◦ −→ Π◦/ ∼. It is clear that there exists a bijection i : Π◦/ ∼−→ Π∗ which
satisfies i◦ p = π .

The following observation shall be used in next theorem. If for all a,b ∈ Π◦, a ∼ b implies
F◦(a)∼ F◦(b), then (and only then) we can define the mapping

F ′ : Π
◦/∼−→Ψ

◦/∼ given by F ′(a) = F◦(a).

Theorem 4. Let F : Π→Ψ be a term translation and F◦ : Π◦→Ψ◦ its associated tree map. The

following sentences are equivalent:

1. For all a,b ∈Π◦, a∼ b implies F◦(a)∼ F◦(b).
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2.6. Unification Theory and Tree Representation of Terms

2. There exists a term morphism F∗ : Π∗→Ψ∗ which extends F : Π→Ψ.

Π◦

π

{{wwwwwwwww

F◦ //

p
��

Ψ◦
π //

p
��

Ψ∗

Π∗
i−1

// Π◦/∼
F ′

// Ψ◦/∼
i

;;wwwwwwww

(2.7)

Proof. 1 =⇒ 2. Assume condition 1. Therefore, F ′ : Π◦/ ∼→ Ψ◦/ ∼ can be defined satisfying
F ′ ◦ p = p◦F◦. Since i◦ p = π , diagram (2.7) commutes. Define F∗ = i◦F ′ ◦ i−1. Then, applying
Lemma 3, F∗ is a term morphism which extends F .

2 =⇒ 1. Let us take a,b ∈ Π◦ and assume that a∼ b. Therefore, π(a) = π(b) which implies
that

F∗(π(a)) = F∗(π(b)). (2.8)

If F∗ is a term morphism2 which extends F , the diagram in Lemma 3 commutes and then, equation
2.8 is equivalent to π(F◦(a)) = π(F◦(b)). Thus, condition 1 holds. � �

2.6 Unification Theory and Tree Representation of Terms

Theorem 4 give us a condition which characterizes the existence of a term morphism extending a
given term translation. In general, checking such conditions requires going over an infinite set A of
trees. Section 2.7 will give us a way to characterize the existence of such morphism by checking
such conditions in a set A′ (potentially) smaller than A. In this section, we develop the necessary
tools for the results in section 2.7.

Let α1 = {x1 ← t1, ...,xn ← tn} be a substitution. The set dom(α1) = {x1, ...,xn} is called
domain of α1. Additionally, we say that the set of variables ran(α1) =

⋃n
i=1V (ti) is the range of

α1. Consider α2 = {y1← s1, ...,ym← sm} another substitution. The substitution given by α2 ◦α1 is
called the composition of substitutions α1 and α2. We shall denote it by α1 •α2. Notice that α1 •α2

can be represented by the set {x1← t1α2, ...,xn← tnα2,y1← s1, ...,ym← sm} after removing from

2Straightforward computations show that such term morphism satisfies F∗ = i◦F ′ ◦ i−1.
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2.6. Unification Theory and Tree Representation of Terms

it all elements of the form xi← xi, as well as yk← sk if yk = xi for some i∈ {1, ...,n}. A substitution
α is called idempotent if α •α =α . Some well known properties of substitutions are the following:

1. For any term t, t(α1 •α2)≡ (tα1)α2.

2. α1 • (α2 •α3) = (α1 •α2)•α3.

3. α is idempotent if and only if dom(α)∩ ran(α) = /0.

From now on we differentiate the mathematical equality denoted by “=” from the syntactic
equality between terms denoted by “≡”. An equation of terms is an expression of the form “t1 = t2”,
where t1 and t2 are terms. A unifier of such equation is a substitution α which satisfies t1α ≡ t2α .
Let E = {t1 = s1, ..., tn = sn} be a set of equations. The substitution α is a unifier of E when
tiα ≡ siα for every i ∈ {1, ..,n}. We denote the set of unifiers of E by Uni f (E). In case that E has
only one element, we shall omit parentheses from notation to write “t = s” instead of {t = s}. A
unifier θ ∈Uni f (E) is called a mgu (most general unifier) of E if it satisfies: γ ∈Uni f (E) if and
only if there exists a substitution α such that γ = θ •α . If Uni f (E) is a nonempty set, then E has
an idempotent mgu also, which can be obtained by applying the solved form algorithm (see [75]).
Clearly, if θ is an idempotent mgu of E, then

γ ∈Uni f (E) if and only if γ = θ • γ (2.9)

A substitution α is a variable substitution when its image is a set of variables. Otherwise, we
call α a proper substitution. A variable substitution α : V →V is called a permutation of variables

if it is bijective.

Proposition 4. If θ1 is an idempotent mgu of E, then θ2 is an idempotent mgu of E iff there ex-

ists a permutation of variables φ = {x1 ← y1, ...,xk ← yk,y1 ← x1, ...,yk ← xk} such that {x1 ←
y1, ....,xk← yk} ⊆ θ1 and θ2 = θ1 •φ .

From this proposition, it follows that all idempotent mgu of E are similar. For details of unifi-
cation theory and proofs of the above propositions see [75].

Let us now link the above concepts with the tree-based representation developed for terms.
A tree-substitution α = {y1 ← b1, ...,ym ← bm} can be extended in a unique way to a mapping
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2.6. Unification Theory and Tree Representation of Terms

α : Π◦→Π◦ by defining α(a) = aα for any a ∈Π. Consider α1 = {x1← a1, ...,xn← an} another
tree-substitution. The tree-substitution α ◦α1 shall be denoted by α1 ?α . Notice that α1 ?α can
be represented by the set {x1 ← a1α, ...,xn ← anα,y1 ← b1, ...,ym ← bm} after removing from
it all elements of the form xi ← aiα where π(aiα) = xi, as well as yk ← bk if yk = xi for some
i ∈ {1, ...,n}. Given a set of terms Π, some straightforward properties of tree-substitutions are:

1. For any tree a ∈Π◦, a(α1 ?α2) = (aα1)α2.

2. α1 ? (α2 ?α3) = (α1 ?α2)?α3.

3. Let α1,α2 be tree-substitutions in Π◦, then π ◦ (α1 ?α2) = (π ◦α1)• (π ◦α2).

Definition 6. Let F : Π→ Ψ be a term translation, α a substitution in Π∗ and β a substitution in
Ψ∗.

1. A tree-substitution α◦ : V →Π◦ is called a lifting of α if and only if π ◦α◦ = α .

2. Two substitutions α in Π∗ and β in Ψ∗ are compatible (through F) iff for every lifting α◦ of
α , the tree-substitution F◦ ◦α◦ is a lifting of β .

Proposition 5. Let F : Π→ Ψ be a term translation, s, t ∈ Π and θ1 in Π∗ an idempotent mgu of

s = t. If there exists θ̂1 ∈Uni f (F(s) = F(t)) compatible with θ1, then for any idempotent mgu θ2

of s = t, there exists θ̂2 ∈Uni f (F(s) = F(t)) compatible with θ2.

Proof. By Proposition 4, there exists a substitution φ such that θ2 = θ1 • φ . Let us show that
θ̂2 = θ̂1 • φ is compatible with θ2. Let θ ◦2 : V → Π◦ be a lifting of θ2. Since φ is a permutation
of variables, it is straightforward that θ ◦2 = θ ◦1 ?φ◦ for some suitable liftings θ ◦1 of θ1 and φ◦ of φ .
Now, the compatibility of θ̂2 and θ2 follows from:

π ◦F◦ ◦θ
◦
2 = π ◦F◦ ◦ (θ ◦1 ?φ

◦) = (π ◦F◦ ◦θ
◦
1 )• (π ◦F◦ ◦φ

◦) = θ̂1 •φ = θ̂2.

On the other hand, F(s)θ̂1≡F(t)θ̂1 implies that F(s)θ̂1•φ ≡F(t)θ̂1•φ . Therefore, θ̂2 ∈Uni f (F(s)=

F(t)). � �

Similar techniques are used to prove the next result. (see Appendix).
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2.6. Unification Theory and Tree Representation of Terms

Proposition 6. Let θ1 be an idempotent mgu of s = t which is not in Π∗. The following statements

are true:

1. Any idempotent mgu θ2 of s = t is not in Π∗.

2. If for any substitution α , θ1 •α is not in Π∗, then for any substitution α ′ and for any idem-

potent mgu θ2 of s = t, the substitution θ2 •α ′ is not in Π∗.

Definition 7. Let t,s ∈ Π be a pair of terms and θ be an idempotent mgu of the equation t = s. A
substitution λ is called minimal respect to θ whenever θ •λ is in Π∗ and there are no substitutions
α,β such that β in Π∗ is proper, dom(β )⊆ ran(α), θ •α in Π∗ and λ = α •β .

Proposition 7 below, justifies the name “minimal” given above to some substitutions. For its
proof, we shall need the straightforward Lemma 5 stated below. The length of a substitution α =

{x1← t1, ...,xn← tn} is defined by length(α) = length(α(t1))+ ...+ length(α(tn)).

Lemma 5. Let γ0,γ1,α be substitutions such that γ0 = γ1•α . If α is proper and dom(α)⊆ ran(γ1),

then length(γ1)< length(γ0).

Proposition 7. Let θ be an idempotent mgu of t = s. If γ is a substitution such that θ • γ is in

Π∗, then there exists a minimal substitution λ (respect to θ ) and a substitution α in Π∗ such that

γ = λ •α .

Proof. If γ is minimal respect to θ , we consider λ = γ and α the identity substitution. Otherwise,
put γ0 = γ . Since θ • γ0 is in Π∗ and γ0 is not minimal, there exists a substitution γ1 and a proper
substitution α1 in Π∗ such that dom(α1)⊆ ran(γ1), θ •γ1 is in Π∗ and γ0 = γ1•α1. The above argu-
ment can be repeated a finite number of times only since by Lemma 5, length(γk)< length(γk−1).
Therefore, at some k0 we obtain a substitution γk0 which is minimal respect to θ . Take λ = γk0 and
α = αk0 • ...•α1. It is easy to see that α ∈Π∗ since αi is in Π∗ for all i ∈ {1,2, ...,k0}. � �

Lemma 6. Let s, t ∈ Π. Let θ1,θ2 be two idempotent mgu of {s = t} and let φ be the invertible

substitution such that θ2 = θ1 • φ . A substitution λ is minimal respect to θ2 if and only if the

substitution φ •λ is minimal respect to θ1.

The proof of Lemma 6 is straightforward. The proof of Lemma 6 can be found in the appendix.
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Proposition 8. Let F : Π→ Ψ be a term translation and s, t ∈ Π. If the set of unifers of s = t is

nonempty, then the next two statements are equivalent:

1. For any θ2 idempotent mgu of t = s and any λ2 minimal respect to θ2, there exists an unifier

λ̂2 of F(t) = F(s) compatible with θ2 •λ2.

2. There exists θ1 an idempotent mgu of t = s such that for any substitution λ1 minimal respect

to θ1, there exists a unifier λ̂1 of F(t) = F(s) compatible with θ1 •λ1.

Proof. We only have to show that 2 =⇒ 1. Assume that 2 holds. Let us take θ2 an arbitrary
idempotent mgu of t = s and λ2 any substitution minimal respect to θ2. By Proposition 4, θ2 =

θ1 •φ for some invertible substitution φ . By Lemma 6, the substitution φ •λ2 is minimal respect
to θ1. Therefore, hypotheses 2 implies that there exists λ̂1 a unifier of F(t) = F(s) compatible with
θ1 • (φ •λ2) = (θ2 •φ−1)• (φ •λ2) = θ2 •λ2. Since θ2 is arbitrary, the result follows. � �

2.7 Conditions for Extensibility

2.7.1 Characterization of Extensibility

Given a term translation F : Π→ Ψ, Theorem 4 tells us that F can not be extended to a term
morphism if there are trees a,b ∈ Π◦ such that π(a) ≡ π(b) and π(F◦(a)) . π(F◦(b)). The first
part of that assertion: “there exist trees a,b ∈ Π◦ such that π(a) ≡ π(b)”, is equivalent to the
condition “there exist terms s, t ∈ Π and substitutions α1,α2 in Π∗ satisfying tα1 ≡ sα2”. Clearly,
when V (s)∩V (t) = /0, we can rewrite this last condition in terms of unifiers as “there exist terms
s, t ∈ Π and a substitution α in Π∗ belonging to Uni f (s = t)”. We shall take advantage of such
observation by saying that a set Π of terms is disjoint, when it does not contain variables and for
any pair of terms s , t in Π, V (t)∩V (s) = /0.

Definition 8. A term translation F : Π→ Ψ is called unifiable if for every pair t,s ∈ Π, every θ

idempotent mgu of t = s and every minimal substitution λ respect to θ , there exists a unifier λ̂ in
Ψ∗ of the equation F(t) = F(s) compatible with θ •λ .
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2.7. Conditions for Extensibility

From Proposition 8 and Lemma 6, the following characterization of a unifiable term translation
follows.

Corollary 7. A term translation F : Π→ Ψ is unifiable if and only if every pair of terms t,s ∈ Π

satisfies:

1. Uni f (t = s) is empty, or

2. There exists θ an idempotent mgu of t = s such that for every minimal substitution λ respect

to θ there exists a unifier λ̂ in Ψ∗ of the equation F(t) = F(s) compatible with θ •λ .

Next theorem characterizes the existence of a term morphism F∗ : Π∗→Ψ∗ extending a given
term translation F : Π→Ψ, when Π is disjoint. For the proof of the following result, we define the
length of a term t as the number of function symbols which occur in it.

Theorem 2.A (Characterization of Extensibility). Let Π be disjoint. Given a term translation F :
Π→Ψ, the following statements are equivalent:

1. F : Π→Ψ is unifiable.

2. There exists a term morphism F∗ : Π∗→Ψ∗ which extends F : Π→Ψ.

Proof. By Theorem 4, we shall prove that 1 is equivalent to

2’. For every pair of trees a,b ∈Π◦, a∼ b implies F◦(a)∼ F◦(b).

1 =⇒ 2’. Let us define κ : Π◦×Π◦→ N by:

κ(a,b) =

length(π(a)) if a∼ b,

0 otherwise.

We are going to apply induction on κ(a,b). The base step is proved by observing that if κ(a,b) = 0,
then a / b (and the result is trivially true) or a∼ b with a and b atomic trees whose only label is a
variable. Therefore, π(a) ≡ π(b) ≡ x for some x ∈ V and then F◦(a) ∼ F◦(b) follows. To prove
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the induction step, we will show that 2 is true for any pair a,b of trees such that k = κ(a,b)> 0 by
first assuming that 2 holds for any pair of trees c,d with κ(c,d)< k.

Since k > 0, it follows that a∼ b and length(π(a)) = length(π(b)) = k. Observe that, or a is an
atomic tree whose only label is not a variable, or a has a decomposition. The same observation is
valid for the tree b. In the case that a and b are atomic, the result follows directly since π(a)≡ π(b)

implies a = b and then F(a) = F(b). The case where a is atomic and b has a decomposition (or
simmetrically the case where b is atomic and a has a decomposition) can be proved in a similar way
to the case where both trees have a decomposition3. Therefore, let us assume that a = a′ a1,...,an

x1,...,xn
and

b = b′ b1,...,bm
y1,...,ym

.

There are two alternatives:

Case 1: {x1, ...,xn}∩{y1, ...,ym} , /0.

Since Π is disjoint, this implies that {x1, ...,xn}= {y1, ...,ym} and π(a′)≡ π(b′). Since a′ and
b′ are fundamental, a′ = b′ and then F◦(a′) = F◦(b′). Besides, without loss of generality we can
assume that xi = yi for i ∈ {1, ..,n}. It is easy to see that π(a)≡ π(b) and π(a′)≡ π(b′) imply that
π(ai) ≡ π(bi) for i ∈ {1, ...n}. Now, we can use the induction hypotheses since κ(ai,bi) < k and
conclude that π(F◦(ai))≡ π(F◦(bi)). The computation below shows that the result follows in this
case:

π(F◦(a)) = π(F◦(a′
a1, ...,an

x1, ...,xn
))

= π(F◦(a′))
π(F◦(a1)), ...,π(F◦(an))

x1, ...,xn

= π(F◦(b′))
π(F◦(b1)), ...,π(F◦(bn))

x1, ...,xn

= π(F◦(b′
b1, ...,bn

x1, ...,xn
))

= π(F◦(b)).

Case 2: {x1, ...,xn}∩{y1, ...,ym}= /0.

3Considering the tree-substitution γ◦ = {y1 ← b1, ...,ym ← bm} instead of γ◦ = {x1 ← a1, ...,xn ← an,y1 ←
b1, ...,ym← bm} below.
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Let us consider the tree-substitution γ◦ = {x1← a1, ...,xn← an,y1← b1, ...,ym← bm}. Since
a∼ b, the substitution γ = π ◦ γ◦ is a unifier of the equation π(a′) = π(b′). Therefore, there exists
an idempotent mgu θ of such equation. Because γ = θ • γ is in Π∗, there exists a substitution λ

minimal respect to θ and a substitution α in Π∗, such that γ = λ •α and θ •λ in Π∗. Let us take
arbitrary liftings φ◦ of θ •λ and α◦ of α and observe that γ = θ • γ = (θ •λ )•α = π ◦ (φ◦ ?α◦).
That is, π ◦ γ◦ = π ◦ (φ◦ ?α◦), which implies that for z ∈ {x1, ..,xn,y1, ...,ym},

γ
◦(z)∼ φ

◦(z)(α◦).

Notice that γ◦(z) ∈ {a1, ...,an,b1, ...,bm}. Since κ(γ◦(z),φ◦(z)(α◦))< k, we can apply our induc-
tion hypotheses concluding that F◦(γ◦(z))∼ F◦(φ◦(z)(α◦)) which in turn implies that π ◦F◦ ◦γ =

π ◦F◦ ◦ (φ◦ ?α◦). From this, both computations below follow:

π ◦F◦(a)≡ π ◦F◦(a′γ◦)≡ π(F◦(a′))(π ◦F◦ ◦ γ
◦) (2.10)

≡ π(F◦(a′))(π ◦F◦ ◦ (φ◦ ?α
◦)) (2.11)

≡ π ◦F◦(a′(φ◦ ?α
◦)), (2.12)

π ◦F◦(b)≡ π ◦F◦(b′γ◦)≡ π(F◦(b′))(π ◦F◦ ◦ γ
◦) (2.13)

≡ π(F◦(b′))(π ◦F◦ ◦ (φ◦ ?α
◦)) (2.14)

≡ π ◦F◦(b′(φ◦ ?α
◦)). (2.15)

The facts that θ is an idempotent mgu of π(a′) = π(b′), λ is minimal respect to θ and φ◦ is a
lifting of θ •λ , imply that φ̂ = π ◦F◦ ◦φ◦ is a unifier of equation π ◦F◦(a′) = π ◦F◦(b′), since F

is unifiable. Thus:

π ◦F◦(a′(φ◦ ?α◦))≡ π ◦F◦(a′)(π ◦F◦ ◦φ◦)• (π ◦F◦ ◦α◦)

≡ (π ◦F◦(a′)φ̂)(π ◦F◦ ◦α◦)≡ (π ◦F◦(b′)φ̂)(π ◦F◦ ◦α◦)

≡ π ◦F◦(b′)(π ◦F◦ ◦φ◦)• (π ◦F◦ ◦α◦)≡ π ◦F◦(b′(φ◦ ?α◦)).

(2.16)

From equations 2.10, 2.13 and 2.16, F◦(a)∼ F◦(b) follows.
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2’ =⇒ 1.

Let us show that F : Π→ Ψ is unifiable. Let us take a pair of terms s, t ∈ Π and consider the
equation t = s. If Uni f (t = s) = /0, there is nothing to prove. Otherwise, take θ an idempotent mgu
of t = s. If there are no minimal substitutions respect to θ , the result follows. If there are, let us take
a substitution λ , minimal respect to θ . Let us show that there exists φ̂ in Ψ∗ a unifier of F(s) = F(t)

compatible with θ • λ . To find φ̂ and show the compatibility assertion, let us take two arbitrary
liftings φ◦ and φ◦1 of θ •λ and notice that for every x ∈V , φ◦(x)∼ φ◦1 (x). Thus, by hypotheses 2,
F◦(φ◦(x)) ∼ F◦(φ◦1 (x)). Since φ◦ and φ◦1 are arbitrary, φ̂ = π ◦F ◦ φ◦ is compatible with θ •λ .
Let us show that φ̂ is a unifier of F(s) = F(t). Let us choose a′,b′ ∈ Π◦ such that π(a′) ≡ t and
π(b′)≡ s. Since s(θ •λ )≡ t(θ •λ ), it follows that (a′φ◦)∼ (b′φ◦) and then F◦(a′φ◦)∼ F◦(b′φ◦),
which implies that F(t)φ̂ ≡ F(s)φ̂ . Therefore, φ̂ is a unifier of F(t) = F(s). � �

The following discussion is aimed to drop the assumption “Π is disjoint” in Theorem 2.A. To
this aim, let us consider a fixed order in the set of variables V = {z1,z2, ...}. We shall be interested
in the case where Π is finite4. Let Π be ordered in the following way: Π = {t1, ..., tm}. Given a term
translation F : Π→ Ψ, we construct inductively a finite family of invertible substitutions {φt}t∈Π

as follows: For each i = 1, ...,m write V (ti) = {x1, ...,xn} and consider the invertible substitution
φti = {x1← w1, ...,xn← wn} where w1, ...,wn are the first n variables in V which satisfy: for any
k ∈ {1, ...,n}, the variable wk does not occur in any term t ∈ Π neither it occurs in any term t jφt j

with j < i.

Definition 9. Let F : Π→ Ψ be a term translation with Π a finite set. We define the disjoint

term translation associated to F as the term translation F ′ : Π′→ Ψ′ where Π′ = {tφt}t∈Π, Ψ′ =

{F(t)φt}t∈Π∪ (Ψ\ Im(F)) and F ′ given by F ′(tφt) = F(t)φt .

Notice that Π′ is disjoint, (Π′)∗ = Π∗ and (Ψ′)∗ = Ψ∗. Now we are ready to prove another
version of Theorem 2.A.

Theorem 2.B (Characterization of Extensibility). Let F : Π→ Ψ be a term translation with Π

finite. The following statements are equivalent:

1. The disjoint term translation F ′ : Π′→Ψ′ associated to F is unifiable.

4This finiteness hypothesis can be weakened to Π countable and the set V \ (
⋃

t∈Π V (t)) infinite.
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2. There exists a term morphism F∗ : Π∗→Ψ∗ which extends F : Π→Ψ.

Proof. Let us assume that the disjoint term translation F ′ : Π′ → Ψ′ associated to F is unifiable.
By applying Theorem 2.A to F ′ : Π′ → Ψ′, we obtain a term morphism (F ′)∗ : Π∗ → Ψ∗ which
extends F ′. Let us take t ∈Π and consider the following computation:

(F ′)∗(t) = (F ′)∗(t(φt)(φt)
−1) = F ′(tφt)φt

−1 = F(t)φtφ
−1
t = F(t).

Therefore, (F ′)∗ extends F : Π→Ψ.

On the other hand, let us assume that the term morphism F∗ : Π∗→ Ψ∗ extends F : Π→ Ψ.
Let us take a term tφt ∈Π′ and consider the following computation:

F∗(tφt) = F(t)φt = F ′(tφt).

Thus F∗ extends F ′ : Π′→Ψ′. Since Π′ is disjoint, by Theorem 2.A we conclude that F ′ : Π′→Ψ′

is unifiable. � �

2.7.2 Sufficient Conditions for Extensibility

Let F : Π→ Ψ be a term translation. The existence of a term morphism extending F for certain
classes of sets Π, is characterized by Theorem 2 (versions A and B) in terms of minimal substitu-
tions. However, notice that minimal substitutions are theoretical devices which, in computational
models or applications might be hard to work with. This section presents another version of Theo-
rem 2 which makes use of a restricted family of minimal substitutions.

Definition 10. A term translation F : Π→ Ψ will be called strongly unifiable if for every pair of
terms s, t ∈Π, every idempotent mgu θ of equation t = s satisfies:

1. If θ is not in Π∗, then θ •α is not in Π∗ for every substitution α .

2. If θ is in Π∗, then there exists a unifier θ̂ in Ψ∗ of F(t) = F(s) compatible with θ .
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According to Definition 10, to verify that F : Π→Ψ is strongly unifiable we must go over all
the pairs s, t ∈ Π and check that every idempotent mgu of t = s satisfies conditions 1 and 2 above.
However, the following result shows that for each equation t = s, it is enough to find just one
idempotent mgu satisfying conditions 1 and 2. Next corollary follows directly from Propositions 5
and 6.

Corollary 8. Let F : Π→ Ψ be a term translation. F : Π→ Ψ is strongly unifiable iff every pair

of terms s, t ∈Π satisfies one of the two following conditions:

• There are no unifiers of equation t = s.

• There exists an idempotent mgu θ of equation t = s which satisfies:

1. If θ is not in Π∗, then θ •α is not in Π∗ for every substitution α .

2. If θ is in Π∗, then there exists a unifier θ̂ in Ψ∗ of F(t) = F(s) compatible with θ .

Next two theorems give us conditions to ensure the extensibility of a term translation.

Theorem 3.A (Sufficient Conditions for Extensibility). Let F : Π→Ψ be a term translation with
Π disjoint. If F : Π→ Ψ is strongly unifiable, then there exists a term morphism F∗ : Π∗→ Ψ∗

which extends F : Π→Ψ.

Proof. If F : Π→ Ψ is strongly unifiable, then it is unifiable. Therefore, this theorem is a direct
consequence of Theorem 2.A. � �

Theorem 3.B. Let F : Π→ Ψ be a term translation with Π finite. If the disjoint term translation
F ′ : Π′→Ψ′ associated to F is strongly unifiable, then there exists a term morphism F∗ : Π∗→Ψ∗

which extends F : Π→Ψ.

Proof. If F ′ : Π′→Ψ′ is strongly unifiable, then it is unifiable. Therefore, this theorem is a direct
consequence of Theorem 2.B. � �
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2.8 Discussion and Conclusions

The results of this study give us conditions which characterize the existence of a term morphism
extending a given term translation. We obtained such conditions by using graph-based represen-
tations of terms and applying unification theory. In this concluding section we shall discuss two
points that we consider relevant for the understanding of the scope of this work. In the first point
we shall give algebraic interpretations for some of the concepts introduced in this work. These
interpretations enables us to argue the second point: the usefulness of this work as a framework for
some analogy models.

2.8.1 An algebraic interpretation of this study

Suppose L S and L T are two different first order languages. Let F : Π→Ψ be a term translation
where Π ⊆ Term(L S) \V and Ψ ⊆ Term(L T ) \V . The goal of the following discussion is to
clarify the algebraic relation determined by F between the set Term(L S) and the set Term(L T ).
We shall need some definitions following [4].

A signature is a set F of function symbols such that a nonnegative integer n is assigned to
each member f of F . This integer is called the arity of f and f is said to be an n-ary function

symbol. Given a signature F , an F -algebra is an ordered pair (A,Σ) where A is a nonempty set
and Σ is a family of finitary operations on A indexed by F such that corresponding to each n-ary
function symbol f ∈F there is an n-ary operation f A on A. When Σ is clear from the context,
we shall refer to the F -algebra A instead of (A,Σ). Let A and B be two F -algebras. A mapping
α : A→ B is called a homomorphism from A to B if for each n-ary function symbol f ∈F and
every a1, ...,an ∈ A,

α( f A(a1, ...,an)) = f B(α(a1), ...,α(an)).

Since our study deals only with the set of terms of a language, we shall assume that the symbol
sets S and T are signatures i.e. they have only function symbols. The set of terms Term(L S)

could be considered as an S-algebra by determining the family of operations ΣS in the standard
way. However, we are interested in endowing the sets of terms Term(L S) and Term(L T ) with
another family of operations as follows: Let us take the set Π as a signature by considering each
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term t ∈ Π with V (t) = {x1, ...,xn} as a n-ary function symbol. Let ft be the n-ary operation on
Term(L S) defined by:

ft : (t1, ...., tn)→ t
t1, ..., tn
x1, ...,xn

.

We denote this family of operations by ΣΠ. Analogously, we can consider Ψ as a signature which
determines a family { fs}s∈Ψ = ΣΨ of operations on Term(L T ). Consider the Π-algebra (Π∗,ΣΠ)

and the Ψ-algebra (Ψ∗,ΣΨ). Observe that when the term morphism F∗ : Π∗→Ψ∗ exists, it relates
these algebras in the following way:

F∗( ft(t1, ...., tn)) = fF(t)(F
∗(t1), ...,F∗(tn)). (2.17)

The above equation (2.17) suggests endowing the set Ψ∗ with the structure of a Π-algebra. For
each t ∈Π with V (t) = {x1, ...,xn} define an n-ary operation fF(t) on Term(L T ) by:

fF(t) : (s1, ....,sn)→ F(t)
s1, ...,sn

x1, ...,xn
.

Let us call this family of operations ΣF(Π). Equation 2.17 says that when F∗ : Π∗→Ψ∗ exists, it is
a homomorphism from the Π-algebra (Π∗,ΣΠ) to the Π-algebra (Ψ∗,ΣF(Π)) (notice that ΣF(Π) ⊆
ΣΨ). Therefore, the results of this work give us conditions on a term translation F : Π→ Ψ to be
extended by a homomorphism of Π-algebras.

2.8.2 A model for analogy

In this section we show how this work can be related to the modelling of analogies. To this aim, we
introduce a theoretical model for analogy. The basic idea underlying this model is that the source
and the target domains of an analogy can be formalized as algebras. A first approach for this idea
can be found in [54] where the “analogy mapping” was represented by another algebra. Based on
such work, a computational model for solving proportional analogy problems in string domains
was developed in [15].

Let us introduce our theoretical model for analogy (TMA). Let A be an S-algebra and B a
T -algebra where S and T are signatures. A formal analogy problem with source A and target B is
a pair (F,h) where F : Π→Ψ is a term translation with Π⊆ Term(L S)\V , Ψ⊆ Term(L T )\V ,
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and h : A′→ B′ is a mapping with A′ ⊆A and B′ ⊆B.

Definition 11. An analogy solution of the formal analogy problem (F,h) will be a homomorphism
of Π-algebras hF : U (A′)→U (B′) extending h, where U (A′) is the subalgebra of (A ,{ f A

t }t∈Π)

generated by A′ and U (B′) is the subalgebra of (B,{ f B
F(t)}t∈Π) generated by B′.

Notice that since hF restricted to A′ is h, and since A′ generates U (A′) as a Π-algebra, then if
hF exists, it is unique5. That is to say, a formal analogy problem has at most one solution.

Let us show how our model works by using examples taken from [15]. A proportional analogy
has the form “ A is to B as C is to D”, abbreviated as A : B :: C : D. The associated analogy problem
has the form A : B :: C : X where A,B,C are given and X is unknown. Consider the following
examples in string domains:

1. abba : abab :: pqrrqp : ?(pqrpqr)
2. abba : abbbbba :: pqrrpq : ?(pqrrrrrpq)

In order to model these analogy problems, let us consider the set P of all non-null strings
composed from letters a,b, ....,z. Let us endow P with two operations: “Append” and “Symmetry”.
The operation append (αP : P2 → P) takes two strings s1 and s2 and returns the appended string
s1s2. The operation symmetry inverts the order of letters in a string i.e. (σP : P→ P) takes a string
l1l2....ln−1ln and returns the string lnln−1..l2l1. Observe that P is an S -algebra by considering the
signature S = {α,σ}.

Example 2. Let us model the analogy problem abba : abab :: pqrrqp :? and propose a solution
through the model.

Let us consider the set of terms Π = {α(X ,σ(Y )),α(X ,Y )} and let (I,h) be the analogy prob-
lem with source P and target P where I : Π→ Π is the identity term translation and h : {ab} →
{pqr} is determined by h(ab) = pqr. Let U ({ab}) be the subalgebra of (P,{ ft}t∈Π) generated by

5It is well known that for two algebra morphisms h, f : A→ B, if h|A′ = f |A′ (where A′ generates the algebra A),
then h = f .
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{ab} and U ({pqr}) the subalgebra of (P,{ ft}t∈Π) generated by {pqr}. It can be shown 6 that there
exists a homomorphism of Π-algebras hI : U ({ab})→U ({pqr})) which extends h. Therefore, hI

is an analogy solution of (I,h). Clearly, abba,abab ∈U ({ab}) pqrrqp, pqrpqr ∈U ({pqr}) and
notice that because hI is a homomorphism of Π-algebras extending h, it satisfies necessarily that
hI(abba) = pqrrqp and hI(abab) = pqrpqr, which is the answer to the original problem that this
model provides.

Example 3. Let us model the proportional analogy abba : abbbbba :: pqrrpq :? and propose a
solution through the model. To this aim, set

Π = {α(α(X ,Y ),α(Y,X)),α(α(α(α(α(X ,Y ),Y ),Y ),Y ),α(Y,X))}

and let (I,h) be the analogy problem with source P and target P, where I : Π→ Π is the identity
term translation and h : {a,b} → {pq,r}) is the mapping determined by h(a) = pq, h(b) = r. Let
U ({a,b}) be the subalgebra of (P,{ ft}t∈Π) generated by {a,b} and U ({pq,r}) the subalgebra
of (P,{ ft}t∈Π) generated by {pq,r}. By using the semigroup structure of the set P with the op-
eration α , it is easy to show the existence of a homomorphism of Π-algebras hI : U ({a,b})→
U ({pq,r})) which extends h. Therefore, hI is an analogy solution of (I,h). Clearly, abba,
abbbbba∈U ({a,b}), pqrrpq, pqrrrrrpq∈U ({pq,r}) and observe that because hI is a homomor-
phism of Π-algebras extending h, it satisfies necessarily that hI(abba)= pqrrpq and hI(abbbbba)=

pqrrrrrpq, which is the answer to the proposed problem that this model provides.

Observe that when presenting a formal analogy problem (F,h) with source A and target B,
associated to the analogy problem A : B :: C : X , we have already selected an important number of
parameters for the model. First, the sets of operations of the source and the target algebras together
with the relations between them are determined by the selection of the mapping F : Π→Ψ. Second,
the sets of generators of the subalgebras involved in the analogy solution are determined by the
selection of the mapping h : A′→ B′. Furthermore, examples 1 and 2 illustrate what was remarked
after definition 11, namely that the choice of h guarantees the uniqueness of the solution hF , when
it exists. Somehow, the mapping h forces the way hF must be defined. On the other hand, notice
that even though the choice of (F,h) is not unique, neither it is completely arbitrary. For example,

6It is easy to show that there exists a homomorphism h′ between the semigroups (U ({ab,ba}),α) and
(U ({pqr,rqp}),α) which extends h and satisfies h′ ◦σ = σ ◦h′. Since the symmetry operation satisfies σ(α(X ,Y )) =
α(σ(Y ),σ(X)), it can be seen that h′ restricted to U ({ab}) (the subalgebra of (P,{ ft}t∈Π) generated by {ab}) is the
homomorphism hI we are looking for (see appendix for details).
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in the first two examples of proportional analogy problems A : B :: C : X , the mappings F and h were
chosen in a way that A,B belong to the source subalgebra, C belongs to the target subalgebra and
the possible analogy solution hI satisfies hI(A) = C. In those examples, X = hI(B) is the solution
of the problem compatible with our choices.

Next example highlights the fact that although our model shares some common features with
the model presented in [15], the two models are essentially different in nature. To illustrate this, we
cite a paragraph from [15], where the authors say: “there is an assumption built into our formalism:
namely that the same object occurring at different places in an algebraic term is the same”. Such
assumption implies that analogies like “ababa : abbaa :: cdcdg :?” can not be handled. This is
because in the first term of the analogy problem, the model can not distinguish between the first
and the last occurrence of the letter “a”. Our model can still state a formal analogy problem in this
case, however, the fact that it ends up having no solution, suggests the further need for tools which
would help us in the path of building a clearer description of the conditions under which an analogy
has one or more solutions.

Example 4. Let us model the following proportional analogy problem

ababa : abbaa :: cdcdg :? (2.18)

Let us set Π = {t1, t2} where t1 = α(α(X ,X),Y ) and t2 = α(α(X ,σ(X)),Y ). Consider the analogy
problem (I,h) with source P and target P where I : Π→ Π is the identity term translation and
h : {ab,a}→{cd,g}) is determined by h(ab) = cd and h(a) = g. Let U ({ab,a}) be the subalgebra
of (P,{ ft}t∈Π) generated by {ab,a} and U ({cd,g}) the subalgebra of (P,{ ft}t∈Π) generated by
{cd,g}. Clearly, ababa, abbaa ∈U ({ab,a}) and cdcdg,cddcg ∈U ({cd,g}). Let us assume for
a while that there exists a homomorphism hI : U ({ab,a})→ U ({cd,g})) of Π-algebras which
extends h. Such homomorphism should satisfy hI(ababa) = cdcdg and hI(abbaa) = cddcg, and
then it would arguably provide a plausible behavior of the phenomenon. However, observe that
the assumption of the existence of hI leads us into contradiction: ft1(ababa,a) = ft2(ababa,a) =

ababaababaa, and then

hI(ababaababaa) = ft1(cdcdg,g) = cdcdgcdcdgg,

hI(ababaababaa) = ft2(cdcdg,g) = cdcdggdcdcg.

That is, cdcdgcdcdgg = cdcdggdcdcg. Therefore, there is no such homomorphism extending h,
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and then, there is no analogy solution for the formal analogy problem (I,h).

In this last example, our choices were motivated by the fact that a plausible solution for the
problem 2.18 is cddcg. However, notice that another reasonable solution candidate for the problem
would be cddgg. Thus, the aim of the above example is not to show that the problem 2.18 has
no solutions. The example shows that for the particular choice of (F,h) made in the formaliza-
tion of the problem, the model does not provide solutions. However, it is possible that the TMA
model gives solutions for other selections of (F,h) which formalize the problem. This observation
suggests some topics for future research. For example, in the context of proportional analogy prob-
lems of the kind A : B :: C : X , how to characterize solutions of all adequate choices of (F,h) (all
the associated formal analogy problems with source A and target B). Then, for instance, we could
say that X = D is the unique solution for a given proportional analogy problem, when the analogy
solution hF for every choice of F and h satisfies hF(B) = D.

The following example is different in nature. It shows that our model, in addition to proportional
analogies in string domains, can be applied to more general analogies where the domains can be
represented by algebras of terms. Specifically, it sketches how the results obtained in section 2.7
can be considered in the context of the TMA model.

Example 5. Let S and T be two signatures and let F : Π → Ψ be a term translation, where
Π ⊆ Term(L S) and Ψ ⊆ Term(L T ). Let us consider the analogy problem (F, Id) with source
Term(L S) and target Term(L T ) where Id : V →V is the identity mapping between variables. The
results of section 2.7 give us conditions to be checked in F : Π→ Ψ to verify that F∗ : Π∗→ Ψ∗

exists. And when it does exist, F∗ is an analogy solution of the analogy problem (F, Id) above
considered.

2.9 Appendix

This section contains some examples and proofs which have not been included in the chapter either
because its easyness of because it deviates the attention from the goal of the chapter.

Example 6. Let S = { f ,e1,e2} and T = {h1,h2,h3,h4} be two symbol sets where e1,h1 are unary
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function symbols, e2,h2 are binary function symbols, f ,h3 are ternary function symbols and h4 is
a 4-ary function symbol. Consider the following terms belonging to Term(L S):

• Z1 = e1(u)

• Z2 = e2(v1,v2)

• Z3 = f (e1(x1),x2,x3)

• Z4 = f (y1,y2,e2(y3,y4))

It is easy to see that every term t ∈Π∗ can be built in one unique way from Π, when Π = {Z3,Z4}
or Π = {Z1,Z3,Z4} or Π = {Z2,Z3,Z4}. However, let us consider Π = {Z1,Z2,Z3,Z4} and t =

f (e1(z1),z2,e2(z3,z4)) ∈Π∗. Observe that

t = f (e1(z1),z2,e2(z3,z4)) = Z3
z1 z2 e2(z3,z4)

x1 x2 x3
= Z4

e1(z1) z2 z3 z4

y1 y2 y3 y4

On the other hand, let Ψ = {h1(u),h2(v1,v2),h3(x1,x2,x3),h4(y1,y2,y3,y4)}. Let F : Π→Ψ be a
term translation which associates the term Zi ∈ Π to the i-th term in Ψ (considering the order in
which the elements of Ψ were listed). If we assume that there exists a term morphism F∗ which
extends F , it should satisfy:

F∗(t) = F∗(Z3
z1 z2 e2(z3,z4)

x1 x2 x3
) = F∗(Z4

e1(z1) z2 z3 z4

y1 y2 y3 y4
)

which means that,

F(Z3)
F∗(z1) F∗(z2) F∗(e2(z3,z4))

x1 x2 x3
= F(Z4)

F∗(e1(z1)) F∗(z2) F∗(z3) F∗(z4)

y1 y2 y3 y4

h3(x1,x2,x3)
z1 z2 h2(z3,z4)

x1 x2 x3
= h4(y1,y2,y3,y4)

h1(z1) z2 z3 z4

y1 y2 y3 y4

which yields the following contradiction:

h3(z1,z2,h2(z3,z4)) = h4(h1(z1),z2,z3,z4)

Proposition 1 can be proved in the following way:
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Proposition. A term morphism F∗ : Π∗→ Ψ∗ extends a term translation F : Π→ Ψ if and only

if for any substitution ρ in Π∗, γ = F∗ ◦ ρ is a substitution in Ψ∗ and makes following diagram

commute:

Π
F //

ρ

��

Ψ

γ

��
Π∗

F∗ // Ψ∗

Proof. Let F∗ be a term morphism which extends F . Let us show the necessity of the condition.
If ρ is a substitution in Π∗, then F∗ ◦ ρ is a substitution in Ψ∗. Let us take any t ′ ∈ Π and thus
t ′ρ ∈Π∗. Consider the following computation:

(F∗ ◦ρ)(t ′) = F∗(t ′ρ) = F(t ′)(F∗ ◦ρ) = F(t ′)γ = (γ ◦F)(t ′).

Since t ′ ∈Π is arbitrary, it follows that F∗ ◦ρ = γ ◦F .

On the other hand, assume that for any substitution ρ in Π∗, γ = F∗ ◦ρ is a substitution in Ψ∗

such that F∗ ◦ρ = γ ◦F . For any t ′ ∈Π:

F∗(t ′ρ) = F∗(ρ(t ′)) = (F∗ ◦ρ)(t ′) = (γ ◦F)(t ′) = ((F∗ ◦ρ)◦F)(t ′) = F(t ′)(F∗ ◦ρ)

and thus F∗ extends F . �

Proposition. The term morphism F∗ : Π∗→Ψ∗ of Theorem 4, satisfies:

F∗ = i◦F ′ ◦ i−1.

Proof. If there exists a term morphism F∗ : Π∗→Ψ∗ which extends F : Π→Ψ, condition 1 holds.
Therefore, we can define F ′ by F ′(a) = F◦(a) and the diagram of the theorem commutes. Let us
take any t ∈Π∗, some a ∈Π◦ such that π(a) = t and consider the following computations:

F∗(t) = F∗(π(a)) = π(F◦(a)) = i(p(F◦(a)))

= i(F ′(p(a))) = i(F ′(i−1(π(a)))) = i(F ′(i−1(t)))

since t is arbitrary, F∗ = i◦F ′ ◦ i−1 holds. �
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Proposition. Let θ1 be an idempotent mgu of s = t which is not in Π∗. The following statements

are true:

1. Any idempotent mgu θ2 of s = t is not in Π∗.

2. If for any substitution α , θ1 •α is not in Π∗, then for any substitution α ′ and for any idem-

potent mgu θ2 of s = t, the substitution θ2 •α ′ is not in Π∗.

Proof. By contradiction both statements are clear:

The first statement: If we assume that θ2 = θ1 •φ is in Π∗, it follows that θ2 •φ−1 = θ1 is in
Π∗. This is a contradiction with the hypotheses.

The second statement: If we assume that θ2 •α ′ in Π∗ it means that θ1 • (φ •α ′) in Π∗. It
contradicts the hypotheses.

�

Proposition. Let F : Π→ Ψ be a term translation and s, t ∈ Π. If the set of unifers of s = t is

nonempty, then the next two statements are equivalent:

1. For any θ2 idempotent mgu of t = s and any λ2 minimal respect to θ2, there exists an unifier

λ̂2 of F(t) = F(s) compatible with θ2 •λ2.

2. There exists θ1 an idempotent mgu of t = s such that for any substitution λ1 minimal respect

to θ1, there exists a unifier λ̂1 of F(t) = F(s) compatible with θ1 •λ1.

Proof. This proof is done by reduction to absurd. Assume that λ is minimal respect to θ2 and that
φ •λ is not minimal respect to θ1. Thus, there are substitutions α and β such that β in Π∗ is proper,
dom(β )⊆ ran(α), θ1 •α in Π∗ and φ •λ = α •β . Since φ is invertible, it means that substitution
(φ−1 •α) and β satisfy the following: β in Π∗ is a proper substitution, dom(β ) ⊆ ran(φ−1 •α),
θ2•(φ−1•α) = θ1•α in Π∗ and λ = (φ−1•α)•β . It contradicts the fact that λ is minimal respect
to θ2. Therefore, substitution φ •λ is minimal respect to θ1. �
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Proposition. Let t be a term with V (t) = {x1, ...,xn}. If t
t1, ..., tn
x1, ...,xn

≡ t
s1, ...,sn

x1, ...,xn
, then (t j ≡ s j), for

every j ∈ {1, ...,n}.

Proof. Let us show that by induction on k = length(t
t1, ..., tn
x1, ...,xn

). The base step is trivial. If k = 0

we have that
x

y
x
≡ x

z
x

and then z≡ y follows.

Let us show the induction step for k = length(t
t1, ..., tn
x1, ...,xn

) by assuming that the proposition holds

for any m < k. Notice that t = f (u1, ....,ul) for some l-ary function symbol f and terms u1, ...,ul .
Therefore, t

t1, ..., tn
x1, ...,xn

≡ t
s1, ...,sn

x1, ...,xn
is equivalent to f (u1, ...,ul)

t1, ..., tn
x1, ...,xn

≡ f (u1, ...,ul)
s1, ...,sn

x1, ...,xn
. Thus,

it follows that for every i ∈ {1, .., l},

ui
t1, ..., tn
x1, ...,xn

≡ ui
s1, ...,sn

x1, ...,xn
.

Now, since mi = length(ui
t1, ..., tn
x1, ...,xn

) < k, we apply the induction hypothesis on every mi. Since

every x j occurs in at least some ui, we conclude that for every j ∈ {1, ..,n}, t j ≡ s j. � �

Proposition. There exists h′ : (U ({ab,ba}),α)→ (U ({pqr,rqp}),α)

Proof. Let P∗ = P∪{∅} where ∅ is the empty string. Notice that (P∗,α) is a semigroup.

Let us denote by U {ab,ba} to the subsemigroup of (P∗,α) generated by {ab,ba}. Let us
observe that for s ∈U {ab,ba} there is only two options. s begins with “a” or (exclusive) s begins
with “b”.

• In the first case: s = α(ab,x) for some x ∈U {ab,ba}.

• In the second case: s = α(ba,x) for some x ∈U {ab,ba}.

Therefore, s can be built in a unique way (except for associativity). From this, it is easy to
define h′ : (U {ab,ba},α)→ (U {pqr,rqp},α) inductively:
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h′(s) =



pqr if s = ab,

rqp if s = ba,

α(pqr,h′(x)) if s = α(ab,x),

α(rqp,h′(x)) if s = α(ba,x),

Observe that h′ is well defined since α is an associative operation. Additionally, we can define
in U {ab,ba} and U ({pqr,rqp}) the operation σ (“Symmetry”) by σ(ab) = ba, σ(ba) = ab and
σ(α(x,y)) = α(σ(y),σ(x)) and then h′ satisfies h′ ◦σ = σ ◦h′.

We just have to restrict h′ to the subalgebra of (P,{ ft}t∈Π) generated by {ab}, that is hI =

h′|(P,{ ft}t∈Π). Notice that hI is a morphism of Π-algebras since h′ preserves the operation α and the
operation σ . �
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Chapter 3

Formula Morphisms

The subject addressed on chapter 2, namely the existence of a term morphism which extends a
given term translation, is the result of formalizing metaphor based in a key assumption: that a set of
terms is able to accurately describe a domain of knowledge. Often enough, such assumption is not
true. The aim of this chapter is to analyze the case when the assumption made is that a set of terms
together with a set of formulas describe accurately a domain of knowledge. The present chapter
is a necessary complement to the analysis already done in the previous chapter since the usage of
formulas is a well known way to describe relations in a domain of knowledge. This chapter strongly
depends on Chapter 2.

We assume that every first order language L S mentioned here is built on the same fixed nu-
merable set of variables V = {x,y,z, ...}. The present discussion will assume that a language is
determined by a set S of relation and function symbols in the standard way (see[20, 58]). However,
we shall restrict ourselves to work with formulas with no quantifiers, i.e. we shall work with the set
of logical connectives {¬,∧,∨}. We shall write Form(L S) refering to the set of formulas of such
language.
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3.1 Extending Formula Translations by Substituting Terms

3.1.1 Formula Translations and Substitutions of Terms

Let S and Q be symbol sets which determine the first order languages L S and L Q respectively,
and let Σ⊆ Form(L S),Ω⊆ Form(L Q) be two non empty sets.

Definition 12. A mapping F : Σ→ Ω is called a formula translation, if it preserves the free vari-

ables of formulas, i.e. for all ϕ ∈ Σ,

V (ϕ) =V (F(ϕ))

where V (ϕ) denotes the set of free variables of the formula ϕ .

Example 7. Let S = {⊂,∈,≡} and Q = {≤,=} be two symbol sets. The former is usually associ-
ated to set theory while the latter is used to work with arithmetic. Given Σ = {(x ⊂ y)∨ (x ≡ y)}
and Ω = {x≤ y}, the rule below, define a formula translation F : Σ→Ω.

F((x⊂ y)∨ (x≡ y)) = x≤ y

We use the same meaning of the expression ”a variable x occurs free in a formula ϕ” as the usual
meaning in mathematical logic. We need now define how to substitute a term t for a variable x in
a formula ϕ where x occurs free, thus obtaining a formula ψ . Observe that because our language
has no quantifiers, next definition of substitution do not need the usual amount of care which is
necessary1 to define the substitution in a way that the formula ϕ expresses the same about x as ψ

does about t. In chapter 2 we defined a substitution ρ : V → Term(L S) together with the way to
apply it to a term t. In this section, we define the procedure wich is used to apply a substitution ρ

to a formula ϕ .

1Next example (taken from [20]) illustrates why a certain amount of care in such definition is necessary. Let
ϕ := ∃z z+ z = x, if we interpret this formula in the natural numbers, the formula is true iff the interpretation of x is
an even number. If we replace the variable x by y in ϕ we obtain the formula ∃z z+ z = y wich states that y is even.
But if we replace the variable x by z, we obtain the formula ∃z z+ z = z, wich no longer says that z is even; in fact,
this formula is true in the natural numbers regardless of the assignment for z (because 0+0 = 0). We can see that the
meaning of the formula is altered by applying the substitution without enough care. The problem is that at the place
where x occurred free, the variable z gets bound. The definition of substitution addresses this kind of problems.
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Definition 13. Let S be a fixed symbol set, ρ = {x1 ← t1, ....,xn ← tn} a substitution where ti ∈
Term(L S) and let ϕ ∈ Form(L S). We define the formula ϕρ (or ϕ

t1...tn
x1...xn

) wich is said to be
obtained from ϕ by simultaneous substitution of t1, ..., tn for x1, ...,xn in the following inductive
way:

1. [t = s]ρ := tρ = sρ.

2. R(s1, ..,sr)ρ := R(s1ρ, ..,srρ).

3. [¬ϕ]ρ := ¬[ϕρ]

4. [ϕ ∨ψ]ρ := ϕρ ∨ψρ.

5. [ϕ ∧ψ]ρ := ϕρ ∧ψρ.

Unification Theory adapted for Formulas

This section is devoted to develop the theory that shall help us to approach next section (section
3.1.2). We shall borrow some ideas from Unification Theory in order to work with the formulas of
the language. For a given pair of formulas ϕ,ψ ∈ Form(L S), we say that the string “ϕ = ψ” is a
formula equation (or simply, an equation when “formula” is understood from context). For the sake
of avoiding confusion, we shall use the symbol “≡” to denote the syntactic equality of formulas and
terms. An unifier of the equation ϕ = ψ is a substitution α : V → Term(L S) such that ϕα ≡ ψα .
Let D = {ϕ1 = ψ1, ...,ϕn = ψn} be a set of equations, an unifier of D is a substitution α wich is a
unifier of every equation in D. We shall denote the set of unifiers of D by Uni f (D). The following
discussion is aimed to show that if Uni f (D) , /0 , there exists a set TD = {t1 = s1, ..., tm = sm} of
term equations such that α is a unifier of D if and only if α is a unifier of TD. This is a key result
enabling us to use definitions given (in Section 2.6) for a set of term equations, in the context of
formula equations. Let us consider the following algorithm:

Algorithm for Unification of Formulas

Input: A set of formula equations {χ1 = ξ1, ...,χn = ξn}.
Initialize the set of formula equations D = {χ1 = ξ1, ...,χn = ξn}.
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Initialize the set of term equations TD = /0.
Select any equation χ = ξ from D for which one of the following procedures (depending on the
form of the equation) can be applied:

1. ϕ1∧ϕ2 = ψ1∧ψ2 Replace the equation in D by the pair of equations ϕ1 = ψ1,ϕ2 = ψ2.

2. ϕ1∨ϕ2 = ψ1∨ψ2 Replace the equation in D by the pair of equations ϕ1 = ψ1,ϕ2 = ψ2.

3. ¬ϕ1 = ¬ψ1 Replace the equation in D by the equation ϕ1 = ψ1.
4. R(s1, ...,sk) = R(t1, ..., tk), Delete the equation from D, and

where R is a k-ary relation symbol add to TD the k equations si = ti for i ∈ {1, ...,k}.
5. Any other kind of equation Halt the algorithm with failure.

Repeat until failure or D = /0.
Output the set of equations of terms TD.

The above algorithm implements the idea of inductively analyzing the formulas to check if the
pair of formulas of each equation can be (via a substitution) syntactically equal. It is straightforward
that when the algorithm fails, Uni f (D) = /0. Besides, it is clear that if the algorithm does not fail
and returns an empty set TD = /0 if and only if the input is empty.

Proposition 9. The Algorithm for Unification of Formulas finishes in a finite number of steps.

Proof. It is straightforward by noticing that applying steps 1, 2 or 3, the number of logical con-
nectors occurring in the set of equations is reduced by two. By applying step 4, one equation is
eliminated from D. �

For a given input E = {χ1 = ξ1, ...,χn = ξn}, let us define E as the set which contains all the
equations of formulas that were put in the set D at least once during the execution of the algorithm.

Lemma 9. If the Algorithm for Unification of Formulas does not fail, then Uni f (E)⊆Uni f (E ).

Proof. Let us assume that the algorithm does not fail and let α be a substitution. Let us show
this lemma by proving that α <Uni f (E ) implies α <Uni f (E). If α <Uni f (E ), there exists an
equation ϕ0 = ψ0 belonging to E such that ϕ0α . ψ0α . The lemma follows, if ϕ0 = ψ0 belongs to
E. Otherwise, ϕ0 = ψ0 must be the result of the application of step 1, 2, 3 or 4 of the algorithm to
an equation ϕ1 = ψ1 such that ϕ1α . ψ1α . Repeating recursively this procedure, we shall find an
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equation ϕk = ψk belonging to E such that ϕkα . ψkα which means that α <Uni f (E). We have
shown that α ∈Uni f (E) implies α ∈Uni f (E ). �

On the other hand, since E ⊆ E , Uni f (E ) ⊆ Uni f (E). Therefore, applying last lemma, we
obtain that Uni f (E ) =Uni f (E). We shall use this fact in the proof of the following property:

Proposition 10. If for an input E = {χ1 = ξ1, ...,χn = ξn} the Algorithm for Unification of Formu-

las does not fail and returns a nonempty set TE = {t1 = s1, ...., tm = sm}, then Uni f (TE) =Uni f (E).

Proof. First, we shall show that Uni f (TE)⊆Uni f (E ). Let α be a unifier belonging to Uni f (TE).
We shall prove by induction on n that χα ≡ ξ α for all equations χ = ξ in E such that n is the
number of logical connectives that occur in such equation. The base case n = 0 is shown easily
since χ = R(s1, ..,sk) and ξ = R(t1, ..., tk), where the equations si = ti belongs to TE for i∈ {1, ..,k}.
Since α ∈Uni f (TE), R(s1α, ..,skα)≡ R(t1α, ..., tkα), implying that χα ≡ ξ α . The induction step.
Let us take n > 0 and assume that the result holds for all equations η = ϑ with a number of logical
connectives less that n. We are going to show that χα ≡ ξ α holds for χ = ξ in E . Since the
Algorithm does not fail and n > 0, only steps 1, 2, 3 or 4 can be applied to the equation χ = ξ .
Each applicable step is handled in a separate case. We only address cases 1 and 3 because the rest
of the cases are analogous:

• Case 1: χ = ϕ1 ∧ϕ2, ξ = ψ1 ∧ψ2. By using the induction hypothesis we conclude that
ϕ1α ≡ ψ1α and ϕ2α ≡ ψ2α and then χα ≡ ξ α .

• Case 2: χ ≡¬ϕ and ξ ≡¬ψ . By using the induction hypothesis we conclude that ϕα ≡ψα

and then χα ≡ ξ α .

Since χ = ξ was an arbitrary equation from E , we have shown that Uni f (TE)⊆Uni f (E ).

Let us show that Uni f (E) ⊆ Uni f (TE). To this aim, let us show that α < Uni f (TE) implies
α <Uni f (E). Let us assume that α <Uni f (TE) and then there exists a term equation t = s ∈ TE

such that tα . sα . Since step (4) of the algorithm is the only step which adds equations to the set
TE , there exists a formula equation R(t1, .., t, ..tk)=R(s1, ...,s, ...sk) ∈ E such that R(t1, .., t, ..tk)α .

R(s1, ...,s, ...sk)α . Therefore, α <Uni f (E ) and, because of Lemma 9, it means that α <Uni f (E).
�
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Therefore, for each set D of formula equations, there is an associated set TD of term equations
(given by the Algorithm for Unification of Formulas) such that Uni f (D) = Uni f (TD). In the fo-
llowing, we shall say that a unifier µ of a set of formula equations D is an mgu (most general

unifier) of D if and only if µ is an mgu of the associated set of term equations TD.

Minimal Substitutions and Unifiable Formula Translations

Next definition is a generalization of Definition 7 in Chapter 2, which shall be needed in this section
to characterize formula translations that can be extended.

Definition 14. Let Π⊆ Term(L S) and let θ be an idempotent mgu of a set of formula equations.
A substitution λ : V → Term(L S) is called minimal (for Π) respect to θ whenever θ •λ is in Π∗

and there are no substitutions α,β such that β in Π∗ is proper, dom(β )⊆ ran(α), θ •α in Π∗ and
λ = α •β .

Here we do not present the proofs of Proposition 11, Lemma 10 and Proposition 12 below,
because they are just slight paraphrasings of the proofs of Proposition 7, Lemma 6 and Proposition
8 in Chapter 2.

Proposition 11. Let Π⊆ Term(L S). Let θ be an idempotent mgu of a set of formula equations. If

γ is a substitution such that θ • γ is in Π∗, then there exists a substitution λ minimal (for Π respect

to θ ) and a substitution α in Π∗ such that γ = λ •α .

Lemma 10. Let Π⊆ Term(L S). If θ1,θ2 are two idempotent mgu’s of a set of formula equations

and φ is the invertible substitution such that θ2 = θ1 •φ , then a substitution λ is minimal (for Π)

respect to θ2 if and only if the substitution φ •λ is minimal (for Π) respect to θ1.

Proposition 12. Let Π⊆ Term(L S)\V,Ψ⊆ Term(L Q)\V , Σ⊆Form(L S) and Ω⊆Form(L Q).

Let F : Σ→ Ω be a formula translation and let T : Π→Ψ be a term translation. If ϕ,ψ ∈ Σ and

Uni f (ϕ = ψ) is nonempty, then the next two statements are equivalent:

1. For any θ2 idempotent mgu of ϕ = ψ and any λ2 minimal (for Π) respect to θ2, there exists

an unifier λ̂2 of F(ϕ) = F(ψ) compatible with θ2 •λ2.
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2. There exists θ1 an idempotent mgu of ϕ = ψ such that for any substitution λ1 minimal (for

Π) respect to θ1, there exists a unifier λ̂1 of F(ϕ) = F(ψ) compatible with θ1 •λ1.

Definition 15. Let T : Π→Ψ be a term translation where Π⊆ Term(L S) and Ψ⊆ Term(L Q) and
let Σ ⊆ Form(L S),Ω ⊆ Form(L Q). A formula translation F : Σ→ Ω is called unifiable (respect

to T ) if for every pair ϕ,ψ ∈ Σ, every idempotent mgu θ of ϕ = ψ and every minimal substitution
λ respect to θ , there exists a unifier λ̂ in Ψ∗ of the equation F(ϕ) = F(ψ) compatible (through T )
with θ •λ .

From Lemma 10 and Proposition 12 follows the next characterization of a unifiable formula
translation.

Corollary 11 (Characterization). Let T : Π→ Ψ be a term translation. A formula translation

F : Σ→Ω is unifiable respect to T if and only if every pair of formulas ϕ,ψ ∈ Σ satisfies:

1. Uni f (ϕ = ψ) is empty, or

2. There exists θ an idempotent mgu of ϕ =ψ such that for every λ minimal substitution (for Π)

respect to θ there exists a unifier λ̂ in Ψ∗ of the equation F(ϕ) = F(ψ) compatible (through

T ) with θ •λ .

3.1.2 Statement of the Problem and Characterization Theorems

Given a set of formulas Σ ⊆ Form(L S) and a set of terms Π ⊆ Term(L S), we define the set of
formulas

Σ⊗Π = {ϕρ | ϕ ∈ Σ,ρ in Π
∗ }.

(where Ω⊆ Form(L Q) and Ψ⊆ Term(L Q)\V ),

The purpose of the previous chapter was the study of conditions that characterize those term
translation T : Π→Ψ that can be extended to term morphisms T ∗ : Π∗→Ψ∗. When such extension
exists, we say that T is an extensible term translation. Observe that T ∗ is determined because when
it exists, it is unique. This section is aimed to present conditions which guarantee that a formula
translation F : Σ→ Ω can be mixed up with a term translation T : Π→ Ψ into a single formula
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translation LF,T : Σ⊗Π→Ω⊗Ψ which preserves the substitution operation, in more precise words,
we look for a formula translation LF,T satisfying:

LF,T (ϕρ) = F(ϕ)(T ∗ ◦ρ). (3.1)

Clearly, a necessary condition is the existence of the term morphism T ∗ : Π∗→ Ψ∗ extending
T : Π→Ψ. However, notice that even when T is extensible, it is possible 2 that for ϕ,ψ ∈Σ and ρ,γ

in Π∗, ϕρ ≡ψγ and F(ϕ)(T ∗◦ρ). F(ψ)(T ∗◦γ) meaning that the mapping LF,T : Σ⊗Π→Ω⊗Ψ

given by equation 3.1 above, is not well defined. In what follows, we discuss some conditions which
ensure us that L is well defined by equation 3.1.

A set of formulas Σ ⊆ Form(L S) is disjoint when for any ϕ,ψ ∈ Σ, if ϕ . ψ , then V (ϕ)∩
V (ψ) = /0. For a given extensible term translation T : Π→ Ψ, next theorem characterizes those
formula translations F : Σ→Ω with Σ disjoint, which make LF,T a well defined mapping. In what
follows, when F and T are understood from context, we shall write L instead of LF,T .

Theorem 12 (First Extension Characterization). Let F : Σ→ Ω be a formula translation where

Σ is disjoint and let T : Π→ Ψ be an extensible term translation. The following statements are

equivalent:

1. F : Σ→Ω is unifiable respect to T .

2. The mapping L : Σ⊗Π→Ω⊗Ψ given by

L(ϕρ) = F(ϕ)(T ∗ ◦ρ),

is well defined.

Proof. Let us show that 1 implies 2. To this aim, we must show that if ϕρ ≡ ψγ , then F(ϕ)T ∗ ◦
ρ ≡ F(ψ)T ∗ ◦ γ . Let us assume that ϕρ ≡ ψγ . Since F preserves variables, without loss of

2An example: Take two signatures, namely L1 = {a,b,R} and L2 = {A,B,S} where a,b,A,B are constants, R is a
binary relation symbol and S is a unary relation symbol. Set Σ = {R(x,b),R(a,y)}, Ω = {S(x),S(y)} and let F : Σ→Ω

be the only formula translation that can be defined between those sets. Let Π = {a,b}, Ψ = {A,B} and let T : Π→Ψ

be the term translation defined by T (a) = A,T (b) = B. Observe that Π∗ = V ∪{a,b}, Ψ∗ = V ∪{A,B} and that T ∗ it
is the map which extends T and acts as the identity on variables. In this context take ϕρ = R(x,b) a

x and ψγ = R(a,y) b
y

and notice that ϕρ ≡ ψγ ≡ R(a,b). However, F(ϕ)T ◦ρ ≡ S(A) differs from F(ψ)T ◦ γ ≡ S(B).
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generality we can assume that ρ = {x1← t1, ...xn← tn} and that γ = {y1← s1, ...,ym← sm} where
V (ϕ) = {x1, ...,xn} and V (ψ) = {y1, ...,ym}. There are two alternatives:

Case 1:

{x1, ...,xn}∩{y1, ...,ym} , /0. Because Σ is disjoint, ϕ ≡ψ and {x1, ...,xn}= {y1, ...,ym}. Thus,
ϕρ ≡ ϕγ implies that ρ = γ and then, F(ϕ)(T ∗ ◦ρ)≡ F(ψ)(T ∗ ◦ γ).

Case 2:

{x1, ...,xn}∩{y1, ...,ym}= /0. Consider the substitution α = {x1← t1, ...,xn← tn,y1← s1, ...,ym←
sm}. Clearly, ϕρ ≡ ψγ if and only if ϕα ≡ ψα . Thus, α is an unifier of equation ϕ = ψ and there
exists an idempotent mgu θ of such equation. Because α = θ •α is in Π∗, there exists a substitu-
tion λ minimal (for Π) respect to θ and a substitution α ′ in Π∗ such that α = λ •α ′ and θ •λ in
Π∗. Since F is unifiable respect to T , it follows that there exists a substitution λ̂ compatible with
θ •λ which is a unifier of F(ϕ) = F(ψ). The following computations give us the sought result:

F(ϕ)λ̂ ≡ F(ψ)λ̂

(F(ϕ)λ̂ )(T ∗ ◦α
′)≡ (F(ψ)λ̂ )(T ∗ ◦α

′)

F(ϕ)(T ∗ ◦ (θ •λ ))• (T ∗ ◦α
′)≡ F(ψ)(T ∗ ◦ (θ •λ ))• (T ∗ ◦α

′)

F(ϕ)(T ∗ ◦ (θ •λ •α
′))≡ F(ψ)(T ∗ ◦ (θ •λ •α

′))

F(ϕ)(T ∗ ◦ (θ •α))≡ F(ψ)(T ∗ ◦ (θ •α))

F(ϕ)(T ∗ ◦α)≡ F(ψ)(T ∗ ◦α)

F(ϕ)(T ∗ ◦ρ)≡ F(ψ)(T ∗ ◦ γ).

Let us show, by using contradiction, that 2. implies 1. Let us assume that L is well defined,
but F : Σ→ Ω is not unifiable respect to T . Therefore, there exist an idempotent mgu θ of ϕ =

ψ (where ϕ,ψ ∈ Σ), and a minimal sustitution λ (for Π respect to θ ) such that every unifier λ̂

of F(ϕ) = F(ψ) is not compatible with θ • λ . In case that F(ϕ) = F(ψ) has no unifiers, the
contradiction follows immediately: since L is well defined, ϕ(θ •λ )≡ ψ(θ •λ ) implies F(ϕ)T ∗ ◦
(θ •λ )≡ F(ψ)T ∗ ◦ (θ •λ ), and then λ̂ = T ∗ ◦ (θ •λ ) is a unifier of F(ϕ) = F(ψ). Hence, let us
analize the case in which F(ϕ) = F(ψ) has unifiers and λ̂ = T ∗ ◦ (θ •λ ) is one of them. Since
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F : Σ→ Ω is not unifiable respect to T , λ̂ is not compatible with θ • λ and then, there exists a
lifting λ ◦ of θ •λ which satisfies π ◦λ ◦ = θ •λ and π ◦T ◦ ◦λ ◦ , λ̂ . From the first expression,
T ∗ ◦ (θ •λ ) = T ∗ ◦ (π ◦λ ◦) = λ̂ and since (π ◦T ◦)◦λ ◦ , λ̂ , we get T ∗ ◦π , π ◦T ◦. From Lemma
3 in Chapter 2, T is not extensible, which contradicts the hypotheses of the theorem. �

The goal of the following discussion is to drop the assumption “Σ is disjoint” in the earlier
theorem. To this aim, let us consider a fixed order in the set of variables V = {z1,z2, ...}. We
shall be interested in the case where Σ is finite. Let us consider a particular ordering for Σ =

{ϕ1, ...,ϕm}. Given a formula translation F : Σ→ Ω, we construct inductively a finite family of
invertible substitutions {φϕi}m

i=1 as follows: For each i = 1, ...,m, write V (ϕi) = {x1, ...,xn} and
consider the invertible substitution φϕi = {x1 ← w1, ...,xn ← wn} where w1, ...,wn are the first n

variables in V which satisfy: for any k ∈ {1, ...,n}, the variable wk does not occur in any formula
ϕ ∈ Σ neither it occurs in any term ϕ jφϕ j with j < i.

Definition 16. Let F : Σ→ Ω be a formula translation where Σ = {ϕ1, ...,ϕn} is a finite set. We
define the disjoint formula translation associated to F as the formula translation F ′ : Σ′→Ω′ where
Σ′ = {ϕφϕ}ϕ∈Σ, Ω′ = {F(ϕ)φϕ}ϕ∈Σ∪ (Ω\ Im(F)) and F ′ is given by F ′(ϕφϕ) = F(ϕ)φϕ .

Observe that Σ′ is disjoint. Additionally, notice that Σ′⊗Π = Σ⊗Π when we consider any set
Π of terms. Now we are ready to prove another version of Theorem 12.

Theorem 13 (Second Extension Characterization). Let F : Σ→ Ω be a formula translation where

Σ is finite and let T : Π→ Ψ be an extensible term translation. The following statements are

equivalent:

1. The disjoint formula translation F ′ : Σ′→Ω′ associated to F is unifiable respect to T .

2. The mapping L : Σ⊗Π→Ω⊗Ψ given by

L(ϕρ) = F(ϕ)(T ∗ ◦ρ),

is well defined.

Proof. To show that 1 implies 2, let us assume that the disjoint formula translation F ′ : Σ′ → Ω′

associated to F is unifiable respect to T . By Theorem 12 above, the mapping L′ : Σ′⊗Π→Ω′⊗Ψ
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given by L′((ϕφϕ)ρ) = F ′(ϕφϕ)(T ∗ ◦ ρ) is well defined. It is easy to see that the substitution
φ−1

ϕ •ρ is in Π∗ and then, there exists a well defined mapping L0 : Σ⊗Π→Ω⊗Ψ given by:

L0(ϕρ) = F ′(ϕφϕ)T ∗ ◦ (φ−1
ϕ •ρ) = F(ϕ)φϕ • (T ∗ ◦ (φ−1

ϕ •ρ))

= F(ϕ)T ∗ ◦ (φϕ •φ
−1
ϕ •ρ) = F(ϕ)(T ∗ ◦ρ).

Therefore, the equality ϕρ ≡ ψγ implies that L0(ϕρ) ≡ L0(ψγ). The above computations show
that ϕρ ≡ ψγ only if F(ϕ)(T ∗ ◦ρ)≡ F(ψ)(T ∗ ◦ γ). Hence, the mapping L : Σ⊗Π→Ω⊗Ψ of 2
is well defined.

Let us show that 2 implies 1. Since L(ϕρ) = F(ϕ)(T ∗ ◦ ρ) is well defined, there is a well
defined mapping L1 : Σ⊗Π→Ω⊗Ψ given by:

L1(ϕρ) = L(ϕ (φϕ •ρ)) = F(ϕ)T ∗ ◦ (φϕ •ρ) = F(ϕ)(T ∗ ◦φϕ)• (T ∗ ◦ρ)

= F(ϕ)φϕ • (T ∗ ◦ρ) = F ′(ϕφϕ)(T ∗ ◦ρ).

The above computations show that the disjoint formula translation F ′ : Σ′→ Ω′ associated to F is
extended by L1 which is well defined. Since Σ′ is disjoint, Theorem 12 ensures that the mapping
F ′ is unifiable respect to T . �

3.1.3 Sufficient Conditions

For a formula translation F : Σ→ Ω and a term translation T : Π→Ψ, Theorem 12 and Theorem
13 make use of minimal substitutions in order to characterize when the mapping L : Σ⊗Π→Ω⊗Ψ

is well defined by L(ϕρ) = F(ϕ)(T ∗ ◦ρ). However, minimal substitutions are theoretical devices
which, in computational models or applications might be hard to work with. This section presents
other versions of these theorems which make use of a restricted family of minimal substitutions
and, hopefully, for applications they might be more useful than the general Theorems.

Definition 17. Let T : Π→Ψ be an extensible term translation. A formula translation F : Σ→ Ω

will be called strongly unifiable respect to T if for every pair of formulas ϕ,ψ ∈Σ, every idempotent
mgu θ of equation ϕ = ψ satisfies:

1. If θ is not in Π∗, then θ •α is not in Π∗ for every substitution α .
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2. If θ is in Π∗, then there exists a unifier θ̂ of F(ϕ) = F(ψ) in Ψ∗ compatible (through T ) with
θ .

According to Definition 17, to verify that F : Σ→Ω is strongly unifiable respect to T , we must
go over all the pairs of formulas ϕ,ψ ∈ Σ checking that every idempotent mgu of the equation
ϕ = ψ satisfies conditions 1 and 2 above. However, the following result, which follows directly
from Lemma 10 and Proposition 12, shows that for each equation ϕ = ψ , it is enough to find just
one idempotent mgu satisfying conditions 1 and 2.

Corollary 14. Let T : Π→Ψ be an extensible term translation. A formula translation F : Σ→Ω is

strongly unifiable (respect to T ) iff every pair of formulas ϕ,ψ ∈ Σ satisfies one of the two following

conditions:

• There are no unifiers of equation ϕ = ψ .

• There exists an idempotent mgu θ of equation ϕ = ψ which satisfies:

1. If θ is not in Π∗, then θ •α is not in Π∗ for every substitution α .

2. If θ is in Π∗, then there exists a unifier θ̂ in Ψ∗ of F(ϕ) = F(ψ) compatible (through

T ) with θ .

Let F : Σ→Ω be a formula translation which is strongly unifiable respect to a term translation
T . Let ϕ,ψ ∈ Σ such that Uni f (ϕ = ψ) , /0 and let θ be an mgu of such set. Observe that there are
two cases:

• If θ is not in Π∗: Since every substitution α makes the substitution θ •α being not in Π∗,
there are no minimal substitutions (for Π) respect to θ .

• If θ is in Π∗: From the definition of minimal substitutions, the only minimal substitutions
(for Π) respect to θ are substitutions of variables φ : V →V .

From this observation follows that any formula translation F : Σ→ Ω which is strongly unifiable
respect to a term translation T , is unifiable respect to T . We can then state two new theorems,
which are versions of Theorem 12 and Theorem 13.
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Theorem 15. Let T : Π→ Ψ be an extensible term translation. Let F : Σ→ Ω be a formula

translation with Σ disjoint. If F : Σ → Ω is strongly unifiable respect to T , then the mapping

L : Σ⊗Π→Ω⊗Ψ given by

L(ϕρ) = F(ϕ)(T ∗ ◦ρ),

is well defined.

Proof. If F : Σ→ Ω is strongly unifiable respect to T , then it is unifiable respect to T . Therefore,
this theorem is a direct consequence of Theorem 12. �

Theorem 16. Let T : Π→ Ψ be an extensible term translation. Let F : Σ→ Ω be a formula

translation with Σ finite. If the disjoint formula translation F ′ : Σ′ → Ω′ is strongly unifiable

respect to T , then the mapping L : Σ⊗Π→Ω⊗Ψ given by

L(ϕρ) = F(ϕ)(T ∗ ◦ρ),

is well defined.

Proof. If F ′ : Π′→Ψ′ is strongly unifiable respect to T , then it is unifiable respect to T . Therefore,
this theorem is a direct consequence of Theorem 13. �

3.2 Extending Formula Translations by Formula Morphisms

In this section we look for conditions which enable us to extend formula translations F : Σ→Ω by
mappings wich preserve the structure of the logical relations ocurring in formulas. First, observe
that Form(L S) can be seen as an algebra whose signature is

F = {∨,∧,¬} (3.2)

where ∧ and ∨ are binary function symbols and ¬ is a unary function symbol. Since formulas are
elements of this algebra, we shall represent formulas by using an adaptation of the graph-based
technique to represent terms, which was introduced in section 2.4.
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3.2.1 Formula Morphisms

We begin this section by presenting some basic definitions which are necessary to express the
problem addressed in this section:

Definition 18. Let Σ ⊆ Form(L S) be a nonempty set of formulas, the set Σ+ ⊆ Form(L S) is
defined as the minimal set which satisfies:

1. if ϕ ∈ Σ, then ϕ ∈ Σ+.

2. if ϕ ∈ Σ+, then ¬ϕ ∈ Σ+.

3. if ϕ,ψ ∈ Σ+, then ϕ ∧ψ ∈ Σ+.

4. if ϕ,ψ ∈ Σ+, then ϕ ∨ψ ∈ Σ+.

Definition 19. A formula translation F+ : Σ+→ Ω+ is called a formula morphism when satisfies
the following conditions:

• If ϕ,ψ ∈ Σ+, then F+(ϕ ∧ψ) = F+(ϕ)∧F+(ψ).

• If ϕ,ψ ∈ Σ+, then F+(ϕ ∨ψ) = F+(ϕ)∨F+(ψ).

• If ϕ ∈ Σ+, then F+(¬ϕ) = ¬F+(ϕ).

Let F : Σ→ Ω be a formula translation. We want to study if it is possible to extend F to a
formula morphism F+ : Σ+ → Ω+. Next example shows that such extension can not always be
achieved.

Example 8. Let us consider two signatures, namely L1 = {R,G} and L2 = {R,G } where all sym-
bols are unary relation symbols. Set Σ = {G(x),R(y),G(x)∨ R(y)}, Ω = {G (x),R(y),G (x)∧
R(y)} and let F : Σ→ Ω be the only definable formula translation between Σ and Ω. Assume
that there were a formula morphism F+ : Σ+→Ω+ extending F . Such F+ must satisfy F+(G(x)∨
R(y))≡ G (x)∨R(y) since it is a formula morphism and F+(G(x)∨R(y))≡ G (x)∧R(y) because
F+ extends F . This two conditions are impossible to satisfy and then F+ does not exists.
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The above example emphasizes the issue: F does not take care of the fact that Σ+ allows two
different ways of building the formula G(x)∨R(y). Next section introduces a method which enables
us to characterize those formula translation that can be extended to formula morphisms.

3.2.2 Trees Over a Formula Set and Characterization Lemma.

In order to handle different ways of building a formula ϕ ∈ Σ+, we introduce a graph-based rep-
resentation of formulas, analogous to the representation introduced for terms in Chapter 2, Section
2.4. Recall that for a directed graph G = (N,E) we denote the arc which begins at node v and ends
at node u by vu, the set δ (v) = {vu ∈ E | u ∈ N } is the set of arcs which begin at node v and the
definition of the signature

F = {∨,∧,¬}

Definition 20. Let Σ ⊆ Form(L S) be a non empty set. A tree over Σ is a 3-tuple (G,ν ,e) where
G = (N,E) is a rooted directed tree and ν : N→ Σ∪F , e : E→{1,2} are two mappings such that
for any node v ∈ N:

• v is a leaf if and only if ν(v) is a formula ϕ ∈ Σ.

• If v is not a leaf, then there are two exclusive alternatives for ν(v):

1. if ν(v) = ¬, then there is exactly one arc vu and e(vu) = 1.

2. if ν(v) = ∧ or ν(v) = ∨, then there are exactly two arcs steaming from v, namely vu1

and vu2 such that e(vu1) = 1 and e(vu2) = 2.

Let (G,ν ,e) be a formula tree over Σ. We call the label of the node v to ν(v) and the order

of the arc uv to e(uv) (see Figure 3.1). With this new terminology, a tree over Σ is a directed tree
(N,E) with root r, labeled nodes and ordered arcs such that every node satisfies: if the node is a
leaf, then its label is a formula in Σ. Otherwise, the number of childrens of the node is equal to
the arity of its label (which is a logical operation). Observe that the set of arcs steming from each
node v is an ordered set and then, two trees wich differ only in the ordering of δ (v) for some v, are
different. Figure 3.1 shows an example: the tree depicted in (c) is different from the tree depicted
in (d).

74



3.2. Extending Formula Translations by Formula Morphisms

Figure 3.1: Different formula trees, where the tree depicted in (b) is atomic.

When Σ is clear from the context, we shall say “a tree” instead of “a tree over Σ”. Because we
shall use induction for some proofs, we introduce the length of a tree as the cardinality of the set of
arcs of its longest directed path. A tree which has only one node (the root node) is called atomic,
otherwise it is called proper. When working with proper trees we shall adopt a self exaplanatory
notation that resembles the algebra of formulas: Let a be a proper tree whose root node r is labeled
by a connective c ∈F . We shall write ai to denote the subtree of a whose root is the i-th children
of r. Then, depending on the logical connective c we shall write ¬a1 or a1∧a2 or a1∨a2 instead
of a.

We define the set Σ◦ as the set of all trees over Σ. For a given a formula translation F : Σ→Ω,
we define the mapping F◦ : Σ◦→Ω◦ which acts in a tree a = (G,ν ,e) ∈ Σ◦ as follows:

F◦(a) = (G,F ◦ν ,e) ∈Ω
◦

where we have considered a mapping F : Σ∪F → Ω∪F extended to act as the identity on the
symbols belonging to F . This definition means that F◦ acts on a tree a by simply looking at its
leaves and reeplacing their labels ϕ ∈ Σ by F(ϕ) ∈ Ω. For example, consider Σ = {ϕ1,ϕ2,ϕ3},
Ω = {ψ1,ψ2,ψ3} and let F : Σ→ Ω be the formula translation determined by F(ϕi) = ψi for
i∈ {1,2,3}. The values of F◦ applied on the trees depicted in Figure 3.1 are drawn below in Figure
3.2.

Some straightforward properties of the mapping F◦ are described in the following proposition:
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Figure 3.2: The mapping F◦ applied to trees depicted in Figure 3.1.

Proposition 13. Let F : Σ→ Ω be a formula translation. The mapping F◦ : Σ◦→ Ω◦ satisfies the

following properties:

• F◦(¬a1) = ¬F◦(a1).

• F◦(a1∧a2) = F◦(a1)∧F◦(a2).

• F◦(a1∨a2) = F◦(a1)∨F◦(a2).

Now we introduce a way to associate to every tree a∈ Σ◦, a formula µ(a)∈ Σ+. Let us consider
the mapping µ : Σ◦→ Σ+, defined in the following inductive way:

• If a is atomic, then µ(a) = ν(r).

• If a = ¬a1, then µ(a) = ¬µ(a1).

• If a = a1∧a2, then µ(a) = µ(a1)∧µ(a2).

• If a = a1∨a2, then µ(a) = µ(a1)∨µ(a2).

Take for example the trees in Figure (3.1). The mapping µ associates the following formulas to
these trees: ϕ1∨ϕ2 for (a), ϕ1 for (b), ¬ϕ1∧¬(ϕ2∨ϕ3) for (c) and ¬(ϕ2∨ϕ3)∧¬ϕ1 for (d). It
can be shown by using an inductive argument that µ : Σ◦→ Σ+ is a surjective mapping and then,
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for any formula ϕ ∈ Σ+ there exists at least one tree a ∈ Σ◦ such that µ(a) ≡ ϕ . In such case, we
say that a is a lifting of ϕ .

Lemma 17 (Characterization Lemma). Let F : Σ→ Ω be a formula translation. A formula trans-

lation F+ : Σ+→ Ω+ is a formula morphism extending F if and only if F+ ◦ µ = µ ◦F◦ i.e., the

following diagram commutes:

Σ◦
F◦ //

µ

��

Ω◦

µ

��
Σ+ F+

//
Ω+

Proof. Let us assume that F+ is a formula morphism which extends F . We must show that for any
a ∈ Σ◦, F+ ◦ µ(a) ≡ µ ◦F◦(a). To this aim, we will use induction on the length of a. The base
step is proved for n = length(a) = 0. In this case a and F◦(a) are atomic and then µ(a) ∈ Σ and
µ(F◦(a)) ∈ Ω. As F+ extends F , µ(F◦(a)) ≡ F(µ(a)) ≡ F+(µ(a)). The induction step is done
by showing that for any tree a with n = length(a) > 0, F+ ◦ µ(a) = µ ◦F◦(a), assuming that last
equation holds for any tree b such that length(b)< n. Consider the three possible alternatives:

1. a = ¬a1.

2. a = a1∧a2.

3. a = a1∨a2.

We shall analize only the first case, since the other alternatives are handled in an analogous way.
Let us assume that a = ¬a1. Since length(a1) < length(a), by applying the induction hypothesis
and since F+ is a formula morphism, we obtain that :

F+(µ(a))≡ F+(¬µ(a1))≡ ¬F+(µ(a1))≡ ¬µ(F◦(a1))≡ µ(¬F◦(a1))≡ µ(F◦(¬a1))

≡ µ(F◦(a)).

From the proof of 1 and the analog proofs of 2 and 3, we conclude that for every a∈Σ◦, µ(F◦(a))≡
F+(µ(a)) holds.

Conversely, let us assume now that the term translation F+ : Σ+→Ω+ makes the above diagram
commute. That F+ extends F follows from the equalities F+ ◦µ(a) = µ ◦F◦(a) for every atomic
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tree a. Let us show that F+ is a formula morphism. To this aim, let us take ψ,ξ ∈ Σ+ with liftings
aψ and aξ respectively. The following computation (together with identical ones for the rest of the
connectives) shows that F+ is a formula morphism:

F+(ψ ∧ξ ) = F+(µ(aψ ∧aξ )) = µ(F◦(aψ ∧aξ )) = µ(F◦(aψ))∧µ(F◦(aξ ))

= F+(ψ)∧F+(ξ ).

�

Last lemma (Lemma 17) together with the fact that µ is surjective, show that when the formula
morphism F+ : Σ+→Ω+ extending F exists, it must be unique.

3.2.3 Characterization Theorems

Let “∼” be the equivalence relation on Σ◦ determined by the fibers of the mapping µ . That is, for
a,b ∈ Σ◦, a ∼ b if and only if µ(a) ≡ µ(b). Let us denote by a the equivalence class of a and by
Σ◦/ ∼, π : Σ◦→ Σ◦/ ∼ the quotient set of Σ◦ and its associated projection mapping respectively.
Note that since µ is a surjective mapping, there is a natural bijection i : Σ◦/∼→ Σ+.

Theorem 18. Let F : Σ→Ω be a formula translation. Next two conditions are equivalent:

• For every a,b ∈ Σ◦, a∼ b implies F◦(a)∼ F◦(b).

• There exists a formula morphism F+ : Σ+→Ω+ extending F.

Proof. Let us assume that for every a,b ∈ Σ◦, a ∼ b implies F◦(a) ∼ F◦(b). Then, F ′ : Σ◦/ ∼→
Ω◦/∼, defined by:

F ′(a) = F◦(a) (3.3)

is a well defined mapping which makes following diagram commute:

Σ+ Σ◦

π

��

µ
oo F◦ // Ω◦

π

��

µ

##GGGGGGGGG

Σ◦/∼
i

ccFFFFFFFF
F ′ // Ω◦/∼ i //

Ω+
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Let us take F+ = i◦F ′ ◦ i−1. Then, by Lemma 17, F+ is a formula morphism which extends F .

Conversely, assume that there exists a formula morphism F+ : Σ+→ Ω+ extending F . Let us
take a,b ∈ Σ◦ such that a∼ b. Therefore µ(a)≡ µ(b), which implies that F+(µ(a))≡ F+(µ(b)).
Applying Lemma 17, we obtain that µ(F◦(a))≡ µ(F◦(b)). Therefore, F◦(a)∼ F◦(b). �

The conditions given in theorem 18 are hard to verify because they must be checked in every
pair of trees of the infinite set Σ◦. For the case of terms in chapter 2, we used unification theory
in order to work out the respective conditions and express them in a way easier to verify. Un-
fortunately, we know of no analogous theory to apply in the case of formulas. Nevertheless, we
can borrow some ideas from unification theory and apply them here. Let us consider an algorithm
which is an adaptation of the well known Unification Algorithm for terms. From now on, we shall
denote by aϕ a tree a ∈ Σ◦ which is atomic and whose only label is ϕ ∈ Σ. Notice that bϕ , pϕ ,qϕ

will have the same meaning.

Adapted Unification Algorithm for Formula Trees

The input for this algorithm is a pair of trees a,b ∈ Σ◦. During its execution, the algorithm keeps a
set of pairs of trees E, initially set E = {(a,b)}. The algorithm chooses any pair of trees from the
set E to wich a numbered step from below applies (the action taken by the algorithm is determined
by the form of the pair of trees selected):

1.a (c(a1,a2),c(b1,b2)) Replace the pair in E by the pairs (a1,b1),(a2,b2).
1.b (c(a1),c(b1)) Replace the pair in E by the pair (a1,b1).
2. (c1(a),c2(b)) where c1 , c2. Halt with failure.
3. (a,bϕ) where a is non atomic. Replace by the pair (bϕ ,a).
4. (aϕ ,bψ) where ϕ . ψ . Halt with failure.

where c,c1,c2 ∈F are logical connectives. Notice that the first step has options (a) and (b) for
cases where the connectives are unary and binary respectively. The algorithm ends when failure
has been returned or when no step can be applied. In the latter case, the algorithm returns the set E

as output.

It is easy to see that the algorithm ends: An application of the step 1 diminishes strictly the total
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number of nodes present in the trees in E. Additionally, step 3 can be applied consecutively just to
a finite number of pairs of nodes in E before applying a step of another kind. Therefore, for any
input, after a finite number of times of applying (1) or (3), the algorithm either fails or returns the
set E as output.

We say that a set of pairs of trees E = {(a1,b1), ...,(an,bn)} is adequate when ai ∼ bi, for
all i ∈ {1, ..,n}. In order to prove Lemma 19 below, we shall need the following straightforward
proposition.

Proposition 14. The next assertions hold:

1. a1∧a2 ∼ b1∧b2 if and only if a1 ∼ b1 and a2 ∼ b2.

2. a1∨a2 ∼ b1∨b2 if and only if a1 ∼ b1 and a2 ∼ b2.

3. ¬a1 ∼ ¬b1 if and only if a1 ∼ b1.

Lemma 19. Let a,b∈ Σ◦ be the input for the Adapted Unification Algorithm. If the algorithm fails,

then a / b. Otherwise, the output D is adequate if and only if a∼ b.

Proof. It is clear that the algorithm fails, only if a / b. Let us assume that the adapted unification
algorithm does not fail and outputs a set D of pairs of trees. At each application of steps 1 or 3, the
algorithm replaces its set E of pairs of trees by a new set E ′ of pairs of trees. From proposition 14
follows directly that E is adequate if and only if E ′ is adequate. Since initially E = {(a,b)}, we
conclude that a∼ b if and only if the output of the algorithm is adequate. �

Next theorem yields a characterization which is one of the goals for this section. Before pre-
senting the theorem, let us consider the set all liftings of formulas in Σ given by

µ
−1(Σ) = {a ∈ Σ

◦ | µ(a) ∈ Σ}. (3.4)

Theorem 20 (First Characterization Theorem). Let F : Σ→ Ω be a formula translation. The fol-

lowing two assertions are equivalent:

1. For every pair of trees a,b ∈ µ−1(Σ), a∼ b implies F◦(a)∼ F◦(b).
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2. There exists a formula morphism F+ : Σ+→Ω+ extending F.

Proof. Because of Theorem 18, we can ensure that assertion 2 is equivalent to

3. For every c,d ∈ Σ◦, c∼ d implies F◦(c)∼ F◦(d).

Since µ−1(Σ)⊆ Σ◦, it is clear that 2 implies 1.

Instead of proving 1⇒ 2, we are going to prove that 1⇒ 3. Assume that assertion 1 holds. Let
us take c,d ∈ Σ◦ such that c∼ d. We must show that F◦(c)∼ F◦(d). Since c∼ d, if we apply the
Adapted Unification Algorithm to (c,d), the algorithm must return an adequate set of pairs of trees
E with form E = {(pϕ1, p1), ...,(pϕk , pk)} (otherwise, the steps 1 or 3 of the algorithm could be
further applied). Crucially, observe that the output of the Adapted Unification Algorithm depends
exclusively on the graph structure and the labels of the non-leaf nodes of the input. Additionally,
observe that the trees c and F◦(c) are isomorphic as directed trees and they have the same labels in
the non-leaf nodes (and the same is true for trees d and F◦(d)). Therefore, if we apply the Adapted
Unification Algorithm to the pair (F◦(c),F◦(d)), the algorithm must not fail and it must return a
set of pairs of trees E ′ = {(qF(ϕ1),F

◦(p1)), ...,(qF(ϕk),F
◦(pk))}. Since E is adequate, we can use

assertion 1 to conclude that qF(ϕi) ∼ F◦(pi) for every i ∈ {1, ..,k}. Therefore, E ′ is adequate, and
then F◦(c)∼ F◦(d). �

Formula Morphisms and Substitutions of Terms

Let T : Π→Ψ be an extensible term translation. We shall say that a formula translation F : Σ→Ω

is extensible respect to T when the formula translation L : Σ⊗Π→ Ω⊗Ψ given by L(ϕρ) =

F(ϕ)T ∗ ◦ρ is well defined. In other words, formula translations F : Σ→ Ω which are extensible
respect to T are those characterized by Theorem 12 and Theorem 13. Additionally, Theorem 15
and Theorem 16 have provided conditions that guarantee that F : Σ→Ω is extensible respect to T .

Let T : Π→Ψ be an extensible term translation and F : Σ→ Ω a formula translation which is
extensible respect to T . Let L : Σ⊗Π→Ω⊗Ψ be the formula translation defined by

L(ϕρ) = F(ϕ)T ∗ ◦ρ. (3.5)
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The aim of this section is to find conditions ensuring that L can be extended to a formula morphism
L+ : (Σ⊗Π)+→ (Ω⊗Ψ)+. Observe that Theorem 20 gives one of such conditions: For every pair
of trees a,b ∈ µ−1(Σ⊗Π), if a∼ b, then L◦(a)∼ L◦(b). Notice that such condition seems hard to
verify because the definition of Σ⊗Π makes µ−1(Σ⊗Π) an infinite set even when Σ is finite. At
the end of this section, we shall present Theorem 24 which gives conditions ensuring that L can be
extended to a formula morphism L+ : (Σ⊗Π)+→ (Ω⊗Ψ)+ and those conditions are described
in terms of the set Σ◦. Additionally, conditions in Theorem 24 require checking a finite number
(exponential though) of conditions in the case when Σ is finite.

From now on, we give a rather arbitrary but fixed order to the leaves of any formula tree. Given
any formula tree, consider its leaves with the order determined by the visit of its nodes in a Depth
First Traversal fashion ruled by the pattern: visit the root, then follow the arc with order 1 and
finally follow the arc with order 2, if it exists. This is just the way we have chosen to identify each
leaf of a given tree with a number. Additionally, we assume that the set V of variables is an ordered
set.

Definition 21. Let b ∈ (Σ⊗Π)◦ be a formula tree with length n and let β be a substitution in Π∗.
The formula tree denoted by bβ is the formula tree determined by the next rule which is inductive
on the length of b.

• If b is atomic and ϕ is its only label, then bβ is the atomic tree whose only label is ϕβ .

• If b = ¬a, then bβ = ¬(aβ ).

• If b = a1∧a2, then bβ = (a1β )∧ (a2β ).

• If b = a1∨a2, then bβ = (a1β )∨ (a2β ).

Next straightforward lemma follows directly from the definition of bβ .

Lemma 21. Let b ∈ (Σ⊗Π)◦ and let β be a substitution in Π∗. Then,

µ(bβ )≡ µ(b)β

Proof. We are going to proof this lemma by induction on n which is the length of b. The base step
is done by showing the result for n = 0. If n = 0, b is an atomic three and it has only one label,
namely ϕ . It is clear that µ(b)β ≡ ϕβ ≡ µ(bβ ).
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The induction step is done by showing that our result holds for a tree of length n by assuming
that the lemma is true for any tree of lesser length. There are three cases, but we handle just two of
them because the other one is totally analogous.

First case: Assume that b=¬a. Notice that µ(b)β ≡ µ(¬a)β ≡¬µ(a)β . Because the length of
a is less than the length of b, the induction hypotheses ensures us that µ(a)β ≡ µ(aβ ). Therefore,
the result follows from the next computations: µ(b)β ≡¬µ(a)β ≡¬µ(aβ )≡ µ(¬(aβ ))≡ µ(bβ ).

Second case: b = a1∧a2. Notice that µ(b)β ≡ µ(a1∧a2)β = µ(a1)β ∧µ(a2)β . The induction
hypotheses applied on a1 and a2 ensures us that µ(a1)β = µ(a1β ) and µ(a2)β = µ(a2β ). Then, the
following computations hold: µ(b)β ≡ µ(a1)β ∧µ(a2)β ≡ µ(a1β )∧µ(a2β ) ≡ µ(a1β ∧a2β ) =

µ(bβ ). The case when b = a1∨a2 is handled in the exact same way. �

For any tree b ∈ Σ◦ with leaves {1,2, ...,n}, we are going to associate a tree b∗ ∈ (Σ⊗Π)◦ and
a family of n substitutions {φi}n

i=1 in the following way: Let ϕ1, ...,ϕn ∈ Σ be the n labels on the n

leaves of b. Let us pick k ∈ {1,2, ...,n} and let let x1, ...,xm be the exact m free variables of the label
ϕk. It is easy to show that there is exactly one substitution φk which satisfies the following three
conditions: (1) it makes φk(xi) = zi, where {z1, ...,zm} are the first m variables in V which satisfy:
for any i ∈ {1, ...,m}, the variable zi does not occur free in any formula in Σ neither it occurs free in
any formula ϕ jφ j with j < k, (2) it is invertible (and thus φ

−1
k = φk), and (3) its domain has minimal

cardinality. We write b∗ to denote the tree which results of reeplacing the label ϕi of the tree b by
the label ϕiφi, for i = 1,2, ....,n. We say that b∗ is the twin of b and the substitutions in {φ j}n

j=1 are
the substitutions of the twin b∗.

Notice that b and b∗ are isomorphic as directed trees and that they both have the exact same
labels in the non-leaf nodes. Crucially, observe that the labels ϕ1φ1,ϕ2φ2, ...,ϕnφn on the leaves of
b∗ satisfy V (ϕiφi)∩V (ϕ jφ j) = /0, when i , j. That is, the leaves of b∗ have labels on them whose
sets of variables are mutually disjoint.

83



3.2. Extending Formula Translations by Formula Morphisms

Now, let us associate to the formula tree b the substitution β : V →V defined by

β (x) =



φ
−1
1 (x), if x ∈V (ϕ1φ1),

φ
−1
2 (x), if x ∈V (ϕ2φ2),

... ...

φ−1
n (x), if x ∈V (ϕnφn),

x, otherwise.

(3.6)

and observe that the substitution β is well defined since V (ϕiφi)∩V (ϕ jφ j) = /0 when i , j. Next
proposition follows directly from the definitions in the preceding paragraphs.

Proposition 15. Let b ∈ Σ◦ be a tree with labels ϕ1,ϕ2, ....,ϕn. Let {φi}n
i=1 be the substitutions of

the twin b∗ and let β be the substitution defined by 3.6. Then, b∗β = b and µ(b∗)β ≡ µ(b).

Proof. Let us show that b∗β = b by using an inductive argument. Notice that b and b∗ are iso-
morphic as directed trees and that there exists only one of such isomorphisms. By using this
isomorphism, any subtree a of b determines uniquely a subtree a? of b∗. We are going to prove that
for any subtree a of b, a?β = a. In particular, it will show that b∗β = b.

We are going to use induction on the length of a. The base step is done for the case when a is
a leaf of b. In such case, a? is a leaf of b∗ and let ϕ be the only label on a. It means that a? has the
label ϕφ1, therefore a?β has the label ϕφ1β . From the definition of β it follows that ϕφ1β ≡ ϕ .
This shows that a?β = a.

The induction step is done when is shown that a?β = a holds for a subtree a whose length is
n > 0 by assuming that the proposition holds for any subtree of b with lesser length. There are three
cases, but we shall address just two of them because the other one is totally analogous.

First case: a = ¬a1. In this case, it is clear that a? = ¬a?1 where a1 is a subtree of a. Thus,
the length of a1 is lesser than n. It is clear that a?β = (¬a?1)β = ¬(a?1β ) and then by induction
hypotheses, we obtain that ¬(a?1β ) = ¬(a1) = a. This means that a?β = a.

Second case: a = a1 ∧ a2. In this case, it is clear that a? = a?1 ∧ a?2. Notice that a1,a2 are
subtrees of a and then both of them have a length lesser than n. Observe that a?β = (a?1∧a?2)β =
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(a?1β )∧ (a?2β ) and then by induction hypotheses, we conclude that (a?1β )∧ (a?2β ) = a1 ∧ a2 = a.
We have shown that a?β = a. The case a = a1∨a2 is handled in the exact same way. In particular
when a = b, a? = b∗. This observation shows that b∗β = b and an application of Lemma 21 shows
that µ(b∗)β ≡ µ(b) holds. �

Because of this last proposition, which ensures that b = b∗β and µ(b) = µ(b∗)β , we say that
the pair (b∗,β ) is the representation of b.

Proposition 16. Let T : Π→Ψ be an extensible term translation and let F : Σ→ Ω be a formula

translation. Assume that L : Σ⊗Π→ Ω⊗Ψ is well defined by L(ϕρ) ≡ F(ϕ)T ∗ ◦ρ . Let b ∈ Σ◦

and (b∗,β ) its representation. For any substitution γ in Π∗, L◦(bγ) = (L◦(b∗)β ) T ∗ ◦ γ .

Proof. Let us assume that b has m leafs and that {φi}m
i=1 are the substitutions of the twin b∗. Let

us show this lemma by using an inductive argument. Notice that the trees L◦(b) and L◦(b∗) are
isomorphic as trees and there exists only one isomorphism between these trees. We associate to
every subtree a of b the subtree a? of b∗ which is determined by such isomorphism. We are going
to show that for every subtree a of b and the associated subtree a? of b∗ it holds that L◦(aγ) =

(L◦(a?)β ) T ∗ ◦ γ . In particular, this will show that L◦(bγ) = (L◦(b∗)β ) T ∗ ◦ γ .

We are going to use induction on the length of the subtree a. When the length of a is zero, it is a
leaf. Let us assume that a is a leaf whose label is a formula ϕ1 ∈ Σ. Then, the only label of L◦(aγ)

is F(ϕ1)T ∗ ◦ γ . On the other hand, the only label of a? is the formula ϕ1φ1 and then, the unique
label of L◦(a?) is L(ϕ1φ1)≡ F(ϕ1)T ∗ ◦φ1 ≡ F(ϕ1)φ1 because T ∗ acts as the identity on variables.
Since F preserves variables, it is clear that (L◦(a?)β ) T ∗ ◦ γ has the formula (F(ϕ1)φ1β ) T ∗ ◦ γ ≡
F(ϕ1) T ∗ ◦ γ as its only label. We have shown that L◦(aγ) = (L◦(a?)β ) T ∗ ◦ γ .

The induction step is done by showing that L◦(aγ) = (L◦(a?)β ) T ∗ ◦γ holds when a is a subtree
of b with length n > 0 and we assume that the equality holds for any subtree of b whose length is
lesser than n. There are three cases depending on the root of a.

First case: Let a = ¬a1 and consequently a? = ¬a?1. The following computations use the fact
that L◦ has the properties described in Proposition 13: (L◦(a?)β ) T ∗ ◦ γ ≡ (L◦(¬a?1)β ) T ∗ ◦ γ ≡
¬(L◦(a?1)β ) T ∗ ◦ γ . In this last expression, an application of the induction hypotheses yields
¬(L◦(a?1)β ) T ∗◦γ ≡¬(L◦(a1γ))≡L◦(¬a1γ)≡L◦(aγ). We have shown that L◦(aγ)≡ (L◦(a?)β ) T ∗◦
γ .
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Second case: Let a = a1 ∧ a2 and consequently a? = a?1 ∧ a?2. Proposition 13 enables us to
perform the following computations: (L◦(a?)β ) T ∗ ◦ γ = (L◦(a?1 ∧ a?2)β ) T ∗ ◦ γ = (L◦(a?1)β ∧
L◦(a?2)β ) T ∗ ◦ γ = (L◦(a?1)β ) T ∗ ◦ γ ∧ (L◦(a?2)β ) T ∗ ◦ γ . Applying the induction hypothesis, we
obtain that last expression is equal to L◦(a1γ)∧L◦(a2γ) = L◦(a1γ∧a2γ) = L◦(aγ). We have shown
that L◦(aγ)≡ (L◦(a?)β ) T ∗ ◦ γ .

Third case: This case assumes that a = a1∨a2 which is handled in the exact same way that the
second case. �

Next, we define the set in which we shall be looking for conditions that Theorem 24 uses to
characterize those formula translation L that can be extended to a formula morphism L+. To this
aim, let us consider the trees b∈ Σ◦ whose twins b∗ are such that there exists unifiers of the equation
µ(b∗) = ϕ for some ϕ ∈ Σ. In other words, formally speaking, we define the next two sets:

∆Σ = {b ∈ Σ
◦ | exists ϕ ∈ Σ such that the equation µ(b∗) = ϕ has unifiers },

∆
∗
Σ = {b∗ ∈ (Σ⊗Π)◦ | b ∈ ∆Σ}

and observe that there is a one to one correspondence between ∆Σ and ∆∗
Σ
. Additionally, when Σ is

finite, these two sets are finite.

The next step to perform is to find a way to relate trees in ∆∗
Σ

with some trees in (Ω⊗Ψ)◦.
The ideal way to do that would be by using map L◦ : (Σ⊗Π)◦ → (Ω⊗Ψ). However, under the
assumption that T : Π→Ψ is a term translation and F : Σ→Ω a formula translation, the mapping
L might be not well defined and consequently the map L◦ would not be either. To avoid extra
hypotheses in Theorem 24 (requesting L being well defined), in what follows we define a map L?

which is always well defined and shall enable us to achieve the sought result.

Let T : Π→ Ψ be a term translation and F : Σ→ Ω a formula translation. Let b ∈ ∆Σ with k

leaves whose labels are ϕ1,ϕ2, ....,ϕk, let b∗ be its twin and {φ j}k
j=1 the substitutions of the twin

b∗. Define the mapping L? : ∆∗
Σ
→ (Ω⊗Ψ)◦ in the following way: the tree L?(b∗) is the result

of reeplacing in each leaf of b the label ϕi by the label F(ϕi)φi. Observe that b, b∗ and L?(b∗)

are isomorphic as directed trees. Because F preserves variables, for every i ∈ {1,2, ...,k} the label
F(ϕi)φi on the tree L?(b∗) has the exact same set of variables as the label ϕiφi of the twin b∗.
Finally, observe that sets of variables of the labels of L?(b∗) are mutually disjoint.
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Definition 22. Let T : Π→Ψ be a term translation and let F : Σ→Ω be a formula translation. We
say that F and T are coupled when for every ϕ ∈ Σ and every b ∈ ∆Σ, if θ is an idempotent mgu
of the equation ϕ = µ(b∗) and λ is a minimal substitution (for Π) respect to θ , then there exists an
unifier λ̂ in Ψ∗ of the equation F(ϕ) = µ(L?(b∗)) which is compatible with θ •λ .

Lemma 22. Let T : Π→Ψ be a term translation and F : Σ→Ω a formula translation. If F and T

are coupled, then F is unifiable respect to T .

Proof. Let us assume that F and T are coupled. To show that F is unifiable respect to T , take
ϕ,ψ ∈ Σ and let θ be an mgu of ϕ = ψ and let λ be a minimal substitution respect to θ . We
must show that there exists a unifier λ̂ in Ψ∗ of the equation F(ϕ) = F(ψ) compatible (through
T ) with θ •λ . Let us take the atomic tree bψ ∈ Σ◦ which satisfies µ(bψ) ≡ ψ and let (b∗,β ) be
its representation. Then bψ = b∗β and ψ ≡ µ(bψ) ≡ µ(b∗)β . Because θ is a unifier of (ϕ = ψ),
it follows that ϕθ ≡ ψθ ≡ µ(b∗)β •θ . From the definition of the representation (b∗,β ) it is clear
that β does not affect those variables in V (ϕ) and then ϕθ ≡ ϕ(β •θ)≡ µ(b∗)(β •θ) which means
that β •θ is a unifier of the equation ϕ = µ(b∗). If β •θ were not an mgu of ϕ = µ(b∗), then θ

would not be an mgu of ϕ = ψ . In other words, β •θ must be an mgu of ϕ = µ(b∗). Therefore,
since F and T are coupled, there must exist a unifier λ̂ of F(ϕ) = µ(L?(b∗)) which is compatible
with β •θ •λ and then

F(ϕ)λ̂ ≡ µ(L?(b∗))λ̂ .

Let us define a substitution γ in Ψ∗ by γ(x) = λ̂ (x) if x ∈ V (ϕ)∪V (ψ) and γ(x) = x otherwise.
Observe that the intersection of the sets of free variables V (F(ϕ)) and V (µ(L?(b∗))) must be empty
because of the definition of b∗ and the fact that F preserves variables. Therefore,

F(ϕ)λ̂ ≡ F(ϕ)γ. (3.7)

On the other hand, because λ̂ is compatible (through T ) with β • θ • λ , it is not difficult to
see that µ(L?(b∗))λ̂ ≡ µ(L?(b∗))β γ . Additionally, observe that µ(L?(b∗))β ≡ F(ψ) and then
µ(L?(b∗))λ̂ ≡ F(ψ)γ . From this and equality 3.7, we conclude that F(ϕ)γ ≡ F(ψ)γ which means
that γ is a unifier of the equation F(ϕ) = F(ψ). Because λ̂ is compatible with β • θ • λ , γ is
compatible with θ •λ . We have shown that F is unifiable respect to T . �

Notice that from last lemma together and an application of Theorem 12, it follows that when F

and T are coupled, F is extensible respect to T and consequently the map L : (Σ⊗Π)→ (Ω⊗Ψ)
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is well defined by L(ϕρ)≡ F(ϕ)T ∗ ◦ρ . In such case, it is easy to see that L◦ extends L?. We need
one more tool before presenting Theorem 24 which is the last theorem of this section:

Second Adapted Unification Algorithm for Formula Trees

The input for this algorithm is a pair of trees a,b ∈ (Σ⊗Π)◦. During its execution, the algorithm
keeps a set of pairs of trees E, initially set E = {(a,b)}. The algorithm chooses any pair of trees
from the set E to wich a numbered step from below applies (the action taken by the algorithm is
determined by the form of the pair of trees selected):
1.a (a1∧a2,b1∧b2) Replace the pair in E by the pairs (a1,b1),(a2,b2).
1.b (a1∨a2,b1∨b2) Replace the pair in E by the pairs (a1,b1),(a2,b2).
2 (¬a1,¬b1) Replace the pair in E by the pair (a1,b1).
3. (a1,bϕ) where a1 is non atomic. Replace by the pair (bϕ ,a1).
4. (a1,b1) if both a1,b1 are non-atomic and the labels on its roots are

different connectives, then halt with failure.
where bϕ denotes an atomic tree whose only label is the formula ϕ . The algorithm ends when
failure has been returned or when no step can be applied. In the latter case, the algorithm returns
the set E as output.

We can conclude easily that the algorithm ends: Any application of the steps 1 or 2 diminishes
strictly the total number of nodes in the trees belonging to E. Additionally, step 3 can be applied
consecutively just a finite number of times to different pairs of nodes in E before applying another
different step. Therefore, for any input, after a finite number of times of applying 1,2 or 3, the algo-
rithm either fails or returns the set E as output. It is clear that if the algorithm fails, µ(a). µ(b). On
the other hand, the goal of the above algorithm is to give the next straightforward characterization
for two trees a,b ∈ (Σ⊗Π)◦ which satisfy µ(a)≡ µ(b).

Lemma 23. Let a,b ∈ Σ◦ be the input for the Second Adapted Unification Algorithm. Assume that

the algoritm does not fails and outputs the set of trees E = {(aϕ1,b1),(aϕ2,b2), ...,(aϕm,bm)}. Then,

µ(a)≡ µ(b) if and only if for every i ∈ {1,2, ...,m},µ(aϕi)≡ ϕi ≡ µ(bi).

Proof. If µ(a) ≡ µ(b), it is clear that for every i ∈ {1,2, ...,m},µ(aϕi) ≡ ϕi ≡ µ(bi). The other
direction follows directly from the definition of µ and a simple analysis made to each one of the
steps defined in the Second Adapted Unification Algorithm. �
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Next, the main Theorem of this section.

Theorem 24 (Second Characterization Theorem). Let T : Π→Ψ be an extensible term translation

and let F : Σ→Ω be a formula translation. The two following sentences are equivalent.

1. The formula translation F and the term translation T are coupled.

2. There exists a formula morphism L+ : (Σ⊗Π)+ → (Ω⊗Ψ)+ which extends the formula

translation L : Σ⊗Π→Ω⊗Ψ defined by equation 3.5.

Proof. Let us show 1⇒ 2. Assume that the formula translation F and the term translation T are
coupled. Then, Lemma 22 ensures us that F is unifiable respect to T and the map L exists and is well
defined by L(ϕρ)≡ F(ϕ)T ∗ ◦ρ . To show that there exists a formula morphism L+ : (Σ⊗Π)+→
(Ω⊗Ψ)+ extending L, we are going to use Theorem 20. That is to say that we will show for every
pair of trees a,b ∈ µ−1(Σ⊗Π), if µ(a)≡ µ(b), then µ(L◦(a))≡ µ(L◦(b)). To this aim, let us take
a,b ∈ µ−1(Σ⊗Π) and assumme µ(a) ≡ µ(b). We must show that µ(L◦(a)) ≡ µ(L◦(b)). Let us
give to the Second Adapted Unification Algorithm the pair (a,b) as input and notice that because
µ(a)≡ µ(b), the algorithm does not fail and (wihout loss of generality) let us assume that it outputs
a set of pairs of trees:

D = {(aχ1,d
′
1),(aχ2,d

′
2), ...,(aχn,d

′
n)}.

Since µ(a)≡ µ(b), an application of Lemma 23 shows that χi ≡ µ(d′i) for i ∈ {1,2, ...,n}.

Notice that a and L◦(a) are isomorphic as trees and the same is true for b and L◦(b). Then, if
the input for the Second Adapted Unification Algorithm is the pair (L◦(a),L◦(b)), the algorithm
does not fail and outputs a set of pairs of trees

E = {(cL(χ1),L
◦(d′1)),(cL(χ2),L

◦(d′2)), ...,(cL(χn),L
◦(d′n))}.

Our strategy to prove this theorem is to show that L(χi) ≡ µ(L◦(d′i)) holds, for i ∈ {1,2, ..,n}.
Once done, an application of Lemma 23 yields µ(L◦(a)) ≡ µ(L◦(b)) and the theorem has been
shown. Let us execute this strategy by picking an arbitrary index k from {1,2, ...,n}. Such index
determines the pair (aχk ,d

′
k) and the pair (cL(χk),L

◦(d′k)) from D and E respectively. In order to
avoid a cumbersome notation, let us drop the subindex k and let us denote these pairs as (aχ ,d′)

and (cL(χ),L◦(d′)) respectively. If we can show that L(χ)≡ µ(L◦(d′)) by assuming that χ ≡ µ(d′),
the proof is complete since the forgotten index was chosen arbitrarily.
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Observe that d′ is a formula tree over (Σ⊗Π)+ and that χ belongs to (Σ⊗Π). Let us assume
without loss of generality that the leaves of d′ are ψ1,ψ2, ...,ψm. Because these labels belong to
Σ⊗Π, there exists ϕ1,ϕ2, ...,ϕm ∈ Σ and substitutions ρ1,ρ2, ...,ρm in Π∗ such that ψi = ϕiρi for
i ∈ {1,2, ...,m}. Set a new tree denoted by d as the one obtained by reeplacing the ψ-labels on d′

by ϕ-labels. Notice that d and d′ are isomorphic as trees. Observe that d ∈ Σ◦ and then it has a
twin d∗ and let {φ j}m

j=1 be the substitutions of the twin d∗. Let us define a substitution ρ given by
ρ(x) = x(φ−1

i •ρi), if x ∈V (ϕiφi) for i ∈ {1,2, ...,m} and ρ(x) = x otherwise. Observe that ϕiφi is
the label on the leaf i of the twin d∗ and then, it is clear that ρ is well defined because the sets of
variables V (ϕiφi) are mutually disjoint. From the definition of ρ , it is clear that d∗ρ = d′ holds and
then, an application of Lemma 21 yields

χ ≡ µ(d′)≡ µ(d∗)ρ (3.8)

Additionally, because χ ∈ Σ⊗Π, there exists ϕ ∈ Σ and a substitution γ in Π∗ such that χ ≡ ϕγ

and then, equation 3.8 above gives
ϕγ ≡ µ(d∗)ρ.

Because of the definition of the twin d∗, the sets V (ϕ) and V (µ(d∗)) are disjoint. Such property
enables us to ensure that there exists a unifier α of equation ϕ = µ(d∗), because we can define
α(x) = γ(x) if x ∈V (ϕ) and α(x) = ρ(x) otherwise. Let θ be a mgu of ϕ = µ(d∗) and then, since
α in Π∗, there exists a substitution λ minimal respect to θ and a substitution α ′ in Π∗ such that
θ • λ •α ′ = α . It is clear that d ∈ ∆Σ because ϕ ∈ Σ and d ∈ Σ◦ and then, since F and T are
coupled, there exists a unifier λ̂ of equation F(ϕ) = µ(L◦(d∗)) which is compatible with θ • λ .
Next computations shall help us to prove the sought result.

F(ϕ)λ̂ ≡ µ(L◦(d∗))λ̂

(F(ϕ)λ̂ ) T ∗ ◦α
′ ≡ (µ(L◦(d∗))λ̂ ) T ∗ ◦α

′

(F(ϕ)T ∗ ◦θ •λ ) T ∗ ◦α
′ ≡ (µ(L◦(d∗))T ∗ ◦θ •λ ) T ∗ ◦α

′

F(ϕ)T ∗ ◦ (θ •λ •α
′)≡ µ(L◦(d∗))T ∗ ◦ (θ •λ •α

′)

F(ϕ)T ∗ ◦α ≡ µ(L◦(d∗))T ∗ ◦α

From the last expression above together with the fact that F preserves variables and V (ϕ)∩V (µ(L◦(d∗)))=
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/0, it is clear that F(ϕ) T ∗ ◦ γ ≡ µ(L◦(d∗))T ∗ ◦ρ and then:

L(χ)≡ µ(L◦(d∗))T ∗ ◦ρ (3.9)

Finally, we conclude by making the observation that the tree L◦(d∗) T ∗ ◦ ρ is equal to the tree
L◦(d′). Such observation follows from two facts: (1) the trees d′ and d∗ are isomorphic as directed
trees implying that L◦(d′) and L◦(d∗) are isomorphic as directed trees, and (2) the fact that the i-th
leaf of L◦(d∗) T ∗ ◦ρ has the label F(ϕiφi)T ∗ ◦ρ ≡ (F(ϕi)φiφ

−1
i ) T ∗ ◦ρi ≡ F(ϕ)T ∗ ◦ρi which is

in fact the label on the i-th leaf of L◦(d′). Since L◦(d∗) T ∗ ◦ρ = L◦(d′), an application of Lemma
21 yields µ(L◦(d∗)T ∗ ◦ρ) ≡ µ(L◦(d∗)) T ∗ ◦ρ ≡ µ(L◦(d′)). From the last equality and equation
3.9, we conclude that L(χ) ≡ µ(L◦(d′)). The proof of 1⇒ 2 is ended by this equality. However,
it is worth noticing that because L is well defined, such equality does not depend on the selected
formulas ϕ,ϕ1,ϕ2, ....,ϕm ∈ Σ.

To show that 2⇒ 1, we present an argument which uses contradiction. Assume that there exists
a formula morphism L+ : (Σ⊗Π)+→ (Ω⊗Ψ)+ which extends L : Σ⊗Π→Ω⊗Ψ which is well
defined by equation 3.5 and assume that the formula translation F and the term translation T are not

coupled. The last assumption implies the existence of ϕ ∈ Σ, b ∈ ∆Σ, θ mgu of equation ϕ = µ(b∗)

and a minimal substitution λ respect to θ such that there is no unifier of the equation F(ϕ) =

µ(L◦(b∗)) compatible with α = θ •λ . In such case, notice that α is in Π∗ and ϕ α ≡ µ(b∗) α .
Because L+ exists and it is well defined, the last equality implies that

L+(ϕ α)≡ L+(µ(b∗) α) (3.10)

On the other hand, observe that the trees L◦(b∗α) and L◦(b∗)T ∗ ◦α are isomorphic as trees. Ad-
ditionally, it is not dificult to see that they both have the exact same labels on each of its leaves.
These observations can be used to show the following equality of trees:

L◦(b∗α) = L◦(b∗)T ∗ ◦α (3.11)

this equality of trees, together with Lemma 21 and the commutation of L+ and L◦ given by the
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Characterization Lemma, can be used to perform the following computations:

L+(µ(b∗)α)≡ L+(µ(b∗α))

≡ µ(L◦(b∗α))

≡ µ(L◦(b∗) T ∗ ◦α)

≡ µ(L◦(b∗)) T ∗ ◦α

the last line above together with the observation that L+(ϕ α) = F(ϕ)T ∗ ◦α (which holds because
ϕ ∈ Σ), enables us to rewrite equality 3.10 as:

F(ϕ)T ∗ ◦α ≡ µ(L◦(b∗)) T ∗ ◦α.

Therefore, T ∗ ◦α is an unifier of equation F(ϕ) = µ(L◦(b∗)) and since α = θ •λ , α is compatible
with θ •λ . This contradicts our initial assumption. We have shown that the existence of L+ implies
that F and T are coupled. �

We close this chapter making some comments regarding the implementation of last theorem in
a computer algorithm. Let T : Π→ Ψ be an extensible term translation and F : Σ→ Ω a formula
translation. If Σ is finite, we could implement an algorithm to verify the conditions of last theorem
in order to ensure that L is well defined and that L+ exists. Such algorithm should verify that F and
T are coupled. It implies to find the set ∆Σ, which is finite in case Σ is finite. Because there are
some well known efficient algorithms for dealing with the problem of unification (see for example
[80]), it is clear the design of an easy algorithm (exponential but finite in the case of looking for
all the combinations) that can be used to locate ∆Σ and then build L?(∆Σ). This can be done easily.
Now, the algorithm must pick all the pairs (ϕ,b) where ϕ ∈ Σ and b ∈ ∆Σ and check if they satisfy
the conditions of the Definition 22 (in order to verify that F and T are coupled). For checking these
conditions, there are three degrees of dificulty that we describe next. For an arbitrary pair (ϕ,b) let
us consider the equation ϕ = µ(b∗) and notice that there are three different cases:

1. There are no unifiers of ϕ = µ(b∗): In this case the condition is trivially satisfied.
2. The mgu θ of ϕ = µ(b∗) is a substitution in Π∗: In such case, every minimal substitution λ

change variables by variables. Therefore, if the algorithm verifies that the substitution T ∗ ◦θ

is an unifier of the equation F(ϕ) = L?(b∗), the condition is checked. With this strategy, the
verification of the condition is easy for this case.
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3. The mgu θ of ϕ = µ(b∗) is a substitution which is not in Π∗: In this case, because Σ is finite,
there must be a finite number of minimal substitutions λ . However, finding them all might be
challenging. If it can be done, the algorithm must verify that all the substitutions T ∗ ◦ (θ •λ )

are unifiers of the equation F(ϕ) = L?(b∗). If this is true, the condition is checked. More
research is needed in order to get a clear sense of the difficulty of this case.
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Chapter 4

Metaphor Model

4.1 Introduction

The mainstream of cognitive science research related to the study of metaphor has traditionally been
dominated by approaches which assume that a domain of knowledge can be represented by means
of a symbolic language together with its grammar (a set of rules to manipulate such symbolic
representations). For some examples of these approaches we recommend the reader to review
some of the models that are described under the label “symbolic models” in [64]. However, in
the last 20 years this perspective has been challenged from several directions within the cognitive
science field. One of such directions is a new trend on cognitive science called embodied cognition

which postulates the idea that the motor system strongly influences cognition, and that some of the
elements of the mind are represented in a distributed fashion and embedded into the entire human
body. The mathematical model for metaphor that we present in this chapter is based in some of the
ideas presented in the work of various researchers in such area. In particular, the model presented
in this chapter is influenced by the principles for metaphor postulated in [71] and [34].

In what follows we present a model for metaphor which is consistent with the idea that sym-
bolic and embodied approaches for understanding cognition are complementary. One of our key
hypothesis is that a domain of knowledge can be represented by two components. The first compo-
nent is a symbolic language associated to the domain and the second component is the semantics
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(or meaning) of such domain. Under this perspective, a metaphor between two domains of knowl-
edge shall emerge as the result of an interaction between four components: the languages and the
semantics associated to these domains. We are going to formalize these concepts by using some
basic concepts of model theory.

Let us provide now an outline of this chapter. The first section is called “Term Domains” where
our first model for knowledge domains is introduced. A little more complete model for knowledge
domains shall be obtained by adding some more structure to term domains. This is done in the
second section which is called “Formula Domains”.

The section 4.2 is devoted to term domains. In the first part, this section introduce some basic
concepts of model theory as structure, signature and homomorphism between structures. Next
section defines the set of symbolic constructions called terms which shall be the language associated
to term domains. The semantic counterpart of terms shall be a set of operations defined on a set
of objects belonging to the domain. Next, the model for metaphor is presented under the concept
of a homomorphism between term domains which is just a map that preserves the structure of term
domains. We end this section by presenting the key theorem (described in the next paragraph) for
term domains. In order to pursue its proof, we need to introduce some concepts such as quotient

domains and term morphisms and show some intermediate results.

The key result of the section devoted to term domains is presented in Theorem 31 and may
be summarized as follows. Let A be a domain with language L1 and let L2 be another language.
Theorem 31 describes conditions in terms of the languages L1 and L2 which enable us to build a
domain B which is the largest domain with language L2 that admits a homomorphism A→ B. The
proof given for this theorem uses words of language L2 as elemental blocks to construct the new
domain B. Then, the model presented here has a kind of ”structure creation power”. We would
like to interpret this result as the property of creativeness which is attributed to metaphor. That is
consistent with findings presented in the cognitive literature, for example, in [77] it is suggested
that the concept of time is indeed created in our minds by means of this property of metaphors. We
transcribe here a paragraph of such work. “It appears that abstract domains such as time are indeed
shaped by metaphorical mappings from more concrete and experiential domains such as space”.
Similar findings are reported for numbers and other abstract concepts.

We conclude the part of this chapter devoted to term domains by presenting the product domain

95



4.2. Term Domains

and the coproduct domain for a given family of term domains. These domains have the expected
properties for a product and a coproduct of mathematical objects 1. Such properties are shown
in Theorem 34 and Theorem 33. We study them in this chapter because we believe that products
and coproducts of domains can be linked to other cognitive phenomeenumeratena. In particular,
we think that the product domain can be related to a cognitive phenomenon called Blending (See
[21] for a brief introduction to Blending). For some research linking coproducts and cognitive
development see [94].

The section 4.3 is devoted to formula domains. In this section is defined the set of symbolic
constructions called formulas which shall be part of the language associated to formula domains.
The semantic counterpart of formulas shall be relations defined on the set of objects belonging to
the domain. In this context, we present two models for metaphor under the names of homomor-

phism and metaphor. The first is a map which preserves the structure of a formula domain and
the later is just a stronger version of the earlier. The name “metaphor” given to the second kind
of maps is justified by Theorem 42 which shows that a metaphor between two domains preserves
the consequence between two formulas (consequence might be taken as a formal model of human
inference). Overall, the results of this section show that a homomorphism preserves the truthness
of some well characterized families of formulas. Such results are presented in Theorem 40 and
Theorem 41.

We conclude the section devoted to formula domains by presenting the product domain and
the coproduct domain for a given family of formula domains. These domains have the expected
universal properties for a product and a coproduct of mathematical objects 2. Such properties are
shown in Theorem 46 and Theorem 45. We have already given the reason why we studied those
kind of constructions here.

4.2 Term Domains

This section is aimed to provide a formalization of domains of knowlege which is necessary for our
modeling of the phenomenon of metaphor. As we said, such formalization shall have two compo-

1From a point of view of Cathegories Theory.
2From a point of view of Cathegories Theory.
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nents: a syntactic component determined by a language and a semantic component determined by
a set of operations over a set of elements of a given structure. Let us begin by sketching the basic
concepts provided to us by Model Theory.

4.2.1 Basics of Model Theory

This section is adapted from the book “A shorter model Theory” [50]. Because this section is
just a brief (and then necessarily incomplete) review of the subject, we recommend that readers
unfamiliar with this topic review the mentioned book in order to have examples and details of the
concepts presented here. We begin with the definition of a structure.

Definition 23. A structure Q is an object with the following four ingredients:

1. A set called the domain of Q, written dom(Q) or dom Q. The elements of dom(Q) are called
the elements of the structure Q.

2. A set of elements of Q called constant elements, each of which is named by one or more
constants. If c is a constant, we write cQ for the constant element named by c.

3. For each positive integer n, a set of n-ary operations on dom(Q) (i.e. maps from (dom Q)n

to dom Q), each of which is named by one or more n-ary function symbols. If F is a function
symbol, we denote by FQ the function that F names.

4. For each positive integer n, a set of n-ary relations on dom(Q) (i.e. subsets of (dom Q)n),
each of which is named by one or more n-ary relation symbols. If R is a relation symbol, we
denote by RQ the relation that R names.

Except where we say otherwise, any of the sets (1- 4) above may be empty. The constant,
relation and function symbols can be any mathematical objects, not necessarily written symbols;
but for peace of mind we shall assume that, for instance, a 3-ary relation symbol doesn’t also appear
as a 3-ary function symbol or a 2-ary relation symbol.

We would like to emphasize that Definition 23 accounts for an important amount of mathemat-
ical objects. Some important examples of Definition 23 are graphs, linear orderings, groups and
vector spaces. In other studies, a structure is defined as a pair (dom(A),α) where α is a mapping
taking each symbol s to the corresponding item sA. As an example consider the structure whose
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domain is the set of real numbers and it is defined by (R,α) where the domain of α is the set
{+,−, ·,0,1,≤} and it makes: constants 0 and 1 naming the numbers 0 and 1, a 2-ary relation sym-
bol ≤ naming the relation ≤, 2-ary function symbols + and · naming addition and multiplication
respectively, and a 1-ary function symbol naming minus.

Definition 24. The signature of a structure Q is specified by giving the set of constants of Q, and
for each separate n > 0, the set of n-ary relation symbols of Q and the set of n-ary function symbols
of Q.

We assume that the signature of a structure can be read off directly from the structure. The
symbol L will be used to stand for signatures. In case that a structure Q has signature L, we shall
say that Q is an L-structure. The sequences of elements of an structure shall be denoted by q, a etc.
A tuple in Q (or from Q) is a finite sequence of elements of Q; it is an n-tuple if it has length n.
When it doesn’t lead into confusion, the length of a sequence or tuple shall be determined by the
context.

Definition 25. Let L be a signature and let A and B be L-structures. By a homomorphism f from A

to B, in symbols f : A→ B, we shall mean a function f from dom(A) to dom(B) with the following
three properties.

1. For each constant c of L, f (cA) = cB.
2. For each n > 0 and each n-ary function symbol F of L and n-tuple a from A,

f (FA(a)) = FB( f a).

3. For each n > 0 and each n-ary relation symbol R of L and n-tuple a from A,
if a ∈ RA, then f a ∈ RB.

where the above notation f a means that when a is (a0, ...,an−1), then f a means ( f a0, ..., f an−1).

An isomorphism is a bijective homomorphism whose inverse is a homomorphism. An iso-
morphism f : A→ A is called an automorphism of A. Definition 25 accounts for many structure
preserving maps between mathematical objects such as graph homomorphisms, group homomor-
phisms, linear maps, etc. We recommend the reader to review [50] for detailed examples. We
presented Definition 25 here because it shall serve us as an introductory idea to the key concept of
a homomorphism between domains that we introduce in next section.
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4.2.2 Term Domains

Let us start by defining the formal meaning of the word “language” that we have been loosely
using until now. It shall be a set of symbol strings in the precise sense of Definition 26 below.
Every language has a numerable set of variables. These shall be denoted by symbols x,y,z, ..., etc.,
and one of their purposes is to serve as temporary labels for elements of a structure. Any symbol
can be used as a variable, provided it is not already being used for something else. We assume that
all languages mentioned in this chapter share the same set of variables which shall be denoted by
V .

Definition 26. The set of terms of a signature L is the smallest set of strings of symbols which
satisfies:

1. Every variable x ∈V is a term.
2. Every constant of L is a term.
3. If n > 0, F is a n-ary function symbol of L and t1, ..., tn are terms, then the expression

F(t1, ..., tn) is a term.

If t is a term of L, we shall say that t is an L-term. The complexity of a term is the number
of function (including constant) symbols occurring in it, counting each occurrence separately. We
shall use some inductive arguments on the complexity of terms, which is possible because if t

occurs as part of s, then s has a greater complexity than t.

If we introduce a term t as t(x), this will always mean that x is a sequence (x0,x1, ...), possibly
infinite, of distinct variables, and every variable which occurs in t is among the variables in x. In
the same context we may write t(s), where s is a sequence of terms (s0,s1, ....); then t(s) means the
term obtained from t by reeplacing s0 in place of x0, s1 in place of x1, etc., throughout t. It is well
known that every term t of L can be constructed in only one way. Such is easily seen from two facts:
(i) if t is a constant then t is not of the form F(s), and (ii) if t = F(s1,s2, ...,sm) = G(r1,r2, ...,rn)

then F = G, m = n and for each i≤ n, si = ri.

Next, we describe how terms stand for elements of a structure. Let Q be an L structure, t(x) an
L- term where x = (x0,x1, ...) and q = (q0,q1, ...) be a sequence of elements of Q. Then the element
of Q denoted by tQ(q) (or tQq ) is defined by induction on the complexity of t in the following
manner
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1. if t is the variable xi then tQ(q) is qi.
2. if t is a constant c then tQ(q) is the element cQ,
3. if t is of the form F(s1, ...,sn) where F is a n-ary function symbol and each si is a term si(x),

then tQ(q) is the element FQ(sQ
1 (q), ...,s

Q
n (q)).

Notice that from the three items above, the way in which each n-ary term t determines an n-ary
operation tQ on the set of elements of Q is standard and clear.

Next definition describes a first formalization of a “domain of knowledge”. Our model assumes
that an L-structure can be seen as a context 3 and that a domain of knowledge can be represented
by a collection of operations which can be defined in terms of such context. Next definition makes
it precisely.

Definition 27. Let Q be an structure with signature L. A term domain (in the context of Q) is a
pair (A,Π) where Π is a finite set of L-terms and A is a nonempty set of elements of Q such that for
every term t ∈Π and every tuple a of elements of A, the element tQ(a) belongs to A. The elements
of A are called the objects of the domain.

We shall omit systematically the context Q of a term domain (A,Π) in the following straight-
forward manner. Because the definition above requires that for every t ∈ Π, the set A to be closed
with respect to the operation tQ, we shall denote by tA the operation tQ restricted to A. Addition-
ally, when specifying the signature of the context becomes necessary, we shall say that (A,Π) is an
“L-domain” meaning that L is the signature of the context Q. When it does not lead into confusion,
we shall say “domain” instead of “term domain”.

Let Q be an L-structure, Π a set of L-terms and A′ be a set of elements of Q. It follows from
Definition 27 that there is a unique smallest term domain (A,Π) such that A′ ⊆ A; we call (A,Π)

the term domain generated by A′. We call A′ a set of generators for (A,Π). A term domain is said
to be finitely generated if it is generated by some finite set of elements.

3The philosopher Josef Stern postulates in his book “Metaphor in Context” that there is a systematic context-
dependence of metaphorical interpretation. There are various studies whose conclusions support such theory (see for
example [37]).
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4.2.3 Homomorphisms and Quotient Domains

The model for metaphor that is proposed in this section relates two domains when both share some
common structure. A first approximation to this idea was given in the definition of a homomor-
phism between structures (Definition 25) which is a map which preserves the structure between
two mathematical objects sharing the same signature (or language).

However, we are looking for a model that is able to address the case when there is some com-
mon structure between two mathematical objects with different signatures (different languages). In
order to achieve that goal, in what follows, we are going to adapt the concept of a homomorphism
between two L-structures.

Recall that every signature uses the same numerable set V of variables to build its associated
set of terms. Let Π be a set of L1-terms and Ψ a set of L2-terms. A map F : Π→Ψ is called a term

translation when it preserves the set of variables for each term t ∈ Π. In other words, t and F(t)

have the exact same set of variables.

Definition 28. Let (A,Π) be an L1-domain, (B,Ψ) an L2-domain and F : Π→Ψ a term translation.
A mapping f : A→ B is called an F-homomorphism from the domain (A,Π) to the domain (B,Ψ),
if for every t ∈Π and every tuple a in A,

f (tAa) = F(t)B( f a). (4.1)

Notice that condition (2) of the definition of a homomorphism between structures (Definition
25) is very similar to the condition imposed by equation 4.1 above. The only difference is that
equation 4.1 relates two signatures by means of a term translation F .

We shall denote term translations with capital letters and homomorphisms between domains
with lower case letters. When possible, we shall use the lower case and upper case version of the
same letter to denote a homomorphism and its related term translation. For example, we are going
to denote an F-homomorphism by f and a P-homomorphism by p.

When F and f are surjective (injective), we say that f is a surjective (injective) F-homomorphism.
An F-homomorphism which is surjective and injective is called an F-isomorphism. It is straight-
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forward that if f is an F-isomorphism, then f−1 is an F−1-isomorphism. If there exists an F-
isomorphism f : (A,Π)→ (B,Ψ), we say that (A,Π) and (B,Ψ) are F-isomorphic (or just iso-
morphic if F is clear from the context). It is also straightforwad that if f : (A,Π)→ (B,Ψ) is an
F-homomorphism and g : (B,Ψ)→ (C,Ω) is an G-homomorphism, then the map (g ◦ f ) : A→C

is an (G◦F)-homomorphism.

Lemma 25. Let (A,Π) be an L1-domain generated by A′ and let (B,Ψ) an L2-domain. If f : A→ B

and g : A→ B are two F-homomorphisms such that f|A′ = g|A′ , then f and g are equal.

Proof. We are going to show that the set A can be obtained as a numerable union of sets. Let us
define

E0 = A′,

E1 = {tAa | t ∈Π,a is a tuple in E0},

En+1 = {tAa | t ∈Π,a is a tuple in En}.

Since (A,Π) is generated by A′, an straightforward argument4 shows that

A =
⋃
n≥0

En. (4.2)

Now, it is easy to show that f|En = g|En for every n ∈ N by using induction on n and the fact that f

and g are F-homomorphisms. Therefore, from equation 4.2, we conclude that f = g. �

Let us denote equivalence relations by caligraphic letters. Let A be an equivalence relation on
a set A, we shall denote the equivalence class of some element a by [a]A , the associated quotient
set by A/A and its projection mapping a→ [a]A by pA . When the subindexes of [a]A and pA are
clear from context, we shall omit them.

Most of the equivalence relations encountered in this chapter are induced by the fibers of certain
maps. For example, the map f : A→ B determines an equivalence relation on A by letting a ∼ b

exactly when f (a) = f (b). When f is an F-homomorphism, we call such equivalence relation the

4It is clear that ∪En ⊆ A, since (A,Π) is a domain. On the other hand, A′ ⊆ ∪En and notice that (∪En,Π) is a
domain. Therefore, A⊆ ∪En.
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kernel of f and denote it by ker( f ). In such case, the equivalence class of a is denoted by [a] f , the
associated quotient set by A/ f and the projection map by p f .

Let (A,Π) be an L1-domain, (B,Ψ) an L2-domain and f : A→B an F-homomorphism. Our next
discussion is aimed to introduce a domain called the quotient domain of (A,Π) by f . For reasons
that shall be aparent later, we want this new domain to be an L1-domain. To this aim, we need to
determine a set of terms ΠF ⊆ Π which has exactly one member of each equivalence class of the
set Π/F (where F is the equivalence relation determined by the fibers of F : Π→Ψ). We are going
to determine uniquely such set ΠF by giving a fixed order to Π, as for example Π = {t1, t2, t3, ...tn},
and selecting the subset of terms ΠF wich satisfies our requirement and minimizes the sum of
subindexes. Observe that the set of terms ΠF is selected in a way that there exists a bijection with
the quotient set Π/F . Then, we can determine uniquely the map P : Π→ΠF as the map which for
t ∈Π and s ∈ΠF satisfies P(t) = s exactly when F(t) = F(s). It is clear that P is a surjective term
translation.

Let us define some operations in A/ f such that the pair (A/ f ,ΠF) becomes an L1-domain. Let
s ∈ΠF and let [a] be a tuple in A/ f . Since ΠF ⊆Π, we can define the operation sA/ f by

sA/ f [a] = [sAa]. (4.3)

We must show that 4.3 is well defined. Let a and b two tuples of A such that [a] = [b]. Let us show
that [sAa] = [sAb], through the following computations

[sAa] = f−1( f (sAa))

= f−1(F(s)A f a)

= f−1(F(s)A f b)

= f−1( f (sAb))

= [sAb].

The domain (A/ f ,ΠF) with the above set of operations is called the quotient domain of (A,Π)

by f and denoted by (A,Π)/ f .

Proposition 17. Let (A,Π) be an L1-domain, (B,Ψ) an L2-domain. If f : A→B is an F-homomorphism,

then the projection map p : A→ A/ f is a surjective P-homomorphism from the domain (A,Π) to
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the quotient domain (A,Π)/ f .

Proof. It is clear that P and p are surjective maps. To show that p is a P-homomorphism let us take
t ∈ Π and a tuple a in A. We must show that p(tAa) = P(t)A/ f pa. Let P(t) = s and consider next
computations

p(tAa) = [tAa] f

= f−1( f (tAa))

= f−1(F(t)A f a)

= f−1(F(s)A f a)

= f−1( f (sAa))

= [sAa]

= sA/ f [a]

= P(t)A/ f pa.

where the fourth and last equality were obtained because P(t) = s is equivalent to F(t) = F(s).
Therefore, the projection map p is a P-homomorphism. �

Theorem 26. Let (A,Π) be an L1-domain and (B,Ψ) an L2-domain. If f : A → B is an F-

homomorphism, then there exists an injective F ′-homomorphism f ′ : A/ f → B, uniquely deter-

mined, wich satisfies F = F ′ ◦P and makes next diagram commute

(A,Π)
f //

p
��

(B,Ψ)

(A,Π)/ f
f ′

99s
s

s
s

s

(4.4)

Proof. The term translation F ′ is uniquely determined by F ′(t) = F(t) for t ∈ΠF . That is because
we want F ′ satisfying F ′ ◦P = F . Observe that F ′ is injective. For analog reasons, f ′ must be the
mapping determined by f ′[a] = f (a). We shall show that f ′ is an F ′-homomorphism by showing
that f ′(tA/ f [a]) = F ′(t)B f ′[a] . Let us take t ∈ ΠF and a tuple [a] in A/ f . Because F ′(t) = F(t),
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next computations follow

f ′(tA/ f [a]) = f ′([tAa])

= f (tAa)

= F(t)B f a

= F ′(t)B f ′[a].

Then, f ′ is an F ′-homomorphism from the L1-domain (A,Π)/ f to the L2-domain (B,Ψ). �

Corollary 27. Let (A,Π) be an L1-domain and (B,Ψ) an L2-domain. If f : A→ B is a surjective

F-homomorphism, then the quotient L1-domain (A,Π)/ f is isomorphic to the L2-domain (B,Ψ).

Proof. It follows directly from the proof of Theorem 26. Since in this case F and f are surjective,
the mappings F ′ and f ′ are bijective. Therefore, domains (A,Π)/ f and (B,Ψ) are F-isomorphic.

�

Lemma 28. Let (A,Π), (B,Ψ) and (C,Ω) be three domains. Let f : A→ B be a surjective F-

homomorphism and g : A→ C a G-homomorphism. If for every t ∈ Π, [t]F ⊆ [t]G and ker( f ) ⊆
ker(g)5 then there exists a unique term translation H which satisfies H ◦ F = G and a unique

H-homomorphism h : B→ C which makes the below diagram commute. The map h is surjective

exactly when g is surjective and h is injective exactly when ker( f ) = ker(g).

(A,Π)
f //

g $$IIIIIIIII
(B,Ψ)

h
���
�
�

(C,Ω)

Proof. The mappings f and g determine the quotient domains (A,Π)/ f and (A,Π)/g respectively.
Consider the next two diagrams below (the left-sided for term translations and the right-sided for
homomorphisms between domains).

5Condition ker( f )⊆ ker(g) is equivalent to say that for every a ∈ A, [a] f ⊆ [a]g.
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(A,Π)/ f

K

��

F ′ // (B,Ψ)

(A,Π)

Pf

eeKKKKKKKKKK

Pgyyssssssssss

F

::uuuuuuuuu

G $$IIIIIIIII

(A,Π)/g
G′

// (C,Ω)

(A,Π)/ f

k

��

f ′ // (B,Ψ)

(A,Π)

p f

eeKKKKKKKKKK

pgyyssssssssss

f

::uuuuuuuuu

g $$IIIIIIIII

(A,Π)/g
g′

// (C,Ω)

Our strategy to prove this theorem shall be executed in three steps: (i) we shall define a
term translation K : ΠF → ΠG satisfying K ◦Pf = Pg. Once done, Theorem 26 ensures that the
above (left-sided) diagram is commutative. (ii) we shall define a map k : A/ f → A/g satisfying
k ◦ p f = pg and prove that such map is a K-homomorphism. In such case, another application of
Theorem 26 shows that the above (right-sided) diagram is commutative, and (iii) because f ′ is an
F ′-isomorphism, we can define h = g′◦k◦ f ′−1 and H = G′◦K ◦F ′−1. We shall conclude this proof
by observing that because of the commutation of the above diagrams, h is an H-homomorphism.

Step (i): Notice that for every t ∈ Π, [t]F ⊆ [t]G, and then we can define K by K([t]F) = [t]G.
Notice that this is the only definition of K which satisfies K ◦Pf = Pg. Therefore, the above (left-
sided) diagram is commutative.

Step (ii): Condition ker( f ) ⊆ ker(g) is equivalent to the statement: equivalence classes deter-
mined by f are included in the equivalence classes determined by g. Therefore, we can define
k : A/ f → A/g by k([a] f ) = [a]g. Such definition of k is the only one satisfying k ◦ p f = pg. We
prove now that k is a K-homomorphism. Let [a] f be a tuple in A/ f and s ∈ ΠF . Since ΠF ⊆ Π,
s ∈ Π and Pf (s) = s. Therefore, K(s) = K(Pf (s)) = Pg(s). This observation shall be used in the
below computations which show that k is a K-homomorphism.

k(sA/ f [a] f ) = k([sAa] f )

= [sAa]g

= Pg(s)A/g[a]g
= K(s)A/g k([a] f ).

An application of Theorem 26 makes the above (right-sided) diagram commute.

Step (iii): Because f is a surjective F-homomorphism, f ′ and F ′ are invertible. We define H =
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G′ ◦K ◦F ′−1 and h = g′ ◦ k ◦ f ′−1. Since the composition of homomorphisms is a homomorphism,
the commutation of the two diagrams above imply that h is an H-homomorphism. To conclude
this proof, notice that k was uniquely determined, g′ and f ′ are unique, and then h is uniquely
determined. In the same way K was uniquely determined, F ′ and G′ are unique. Therefore, H is
uniquely determined. Moreover, observe that f ′ is bijective, k is always a surjective map and then
h is a surjective map exactly when g is a surjective map. On the other hand, g′ and f ′ are always
injective and k is an injective map exactly when ker( f ) = ker(g). Therefore, h is injective exactly
when ker( f ) = ker(g). �

Proposition 18. Let (A,Π), (B,Ψ) and (C,Ω) be three domains. Let f : A→ B be a surjective

F-homomorphism and g : A→ C a G-homomorphism such that for every t ∈ Π, [t]F ⊆ [t]G and

ker( f ) ⊆ ker(g). Let h be the H-homomorphism determined by Lemma 28 above. The following

three assertions hold:

(1) If g is a surjective G-homomorphism, then h is a surjective H-homomorphism.

(2) If ker( f ) = ker(g) and for every for every t ∈Π, F−1(F(t)) = G−1(G(t)), then h is an injective

H-homomorphism.

(3) If g is a surjective G-homomorphism, ker( f ) = ker(g) and for every t ∈ Π, F−1(F(t)) =

G−1(G(t)), then h is an H-isomorphism.

Proof. To show (1), observe that condition for every t ∈ Π, F−1(F(t)) ⊆ G−1(G(t)), means that
every equivalence class determined by the fibers of F is contained in exactly one equivalence class
determined by the fibers of G. Such condition implies that the term translation K defined in the
proof of Lemma 28 is a surjective term translation. Therefore, since F ′ and G′ are bijective and
H = G′ ◦K ◦F ′−1, we conclude that H is surjective. Because g is a surjective G-homomorphism,
Lemma 28 ensures that h is surjective and then h is a surjective H-homomorphism.

To show (2), observe that the condition for every t ∈Π, F−1(F(t)) = G−1(G(t)) means that the
equivalence relation determined by the fibers of F is equal to the equivalence relation determined
by the fibers of G. In such case, the term translation K defined in the proof of Lemma 28 is a
bijective term translation. Since F ′ is bijective, G′ is injective and H = G′ ◦K ◦F ′−1, we conclude
that H is injective. Because ker( f ) = ker(g), Lemma 28 ensures that h is injective. Therefore,
h is an injective H-homomorphism. Finally, it is clear that statement (3) follows directly from
statements (1) and (2). �
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Let (A,Π) be an L-domain, I : Π→Π the identity term translation and {c} a singleton. Observe
that the pair ({c},Π) is an L-domain 6 and that the map e : A→{c} is an I-homomorphism with the
largest kernel ker(e) = A×A. On the other hand, the identity map i : A→ A is an I-homomorphism
with the smallest kernel ker(i) = {(a,a) | a ∈ A}.

Let K be the set of kernels of all I-homomorphisms which are defined on the domain (A,Π) and
let R be a binary relation defined on A. Let us consider the set defined by K (R) = {K ∈K |R⊆K}.
Next proposition (Proposition 19) shows that the intersection of an arbitrary collection of kernels
from K (R) belongs to K (R). The hull of R is the intersection of all kernels belonging to K (R)

and then, by Proposition 19 below, it is the smallest equivalence relation which contains R and is
the kernel of some I-homomorphism. Next proposition ensures that the hull of any binary relation
exists, is well defined and it is uniquely determined.

Proposition 19. Let (A,Π) be an L-domain and let R be a binary relation on A. Assume that

{Kα}α∈D is a collection of kernels from K (R). Then, the intersection
⋂

α∈D

Kα belongs to K (R).

Proof. Because {Kα}α∈D is a collection of kernels from K (R), it is easy to see that

K =
⋂

α∈D

Kα = {(a,b) ∈ A×A | (a,b) ∈ Kα for every α ∈ D}

is an equivalence relation which contains R. We want to show that K is the kernel of some I-
homomorphism k : (A,Π)→ (B,Π). In more detail, we shall show that B = A/K i.e. the quotient
set of A by K. In order to determine the domain (A/K,Π) we define its operations. For every t ∈Π,
define tA/K in A/K by

tA/K[a]K = [tAa]K (4.5)

where [a]K is a tuple of elements of A/K. We should check that equation 4.5 defines well the
operation tA/K . To this aim, let us take two tuples [a]K and [b]K in A/K such that [a]K = [b]K and let
us show that [tAa]K = [tAb]K . Because K is the intersection of the Kα ’s, the affirmation [a]K = [b]K
implies that [a]Kα

= [b]Kα
for every α ∈ D. Because every Kα is a kernel, their associated quotient

domains are well defined and then, [a]Kα
= [b]Kα

implies [tAa]Kα
= [tAb]Kα

for every α ∈ D. Since
K is the intersection of all the Kα ’s, we conclude [tAa]K = [tAb]K . Therefore, it has been shown that

6Such observation is true because for each t ∈Π we can define the operation t{c} by t{c}(c) = c where c is any tuple
in {c}
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that (A/K,Π) is a domain. Additionally, it is easy to see that k : A→ A/K given by k(a) = [a]K is
an I-homomorphism by performing straightforward computations7. Since K contains R and K is
the kernel of k, we conclude that K belongs to K (R). �

Let (A,Π) be an L domain and R be a binary relation defined on A. In what follows, we associate
to R an I-homomorphism ρR whose kernel coincides with the hull of R. It is done in the following
way: Let r : (A,Π)→ (C,Π) be an I-homomorphism whose kernel is equal to the hull of R. Without
loss of generality we can assume that r is surjective and then, by Corollary 27, (C,Π) is isomorphic
to the quotient (A,Π)/r. The kernel of its projection map is equal to the hull of R because it is
equal to the kernel of r. We shall denote such projection map by ρR (or just ρ when R is clear from
the context) and we shall refer to it as the I-homomorphism associated to the hull of R. Next lemma
shows how it gives a way to factorize homomorphisms between domains.

Lemma 29. Let g : (A,Π)→ (B,Ψ) be an G-homomorphism and let R be a binary relation defined

on A. If R⊆ ker(g), then there exists a unique G-homomorphism g′ : A/ρR→ B such that the below

diagram commutes. The map g′ is surjective exactly when g is surjective and g′ is injective exactly

when ker(g) is equal to the hull of R.

(A,Π)

g %%KKKKKKKKKK

ρ // (A,Π)/ρ

g′
���
�
�

(B,Ψ)

Proof. Let ρ be the I-homomorphism associated to the hull of R. We want to apply Lemma 28 (with
ρ = f and g = g). Let us check the hypotheses. Observe that ρ is a surjective I-homomorphism
whose kernel is the hull of R. Because R⊆ ker(g), it is clear that ker(ρ)⊆ ker(g). Because ρ is an
I-homomorphism and I is the identity term translation, the condition [t]I ⊆ [t]G is trivially satisfied
for every t ∈Π. Then, an application of Lemma 28 yields a unique G-homomorphism g′ : A/ρ→ B

with the properties stated above. �

7k(tAa) = [tAa]K = tA/K [a]K = I(t)A/K [a]K
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4.2.4 Term Morphisms and Term Domains

The aim of this section is to stablish Corollary 30 and Theorem 31 below. But before that, we
need to introduce a key concept which enable us to express the hypotheses of these two results.
Recall that we have fixed V as the set of variables. A mapping α which assigns a term to every
variable is called a substitution when the set {v ∈ V | v , α(v)} is finite. Such finiteness together
with a fixed order in the set of variables enable us to denote a substitution α as an n-tuple of terms
s = (s1,s2, ....,sn) meaning that α(vi) = si , vi for i = 1, ...,n and α(v) = v otherwise.

A substitution s can be applied to a term t, obtaining the term ts which, we recall, is the term
obtained by simoultaneously replacing in the term t, each ocurrence of vi by si. Given a set of terms
Π, we say that s is in Π, when s is a tuple of elements in Π.

Definition 29. Let L be a signature and Π a set of L-terms. The set of terms generated by Π, which
is denoted by Π∗, is defined as the minimal set which satisfies the two following conditions:

1. Π∗ contains all the variables.
2. if t ∈Π and s is in Π∗ , then ts ∈Π∗.

Observe that the pair (Π∗,Π) can be taken as an L-domain. To see that, define its set of oper-
ations in the following way. Let t ∈ Π and s a sustitution in Π∗, the operation tΠ∗ on the set Π∗ is
given by

tΠ∗(s) = t s. (4.6)

The following discussion is aimed to analyze the relation of the domain (Π∗,Π) with a domain
of the form (A,Π). An assignment is a mapping σ : V → A. It can be easily proved8 that σ can
be extended in a unique way to a map σ̂ : Π∗→ A which satisfies σ̂(ts) = tA(σ̂s) for every t ∈ Π

and s in Π∗. Observe that the set of operations defined by (4.6) above makes V a generator of the
L-domain (Π∗,Π). This last observation would be interpreted in a context of universal algebra by
saying that the domain (Π∗,Π) has the universal mapping property9 for the class of domains of the
form (A,Π).

8It is standard that an assignment can be extended in a unique way to a mapping from the set of L-terms to A. We
can restrict such mapping to Π∗ to obtain the desired extension.

9To say that the domain (Π∗,Π) has the universal mapping property for the class of domains of the form (A,Π)
means that for every assignment α : V → A there is a I-homomorphism α̂ : (Π∗,Π)→ (A,Π) which extends α . In such
case V would be a set of free generators of (Π∗,Π) and (Π∗,Π) would be freely generated by V .

110



4.2. Term Domains

Proposition 20. Let (A,Π) be an L-domain. If σ : V → A is an assignment, then there exists a

unique I-homomorphism σ̂ : (Π∗,Π)→ (A,Π) which extends σ .

Proof. We have already discussed that σ has a unique extension σ̂ : Π∗→A which satisfies σ̂(ts) =

tA(σ̂s) for every t ∈Π and s in Π∗. From formula 4.6, it is clear that σ̂(tΠ∗(s)) = σ̂(ts) = tA(σ̂s).
Therefore, σ̂ is an I-homomorphism. �

For a given term translation F : Π → Ψ, we are going to analyze an F-homomorphism in
particular which is important because of its nature. The existence of a particular F-homomorphism
F∗ : (Π∗,Π)→ (Ψ∗,Ψ) is addressed in Chapter 2. Three observations are in order for appreciating
its nature: (i) the map F∗ is defined on a set of symbolic strings, (ii) the map F∗ takes values on a set
of symbolic strings, and (iii) the map F∗ preserves a syntactic operation called substitution. Those
observations suggest that F∗ can be analyzed by using syntactic methods. The precise definition of
F∗ is given next.

Definition 30. Let Π be a set of L1-terms and Ψ be a set of L2-terms. A term translation F∗ : Π∗→
Ψ∗ is a term morphism from Π∗ to Ψ∗ when it satisfies two conditions:

1. If v is a variable, then F∗(v) = v.
2. If t ∈Π and s is a substitution in Π∗, then

F∗(ts) = F∗(t) F∗s, (4.7)

where if s = (s1,s2, ....,sn), then F∗s means (F∗(s1),F∗(s2), ....,F∗(sn)).

Notice that Definition 30 represents the idea of a sustitution-preserving mapping between a set
of L1-terms and a set of L2-terms. However, the next straightforward proposition says that a term
morphism is just a particular case of a homomorphism between domains.

Proposition 21. Let F∗ : Π∗→Ψ∗ be a term morphism and let F be F∗ restricted to Π. Then, F∗

is an F-homomorphism from the domain (Π∗,Π) to the domain (Ψ∗,Ψ).

One of the key hypothesis in Corollary 30 and Theorem 31 shall be the existence of a term
morphism F∗ : Π∗→ Ψ∗ extending a term translation F . Some conditions ensuring the existence
of F∗ are provided in Chapter 2.
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Proposition 22. Let (A,Π) be an L1-domain, (B,Ψ) an L2-domain and let f : A→ B be an F-

homomorphism. Assume that there exists a term morphism F∗ : Π∗ → Ψ∗ which extends F. If

α : V → A is an assignment, then the I-homomorphism β̂ which extends β = f ◦α makes the

following diagram commute.

(Π∗,Π)

α̂

��

F∗
// (Ψ∗,Ψ)

β̂

��
(A,Π)

f
// (B,Ψ)

Proof. Let us consider the two F-homomorphisms from (Π∗,Π) to (B,Ψ) given by f ◦ α̂ and
β̂ ◦F∗. Notice that for each variable v ∈V , f ◦ α̂(v) = β (v) = β ◦F(v) = β ◦F∗(v). Therefore, by
observing that the set of variables generates the domain (Π∗,Π), an application of Lemma 25 leads
us to conclude that f ◦ α̂ = β̂ ◦F∗. That is to say, the above diagram commutes. �

Theorem 30 (Extension). Let (A,Π) be an L1-domain generated by A′, (B,Ψ) an L2-domain and

let f ′ : A′→ B be a map. Assume that there exists a term morphism F∗ : Π∗→Ψ∗ which extends a

given term translation F : Π→Ψ. Let α : V → A′ be a surjective assignment and set β = f ′ ◦α . If

ker(α̂)⊆ ker(β̂ ◦F∗), then f ′ can be extended to a F-homomorphism f : A→ B which makes next

diagram commute. Additionally, f is uniquely determined.

(Π∗,Π)

F∗
��

α̂ // (A,Π)

f
���
�
�

(Ψ∗,Ψ)
β̂ // (B,Ψ)

Proof. To show this result, we shall apply Lemma 28 (with f = α̂ and g = β̂ ◦F∗). We check now
the hypotheses. Because the assignment α is surjective, the I-homomorphism α̂ which extends α is
surjective. Observe that for every t ∈Π, the condition [t]I ⊆ [t]F is trivially satisfied. Additionally,
ker(α̂) ⊆ ker(β̂ ◦ F∗) is one of the hypotheses of this corollary. An application of Lemma 28
yields a uniquely determined F-homomorphism f which makes the above diagram commute. Such
commutation is used in straightforward computations10 which show that f extends f ′. �

Theorem 31. Let (A,Π) be an L1-domain generated by a countable set A′ , Ψ a set of L2-terms and

F : Π→Ψ a surjective term translation. If there exists a term morphism F∗ : Π∗→Ψ∗ extending
10Let a ∈ A′. Notice that for some x ∈V , f (a) = f (α(x)) = β (F∗(x)) = β (x) = f ′ ◦α(x) = f ′(a).
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F, then there exists an L2-domain (B,Ψ) together with a surjective F-homomorphism e : (A,Π)→
(B,Ψ) which satisfy: for every F-homomorphism h : (A,Π)→ (C,Ψ), there exists a unique I-

homomorphism h′ : (B,Ψ)→ (C,Ψ) which makes the below diagram commute. Additionally, h′ is

surjective exactly when h is surjective and h′ is injective exactly when ker(e) = ker(h).

(A,Π)

e $$IIIIIIIII
h // (C,Ψ)

(B,Ψ)

h′
OO�
�
�

Proof. Let us choose and fix a surjective assignment α : V → A′. This is always possible because
A′ is numerable. Since A′ generates (A,Π), the assignment α can be extended in a unique way to
a surjective I-homomorphism α̂ : (Π∗,Π)→ (A,Π). Let us consider the binary relation R on Ψ∗

given by
R = {(F∗t,F∗s) | (t,s) ∈ ker(α̂)}. (4.8)

Let ρ be the I-homomorphism associated to the hull of R and set (B,Ψ) = (Ψ∗,Ψ)/ρ . We want to
apply Lemma 28 (with f = α̂ and g = ρ ◦F∗), to obtain a uniquely determined F-homomorphism
e : (A,Π)→ (B,Ψ) which makes the following diagram commute.

(Π∗,Π)

F∗
��

α̂

// (A,Π)

e
���
�
�

(Ψ∗,Ψ)
ρ // (B,Ψ)

(4.9)

Let us check the hypotheses of Lemma 28: For every t ∈ Π, the condition [t]I ⊆ [t]F is trivially
satisfied. For the other condition, we need to show that ker(α̂)⊆ ker(ρ ◦F∗). To this aim, let us take
a pair (t,s)∈ ker(α̂). Then (F∗t,F∗s)∈ R and since R⊆ ker(ρ), it is clear that (F∗t,F∗s)∈ ker(ρ).
It means that ρ(F∗(t)) = ρ(F∗(s)) and then (t,s) ∈ ker(ρ ◦ F∗). We have shown that kerα̂ ⊂
ker(ρ ◦F∗). Additionally, notice that ρ is surjective by definition, and since F is surjective, F∗

must be surjective11. Therefore, ρ ◦F∗ is surjective. The above checks enable us to apply Lemma
28 and obtain a surjective F-homomorphism e : (A,Π)→ (B,Ψ) which is uniquely determined and
makes diagram 4.9 commute.

Let us show that for every F-homomorphism h : (A,Π) → (C,Π), there exists a unique I-

11It shall be clear in Chapter 2, where term morphisms are studied in detail.
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homomorphism h′ : (B,Ψ)→ (C,Ψ) such that h= h′◦e. Let h : (A,Π)→ (C,Π) be an F-homomorphism.
Let us define the assignment β by β = h◦α and let β̂ be the I-homomorphism extending β . Let us
consider the following diagram.

(Π∗,Π)

F∗

yyssssssssss
α̂

%%JJJJJJJJJ

(Ψ∗,Ψ)
ρ //

β̂ %%KKKKKKKKKK
(B,Ψ)

h′
���
�
�

(A,Π)
eoo

hzzttttttttt

(C,Ψ)

(4.10)

We want to apply Lemma 29 with the binary relation R defined by 4.8 and g = β̂ . Notice that such
application will give us an I-homomorphism h′ : (B,Ψ)→ (C,Ψ) which is uniquely determined and
satisfies h′◦ρ = β̂ . This formula, together with the commutation of Diagram 4.9 and Proposition 22
will show that Diagram 4.10 commutes. Therefore, h = h′ ◦ e. Notice that Lemma 29 ensures that
h′ is surjective exactly when β̂ is surjective and that h′ is injective exactly when ker(β̂ ) = ker(ρ).
To conclude this proof we must: (i) check the hypotheses of Lemma 29, (ii) prove that if h is
surjective, then β̂ is surjective. (iii) prove that the statement ker(e) = ker(h) implies the statement
ker(β̂ ) = ker(ρ).

For step (i), we must show that R⊆ ker(β ). To this aim us take (t ′,s′) ∈ R and let us show that
(t ′,s′) ∈ ker(β ). Since (t ′,s′) ∈ R and F∗ is surjective, there exists (t,s) ∈ Π∗ such that F∗t = t ′,
F∗s = s′ and α̂(s) = α̂(t). Then, h(α̂(s)) = h(α̂(t)). Proposition 22 shows that this last equality
is equivalent to the equality β ◦F∗(t) = β ◦F∗(s). It means that (t ′,s′) ∈ ker(β ). We have shown
that R⊆ ker(β ). Therefore, Diagram 4.10 commutes.

For step (ii), let us assume that h is surjective and then the composition h◦ α̂ is surjective since
α̂ is surjective. From the commutation of Diagram 4.10 it is clear that β̂ ◦F∗ = h ◦ α̂ and then
β̂ ◦F∗ is surjective. Therefore, β̂ must be surjective.

For step (iii), let us assume that ker(e) = ker(h) and observe that such condition is equivalent
to say that for every a,b ∈ A, e(a) = e(b)⇔ h(a) = h(b). This statement implies that for every
s, t ∈ Π∗, e(α̂(s)) = e(α̂(t))⇔ h(α̂(s)) = h(α̂(t)). We can rewrite this last equivalence by using
the fact that Diagram 4.10 commutes. It produces that for every s, t ∈Π∗, ρ(F∗(s)) = ρ(F∗(t))⇔
β̂ (F∗(s)) = β̂ (F∗(t)) holds. Since F∗ is surjective, we conclude that for every s′, t ′ ∈Ψ∗, ρ(s′) =
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ρ(t ′)⇔ β̂ (s′) = β̂ (t ′) holds. This last equivalence shows that ker(ρ) = ker(β̂ ). �

Let us make an observation that would be useful to give some interpretations of the last the-
orem. Notice that the domain (B,Ψ) is the quotient domain (Ψ∗,Ψ)/ρ and then its elements are
equivalence classes of the terms in Ψ∗. That means that the elements of this domain are strings
on the language determined by Ψ∗. The observation is as follows: these elements can be seen also
as (equivalence classes of) strings on the language determined by Π∗. Such observation follows
directly from the diagram 4.9, above, and the fact that ρ ◦F∗ is a surjective F-homomorphism; an
application of Corollary 27 ensures that domains (Π∗,Π)/(ρ ◦F∗) and (B,Ψ) are F ′-isomorphic
for some term translation F ′.

Corollary 32. Let (A,Π) be an L1-domain generated by A′, Ψ a set of L2-terms and F : Π→Ψ a

bijective term translation. Assume that there exists a term morphism F∗ : Π∗→Ψ∗ which extends

F. If there exists a surjective assignment α : V → A′ whose extension α̂ satisfies

(∀s, t ∈Π
∗) F∗(s) = F∗(t)⇒ α̂(s) = α̂(t), (4.11)

then there exists an L2-domain (B,Ψ) which is F-isomorphic to (A,Π).

Proof. Because we assume that F∗ exists and extends F , we can apply Theorem 31 to obtain the
domain (B,Ψ) and the F-homomorphism e : (A,Π)→ (B,Ψ) which makes Diagram 4.9 commute.
Additionally, observe that α̂ satisfies condition 4.11 which is equivalent to ker(F∗)⊆ ker(α̂). This
observation and the fact that F is bijective, enable us to apply Lemma 28 (with f = F∗ and g = α̂)
to obtain an F−1-homomorphism u : (Ψ∗,Ψ)→ (A,Π) which is uniquely determined, surjective
and makes next diagram commute

(Π∗,Π)

F∗
��

α̂ // (A,Π)

e
��

(Ψ∗,Ψ)

u
99t

t
t

t
t

ρ // (B,Ψ)

(4.12)

We want to use Lemma 29 to factorize u. To this aim, recall that ker(ρ) is the hull of R =

{(F∗t,F∗s) | (t,s) ∈ ker(α̂)}. If we are able to prove that R ⊆ ker(u), we can use Lemma 29 to
obtain an uniquely determined F−1-homomorphism k : (B,Ψ)→ (A,Π) which satisfies u = k ◦ρ .
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It makes next diagram commute

(Π∗,Π)

F∗
��

α̂ // (A,Π)

e




(Ψ∗,Ψ)

u
99ttttttttt

ρ // (B,Ψ)

k

JJ

and then k ◦ e ◦ α̂ = α̂ and e ◦ k ◦ ρ = ρ . Because ρ and α̂ are surjective maps, they are right
cancelleable and then k ◦ e = idA and e ◦ k = idB. It follows that e−1 = k and that the domains
(A,Π) and (B,Ψ) are F-isomorphic.

To end this proof, it is only left to show that R⊆ ker(u). To this aim, let us take a pair (t,s)∈Π∗.
Assume that (F∗t,F∗s)∈ R, and then α̂(t) = α̂(s) by definition of R. Last equality can be rewritten
by using Diagram 4.12 which yields u(F∗(t)) = u(F∗(s)). This equality proves that (F∗t,F∗s)
belongs to ker(u). Therefore, R⊆ ker(u) and the corollary follows. �

4.2.5 Products for Term Domains

Coproducts for Term Domains

This section is devoted to building a domain which acts as the coproduct of an indexed collection
{(Bα ,Ψα)}α∈D of Lα -domains. For the purposes of this section we shall need to use the disjoint

union of sets (denoted by ]) which is a modified union operation that indexes the elements accord-
ing to which set they originated in. Let us observe that when {Xα}α∈D is an indexed collection of
sets, every element x of the set

⊎
α∈D Xα corresponds to exactly one element y∈ Xλ and exactly one

index λ ∈ D. Without loss of generality, we shall identify x and y in order to avoid a cumbersome
notation. Such identification can be thought as if the Xα ’s were mutually disjoint 12.

Given a collection {(Bα ,Ψα)}α∈D of Lα -domains, we need a signature to determine the lan-
guage of the coproduct domain. Let us define the set of function symbols L as the set of terms

L =
⊎

α∈D

Ψα ,

12It can be done without loss of generality because, if there is a common element between two Xα we can index one
of them making them mutually disjoint.
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and observe that for some λ ∈ D, each element s of L is an Lλ -term. However, we emphasize that
s shall be treated as a function symbol of the new signature L. The arity of each function symbol
s∈ L is given by the cardinality of the set of variables of the term s. For each function symbol s in L

we determine exactly one L-term in the following way. Denote by xs the set of variables occurring
in s ordered in the way in which they occur in s. Let us define the following set of L-terms

⊕α∈D Ψα = {s(x1,x2, ....,xn) | s ∈ L and xs = (x1,x2, ...,xn)} (4.13)

and notice that for λ ∈ D, the map Iλ : Ψλ →⊕α∈DΨα defined by Iλ (s) = s(x1,x2, ....,xn) is an
injective term translation. In what follows, we build the semantics of the coproduct domain.

Definition 31. For a given collection {(Bα ,Ψα)}α∈D of term domains, its set of words is given by
B =

⊎
α∈D Bα . The set of phrases over the family {(Bα ,Ψα)}α∈D is denoted by⊕α∈DBα (or⊕Bα )

and inductively defined as the minimal set satisfying two conditions

1. every word is a phrase, i.e. B⊆⊕Bα .
2. if s∈ L is a n-ary function symbol and p=(p1, ..., pn) is a n-tuple of phrases such that pk <Bλ

for some k, then s(p1, ..., pn) is a phrase.

It is clear that any phrase p can be uniquely written as p = sq where s ∈ L and q is a tuple
of phrases. Such assertion follows from Definition 31 and the following observation. We can
define a new signature L′ by considering all elements of B as new constant symbols of L. Clearly,
the set of phrases ⊕α∈DBα can be embedded into the set of terms of this new signature L′. It is
straightforward that every L′- term can be uniquely written as t = sw where s is a function symbol
of L′ and w is a tuple of L′-terms and then, each phrase p ∈ ⊕α∈DBα is uniquely written as p = sq.

Le us observe that ⊕α∈DBα is an inductive set. The complexity of p ∈ ⊕α∈DBα is the number
of L-function symbols which occur on p (counting repeated ocurrences). Observe that if p = sq,
then each phrase in the tuple q has a complexity smaller than the complexity of p. Additionally,
words are the unique phrases with zero complexity.

By⊕α∈D(Bα ,Ψα) we denote the L-domain (⊕Bα ,⊕α∈DΨα) whose set of operations is defined
as follows. Let s(x1,x2, ...,xn) ∈ ⊕α∈DΨα and let λ ∈ D such that s ∈Ψλ . Let p = (p1, p2, ..., pn)
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be a n-tuple of phrases. The operation s⊕Bα is defined in the set of phrases by

s⊕Bα (p) =

sBλ (p), if pi ∈ Bλ for every i ∈ {1,2, ...,n}.

s(p1, p2, ...., pn), otherwise.

From this definition, the following proposition is straighforward.

Proposition 23. Let λ be an arbitrary element of D. The injection iλ : Bλ →⊕α∈DBα defined by

iλ (b)= b, is a Iλ -homomorphism from the term domain (Bλ ,Ψλ ) to the term domain⊕α∈D(Bα ,Ψα).

Definition 32. Let {(Bα ,Ψα)}α∈D be an indexed collection of term domains. The coproduct

domain of {(Bα ,Ψα)}α∈D is the term domain ⊕α∈D(Bα ,Ψα) together with the family of Iλ -
homomorphisms iλ : Bλ →⊕Bα .

Theorem 33. Let (A,Π) be a L′-domain and let {(Bα ,Ψα)}α∈D be a collection of Lα -domains.

For every λ ∈ D, let Fλ : Ψλ → Π be a term translation. If for every λ ∈ D there exists a Fλ -

homomorphism fλ : Bλ → A, then there exist a unique term translation F : ⊕α∈DΨα → Π which

satisfies F ◦ Iλ = Fλ and a unique F-homomorphism f : ⊕α∈DBα → A which makes the following

diagram commute

(A,Π)

⊕α∈D(Bα ,Ψα)

f

OO�
�
�

(Bλ ,Ψλ )iλ
oo

fλ
ggPPPPPPPPPPPP

Proof. Let us define the term translation F : ⊕α∈DΨα → Π in the unique way which satisfies
F ◦ Iλ = Fλ for every λ ∈ D, that is to say that, if s(x1,x2, ...,xn) ∈ ⊕α∈DΨα with s ∈ Ψλ , then
F(s(x1,x2, ...,xn))=Fλ (s). Let us use induction on the complexity of phrases to define f :⊕α∈DBα→
A. Let p ∈ ⊕Bα be a phrase and set

f (p) =

 fλ (p) if p ∈ Bλ ,

Fλ (s)A f w if p = sw with s ∈Ψλ and w a tuple of phrases.
(4.14)

where if w = (w1,w2, ...,wn), then f w = ( f (w1), f (w2), ..., f (wn)).

Since f ◦ iλ = fλ for every λ ∈ D, it is clear that the definition of f makes the above diagram
commute. Let us show that f is an F-homomorphism. Let us take a n-ary term s(x1,x2, ...,xn) ∈
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⊕α∈DΨα with s ∈Ψλ and let p be a n-tuple of phrases. We must show that f (s⊕Bα p) = F(s)A f p.
There are two alternatives: The first alternative is when every component of the tuple p is a word
belonging to Bλ . Then:

f (s⊕Bα p) = f (sBλ p)

= fλ (s
Bλ p)

= Fλ (s)
A fλ (p)

= F(s)A f p.

Otherwise, (second alternative) there exists at least one component of the tuple p which does not
belong to Bλ . Then, from the definition of f , it is clear that:

f (sB p) = Fλ (s)
A f p

= F(s)A f p

To complete this proof we are going to show that f is unique. Let us assume that there exist another
F-homomorphism f ′ : ⊕α∈DBα → A which makes the diagram in the statement of this theorem
commute. Let us make two observations. First, f ′ ◦ iλ = fλ for every λ ∈D, which implies that on
words with zero complexity f = f ′. Second, f ′ must satisfy the equation of a F-homomorphism

f ′(tBw) = F(t)A f ′w, (4.15)

for every word (in particular for those words with complexity larger than zero). These two obser-
vations mean that equation 4.14 is satisfied when f is replaced by f ′. Since equation 4.14 defines
f , we conclude that f and f ′ are equal. �

Complementing last theorem, notice that if there exists a F-homomorphism f :⊕α∈DBα → A,
it is clear that for every λ ∈ D, the map fλ = f ◦ iλ is an (F ◦ Iλ )-homomorphism.

Products for Term Domains

This section is devoted to building the product domain of an indexed collection {(Bα ,Ψα)}α∈D

of term domains. Because of a technical requirement we shall assume that the index set D has

119



4.2. Term Domains

a distinguished element 0. To define the product domain, we must first determine the signature
associated to this domain. We warn the reader that the election of the function symbols for this new
signature shall be very particular and non usual. However, such election simplifies the proofs for
this section. We define the set L of function symbols as the set of sequences of terms given by:

L = {(tα)α∈D ∈ ∏
α∈D

Ψα | for all β ,γ ∈ D, V (tβ ) =V (tγ)}.

In what follows, we determine exactly one L-term for every function symbol s of L. Observe that
each function symbol s of L is an indexed sequence of terms whose components share the exact
same set xs of variables. Let us assume that xs = (x1,x2, ...,xn) is the tuple obtained by ordering the
set xs in the way these variables appear in t0. This enables us to determine uniquely the following
set of L-terms

⊗α∈D Ψα = {s(x1,x2, ....,xn) | s ∈ L and xs = (x1,x2, ...,xn)}, (4.16)

and observe that for any λ ∈D, the map Pλ :⊗α∈DΨα →Ψλ which applied to s(x1,x2, ....,xn) with
s = (tα)α∈D returns the term tλ (i.e. Pλ (s(x1,x2, ....,xn)) = tλ ) is a term translation.

On the other hand, we need to address the semantics of the product domain. Let B = ∏α∈D Bα

be the cartesian product of the family of sets {Bα}α∈D and pλ : ∏α∈D Bα → Bλ its coordinate
maps. We denote by ⊗α∈D(Bα ,Ψα) the term domain (B,⊗α∈DΨα) whose family of operations
is determined as follows. Let s ∈ ⊗α∈DΨα be a n-ary term and b a n-tuple in B. The operation
sB : Bn→ B is defined componentwise by

(sBb)λ = Pλ (s)
Bλ pλ b, (4.17)

where, if b = (b1,b2, ...,bn) with bi = (biα)α∈D, then pλ b = (b1λ ,b2λ , ...,bnλ ). From formula 4.17
and the observation that pλ (sBb) = (sBb)λ , next proposition is straighforward.

Proposition 24. Let λ be an arbitrary element of D. The coordinate map pλ : ∏α∈D Bα → Bλ is a

Pλ -homomorphism from the term domain ⊗α∈D(Bα ,Ψα) to the term domain (Bλ ,Ψλ ).

Definition 33. Let {(Bα ,Ψα)}α∈D be an indexed collection of term domains. Its product domain is
the term domain ⊗α∈D(Bα ,Ψα) together with the family of Pλ -homomorphisms pλ : ∏α∈D Bα →
Bλ .
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Next theorem shows that the domain ⊗α∈D(Bα ,Ψα) satisfies the expected properties of a pro-
duct object. The above definitions make next theorem straightforward. However, for the sake of
clarity, details are given.

Theorem 34. Let (A,Π) be an L′-domain and {(Bα ,Ψα)}α∈D a family of Lα -domains. For every

λ ∈ D let Fλ : Π→Ψλ be a term translation. If for every λ ∈ D there exists a Fλ -homomorphism

fλ : A→ Bλ , then there exists a unique term translation F : Π→⊕α∈DΨα which satisfies Pλ ◦F =

Fλ and a unique F-homomorphism f : A→∏α∈D Bα which makes next diagram commute:

(A,Π)

f
���
�
�

fλ

''OOOOOOOOOOO

⊗α(Bα ,Ψα) pλ

// (Bλ ,Ψλ )

Proof. Let F : Π→⊗α∈DΨα be the term translation defined componentwise by F(s)λ = Fλ (s).
Notice that it is the unique definition which satisfies Pλ ◦F = Fλ for every λ ∈D. Let B=∏α∈D Bα

and let us define f : A→ B componentwise by

f (a)λ = fλ (a).

Notice that pλ ◦ f = fλ and then, f is the unique mapping which makes the above diagram com-
mute. In order to show that f is a F-homomorphism, let us take a n-ary term s ∈ Π, and a n-tuple
a ∈ A. Notice that for each index λ ∈ D, next computations follow

f (sAa) λ = fλ (s
Aa)

= Fλ (s)
Bλ fλ (a)

= (F(s)λ )
Bλ fλ (a)

= (Pλ ◦F(s))Bλ pλ ◦ f (a)

= pλ (F(s)B f (a))

= [F(s)B f (a)]λ

and then, f (sAa) = F(s)B f (a). This proves that f is an F-homomorphism. �
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Complementary to the above theorem, let (A,Π) be an L′-domain and let F : Π→⊗α∈DΨα be a
term translation. Notice that if there exists a F-homomorphism f from (A,Π) to the product domain
⊗α∈D(Bα ,Ψα), the composition fλ = pλ ◦ f is an (Pλ ◦F)-homomorphism uniquely determined
for each λ ∈ D.

4.3 Formula Domains

The goal of this section is to enhace the metaphor model presented in Section 4.2. This new model
will be able to handle some cases where term domains are not useful. This cases occur when it is
necessary to represent some relations between the objects of the domain but those relations can not
be modeled through operations defined in the domain. Another goal of this section is to provide
a set of formulas which can be associated to a meaning in term domains. This section is highly
dependent on Chapter 2 and Chapter 3 of this work. Additionally, we recommend the reader to
review Section 4.2.1 before reading next section.

4.3.1 A Little More of Model Theory

Let L be a signature. The atomic formulas of L are the strings of symbols determined inductively
by the two following conditions

1. If s and t are terms of L, then the string s = t is an atomic formula of L.
2. If n > 0, R is an n-ary relation symbol of L and t1, ..., tn are terms of L, then the expression

R(t1, t2, .., tn) is an atomic formula of L.

Let Q be an L-structure. An assignment is a map σ : V → dom(Q) from the set of variables V to the
set of elements of Q. We shall denote them by σ : V → Q. It is well known that σ can be extended
in a unique way to a map σ̂ : Term(L)→Q which for every n-ary function symbol f ∈ L and every
tuple t1, ..., tn of L-terms satisfies

σ̂( f (t1, ..., tn)) = f Q(σ̂(t1), ..., σ̂(tn)).
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Additionally, let us consider an n-ary relation symbol R ∈ L and let RQ be its associated n-ary
relation defined on the set of elements of Q. Given an assignment σ , we can associate the atomic
formula R(t1, t2, .., tn) to the truth value RQ(σ̂(t1), ..., σ̂(tn)). In case that RQ(σ̂(t1), ..., σ̂(tn)) holds,
we write σ |=Q R(t1, ..., tn) and say that σ satisfies the atomic formula R(t1, ..., tn). The below
theorem of model theory describes a tight relation between homomorphisms of L-structures (see
Definition 25 in Section 4.2) and atomic formulas of L.

Theorem 35. Let A and B be L-structures and let f : dom(A)→ dom(B) be a map.

1. If f is a homomorphism, then for every assignment σ : V → A,

f ◦ σ̂ = f̂ ◦σ .

2. The map f is a homomorphism if and only if every atomic formula φ of L and every assign-

ment σ : V → A satisfy

if σ |=A φ , then f ◦σ |=B φ .

The symbols ¬, ∧, ∨, ∀ and ∃ stand for the meanings “not”, “and”, “or”, “for all elements” and
“there is an element” respectively. These symbols and meanings are standard and well known in
mathematical logic. The class of the first order formulas for the signature L is denoted by Form(L)

and is defined as the smallest class of formulas determined by the following conditions:

1. all atomic formulas of L are formulas of L.
2. if φ is a formula, then the expression ¬φ is a formula.
3. if φ and ψ are formulas, then the expressions φ ∧ψ and φ ∨ψ are formulas.
4. if φ is a formula and x is a variable, then the expressions ∃xφ and ∀xφ are formulas.

The formulas which go into the making of a formula φ are called the subformulas of φ . The
quantifiers ∀y (“for all y”) and ∃y (“there is y”) bind variables in the way that is standard in logic.
In the same standard way, we distinguish between free and bound occurrences of variables in a
formula. The free variables of a formula φ are those variables which have free occurrences in φ .
The concept of satisfaction is extended to the class of all L-formulas in the following standard way.

Definition 34. Let Q be an L-structure and let σ : V →Q be an assignment. We say that σ satisfies

a formula φ in Q (in symbols σ |=Q φ ), when the inductive construction of φ satisfies one of the
following conditions:
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1. if φ is atomic, then σ |= φ holds if σ satisfies φ .
2. if φ = ¬ϕ , then σ |= φ if and only if σ |= ϕ does not hold.
3. if φ = ϕ ∧ψ , then σ |= φ if and only if σ |= ϕ and σ |= ψ .
4. if φ = ϕ ∨ψ , then σ |= φ if and only if σ |= ϕ or σ |= ψ .
5. if φ = ∃xϕ , then σ |= φ if and only if exists q ∈ Q such that σ

q
x |= ϕ .

6. if φ = ∀xϕ , then σ |= φ if and only if for every q ∈ Q, σ
q
x |= ϕ .

where σ
q
x denotes the assignment whose values are all equal to the values of σ , except for the

variable x where σ
q
x (x) = q.

A substitution is a map ρ : V → Term(L) which associates an L-term to every variable. A
substitution ρ can be applied to an an L-term s by replacing every variable x occurring in s by ρ(x).
The new term obtained from such process is denoted by sρ . Moreover, it can be shown that such
process determines uniquely an extension ρ̂ : Term(L)→ Term(L) which for every n-ary function
symbol f ∈ L and every tuple t1, ..., tn of L-terms satisfies

ρ̂( f (t1, ..., tn)) = f (ρ̂(t1), ..., ρ̂(tn)).

Additionally, a substitution ρ can be applied to an L-formula ϕ . However, a careful process is
needed (see Definition 13 in Chapter 3). The formula which results from such process is denoted
by ϕρ . A well known result of Mathematical Logic is the next one which is provided here without
proof.

Lemma 36 (Substitution Lemma). Supposse that Q is an L-structure, s is an L-term and ϕ is an

L-formula. Let σ : V → Q be an assignment and let ρ : V → Term(L) be a substitution. Next two

assertions hold.

1. σ̂(sρ) = σ̂ ◦ ρ̂(s) = ̂̂σ ◦ρ(s).

2. σ |= ϕρ if and only if σ̂ ◦ρ |= ϕ

4.3.2 Formula Domains and its Homomorphisms

In this section we are going to formalize knowledge domains. The formalization presented below
has the ability of representing general relations between objects of the domain. However, we have
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restricted ourselves to work with no quantified formulas. The analysis of the case when quantified
formulas are included is beyond the scope of this work. Such analysis will require new techniques
and more research. From now on, every formula mentioned in this chapter shall have no quantifiers.
Let us begin with the definition of a formula domain.

Definition 35. Assume that Q is an L-structure. Let (A,Π) be a term domain in the context of Q

and Σ a finite non-empty set of non quantified L-formulas. The triple (A,Σ,Π) is called a formula

domain (in the context of Q) when for every ϕ ∈ Σ, every t occurring in ϕ and every assignment
σ : V → A, the element σ̂(t) belongs to A.

Observe that the definition of a formula domain (A,Σ,Π) requires A closed for the family of
operations determined by the terms occurring in the formulas of Σ. In what follows, we shall need
some basic facts about term domains. Most of them were previously introduced in Section 4.2.
However, we rewrite them below in a way well suited for the goals of this section.

Let (A,Π) be a term domain in the context of Q and let Π∗ (Definition 29) be the set of L-
terms generated by Π. When the image of a substitution ρ is contained in Π∗ (i.e. ρ : V → Π∗),
it can be extended in a unique way to a map ρ̂ : Π∗→ Π∗ which is an I-homomorphism of term
domains. When considering another substitution γ : V → Π∗, follows from Lemma 25 that the
substitution ρ̂ ◦ γ : V → Π∗ can be uniquely extended to the I-homomorphism ρ̂ ◦ γ̂ : Π∗ → Π∗.
By an analogous reasoning, when σ : V → A is an assignment, the composition σ̂ ◦ ρ̂ : Π∗ → A

is the uniquely determined I-homomorphism which extends the assignment σ̂ ◦ρ . Last assertion
follow from the fact that each assignment σ : V → A can be extended in a unique way to an I-
homomorphism σ̂ : Π∗→ A. These observations suggest to think about Π∗ as a collection of terms
that can be interpreted in the domain (A,Π). 13

In the next discussion we seek to convince our readers that the formulas of the collection
(Σ⊗Π)+ (Definition 18) can be interpreted in the domain (A,Σ,Π) where the meaning of the
word “interpretation” is formalized in Definition 36 below. Recall that formulas in (Σ⊗Π)+ are
obtained as combinations of formulas from Σ⊗Π = {ϕρ | ϕ ∈ Σ,ρ in Π∗} by means of the syn-
tactic operators ∧,∨ and ¬.

Definition 36. Assume that Q is an L-structure and let (A,Σ,Π) be a formula domain with context
Q. We say that the extension σ̂ of an assignment σ : V → A satisfies a formula ϕ ∈ (Σ⊗Π)+ in the

13To reinforce this suggestion, it is easy to create examples where σ̂(t) < A, if t <Π∗.
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domain (A,Σ,Π) exactly when ϕ is satisfied by σ in Q (as in Definition 34). In symbols,

σ̂ |=A ϕ if and only if σ |=Q ϕ. (4.18)

Observe that given an assignment σ , the definition of satisfaction in an L-structure Q (Definition
34) gives an inductive procedure which uses the elements of Q to assign a truth value to L-formulas.
It might seem like σ̂ |=A ϕ in (4.18) above depends not only on the elements of A but on the
elements of Q. Such impression is false. It turns out that when σ : V → A and ϕ ∈ (Σ⊗Π)+, we
just need the elements of A to apply the procedure of Definition 34 to determine if σ |=A ϕ holds.
Next two straightforward results prove this last affirmation.

Proposition 25. Assume that (A,Σ,Π) is a formula domain. Let s be a term which occurs in ϕ ∈ Σ

and let ρ be a substitution in Π∗. If σ : V → A is an assignment, then σ̂(sρ) ∈ A.

Proof. Let σ : V → A be an assignment. Because ρ is a substitution whose image is a subset of
Π∗, the composition σ̂ ◦ρ is an assignment whose image is a subset of A. The Substitution Lemma
ensures that the extension of σ̂ ◦ρ is σ̂ ◦ ρ̂ . Since (A,Σ,Π) is a formula domain and s is a term
ocurring in a formula of Σ, the element σ̂ ◦ ρ̂(s) = σ̂(sρ) belongs to A. �

Next corollary follows directly from the above proposition and the definition of (Σ⊗Π)+.

Corollary 37. Let (A,Σ,Π) be a formula domain and σ : V → A an assignment. If s is any term

occurring in any formula ϕ ∈ (Σ⊗Π)+, then σ̂(s) belongs to A.

Last corollary together with Proposition 25 show that σ |=A ϕ in Definition 36 depends only
on elements of A. In other words, formula domains have enough information to determine the truth
value of any formula in (Σ⊗Π)+. Next straightforward lemma shall be useful to perform some
computations later on. by using graph theory and unification theory.

Lemma 38 (Substitution Lemma for Domains). Let (A,Σ,Π) be a formula domain (in a context

Q). Let ϕ ∈ (Σ⊗Π)+ and ρ : V →Π∗ a substitution. Then, for any assignment σ : V → A,

σ̂ |=A ϕρ if and only if σ̂ ◦ ρ̂ |=A ϕ

126



4.3. Formula Domains

Proof. Let us assume that σ̂ |=A ϕρ and then, by definition σ |=Q ϕρ . An application of the
Substitution Lemma (Lemma 36) yields σ̂ ◦ρ |=Q ϕ . Since σ̂ ◦ρ has form V → A, it means that
σ̂ ◦ ρ̂ |=A ϕ by definition again. On the other hand, if we assume that σ̂ ◦ ρ̂ |=A ϕ , by definition
σ̂ ◦ρ |=Q ϕ . An application of Lemma 36 produces σ |=Q ϕρ . It means that σ̂ |=A ϕρ . �

This study continues by determining the meaning of a formula homomorphism between two
formula domains (Definition 37 below). To this aim, recall that a map between two sets of for-
mulas (each one of them having possibly a different signature) is called a formula translation, if
it preserves the free variables of formulas. In the same manner, a mapping between two sets of
terms (each one of them having possibly a different signature) is called a term translation when it
preserves the variables of terms.

Let (A,Σ,Π) and (B,Ω,Ψ) be two formula domains. Assume that T : Π→ Ψ is a term trans-
lation and that f : A→ B is an T -homomorphism from the term domain (A,Π) to the term domain
(B,Ψ). Let ϕ ∈ (Σ⊗Π)+ and φ ∈ (Ω⊗Ψ)+. We say that f preserves ϕ in φ when for every
assignment σ : V → A,

if σ̂ |=A ϕ, then f̂ ◦σ |=B φ . (4.19)

Definition 37. Let (A,Σ,Π) and (B,Ω,Ψ) be two formula domains. Let f : A → B be a T -
homomorphism from (A,Π) to (B,Ψ) where T : Π→ Ψ is a term translation. Assume that F :
Σ→ Ω is a formula translation. We say that f : A→ B is an F-homomorphism respect to T if for
every ϕ ∈ Σ, f preserves ϕ in F(ϕ).

Next, we present some properties of formula homomorphisms. Those results show that a
formula homomorphism is able to preserve other formulas than those in Σ. Assume that ϕ in
(Σ⊗Π)+. In order to say that a formula homomorphim preserves ϕ in φ , we must have a formula
φ ∈ (Ω⊗Ψ)+ in first place. The problem of how to associate a formula φ to ϕ was analized in
Chapter 2 and Chapter 3 of this work. For the sake of completeness of this discussion, next para-
graph presents a brief (and necessarily incomplete) summary of the concepts introduced in these
chapters. These concepts will enable us to present the results for this chapter.

Let L1 and L2 be two signatures. Let T : Π→ Ψ be a term translation and let F : Σ→ Ω be a
formula translation where Σ is a set of L1-formulas, Ω is a set of L2-formulas, Π is a set of L1-terms
and Ψ is a set of L2-terms. If T ∗ : Π∗→Ψ∗ is a T -homomorphism from (Π∗,Π) to (Ψ∗,Ψ) which
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extends T and acts as the identity on variables, we say that T ∗ is the term morphism extending
T . Such T ∗ does not always exists, but when it exists, it must be unique. Assume that T ∗ is
a term morphism extending T and consider the problem of extending F to a formula translation
L : (Σ⊗Π)→ (Ω⊗Ψ) which for every ϕ ∈ Σ and every substitution ρ : V →Π∗ satisfies

L(ϕρ) = F(ϕ) (T ∗ ◦ρ). (4.20)

Again, L does not always exists. When it exists, it must be unique. Finally, suppose that L exists and
consider the problem of extending L : Σ⊗Π→ Ω⊗Ψ to a formula translation L+ : (Σ⊗Π)+→
(Ω⊗Ψ)+ which preserves logical connectors at a syntactic level. If it exists, we say that L+ is
a formula morphism extending L. We recommend the reader to review Chapter 3, Definition 19
where a formula morphism is defined. Later on, we shall need to perform some computations.
Next lemma will help us with that.

Lemma 39. Let (A,Π) be an L1-domain, (B,Ψ) an L2-domain, T : Π→Ψ a term translation and

f : A→ B an T -homomorphism. If there exists a term morphism T ∗ which extends T , then for any

substitution ρ : V →Π∗ and any assignment σ : V → A, the following diagram commutes.

Π∗
T ∗ //

ρ̂

��

Ψ∗

T̂ ∗◦ρ
��

Π∗ T ∗
//

σ̂

��

Ψ∗

f̂◦σ
��

A f
// B

(4.21)

Proof. Observe that every arrow in the diagram is an homomorphism of term domains: every
vertical arrow in the diagram is an I-homomorphism and every horizontal arrow in the diagram is
an T -homomorphism. Therefore, any composition of arrows which goes from left to right is an
T -homomorphism. Consequently, we can show the result by using the following reasoning. For
every variable x, it is clear that (T ∗ ◦ρ) ◦T ∗(x) = (T ∗ ◦ρ) ◦ I(x) = T ∗ ◦ρ(x). Since (Π∗,Π) is a
term domain generated by the set of variables, Lemma 25 ensures us that the respective extensions
are equal i.e. T ∗ ◦ ρ̂ = ̂(T ∗ ◦ρ) ◦T ∗. That means that the upside part of the diagram commutes.
The same reasoning applied to the downside part of the diagram enables us to conclude that f ◦ σ̂ =

f̂ ◦σ ◦T ∗. It means that the below square of the diagram commutes. Therefore, the whole diagram
commutes and our result follows. �
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Theorem 40. Let (A,Σ,Π) and (B,Ω,Ψ) be two formula domains, T : Π→ Ψ a term translation

and F : Σ→Ω a formula translation. Assume that L : Σ⊗Π→Ω⊗Ψ is well defined by equation

4.20. If f : A→ B is an F-homomorphism (respect to T ), then for every formula ψ ∈ Σ⊗Π, f

preserves ψ in L(ψ).

Proof. We must show that for every ψ ∈ Σ⊗Π and every assignment σ : V → A,

σ̂ |=A ψ implies f̂ ◦σ |=B L(ψ). (4.22)

Because ψ ∈ Σ⊗Π, we can set ψ = ϕρ with ϕ ∈ Σ and ρ in Π∗. Assume that σ̂ |=A ϕρ and
then by Lemma 38 we obtain that σ̂ ◦ ρ̂ |=A ϕ which means that ̂̂σ ◦ρ |=A ϕ . Because f is an
F-homomorphism, we conclude that ̂f ◦ σ̂ ◦ρ |=B F(ϕ). By using Lemma 39 it is easy to see
that ̂f ◦ σ̂ ◦ρ = f̂ ◦σ ◦ ̂(T ∗ ◦ρ). Therefore, f̂ ◦σ ◦ ̂(T ∗ ◦ρ) |=B F(ϕ) holds. An application of
the Substitution Lemma (Lemma 38) yields f̂ ◦σ |=B F(ϕ)(T ∗ ◦ ρ). The result follows because
F(ϕ)(T ∗ ◦ρ) = L(ϕρ) = L(ψ). �

Our next result concerns a subset of formulas of (Σ⊗Π)+. To prove it, we will need to perform
induction. To this aim, we are going to associate a size to every formula of (Σ⊗Π)+. The size of a
formula shall be directly related to the concept of a tree over a set of formulas introduced in Chapter
3. Let us consider the set of trees over Σ⊗Π denoted by (Σ⊗Π)◦. A tree a ∈ (Σ⊗Π)◦ is called a
lifting of ϕ ∈ (Σ⊗Π)+ when its projection µ(a) is equal to ϕ (see Chapter 3, Section 3.2.2). Each
tree has a length which is just the cardinality of the set of edges of its maximal directed path. The
size of a formula ϕ ∈ (Σ⊗Π)+ is the minimum of the set of lengths of all its liftings. Since every
ϕ ∈ Σ⊗Π has a lifting which has only one node and no edges, it is clear that a formula ϕ has zero
size if and only if ϕ ∈ Σ⊗Π. To express our next result, define the set ∆ as the minimal subset of
(Σ⊗Π)+ which contains Σ⊗Π and satisfies: if ϕ,φ ∈ ∆, then ϕ ∧φ ∈ ∆ and ϕ ∨φ ∈ ∆. Observe
that ∆ is the set of all the combinations of formulas from Σ⊗Π by means of the operators ∧ and ∨.

Theorem 41. Let (A,Σ,Π) and (B,Ω,Ψ) be two formula domains, T : Π→Ψ a term translation,

F : Σ→ Ω a formula translation and f : A→ B an F-homomorphism respect to T . Assume that

L : Σ⊗Π→Ω⊗Ψ is well defined by equation 4.20 and exists. If there exists a formula morphism

L+ : (Σ⊗Π)+→ (Ω⊗Ψ)+ extending L, then for every ψ ∈ ∆, f preserves ψ in L+(ψ).
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Proof. Let us show that for every assignment σ : V → A,

if σ̂ |=A ψ, then f̂ ◦σ |=B L+(ψ). (4.23)

We use induction on the size of ψ . The base step is provided by Theorem 40 since ψ having zero
size is equivalent to ψ ∈ Σ⊗Π. Let us prove the inductive step. Let us show that the theorem
holds for a formula ψ ∈ ∆ whose size is n > 1. Our induction hypothesis is that the theorem is true
for every formula in ∆ with size n− 1 or less. There are two different cases. First, assume that
ψ = ϕ ∧ φ where ϕ ∈ ∆ and φ ∈ ∆. It is clear that ϕ and φ have sizes n− 1 (or less) because if
not, the size of ψ would be greater than n. Thus, we can apply the inductive hypothesis on both
formulas. If σ̂ |=A ϕ ∧φ , then σ̂ |=A ϕ and σ̂ |=A φ . By applying the induction hypotheses in ϕ

and φ we obtain that f̂ ◦σ |=B L+(ϕ) and f̂ ◦σ |=B L+(φ). Since L+ is a formula morphism, we
conclude that f̂ ◦σ |=B L+(ϕ ∧φ) and the result holds for this case. The case ψ = ϕ ∨φ is totally
analogous to the first one. The analysis of these two cases, shows that the theorem holds. �

Theorem 40 and Theorem 41 gives us conditions which guarantee that f preserves a formula
ϕ in a formula ψ . This preservation is a notion which depends on assignments. However, there
is a notion of preservation of formulas which does not depends on assignments. We describe such
notion next. Let (A,Σ,Π) be a formula domain and ϕ ∈ (Σ⊗Π)+ a formula. We say that A is a
model of ϕ (in symbols A |= ϕ) when for every assignment σ : V → A, σ̂ |=A ϕ holds. From this
definition, next proposition is straighforward.

Proposition 26. Let (A,Σ,Π), (B,Ω,Ψ) be two formula domains, ϕ ∈ (Σ⊗Π)+, φ ∈ (Ω⊗Ψ)+

and T : Π→Ψ a term translation. Let f : A→ B be a surjective T -homomorphism from (A,Π) to

(B,Ψ) and assume that f preserves ϕ in φ . If A is a model for ϕ , then B is a model for φ , i.e. if

A |= ϕ , then B |= φ .

Proof. Since f is surjective, for every assignment λ : V → B, there exists an assignment σ : V → A

such that λ = f ◦σ . Additionally, A |= ϕ means that σ̂ |=A ϕ holds for every assignment σ : V → A.
It implies that for every λ : V → B, λ̂ |=B φ because f preserves ϕ in φ . Therefore, B |= φ . �

We finalize this section by introducing a map which is a stronger version of a homomorphism
between formula domains.
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Definition 38. Assume that (A,Σ,Π) and (B,Ω,Ψ) are two formula domains with possibly distinct
contexts. Let F : Σ→ Ω be a formula translation and let T : Π→ Ψ be a term translation. An
F-homomorphism f : A→ B respect to T is called a metaphor respect to F and T when next two
conditions are satisfied

1. F is injective, and
2. for every formula ψ in the image of F and every assignment λ : V → B, if λ̂ |=B ψ , then

there exists σ : V → A such that f ◦σ = λ and σ̂ |=A F−1(ψ).

The last theorem of this section aims to summarize two properties of the mapping above defined
as metaphor. In order to express these two properties we need to formalize “consequence”. Let
(A,Σ,Π) be a formula domain and let ϕ,ψ ∈ (Σ⊗Π)+. By ψ |=A ϕ we denote the fact that ϕ is a
consequence of ψ which means that for every assignment σ : V → A,

if σ̂ |=A ψ, then σ̂ |=A ϕ. (4.24)

Theorem 42. Let (A,Σ,Π) and (B,Ω,Ψ) be two formula domains. Let F : Σ→ Ω be a formula

translation and let T : Π→Ψ be a term translation. Let φ ,ψ1,ψ2, ...,ψm,ϕ1,ϕ2, ...,ϕn ∈ Σ and set

ψ =
∨m

i=1 ψi, F(ψ) =
∨m

i=1 F(ψi), ϕ =
∨n

i=1 ϕi and F(ϕ) =
∨n

i=1 F(ϕi). Suppose that f : A→ B is

a metaphor respect to F and T . The following two sentences hold.

1. if A |= ¬φ , then B |= ¬F(φ).

2. if ψ |=A ϕ, then F(ψ) |=B F(ϕ).

Proof. Let us show 1. We use Reductio ad absurdum to prove this statement. Let us assume
that (i) A |= ¬φ holds, and (ii) B |= ¬F(φ) does not hold. From assumption (ii), there exists
an assignment λ : V → B such that λ̂ |=B F(φ). Because f is a metaphor, there must exist an
assignment σ : V → A such that f ◦σ = λ and σ̂ |=A φ . This contradicts our assumption (i). We
have shown that A |= ¬φ implies B |= ¬F(φ).

Let us show 2. For this statement we present a proof by contradiction. Let us assume that
(a) ψ |=A ϕ holds, and (b) F(ψ) |=B F(ϕ) does not hold. From assumption (b), there exists an
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assignment λ : V → B such that

λ̂ |=B F(ψ) holds, and λ̂ |=B F(ϕ) does not hold. (4.25)

Since λ̂ |=B F(ψ), there exists some i ∈ {1, ..,m} such that λ̂ |=B F(ψi). Then, and because f is a
metaphor, there exists some some assignment σ : V → A such that f ◦σ = λ and σ̂ |=A ψi. It means
that σ̂ |=A ψ and because of assumption (a), σ̂ |=A ϕ . Therefore, for some j ∈ {1, ...,n}, σ̂ |=A ϕ j.
Using the fact that f is an F-homomorphism and that f ◦σ = λ we obtain that λ̂ |=B F(ϕ j) which
means that λ̂ |=A F(ϕ). This contradicts assumption 4.25 above. Therefore, ψ |=A ϕ implies
F(ψ) |=B F(ϕ). �

Next, we provide plausible interpretations for the properties of metaphor described in last the-
orem. The first property says that when a formula φ can not be satisfied in the base domain, the
metaphor induces the belief that the analogous formula F(φ) can not be satisfied in the target do-
main either. For the interpretation of the second property we take consequence as a model for
human inference. In such case, metaphors are inference-preserving maps. Notice that such prop-
erty endows this model of the humand mind with the capacity of performing inferences in unknown
domains.

4.3.3 Quotients and Products for Formula Domains

This section is aimed to present three constructions on formula domains which act as quotient,
product and coproduct objects respectively. It shall be shown in Theorem43, Theorem 45 and
Theorem 46 that such constructions satisfy the expected universal properties.

Aimed to improve the readability of the next discussion we stick to the following convention.
Let (A,Σ,Π) and (B,Ω,Ψ) be two formula domains with possibly different contexts. We shall use
the lower case, the upper case and the upper case marked with a tilde versions of the same letter to
denote a formula homomorphism, its formula translation and its term translation. For example, by
f we shall denote an F-homomorphism respect to F̃ , where F : Σ→Ω is a formula translation and
F̃ : Π→Ψ is a term translation. Additionally, when we say that f : A→ B is an F-homomorphism

respect to F̃ , we imply the fact that the term translation F̃ : Π→ Ψ and the formula translation
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F : Σ→ Ω are given. In cases where the term translation F̃ associated to f is clear from the
context, we just say that f is an F-homomorphism.

Quotient Domains

Let (A,Σ,Π) and (B,Ω,Ψ) be two formula domains with possibly distinct contexts. Let f : A→ B

be an F-homomorphism respect to F̃ . Our next discussion is aimed to introduce a domain called
the quotient domain of (A,Σ,Π) by f which is a formula domain built on the quotient term domain
(A,Π)/ f . As in the case of term domains, we are interested in that this new domain has the same
signature which is associated to the domain (A,Σ,Π). To this aim, we need to determine a set
of formulas ΣF ⊆ Σ which has exactly one representant for each equivalence class of the quotient
of Σ by the fibers of F : Σ→ Ω i.e. Σ/F . We determine uniquely ΣF by giving a fixed order
to Σ = {φ1,φ2,φ3, ...φn} and selecting the subset of terms ΣF wich satisfies the requirement and
minimizes the sum of the subindexes of its elements. Observe that there is a bijection between
the set of formulas ΣF and the quotient set Σ/F . Therefore, we determine uniquely the surjective
formula translation P : Σ→ ΣF which for φ ∈ Σ and ϕ ∈ ΣF satisfies P(φ) = ϕ exactly when
F(φ) = F(ϕ).

Recall that (A,Π)/ f is the quotient domain of the term domain (A,Π) by the F̃-homomorphism
f : A→ B which was defined 14 by the pair (A/ f ,ΠF̃). Additionally, recall the fact that p : A→ A/ f

is the projection map which is an P̃-homomorphism from (A,Π) to (A,Π)/ f . We want to show that
the triple (A/ f ,ΣF ,ΠF̃) is a formula domain. To this aim, we determine an n-ary relation Rφ defined
on the set A/ f for each formula φ ∈ ΣF with free variables x1,x2, ...,xn. Consider σ : V → A/ f an
assignment and let RA/ f

φ
(σ(x1),σ(x2), ....,σ(xn)) holds if and only if

there exists an assignment γ : V → A such that p◦ γ = σ and γ̂ |=A φ . (4.26)

From this definition, it is clear that the projection map p : A → A/ f becomes a surjective P-
homomorphism from the formula domain (A,Σ,Π) to the formula domain (A/ f ,ΣF ,ΠF̃).

Definition 39. Let (A,Σ,Π), (B,Ω,Ψ) be two formula domains with possibly distinct contexts.
Let f : A → B be an F-homomorphism respect to F̃ . We denote by (A,Σ,Π)/ f to the triple

14See definition 33 for details.
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(A/ f ,ΣF ,ΠF) which is the quotient domain of (A,Σ,Π) respect to f when the projection map
p : A→ A/ f is considered.

Despite the fact that the above definition makes next theorem straightforward, we include the
details in the proof.

Theorem 43. Let (A,Σ,Π) and (B,Ω,Ψ) be two formula domains with possibly distinct contexts. If

f : A→ B is an F-homomorphism respect to F̃, then there exists a unique map f ′ : A/ f → B which

is an injective F ′-homomorphism respect to F̃ ′ and makes below diagram commute. The maps F ′

and F̃ ′ are injective, uniquely determined and satisfy F = F ′ ◦P, F̃ = F̃ ′ ◦ P̃.

(A,Σ,Π)
f //

p
��

(B,Ω,Ψ)

(A,Σ,Π)/ f
f ′

77pppppp

(4.27)

Proof. The formula translation F ′ is injective and uniquely determined by F ′(ϕ) = F(ϕ) for ϕ ∈
ΣF . Notice that such is the only definition which makes F ′ satisfy F ′ ◦P = F . In the same way, the
term translation F̃ ′ is injective and uniquely determined by F̃ ′(t) = F̃(t) for t ∈ ΠF . Additionally,
f ′ is the mapping uniquely determined by f ′([a]) = f (a) where [a] ∈ A/ f is the class of a ∈ A.
Theorem 26 shows that f ′ is an F̃ ′-homomorphism.

We want to show that f ′ is an F ′-homomorphism respect to F̃ ′. To this aim, let σ : V → A/ f

be an assignment and let φ ∈ ΣF be a formula. We must show that if σ |=A/ f φ , then f̂ ′ ◦σ |=B

F ′(φ). Assume that σ |=A/ f φ and then, by definition of the quotient domain, there must exists
some assignment γ : V → A such that γ̂ |=A φ and p ◦ γ = σ . Because f is an F-homomorphism,
f̂ ◦ γ |=B F(φ) holds. It means that ̂f ′ ◦ p◦ γ |=B F(φ) since f ′ ◦ p = f . Thus, f̂ ′ ◦σ |=B F ′(φ)

holds because p ◦ γ = σ and φ ∈ ΣF . Therefore, f ′ : A/ f → B is an injective F ′-homomorphism
respect to F̃ ′. �

Let (A,Σ,Π) and (B,Ω,Ψ) be two formula domains. We say that f : A→B is an F-isomomorphism

respect to F̃ , when the three maps f ,F, F̃ are invertible and f : A→ B is an F-homomorphism re-
spect to F̃ whose inverse is an F−1-homomorphism respect to F̃−1. The formula domains (A,Σ,Π)

and (B,Ω,Ψ) are F-isomorphic when there exists an F-isomomorphism between them. It is clear
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that an F-isomorphism between formula domains preserves a formula ϕ in F(ϕ) if and only if it
preserves its negation ¬ϕ in ¬F(ϕ).

Observe that Theorem 43 is a classical proof of the universal property of a quotient object. It is
interesting that in this case, such result does not imply that when f is a surjective homomorphism,
the quotient domain (A,Σ,Π)/ f is F-isomorphic15 to (B,Ω,Ψ). Next corollary shows that such
result is true, when f is a metaphor.

Corollary 44. Let (A,Σ,Π) and (B,Ω,Ψ) be two formula domains with possibly distinct contexts.

Let f : A→ B be an F-homomorphism respect to F̃, where f ,F and F̃ are surjective maps. If f is

a metaphor respect to F and F̃, then the quotient domain (A,Σ,Π)/ f is isomorphic to the formula

domain (B,Ω,Ψ).

Proof. Observe that maps f ′,F ′ and F̃ ′ defined in the proof of the above theorem (Theorem 43)
are all bijective because f ,F and F̃ are all surjective. Corollary 27 shows that f ′−1 is an F̃−1-
homomorphism. We must show that the map f ′−1 : B→ A/ f is an F ′−1-homomorphism. To this
aim, let λ : V → B be an assignment and let ϕ ∈ Ω be a formula, we will show that if λ̂ |=B ϕ ,
then ̂f ′−1 ◦λ |=A/ f F ′−1(ϕ). Let us assume that λ̂ |=B ϕ . Because f is a metaphor, there must
exists an assignment σ : V → A such that f ◦σ = λ and σ̂ |=A F−1(ϕ). Therefore, since p is an
P-homomorphism, p̂◦σ |=A/ f P◦F−1(ϕ). We can rewrite this last expression as ̂f ′−1 ◦ f ◦σ |=A/ f

F ′−1(ϕ) since p = f ′−1 ◦ f and F ′−1 = P ◦F−1. Therefore, ̂f ′−1 ◦λ |=A/ f F ′−1(ϕ) holds and the
corollary follows. �

Coproducts for Formula Domains

This section is devoted to build a formula domain which acts as the coproduct of an indexed collec-
tion {(Bα ,Ωα ,Ψα)}α∈D of formula domains where each domain has an associated signature Lα .
This new formula domain shall be based on the coproduct ⊕α∈D(Bα ,Ψα) of term domains. We
recommed our reader to review Section 4.2.5 of this chapter where the coproduct of term domains
was introduced.

We need a signature L which can be associated to the new coproduct of formula domains. Let

15To see that, consider a huge relation in the target domain as for example B×B.
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us make this in the following way. Consider each formula of
⊎

α∈D Ωα as a relation symbol whose
arity is the cardinality of its set of free variables. The new signature is given by

L = L′∪
⊎

α∈D

Ωα

where L′ is the signature associated to the coproduct of term domains ⊕α∈D(Bα ,Ψα).

In order to define the coproduct of formula domains, we need to build a set of L-formulas. Let
R be an n-ary relation symbol of L. Observe that R is an Lλ -formula belonging to some Ωλ , and
assume that x1,x2, ...,xn are its free variables ordered in the way which they occur in the formula.
We build exactly one L-formula for each relation simbol R ∈ L by defining the following set of
atomic L-formulas:

⊕αΩα = {R(x1,x2, ....,xn) | R ∈
⊎

α∈D

Ωα}.

For each λ ∈ D, define the injection Iλ : Ωλ →⊕αΩα by Iλ (R) = R(x1,x2, ....,xn) and notice that
such map is a formula translation.

Recall that the coproduct of term domains is defined by ⊕α∈D(Bα ,Ψα) = (⊕αBα ,⊕α∈DΨα)

where ⊕αBα is the set of phrases 16. Recall that the injection maps iλ : Bλ → B are defined by
iλ (b) = b. We shall denote by⊕α(Bα ,Ωα ,Ψα) the formula domain (⊕αBα ,⊕αΩα ,⊕αΨα) whose
set of relations is determined in the following manner. Let R(x1,x2, ...,xn) ∈ ⊕αΩα with R ∈ Ωλ .
The relation R⊕α Bα on ⊕αBα is defined by:

R⊕α Bα (p1, p2, ..., pn) holds if and only if p1, p2, ..., pn ∈ Bλ and σ |=Bλ
R, (4.28)

251 where σ : V → Bλ is determined by σ(xi) = pi for i = 1,2, ...,n and σ(x) = p1 otherwise.
The above definition makes next proposition straightforward. However, we give a proof in case the
reader want to follow the details.

Proposition 27. Let λ be an arbitrary element of D. The injection iλ : Bλ →⊕α∈DBα is an Iλ -

homomorphism respect to Ĩλ .

Proof. Proposition 23 shows that the injection iλ : Bλ →⊕α∈DBα defined by iλ (b) = b is an Ĩλ -
homomorphism. We must show that iλ is an Iλ -homomorphism respect to Ĩλ . To this aim, let

16see Definition 31.
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R ∈ Ωλ be a formula, γ : V → Bλ be an assignment. Assume that γ̂ |=Bλ
R. From the above

equivalence 4.28 follows directly that îλ ◦ γ |=B Iλ (R). �

Definition 40. {(Bα ,Ωα ,Ψα)}α∈D be an indexed collection of formula domains. The coproduct

domain of such collection is the formula domain ⊕α(Bα ,Ωα ,Ψα) together with the family iλ :
Bλ →⊕α∈DBα of Iλ -homomorphisms respect to Ĩλ .

Theorem 45. Let (A,Σ,Π) be a formula domain and let {(Bα ,Ωα ,Ψα)}α∈D be a family of formula

domains with possibly distinct contexts. Assume that for every λ ∈ D, fλ : Bλ → A is an Fλ -

homomorphism respect to F̃λ . Then, there exists a unique map f : ⊕α∈DBα → A which is an

F-homomorphism respect to F̃ and makes diagram 4.29 below commute. The maps F and F̃ are

uniquely determined and satisfy F ◦ Iλ = Fλ and F̃ ◦ Ĩλ = F̃λ .

(A,Σ,Π)

⊕α∈D(Bα ,Ωα ,Ψα)

f

OO�
�
�

(Bλ ,Ωλ ,Ψλ )iλ
oo

fλ
iiSSSSSSSSSSSSSS

(4.29)

Proof. The term translation F̃ :⊕α∈DΨα →Π and the mapping f :⊕αBα → A are defined exactly
as in the proof of Theorem 33. Observe that these are the unique ways in which F̃ satisfies F̃ ◦ Ĩλ =

F̃λ for every λ ∈ D and f makes the above diagram commute. Theorem 33 shows that f is an
F̃-homomorphism and that it is unique.

Let us define the formula translation F in the only way which satisfies F ◦ Iλ = Fλ . For a
formula R(x1,x2, ...,xn) ∈ ⊕αΩα with R ∈ Ωλ , define F(R(x1,x2, ...,xn)) = Fλ (R). Clearly, F is a
formula translation since Fλ is a formula translation. We must show that f is an F-homomorphism.
Let σ : V → A be an assignment and let R(x1,x2, ...,xn) ∈ ⊕αΩα with R ∈ Ωλ . We must show
that if σ̂ |=⊕α Bα

R(x1,x2, ...,xn), then f̂ ◦σ |=A F(R(x1,x2, ...,xn)). Let us assume that σ̂ |=⊕α Bα

R(x1,x2, ...,xn) and then equivalence 4.28 ensures that an assignment α : V →Bλ satisfying α(xi) =

σ(xi) for i = 1,2, ...,n makes α̂ |=Bλ
R hold. Since fλ is an Fλ -homomorphism, it follows that

f̂λ ◦α |=A Fλ (R). Therefore, f̂ ◦σ |=A F(R(x1,x2, ...,xn)) follows because fλ = f ◦ iλ , σ(xi) =

iλ ◦α(xi) for i = 1,2, ...,n and Fλ = F ◦ Iλ . �
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Products for Formula Domains

This section is devoted to build a formula domain which acts as the product of an indexed col-
lection {(Bα ,Ωα ,Ψα)}α∈D of formula domains where each domain has an associated signature
Lα . Because of a technical requirement we shall assume that the index set D has a distinguished
element 0. We recommed our reader to review Section 4.2.5 of this chapter where the product of
term domains is introduced, because this new formula domain shall be based on the product of term
domains ⊗α∈D(Bα ,Ψα).

We need a signature L which can be associated to this new domain, namely the product of
formula domains. To this aim, let us consider the following set of sequences of formulas

K = {(φα)α∈D ∈ ∏
α∈D

Ωα | for all α,β ∈ D, V (φα) =V (φβ )}. (4.30)

where V (φ) denotes the set of free variables of φ . Observe that each element of K is a sequence
(possibly infinite) of formulas which share the exact same set of free variables. This is the se-
quence’s associated set of variables. We will consider each sequence of K as a relation symbol of
L whose arity is determined by the cardinality of its associated set of variables. The new signature
L is defined by L = L′∪K where L′ is the signature of the product of term domains⊗α∈D(Bα ,Ψα).

In order to determine the product of formula domains we need to build a set of L-formulas.
Let R ∈ K be an n-ary relation symbol of L. Because R is a tuple (φα)α∈D, we can assume that
x1,x2, ...,xn is its associated set of variables ordered in the way which they occur in the formula
φ0. We build exactly one L-formula for each relation simbol R ∈ L by defining the following set of
atomic L-formulas:

⊗αΩα = {R(x1,x2, ....,xn) | R ∈ K}.

Let R(x1,x2, ....,xn) ∈ ⊗αΩα with R = (φα)α∈D and observe that for any λ ∈ D, the mapping
Pλ :⊗αΩα →Ωλ defined by Pλ (R(x1,x2, ....,xn)) = φλ is a formula translation.

Set B = ∏α∈D Bα and recall that the product of term domains is defined by ⊗α∈D(Bα ,Ψα) =

(B,⊗αΨα) together with the P̃-homomorphisms pλ : B→ Bλ . By ⊗α(Bα ,Ωα ,Ψα) we denote the
formula domain (B,⊗αΩα ,⊗αΨα) whose set of relations is determined in the following way. Let
R(x1,x2, ...,xn)∈⊗αΩα with R= (φα)α∈D and let ((b1α)α∈D,(b2α)α∈D, ...,(bnα)α∈D) be a n-tuple
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in B. The n-ary relation RB on B is defined by

RB((b1α)α∈D,(b2α)α∈D, ...,(bnα)α∈D)) if and only if α̂λ |=Bλ
φλ , for every λ ∈ D, (4.31)

where αλ (xi) = biλ for i = 1,2, ...,n. The above equivalence 4.31 makes next proposition straight-
forward.

Proposition 28. Let λ ∈ D. The coordinate map pλ : B→ Bλ is a Pλ -homomorphism respect to

P̃λ from the formula domain ⊗α∈D(Bα ,Ωα ,Ψα) to the formula domain (Bλ ,Ωλ ,Ψλ ).

Proof. Proposition 24 shows that pλ is a P̃λ -homomorphism from ⊗α∈D(Bα ,Ψα) to (Bλ ,Ψλ ).
Let us show that pλ is a Pλ -homomorphism respect to P̃λ . To this aim, let σ : V → B be an as-
signment and R(x1,x2, ...,xn) a formula in ⊗αΩα with R = (φα)α∈D.We must show that if σ |=B

R(x1,x2, ...,xn), then p̂λ ◦σ |=Bλ
Pλ (R(x1,x2, ...,xn)). Assume that σ |=B R(x1,x2, ...,xn), then

equivalence 4.31 implies that α̂λ |=Bλ
φλ where αλ (xi) is equal to the λ -th component of σ(xi) for

i= 1,2, ...,n. Therefore, p̂λ ◦σ |=Bλ
Pλ (R(x1,x2, ...,xn)) since αλ (xi) = pλ (σ(xi)) for i= 1,2, ...,n

and Pλ (R(x1,x2, ...,xn)) = φλ . It shows that pλ is an Pλ -homomorphism. �

Definition 41. Let {(Bα ,Ωα ,Ψα)}α∈D be an indexed collection of formula domains. The prod-

uct domain of {(Bα ,Ωα ,Ψα)}α∈D is the formula domain ⊗α∈D(Bα ,Ωα ,Ψα) together with the
collection pλ : ∏α∈D Bα → Bλ of Pλ -homomorphisms respect to P̃λ .

Theorem 46. Let (A,Σ,Π) be a formula domain and let {(Bα ,Ωα ,Ψα)}α∈D be a family of formula

domains with possibly distinct contexts. Assume that for every λ ∈ D, fλ : A→ Bλ is an Fλ -

homomorphism respect to F̃λ . Then there exists a unique map f : A → ∏α∈D Bα which is an

F-homomorphism respect to F̃ and makes diagram 4.32 below commute. The maps F and F̃ are

uniquely determined and satisfy Pλ ◦F = Fλ and P̃λ ◦ F̃ = F̃λ .

(A,Σ,Π)

f
���
�
�

fλ

((RRRRRRRRRRRRR

⊗α(Bα ,Ωα ,Ψα) pλ

// (Bλ ,Ωλ ,Ψλ )

(4.32)

Proof. The term translation F̃ :⊗α∈DΨα →Π and the mapping f :⊕αBα → A are defined exactly
as in the proof of Theorem 34. Observe that these are the only ways in which F̃ satisfies F̃ ◦Pλ =Fλ
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for every λ ∈ D and that f makes the above diagram commute. Theorem 34 shows that f is an
uniquely determined F̃-homomorphism.

Let ϕ ∈ Σ be a formula whose free variables are {x1,x2, ...,xn}. Let us define the formula
translation F : Σ→⊗αΩα by F(ϕ) = R(x1,x2, ....,xn) with R = (Fλ (ϕ))λ∈D and notice that such
definition is the only one satisfying Pλ ◦F = Fλ . Let us show that f : A→ B is an F-homomorphism
respect to F̃ . To this aim, let ϕ ∈ Σ be an n-ary formula with variables x1,x2, ....,xn, and let σ :
V → A be an assignment. We must show that if σ̂ |=A ϕ , then f̂ ◦σ |=B F(ϕ). Let us assume
that σ̂ |=A ϕ . Since for every λ ∈ D, fλ is an Fλ -homomorphism, f̂λ ◦σ |=Bλ

Fλ (ϕ) holds for
any λ ∈ D. Set R = (Fλ (ϕ))λ∈D and then equivalence 4.31 shows that the associated relation
RB(( fλ ◦σ(x1))λ∈D,( fλ ◦σ(x2))λ∈D, ...,( fλ ◦σ(xn))λ∈D) holds in B. From here, it is clear that
f̂ ◦σ |=B R(x1,x2, ...,xn) and then f̂ ◦σ |=B F(ϕ) holds. �

Complementing last theorem, observe that if f : A→ B is an F-homomorphism respect to F̃

from (A,Σ,Π) to the product domain ⊗α∈D(Bα ,Ωα ,Ψα), then for each λ ∈ D the composition
fλ = pλ ◦ f is an uniquely determined (Pλ ◦F)-homomorphism respect ot P̃◦ F̃ .
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Chapter 5

Applications

The aim of this chapter is to give a detailed presentation of some applications of metaphor models
developed in previous chapters and provide some arguments that support our approach.

First we will give a detailed and intuitive introduction to three well known metaphors used world
wide in mathematical training, followed by the construction of their respective formal models.
Through this presentation we will give examples of the concepts and constructs of the models,
making observations about the properties usually attributed to metaphors in cognitive literature that
our models succesfully captures after appropriate interpretations.

In the first section we will introduce the object collection metaphor for natural numbers, provid-
ing some references to previous studies concerning it. After that, we will build the formal models
for this metaphor and -as a result- we will give examples of domains, metaphor, homomorphisms
and some comments about the plausibility of the model.

In the second section we introduce the two-pan balance metaphor for linear equations and
comment on some research that has been done on teaching taking advantage of this metaphor and
its impact on learning. Again, we will construct the formal models for this metaphor using our
approach and, in the process, we will be able to give some examples of the notions of domain,
product domain, quotient domain, metaphor and homomorphism.

In the third section we will speak about the motion along a path metaphor for integer numbers
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5.1. Object Collection Metaphor for the Natural Numbers

and explicitate the formal models for this metaphor. We will stress the resemblance of the construc-
tion of this metaphor with the standard (formal) construction of the integer numbers suggesting that
the standard mathematical construction of the integer numbers might be strongly linked to some
metaphor of motion.

5.1 Object Collection Metaphor for the Natural Numbers

This metaphor is special in our discussion because it is one of the fundamental motivations for this
entire work. This metaphor is nicely described from the cognitive point of view in the book “Where
mathematics comes from” [71] under the name of “Arithmetic as Object Collection”. For related
work about its use in mathematical training see [6].

For the sake of the self containment of the present work we present a description of this
metaphor. Nevertheless, we warn the reader that we do not intend to give a description as com-
plete and accurate as those that might be found in a cognitive science treaty dealing with this
phenomenon.

Imagine a normal child who has not yet built in her mind a strong enough concept of number, yet
she has some skills like the ability to group objects and the capacity of assigning cardinal numbers
to groups of objects among others. How do you teach the first basics of arithmetic to a child like
this? The first thing that you would not do, of course, is write down the Peano axioms and tell
her -this is the whole number arithmetic-, unless you want to scare her for good. The experienced
teacher knows that a better strategy to introduce her to the number concept is to take advantage of
knowledge that is already structured in her mind. She knows the meaning of the words “grouping”
or “joining” (wich we shall understand as joining two piles of objects into one), she can relate
groups of objects with their cardinal (number of objects) and she can compare the cardinality of
those piles of objects doing some kind of counting with her hands. At this point it is clear that there
is a conceptual domain in her mind composed by piles of objects and its manipulative operations
(pile, join, compare) and that somehow the child knows its structure by experience. The whole idea
is to take advantage of that domain (name it the pile domain) to teach arithmetic. One way to do
this is by building a metaphor wich explains the relations between numbers based in the existing
relations in this domain.
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In terms of [71] and [30], the metaphor that we are talking about takes advantage of the sim-
ilarity between the structure of the pile domain (whatever its structure in the child’s mind would
be) and the structure of the natural numbers (formally given by the Peano axioms, for instance) to
relate these two “domains of knowledge” and produce into the child mind her first representation
of natural numbers and their structure. Of course, this is just an idealistic view wich simplifies the
phenomenon in order to build a manageable model because it is known that even babies at age of
months can count an add [17]. There are many ways to implement this metaphor for mathematical
training, look for example in [102] and in [6] where different teaching methodologies based on this
metaphor are commented.

In the present work we focus on the traditional approach to this metaphor, that is to say, we
are going to assume that the source domain (namely Piles) is a real conceptual domain, structured
in our minds by means of sensorial information and physical experience among other influences.
We assume that the main objects of this domain are piles and that our minds attributes some basic
structure to them as - for example - that two piles A,B can be joined in a new pile denoted A]B,
two piles can be compared by counting their elements, that some propositions about piles can be
formulated in the language used for this domain and they can be perceived as false or true, etc.

In the next section we will develop a formal model of this domain (in definition (42)) that will
be called a pile system, but we have to warn the reader that the formal model of this domain might
not catch all the intuitive properties that the real domain has. Notice for example that in the real
domain when piles are going to be joined, they are always assumed pairwise disjoint, while on the
other hand, since the developed formalization of this domain is based on set theory, the definition of
a pile system gives us sets to be interpreted as piles and they are not necessarily disjoint whenever
they are to be joined. Despite these inconvenients, the model we shall introduce is good enough
for our purposes i.e. explore the structural similarity with N and show the usefulness of the model
of metaphor developed in previous chapters. We emphasize that we do not claim that the model
given by definition (42) is necessarily the best model that can be built for this domain nor that is the
only way to achieve a formalization for it. For those readers who prefer to work with a “closer to
reality” model, the appendix of this chapter develops a model wich catch those intuitive properties.

The fundamental idea underlying the modelling of this metaphor is the assumption that the
metaphor can be viewed as a mapping h : Piles→ N wich associates to every pile of objects A ∈
Piles its cardinality |A| ∈N. The structural similarity determined by that mapping can be described
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now by listing the adequate relations and operations in the base domain Piles wich are good to
explain (or preserve) the selected relations and operations in the target domain N:

1. Notice that we can explain the sum operation in the target domain N by means of the join
operation defined in the source. In other words, we can infer that 4+3 = 7 in N because in
the pile domain we can take a pile with four objects and a pile with tree objects and verify
that the join of these piles is a pile with seven objects (as in the figure 5.1). The observation
here is that the cardinality of the join of two piles is equal to the sum of the cardinalities of
the two piles, formally this property is expressed by the equation

h(A]B) = h(A)+h(B) = |A|+ |B|.

where A,B are piles of objects. These kinds of models are formally stated in the examples 9,
40 and 41 by associating the operation of “join” (]) in the pile domain with the addition (+)
in the natural numbers.

Figure 5.1: Join operation in the piles domain

2. The order relation (≤) of natural numbers is another fundamental part of their structure,
the metaphor is able to explain that structure based on the assumption that our mind can
compare two piles in order to find some commonalities between them. For example, in the
picture (5.2-a) we would conclude that 3 ≤ 7 because we see that the left pile is part of the
right pile wich is bigger. We should reach the same conclusion in the picture (5.2-b) because
we can make an association between piles such that to each leaf in the left pile corresponds
one and only one leaf in the right pile.

Our model is able to formalize the approachs previously described. Furthermore, our model
let us categorize those alternatives because each one of them has different properties. The
first approach can be modelled by selecting ⊆ as the appropriate relation in the pile system
(the formal model) ( this is formalized in the examples 9, 37, 38 below) and notice that

If A⊆ B, then h(A)≤ h(B)
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Figure 5.2: Options to explain the relation ≤ in N. a) Use of ⊆. b) Use of ↪→.

For the second alternative, consider the relation between two piles A and B denoted by A ↪→ B

wich is given by the posibility of associating every object of the pile A with some (different)
object of the pile B (this relationship is expressed in the formalized example (10) as the
existence of an injective function f : A→ B ). Observe that this relation is tightly related to
≤, since it is characterized by:

A ↪→ B if and only if h(A)≤ h(B).

3. Another relation in N of capital importance is the identity relationship, this is an important
part of the structure of N wich helps us to build and understand other concepts, for exam-
ple: the result of an operation, the associativity property of the operations, the commutativity
property of operations and so on. Although in the pile domain we have the identity relation-
ship (A = A), it seems that it is not the best relationship to explain the structure of the identity
relationship in N, this is because there could be two different piles that have the same number
of objects i.e. A , B but h(A) = h(B). In its place let us consider the relationship denoted by
A≡ B wich holds if and only if you can associate each object from A with one object in B in
a 1 to 1 way (i.e. there exist a bijective function f : A→ B as it is formalized in the example
(16)).This relationship seems more related to the concept of number because:

A≡ B iff h(A) = h(B)

wich could be interpreted in applications as: “a number is the collection of piles wich have
the same cardinality”.

4. The multiplication is another emblematic structure of N. The metaphor can use some kind
of product operation defined in the Piles domain to introduce it. It is plausible to argue that
this operation raises from experience and might be understood as a sort of repetition of piles.
For example, imagine that you need to transport trees, and assume that you have two carss
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to acomplish this task. Each car has the capacity to transport three trees each time. Figure
(5.3) depicts the situation where you have made one trip and therefore the total amount of
transported trees is represented by a pile M of trees built by repeating one pile of trees as
many times as cars you have at your disposal.

Figure 5.3: Product of piles.

The formal model lets us define a metaphor wich is able to introduce the multiplication based
on this domain of piles (the pile system), noticing that in the case of the pile system we can
use the product of sets and observe that

h(A×B) = h(A) ·h(B),

and furthermore
(A×B)≡C if and only if h(A) ·h(B) = h(C).

This discussion is formalized in the examples 18 and 43.

5. Notice that we can now explore some of the properties of the operations in N by means of the
different structures that we have been introducing, for example the associativity of the sum
can be explained by the fact:

(A]B)]C ≡ A] (B]C) if and only if (h(A)+h(B))+h(C) = h(A)+(h(B)+h(C))

the commutativity of the multiplication by the fact that:

A×B≡ B×A if and only if h(A) ·h(B) = h(B) ·h(A)

6. Notice that there are other properties, relations and operations in N that can be explored with
this model in the spirit of looking for structural similarity, but by now, we want to focus the

146



5.1. Object Collection Metaphor for the Natural Numbers

reader’s attention in the fact that our model of metaphor predicts that some of the inferences
(or entailments or consequences) can be borrowed from the domain of piles by the domain
of natural numbers, and in the developed theory there exists a theorem wich guarantees it
(theorem 42 from chapter 4). An example of such a thing is the following. Observe that in
the domain of piles it holds that A]C ↪→ B]C is a consequence of A ↪→ B, in other words:

for any pile C, A ↪→ B implies A]C ↪→ B]C.

Our claim is that, if we are using h as metaphor we should have that:

for any natural c, a≤ b implies a+ c≤ b+ c.

And this is exactly what the theorem (42) from chapter 4 guarantees. This is formalized and
analized in the examples 19 and 44 of the following section.

It is worth to observe that concepts like “↪→”, “≡” and “×” have been accuratelly formalized
by set theory (as for example in ZFC, Zermelo-Fraenkel set theory with the axiom of choice) and
cardinal numbers theory. Our contribution is just to order these ideas into a cognitive context and
in an appropriate way in order to build up a model for metaphor.

We have so far given an overview of the resemblance between the structures Piles or collections
of objects and the set of natural numbersN determined by the mapping h, and furthermore, we have
sketched how the preservation of inferences between those domains is modelled.

Formal Model Based on Domains

To begin with the formal study of this metaphor, our first step will be to explicitate formally the
“knowledge domains” between wich the metaphor is defined. In order to achieve this, we have to
explicitate a symbol set S and some related S-structure for each domain of knowledge. The symbol
set S determines the language for the domain.

We begin by specifying the semantics of the formal model, in other words, we are first going to
introduce the S-structure used to model this domain. A pile system is just an attempt to represent
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formally the human-like perception of the “object collections” domain. This formalization shall
only partially resemble the “object collections” domain but it is enough to fulfill our purposes.
Furthermore, observe that the following formalization is just one possible approach and there would
be many ways to accomplish this task.

Definition 42. A collection P of finite sets is a pile system if:

1. /0 ∈ P.

2. There exists distinguished elements a,b ∈U , with a , b, such that {a} ∈ P,{b} ∈ P.

3. A ∈ P and B ∈ P implies A∪B ∈ P and A×B ∈ P.

It is easy to see that this set of axioms guarantees that for any n∈N there exists a set C ∈ P such
that |C| = n. Additionally, all finite unions and finite products of sets are well defined in P. The
idea behind this formalization is that we can interpret the elements of P as collections of objects
(so, we will call piles to the elements of P) and use some relations between sets (or properties of
sets) as models for some characteristics of this “knowledge domain”, consider for example:

• The subset relation (generally denoted by A⊆ B) shall be used to model the relation “ A is a
subcollection of B”.

• The bijection relation (the existence of a bijective function f : A→ B) to model the relation
“counting the objects of the collection A produces the same result as counting the objects of
the collection B”.

• The injection relation (the existence of an injective function f : A→ B) to model the relation
“The collection A has fewer objects than the collection B”.

And so on. Aditionally, notice that in the “real” domain of knowledge, we seem to perceive that,
when we are going to join two collections, they are always disjoint. It seems to be undefined when
the intersection of its arguments is non empty. A sound approach to model this partial operation
would be to define the ternary relation denoted by t:

t (X ,Y,Z) ⇔ X ∩Y = /0 and X ∪Y = Z (5.1)
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So, the relation “t” holds between piles A,B,C if and only if A and B are disjoint and C = A∪B.
To have an alternative way of modelling such operation (join of collections) with an operation (and
not with a relation as t) we proppose to emulate the observed behavior in the formalization by
defining in P the binary operation join of piles denoted by ] and given by

A]B = A×{a}∪B×{b}. (5.2)

Now that we have detailed the semantic part of this domain, we should specify its sintactic part.
In other words, we have to determine the language that shall be associated to the structure pre-
viously described. Even though a language with fewer symbols would suffice to make all con-
structions we need, for the sake of clarity, we choose the language determined by the symbol set
SP = { /0,a,b,∪,],t,×,⊆} where /0,a,b are constant symbols, ∪,],× are binary function symbols
and ∈,⊆ are binary relation symbols and t is a ternary relation symbol.

Therefore the pile domain is formalized as the domain (without structure) given by P =

(SP,(P,ρ)) where P is a pile system and the associations given by ρ are as follows: ρ( /0) = /0,
ρ(a) = a, ρ(b) = b, ρ(∪) is the union of sets in P, ρ(]) is the disjoint union of sets defined in 5.2,
ρ(t) is the ternary relation defined in 5.1, ρ(×) is the product of sets in P, ρ(∈) is the pertenence
relation in P and ρ(⊆) is the subset relation in P. Observe that here we have abused of the lan-
guage by denoting some symbols in SP with the same letter that we have denoted the correspondent
objects (or concepts) in P.

Notice that the language gives us the ability to select and isolate certain structure in each do-
main. Therefore, in the examples, we are going to use formulas and terms from the language to
select the appropriate semantic relations and operations to endow this domain with structure. If we
are too rigurous in the explicitation of the respective formulas and terms in the domain we shall
obscure 1 the presentation unnecessarily. Thus, we will informally characterize the formulas (or
terms) we use and denote them in more suggestive ways.

Let us introduce now, as an example, some formulas which are going to be used often in the

1Notice that if we want to express in the language of the pile domain: “z is the ordered pair of x and y” an associated
formula with x,y,z as free variables might be the awkward looking expression

∀u(u ∈ z↔ (∀v(v ∈ u↔ v = x)∨∀v(v ∈ u↔ (v = x∨ v = y)))) (5.3)

thus, we are going to avoid the explicit construction of such formulae
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rest of the section.

1. Denote by X ↪→ Y a formula in Form(L SP) wich has as free variables X ,Y ∈ V and for
every assignment σ : V → P it holds that σ |= X ↪→ Y iff there exists an injective function
f : σ(X)→ σ(Y ).

2. Denote by X ≡ Y a formula in Form(L SP) wich has as free variables X ,Y ∈ V and for
every assignment σ : V → P it holds that σ |= X ≡ Y iff there exists a bijective function
f : σ(X)→ σ(Y ).

We must also give a mathematical model for the target domain involved in this metaphor. To
this aim, consider the symbol set Sa< = {0,1,+, · ,≤} (wich is standard in arithmetic and related
fields) where 0 and 1 are constants, +, · are binary function symbols and ≤ is a binary relation
symbol. The domain of natural numbers is formalized as N = (Sa<,(N,α)) where N are the
natural numbers, the mapping α is the usual mapping of symbols to the corresponding constants,
operations and relations of N.

The idea underlying the following discussion is to use the developed models to formally de-
scribe how these domains are related and how the model explains some of the properties of the
phenomenon.

Our proposal here is to use the pair P = (SP,(P,ρ)) as a mathematical representation for
the “object collection” domain and the pair N = (Sa<,(N,α)) as a mathematical model for the
“natural numbers” domain. In the following, we will show how the model of metaphor can be used
to partially project the structure of the source domain P into the target domain N . Examples 9,
10 are aimed to formalizing the introduction of the addition operation and the≤ relation, examples
15, 16 are directed to formalizing the introduction of the commutative property of the addition,
example 17 formalizes the introduction of the associative property of the addition, example 18 is
aimed to explaining the product operation and its commutative property, example 19 captures all
the previously mentioned properties in one example. The last example (20) is aimed to showing
how the consequence relationship between formulas is preserved by the metaphor from the source
domain to the target domain.

In the following examples, recall that Form(L SP) and Term(L SP) are the formulae set and the
term set (respectively) of the language determined by SP (wich is associated to the pile system P),
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Form(L Sa<) and Term(L Sa<) are the formulae set and the term set (respectively) of the language
determined by Sa< (wich in turn is associated to the natural numbers set N).

In every example, we are going to need a set of formulas and a set of terms to select the appro-
priate structure in each domain. In order to do this assume that Σ⊆ Form(L SP), Π⊆ Term(L SP),
Ω⊆ Form(L Sa<), Ψ⊆ Term(L Sa<). Aditionally, all the examples uses the mapping given by

h : P→ N.

This is the mapping that associates to every pile A ∈ P its cardinality h(A) = |A| ∈ N.

Example 9. This example shows that the developed model can be used to formalize (or formally
express) the way in which the metaphor introduces the “less than” relation. To achieve this, we
are going to use the “subcollection” relation and the “join of piles” operation -respectively- in
the “object collections” domain. Notice that our first concern will be to select the appropriate
structure to model these relations and operations in each domain. We do it by putting Σ = {X ⊆Y},
Ω = {X ≤ Y}, Π = /0, Ψ = /0. With those sets we can define the domains with structure (Σ,Π,P)

and (Ω,Ψ,N ) wich shall be used to state this particular example. Now, we should relate these two
structured domains by means of a metaphor. We can do this by detailing how the objects of the
base domain are related to the elements of the target domain and determining the correspondence
between the formulas and terms of each domain. The first point is made by considering the mapping
h : P→ N wich associates to each pile its cardinality. The second point is made by defining F :
Σ→ Ω and T : Π→Ψ as the obvious (and unique) mappings that can be considered as a formula
translation and a term translation respectively. It is easy to see that the triple of mappings

(h,F,T ) : (P,Σ,Π)→ (N,Ω,Ψ)

satisfy the conditions to be considered a metaphor from the domain with structure (P,Σ,Π) to the
domain with structure (NΩ,Ψ). That is to say, if we take any pair of piles A and B and A⊆ B holds,
this implies necessarily that h(A) ≤ h(B). On the other hand, for any two numbers a,b such that
a≤ b there exists two piles A,B such that h(A) = a,h(B) = b and A⊆ B.

Consider the proposition 3≤ 5. Its truthness implies that it is always possible to find a pile with
tree elements wich is a subcollection of certain specific pile with five elements.

Example 10. This example is similar to the previous one, except that it makes use of the relation

151



5.1. Object Collection Metaphor for the Natural Numbers

“injection” instead of the relation “subcollection” to introduce structure (the relation “less than”)
into the natural numbers. Thus, we select these appropriate structures in each domain by consid-
ering the following sets of formulas and terms: Σ = {X ↪→ Y},Ω = {X ≤ Y}, Π = /0, Ψ = /0. If
F : Σ→Ω and T : Π→Ψ are the obvious mappings that can be considered as a formula translation
and a term translation respectively, then the triple of mappings

(h,F,T ) : (P,Σ,Π)→ (N,Ω,Ψ)

satisfy the conditions to be considered an homomorphism from the domain (P,Σ,Π) to the do-
main (N,Ω,Ψ). Observe that the conditions to be a homomorphism are a little stronger than the
conditions to be a metaphor. In this case, the homomorphism condition means that

A ↪→ B if and only if h(A)≤ h(B)

That is to say, if we take any pair of piles A and B and A ↪→ B holds, this implies necessarily that
h(A) ≤ h(B). On the other hand, for any two numbers a,b such that a ≤ b and any two piles such
that h(A) = a, h(B) = b it holds that A ↪→ B.

Consider the proposition 3 ≤ 5. Its truthness implies that any pile with tree elements can be
injected into any pile with five elements.

Example 11. This example shows how the developed model can be used to formalize (or formally
express) how the metaphor introduces the“sum” operation in the natural numbers. To achieve this,
we are going to use the “join of piles” relation in the “object collections” domain. Our first concern
will be to select the appropriate structure to model these relations in each domain. We do it by
putting Σ = {t(X ,Y,Z)}, Π = /0, Ω = {X +Y = Z}, Ψ = /0. Consider F : Σ→Ω and T : Π→Ψ as
the unique maps that can be considered as a formula translation and a term translation respectively.
Notice that, if we take any two collections A,B such that A∩B = /0 we have that t(A,B,A∪B)

holds and therefore h(A)+h(B) = h(A∪B) holds. On the other hand, for any tree numbers a,b,c

such that a+ b = c we can take any pair of piles A,B such that h(A) = a, h(B) = b and in the
case they were not disjoint we can disjoint them (by means of applying a product for example) and
therefore it is always possible to find two disjoint piles A′,B′ such that h(A′) = a,h(B′) = b and
h(A′∪B′) = c.
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Therefore, the triple
(h,F,T ) : (P,Σ,Π)→ (N,Ω,Ψ)

satisfy the conditions to be considered a metaphor.

Example 12. This example is an alternative modelling to example 11. It uses the “join of piles”
operation in the “object collections” domain. Put Σ = /0, Ω = /0, Π = { /0,U ]V}, Ψ = {0,U +V}.
Consider the mapping h : P→ N wich associates to each pile its cardinality and define F : Σ→ Ω

and T : Π→ Ψ as the unique maps that can be considered as a formula translation and a term
translation respectively. Notice that h( /0) = 0 and if we take any pair of piles A and B it holds that

h(A]B) = h(A)+h(B)

implying that the triple of mappings

(h,F,T ) : (P,Σ,Π)→ (N,Ω,Ψ)

determines a metaphor.

Next examples use the model to formally describe how this metaphor could be used to infer
some properties about the natural numbers and their operations. It is important to introduce the
way in which the commutativity 5.4 and associativity 5.5 properties are expressed when we are
considering the “t” relation.

Commutativity(A,B)⇔∃Z (t(A,B,Z)∧t(B,A,Z)). (5.4)

Associativity(A,B,C)⇔∃U,∃V,∃W (t(A,B,U)∧t(B,C,V )∧t(U,C,W )∧t(A,V,W )) (5.5)

The below diagram explains why the associativity of the “join of piles” has been written as in the
expression 5.5.

W W︷          ︸︸          ︷
(A∪B)︸    ︷︷    ︸ ∪C =

︷          ︸︸          ︷
A ∪(B∪C)︸    ︷︷    ︸

U V

Example 13. In this example we are going to model a metaphor wich introduces the commutativity
property of the sum operation using the relation t and the commutativity property as defined in 5.4.
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To make it formal, let

Σ = {∃Z(t(X ,Y,Z)∧t(Y,X ,Z))},Ω = {X +Y = Y +X},Π = /0,Ψ = /0.

If F : Σ → Ω and T : Π → Ψ are unique maps that can be defined as formula translation and
term translation respectively, then (h,F,T ) : (P,Σ,Π)→ (N,Ω,Ψ) is a homomorphism from the
domain (P,Σ,Π) to the domain (N,Ω,Ψ). In other words, if we take any pair of piles A,B such
that ∃Z (t(A,B,Z)∧t(B,A,Z)) holds, then h(A)+h(B) = h(B)+h(A) holds. On the other hand,
for any pair of numbers a,b ∈ N and any two piles A,B such that h(A) = a,h(B) = b it holds that
∃Z (t(A,B,Z)∧t(B,A,Z)).

Example 14. Similarly, this example shows how the associativity of the sum would be introduced.
Let

Σ = {∃U,∃V,∃W (t(X ,Y,U)∧t(Y,Z,V )∧t(U,Z,W )∧t(X ,V,W ))},

Ω = {(X +Y )+Z = X +(Y +Z)},Π = /0,Ψ = /0.

Define F : Σ → Ω and T : Π → Ψ as the obvious translations between those sets. Therefore,
reasoning as in the example 13, it is plain to see that the triple (h,F,T ) : (P,Σ,Π)→ (N,Ω,Ψ)

determines a homomorphism of domains.

Example 15. As an alternative to example 13 to introduce the notion of commutativity in the
natural numbers, this model of metaphor would exploit the commutativity of the “grouping two
collections” operation in the “object collections” domain. To describe it formally put Σ = {X ∪Y =

Y ∪X}, Ω = {X +Y =Y +X}, Π = /0 and Ψ = /0. Consider F : Σ→Ω as the only mapping that can
be defined as a formula translation and T as the empty function. Notice that (h,F,T ) : (P,Σ,Π)→
(N,Ω,Ψ) is a homomorphism between domains. This means that for any pair of piles A,B it holds
that

A∪B = B∪A implies h(A)+h(B) = h(B)+h(A)

and for any pair of natural numbers a,b and any pair of piles A,B such that h(a) = A,h(b) = B

a+b = b+a implies A∪B = B∪A

holds. Wich is an easy consequence of the commutativity of the union of sets (wich holds in P) and
the commutativity of addition (wich holds in N).
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As an alternative to the relation t(X ,Y,Z) we have defined the binary operation join of piles

by A]B = A×{a}∪B×{b}. We are going to use it in the following examples. We suggest to
bear on mind that the operation “]” hardly represents the real world operation “join of piles”. This
operation (“]”) changes the nature of elements of the resultant pile, it is not commutative and it
is not associative. However, these problems can be easily overcomed, the reader shall benefit by
introducing the operation + in the natural numbers by another operation (instead of a relation) and
it shall become clear the flexibility of the model to represent the phenomenon in various ways.

Example 16. In this example we are going to model a metaphor wich introduces the commuta-
tivity property of the addition operation. To do this we are going to use the operation ] and a
weak-commutativity property wich is defined similarly to the commutativity property but using the
bijection relation instead of the equality relation. Thus, given A and B two piles , we are going to
say that this relation holds if and only if there exists a bijective function defined from the pile A]B

to the pile B]A. In other words, we are taking advantage of the equivalence relation wich holds in
the pile domain iff the two collections have the same cardinality. To make it formal, let

Σ = {X ]Y ≡ Y ]X},Ω = {X +Y = Y +X},Π = { /0,X ]Y},Ψ = {0,X +Y}.

Let F : Σ→Ω and T : Π→Ψ are the obvious mappings that can be defined as formula translation
and term translation respectively. Let us show that the triple

(h,F,T ) : (P,Σ,Π)→ (N,Ω,Ψ)

determines a homomorphism.

We use now terminology borrowed from logics. Let σ : V → P an assignment of variables and
notice that a reasoning similar to the one perfomed in example 15 let us to conclude that

σ |=P X ]Y ≡ Y ]X implies h◦σ |=N X +Y = Y +X .

On the other hand, any assigment of variables with form h◦σ : V → N gives the following:

h◦σ |=N X +Y = Y +X implies σ |=P X ]Y ≡ Y ]X
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These properties could be depicted in a commutative diagram as:

V
σ

{{wwwwwwwwww
h◦σ

##GGGGGGGGGG

P h //

|=P ""EEEEEEEEE N

|=N||xxxxxxxxx

{T,F}

Observe that if we chose Σ = {X ]Y = Y ]X} then (F,T,h) would not be a homomorphism
between those domains and neither it would be a metaphor.

Example 17. In the same way, this example shows how the associativity of the addition would
be introduced by using the previously mencioned equivalence relation in the “object collections”
domain. Let

Σ= {(X]Y )]Z≡X](Y ]Z)},Ω= {(X+Y )+Z =X+(Y +Z)},Π= { /0,U]V},Ψ= {0,U+V}.

If the mappings F : Σ→ Ω and T : Π→ Ψ are chosen as the obvious translations between those
sets, then (F,T,h) : (Σ,Π,P)→ (Ω,Ψ,N) is a homomorphism from the domain with structure
(Σ,Π,P) to the domain with structure (Ω,Ψ,N ). We omit the details because this case is analog
to the previous example 16. As before, observe that if we chose Σ = {(X ]Y )]Z = X ] (Y ]Z)},
then (F,T,h) would not be a homomorphism between those domains and neither it would be a
metaphor.

Example 18. Using the technique applied in the last example, we are going to give a model for
the introduction of the multiplication and its commutative property. As before, we must select the
appropriate structures to work with. In this case we select the product of “object collections” (×)
wich was detailed in the description of this metaphor (item 4). To formalize this, take

Σ = {X×Y ≡ Y ×X},Ω = {X ·Y ≡ Y ·X},Π = { /0,U×V},Ψ = {0,U ·V}.

Consider the mappings F : Σ→ Ω, T : Π→ Ψ as the obvious translations. The details of the
commutative property are not given because it is similar to previously given examples. Aditonally
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notice that for any pair of piles A,B it holds that

h(A×B) = h(A) ·h(B).

Therefore, the triple (h,F,T ) : (P,Σ,Π)→ (N,Ω,Ψ) determines a homomorphism.

It is worth it observing that if we chose Σ as {(X ×Y ) = (Y ×X)}, then (F,T,h) would not be
a homomorphism between those domains and neither it would be a metaphor.

Example 19. This example intends to gather information from previous examples and select the
appropriate structures in the “domain of piles” wich are useful to explain some structure of the
natural numbers. As in previous examples this selection is done by setting Σ = {(X ]Y )] Z ≡
X ] (Y ]Z), X ×Y ≡ Y ×X , X ↪→ Y}, Ω = {(X +Y )+Z = X +(Y +Z), X ·Y ≡ Y ·X , X ≤ Y},
Π = { /0,U ]V,U ×V}, Ψ = {0,U +V,U ·V}. If the mappings F : Σ→ Ω, T : Π→ Ψ are the
unique translations between those sets, then (h,F,T ) : (P,Σ,Π)→ (N,Ω,Ψ) satisfies the condi-
tions to determine a homomorphism. Therefore, this example deals with the operations sum and
multiplication, the relation less or equal and with the properties: associativity of sum and commu-
tativity of multiplication, all at once.

The next example is aimed to show that our model of metaphor is able to express (to some
extent) one of the key features of metaphor phenomenon. This feature is refered to as “preservation
of inferences” in the cognitive literature. Since we are working with formal models, we need to
give an exact meaning to this property. In this case, by “inference” we will understand the usual
consequence relation, wich is often defined in mathematical logic and was defined for this context
in chapter (4). Intuitively, a formula ϕ is consequence of a formula ψ if ϕ holds in the semantic
component of the domain whenever ψ holds (written ψ |= ϕ). Notice that the preservation of
consequence by metaphors is guaranteed by theorem of consequence (42) presented in chapter (4).

Example 20. Given piles A,B and C in the “object collections domain” it holds that: if A can be
“injected” in B, then A]C can be “injected” in B]C. Our aim is to show that this particular struc-
ture can be used to explain through a metaphor the implication: “if n≤m then n+k≤m+k” wich
holds in the set of natural numbers for any k. We have chosen this particular case of “implication”
or “consequence” to exemplify how the “preservation of inference” property of metaphors can be
expressed mathematically in this context. Let

Σ = {X ↪→ Y,X ]Z ↪→ Y ]Z},Ω = { X ≤ Y,X +Z ≤ Y +Z},Π = /0,Ψ = /0.
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If we choose F : Σ→Ω as the intuitive translation and T as the empty mapping, it is not difficult to
show that (h,F,T ) : (P,Σ,Π)→ (N,Ω,Ψ) determines a homomorphism. It is worth observing that
in the first domain, the consequence X ↪→ Y |=P X ]Z ↪→ Y ]Z holds and then, by applying the
theorem of consequence, we can conclude that in the domain of natural numbers the consequence
X ≤ Y |=N X +Z ≤ Y +Z holds.

A rephrasing of the last example would be: in the “object collections domain” it holds that for
any pile C, if a pile A can be injected into a pile B, we can conclude that the pile A]C can be
injected into the pile B]C. Therefore, using the object collection metaphor, we can preserve that
inference to conclude in the set of natural numbers that, for any k, if m ≤ n then m+ k ≤ n+ k

holds.

5.2 Two-Pan Balance Metaphor for Linear Equations

The two-pan balance metaphor for linear equations is another well known metaphor and it is used
world wide for mathematical training. There is in [120] a good introduction to the debate on the
pros and cons of using this metaphor (and others). A discussion about some teaching methods
for linear equations is presented in [97]. Additionally, in [1] is suggested that this metaphor is a
grounding metaphor in the sense described by Lakoff and Nuñez in [71].

Learning to solve linear equations seems to be a slow, difficult process which requires practice
and a little of patience. The study performed in [3] compares a traditional (or symbolic) teaching
method against a metaphor based teaching method, providing evidence of a better student perfor-
mance for the metaphor based method. For further evidence, but sustented in cases, see [107]. It
seems that the differences between teaching methods can make a substantial difference on learning
results, emphasizing the importance of investigating and understanding the processes in wich those
different methodologies are based.

Now, we shall present a brief description of this metaphor as we understand it. As in the case of
the object collection metaphor, we warn the reader that our intention here is just to give an overall
idea, instead of giving an exhaustive description as complete and accurate as those that might be
found in a cognitive science treaty dealing with this phenomenon.
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We will call the base domain of the “two-pan balance metaphor” as the “scales domain”. It
is usually structured by our own experience, probably aquired while our body interacts with some
ordinary concepts such as equilibrium, weight, movement, etc. Let us make a few comments in
order to describe the scales domain’s structure necessary to model this metaphor. These comments
also will enhance our understanding of this domain of knowledge.

1. We are going to assume that the elements of this “scales domain” are scales like the one
depicted in figure 5.4 below. Those scales can be balanced or not. In this domain there are
two different types of weights and therefore the objects on the pans can be classified into
these two different types (in the picture 5.4 those types are the blue boxes and the green
circles).

Figure 5.4: Scales of the base domain for this metaphor.

2. There are two operations in this domain that are important for our purposes: Take any bal-
anced scale, if we put objects with same weight on each pan, the equilibrium is not broken.
This kind of action suggests the definition of two operations (one for each type of objects).
For expositive purposes, we are going to identify those operations as the “box operation” and
the “circle operation”. The “box” operation simply puts a single box in each plate of the
scale and the “circle” operation puts a single circle in each plate of the scale. For example,
the scale depicted on the right side of figure 5.5 is the result of adding two blue boxes and
one green circle on each plate of the left side scale. In other words, the scale at the right side
is the result of applying the “box” operation two times and the “circle” operation one time to
the scale depicted in the left side of the figure.

3. The defined operations allow us to define an equivalence relation in this domain: two scales
are equivalent if both can be transformed into another balance b by finite applications (zero or
more times) of the two operations. For example, take the pair of scales drawn in the picture
5.5, the scale at the right side is the result of adding two blue squares and one green circle on
each plate of the scale at the left side. Therefore, they are equivalent.
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Figure 5.5: Equivalent scales in this domain.

The previous comments have been made in order to give an idea of the minimal structure that
(we assume) exists inside of the learner’s mind. So, we shall build a formal model for this domain
where these crucial concepts can be represented and interpreted. But before that, let us give a
glance to the way in which this metaphor works.

The educational aim of this metaphor is to provide learners with some tools to deal with linear
equations. Thus, the target domain of this metaphor is the set of linear equations of the form
ax+b = cx+d where a,b,c,d ∈ N. We will denote by E the set of linear equations and we shall
refer to it as the “equations domain”.

We are going to explain how this metaphor works using the terminology depicted in figure 5.4
i.e. we shall call to the objects of the first type “blue boxes” and “green circles” to the objects
of the second type. In the same way, we will say that an scale is in “equilibrium” if the scale is
balanced (the weight of the objects on each pan is equal) and “equivalent” meaning that two scales
are related by the equivalence relation defined previously in item 3 above.

Denote by B the set of scales, our approach suggests modelling the “two-pan balance metaphor”
as a mapping from the scales domain to the equations domain. This can be viewed as a function e :
B→ E wich associates equations to scales. Consider one scale (balanced or not) wich has “a” blue
boxes and “b” green circles on the first plate, while in the second plate there are “c” blue boxes and
“d” green circles (in figure 5.4 we would have a = 2,b = 3,c = 4,d = 1 ). To perform the analysis
we shall associate the linear equation ax+ b = cx+ d to such scale. This correspondence defines
a bijective function wich we denote by e : B→ E. A pictorical representation of this mapping is
given in figure 5.6.

Figure 5.6: Representation of the mapping e between the base domain B and the target domain E.
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Intuitively, this mapping relates scale’s plates with equation’s sides, number of objects of dif-
ferent kind with coeficients of the equated expressions and the “equilibrium” concept in the base
domain with the “equality” concept in the target domain. The mapping e : B→ E determines some
structural similarity between the domains wich we are going to describe by enumerating the appro-
priate relations and operations in the scales domain wich are used by the metaphor to introduce (or
explain) the appropiate relations and operations in the equations domain:

1. We can add an expression to both sides of any equation to obtain a new equation wich is
equivalent to the first one in the sense that both equations share the same solution set. This
property suggests the definition of operations in the target domain wich are analog to the
operations “box” and “circle” in the base domain. Corresponding to the box operation we
define b : E→ E, an unary operation wich receives an equation as argument. b adds x to both
sides of the equation on wich it acts. On the other hand, analog to the circle operation we
define c : E → E, an operation wich takes an equation as argument and computes its value
adding 1 to each side of the equation. With this, the following diagrams commute (that is
c◦ e = e◦ circle and b◦ e = e◦box):

B box //

e
��

B
e

��
E b // E

B circle //

e
��

B
e

��
E c // E

We may interpret these commutative diagrams as the possibility of performing operations in
the domain of equations by just performing operations in the scales domain and applying the
metaphor. The sketch drawn in fig (5.7) is formally stated in examples 22 and 47.

Figure 5.7: Pictorical interpretation of the commutative diagrams

2. If we apply the operations “box” or “circle” to any balanced scale, the result is a balanced
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scale. i.e. the scale’s equilibrium is not affected. An analog property is obtained (in the equa-
tions domain) for the operations “b” and “c” previously defined where the set of solutions
of the equation is preserved by these operations. These are two different properties wich are
defined on different domains, however they are related in the following way: By definition,
the pair of scales b1,box(b1)∈B are equivalent, then the pair of equations e(b1),b◦e(b1)∈E

are equivalent in the sense that both equations share the same solution set. In other words, the
equivalence relation in the scales domain sheds some light on the equivalence relation in the
equations domain with help of the mapping e. This is formalized by our method in examples
22, 47 and 48.

3. Notice that in the scales domain it holds that: if the scales b1 and b2 are equivalent, then the
balances box(b1) and box(b2) are equivalent. This implication can be brought to the domain
of equations to ensure that if two equations e1 and e2 are equivalent then the equations b(e1)

and b(e2) are equivalent. One attractive feature of our approach is its capacity to express the
preservation of some of these sort of inferences. In particular we can use the theorem (42)
from chapter (4) to bring some implications from the scales domain to the equations domain.
The carrying of this “inference” is formally stated in the examples 23 and 49.

Before the end of this section, it is worth making the following observation: There exists two
different kinds of objects allowed to be on the plates of the scales: the “blue boxes” and the “green
circles”. Somehow, our intuition suggests that such kind of domain could result of a mixture
between a domain of scales wich has “blue boxes” only and a domain of scales wich has “green
circles” only. For a pictorical sketch of this intuition see fig. (5.8).

Figure 5.8: Intuitive sketch of the domain “product domain”.

In the following sections we shall show that this intuition can be formallized by using the
concept of “product domain” wich becomes useful in order to describe domains as combinations
of simpler domains. In this particular situation (the scales domain), we will refer to each of those
simpler domains where the scales in consideration have just one kind of objects on their plates as
“simple scales domains” (left side of Figure 5.8). The construction is formallized along the two
following sections and the examples 21 and 46.
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There seems to be some links between these kind of mathematical constructions and some
cognitive abilities. They suggest that this kind of constructions -products and coproducts- could be
considered as models for reasoning and learning processes. For example, the development of some
cognitive abilities in children around the age of five is studied in [94]. Some experimental work is
performed there in order to claim that: “These results point to a fundamental cognitive principle
under development during childhood that is the capacity to compute products in the categorical
sense”. Additionally, we believe that the cognitive concept of “blending” could be related to these
kind of constructions, although -as far as we know-, there is no advances on the field in such
direction.

Formal Model Based on Domains

The Simple Scales Domain

Our aim for this and the next section is to describe formally the “scales domain” while showing
that it can be formally viewed as a product of two “simple scales domains”. In this part, we con-
centrate in the formal description of these simpler domains. We begin with a semantic description
of the domain and after that we shall describe the “simple scales domain” sintactically (the formal
language attached to it).

To model the semantic component of the “simple scales domain” our first step is to look for
a mathematical structure appropriate to represent the concepts involved. Our proposal here is to
use the set N×N and interpret each pair (n,m) as the representant of one (simple) scale where n

represents the number of objects on the first plate and m represents the number of objects on the
second plate. To avoid name confusion we rename the operation “box” (or “circle”) by “Add” and
define it recursively by:

A(m,n) = (m+1,n+1) (5.6)

Now define “∼”, an equivalence relation wich -we shall see- plays an important role in this
domain:

(a1,a2)∼ (b1,b2) if and only if ∃ n (An(a1,a2) = (b1,b2))∨ (An(b1,b2) = (a1,a2)) (5.7)
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This equivalence relation means: one of the scales -let us say (a1,a2)- can be transformed into
the other scale -in this case (b1,b2)- by a finite number of repeated applications of the operation
“Add”. This relation is a kind of generalization of the equilibrium relation wich exists in the scales
“real world” and it will allow us to see the “scales domain” as the product of two “simple scales
domain”.

Now, let us describe the sintactic part of this domain. In order to do this, we are going to
determine the language for this domain. Consider the symbol set SB = {0,A, I,∼} where “0” is a
constant symbol, “A”, “I” are unary function symbols and “∼” is a binary relation symbol. Our
formalization of this “simple scales domain” is determined by the pair B = (SB,(N

2,α)) where α

maps the symbol “0” to the empty scale (0,0), “A” to the operation “Add” defined in 5.6, “I” to the
identity operation and “∼” to the relation of similarity defined by 5.7.

Finally, we just have to endow the structure (SB,(N
2,α)) with some operations. Put Σ = {X ∼

Y} and Π= {0,A(Z), I(Z)} to work with the equivalence relation defined in 5.7, the empty balance,
the identity operation and the “Add” operation. Notice that (N2,Σ,Π) can be viewed as a formal
model for the “simple scales domain”. In the next section we will show that (N2,Σ,Π) can be
viewed as the basis to build the “scales domain” wich is used in the formalization of the “two-pan
balance metaphor”.

The Scales Domain

In the previous section we proposed the domain with structure (N2,Σ,Π) as a formal model for the
“simple scales domain” . Here we deal with the more general “scales domain”, and our proposal for
its formal model is the product domain given by (N2,Σ,Π)⊗ (N2,Σ,Π). In the rest of this section
we provide an interpretation of its structure adequate for our purposes.

Notice that underlying our new product domain, there is the set of B =N2×N2. Therefore, the
objects of such set have the form ((b1,b2),(c1,c2)), where the pair (b1,c1) can be interpreted as
the first plate of the scale and the pair (b2,c2) can be interpreted as the second plate of the scale
(see fig. 5.9). Notice that in each plate there are objects of type “b” (boxes) and objects of type “c”
(circles).
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Figure 5.9: Interpretation of the elements of B

Let us interpret the remaining structure of the product domain (N2,Σ,Π)⊗ (N2,Σ,Π,):

From what was seen in the product domain (chapter 4), and without loss of generality, we
can assume that the set {0,AA,AI, IA, II,∼} is the symbol set that determines the language of the
product domain. Such symbol set has one constant symbol, four unary function symbols and one
binary relation symbol wich are mapped by α ′ as follows:

1. The symbol “0” is mapped to the empty balance ((0,0),(0,0)).

2. The symbol AA is mapped to the unary operation wich adds to each plate of the scale one
object of each type and its defined by

AA((b1,b2),(c1,c2)) = ((b1 +1,b2 +1),(c1 +1,c2 +1))

3. The symbol AI is mapped to the unary operation wich adds one “box” to each plate of the
scale, and it is given by

AI((b1,b2),(c1,c2)) = ((b1 +1,b2 +1),(c1,c2))

4. The symbol IA is mapped to the unary operation wich adds one “circle” to each plate of the
scale, and it is given by

IA((b1,b2),(c1,c2)) = ((b1,b2),(c1 +1,c2 +1))

5. The symbol II is mapped to the identity operation given by

II((a1,a2),(b1,b2)) = ((a1,a2),(b1,b2))

165



5.2. Two-Pan Balance Metaphor for Linear Equations

6. By the definition of the product domain, the symbol ∼ is mapped to the binary relation given
by

((b1,b2),(c1,c2))∼ ((b′1,b
′
2),(c

′
1,c
′
2)) if and only if

[∃n(b1,b2)± (n,n) = (b′1,b
′
2)]∧ [∃m(c1,c2)± (m,m) = (c′1,c

′
2)]

This equivalence relation can be understood as: two scales in this domain are equivalent iff
there exists another scale b such that, it is possible to transform both scales into b by a finite
number of applications of II, IA,AI or AA.

Additionally, notice that Σ ·Σ = {X ∼Y} and Π ·Π = {0, II(Z), IA(Z),AI(Z),AA(Z)} provides
information to the model about the “interesting structure” to work with. In this case, it is charac-
terized by the items described above.

The Equations Domain

Before describing similarity between domains using the “two-pan balance metaphor” we need
to describe formally the “equations domain” wich plays the role of the “target domain” in this
metaphor. As we did in the case of the “simple scales domain”, we are going to begin with a
semantic description of this domain and next, we shall describe the sintactic component (formal
language) of this domain.

The objects (or elements) in this domain are first degree linear equations. However, for our pur-
poses, the interesting structure are the ways to manipulate these equations in this domain. Particular
interest has to be placed on the transformation processes from one equation to another equivalent
equation (in the sense that both equations have the same solution set). To begin with, let us define
our set of equations as E = {ax+b≡ cx+d | a,b,c,d ∈ N}. Consider p1 = (a1x+b1 ≡ c1x+d1)

and p2 = (a2x+b2 ≡ c2x+d2) two elements of E. Define the following operation:

sum(p1, p2) = (a1 +a2)x+(b1 +b2)≡ (c1 + c2)x+(d1 +d2). (5.8)

Define R, an equivalence relation over E wich holds iff one of the equations can be obtained by
adding an expression to both sides of the another equation. It is well known that the set of solutions
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of two equations are the same whenever two equation are equivalent (by R).

Let us define the language wich shall be used for this domain. Consider SE = {e1,e2,⊕,R} as
its symbol set where e1,e2 are constants, ⊕ is a binary function symbol and R is a binary relation
symbol. Let us consider the structure given by {SE ,(E,γ)} where γ maps the symbols in the
following way: the symbol e1 is associated to the equation 1x+ 0 ≡ 1x+ 0, to the symbol e2 is
associated the equation 0x+1≡ 0x+1, the symbol ⊕ is associated to the operation sum defined in
equation 5.8, the symbol R is associated to the equivalence relation “R” defined above.

Also, let Ω = {R(X ,Y )} and Ψ = {Z⊕ e1,Z⊕ e2} to formalize the domain of equations by the
domain with structure (E,Ω,Ψ).

Examples

In this section we provide examples aimed to describe formally the “two-pan balance metaphor” for
linear equations. These examples are based in concepts given in previous chapters and the domains
built in this chapter.

Our approach is to model this metaphor as a mapping wich assigns an equation to each scale
(see figure 5.10). Consider the bijective mapping given by:

ε : N2×N2→ E defined by

ε( (b1,b2),(c1,c2) ) = b1x+ c1 ≡ b2x+ c2.

Figure 5.10: mapping ε .

The different domains that shall be used in this section were formalized above. However, the
first example just summarizes the key definitions and notations necessary to follow the rest of
examples.
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Example 21. First, consider the “simple scales domain”. To build a formal model for it, we have
used the language L SB wich is determined by the symbol set SB = {0,A, I,∼}. We propose the
domain with structure (N,Σ,Π) to model this domain, where Σ= {X ∼Y} and Π= {0,A(Z), I(Z)}.

Second, we have considered the “scales domain” and formalized it by the product domain given
by (N2,Σ,Π)⊗(N2,Σ,Π)= (B,Σ⊗Σ,Π⊗Π) where Σ⊗Σ= {X ∼Y} and Π⊗Π= {0, II(Z), IA(Z),AI(Z),

AA(Z)}. It uses the language determined by the symbol set {0,AA,AI, IA, II,∼}.

Finally, the “equations domain” was formalized as the domain with structure given by (E,Ω,Ψ)

where Ω = {R(X ,Y )} and Ψ = {Z⊕e1,Z⊕e2} are determining the structure wich shall be taken as
important. The language used by this domain is determined by the symbol set SE = {e1,e2,⊕,R}.

Example 22. This example shows that the “scales domain” can be described as similar to the
“equations domain”. We are going to modify the previously described model for “scales domain”
(example 21) in order to focus our attention in some structure useful to describe such similarity.
Consider the term set ∆ = {IA(Z),AI(Z)} and consider the domain with structure (B,Σ⊗Σ,∆). On
the other hand, consider the model for the “equations domain” and define the following mappings:

F : Σ ·Σ→Ω defined by F(X ∼ Y ) = R(X ,Y )

T : ∆→Ψ defined by T ( AI(Z) ) = Z⊕ e1, T ( IA(Z) ) = Z⊕ e2.

Observe that for any pair of scales, b1,b2 ∈ B it holds that b1 ∼ b2 iff R(ε(b1),ε(b2)). Addi-
tionally notice that ε(AI(b)) = Z⊕ e1(ε(b)) and ε(IA(b)) = Z⊕ e2(ε(b)) and therefore the tuple
(ε,F,T ) : (B,Σ⊗Σ,∆→ (E,Ω,Ψ) is an isomorphism (and thus a metaphor) between (B,Σ ·Σ,∆)
and (E,Ω,Ψ).

Therefore, these two domains are indistinguishable with respect to the selected structure. It
is remarkable that the mapping ε would be interpreted as some kind of “inference tool” because it
permits concluding an equivalence between two equations from an equivalence between two scales.
Furthermore, it permits operating with equations just by applying operations on scales.

Two observations are in order here to complement last example: First, observe that we would
change the “target” domain of the metaphor, to see that the “two-pan balance metaphor” is not
strong enough to deal with all first degree equations. Consider the set EZ = {ax + b ≡ cx +

d | a,b,c,d ∈Z} and observe that E ⊂EZ. If we adapt the example to deal with this set, it is obvious
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that there exists equations (belonging to EZ) wich can not be worked out with this metaphor (those
whose coefficients are not natural numbers). Second, this metaphor could be adapted to deal with
equations whose all coefficients are negative numbers. It can be achieved by defining the mapping
ε ′(b) =−ε(b). It is straightforward the adaptation of the involved domains in an appropriate way
(defining an operation wich substracts expressions instead of adding them).

Example 23 (Inference). This example is aimed to show that our model expresses the fact that this
metaphor borrows some reasoning methods from the base domain to the target domain.

When we apply the “circle” (or “box”) operation to any scale, the resultant scale is equivalent to
the first. When the scale is balanced, the resultant scale still remains balanced. This is an inference
(or reasoning) proper of the “scales domain”. However, such “inference” can be borrowed from
the base domain to be applied succesfully into the “equations domain”: If we add some expression
to both sides of an equation, then the resultant equation preserves the same set of solutions. Such
“inference preservation” would be easily formalized by setting:

Γ = {X ∼ IA(X)} and Ω = {R(X ,X⊕ e2)}

where Γ and Ω are formalizations of the reasonings described above. It is straightforward that con-
sidering the obvious translations and ε :N×N→E we achieve the formalization of such “inference
preservation”.

However, we would like to show an application of theorem (42). Let us formalize something a
little different, let

Γ = {X ∼ Y, IA(X)∼ IA(Y )},∆ = /0,Ω = {R(X ,Y ), R(X⊕ e2,Y ⊕ e2)} and Ψ = /0.

and consider the domain with structure given by (Γ,∆,B×B) as our model for the “scales do-
main” and the domain with structure given by (Ω,Ψ,E ) as our model for the “equations domain”.
Consider T : ∆→Ψ as the empty function and the mapping F : Γ→Ω defined by:

F(X ∼ Y ) = R(X ,Y ) and F(IA(X)∼ IA(Y )) = R(X⊕ e2,Y ⊕ e2)

It is straightforward that the tuple (ε,F,T ) : (B,Γ,∆)→ (B,Ω,Ψ) determines a metaphor (actually
it is an isomorphism) from (B,Γ,∆) to (E,Ω,Ψ).
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Observe that in the scales domain it holds that

X ∼ Y |=B IA(X)∼ IA(Y )

(wich can be interpreted as X ∼ Y =⇒ IA(X) ∼ IA(Y ) ) and thus we can apply the theorem (42)
of consequence to conclude that in the domain of equations it holds that

R(X ,Y ) |=E R(X⊕ e2,Y ⊕ e2).

A comment is in order here to close this section. Notice that the “two-pan balance metaphor”
deals just with the transformation of equations into other equivalent equations by adding values to
both sides of the equation. However, in most of the cases, the equations will still remain unsolved
i.e. in general, there is no way to use this metaphor to transform all equations to equations with
form x = a. In practice, this kind of resolution for equations can be addresed with another metaphor
wich uses a box to represent the variable and candies to represent numbers. It works for equations
with form ax+0 = 0x+d. See [102] and [3] for further details.

5.3 Tiled Path Metaphor for Integers

The “object collection metaphor” studied in the first section of this chapter is unfitted to deal with
negative numbers, essentially because it is based on piles wich always have zero or more objects.
However, the “tiled path metaphor” for integer numbers provides a natural way to introduce the
integer numbers’ structure into the mind of the learner.

This metaphor takes advantage of our body’s navegational system to build a first numerical line
representation into the learner’s mind. There are claims stated by researchers from the cognitive
field who affirm that our numerical representation can be viewed as a spacial numerical line ( see
[17], [104] ). Thus, this metaphor takes our knowledge about how to move in the space (base do-
main) and project it into our own representation of the integer numbers to structure it in a coherent
way.

For the sake of completeness of this work, we are going to describe briefly this metaphor and
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in a way to enlighten our purposes. Notice that from a cognitive point of view, a more accurate and
complete description can be found in [71] under the name of “Motion Along a Path” metaphor.

The base domain of this metaphor is known as tiled path domain. We are going to model its
structure by considering a two-directional infinite path T ( if we call “tiles” to its elements, they
would be seen as if they were ordered one after another forming an infinite path -see figure 5.11- ).
Attempts to formalize this path would end up with some set of axioms for integer numbers. Instead
of that, we shall identify T with Z to describe mathematically this domain while giving a plausible
interpretation (from the cognitive point of view) of its structure.

Let us imagine that over some tile p ∈ T there is a subject wich has the freedom to walk in any
of the two possible directions (forward or backward) offered by the path. Any walk that the subject
may take can be described by an operator whose argument is the initial position p of the subject
and whose value is the position of the subject after he has walked through the path.

More formally: for every n∈Nwe define unary operations aheadn and behindn wich change the
position of our imaginary subject from the actual tile to a new tile wich is determined by walking
n tiles in the appropriate direction. Thus, if we take p ∈ T as the initial position of the subject,
the operation aheadn(p) returns a position wich is n tiles in front of the subject. In the same way
behindn(p) returns a position wich is n tiles behind the subject. In figure 5.11 (below) we sketch
the operators ahead2(p) and behind2(p) when a fixed position p is given. The set of objects for
this domain is denoted by Q and defined by:

Q = {aheadn : T → T | n ∈ N}∪{behindn : T → T | n ∈ N} (5.9)

Figure 5.11: Representation of the Tiled Path Domain

The tiled path metaphor uses the “tiled path domain” to structure into the learner’s mind a
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Figure 5.12: Representation of the “Tiled Path Domain Metaphor”

representation of the numerical line including negative numbers. Our approach attempts to formal-
ize this metaphor as a mapping from the set of relative positions Q to the set of integers Z. This
mapping z : Q→ Z is defined as follows:z(aheadn) = n,

z(behindn) =−n.
(5.10)

Notice that the elements of Q can be composed. For example, for every n,m ∈ N the operation
behindn ◦ aheadm(p) is well defined, and such operation would force to our imaginary individual
to take a forward walk of m tiles and come back n tiles after that. From the definition of z : Q→ Z
( see 5.10 ) it is clear that

z(q1 ◦q2) = z(q1)+ z(q2), (5.11)

and therefore (Q,◦) is isomorphic to (Z,+) because z is bijective. These properties suggest that
this metaphor is well suited to explain the addition operation for integer numbers. These properties
are formally stated in examples 24, ?? and 51.

The “tiled path domain” has a great advantage over the “integer numbers domain” because at
some extent, every normal brain is expert in driving it’s body through the enviroment. In simpler
words, everyone has walked along a path and has some intuition about the concepts “direction” ,
“opposite direction”, “walk” and their interrelation. The metaphor just make the necessary bridges
between these concepts and the structure of Z as in figure 5.12 wich depicts how this metaphor is
used in mathematical training.

It is worth noticing the similarity of figure 5.12 with a linear numbered board game. It was not
surprising when we found that a teaching strategy based on this metaphor has been applied succes-
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fully to provide experimental evidence: while playing a linear numbered board game, the learner
uses its sensorial knowledge about the “tiled path domain” to structure its own representation of the
“integer numbers domain”. These studies can be found in [101, 105]. Furthermore, in [104] it is
claimed that “representations of numerical magnitude are both correlationally and causally related
to arithmetic learning”.

It may be posible to interpret the “tiled path domain” as the “object collection metaphor” (as
shown in figure 5.13) by considering an “one directional tiled path”. In this case, it is plain to
see that there are also tiles wich are placed before the position p and that our imaginary subject
just have to walk backwards to reach them. So, at certain extent, the construction of the tiled path

domain would be concibed as some sort of combination or join of two unidirectional paths wich
are “glued” in the origin. We will show that this intuition can be expressed in our formalism by
means of concepts like products and quotients (see examples 24, ??, 50 and 51). Furthermore, it
is suggestive to observe the similarity of these constructions with the classical construction of the
group (Z,+) (integer numbers) based on the monoid (N,+) (natural numbers).

Figure 5.13: The object collection metaphor interpreted in the tiled path domain.

Formal Model based on Domains

The Integers Domain

The formalization of the domain of integers for this metaphor is simple. Recall that Sar = {+, · ,0,1}
and consider the structure given by (Sar,(Z,γ)) (with γ the standard association of symbols). De-
fine the set of terms Ψ = {X +Y} and the set of formulas Ω = /0 to build the domain with structure
(Z,Ω,Ψ).
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Next, we use concepts developed in previous chapters to build a model for the tiled path do-

main. As we said above, the “tiled path domain” shall be obtained by combining two simpler “one
directional path domains”. Therefore, our first step shall be to propose a model for the “one di-
rectional path domain”. After that, we shall take a product of this domain and give arguments to
support the idea that a quotient of this domain can be taken as a plausible model for the “tiled path
domain”.

One Directional Tiled Path Domain

Analogous to the “tiled path domain” we are going to view this domain as a set of operators defined
over the tiles of a path (walks over a path), but we want to take advantage of the fact that this set of
operators together with the composition operation is isomorphic to the set of natural numbers with
the addition operation. Thus, in order to avoid technical complications, we shall adopt the set of
natural numbers N as the underlying set for this domain. The formalization of this domain is built
as follows: Let be S = {+, · ,0,1} a symbol set and consider the domain (N,Σ,Π). Put Σ = /0 and
Π = {X +Y}.

The Tiled Path Domain

As we have pointed out above, we are going to obtain a model for the “tiled path domain” consid-
ering a quotient of the product (N,Σ,Π)⊗ (N,Σ,Π). In order to abbreviate the present exposition
we are not going to detail how (Σ ·Σ,Π ·Π,N ×N ) is built. However, such construction in its
generality is exposed in chapter 4.

There is no loss of generality in assuming that the language of this product domain uses ⊕ as
the only binary function symbol, implying that Π ·Π = {X ⊕Y}. On the other hand, it is relevant
to give an adequate interpretation for the product domain (Σ ·Σ,Π ·Π,N ×N ) in a way to relate
its structure to the “tiled path domain”.

First, notice that the underlying set of this domain isN×N and therefore every object belonging
to this domain is a pair (n1,n2). The first coordinate may be interpreted as “a forward walk of length
n1 tiles” and the second coordinate as “a backward walk of length n2 tiles”. This interpretation let
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us see this product as a structure where every object can be viewed as a pair of walks wich are taken
in opposite directions. Recall that the “composition of walks” operation in this domain (wich we
will denote by ⊕) is given by:

(n1,n2)⊕ (m1,m2) = (n1 +m1,n2 +m2).

Thus, when two objects of this domain are combined by means of this operation, the resultant
object “composes” those walks wich are taken in the same direction.

Notice that some objects of this domain are “equivalent” in the sense that they affect the position
of our imaginary subject in the same way. Take for example the objects (0,0),(1,1),(2,2), ...(n,n).
Each of them make our imaginary subject take a walk of k tiles forward and k tiles backward
coming back to the same tile, therefore it is a good idea to identify all those objects as just one.
This shall be done by introducing a quotient domain.

Let us consider the map
z′ : N×N→ Z

defined by
z′((m,n)) = m−n.

and notice that z′ is a surjective metaphor from the domain (N,Σ,Π)⊗ (N,Σ,Π) to the domain
(Z,Ω,Ψ) and then the quotient domain (N,Σ,Π)⊗ (N,Σ,Π)/z′ is well defined. Our proposal is to
use this quotient domain as a formal model for the “tiled path domain”.

Examples

Here, we formalize the “Tiled Path metaphor” for integer numbers and provide examples for it.

Example 24. Recall that our model for the “Tiled Path domain” is the quotient domain (N,Σ,Π)⊗
(N,Σ,Π)/z′ and notice that its “objects” (equivalent pairs of walks) are equivalence classes deter-
mined by the fibers of the homorphism z′. The first observation is that this map is stronger than
a homomorphism, it is a metaphor. The second observations is that because of the way we have
defined the “Tiled Path domain” we know that it is isomorphic to the Integers domain.
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5.3. Tiled Path Metaphor for Integers

Take the domain (Z,Ω,Ψ,) as our model for the “integer numbers domain” and define the
following translations:

F : Σ ·Σ→Ω as the empty function.

T : Π ·Π→Ψ

given by
T (X⊕Y ) = X +Y

Notice that the map z from the quotient of N×N by the fibers of z′ to the set of integers Z which is
defined by z((m,n)) = m−n is bijective.

It is remarkable how this construction of the “Tiled Path domain” is very similar to the very well
known and classical construction of the integer numbers (the group (Z,+)) based on the natural
numbers (the monoid (N,+)). However, our contribution is to offer a cognitive interpretation of
these ideas and a formal way of express it.
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Chapter 6

Conclusions

The main goal of this thesis was the study of analogies (or metaphors) that occur often in the
learning and teaching of mathematics. As methodology, we chose the use of formal models to
represent analogies and analize mathematically such representations. However, at the begining of
this research, the literature search did not provide us with mathematical models to work with.

The formal mathematical models we found ([41, 40, 55] and [84]) could not be used by us for
the purposes of this thesis that are related to cognition and learning. And, to face this situation,
we built from scratch a new mathematical model for metaphor. The formulation presented here
is based on theories of structure such as universal algebra, formal logic, graph theory, unification
theory and theory of categories. This might seem natural when one considers that metaphor is a
process that pinpoints commonalities between two structures.

In order to make the phenomenon of analogy susceptible of analisys, many assumptions un-
derlie the model presented here. And yet, its usefulness was exemplified in Chapter 1 where we
performed a deep analysis of the metaphor underlying the game “The Great Race”1. Furthermore,
by using the insights that our model provides we were able to propose a mechanism for “learning
by analogy” which explains the fact that this game is beneficial for learning numbers. This indi-
cates that our model can be used to understand and simulate learning by analogy. This sketches the

1This game was developed by the cognitive scientist Robert Siegler and his collaborators to enhance children’s
numerical knowledge.
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main contribution of this work: the creation of a formal model of metaphor that would potentially
be used in cognitive contexts.

Also, this study makes a small (although meaningful, we think) contribution to mathemat-
ics: once the first definitions that set up our model—such as the formalization of “domains of
knowledge”—were ready, a challenging problem of mathematical nature appeared: how to char-
acterize the existence of a map between two first order languages which preserves the structure
determined by the syntactical operation named substitution2. On that matter, Chapter 2 and Chap-
ter 3 provide conditions characterizing the existence of such structure-preserving maps. For such
study we used graph theory to develop new representations for terms and formulas of first order
languages. These representations yielded the wanted conditions but expressed in a graph-based for-
malism, and thereafter, these conditions were translated back to the context of first order languages
and their grammar by applying unification theory.

Another goal of this thesis is to expose some arguments to convince the reader that our formal
model is able to reproduce, to a certain extent, some properties observed in analogies and metaphor.
In particular we highlight that our model accounts for the carrying of inferences from the source to
the target of the metaphor. Results of this kind might help to end the discussion named the problem

of justification of reasoning by analogy which has been raised in the field of philosophy [76, 122]
and, even when many scholars have discussed it, has remained without a satisfactory solution[56].
Our results3 provide arguments to justify that some conclusions about the target can be drawn by the
metaphor (see some examples in section 1.3.7). And the hypotheses of such results might provide
conditions to be checked on those inferences that are going to be “justified” within our formalism.

It captivates the attention that some of our results might seem paradoxical at first sight: on
one hand, we obtained a family of results ensuring the uniqueness of a metaphor, and—on the
other hand—it is well known that a variety of metaphors between two domains can co-exist. Such
contradiction dissapears when an accurate interpretation is given. For example, Lemma 25 ensures
that a metaphor extending a partial map between the source domain and the target domain must be
unique4. The hidden fact is that the source domain (and the target domain) can be formalized in
multiple ways5, and thus, it is possible that different formulations lead to different metaphors (even

2Recall that this operation generates such structure by recursive nesting of strings of symbols.
3Those would be Theorems 40 41, 42, and Proposition 26.
4For the sake of readability, the hypotheses of the Lemma are not explicit here.
5A single (human) domain of knowledge can be seen in multiple ways from our formal point of view. For example,
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when the partial map is the same!). In other words, our results on the existence and uniqueness
of metaphor should be always put in the context of how the source and the target domains were
formalized and the structure that was considered on them.

A further interpretation of Lemma 25 might be worth mentioning. The lemma suggests strict
conditions6 under which an analogy is uniquely determined (see section 2.8.2). With these kind of
results, future research into our model might shed light on how to pose complex questions in form
of an analogy in such a way that a well determined and unique answer can be expected. This might
have some consequences into the existent debates about including or not batteries of analogy-items
(such as the Miller Analogies Test7) in standardized tests for college acceptance.

Some of our results have a sort of “cognitive interpretation” which is linked to cognitive con-
cepts such as “Learning by Analogy” or “Reasoning by Analogy”. Because most of these results
assume a recursive mechanism for combining sequences of symbols, we believe that some recur-
sive (or iterative) mechanisms are necessary for mimicking the properties of metaphor. The refered
assumption might be caused because there is a grammar that is embedded directly into the model.
However, we also have to consider that when we ignored the recursive structure provided by the
grammar of the formal language, we were unable to reproduce similar results8. In turn, this led
us to speculate that some of the brain mechanisms for recursion might be key for the processing of

analogies and metaphor. For the readers interested on this topic, an expanded discussion is pro-
vided in Appendix B where we also suggest that the brain’s mechanisms for recursion might be a
key clue for understanding the strong relationship between language, metaphor and theory of mind
that has been observed in humans [85].

The contributions of this work to the field of mathematics education are described next. This
thesis has introduced two perspectives to understand analogies in the context of learning, namely
the learner’s metaphor problem and the teacher’s metaphor problem. With respect to the learner’s
problem, Chapter 1 provides an interpretation of Theorem 31 which suggests that our model can

two formal domains can share the same “objects”, but they might differ at the selection of relations or operations
between such objects.

6Those conditions should be translated as knowing exactly, in each domain, which elements and relations are
playing a role in the metaphor and knowing the partial map between the source and the target.

7There are claims that the MAT(Miller Analogies Test) outperforms the undergraduate GPA(Grade Point Average)
and the GRE (Graduate Record Examinations) as predictor for first-year graduate GPA, overall graduate GPA and
comprehensive exam scores [67, 69]. Another comparison between standardized tests can be found in [68].

8Such study is presented in Appendix C.
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be used to enlighten and, perhaps, to solve such problem.

A deeper analysis of the learner’s problem is outside of the scope of this work. Yet our argu-
ments show that our model is a useful framework to analyze metaphors in the context of mathemat-
ics learning. In this direction, as future work, it would be interesting to use our model as a basis
for building bayesian models of inductive learning (see [111, 108]). Also, by adding a mechanism
to emulate the acquisition of knowledge when time is passing by, our model might even attempt to
capture the dynamics of learning.

This thesis does not address directly the teacher’s metaphor problem. Recall that such prob-
lem was introduced with the aim of organizing the kinds of analysis that should be performed on
metaphor within the context of learning. The reason why the results of this thesis can not be ap-
plied directly to analyze such problem is that the gist of the problem lies on the searching of a
relational matching between the source and the target. And most results of this thesis assume that
such matching is given beforehand. However, the problem also requires a sistematic way to deter-
mine a (non-relational) matching between the objects of the source and the objects of the target.
And then, a little contribution is made: if the relational matching is given, Theorem 30 provides
conditions ensuring that a partially defined map can be extended in a unique way from the source’s
objects to the target’s objects. And the proof of the theorem also provides the extension.

For example, let us imagine that we are facing the challenge of designing the Siegler’s TGR
game for improving numerical knowledge (such situation is an instance of the metaphor’s teacher
problem). Assume that, for such purpose, we choose the metaphor described by Nunez and Lakoff
[86] as “ARITHMETIC is MOTION ALONG A PATH” and that we are about to design the board
of the game. Also assume that we are convinced that the number one must be printed on the first
square of the board and, that somehow, we have figured out a suitable relational matching9.

In such case, Theorem 30 assures us that there exists exactly one metaphor which is consis-
tent with the described conditions. Indeed, we can read—between the lines of the proof of the
Theorem—how the rest of numbers must be printed out in the rest of the squares of the board10.
This link between our formal model of metaphor and the design of learning materials shall be

9(a) the operation “moving one square to the right” matched with the operation “next” between numbers, (b) the
relation of “being at the left of” matched with the numbers relation “less than”, (c)... , etc.

10This might not sound very impressive. However, as far as we know, it is the first formal explanation of why such
matching is so intuitive and effective for learning.
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further discussed in the next section.

Design of learning materials

Our formal model helped us to analize the TGR game developed by the psychologist Robert Siegler
and his collaborators to enhance children’s numerical knowledge (See introduction). In their semi-
nal study [101] they wrote about the game:

There is no reason to believe that the present version of The Great Race cannot be improved.

Many features of the intervention were based on hunches and guesses rather than empirical

research.

The above paragraph highlights the extent to which the design of games for learning (and other
didactical materials) is often a handcraft whose efficacy depends heavily on the skills of the crafts-
man. The core difference between an engineering design and handcrafting is at the heart of this
thesis: an engineer works with formal models that endow him with predicting power about the
behavior of his designs. Along these lines, this work provides some arguments supporting that the

handcrafting of didactical materials for learning can become a task of systematic design and offers
our model as a tool.

Let us give another11 example in support of the last claim. First, recall from the introduction
of this work, that the linearity of the TGR board was a vital feature of the game since it was
shown in [105] that a similar version with a circular board does not improve learning. This shows
how an innocent decision concerning the board’s design causes a huge effect on learning. Often,
experimental studies (like the one performed by Siegler) might be out of the scope for a teacher
or for a designer of learning materials. In what follows, we argue that our model is useful for
identifying a family of designs with a positive impact in learning.

Let us follow with the TGR example by observing that our model is able to make a prediction
consistent with Siegler’s results. To this aim, notice that in our formalism, (a) the linear board
version of the TGR game satisfies the conditions to be called a metaphor and (b) the circular board

11The first example was given in the last paragraph of the previous section.
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version of the TGR game does not really deserve to be called metaphor since the order is not
preserved from the source to the target and the distance is not preserved either (for more details
see the last paragraph of section 1.1). Thus, if we accept the evidence suggesting that analogies
have the power of facilitating learning [3, 29, 10, 101, 105, 98], we conclude that the linear board
version of the TGR game shall have a beneficial effect on learning. Also, we can conclude that the
linear board shall preserve more structure of numbers than the circular board version of the game.
Then, our model suggests to make use of a linear board rather than a circular board to implement
the game.

Along these lines, in Appendix A, we present an exploratory study whose results are consistent
with the core claim of this part. We used the insights provided by our model to design a card game
aimed to teach a complex mathematical concept: exponential functions. Encouragingly, the results
were positive.

With respect to the question about how to cross the bridge (if it can be crossed) connecting
handcrafted learning materials and learning materials designed systematically, this work offers
more questions than answers. However, here we offer our formal model of metaphor as a little step
on the direction of crossing that bridge.
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[48] F. G. E. HappÃ c©. The role of age and verbal ability in the theory of mind task performance
of subjects with autism. Child development, 66(3):843â855, 1995. 200, 205
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Appendix A

Analogy-based games for learning high
school mathematics

Introduction

During the last fifteen years, the chilean government has been making large investments in educa-
tion. However, returns are far below from expected [90]. For example, the mathematics’ average
score was 421 below from the OCDE’s average score of 496. As another example, 22% of the
chilean students do not acquire the most elemental mathematical skills. In contrast, 8% of the
OCDE’s students (in average) and only 1% of Shangai’s students are in the same situation.

Unfortunately, learning in chilean schools is an activity in which the students are forced to at-
tend, be quiet and pay attention for many hours at a day; and this for 12 years or more! and, as if
this were not enough, this is a monotonous activity where the conventional instruction of mathe-
matics consists of a blackboard filled up with abstract concepts, symbolic representations and little
focus on understanding. One alternative for challenging this status quo might be to design educa-
tional games that are entertaining, promote cooperative learning and helps the student to interpret
and understand these abstract concepts and symbolic representations. There are claims suggesting
that well designed games provide environments that are stimulant, highly contextualized, and emo-
tionally safe where a highly engaged and individualized learning can occur[125]. In fact, various
initiatives have been promoted for researching gaming and its applications for learning, see for
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example the “Games for Learning Institute”.

However, the design of games with the characteristics above mentioned is far from trivial; sub-
tle differences in the design of the game might have huge effects in the expected learning. For
instance, Robert Siegler et al. created a game named “The Great Race” and then showed that chil-
dren who played this game obtained huge gains on their numerical knowledge[106]. Crucially,
Siegler noticed that the linearity of the board of the game was a vital feature to explain the gains of
knowledge because the same game—but constructed on a circular board—did not improve numer-
ical knowledge on children[105].

One explanation for such effect might be that the linear path recalls the “mental number line”[104]
and this converts the linear game into a great analogy (or conceptual metaphor[71, 89]) for numbers
learning, while a circular game would not be. This sort of argument is supported by many empirical
studies that highlight the importance of analogy in teaching mathematics [98, 62, 3, 53].

Psychological literature[29, 72] claims that analogy is a cognitive mechanism used by the hu-
man mind for the understanding of an abstract concept called target, e.g. numbers, in terms of a
more concrete concept called source, e.g. the linear board of a game. The work of Siegler suggests
that if we are able to build an analogy whose source is determined by certain game and whose target
is the mathematical concept that is to be taught; such game play might facilitate the understanding
of that mathematical concept. To illustrate the idea, in the next section we sketch the developing of
a game with these characteristics. Also, to estimate the effect of the game on learning, we report
an exploratory study whose results are encouragingly positive.

The Alien Invasion Game

The educational goal of the Alien Invasion Game (AIG) is the introduction of exponential and
logarithmic functions basics. We used literature related to analogy[29, 72] as a guide to implement
our idea: the “world of the game” is the source of an analogy whose target contains the abstract
concepts to be taught. A brief description of the AIG development is provided next.

The AIG is an adaptation of a famous1 strategy game which is played with a deck of cards.

1Magic the Gathering.
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Figure A.1: The AIG’s cards.

Our game is acclimated on a fiction scenary where aliens are invading our world. Our scientists
use biological weapons to defend the earth population. In this context, the game goal is to infect
the aliens with bacteria in order to make them vulnerable to capture. The strength of an infection
depends on the amount of energy consumed by the biological weapon. An infection is less effective
when a shield is protecting the alien. However, biological weapons can be combined in order to
produce stronger weapons.

We built an analogy whose source is the scenary above described and whose target is a set
of exponential functions (the functions 2x, 3x and 5x together with their inverse functions) in the
following way: One biological weapon corresponds to one exponential function. The amount of en-
ergy consumed by the weapon correspond to the argument passed to the exponential function. The
strength of the infection produced by the weapon corresponds to the evaluation of the exponential
function. The combination of two weapons corresponds to the multiplication of two exponential
functions. A shield protecting an alien is related to a logarithmic function.

Method, Materials and Procedure

Participants were 51 high school students between seventeen and nineteen years old. They attended
to the same level in the same high-school and they had no previous knowledge of exponential
functions. There were two groups of them: the first group was assigned to the game condition (27
students, 9 female) and the second one to the control condition(24 students, 13 female). This is
an exploratory study because of this non-random assignment. However, the high-school teachers
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Figure A.2: Non normalized data shows a difference between the two groups after the intervention.

reported that there were no performance differences between these two groups. The experimenters
were two female high-school teachers supervised by a male graduate student.

Each student was handed a deck of twenty cards that represent the weapons and other elements
of the game (see Figure A.1). The intervention was realized through five 90-minute sessions within
a 3-week period. At sessions one and five all students did a test of 14 items about exponential
functions. Students in the control condition were taught exponential and logarithmic functions
in the high-school traditional manner (blackboard with symbolic explanations and examples). In
the game condition, students played the AIG during the three first sessions where they organized
themselves in groups of two, three or four players. This game group received the explanations of
the mathematical concepts using some AIG’s strategies as examples during the last two sessions.
Both groups were exposed to the material during the same amount of time. The same teacher gave
the lessons for both groups.

Results

The data was normalized before preforming the analysis. With regards to condition, no significant
differences were present between the pretest scores of the control group (M = 0.14,SD = 0.95)
and the game group (M = −0.16,SD = 1.04). However, in Figure A.2 we observe that the post
test scores of the control group were lower than the scores of the game group (−0.41 vs 0.47, t =
3.51,d f = 47.9, p < 0.001). Additionally, a linear regression analysis confirmed a strong effect of
the condition on the post test score.
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Brief Discussion

The results are consistent with the hypothesis that playing the AIG game facilitates the acquiring
of knowledge of exponential functions in high school students. This in turn suggests that analogy
theory and metaphor theory can be used as a guide for designing educational games. It might be
worth observing that the cognitive approach presented here might be adapted to teach almost any
concept of high school mathematics. Thus the path is open to explore the scope of the approach
presented here. However, this study leave many unanswered questions. One of them is related
to the emotional impact of the AIG game on the students. The answer might help us to develop
techniques for improving the students attitude toward mathematics.
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Appendix B

Analogy and Recursion

Combinatory play seems to be the

essential feature in productive thought.

A. Einstein

In his article “The Uniqueness of Human Recursive Thinking”[13] (see also [14]), the psychol-
ogist Michael Corballis argues that recursion expresses itself in several key human mental faculties
including the faculty of language and theory of mind. In the following discussion we argue that
metaphor and analogy should be included in that list. This claim, namely that some of the mind’s

recursion mechanisms play a key role in the processing of an analogy (or metaphor), has not been
made explicitly in the literature dedicated to metaphor or analogy (as far as we know at least). Also,
the argument we present here suggests that recursion might be a major clue for understanding the
strong relationship between language, metaphor and theory of mind that has been observed (see for
example in [85, 47, 48, 45, 16] among many others).

We believe that our model can be used as a guide to obtain some insight into the processing of
an analogy because of two reasons. First, its results are consistent with some properties observed
in metaphor. For example, those results that can be interpreted as “learning by analogy” (Theorem
30 and Theorem 31) and those ensuring that inferences can be preserved from the source to the
target (Proposition 26, Theorem 40, Theorem 41, and Theorem 42) among others. Second, the
hypotheses that our model makes can be grounded in psychological theories and empirical research
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(see sections 1.3, 1.3.2, 1.3.3). The picture that emerges suggests that the assumptions that our
model makes, implies some of the properties of the phenomenon. Thus, a rough interpretation
of our model would give us a hunch about the necessary and sufficient conditions to process an
analogy.

A simple observation on some of the results of our model is the genesis of our claim. A simple
review of the results metioned above (those with a cognitive interpretation) is enough to realize that
all of them share a remarkable aspect: as a hypothesis, each one of them needs a recursive mech-
anism for combining sequences of symbols. And in fact, when the recursive structure provided
by the formal language and its sintax was removed from our model, we were unable to reproduce
similar results1. This might indicate that the mechanisms providing recursion are necessary for
simulating the behavior of a metaphor or an analogy. This observation is consistent with our claim.

In the search for evidence relating recursion and metaphor we found no studies performed with
this aim. Seems to us that recursion has not been studied in the context of metaphor (or viceversa)
and we believe that this is because, in the current theories of analogy and metaphor, recursion by
itself does not play any rol of importance. Consequently, there would be no good reasons to study
the relation between analogy and recursion mechanisms. However, in order to persuade our reader
that recursion and analogies are strongly linked we shall use an indirect strategy. But first, let us
point out why recursion should play a rol of importance in metaphor and analogy.

One of the most influential theoretical frameworks for studying analogy is “the structure-
mapping theory[30]” which is a seminal work postulated by the widely acknowledged psychologist
Dedre Gentner. In such work she assumes explicitly that “domains and situations are psycholog-
ically viewed as systems of objects, objects-attributes and relations between objects”. For many,
such relational representation of the information, is the kernel of this theory. We are going to argue
that such representation of the information is a constrained version of a more general and useful
principle that is based on recursion.

Our model represents information by means of three components: a) a way of representing indi-
viduals2—the Gentner’s objects—, b) the ability of using symbolic representations for referencing
relations between such individuals3—the Gentner’s relations and attributes—, and c) the capacity

1Such study is presented in Appendix C of this thesis.
2a “zero order” representation.
3a representation of “first order
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of using recursion on these symbolic representations to create hierarchical representations of the
information4—there is no analogous component in Gentner’s Theory. Thus our model is based in
Gentner’s theory with the addition of c) as a key component of the problem.

The subtle differences between the Gentner’s proposal and our own, can be highlighted by
means of an example. To this aim, let us recall the TGR game developed by Siegler (see section
1.1). The metaphor underlying such board game is that arithmetic is motion along a path [71] and
observe that under the Gentner’s conception, the Figure B.1 might be a good depiction of the source
and the target of the metaphor.

Figure B.1: Above (below), the representation of the source (target) of the TGR metaphor by using
the ideas of Dedre Gentner. In the source of this metaphor, each square of the board is represented
as an object and its relational structure is determined by which squares are adjacent to each other.
In such representation GoR means “Go to the square at the Right”.

Actually, such conception explains succesfully the metaphor as the “geometry” of the source
being preserved into the “geometry” of the target. However, such representation fails to acknowl-
edge the recursive patterns that are present, as for example, that 2 is next(1), 3 is next(next(1)), 4
is next(next(next(1))) and so on. And such recursive pattern is the key that our model exploits for
obtaining those results that we have interpreted as “learning by analogy5”.

In this example, the symbolic recursion endowed to our model has at least one advantage: one
4representations of second, third and “higher” orders.
5The interpretation of Theorem 30 and Theorem 31 are given in the introduction of this work, section 1.3.5.

202



of the issues of finding an analogical mapping, under the Gentner’s Theory, is that it needs to check
all the posibilities. In our model, where a recursive pattern is expected, if such pattern is pinned
down, then there is a clear guidance on how the analogical mapping between the squares and the
numbers should be done (first square→ 1, GoR(first square)→ next(1), GoR(GoR(first square))→
next(next(1)) and so on). Actually, this might have implications with respect to learning by analogy
because this will provide a clear guidance to reshape or augmenting (if necessary) the target of the
metaphor by using the recursive structure of the source. This might have other implications in
generalizing learning (as for example, what is the number that follows 10?).

The use of metaphors such as “love is a journey” in daily speech, hardly reveals the use of
recursion. Then, recursion might be difficult to observe directly in daily metaphors6. Neverthe-
less, recursion can be observed directly in other cognitive phenomena and we shall focus on two
particular cases: the faculty of language and the theory of mind (ToM)7.

In what follows we want to convince the reader that these two cognitive faculties have been
consistently related to metaphor in the literature. This with the aim to argue for our affirmation as
follows. Such revision will show us that there is, at least, a kind of a weak correlation between
these three faculties (language, ToM and metaphor). This correlation must be caused by the brain
mechanisms that are shared between these three faculties. Since recursion mechanisms are key
components of the faculty of language and ToM, these mechanisms should be the main contribu-
tors for the appearance of such correlation. This might indicate that recursion should be strongly
involved in the processing of metaphors and analogies.

The last affirmation is not a firm conclusion since the argument is based on a correlation that
might be triggered by many other mechanisms, such as working memory, executive functions,
metarepresentation and other cognitive processes that are usually theorized in the cognitive litera-
ture. However, we believe that we posit here a hypothesis that can be tested empirically and, after
that, it can be rejected or strengthened.

6However, observe that when explaining a concept to other person by means of an analogy, the use of recursion is
a little more evident since the hierarchical structure must be explicitly pointed out. This difference might be consistent
with the following pattern. The utterer uses a daily metaphor when he assumes that the receiver knows the source and
the target of the metaphor. On the other hand, the utterer uses an analogy, when he wants the receiver to make an
inference of a target that the receiver does not know completely.

7Theory of mind is the ability to attribute mental states—beliefs, intents, desires, pretending, knowledge, etc.—to
oneself and others and to understand that others have beliefs, desires, and intentions that are different from one’s own.
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Before entering into the review of the literature that supports our argument, let us pinpoint why
recursion might be necessary for faculties such as language, theory of mind and analogy. In the
case of language, most linguists agree that one key characteristic of human language is its recursive
nature. In this way, recursion provides to the human mind with the capacity to generate an infinite
range of expressions by combining a finite set of elements[49].

For the ToM case,let us consider a person affirming “You must be thinking that this is a good
idea”8. In such case, there is little need for recursion. However, for such person to emit the utterance
“I think Alice must be thinking that I think this is a good idea” is necessary that such utterer is able
to think that Alice is thinking about the thoughts of him9. Thus revealing, through language, how
a recursive process is triggered to assign different states to three different representations of the
involved individuals: the state of “thinking about Alice” is assigned to the utterer and , under this
label, the state of “thinking about the utterer” is given to the mind of Alice. Even deeper, the state
of “thinking that the idea is good” is given to the utterer, even when he thinks that the idea is bad.
It is crucial to observe how these representations have a hierarchical structure which permits, for
example, that the utterer is labeled under different states without generating conflicts. These kind of
representations are generated necessarily through mechanisms of recursive nature. Actually, many
models of theory of mind assume that recursion is a natural component [109, 110].

Finally, besides of the reasons given by our formal model, a similar explanation makes sense for
arguing that a normal processing of an analogy would need recursion mechanisms. These mech-
anisms would ensure that the information that the process receives as input, can be represented
hierarchically. That was exemplified above by Alice and the utterer. Recursion allows us to repre-
sent knowledge by means of recursive structures (various levels). And then, consistent with current
thinking in the cognitive sciences, an analogy would result from the comparison of two hierarchical
structures representing the source domain and the target domain[36, 86, 30, 29].

Our argument begins by acknowledging that language and ToM are strongly related to recur-
sion. As we mentioned at the beginning of this appendix, the psychologist Michael Corballis argues
that recursion expresses itself in the faculty of language and the theory of mind10. In the earlier
case, there is no doubt that recursion is a key component of language[49]. For the latter case, there
is an agreement among theorists that recursion underlies theory of mind[110]; this is reflected in

8This would be a first order representation.
9This would be a third order representation.

10Observe that he does not include metaphor or analogy among them.
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the fact that some ToM tasks have been developed by probing recursively ToM understanding (first
level: inferences about a belief, second level: inferences about a belief about a belief, and so on, up
to fifth level or even more [78, 61]).

More evidence supporting the view that recursion may be one general ability serving both: lan-
guage and theory of mind; comes from the fact that the children’s ability to use embedded syntac-
tical structures comes on line shortly before the ability to solve false belief tasks[16]. Furthermore,
the training in a specific linguistic construction, sentential complements11 (such as John said that
Fred went shopping), improves performance in theory of mind tasks[45]. This might explain why
verbal ability and performance on ToM tasks are highly correlated [48].

Next, we need to argue for two points: (1) that language and metaphor are strongly related and
(2) that ToM and metaphor are strongly related. In support for the first point, we present the point
of view of the cognitive scientist Dedre Gentner (who has dedicated her entire life to the study
of analogy, similarity, metaphor, learning and other related cognitive phenomena). In her article
named “Why We’re so Smart”[31], she arguments in favor of her thesis:

... what makes humans smart is (1) our exceptional ability to learn by analogy, (2) the pos-

session of symbol systems such as language and mathematics, and (3) a relation of mutual

causation between them whereby our analogical prowess [powers] is multiplied by the posses-

sion of relational language.

Thus arguing in favor of a strong link between analogy and language. Also, we believe that the
mind’s recursion mechanisms should be the “relation of mutual causation” which is sostained by
Gentner’s thesis. In such case, her thesis is consistent with our hypothesis.

Also, in [5] (see also [48]) it is suggested that analogical reasoning is strongly dependent on
language. In such study they compared the relational reasoning performance of diferent groups of
patients with some disabilities in language. They report that “the most severely aphasic patients
(i.e., Broca’s, global, and Wernicke’s aphasics) had the lowest scores, approaching chance perfor-
mance on the relational-reasoning items. Additionally, has been reported that complex hierarchical

11Sentential complements are recursive sentences in the sense that they allow for the embedding of tensed proposi-
tions under a main verb.
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structures mimicking those of natural languages mainly activate Broca’s area[26]12. This might
suggest that recursion mechanisms are implemented in the Broca’s area and its failure affects ana-
logical reasoning. And this is what happens in children with language impairments. They have
deficits in understanding metaphorical language[100].

Now we need to support the second point, namely that analogies and ToM are strongly re-
lated. let us begin with the observation of the psychologist Francesca Happé who claimed that first
order ToM understanding is necessary for comprehension of metaphorical expressions [47]. In an-
other study, the role of theory of mind in comprehension of metaphor was examined in patients of
schizophrenia during remission, the comprehension of metaphor was significantly correlated with
second-order false belief understanding[83]. The results presented by Happé were challenged by
the results of [85]. In such study there was no correlation between metaphor understanding and
first order ToM understanding. However, they report a strong correlation between second order
ToM capabilities and metaphor understanding. Consistent with our hypothesis, these results might
be pointing that the influence on metaphor understanding is not coming from the ability of Theory
of Mind directly, but from the recursion mechanisms in which such faculty relies on.

We want to end this discussion by presenting other kind of evidence supporting our hypoth-
esis. The researchers Hauser, Chomsky and Fitch argue in [49] that the mechanisms necessary
for recursion evolved for reasons other than language, that is to say, to solve other computational
problems such as navigation, number quantification, or social relationships. They suggest that in
order to enlighten the intricacies of language, it might be worth carrying studies for finding evi-
dence of recursion in animals, but in a noncommunicative domain. If they are right, and there is
recursion in animals, it is plausible to assume that the performance of such circuitry is dependent of
its evolutionary state13 and then the following reasoning might serve in support of our hypothesis.

If we assume that there exists such recursion circuitry in animals and that it is shared between
language, ToM and analogy (among other faculties). Also, if we furthermore assume that such

12Natural languages mainly activate left Brodmann area (BA) 44/45, and hierarchically structured mathematical
formulae, moreover, strongly recruit more anteriorly located region BA 47.[26]

13A clarification is needed here because this assumption might seem contradictory with what Hauser, Chomsky and
Fitch postulated in [49] where they argue that such recursion mechanisms (FLN) is the unique component that makes
human language qualitatively different from any other animal system of communication. However, in the context of
our assumption, what would make human language different from other systems of comunication is the performance
of such recursion mechanisms which in the human case might be more complex than those encountered in the recursive
mechanisms of any non-human animal.
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recursion circuitry is high performance for humans, average performance for apes and low per-
formance for monkeys. Then, since such recursion mechanisms are key for language, ToM and
analogy, it is reasonable to expect that the performance of recursion sets a bound on the perfor-
mance of each one of these three cognitive abilities. Furthermore, if these assumptions are correct,
it is reasonable to expect a positive correlation between the performance of such recursive mecha-
nisms and the performances of the mentioned three faculties. Some evidence consistent with such
reasoning is presented next in the form of a series of studies on analogy, language and ToM in
animals.

In first place, let us consider our species. A normal person, without effort, is able to handle its
highly recursive native language (unless it is the piraha language where there is a debate about its
recursivity), around age of six, normal people can perform most of the typical ToM tasks, under-
stand metaphors and create analogies to express himself. Then, there might seem to be at the very
least some sort of weak correlation between these three factors and high performance mechanisms
for recursion.

In second place, let us consider let us consider apes (Pan troglodytes). It is well known that
some of them have been trained to use, at certain extent, sign languages such as the American
Sign Language14. Apes have not fully mastered those languages, but a chimpanzee called Washoe
could use 68 gestures after three years of training, eventually getting to 150 gestures. Their trainers
reported that Washoe combined spontaneously such gestures to communicate, thus revealing some
traits of recursion [27]. Another chimpanzee called Sarah, using a token language, could reliably
produce phrases with grammatical form such as “Mary give apple Sarah” and to learn imperative
sentences with a grammar as imperative or negative [99]. This shows that the language that an ape
is able to handle can have some combinatory structure but not as complex as the human languages
have.

With respect to the theory of mind, there is a debate about if chimpanzees have theory of mind,
but the studies that support this claim suggest that chimpanzees, at most, have a rudimentary theory
of mind [49]. A study performed by Call and colleagues lends credence to the latter hypothesis,
providing evidence that chimpanzees are also sensitive to human intentions. Specifically, chim-
panzees remained in a testing area longer and exhibited fewer frustration behaviors when an exper-

14First studies claimed that there was no recursivity on such languages. However, later was revealed that the way
in which recursion was implemented in such languages was by means of non-manual markers of relative clauses as
consisting of raised brows, a backward head tilt, and a tensed upper lip.
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imenter behaved as if he intended to give food but was unable to do so, than when the experimenter
behaved as if he had no intention of giving food [11]. Finally, for the case of analogies Gillan,
Premack and Woodruff [38] reported that a chimpanzee (with a history of succesfull relational
matchings) named Sarah succeded also in completing partially constructed analogies involving ei-
ther complex geometric forms or functional relationships between common objects. Such study
was critiziced because of the posibility that her successes might be attributable to simpler nonana-
logical strategies. However, a reanalyses is performed in [91] where they conclude that “the tasks
Sarah performed were demanding, including tests of not only her ability to comprehend analogy
problems, but also her ability to construct analogies by arranging items in a systematic manner on
a board. These reanalyses confirm not only that Sarah can solve analogy problems, but also that
she does so preferentially even in situations in which a simpler associative strategy would suffice”.

Finally, lest us present the case of capuchino monkeys (Cebus appella) where the current evi-
dence is controversial. The current research suggests that these three faculties or are not present,
or are present but in a weaker way than in chimpanzees. For the case of language, there is no
available evidence supporting that capuchino monkeys can handle complex languages. However,
in [2] is suggested that capuchino monkeys can use tokens as symbols to represent and combine
quantities. With respect to the theory of mind, the study performed by Call and colleagues for
chimpanzees was extended to capuchin monkeys in [95] and they suggest that, like chimpanzees,
capuchin monkeys distinguish between different goal-directed acts, vacating an enclosure sooner
when an experimenter acts unwilling to give food than when she acts unable to give food. However,
this result is unique since previous experiments with captive capuchins have produced negative re-
sults with respect to theory of mind. Regarding analogies, there is a study [59] where one capuchino
monkey (out of four) was able to perform a very basic relational matching. Again, this evidence is
contrary to previous arguments which claim that monkeys can not solve analogical problems.

To end this section, it might be relevant to mention that Conway and Christiansen, by the recopi-
lation of evidence about primate behaviour, suggest that “The limitations on primate hierarchical
learning might thus be one of the key reasons that they have not developed advanced language abil-
ities.” [12] Thus providing support for what we argued before, namely that recursion (necessary
for representing information in a hierarchical way) might be relevant not only for language but for
theory of mind and analogy as well.

As future work, along the lines of human learning, it would be interesting to research if the
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“performance” of this “recursion module” embedded into our mind can be measured15. In such
case, we could design a within subjects experiment to test if such “recursiveness” can be correlated
positively to the capacity for learning and reasoning by analogy. The proposal is challenging since
there is not a standardized way to measure the capacity for reasoning by analogy. Another question
of interest should be to answer if this “recursion module” can be trained16 or else if it is determined
genetically.

15The idea of measuring the performance of this “recursive structure” through language and ToM tasks might be
interesting but it have to adress the issue of the existence of a wide variety of factors influencing language and ToM.
For example, the working memory capacity or the strength of the inhibitory system.

16A suggestion for initiating such inquiry: There exists an study [63] where a group of students who practiced
substitution—which is a kind of recursive task— outperformed in symbolizing algebraic story problems to a group of
students who practiced on more similar looking algebraic story problems
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Appendix C

Relational Spaces

C.1 Introduction

Our aim in this chapter is to propose yet another representation to model and study metaphor.
In previous chapters we have been representing knowledge domains -where our mental faculties
take place- by one structure which has two components: a syntactic component and a semantic
component. In this section we intend to inquire what are the conclusions of such model if we leave
aside its syntactic aspects and endow with more structure its semantic part.

In his influential work “An investigation of the Laws of Thought” [8], George Boole analizes
the nature of human mind in an attempt to discover the laws which command the processes of
reasoning. As an abstraction of that work, the mathematical structures called Boolean Algebras
were created by Boole’s succesors in the tradition of algebraic logic. In this work, we suggest that
it might be fruitful to introduce boolean algebras as a key ingredient of our model, because of their
natural interpretation (as an abstraction of the laws of thought) and their mathematical properties.

In this chapter, we shall provide two formal models for a metaphor between two “domains of
knowledge”. First, we shall introduce Relational Spaces (which are just particular instances of
boolean algebras). Next, we shall define concepts like the generator of a relational space, structural
mappings between relational spaces, products and quotients of relational spaces. At the end of this
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C.2. Relational Spaces

chapter, we shall weaken the concept of a relational space in order to provide a formalization of
metaphor whose properties are strongly related to the definition of metaphor in Chapter 4.

Before going into the details of the developed theory, we want to mention some particular
metaphors (and their respective knowledge domains) that this work intends to formalize. Those
metaphors are usually found in the context of education and are often used for mathematical teach-
ing. In Chapter 5, a detailed description and analysis of these metaphors shall be given.

• “Object Collection” Metaphor For Natural Numbers. This is a metaphor which is often
used by teachers of mathematics helping students to learn the addition operation for natural
numbers. As an example of this, the teacher shows to the students two separate groups of
beans and tells to the 5 years old students that addition is grouping and if he joins these two
piles of beans, the first having 5 beans and the second 4 beans, the resulting pile (she counts
1, 2, 3, ..., 9) has nine beans, therefore 5 plus 4 is nine.

• “Motion Along a Path” Metaphor for Integer Numbers. The appearence of negative numbers,
makes adding integers a little harder than adding whole numbers. The metaphor mentioned
above is not useful anymore because it is based on cardinalities which are always positive
or zero. The skilled teacher switch the view from piles of objects to steps forward (positive)
or backward (negative), being able to add signed numbers by just walking the appropriate
number of steps (in the appropriate direction) corresponding to each number.

• “Two-Pan Balance” Metaphor for Linear Equations. This metaphor helps students to solve
equations of the form ax + b = cx + d. It is designed to take advantage of the fact that
children seem to “just know” that by substracting the same weight to both plates of a balance
in equilibrium, the equilibrium is not broken. This metaphor provides students with tools to
understand the linear equation associated to the balance.

C.2 Relational Spaces

In this chapter, the concept of relational spaces will play the chief role that domains have been
performing in previous chapters, that is to say, mathematical models for conceptual domains or
knowledge domains. In the applications chapter (Chapter 5) we shall use domains and relational
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C.2. Relational Spaces

spaces to model every knowledge domain which is involved in the metaphors previously mentioned.
When referring to relational spaces throughout this chapter, we will often write domain or domain
of knowledge instead.

The ideas about domains and metaphors underlying this model are partially taken from the
theory of embodied cognition (as presented and developed in [71]) and the Structure Mapping
Theory [30]. In the development of the present theory, we will make the assumption that relations

between the objects of the domain and the logical operations acting on these relations are the
essential elements of the model.

We assume that the collection of objects of a knowledge domain can be represented by a set X .
Let n be a natural number, any n-ary relation which holds on such domain can be represented as a
subset of Xn. Notice that any (n− 1)-ary operation Λ : Xn−1→ X defined in that domain can be
represented as a n-ary relation in a standard way. Our model for domains of knowledge will be a
set X , together with a collection {Rα}α∈I of n-ary relations defined over X .

Our key assumption is that the family {Rα}α∈I of n-ary relations reflects the nature of the
domain. For instance, let R,S ⊆ Xn be n-ary relations defined over X . Every n-uple (x1, ...,xn) be-
longing to R (or S) expresses an assertion relating the objects x1, ..,xn in the domain of knowledge.
However, there are ways to combine such assertions (R and S) to form new assertions. For example:
“(x1, ...,xn)∈ R and (x1, ...,xn)∈ S”, “if (x1, ...,xn)∈ R then (x1, ...,xn)∈ S” are new n-ary relations
which depend on the relations R and S. To deal with this way of combining assertions, we shall
require that collection {Rα}α∈I being a boolean algebra.

A relational space can be introduced in terms of a field of sets, which is a standard and well
known concept (see [39]). Thus, let us introduce it first. A pair (Y,F ) where Y is a set and F

is a non empty subset of P(Y ) closed under the intersection and union of pairs of sets and under
complements of individual sets is called a field of sets. In other words, a field of sets F is a
subalgebra of the power set P(Y ). The elements of Y are called points and those of F are called
complexes.

As far as we know, there is not standard terminology in the literature to deal with the discussion
that follows and then, we will introduce our own terminology in the following presentation.

Definition 43. Let X be a nonempty set and n≥ 1 an integer. If the pair (Xn,S ) is a field of sets,
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C.2. Relational Spaces

we shall say that S is a n-ary relational family on X . The pair (X ,S ) is called a n-relational space.
If the field S is clear from the context, we shall write “n-relational space X”, instead. After the
standard terminology for the field of sets (Xn,S ), we will refer to the elements of S as complexes

of X .

It is worth noticing that each n-ary relational family S satisfies the axioms of a boolean algebra
(see Section C.3) when the empty set is the distinguished element zero, Xn is the distinguished
element 1 and the operations of sets: union, intersection and complementation (′) are taken as the
operations join, meet and negation of the boolean algebra.

Example 25. If X is any nonempty set, P(Xn) and { /0,Xn} are n-ary relational families over X .
They are called the discrete n-ary relational family and the trivial n-ary relational family, respec-
tively.

Example 26. Let us take the set Z of integers and consider S = {Z2,≤,>, /0}. The pair (Z,S ) is
a 2-ary relational space.

To help us interpret the mathematical concept of a n-ary relational space (X ,S ) as a knowl-
edge domain, we can think of X as the collection of objects of the domain, the complexes of X

(the elements of S ) as the relations between objects which hold in the domain of knowledge. The
structure determined by the boolean algebra, endows the structure with the ability to operate logi-
cally with the complexes of X . In words of George Boole, the proposed structure handles the “laws
of thought” inside of the knowledge domain.

Take for example the Object Collection Metaphor for Natural Numbers. Observe that the ob-
jects of the base domain are collections of things and thus, X becomes a set whose elements are
“collections of things”. Next, we should identify relations in this domain which are interesting
for our study: the grouping of two collections (a ternary relation), the binary relation of “being a
subcollection of”, etc. On the other hand, the target domain of this metaphor will take the set N of
natural numbers as its set of objects. The complexes of this domain will be well known relations
defined in the set of natural numbers, as for example the addition (viewed as a relation) and the
binary relation of a number being less than or equal to other number (≤).

It is easy to verify that the intersection of any non-empty family {Bi}i∈I of n-ary relational
families on X is again a n-ary relational family on X . The intersection of the empty family is, by
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convention, the n-ary relational family P(Xn). It follows that if E is any subset of P(Xn), there
is a unique smallest n-ary relational family R(E ) on X containing E . We say that R(E ) is the
n-ary relational family generated by E . If E is finite, we say that R(E ) is finitely generated. The
following observation is often useful:

Lemma 47. If E ⊆R(F ) then R(E )⊆R(F )

Example 27. Let X be a nonempty set, if E is empty then the n-ary relational family generated by
E is the smallest possible boolean subalgebra of P(Xn), namely { /0,Xn}.

Example 28. The n-ary relational family on X given by

S = {B⊆ Xn | B is finite or B′ is finite },

i.e. the set of finite and cofinite subsets of Xn. It is easy to show that S is generated by the set of
singletons of Xn.

Notice that the definition of the n-ary relational family generated by E ⊆P(Xn) is non con-
structive, and thus it gives no hint of which elements belong to that set. By treating the n-ary
relational family R(E ) as the boolean subalgebra of P(Xn) generated by E , the result is an ap-
proach that gives us the precise information about its elements. We suggest to the interested reader
to review [39] for details. In the case when E is a finite set, any element r ∈R(E ) can be written
as

r =
n⋃

i=1

⋂
e∈E

p(e),

where n is an integer and p(e) is equal to e or its complement e′. Below, we paraphrase the theorem
which addresses the case when E is not finite:

Theorem 48. The complexes of the n-ary relational family generated by a set E are exactly those

which can be written as a finite union of finite intersections of elements and complements of ele-

ments from E .
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C.3 Structural Mappings

The overall purpose of this chapter is to provide a formal model able to express some properties
atributed to metaphor. The main property sought to be described is the way in which a metaphor
relates two different domains of knowledge by preserving some structure between them. In this
section, we describe our proposal to model this phenomenon as a structure preserving mapping
between two different domains of knowledge, each of them represented by relational spaces.

Definition 44. Let (X ,S ) and (Y,T ) be two n-relational spaces. Given a mapping f : X → Y , let
us consider the mapping f̃ : Xn→ Y n defined by:

f̃ ((x1, ...,xn)) = ( f (x1), ...., f (xn)).

We say that f is structural from X to Y when for every complex V ∈T , f̃−1(V ) ∈S .

The idea underlying the definition of structurality is that the mapping of relations between
domains is induced by the mapping of objects between domains. Observe that when f : X→Y and
g : Y → Z are structural, the composition g ◦ f is a structural mapping. Thus, (since the identity
mapping is structural) we can define the category whose objects are the n-relational spaces and
whose arrows are structural mappings.

Example 29. Let us consider the following relations:

≤Z= {(a,b) ∈ Z2 | a≤ b}, ≤N= {(m,n) ∈ N2 | m≤ n}.

When considering Z endowed with the 2-relational family generated by ≤Z and N endowed with
the 2-relational family generated by ≤N, the injection mapping i : N→ Z defined by i(n) = n is
structural.

Example 30. Any mapping f : X → Y is structural, when Y is endowed with the trivial n-ary
relational family { /0,Y n}.

In the case of the “Object Collection” metaphor for natural numbers, let us consider the map-
ping f which associates to any collection of objects, its cardinality. Let us take V as the relation
“less than or equal to” of natural numbers. The set f̃−1(V ) is the relation “injection” which holds
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between two collections of objects when the first one of them can be injected into the second one.
Notice that the injection relation from the base domain is “preserved” by f and becomes the “less
than or equal to” relation in the natural numbers domain. More details about this example, and its
respective formalization can be found in chapter 5 which is devoted to applications.

Additionally, let (X ,S ), (Y,T ) be two n-relational spaces where T is generated by a family
of complexes E . From Theorem 48 and the fact that f̃−1 commutes with unions, intersections and
complements, it is clear that the mapping f : X → Y is structural if and only if f̃−1(V ) ∈S for
every V ∈ E . When f : X → Y is a surjective structural mapping, the n-ary relational family on X

given by
S ′ = { f̃−1(E) | E ∈T }

is a subalgebra of the boolean algebra S and the mapping F : S ′→T given by F(B) = f̃ (B) for
B ∈S ′ is a homomorphism between the boolean algebras S ′ and T . When f is bijective, it is
clear that F is an isomorphism of boolean algebras.

We shall see in Chapter 5 that the definition of structurality is enough to model most of the
metaphors mentioned at the begining of this chapter. However, we shall weaken this definition
later, in order to get the definition of metaphor which enable us formalize some instances of the
phenomenon which can not be modelled properly with structural mappings. Before that, let us
introduce some constructions on relational spaces which can be built thanks to the concept of
structurality.

Products

From a categorical point of view, the properties which characterize a mathematical object as a
product are well known (see [79]). Basically, the product of a family of objects is the “most
general” object which admits a morphism to each of the given objects. As we have pointed out
before, relational spaces together with structural mappings as arrows constitute a category. We use
such category as the natural context where the product of relational spaces can be defined.

It is important to emphasize that our interest for defining products of relational spaces it is not
purely theoretical. We shall see that these constructions are useful as models for the phenomenon
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that we are investigating. For example, in the two-pan balance metaphor for linear equations the
base knowledge domain (whose objects are scales with two kinds of weights on their plates) shall
be formalized as the product of two simpler knowledge domains (domains whose objects are scales
with just one kind of weights on their plates). Another example would be the motion along a

path metaphor for integer numbers where the modelling of the (infinite bi-directional) “tiled path”
domain shall make use of a product of two simpler (infinite uni-directional) tiled paths.

Additionally, we hope that this kind of construction could be useful to represent other cognitive
mechanisms of the human mind (see [94] for further research in this direction). The product of two
domains would be interpreted as a cognitive operation which receives two domains of knowledge
A, B and returns a new domain of knowledge A×B. Such operation resembles the cognitive mech-
anism called conceptual blending which we hope could be associated to this kind of construction.
An introduction for conceptual blending can be found in [114], the phenomenon is described and
analyzed in [21, 22] and some comments about it are given in [87, 41].

Definition 45. Let {Xα}α∈A be an indexed collection of nonempty sets, Sα a n-ary relational
family on Xα , X = ∏α∈A Xα and πα : X → Xα the coordinate maps. The n-ary relational product

family (of {Sα}α∈A}) on X is the n-ary relational family generated by:

{π̃−1
α (E) : E ∈Sα ,α ∈ A}

We denote this n-ary relational family by⊗α∈ASα . The n-ary relational product space (of {(Xα ,Sα)}α∈A)
is the pair (Πα∈AXα ,⊗α∈ASα).

We give here an alternative, more intuitive characterization of the n-ary relational product fam-
ily in the case of countably many factors. First, we need to define a natural bijective mapping

Γ : ∏
α∈A

(Xα)
n→ (∏

α∈A
Xα)

n

To this aim, notice that any c ∈∏α∈A(Xα)
n can be viewed as a function c : A→

⋃
α∈A(Xα)

n such
that c(β )= (c(β )1, ...,c(β )n)∈ (Xβ )

n. Moreover, any d ∈ (∏α∈A(Xα))
n is a tuple (d1, ...,dn) where

each di : A→
⋃

α∈A(Xα) is a function such that di(γ) ∈ Xγ . The mapping Γ is defined by:

Γ(c) = (d1, ...,dn) such that for any β ∈ A and 1≤ i≤ n, di(β ) = c(β )i.
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For example, if n = 2, A = {1,2,3}we have that: Γ : X2
1 ×X2

2 ×X2
3 → (X1×X2×X3)

2 is defined
by Γ((x1,y1),(x2,y2),(x3,y3)) = ((x1,x2,x3),(y1,y2,y3)).

Proposition 29. If A is countable, then
⊗

α∈A Sα is the n-ary relational family generated by

ϒ = {Γ(∏
α∈A

Eα) : Eα ∈Sα ,Eβ = (Xβ )
n for all but finitely many β ∈ A}.

Proof. Let Eα ∈Sα . Since A is countable, we can apply Γ to obtain that π̃−1
α (Eα) = Γ(∏β∈A Eβ )

where Eβ = (Xβ )
n for β , α . Therefore, {π̃−1

α (E) : E ∈Sα ,α ∈ A} ⊆ ϒ and then
⊗

α∈A Sα ⊆
R(ϒ). On the other hand, let us consider some Γ(∏α∈A Eα) belonging to ϒ. Since Eα = (Xα)

n for
all but finitely many α ∈ A, we can consider the finite index set I = {α| Eα , (Xα)

n} and since A

is countable we obtain that Γ(∏α∈A Eα) =
⋂

i∈I π̃
−1
i (Ei). Therefore, ϒ ⊆

⊗
α∈A Sα and the result

follows from Lemma 47. �

Proposition 30. Suppose that for each α ∈ A, Sα is generated by Eα . Then
⊗

α∈A Sα is generated

by

F1 = {π̃−1
α (Eα) : Eα ∈ Eα ,α ∈ A}.

Additionally, if A is countable and (Xα)
n ∈ Eα for all α , then

⊗
α∈A Sα is generated by

F2 = {Γ(∏
α∈A

Eα) : Eα ∈ Eα ,Eβ = (Xβ )
n for all but finitely many β ∈ A}.

Proof. Clearly, R(F1) ⊆
⊗

α∈A Sα . On the other hand, for each α , the collection {E ⊆ Xn
α :

π̃−1
α (E) ∈ R(F1)} is an n-ary relation family on Xα that contains Eα and hence Sα . In other

words, π̃−1
α (E) ∈ R(F1) for all E ∈ Sα , α ∈ A, and hence

⊗
α∈A Sα ⊆ R(F1). The second

assertion follows from the first as in the proof of Proposition 29. �

The following property is a categorical characterization of the n-ary relational product space:

Theorem 49. Let {(Xα ,Sα)}α∈A be a family of relational spaces and let (Z,U ) be a relational

space. For every family { fα : Z→Xα}α∈A of structural mappings, there exists a unique mapping h :
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(Z,U )→ (Πα∈AXα ,⊗α∈ASα) which is structural and makes commutative the following diagram.

(Z,U )
fα

''PPPPPPPPPPPP

h
���
�
�

(Πα∈AXα ,⊗Sα)
πα // (Xα ,Sα)

Proof. Let us define the mapping h : Z→ Πα∈AXα by h(z)β = fβ (z), where z ∈ Z and β ∈ A. To
prove that h is structural, we must show that for an arbitrary V = π̃

−1
β

(Eβ ) (where Eβ ∈ Sβ ), the set
h̃−1(V ) belongs to U . To this aim, notice that the affirmation a ∈ h̃−1(V ) is equivalent to each one
of the following assertions:

a ∈ h̃−1(π̃−1
β

(Eβ ))

π̃β ◦ h̃(a) ∈ Eβ

f̃β (a) ∈ Eβ

a ∈ f̃β

−1
(Eβ )

Therefore, h̃−1(V ) is equal to f̃−1
β

(Eβ ) which belongs to U because fβ is structural. The
uniqueness of h comes from the fact that if the diagram above commutes, then h(z)β = fβ (z) for
all z ∈ Z. �

Quotients

In this section we introduce quotient relational spaces. We use them as representations of domains
of knowledge, while modelling metaphor. For example the base domain of knowledge for the
motion along a path metaphor for integer numbers, will be formalized as the quotient of a certain
relational space(see example 51 in chapter 5).

Let X be a non empty set and “∼” an equivalence relation defined on X . We will write X/ ∼
for the quotient set of X by ∼ and [x] for the equivalence class of x. Additionally, for a given
pair (a1, ...,an),(b1, ...,bn) ∈ Xn, we shall write (a1, ...,an) ∼ (b1, ...,bn), meaning that for every
i ∈ {1, ...,n}, ai ∼ bi.
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Definition 46. Let (X ,S ) be a n-relational space and “∼” an equivalence relation defined on
X . We will say that “∼” is compatible with S , when for every complex A ∈ S and every pair
(a1, ...,an),(b1, ...,bn) ∈ Xn, if (a1, ...,an)∼ (b1, ...,bn) then:

(a1, ...,an) ∈ A, implies that (b1, ...,bn) ∈ A. (C.1)

Observe that because of the simmetry in the definition, we can reeplace the implication C.1 by
the equivalence

(a1, ...,an) ∈ A⇔ (b1, ...,bn) ∈ A.

Proposition 31. Let (X ,S ) be a n-relational space and “∼” an equivalence relation defined

on X. Assume that S is generated by E and that for every complex E ∈ E and each pair

(a1, ...,an),(b1, ...,bn) ∈ Xn verifying (a1, ...,an)∼ (b1, ...,bn), it holds that

(a1, ...,an) ∈ E ⇔ (b1, ...,bn) ∈ E.

Then, “∼” is compatible with S .

Proof. Let us take any A ∈ S and notice that A =
⋃

i
⋂

j Ei j where Ei j ∈ E or Ei j
′ ∈ E . Let

(a1, ...,an),(b1, ...,bn) ∈ Xn such that (a1, ...,an) ∼ (b1, ...,bn). Clearly, (a1, ...,an) ∈
⋃

i
⋂

j Ei j is
equivalent to (b1, ...,bn) ∈

⋃
i
⋂

j Ei j and then,

(a1, ...,an) ∈ A if and only if (b1, ...,bn) ∈ A.

�

Let us take a n-relational space (X ,S ) and some equivalence relation on X , namely “∼”. For
any complex A ∈S , we define the set [A] = {([a1], ...., [an]) ∈ (X/∼)n | (a1, ....,an) ∈ A]} in order
to define the following family of sets:

S /∼ = {[A]⊆ (X/∼)n | A ∈S }. (C.2)

In this context, the following technical lemma shall be used.
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Lemma 50. Let (X ,S ) be a n-relational space and let ∼ some equivalence relation on X. The

following equivalence holds:

([a1], ...., [an]) ∈ [A]⇔ [∃(b1, ...,bn) ∈ Xn][(a1, ....,an)∼ (b1, ...,bn)∧ (b1, ...,bn) ∈ A]. (C.3)

If additionally ∼ is compatible with S , it holds that:

([a1], ...., [an]) ∈ [A]⇔ [∀(b1, ...,bn) ∈ Xn][(a1, ....,an) / (b1, ...,bn)∨ (b1, ...,bn) ∈ A]. (C.4)

Proof. The equivalence in C.3 is straightforward. Let us show equivalence C.4. To this aim, let us
take ([a1], ...., [an])∈ [A], by C.3 there exists (b1, ...,bn)∈Xn such that (a1, ....,an)∼ (b1, ...,bn) and
(b1, ...,bn) ∈ A. Because ∼ is compatible with S , it follows that (a1, ...,an) ∈ A. Let us take any
(c1, ...,cn)∈Xn and let us assume that (c1, ...,cn)∼ (a1, ...,an). By applying again the compatibility
of∼ and S , we obtain that (c1, ...,cn)∈ A. To show the other direction, let us assume that the right
side of C.4 holds. Since (a1, ...,an) ∼ (a1, ...,an), we obtain that (a1, ...,an) ∈ A. Therefore, by
applying C.3, we obtain that ([a1], ...., [an]) ∈ [A]. �

Proposition 32. Let (X ,S ) is a n-relational space and let “∼” be an equivalence relation on X. If

“∼” is compatible with S , then S /∼ is a n-relational family on (X/∼) which satisfies for every

A,B ∈S , [A]′ = [A′], [A]∪ [B] = [A∪B] and [A]∩ [B] = [A∩B].

Proof. First, let us show that for any A ∈ S , [A′] = [A]′. Let us take ([a1], ...., [an]) ∈ [A]′, by
equivalence C.4 of Lemma 50, it is equivalent to the existence of some (b1, ...,bn) ∈ Xn, such that
(b1, ...,bn)∼ (a1, ...,an) and (b1, ...,bn)∈ A′. By applying equivalence C.3 of Lemma 50 we obtain
that ([a1], ...., [an]) ∈ [A′]. This shows that [A′] = [A]′. An easy application of Lemma 50 shows
that [A∪B] = [A]∪ [B] and that [A∩B] = [A]∩ [B]. Since S is a n-relational family on X , these
assertions show that the family of sets S /∼ is a n-relational family on (X/∼). �

Definition 47. Let (X ,S ) be a n-relational space and “∼” an equivalence relation compatible with
S . The n-ary relational space given by the pair (X/ ∼,S / ∼) is called the quotient relational

space of (X ,S ) by “∼“ and we denote it by (X ,S )/∼.

Proposition 33. Let (X ,S ) be a n-relational space and “∼” an equivalence relation compatible

with S . Assume that θ : X → X/∼ is the mapping defined by θ(a) = [a]. Then, the mapping θ is

a structural mapping which satisfies: for every E ∈S , θ̃−1([E]) = E.
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Proof. Let us take E ∈S . Clearly, by definition of θ̃ and [E], it follows that E ⊆ θ̃−1([E]). On the
other hand, let us take (a1, ...,an) ∈ θ̃−1([E]), that is to say ([a1], ..., [an]) ∈ [E]. By applying the
equivalence C.4 of Lemma 50, it follows that (a1, ...,an) ∈ E, and then θ̃−1([E])⊆ E. This shows
that θ is a structural mapping. �

Notice that the two earlier propositions show that the n-relational families S and S / ∼ are
isomorphic as boolean algebras. Actually, the following property holds:

Proposition 34. Let (X ,S ) be a n-relational space and let ∼ be an equivalence relation on X.

The two following assertions are equivalent:

• The relation “∼” is compatible with S .

• The mapping ϑ : S →S /∼ defined by ϑ(A) = [A], is an isomorphism of boolean algebras.

Proof. Let us assume that∼ is compatible with S . Let us show that ϑ : S →S /∼ is an invertible
mapping. We claim that the mapping ϑ−1 : S /∼→S , which is defined by ϑ−1(C) = θ̃−1(C), is
the inverse of ϑ . Notice that by Proposition 33, for every A∈S , ϑ−1([A]) = A. On the other hand,
by Lemma 50, C ∈S / ∼ if and only if there exists B ∈S such that C = [B]. Then, [ϑ−1(C)] =

[ϑ−1([B])] = [B] =C. Therefore, ϑ is an invertible mapping and Proposition 32 shows that it is an
isomorphism between boolean algebras.

On the other hand, let us assume that ϑ : S → S / ∼ is an isomorphism. To show that
∼ is compatible with S , let us take A ∈ S ,(a1, ...,an),(b1, ...,bn) ∈ Xn such that (a1, ...,an) ∼
(b1, ...,bn). Let us show by using contradiction that if (a1, ...,an) ∈ A, then (b1, ...,bn) ∈ A. Let us
assume that (a1, ...,an) ∈ A but (b1, ...,bn) ∈ A′. Last assumption implies that ([b1], ..., [bn]) ∈ [A′],
and since ϑ is an isomorphism of boolean algebras, it means that ([b1], ..., [bn]) ∈ [A]′. Because
(a1, ...,an) ∼ (b1, ...,bn), it follows that ([a1], ..., [an]) ∈ [A]′, which is clearly a contradiction be-
cause (a1, ...,an) ∈ A implies that ([a1], ..., [an]) ∈ [A]. �

The following property of quotient relational spaces holds:

Proposition 35. Let (X ,S ) and (Y,T ) be two n-relational spaces, f : X→Y a structural mapping

and “'” an equivalence relation on Y compatible with T . Denote by “∼” the equivalence relation
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on X defined by

a1 ∼ a2 if and only if f (a1)' f (a2).

If “∼” is compatible with S , then there exists a unique structural mapping f∗ : (X/∼)→ (Y/')
which satisfies θ ◦ f = f∗ ◦θ i.e. the following diagram commutes:

X

θ
��

f // Y

θ
��

(X/∼) f∗ //___ (Y/')

Proof. Let us assume that “∼” is compatible with S . In order to make the above diagram commute,
the mapping f∗ : (X/∼)→ (Y/') must be determined by f∗([x]∼) = [ f (x)]'. Since by to hypoth-
esis x1 ∼ x2 implies f (x1)' f (x2), then the mapping f∗ is well defined. Since∼ is compatible with
S , the quotient relational space (X ,S )/∼ is well defined. To show that f∗ : (X/∼)→ (Y/') is
structural, let us take a complex [E] of (Y, T )/' (where E ∈T ) and compute:

f̃∗
−1
([E]) = {([x1], ..., [xn]) ∈ (X/∼)n | f̃∗([x1], ...., [xn]) ∈ [E]}

= {([x1], ..., [xn]) ∈ (X/∼)n | ( f∗ ◦θ(x1, ....,xn) ∈ [E]}

by applying the commutativity of the diagram we obtain:

f̃∗
−1
([E]) = {([x1], ..., [xn]) ∈ (X/∼)n | θ ◦ f (x1, ....,xn) ∈ [E]}

= {([x1], ..., [xn]) ∈ (X/∼)n | f (x1, ....,xn) ∈ θ̃
−1([E])}

and by applying Proposition 33, it follows that:

f̃∗
−1
([E]) = {([x1], ..., [xn]) ∈ (X/∼)n | (x1, ....,xn) ∈ f−1(E)}

= [ f−1(E)] ∈S /∼ .

and thus, f∗ is a structural mapping. �
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Metaphors

As we pointed out before, structurality might be too strong to formalize some examples of metaphor.
In this section we shall weaken such concept in order to formalize some metaphors that shall be
considered in the chapter devoted to applications (Chapter 5).

Definition 48. Let (Y,T ) be a n-ary relational space, X a non-empty set and f : X →Y a mapping
from X to Y . Given A ∈ T , the metaphorical set for A respect to f is the set M f (A) = {E ⊆
Xn | f̃ (E) = A}.

We shall write M (A) instead of M f (A) when f is clear from the context and it does not lead
into confusion. Next, we present some simple properties of this definition which can be related to
the cognitive phenomenon of metaphor when adequate interpretations are given. Notice that,

if E ∈M f (A) and E∗ ∈M f (A′), then E ∩E∗ = /0.

That is to say, if we are using a relation E as a metaphor for the relation A and E∗ as a metaphor for
the complement of A, the two relations (E and E∗) must be disjoint.

The following straightforward characterization of elements of M (A) holds:

Lemma 51. Let (Y,T ) be a n-ary relational space, X a non empty set and f : X → Y a mapping.

Given any A ∈T , the following sentences are equivalent:

• E ∈M f (A)

• If (e1, ...,en)∈ E then f̃ ((e1, ...,en))∈ A and for any (a1, ...,an)∈ A there exists (c1, ....,cn)∈
E such that f̃ ((c1, ...,cn)) = (a1, ....,an).

In the cognitive literature which deals with metaphor it is claimed that one of the main properties
of this phenomenon is the preservation of some “inferences” from one domain to another. For the
purposes of this study, we are going to choose a mathematical interpretation to represent the concept
of inference. We shall formalize inferences as statements of the sort “if the relation E1 holds, then
the relation E2 holds”, that is to say, the truthness of the condition given by E1 ensures the truthness
of the condition given by E2. Mathematically, this statement can be formalized by E1 ⊆ E2. The
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following straightforward corollary of Lemma 51, shows that the definition of metaphor captures
the idea of preserving inferences.

Corollary 52 (Inference). Let X be a non-empty set, (Y,T ) a n-ary relational space and f : X→Y

a mapping between them. Assume that A1,A2 ∈ T , E1 ∈M f (A1) and E2 ∈M f (A2). If E1 ⊆ E2

then A1 ⊆ A2.

Let (Y,T ) be a n-ary relational space, X be a non-empty set and f : X → Y be a mapping from
X to Y . We will consider the partial order on M f (A) which is given by the inclusion of sets. If
we denote by /0 the empty n-ary relation, M (A)∪{ /0} is a lattice. Nevertheless, before proving
this, it is important to notice that the meet (infimum) on that lattice is not necesarily given by the
intersection of sets.

Consider the following example: Take X = {a,b,c,d}, Y = {1,2} and f : X → Y such that
f (a) = f (b) = 1 and f (c) = f (d) = 2. Notice that the relations E1 and E2 depicted in figures (C.1-
a) and (C.1- b) respectively, are metaphors for the identity relation 1Y = {(1,1),(2,2)} on Y , i.e.
f̃ (E1) = 1Y and f̃ (E2) = 1Y . Observe however that the intersection E1∩E2 is not a metaphor for
1Y , in this case the meet between E1 and E2 is the empty relation /0.

Figure C.1: (a): Relation E1 on X , (b) Relation E2 on X (c) Relation 1Y on Y .

Last example motivates the following lemma:

Lemma 53. Let X be a non-empty set, (Y,T ) a n-ary relational space and f : X → Y a mapping

between them. Suppose that {Eλ}λ∈∆ is a non-empty collection of sets belonging to M f (A), then:

1.
⋃

λ∈∆ Eλ ∈M f (A).

2. either
⋂

λ∈∆ Eλ ∈M f (A) or {F ∈M f (A) |(∀λ ∈ ∆)F ⊆ Eλ}= /0.
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Proof. To show 1, notice that f̃ (
⋃

λ∈∆ Eλ ) =
⋃

λ∈∆ f̃ (Eλ ) =
⋃

λ∈∆ A = A. Therefore,
⋃

λ∈∆ Eλ ∈
M f (A). To show 2, let us assume that

⋂
λ∈∆ Eλ <M f (A) , then f̃ (

⋂
λ∈∆ Eλ ) is a proper subset of A.

On the other hand, if we assume that there exists F ∈M f (A) such that (∀λ ∈ ∆)F ⊆ Eλ , it follows
that F ⊆

⋂
λ∈∆ Eλ , and then f̃ (F)⊆ f̃ (

⋂
λ∈∆ Eλ ). Therefore, f̃ (F)⊂ A and then F <M f (A) which

is contradictory. Therefore, the set {F ∈M f (A) |(∀λ ∈ ∆)F ⊆ Eλ} must be empty. �

The following result is a straightforward corollary from last lemma:

Proposition 36. Let X be a non-empty set, the pair (Y,T ) a n-ary relational space and f : X → Y

a mapping. For every A ∈T , the set M f (A)∪{ /0} is a bounded complete lattice.

Proof. If M (A) is empty, the result is trivial. Therefore, let us assume that M (A) is non empty.
We consider the set M (A)∪{ /0} with the partial order given by the inclusion of sets. In such case,
Lemma 53 ensures that every collection {Eλ}λ∈∆⊆M (A) has a supremum and an infimum. Then,
M (A)∪{ /0} is a bounded complete lattice whose least element is the empty n-ary relation /0 and
whose greatest element is the element given by f̃−1(A). �
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Figure C.2: Sketch of the lattice M (A)∪{ /0}.

Observe that when a mapping f : X → Y is structural, for every coimplex A of Y , the greatest
element of the lattice M f (A) is a complex of X . However, such is not always the case in the real
world. For example, in one of the versions of the object collection metaphor for natural numbers,
the relation “subset or equal to” (⊆) is used to induce the target relation “less than or equal to” (≤).
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Notice that the relation given by f̃−1(≤) is the injection 1 (↪→) relation. In what follows, we shall
modify slightly some definitions given in the previous sections in order to capture the behavior
above described. Additionally, we shall explore some implications of such modifications. Next
definition is a first step in such direction by modifying the concept of a n-ary relational family.

Definition 49. Let X be a non-empty set, a n-ary metaphorical family on X is a subset F ⊆P(Xn)

which is closed under finite unions and finite intersections, together with a mapping ∗ : F →F

such that:

1. For every A ∈F , (A∗)∗ = A. (∗ is idempotent).

2. For every A,B ∈F , (A∩B)∗ = (A∗∪B∗).

Notice that when F is a n-ary metaphorical family on a nonempty set X , straightforward com-
putations show that the equation (A∪B)∗ = A∗∩B∗ holds for any A,B ∈F . In complete analogy
with the previous concepts we will call the pair (X ,F ) a n-ary metaphorical space and the com-

plexes of X will be the elements of F .

Example 31. Any n-ary relational family S is a n-ary metaphorical family where the operation ∗
is given by the complementation of sets.

Example 32. Let us assume that X = {a,b,c}. If F = {{a,b},{a,c},{a,b,c},{a}} and the oper-
ation ∗ is given by {a,b}∗ = {a,c} and {a,b,c}∗ = {a}. Then F is a 1-ary metaphorical family
on X . This example shows that ∗ does not always coincides with the complement operation.

Example 33. Let (X ,S ) be a n-ary relational space and D⊂ Xn. Define S ′ = {A ∈S | D⊆ A}.
Clearly, S ′ is closed for finite unions and finite intersections. Notice that S ′ is not an algebra of
sets because for any U ∈S ′ the complement U ′ does not necessarily belongs to S ′. However, if
for any A ∈S ′ we define ∗ by A∗ = A′∪D it holds that

A∗∗ = (A′∪D)∗ = (A′∪D)′∪D = (A∩D′)∪D = (A∪D)∩ (D∪D′) = A.

by closing S ′ with respect to ∗, we obtain a n-ary metaphorical family on X since straightforward
set-theoretic computations show that (A∩B)∗ = A∗∪B∗.

1The injection relation is defined by: a ↪→ b if and only if there exists an injective function f : a→ b.
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Example 34. Let (X ,S ) be a n-ary relational space and Z ⊂ Xn. Put S ′ = {A∩Z | A ∈S }. It is
clear that S ′ is closed under finite unions and finite intersections. Let us define ∗ by A∗ = A′∩Z.
Then, it is easily shown that A∗∗ = A and (A∩B)∗ = A∗∪B∗. Therefore, S ′ is a n-ary metaphorical
family on X .

Example 35. Let us take X = {a,b,c}. If F = {{a,b},{a,b,c},{a}} and ∗ is the idempotent
operation defined by {a,b}∗ = {a,b} and {a,b,c}∗ = {a}. In such case, F is a 1-ary metaphorical
family on X . To see this, compute:

({a,b}∩{a})∗ = {a}∗ = {a,b,c}= {a,b}∗∪{a}∗

({a,b}∩{a,b,c})∗ = {a,b}∗ = {a,b}= {a,b}∗∪{a,b,c}∗

({a,b,c}∩{a})∗ = {a}∗ = {a,b,c}= {a,b,c}∗∪{a}∗

We shall see in Chapter 5 that metaphorical spaces can be used to formalize some metaphors
that are not susceptible of being modelled by relational spaces and structural mappings. We shall
prove such assertion by modelling the object collection metaphor for natural numbers, which uses
the set-relation “subset of or equal to” to induce the number-relation “less than or equal to”. To do
this, we shall require a n-ary metaphorical space as a model for the base domain, while the target
domain shall be formalized by a n-ary relational space. To explore some properties of the family
of such models, we make the following definition:

Definition 50. Let (X ,H ) be a n-ary metaphorical space and (Y,T ) a n-ary relational space. A
mapping f : X → Y is called metaphorical if F : H → T determined by F(A) = f̃ (A), is a well
defined mapping and satisfies F(A∗) = F(A)′ for each A ∈H .

Example 36. Let (X ,S ), (Y,T ) be n-ary relational spaces. Let f : X→Y be a structural mapping.
The mapping f is metaphorical by considering the n-ary metaphorical space (X ,H ), where H =

{ f̃−1(E) | E ∈T } ⊆S .

In order to display accurately the following result, we need to introduce a set of axioms for
boolean algebras. A boolean algebra is a non empty set A, together with two binary operations ∧
and ∨ (meet and join), a unary operation ′ (complementation), and two distinguished elements 0
and 1, satisfying the following axioms (for every p,q,r ∈ A):

1. p∧1 = p, p∨0 = p. (Identity laws)
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2. p∧ p′ = 0, p∨ p′ = 1. (Complement laws)

3. p∧q = q∧ p, p∨q = q∨ p. (Commutativity)

4. p∧ (q∨ r) = (p∧q)∨ (p∧ r), p∨ (q∧ r) = (p∨q)∧ (p∨ r). (Distributivity)

By observing example 35, it becomes clear that {a,b}∪{a,b}∗= {a,b} and {a}∪{a}∗= {a,b,c}.
Thus, the complement laws do not necessarily hold in a metaphorical family. It means that a
metaphorical family is not necessarily a boolean algebra with operations ∩,∪ and ∗. Despite this
fact, next theorem shows that the existence of a metaphorical mapping forces to a metaphorical
family to become a boolean algebra. Actually, a metaphorical mapping preserves the structure of a
boolean algebra.

Theorem 54. Let (X ,H ) be a n-ary metaphorical space and (Y,T ) a n-ary relational space.

If f : X → Y is metaphorical, then H is a boolean algebra and the mapping F : H → T (see

Definition 50) is a boolean algebra homomorphism.

Proof. We are going to consider ∩, ∪ and ∗ as the meet (∧), join (∨) and complementation (′) of
H . All above axioms of a boolean algebra are straightforward with the proposed join, meet and
complement, except perhaps the following two:

• For any A ∈H : A∪A∗ = 1,

• For any A ∈H : A∩A∗ = 0.

where 1 and 0, elements of H , are yet to be defined. We will show that for any A∈H , A∩A∗ = /0.
Therefore, 0 should be defined as /0 and 1 as /0∗, and with such definitions, both axioms will hold.
The uniqueness of the structure is clear, then. Let us show now that if A∈H , then A∩A∗= /0. Since
f̃ (A∩A∗)⊆ f̃ (A)∩ f̃ (A∗) = f̃ (A)∩ f̃ (A)′ = /0, then f̃ (A∩A∗) = /0, which implies that A∩A∗ = /0.
Notice that, from this, A∪A∗ = (A∗∩A)∗ = 0∗ = 1. Finally, proving that F : H →T is a boolean
algebra homomorphism requires showing that F(A∗) = F(A)′, F(A∪B) = F(A)∪F(B) and that
F(A∩B) = F(A)∩F(B). The first condition is direct because f is metaphorical. The second one
follows directly from the definition of F and for the third: F(A∩B) = F((A∗ ∪B∗)∗) = F(A∗ ∪
B∗)′ = (F(A∗)∪F(B∗))′ = (F(A)′∪F(B)′)′ = F(A)∩F(B). �
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We shall close this chapter investigating how the structure of a metaphorical space can be gen-
erated in a way that a given map becomes metaphorical for a fixed target domain. Let us consider
the following lemma:

Lemma 55. Let f : (X ,H )→ (Y,T ) be a metaphorical mapping. And let 1 be the distinguished

element of the boolean algebra H .

• For every H ∈H , 1∩ f̃−1( f̃ (H)) = H.

• H ⊆ {1∩ f̃−1(E) | E ∈T }.

Proof. For the first assertion, let us take H ∈ H . Clearly, H ⊆ 1∩ f̃−1( f̃ (H)). To show the
reciprocal inclusion, let us take h ∈ 1∩ f̃−1( f̃ (H)). Then h ∈ (H ∪H∗)∩ f̃−1( f̃ (H)), by applying
distributivity it follows that h ∈ H ∪ (H ∩H∗). It is easy to see that H ∩H∗ = /0 since H ∩H∗ ⊆
f̃−1( f̃ (H)∩ f̃−1( f̃ (H∗) = f̃−1( f̃ (H)∩ [ f̃−1( f̃ (H)]′ = /0. Therefore, 1∩ f̃−1( f̃ (H)) ⊆ H. The
second assertion follows directly from the first. �

Let (Y,T ) be a n-relational space and f : X→Y a mapping. A set Z ⊆ Xn is called equilibrated

respect to f when for every E ∈ T , Z∩ f̃−1(E) ∈M f (E), or equivalently f̃ (Z∩ f̃−1(E)) = E. A
set X ′ ⊆ X is said to be centered respect to f , when (X ′)n contains a equilibrated subset respect to
f .

Next proposition shows that for a target domain (formalized by a relational space (Y,T )) and a
given mapping f : X→Y , the existence of a metaphorical mapping is characterized by the existence
of a set Z ⊆ Xn equilibrated respecto to f .

Proposition 37. Let (Y,T ) be a n-relational space and f : X → Y a mapping. The two following

assertions are equivalent:

1. There exists a set Z ⊆ Xn which is equilibrated respect to f .

2. There exists a n-ary metaphorical family H such that f : (X ,H )→ (Y,T ) is metaphorical

and the associated mapping F : H →T is surjective.
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Proof. 1. =⇒ 2.
Let us assume that Z ⊆ Xn is equilibrated respect to f . Notice that S = { f̃−1(E) | E ∈ T } is a
n-ary relational family on X and then, by using the structure of Example 34, the family H = {Z∩
f̃−1(E) | E ∈ T } is a n-ary metaphorical family on X . Notice that since Z is equilibrated, f̃ (Z ∩
f̃−1(E)) = E, for every E ∈T . This shows that F : H →T is a surjective well defined mapping.
To show that f : X → Y is metaphorical, we must prove that F((Z∩ f̃−1(E))∗) = F(Z∩ f̃−1(E))′.
To this aim, straightforward set-theoretic computations show that (Z ∩ f̃−1(E))∗ = Z ∩ f̃−1(E ′),
and then

F((Z∩ f̃−1(E))∗) = F(Z∩ f̃−1(E ′)) = f̃ (Z∩ f̃−1(E ′)) = E ′ = F(Z∩ f̃−1(E))′.

2. =⇒ 1.
We shall show that H = {1∩ f̃−1(E) | E ∈ T }, implying that the set 1 is equilibrated respect
to f . Because of Lemma 55, we obtain that H ⊆ {1∩ f̃−1(E) | E ∈ T }. We are going to show
the reciprocal inclusion. Let us take a element with form 1∩ f̃−1(E), where E ∈ T . Since the
mapping F : H → T is surjective, there is a set H ∈H such that f̃ (H) = E. By Lemma 55,
1∩ f̃−1( f̃ (H)) = H, that is 1∩ f̃−1(E) = H ∈H . It shows that {1∩ f̃−1(E) | E ∈T } ⊆H . �

Corollary 56. Let (Y,T ) be a n-relational space and f : X → Y a mapping. If there exists a set

A ⊆ X which is centered respect to f , then there exists a n-ary metaphorical family H such that

f|A : (A,H )→ (Y,T ) is metaphorical and the associated mapping F|A : H →T is surjective.

Proof. Because A is centered respect to f , there is a set Z⊆An⊆Xn which is equilibrated respect to
f . It implies that Z is equilibrated respect to f|A. By applying Proposition 37, the result follows. �

Relational Spaces Model of the Object Collection Metaphor for Natural Num-
bers

The examples in this section shall use relational spaces instead of (formal) domains. First, let us
introduce the appropriate relational spaces that we are going to use in this section. In what follows,
we denote with (′) the complement operation for sets.

In the examples that are going to be presented, the “object collections” domain is modelled as an
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n-relational space (P,S ) for some fixed n, where P is a pile system (the definition of a pile system
given in def. (42) is still useful) and S is an n-ary relational family defined over P. Usually we will
assume that S is generated by a set S of complexes i.e. R(S) =S . This way, the relational spaces
used in the examples can be determined just by specifying a set S of complexes (S can be thought
as the set of relations that are interesting for our study). For example, the relation “subcollection or
equal to” (wich shall be denoted with the symbol ⊆) is defined in P by A ⊆ B if and only if every
object belonging to pile A belongs to pile B. Thus, if S = {⊆} is our generating set, it determines
the relational family S = {⊆,⊆′, /0,P2}.

Here are some binary relations wich shall often be used in the examples and can be defined in
P:

• The subset or equal relation denoted by ⊆. We shall write A ⊆ B meaning “A is a subset or
equal to B”.

• The superset relation denoted by ⊃. We shall write A ⊃ B meaning “A is a superset of B”
and it is defined by A⊃ B if and only if A , B and every element of B belongs to A.

• The injection relation denoted by ↪→. We will write A ↪→ B meaning “A is injected to B” and
it is defined by A ↪→ B if and only if there exists an injective function f : A→ B.

• The bijection relation denoted by ≡. We will write A ≡ B meaning “A is in bijection with
B” and it will be defined by A ≡ B if and only if there exists a bijective function f : A→ B.
bijective function f : A→ B.

Additionally, let us consider some ternary relations that can be defined over P:

• The join of piles relation denoted by “join”. We shall write join(A,B,C) meaning “the join
of A and B is C” wich is defined by join(A,B,C) if and only if A∪B =C and A∩B = /0.

• The disjoint join of piles relation denoted by “disjoin”. We shall write dis join(A,B,C) mean-
ing “the disjoint join of A and B is in bijection with C” wich is defined by dis join(A,B,C) if
and only if A]B≡C.
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• The product of piles relation wich is denoted by “prod”. We shall write prod(A,B,C) mean-
ing “the product of the piles A and B is in bijection with C” wich is defined by prod(A,B,C)

if and only if A×B≡C.

• The injection relation in its 3-ary form 2 denoted by ↪→3. We shall write ↪→3 (A,B,C) mean-
ing “A is injected in B”. Such relation is defined by ↪→3 (A,B,C) if and only if exists an
injective function f : A→ B (notice that this relation is independent of C).

Now we can build a more elaborated example. Consider n = 2 and let S = {⊆, ↪→,≡} that is,
the set with the three binary relations: subset or equal, injection and bijection. This set of relations
or complexes determines the 2-relational family characterized by being the smallest set of binary
relations over P wich contains S and is closed by complements, finite unions and finite intersections.

In the examples we shall formalize the “natural numbers” knowledge domain using an n-
relational space (N,T ) where N is the set of natural numbers and T is an n-ary relational family
(for some fixed n) generated by a set T of interesting relations over N i.e. R(T ) = T . As before,
in each example it will suffice to specify T in order to determine T . Let us describe some (binary
and ternary) relations in the natural numbers set that will often be used in the examples.

• The natural numbers identity relation wich is denoted by “=”.

• The relation sum(m, n, k) will mean “the sum of m and n is k”. That is to say, sum(m,n,k) if
and only if m+n = k.

• The relation mult(m, n, k) will mean “k is the result of the multiplication of m and n”. That is
to say, mult(m,n,k) if and only if m ·n = k.

• The relation m≤ n will mean “m is less than or equal to n”.

• The less than or equal to relation in its 3-ary form denoted by ≤3. We will write ≤3 (m,n,k)

instead of “m is less than or equal to n”. This relation is defined by ≤3 (m,n,k) if and only if
m≤ n.

2This kind of definitions are useful in case we want to model some domain where there are binary relations as well
as ternary relations working together.
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Let us give a brief overview of the examples: the examples 37, 38 and 39 are different ways
of formalizing the introduction of the relation ≤ in the natural numbers through a metaphor. Ex-
amples 40 and 41 are two ways of formalizing the introduction of the addition operation through a
metaphor, but the first one can perhaps be seen as more “natural” and the last one as more “math-
ematical”. Example 42 suggests that the adequate relation in P to introduce the equality in the
natural numbers N should be the “bijection” relation. Example 43 is oriented to explain the in-
troduction of multiplication in natural numbers through a metaphor using the operation “product”
defined in P . Example 44 is aimed to show the preservation of the “inferential structure” from
the source domain to the target domain. The last example (example 45) shows how a metaphorical
space can be created from a relational space.

Our goal here is to suggest how some relations can be “transferred” from the base domain (the
object collections) to the target domain (the natural numbers) through the mapping

h : P→ N

wich associates to every pile A∈P its cardinality h(A)= |A| ∈N. Recall that for any n, h determines
the mapping h̃ : Pn→ Nn defined by: h̃(a1, ...,an) = (h(a1), ...,h(an)).

Example 37. On the base domain consider the relational family generated by the relation “subset
of or equal to” i.e. let S = {⊆}. On the target domain consider the relational family generated by
the relation “less than or equal to” i.e. let T = {≤}. Denote their respective 2-ary relational spaces
by (P,S ) and (N,T ). Notice that h̃(⊆) = {(n,m) ∈ N2 | n = h(a), m = h(b), a ⊆ b} wich is in
turn equal to “≤” and therefore h acts in “⊆” as a metaphor for “≤”.

Notice that in the previous example one might think that the mapping h introduces the “≤”
relation in N via the “⊆” relation in the piles domain. However, notice that the relation ⊆′ (the
complement relation of “subset of or equal to”) would not be an appropriate relation to introduce
the concept of “greater than” (the complement relation of “less than or equal to” ≤ ) into the
natural numbers through the metaphor. Additionally, it is worth it observing that the mapping h

is not structural (because the relation f̃−1(≤) does not belong to S ) neither it is metaphorical
(because h̃(⊆′) ,≤′ and therefore H : S → T is not well defined). Nevertheless, we can build a
metaphorical space based on (P,S ) the relational space from last example in such a way that the
mapping h becomes metaphorical. The following example explores the details.
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Example 38. We are going to consider the relation “superset” (⊃) to introduce the notion “greater
than” into the natural numbers through a metaphor. Denote by K the relation given by the union
of relations ⊆ and ⊃. Consider the 2-metaphorical space given by (P,M ), where M = {⊆,⊃
, /0,K } with (⊆)∗ = ⊃, ( /0)∗ = K. Additionally, consider the 2-relational space (N,T ) where T is
generated by T = {≤}. Notice that h : P→ N is such that

h̃(⊆) =≤ and h̃(⊃) =≤′

(We shall write > for the complement relation of ≤, this relation is known as “greater than”), thus
h acts in “⊆” as a metaphor for “≤” and acts in “⊃” as metaphor for “>”. Therefore, the mapping
H : M →T is well defined and h is a metaphorical mapping. Additionally, notice that

δh(⊆) = h̃(⊆′)∩ ≤ = ≤

i.e. the deviation set of ≤ has an infinite number of elements and therefore the metaphorical map-
ping h has infinite deviation.

In the last example, the infinite deviation of the metaphorical mapping would be interpreted
as “this metaphor is prone to induce errors”. Therefore it might be better if we could introduce
the relations “less than or equal to” and “greater than” through a metaphor with zero deviation.
This can be achieved by using different relational spaces. The next example displays that idea in
detail using the “injection” relation to introduce the concept of “less than or equal to” in the natural
numbers through a metaphor. Thus, suggesting that this “injection” relation would be better relation
to introduce the concept of “less than or equal to“ into the natural numbers through a metaphor.

Example 39. Let us consider the relational family generated by the “injection” relation i.e. let
S = {↪→} and consider T = {≤}. Let us denote by (P,S ) and (N,T ) their respective generated
2-relational spaces. Notice that h acts in “↪→” as metaphor for “≤” ( i.e. h̃(↪→) =≤) and acts in
“↪→′” as metaphor for “>” ( i.e. h̃(↪→′) = > ). Therefore, H : S → T is well defined, thus h is a
metaphorical mapping. Notice that

δh(↪→) = h̃(↪→′)∩ ≤ = ≤′ ∩ ≤= /0

δh(↪→′) = h̃(↪→)∩> = ≤′ ∩ ≤= /0

and thus it has zero deviance. Observe additionally that h̃−1(≤) =↪→ and h̃−1(≤′) =↪→′ belong to
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S , therefore this mapping is structural and its associated metaphorical mapping has zero deviation.

Up to now, we have been dealing with the introduction of the order relation in the natural
numbers through a metaphor. Now we want to analyze how a metaphor would introduce the sum
operation in the natural numbers. Recall that the models of this section are not able to treat the
addition directly as an operation. Therefore we have defined (at the beginning of this section) some
ternary relations wich will be used in the following examples. Notice that we shall need 3-relational
spaces or 3-metaphorical spaces to work with those relations.

Example 40. In the base domain, let us work with the relational space generated by the relation
“disjoint join of piles”. In other words, let S = {dis join} and T = {sum}. Consider their respective
3-ary domains (P,S ) and (N,T ). First observe that h̃−1(sum) = dis join and h̃−1(sum′) = dis join′

and therefore h is a structural mapping. Additionally h acts in dis join as a metaphor for sum and
acts in dis join′ as a metaphor for sum′, therefore the associated mapping H : S → T is well
defined, implying that h is metaphorical. It is straightforward that h has zero deviation.

The last example is a mathematically simple way to present a metaphor dealing with the intro-
duction of the addition in the natural numbers. However, it might not reflect accuratelly the reality
essentially because the “disjoint join of piles” is not what is observed in the real world “object
collection domain”. The “disjoint join of piles” can be thought as a mathematical idealization of
the operation “join of piles”. The next example examines the relation “join of piles” defined above
as a way to introduce the sum through a metaphor.

Example 41. It is true and appealing to say that h acts in “ join” as a metaphor for “sum” be-
cause h̃( join) = sum, but unfortunately h does not act in “ join′” as metaphor for “sum′” because
h̃( join′) , sum′. The key idea here is to use an appropriate relation instead of join′. To make
this possible we have to build a metaphorical space, so let us denote by K the relation given by
the union of “ join” and “dis join′”. Consider the 3-metaphorical space given by (P,M ), where
M = { /0, join,dis join′,K} with ( join)∗ = dis join′, ( /0)∗ = K. Let T = {sum} and consider the
associated 3-ary relational space (N,T ). Notice that h acts as a metaphor in join for sum and in
dis join′ for sum′. Additionally H : M →T is well defined and therefore h is metaphorical. Notice
that

δh( join) = h̃( join′)∩ sum = sum

and therefore h is a metaphorical mapping with infinite deviation.
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It is worth observing that associativity and commutativity properties are shared by the addition
of natural numbers and the join of piles, so it would be rather straightforward to define a metaphor to
deal with those concepts, because the involved n-ary relational families would be the trivial families
{Pn, /0} and {Nn, /0} for n = 2 in the case of commutativity and n = 3 in the case of associativity.

The next example suggests (or predicts) that the appropriate concept to introduce the identity
relation (equality) in the natural numbers through this metaphor is the concept wich relates two
piles “having the same number of objects”. Notice that it is appealing to use the “equality of
piles” (denoted here by =P) to introduce the “equality of numbers” through a metaphor, because
it holds that h acts in “=P” as a metaphor for “=” (since h̃(=P) is the identity relationship set
{(m,n) ∈ N2 | m = n }). Unfortunately again, the mapping does not act in the complementary
relation (=′P) as metaphor for the adequate complementary relation (=′ or ,).

Example 42. Let us consider the relational space generated by the “bijection” relation, that is to
say, let S = { ≡ }, T = {= }. Denote their respective 2-relational spaces by (P,S ), (N,T ). In this
example h : P→ N is structural because h̃−1(=) is the set {(A,B) ∈ P2 | A is in bijection with B}
(denoted by ≡), h̃−1(=′) is the relation determined by ≡′ and therefore its associated metaphorical
mapping has zero deviation.

Now that we have suggested that the “bijection relation” seems to be an appropriate relation
to introduce the identity relationship through this metaphor, we can use that relationship combined
with the product of piles to obtain a way to introduce the multiplication into the natural numbers
through this metaphor.

Example 43. Let us work with the 3-ary relational spaces generated by S = {prod} and T =

{mult}. Denote them by (P,S ), (N,T ). From the above definition of prod it is straightforward
that h acts in “prod” as a metaphor for “mult” and acts in “prod′” as a metaphor for “mult ′”. The
associated mapping H : S →T is well defined, and therefore h is metaphorical and it is easy to see
that it has zero deviation. Notice that h̃−1(mult) = prod and h̃−1(mult ′) = prod′, so h is structural
from (P,S ) to (N,T ).

As we observed above, some authors from the field of cognitive science claim that one of the
key properties of metaphor is the “preservation of inferences” from the base domain to the target
domain ( see [71, 30, 36]). The following example shows how a kind of “preservation of inference”
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between domains can be formalized in this context. The idea underlying the following example
is to interpret “inference” as the mathematical concept of implication. Let us explain this idea in
more detail: let A and B be relations in the base domain; A and B relations in the target domain.
Assume that the metaphorical mapping under consideration acts in A as metaphor for A and acts
in B as metaphor for B. This particular idea of “preservation of inference” can be understood as
the property of metaphorical mappings (corollary 52) wich states: if A implies B then A implies B.
This way, the implication relation observed in the base domain between A and B is preserved by the
metaphorical mapping to hold in the target domain between the relations A and B. In the following
example we need the interaction between binary relations and ternary relations, so we are going to
use 3-ary relational spaces and binary relations modified to be ternary relations (as ↪→3 and ≤3).

Example 44. In the natural numbers it is well known that for any k ∈ N “if n ≤ m then n+ k ≤
m+ k”. The aim of this example is to induce this implication from the “object collections” domain
through a metaphor, while showing how this preservation can be formalized in this context. To this
end denote by E the ternary relation in P given by

E(A,B,C) iff the pile A]C can be injected into the pile B]C.

(i.e. A]C ↪→ B]C). In the same way define a relation in N denoted by the symbol / and defined
by:

/(a,b,c) iff a+ c≤ b+ c.

Now, put T = {≤3,/} and consider its associated 3-ary relational space (N,T ). On the other hand,
put S = {↪→3,E} and consider its associated 3-ary relational space (P,S ). Notice that h : P→ N
is a structural mapping because

h̃−1(≤3) = ↪→3, h̃−1(≤′3) = ↪→′3, h̃−1(/) = E, h̃−1(/′) = E′.

Therefore, h is a metaphorical mapping with zero deviation. Observe that in P, it holds that for any
pile C: if the pile A can be injected into a pile B then the pile A]C can be injected into the pile
B]C (A ↪→3 B =⇒ A]C ↪→3 B]C). Because h is a structural mapping the corollary (52) from
chapter (C) ensures that a≤ b =⇒ a+ c≤ b+ c holds in the domain of the natural numbers.

The previous example might look a little artificial because the addition in the natural numbers
is introduced by some kind of disjoint join wich is not really observed in the “real life” object
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collections domain. A more representative model of the phenomenom would induce the addition
in the natural numbers by using the join of piles relation. That is the aim of the following example.

Example 45. We are going to use a metaphorical space defined over P. Denote by K the subset of
P3 given by:

K = join ∪ dis join′

and consider the 3-ary metaphorical space defined by

H = {E ∩K | E ∈S }

where S = R(S ) is the 3-ary relational space determined by S = {↪→3,dis join}. Recall that in
this case the operation ∗ is defined by E∗ = (E ′∩K). Thus

( join)∗ = (dis join∩K)∗ = dis join′,

(↪→3 ∩K)∗ = (↪→′3 ∩K).

Consider the relational space (N,T ) where T = {≤,sum}. It is straightforward that h : P→ N
acts in join as a metaphor for sum, in dis join′ as a metaphor for sum′, in ↪→3 ∩K as a metaphor
for ≤ and in ↪→′3 ∩K as a metaphor for ≤′. Therefore, h is a metaphorical mapping and it is
straightforward that it has infinite deviation.

The metaphor from the last example induces the sum of natural numbers via the join relation
wich represents the “real life” join of piles. It is interesting to observe that we should not use
the relation ⊆ to induce the ≤ relation while using the join relation to induce the sum relation.
Together, they are somehow unable to generate a metaphorical space. To see the nature of the
problem, let us assume for a while that we can define the 3-ary metaphorical family given by
H = {⊆3, ↪→′3, join,dis join′} where (⊆3)

∗ =↪→′3, ( join)∗ = dis join′. On the other hand consider
T = {≤,sum} and its associated relational space (T ,N). In this case h : P→ N acts on ⊆3 as a
metaphor for ≤3, on join as a metaphor for sum, on ↪→′3 as a metaphor for ≤′3 and on dis joint ′ as
a metaphor for sum′. Therefore, the mapping H : H → T would be well defined and it has to be
a homomorphism of boolean algebras (by theorem 54 from chapter C). Thus it should preserve the
intersection of relations, in particular it should holds that H(⊆3 ∩ join) = H(⊆3)∩H( join) = ≤3
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∩sum. Notice however that

⊆3 ∩ join = {( /0,B,B) ∈ P3 | B ∈ P}

therefore
H(⊆3 ∩ join) = h̃(⊆3 ∩ join) = {(0, j, j) ∈ N3 | j ∈ N}

but the relation≤3 ∩sum= {(m,n,k)∈N3 |m≤ n,m+n= k} is clearly different from the expected
result.

The problem was the definition of the operation ∗ on H = {⊆3, ↪→′3, join,dis join′} wich does
not satisfies the conditions (see chapter C) to determine a metaphorical family.

Two-Pan Balance Metaphor Model Based on Relational Spaces

Our aim in this section is to develop a formal model for the “Two-pan balance metaphor” similarly
as we did before, but this time we are going to use relational spaces instead of formal domains.
Thus, in first place we have to define a relational space wich is appropriate to represent the “simple
scales domain”, and then, we shall show that the product of simple scales domain is well suited to
represent the “scales domain”.

The Simple Scales Domain

We suggested that N2 can be useful to represent the collection of simple scales. Thus, we just have
to define the adequate relations over this set to generate an appropriate relational space. Consider
the following binary relations over N2:

Add = {((n,m),(n+1,m+1)) ∈ N2×N2 | n,m ∈ N}. (C.5)

Equiv = {((n,m),( j,k)) ∈ N2×N2 | j+m = n+ k}. (C.6)

Id = {((n,m),(n,m)) ∈ N2×N2 | n,m ∈ N}. (C.7)
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Let B = {Add,Equiv, Id} and consider the 2-ary relational family B = R(B). We have named
the relations in such a way to suggest their adequate interpretation. The relation Add defined in
C.5 can be interpreted as the operation wich adds an object in each one of the plates of the simple
scale. The relation Equiv (equivalence) characterizes the pairs of balances wich are equivalent i.e.
two scales (n,m) and ( j,k) are equivalent if and only if one of them can be transformed into the
another by means of the operation Add. In other words n− j = m− k and therefore the definition
in C.6 makes sense. The relation Id above in C.7 is just the identity operation in N2.

As a model for the domain of “simple scales” we are going to use the 2-ary relational space
given by (N2,B).

The Scales Domain

As we said before, our aim here is to take the product (N2,B)×(N2,B) and show that this structure
can be considered as a plausible model for the scales domain.

In first place, notice that objects belonging to this product have the form ((b1,b2),(c1,c2)),
and therefore the pair (b1,c1) can be interpreted as the first plate of the scale and (b2,c2) can be
interpreted as the second plate of the scale. Notice that in each plate there are objects of type “b”
(boxes) and objects of type “c” (circles). In picture 5.4 we would have that b1 = 2,b2 = 4,c1 =

3,c2 = 1. On the other hand, recall that the product of relational families B⊗B is generated by
the set

{π̃−1
α (E) : E ∈B,α ∈ {1,2}} (C.8)

Notice that B⊗B has many complexes. However, only a few of them will be useful for us,
and we will only deal with those.

• Denote by AI the complex belonging to B×B wich is given by the following intersection:

AI = π̃
−1
1 (Add)∩ π̃

−1
2 (Id) (C.9)

= { ( ((b1,b2),(c1,c2)),((b1 +1,b2 +1),(c1,c2)) ) ∈ (N2×N2)2 | b1,b2,c1,c2 ∈ N }
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Notice that this relation would be interpreted as the operation wich adds one object of type
“box” to each plate of the scale.

• Denote by IA the complex given by:

IA = π̃
−1
1 (Id)∩ π̃

−1
2 (Add) (C.10)

= { ( ((b1,b2),(c1,c2)),((b1,b2),(c1 +1,c2 +1)) ) ∈ (N2×N2)2 | b1,b2,c1,c2 ∈ N }

This relation would be interpreted as the operation wich adds one “circle” to each plate of
the scale.

• Consider the complex given by:

AA = π̃
−1
1 (Add)∩ π̃

−1
2 (Add). (C.11)

= { ( ((b1,b2),(c1,c2)),((b1+1,b2+1),(c1+1,c2+1))) ∈ (N2×N2)2 | b1,b2,c1,c2 ∈N }

The interpretation of this relation is obvious, is the operation wich adds one “circle” and one
“box” to each plate of the scale.

• Denote by II the complex given by:

II = π̃
−1
1 (Id)∩ π̃

−1
2 (Id) (C.12)

= { ( ((b1,b2),(c1,c2)),((b1,b2),(c1,c2)) ) ∈ (N2×N2)2 | b1,b2,c1,c2 ∈ N } }

This relation takes the place of the identity operation in the scales domain.

• Denote by EE the complex given by:

EE = π̃
−1
1 (Equiv)∩ π̃

−1
2 (Equiv). (C.13)

= {(((m,n),(i, j)),((a,b),(c,d)))∈ (N2×N2)2 | n+a=m+b, j+c= i+d,a,b,c,d, i, j,m,n∈N}

Notice that this relation is exactly what we would expect of the relation of equivalence in the
scales domain i.e. two scales are equivalent if and only if both can be transformed into the
same scale by a finite number of applications of the operations represented by AA, II,AI and
IA.

242



C.3. Structural Mappings

These remarks suggest that the relational space (N2,B)× (N2,B) = (N2×N2,B⊗B) is a
plausible model for the “scales domain”.

The Equations Domain

As before, we shall describe formally the domain of “equations” i.e. we shall use relational spaces
to build a model for the target domain of the two-pan balance metaphor.

Once again, we will say that an equation will be a string of symbols wich has the form ax+b≡
cx+ d where a,b,c,d are symbols that denote natural numbers. all those equations, but just with
those equations whose solution is a natural number.

In this domain, the transformations from one equation to another equivalent equation are per-
formed by means of algorithms, wich in turn can be modeled as operations. However we need to
represent these operations as relations in order to work with relational spaces. Consider the set of
equations E = {ax+b≡ cx+d | a,b,c,d ∈ N}.

Let us define some binary relations on this domain that we shall use to model this metaphor.

• This relation represents the operation wich adds the expression “x” to each side of the equa-
tion.

A1 = {(ax+b≡ cx+d,(a+1)x+b≡ (c+1)x+d) ∈ E2 | a,b,c,d ∈ N} (C.14)

• This relation represents the operation wich adds the expression “1” to each side of the equa-
tion.

A2 = {(ax+b≡ cx+d,ax+(b+1)≡ cx+(d +1)) ∈ E2 | a,b,c,d ∈ N} (C.15)

• This relation represents the identity operation in this domain

I = {(e,e) ∈ E2 | e ∈ E } (C.16)
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• This relation represents the operation wich adds the expression “x+ 1” to each side of the
equation.

A = {(ax+b≡ cx+d,(a+1)x+(b+1)≡ (c+1)x+(d+1)) ∈ E2 | a,b,c,d ∈N} (C.17)

Now, in order to express the equivalence of equations, we are going to introduce an operation
in this domain. Assume that e1 = a1x+ b1 ≡ c1x+ d1 and e2 = a2x+ b2 ≡ c2x+ d2 and
define:

plus(e1,e2) = (a1 +a2)x+(b1 +b2)≡ (c1 + c2)x+(d1 +d2).

• The following relationship can be interpreted as the equivalence relationship in the equations
domain.

R = {(e1,e2) ∈ E2 | ∃e = (ax+b≡ ax+b) such that a,b ∈ Z, plus(e1,e) = e2} (C.18)

Let T = {A, I,A1,A2,R} and consider the 2-ary relational family T = R(T ) i.e. the 2-ary
relational family generated by T . Our proposal is to use the 2-ary relational space given by (E,T )

as a model for the “equations domain”.

Examples

Our goal in this section is to give some examples for concepts from previous chapters. These
examples are based on the relational spaces built above. As our approach suggests, we are going to
model metaphors between the domains previously described by means of a mapping:

ε : N2×N2→ E defined by ε( (b1,b2),(c1,c2) ) = b1x+ c1 ≡ b2x+ c2.

Recall that for every n ∈ N, ε determines a mapping:

ε̃ : (N2×N2)n→ En defined by ε̃(a1, ...an) = (ε(a1), ...,ε(an)) where ai ∈ N2×N2

Example 46. As before, we are going to use the first example just to summarize notations and
definitions for the models proposed in this section.
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In first place, our model for the “simple scales domain” is the 2-ary relational space (N2,B)

where B = R(B) and B = {Add,Equivalence, Id}.

Second, for the “scales domain” we have proposed the relational space (N2,B)× (N2,B) =

(N2×N2,B⊗B) as a model. We have emphasized the complexes (or relations) AI, IA,AA, II,EE

because of its interpretation.

Third, our model for the “equations domain” shall be the relational space (E,T ) where T =

R(T ) and T = {A1,A2,A, I,R} as previously defined.

Example 47. Consider the relational spaces (N2×N2,B⊗B) and (E,T ). There is a considerable
quantity of complexes in B⊗B wich are “unnecessary” in the sense that they do not have a
meaning in this metaphor. For example, consider the complexes given by

π̃
−1
1 (Add)= { ( ((b1,b2),(c1,c2)),((b1+1,b2+1),(c3,c4)) )∈ (N2×N2)2 | b1,b2,c1,c2,c3,c4 ∈N }

π̃
−1
1 (Equiv)= { ( ((b1,b2),(c1,c2)),((b3,b4),(c3,c4)) )∈ (N2×N2)2 | bi,ci ∈N and b2+b3 = b1+b4 }

and their unions, intersections and complements. Observe that it is difficult to give meaningful
interpretations to them in the scales domain. Additionally, their image by ε̃ are not complexes of
T . Despite these observations, it is straightforward that:

ε̃
−1(A1) = AI

ε̃
−1(A2) = IA

ε̃
−1(A) = AA

ε̃
−1(I) = II

ε̃
−1(R) = EE

wich means that ε : N2×N2 → E is a structural mapping i.e. B⊗B has a boolean subalgebra
wich is isomorphic to the boolean algebra determined by T . This means that the scales domain
can explain all the existent logic in the domain in the equations domain. Therefore, its associated
metaphorical mapping (wich we explore in the next example) has zero deviation.

the bijective mapping f : N2×N2 → E. Notice that f̃−1(A1) = AI, f̃−1(A2) = IA, f̃−1(A) =
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AA, f̃−1(I) = II and f̃−1(R) = EE, so the mapping f is structural and its associated metaphorical
mapping has zero deviation.

Example 48. The relational space (N2×N2,B⊗B) is generated by the family of complexes de-
fined in equation C.8. However, such set has many complexes that are not easily interpretable in
the context of the scales domain as we saw in the previous example. This example modify such re-
lational space removing the unnecessary structure (“unnecessary” in the sense of interpretativeness
of the model).

Consider the set of complexes B′ = {AI, IA,AA, II,EE} and consider B′ = R(B′) the 2-ary
relational family generated by it. Notice that B′ is a subalgebra of B⊗B (in the sense of boolean
algebras) and thus the relational (metaphorical also) space given by (N2×N2,B′) can be seen as
another model (with less structure) for the “scales domain”.

In that case, the bijective mapping ε is a metaphorical mapping from (N2×N2,B′) to (E,T )

wich means that the mapping ξ : B′ → T (given by ξ (A) = ε̃(A) for A ∈ B′) is well defined
and it is a boolean algebra morphism. Furthermore, ξ : B′→ T is an isomorphism (of boolean
algebras). These remarks suggest that the pair of domains have the same logic structure. Obviously,
the metaphorical mapping ε has deviation zero.

Example 49 (Inference). The aim of this example is showing that our approach let us model this
metaphor bringing an inference of the sort “if ... then ...” from the scales domain to the equations
domain. The inference that we have selected to preserve in this example is the following: For
any scale a, if we add a “box” on each of its plates then, the resultant scale b is equivalent to
the original one . Notice that this implication can be modelled by the inclusion AI ⊆ EE i.e. if
(a,b) ∈ AI⇒ (a,b) ∈ EE (“if b is the result of putting a box on each plate of a, then a and b are
equivalent”).

Let B′ be the 2-ary relational family generated by {AI, IA,AA, II,EE} and T the 2-ary rela-
tional family generated by {A1,A2,A, I,R}. In example 48 we have seen that ε is a metaphorical
mapping from (N2×N2,B) to (E,T ).

Notice that ε̃(AI) = A1 and ε̃(EE) = R, and thus we can use the inference corollary (corollary
52 in chapter C) to conclude that in the “equation domains” it holds that if (e1,e2) ∈ A1 then
(e1,e2) ∈ R. i.e. we can conclude that if the equation e2 is the result of adding “x” to each side of
the equation e1, then they both have the same solution set.
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Tiled Path Metaphor for Integers Model

One Directional Tiled Path Domain

As before, we are going to use the set N of natural numbers to model this domain. The goal of this
section is to use relational spaces instead of formal domains to model the same metaphor.

We have to introduce the addition operation into the relational structure of the model. It can be
done by considering the addition as a ternary relation. Thus, consider the relation defined by

sum = {(a,b,c) ∈ N3 | a+b = c}

and its generated 3-ary relational family S = R(sum). The 3-relational space (N,S ) will serve
as a model for the “one directional tiled path domain”.

The Two Directional Path Domain

The formal model for the tiled path domain (interpreted as a path where walks in two directions are
allowed) shall be strongly related to the product (N×N,S ⊗S ). Thus, we are going to describe
some structure for this relational space while introducing adequate interpretations in order to relate
it to the formal model.

Notice that objects belonging to (N×N,S ⊗S ) are pairs of natural numbers (a,b). The first
coordinate might be interpreted as “a forward walk of a tiles” and the second coordinate as “a
backward walk of b tiles”.

The 3-ary relational family S ⊗S is generated by complexes of the form π̃
−1
i (E) where E ∈S

and i ∈ {1,2}. Let us direct our attention to the following complexes belonging to S ⊗S :

• π̃
−1
1 (sum) = {((a1,a2),(b1,b2),(c1,c2)) ∈ (N×N)3 | a1 +b1 = c1}

• π̃
−1
2 (sum) = {((a1,a2),(b1,b2),(c1,c2)) ∈ (N×N)3 | a2 +b2 = c2}
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and then the complex given by

add = π̃
−1
1 (sum)∩ π̃

−1
2 (sum)= {((a1,a2),(b1,b2),(c1,c2))∈ (N×N)3 | a1+b1 = c1,a2+b2 = c2}

(C.19)
belongs to the 3-ary relational family S ⊗S . Observe that this relation is associated to the addition
wich acts component by component. Therefore, such complex can be interpreted as an operation
wich takes two pairs of walks and composes them in a new pair of walks as described in C.19. In
examples, we are going to denote this complex by “add”.

domain as only one object. Therefore consider the equivalence relation ∼ in N×N given by:

It is worth observing that it would be appealing to introduce the equivalence relation

(a1,a2)∼ (b1,b2) if and only if a1 +b2 = b1 +a2 (C.20)

with the purpose of using a quotient of the relational space (N×N,S ⊗S ) to model this domain.
Unfortunately, it is straightforward that “∼” is not compatible with S ⊗S and thus we cannot
define the adequate “quotient” relational space. We shall explore some alternatives in examples 50
and 51.

The Integers Domain

Our intention here is to formalize the domain of integer numbers as a relational space. In order to
acomplish that, we have to define the sum operation as a relation. Consider the relation denoted by
“+” and defined by

+= {(a,b,c) ∈ Z3 | a+b = c}

and its generated 3-relational family A = R(+). Thus, the 3-relational space wich will serve as a
model for the integer numbers domain is given by the pair (Z,A ).
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C.4 Examples

We are going to model the tiled path metaphor for integer numbers by using the mapping

z : N×N→ Z

wich associates to each pair of “walks” (a,b) in the tiled path domain, the number a− b in the
integers domain. That is,

z(a,b) = a−b.

Also, for any n ∈ N, we have the induced mapping

z̃ : (N×N)n→ Zn

defined by
((a1,b1),(a2,b2), ...,(an,bn))→ (a1−b1,a2−b2, ...,an−bn)

Example 50. ese haces el quotient

The aim of this example is to show that the mapping z is able to introduce the addition structure
into the “integer numbers domain” by means of a metaphor. Notice that

z̃(add) = z̃( {((a1,a2),(b1,b2),(c1,c2)) ∈ (N×N)3 | a1 +b1 = c1,a2 +b2 = c2} ) =

= {((a1−a2),(b1−b2),(a1−a2 +b1−b2)) | a1,a2,b1,b2 ∈ N}=

= {(x,y,x+ y) | x,y ∈ Z }=+

In other words, the image of the relation add (by the mapping z̃) is the relation “+” defined over
the set of integer numbers. It suggests that, within this formalism, the relation add can be used to
introduce the addition operation into the integer numbers. In order to achieve that, we shall use
the 3-ary metaphorical family over N×N given by K = {add, z̃−1(+′)} where (add)∗ = z̃−1(+′).
Observe that

z̃(add) = + and z̃(z̃−1(+′)) = +′

and therefore z is metaphorical from (N×N,K ) to (Z,A ). It is straightforward that z has non
zero deviation.
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Example 51. In the previous example (50) we have used a metaphorical space related to (N×
N,S ⊗S ) as a model for the “tiled path domain”. The reader might be wondering, why we
have not introduced some equivalence relation in order to group all objects in the domain wich
are equivalent “as walks”? (for example take the pairs (1,2), (2,3), (3,4), and declare them all
equivalent to the pair (0,1)). The reason is that such equivalence relation (C.20) is not compatible
with the relational family S ⊗S . This example is aimed to show that an equivalence relation can
be introduced in this context to model this metaphor in a way closer to the classical construction of
the integer numbers. We shall use a different relational space in order to achieve this.

Observe that the mapping z :N×N→ Z is not structural from (N×N,S ⊗S ) to (Z,A ). This
can be seen by considering the complex given by

z̃−1(+) = {((a1,a2),(b1,b2),(x1,x2)) ∈ (N×N)3 | x1− x2 = a1 +b1− (a2 +b2)} (C.21)

Tiled Path Metaphor for Integers and noticing that it is clearly different from the relation “add”
(actually “add” is strictly contained in z̃−1(+)). Thus, it seems to be a good idea to consider the
3-ary relational family generated by the complex z̃−1(+) (wich is a sort of generalized addition by
components) i.e. as a model for the “Tiled Path Domain” we are going to use the relational family
M = R({z̃−1(+)}) and its associated 3-relational space (N×N,M ). In such case, the mapping
z is structural from (N×N,M ) to (Z,A ) and obviously its associated metaphorical mapping has
zero deviance.

The mapping z :N×N→ Z is surjective and the equivalence relation wich is determined by the
fibers of z ( wich is equivalent to the one defined in C.20) is compatible with M :

Let (a1,a2)∼ (d1,d2), (b1,b2)∼ (e1,e2), (c1,c2)∼ ( f1, f2) and assume that ((a1,a2),(b1,b2),(c1,c2))∈
z̃−1(+). Then c1− c2 = a1 +b1− (a2 +b2) wich holds if and only if f1− f2 = d1 + e1− (d2 + e2)

wich means that ((d1,d2),(e1,e2),( f1, f2)) ∈ z̃−1(+).

Therefore, we can define the quotient domain (N×N,M )/ ∼ wich would be considered as
another model for the “Tiled Path Domain” where all the equivalent pairs of walks are identified.
It can be easily seen that this domain is isomorphic to the domain (Z,A ) (the integers domain).
Additionally, we can use the proposition 35 in chapter C to ensure the existence of a mapping (an
isomorphism) z∗ : N×N/∼→ Z wich is structural from (N×N,M )/∼ to (Z,A ) and makes the
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following diagram commute.

(N×N,M )

ϑN×N
��

z // (Z,A )

(N×N,M )/∼

z∗
77oooooo

Notice that the construction of this model for the tiled path domain strongly resembles the construc-
tion of the integer numbers (group (Z,+)) based on the natural numbers (monoid (N,+)). But, as
we are working with relations, it requires to generalize the addition operation as the relation written
in C.21. Our work maintains those classical ideas and just places them in a cognitive context.
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