

UNIVERSIDAD DE CHILE

FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGORITMO HEURÍSTICO PARA JUEGO DE SEGURIDAD

DE STACKELBERG EN UNA RED

TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN GESTIÓN DE OPERACIONES

MEMORIA PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MATEMÁTICO

TOMAS ENRIQUE SPENCER BRAVO

PROFESOR GUIA:

FERNANDO ORDOÑEZ PIZARRO

MIEMBROS DE LA COMISION:

JORGE AMAYA ARRIAGADA

RAUL MANASEVICH TOLOSA

RICHARD WEBER HAAS

SANTIAGO DE CHILE

ENERO 2013

2

Summary

The main objective of this work is to provide an algorithm that solves huge instances of

Stackelberg’s linear programming security problems reducing the amount of resources needed

to compute said solution. For this we utilize column generation principles [1] to develop an

algorithm that proceeds by solving a smaller problem (small number of restrictions). Then,

iteratively, we add restrictions until the problem reaches defined stopping conditions. Basically,

we start with a sub problem of the original with two players playing with a limited strategy

space which considers only a limited number of restrictions. Iteratively, we verify if some player

would like to change his strategy in order to increment their utilities, and we add that strategy

and solve once again. This suggests a decomposition method that is able to guess the minimal

set of restrictions to consider in order to also find the optimal solution for the problem.

In our studies we identified that our iteration process does not always find the global optimal

solution for the problem. Then, we provide an analysis and characterization of the structure of

utilities functions for both players that let us further understand the players’ dynamics and

identify situations where the global optimal solution is indeed found.

Later, we present an implementation that comprises real world data on a real network located

downtown at Santiago, Chile. The rewards were calculated considering the historic average

stolen on each location and an estimated value of unwillingness on going to prison regarding the

assaulters. Finally, we compare our algorithm with other ones already in literature under similar

scenarios. We show our methods let us efficiently provide reasonable solutions for security

problems in real world size.

3

Resumen

El objetivo principal de este trabajo es proporcionar un algoritmo que resuelve instancias de

gran tamaño para problemas de juegos de seguridad de Stackelberg con un énfasis en reducir el

número de recursos necesarios requeridos para calcular dicha solución. Para ello se utilizan los

principios de generación de columnas para desarrollar un algoritmo que procede mediante la

resolución de un problema más pequeño (menor número de restricciones). Entonces, de forma

iterativa, añadimos restricciones hasta que el problema llega a las condiciones de parada

definidas. Básicamente, partimos de un problema secundario del original con dos jugadores que

juegan cuentan con un espacio de estrategia limitado, este considera sólo un número limitado de

restricciones. Iterativamente, verificamos si algún jugador le gustaría cambiar su estrategia con

el fin de incrementar sus utilidades, añadimos la estrategia candidata y resolvemos una vez más.

Esto sugiere un método de descomposición que es capaz de estimar el conjunto mínimo de

restricciones a tener en cuenta con el fin de encontrar también la solución óptima para el

problema global.

En el transcurso de nuestros estudios identificamos que el proceso de iteración no siempre

encuentra la solución óptima para el problema global. Luego, proporcionamos un análisis y

caracterización de la estructura de las funciones de utilidad para ambos jugadores con el fin

comprender más la dinámica de los jugadores e identificar las situaciones en las que la solución

óptima global efectivamente es encontrada.

Más tarde, se presenta una implementación que incluye datos del mundo real a través de una red

en el centro de Santiago, Chile. Las recompensas se calcularon teniendo en cuenta el promedio

histórico robado en cada lugar y un valor estimado de la falta de voluntad de ir a la cárcel para

efectos de los asaltantes. Finalmente, comparamos nuestro algoritmo con los demás ya la

literatura en escenarios similares. Mostramos que nuestros métodos nos permiten ofrecer de

manera eficiente soluciones razonables para los problemas de seguridad en tamaño del mundo

real. Además comparamos nuestros resultados con los resultados utilizando la metodología

estándar de resolución de problemas lineales y mostramos que se pueden reducir ampliamente la

necesidad de recursos computacionales y en algunos casos, el tiempo de ejecución para llegar a

la solución.

4

 “Since the fabric of the universe is most perfect and the work of a most wise Creator, nothing

at all takes place in the universe in which some rule of maximum or minimum does not

appear...”

Leonhard Euler, As quoted in The Anthropic Cosmological Principle (1986) by John D. Barrow

and Frank J. Tipler, p. 150

5

1 Index

1 Index .. 5

1.1 Graph Index ... 6

1.2 Table Index .. 7

2 Introduction .. 9

2.1 Stackelberg’s Equilibrium .. 10

2.2 Stackelberg Security Games ... 12

3 The ERASER algorithm as a starting point ... 13

3.1 A state of the Art SSG model (ERASER) ... 14

3.2 An SSG model on a Network ... 16

3.3 Understanding the Reward functions .. 20

3.4 Joint schedules coverage mapping as an allocation vector 21

4 An Efficient Allocation for a SSG with Attacked Routes (EASSGAR) Algorithm 25

4.1 The Size Problem ... 26

4.2 A Two-staged Decomposition approach to a SSG .. 27

4.3 Characterization of Strong Stackelberg’s Equilibrium .. 29

4.4 Exploiting the utility structure .. 29

4.5 Master problem .. 34

4.6 Slave problem .. 35

6

5 Algorithm Results Examples ... 38

5.1 Motivating example where stopping conditions do not meet an optimal solution 39

5.2 Zero-Sum Utilities scenario.. 44

6 Experimental results.. 47

6.1 Algorithm Dynamics Analysis ... 50

6.2 Real World-sized problem ... 56

6.2.1 EASSGAR Santiago’s Downtown results, m=1, 2 and 3. 61

6.3 Comparing Results ... 64

6.4 Hardware Details ... 66

7 Conclusion and Future Work .. 66

8 Bibliography ... 68

9 Annex 1 .. 71

1.1 Graph Index

Graph 1: Basic example of a graph representation ... 20

Graph 2: Variables needed to describe our game in normal vs. compact form and m=3... 25

Graph 3: Ceteris paribus example of payoff functions vs. node coverage 31

Graph 4: Visual representation of a 2 node scenario and available routes........................ 40

Graph 5: Attacker´s utility function example .. 41

Graph 6: Defender´s utility function example ... 42

7

Graph 7: Iteration process described as a counter-example ... 43

Graph 8: X vs. Y representation of Santiago´s network numbered nodes 49

Graph 9: Visual representation of testing grid for n=6 .. 50

Graph 10: Visual representation of testing grid for n=9 .. 51

Graph 11: Time vs. resources n=25 .. 52

Graph 12: Time vs. resources n=100 .. 52

Graph 13: Time vs. resources n=900 .. 53

Graph 14: Iterations vs. resources (aggregate) ... 54

Graph 15: Tme vs. nodes m=3 .. 55

Graph 16: Time vs. nodes m=5 ... 55

Graph 17: Visual representation of Santiago´s downtown crime scene. Period: 2003-200456

Graph 18: ATMs locations on Santiago´s downtown. Source: www.publiguias.cl 57

Graph 19: Overlap of ATMs distribution and crime frequency on Santiago´s downtown .. 58

Graph 20: Route delivered by EASSGAR in no zero-sum and zero-sum instances, m=0 59

Graph 21: Overlap between Santiago´s downtown crime scene vs. EASSGAR output at zero-sum

instance, m=0 .. 60

Graph 22: Route delivered by EASSGAR in zero-sum instances, m=1 61

Graph 23: Route delivered by EASSGAR in zero-sum instances, m=2 62

Graph 24: Route delivered by EASSGAR in zero-sum instances, m=3 63

Graph 25: Tme to process iterations depending on number of routes.............................. 64

1.2 Table Index

Table 1: Example payoffs for an attack on a specific target .. 17

8

Table 2: Parameters for example routes on Graph 3 .. 31

Table 3: Rewards for the defender on counter-example .. 39

Table 4: Rewards for the attacker on counter-example .. 39

Table 5: Data structure for the Zero-sum scenario ... 48

Table 6: Defender´s final utility, m=1, 2 and 3 .. 63

Table 7: Performing results for EASSGAR and the benchmark .. 65

9

2 Introduction

Last couples of years, several contributions have been made in models and algorithms relative to

security games, especially on Stackelberg games. This class of games describes a situation

where two players, an attacker and a defender, play to cover/attack different targets obtaining, in

exchange, a reward. First, the defender (leader or master) allocates his resources among the

targets he want to protect, and then the attacker (follower or slave) chooses the most profitable

objective to assault. The main objective of these models is to find solutions that represent their

best rational decision. Solutions for this family of problems are called Strong Stackelberg’s

Equilibriums (SSE) which has the particularity of complying with the condition of mutual best-

responses and breaks ties in the benefit of the leader, in our case, the defender.

We consider this Stackelberg’s Security Game on a Network where the adversary could attack

some sequence of nodes, security forces (defender) decide to patrol a subset of nodes from the

network. A strategy profile for this problem is a pair where correspond to a

probability distribution for the defense resources among the nodes and is the chosen route to

attack by the terrorists (attacker). This game could represent community crime, where

pickpocketers travel across a commercial district and the decisions of police about which areas

of the city they patrol.

On real world size implementation, instances for this problem have such a large number of

routes that it promptly becomes computationally inoperable. If we consider a scenario with 100

points of interest, or nodes, we have up to possible different routes. Each route ends up

being an additional restriction in the lineal problem (LP) to resolve.

Our work proposes a heuristic algorithm based in a decomposition method of column generation

and restriction generation adjusted for Integer Programming (IP). Using a two stages algorithm,

we begin with only one route and solve the problem for the defender and attacker iteratively.

Each time the defender allocates his resources and the attacker, seeing the defender’s coverage,

chooses the best suited route for attack. For every not previously considered route, we add it to

the problem until no new route is proposed. We also compare our results with the results using

10

the standard methodology of solving linear problems and show that it can greatly reduce the

need for computational resources and in some cases, the running time to reach the solution.

2.1 Stackelberg’s Equilibrium

In game theory the usual concept of solution is a Nash’s equilibrium. A Nash’s equilibrium

recommends a strategy profile (strategy for each player) such that no player can improve upon

changing his strategy unilaterally. Since the other players are also rational, it is reasonable for

each player to expect his opponents to follow the recommended strategy as well. [2]

Stackelberg’s equilibrium is a refinement of Nash’s equilibrium specific to Stackelberg games

in the sense that no player takes benefit to unilaterally change his strategy. These kinds of games

are thoroughly described on next chapter. This form of equilibria corresponds to a subgame

perfect equilibrium [3]; it assumes each player chooses a best-response in any subgame of the

original (where a subgame corresponds to partial sequences of actions). This point of view

eliminates all Nash equilibrium profiles supported by non-credible threats off the equilibrium

path.

Literature identifies two types of unique Stackelberg’s equilibrium, these typically known as

‘strong’ [4] and ‘weak’ [5]. The strong form assumes that in case equilibrium is found and more

than one target is indifferent for the attacker, then the tiebreakers are chosen in favor of the

defender. That is, from within the indifferent best targets for the attacker, the one that gives the

most benefit for the defender is the attacked one. Whereas the weak form assumes the follower

will choose the worst strategy for the leader, from within the indifferent available targets. A

strong Stackelberg’s equilibrium exists in all Stackelberg games, but a weak Stackelberg’s

equilibrium may not [6]. In addition, a justification for the Strong Stackelberg’s equilibrium is

that the leader can often induce the favorable strong equilibrium by selecting a strategy

arbitrarily close to the equilibrium that causes the follower to strictly prefer the desired strategy

[7]. We adopt strong Stackelberg’s equilibrium here due to the key existence result and because

it is the most commonly adopted concept in related literature [8], [9] and [10].

11

Definition 1: A pair of strategies forms a strong Stackelberg

equilibrium (SSE) if they satisfy the following:

1. The leader plays a best-response:

 () (

)

Equation 1

2. The follower plays a best-response:

 ()

Equation 2

3. The follower break ties optimally for the leader:

 ()

Equation 3

With
 the set of follower best responses given a leader strategy .

Whether or not the Stackelberg leader benefits from the ability to commit depends on whether

commitment to mixed strategies is allowed. Committing to a pure strategy can be either good or

bad for the leader; for example, in the “Rock, Paper, and Scissors” game, committing to a pure

strategy guarantees a loss. However, the ability to commit to a mixed strategy always weakly

increases the leader’s payoffs in equilibrium profiles of the game [7] again on the “Rock,

Paper, and Scissors” game, if we assume payoffs as 1, 0 and -1 for a win, draw and loss

situations respectively, then a mixed strategy of (1/3, 1/3, 1/3) will maximize each players

expected payoff. In the context of a Stackelberg game, a deterministic policy is a liability for the

leader, but a credible randomized security policy is an advantage, as the leader is granted the

Nash’s payoff by playing the Nash’s strategy but can choose to deviate in case is convenient.

In a Stackelberg security game the defender decides first (leader), and the attacker selects his

action afterwards (follower). Our model allows commitment to mixed strategies by the defender.

The attacker, instead, can only choose deterministic strategies, as common literature have

12

previously stated. This last assumption is without loss of generality, because as the utilities are

all lineal functions, there is always a pure strategy in the set of best responses for the follower

on the set
 () [11] [12].

In other words, the defenders goal is to maximize its reward given the attacker will attack with

knowledge of the defensive strategy the defender has chosen. In most cases, the optimal strategy

for the defender is a randomized strategy in which it chooses a mixed strategy over all his

possible resource assignments. Randomized policies are unpredictable since even thought the

attacker knows the overall strategy, he is unable to predict the exact resource assignment for any

day. The attacker, instead, is restricted to a pure strategy. As we previously stated this is with no

loss of generality because there is always a pure strategy in the argmax of the problem solved by

the attacker since they are all lineal functions.

2.2 Stackelberg Security Games

A Stackelberg security game (SSG) is a Game between two players: a defender and an attacker.

These players need not represent individuals, but could also be groups that cooperate to execute

a joint strategy, such as the police force or terrorist organization. The defender wishes to deploy

up to security resources to protect the set of targets from the attacker. Similarly, the

attacker aims to attack the target with the better payoff, subject to the defender’s allocation

strategy. Each player has a set of possible pure strategies denoted as, and , for the defender

and the attacker respectively. A mixed strategy allows a player to play a probability distribution

over pure strategies, we denote this sets as and . Payoffs for each player are defined over

all possible joint pure strategy outcomes as follows: for the defender and

similarly for the attacker with . The payoff functions are extended to mixed strategies by

taking the expectation over pure-strategy outcomes. In other words, we define

such that , then ∑

 with ∑
 , and . Then,

 ∑

. Let us note that as we previously mentioned, only the defender

is allowed to act with mixed strategies as we assume the attacker attacks with pure strategies

only.

13

Extending our definition of a normal form security game, Stackelberg games introduce a

distinction between the players: the common literature considers a situation with two players;

the “leader”, as the player who moves first and a “follower” who observes the leader strategy

before acting. The concept behind this is to model the capacity of attackers or terrorists to

employ surveillance and, this way, infer the defender’s strategy, before selecting the best target

to attack. In this model, predictable defense strategies are vulnerable to exploitation by the

attacker [13]. In formal game theory context, the attacker’s strategy in a Stackelberg security

game is a function that selects an attacking strategy in response to each leader’s defending

strategy: . Further specifications on how we define this strategy function are

explained later in this document.

In a Stackelberg security game, the defender first commits to a strategy, and then the attacker

decides its optimal attack with complete information about the defender’s strategy. Therefore,

the defender’s goal is to maximize its reward given that the attacker will attack a single target

with knowledge of the defensive strategy the defender has chosen. In most cases, the optimal

strategy for the defender is a mixed strategy over all its possible resource allocations. The

benefit of randomized policies is that they are unpredictable even though the attacker may know

the overall strategy; the attacker is unable to predict the exact resource assignment for any

specific day.

Previous literature in Stackelberg games have provided different approaches for solving

optimum randomized allocations in the form of algorithms that solve Stackelberg games of huge

size; ARMOR, ERASER, PROTECT, GUARDS, ORIGAMI to name a few [12] [14] [15] [16]

and they have been deployed in practice in LAX airport and Federal Air Marshalls service

(FAMS).

3 The ERASER algorithm as a starting point

In this chapter we present ERASER, the algorithm we use as inspiration during our studies.

Then we explain how to identify a Stackelberg Security Game on a network with police and

terrorists on a city. Detail an analysis of the structure of utility functions and characterize some

14

properties that let us further understand the way dynamics between player works. Finally we

show that our problem can always be modeled in compact form and how we use that to our

advantage.

3.1 A state of the Art SSG model (ERASER)

For the past few years, several studies have developed research in security games, most recent

work being ASPEN, IRIS, GUARD, PROTECT, ERASER and ARMOR programs (models or

algorithms). Plenty of previous work has already focused on arbitrary schedules or multiple

resource allocation strategies in the defender’s topologies using Stackelberg [17] [10] [16]. In

these models the attacker is the one who chooses a single specific target to attack. In our domain

we utilize an approach where the attacker’s pure strategies topology consists on a set of routes

that can be considered as attacking subsequent nodes as the defender pure strategies; another

way of looking at it is such as the attacker chooses a feasible set of nodes, with feasibility

depending on the existence of connecting arcs.

The objective of EASSGAR is to find an efficient defender allocation of resources on the

nodes of a graph as strategy , maximizing the worst case defender utility. More specifically,

we assume that the attacker will always choose the most rewarding route. The key concept we

introduce in our algorithm is the idea of not considering all the possible routes but only a subset

of them. We will later show that this reduction in routes is actually possible but only up to a

certain point.

We considered the ERASER algorithm [13] as the starting point of our research, this model

focus on a representation of the game problem in the form of a Mixed Integer Lineal Problem

(MILP) which is perfectly suited as a benchmark for further research, development and

implementation.

The ERASER algorithm (Efficient Randomized Allocation of SEcurity Resources) takes as

input a security game in compact form and solves for an optimal coverage vector corresponding

to a SSE strategy for the defender. The algorithm is a mixed-integer linear program (MILP),

presented in the equations 4 to 11.

15

Equations 4 to 7 restrict variables to represent probability distributions over possible strategies

for the defender and deterministic decisions in the case of the attacker, as previously defined.

Equations 8 and 9 guarantee the mutual best responses assumption. Imposing pure strategies for

the attacker helps allowing the leader to determine the mutual best responses in order for the

solution to be a SSE. That is, the leader can immediately know which route will be attacked

given an allocation function and, this way, guarantees that the solution is a mutual best-

response.

Equations 10 and 11 only illustrate the specific structure of utilities for each of the players and

serves for clarification purposes.

More detailed information regarding the exact interpretations for each of the equations will be

provided further in this document.

 { }

Equation 4

∑

Equation 5

 []

Equation 6

∑

Equation 7

Equation 8

16

Equation 9

With both players utilities defined as follows,

Equation 10

Equation 11

The optimal solution to the ERASER MILP corresponds to a SSE of the security game. Also,

the coverage allocations vector obtained corresponds to a leaders mixed strategy that

implements the coverage probabilities [13].

A key aspect in defining security games is identifying the space where each of the players will

play strategies. Vectors and are each mapped into nodes and possible strategies for both

players, this is, a mixed probability distribution allocation in the case of the leader () and a

pure target strategy for the follower (). Note that in the case just mentioned, the universe of

pure strategies is the same for both players, similarly as in the rock, paper and scissors game.

We introduce an extension of this concept and map different set of pure strategies for each

player, similarly the utility function is also extended in order for the problem to make sense.

This last modification implies large differences in the capability of obtaining exact optimal

results as part of an efficient algorithm. We later introduce the set of pure strategies for the

attacker as a set of connected nodes emulating a route being walked by the attacker.

3.2 An SSG model on a Network

Our proposal for the security game is a two player game between a defender and an attacker

playing on a directed graph with nodes and arcs and respectively. The attacker’s pure

strategy space is a set of Routes that could be attacked; as we will later discuss, each

element is a set of subsequent nodes, { }. The defender’s pure strategy

17

space is a subset of nodes from { } to be covered, with the number of

available security resources . In contrast with literature, we don’t necessarily assume to be

less than , because the utility function for the defender is only piece-wise continue as certain

route changes can generate utility function to change a lot, then being able to allocate N

resources in N nodes does not imply that all resources need to be allocated, this means that a

trivial solution is not always the best solution. We assume that all resources are identical and

may be assigned to any target. Associated with each node there are four payoffs defining

possible outcomes for an attack at the target, as shown in Table 1 below. Two of these payoffs

represent rewards for the attacker and the other two represent rewards for the defender. For each

player we separate in two cases, depending on whether or not the node is covered by the

defender allocations. The attacker’s payoff for uncovered attacks for node is
 , and for a

covered attack
 . In the same way we define

 and
 as the defender’s possible

payoffs on node .

 Covered Uncovered

Defender 6 -13

Attacker -10 17

Table 1

Table 1: Example payoffs for an attack on a specific target.

An important aspect of our model is that both players’ utilities depend only on the nodes present

in the attacked route and whether or not they are covered by the defender. Similarly for each

route, it does not matter if the unattacked nodes are covered or not.

The defender’s strategy space consists in assigning the resources distributed optimally, in the

sense of expected reward, to the set of nodes for protection. This in the form of a probability

distribution for the recourses defined as , indicating the probability in which one

18

of the resources is allocated in node . We assume that each node may be covered by at most

1 resource.

On a similar way as the joint schedules introduced in ERASER security algorithm [18] we

introduce as a set of consecutive nodes connected by arcs, in this case, defining an

attacked route. Each route must be a feasible set of nodes from an origin to a destination node.

The feasibility of each route is determined exclusively from the structure of the graph. For this,

we consider a set of directed arcs to be a feasible route, if each arc’s destination node is

connected to the origin node of the subsequent one and there are no cycles on the route. This

way, at the end of the final arc; the route reaches its destination node. A route can be

represented by the vector = < >ϵ {0, 1} where represents whether or not arc is

utilized in route , with a value of or in each case respectively. In our case, arc’s attacking

payoff is defined starting from its starting node, the origin node. Because each node is covered

with a probability of and is uncovered with a probability of , we define the utility

of attacking an arc , defined from to exactly as the origin node reward. By this approach,

the resulting utility function represents the rewards sum of all the involved nodes.

For a better understanding in the notations used in our work, we propose the following

formalities: and a route , we say if node is included in

of route , and if node is not part of the route. On the other hand coverage

represents the probability in which a resource is covering node .

It fits to note that we abuse the notation for denoting a strategy profile. Technically, does

correspond to a strategy by the usual literature definition, whereas the strategy that we call

doesn’t actually denote a strategy but only a route. According to the formal definition, we

should refer to attacker strategy vector as where means that the

attacked route is , similarly means route is not being attacked. In our work we only

considers attacking pure strategies where only one route is being attacked so with no loss of

generality we denote as the strategy where only route is being attacked. Formally, strategy

correspond to vector with and . For simplicity

19

purposes, and for the rest of the document, we identify an attacker strategy with the attacked

route.

For a strategy profile , the expected utilities for defender and attacker are respectively

given by:

 ∑

 ()

Equation 12

 ∑

 ()

Equation 13

We adopt a Stackelberg’s model in which the defender acts first and the attacker chooses a

strategy observing the defender’s mixed allocation strategy. Stackelberg games are common in

domains were the attackers can observe the defender’s strategy and act accordingly [10]. The

standard solution concept is Strong Stackelberg’s Equilibrium (SSE) [4] [5] [7], in which the

leader (defender) selects an optimal mixed strategy based on the assumption that the follower or

slave (attacker) will choose an optimal response, breaking ties in favor to the leader, this

situation, as previously mentioned, occurs in the context that the defender can always assign an

arbitrarily small amount of resources less to the target with most expected payoff and arbitrarily

more to another target. Hence, the follower will choose the target breaking ties in favor of the

defender. Also, because of linearity of utility functions, there always exists an optimal pure-

strategy for the attacker in the argmax of the solution of the attacker, so we restrict out attention

to this set in this paper.

Example: Consider a graph of 2 x 2 nodes (street corners), and arcs as in the figure below.

20

Graph 1

Graph 1: Basic example of a graph representation.

We consider 2 resources to be allocated between the 4 nodes. The set of feasible routes is R =

{1-2, 1-3, 2-4, 4-2, 4-3, 3-1, 3-4, 1-2-4, 2-4-3, 4-3-1, 3-1-2, 4-2-1, 3-4-2, 1-3-4, 2-1-3, 1-2-4-3,

2-4-3-1, 4-3-1-2, 3-1-2-4, 4-2-1-3, 3-4-2-1, 1-3-4-2, 2-1-3-4}. The 2 resources will be allocated

distributed on the 4 nodes depending on each of the nodes utility based on the point of view of

the defender and, at the same time, considering which route is the one which gives the most

expected payoff for the attacker.

Note: Our instance considers directed arcs instead of the non-directed arcs present in this

example. But the logic is the same as described with the exception of directions allowed.

3.3 Understanding the Reward functions

As previously presented in this work, the utility functions are a sum of lineal functions; utility

for route for the defender and attacker are both respectively:

∑

 ()

Equation 14

∑

 ()

Equation 15

21

Only the nodes included in the route affects utilities for both players. In case of the attacker this

utility also determines if he is willing or not to stay on that specific route or move to another

one. This is, given the coverage, the attacked route necessarily corresponds to the best

alternative for the attacker at all times. For this reason is that we study the behavior on the

selected route as changing the coverage function . Being more explicit, the attacker calculates

in each instance of , which route to attack. So he is also comparing the utilities of other routes

at all times. As we previously stated, the utilities for each route are linear functions that depends

on only the attacked nodes. So each attacked node adds a constant value and a linear one to the

global utility of the attacker. Assume that given , the best route for the attacker is and node k

is not included in . This means that adding extra coverage on the node will only decrease the

utility on all routes that include node and will not affect all the others. Similarly, for node

included in route . Withdrawing coverage from node j will only increase the predilection of the

attacker for routes with node .

A crucial feature of the model is that payoffs depend only on the identity of the attacked target

and whether or not it is covered by the defender. From a payoff perspective, many resource

allocations are identical. We exploit this by summarizing the payoff relevant aspects of the

defender strategy in a coverage vector that gives the probability that each target is covered .

[13]

3.4 Joint schedules coverage mapping as an allocation

vector

Many security domains, including both LAX and FAMS [13], involve allocating multiple

resources to cover potential targets, an allocation of resources corresponds to a schedule for the

defender, one of the computational issues of this was that the resources were needed to be

allocated having into consideration that the targets were flights covered by The Federal Air

Marshals Service (FAMS) inside the plane. Basically marshals had to do feasible flight

connections and end their working day hometown. Each joint schedule represented a pure

strategy consisting in an additional variable to consider. This representation is called normal

22

form, which is the natural representation of a game; variables map directly the strategy space.

Alternatively, compact form map variables into the targets, this representation is only possible if

schedule restrictions are simple. The tradeoff with representing the problem in normal form is

that a combinatorial explosion in the size of the variables needed and the payoff representation

[13]. By calculating the aggregated coverage among the nodes instead of a pure strategy, we

formulated a compact representation which is a lot more efficient in terms of resources.

We will demonstrate that a feasible compact form representation is equivalent to a normal form

representation via a lineal transformation. From now on, we only refer to compact form.

Our approach is similar to other compact representations already studied [19] [20] [13]. This

time, engineered specifically for security problems.

The pure strategies of the leader correspond to all possible coverage allocations with less than

resources among nodes. This is, like dispatching up to patrols, each of them destined to

cover a specific corner or location. Differently from the FAMS approach, in our case, the leader

strategy is not restricted to binary choices on the different targets but is able to choose a

probability distribution and behave on a nondeterministic way, aiming for a long term solution

in expectation.

Also, our model does not restrict the way the resources are distributed. This assumption

makes sense because unlike the FAMS approach, the defender need not to travel on a flight in

order to cover a target and then to come back to its origin node, here the police may allocate the

 recourses as he pleases between the nodes. With this we identify the set of defender’s pure

strategies to have ∑ (

) components. Also, as we previously stated, we impose

in order for the problem to make sense. On the other side, the follower only selects a single

route to attack. Each route is composed of several nodes and the utilities, later described, are

calculated depending on the included nodes.

Next we show how a feasible allocation vector is also a feasible lineal combination of schedules

for the defender. Thus, representing the mixed strategies we previously mentioned.

Any security game represented in compact form can also be represented in normal form

23

Let us say we have an allocation vector as output of our problem , we wish to

identify how allocations are interpreted and how this allocation corresponds to a mixed strategy

from between feasible joint schedules. We define J as a matrix with the mapping of all

possible joint schedules for the defender. As stated above these elements are vectors with up to

 components with a value of 1 and the rest components with a value of 0.

We wish to identify a vector >0 :

 { } []

Equation 16

∑

 { }

Equation 17

.

Such that,

Equation 18

Let us note that the Matrix J has a rank because each canonic vector is also a pure strategy

hence, J has complete rank.

The example below illustrates how a coverage vector corresponds to a mixed strategy, for

 resources and nodes:

24

(

)

(

)

 (

)

Equation 19

For resources and nodes:

(

)

(

)

 (

)

Equation 20

The example above illustrates the combinatorial explosion in calculations and variables just for

passing from three to four nodes. Literature denote this structure as Compact Form. In compact

form, each strategy is represented by N continuous variables. In contrast, the defender’s strategy

in normal form requires variables, while the attackers’ strategy space remains the same.

 ∑ (

)

Equation 21

25

Graph 2

Graph 2: Variables needed to describe our game in normal vs. compact form and m=3.

In case of the attacker, we are modeling a space that is similarly as big as the one in normal

form just described. We consider a space of possible routes available for the attacker to assault.

Our approach specifically considers instances with high number of routes.

4 An Efficient Allocation for a SSG with Attacked

Routes (EASSGAR) Algorithm

In this chapter we start by identifying how fast the strategy space grows in bigger instances of

the algorithm, later, we show how we use the leader-follower structure to decompose the

algorithm in two phases where an iteration process is natural. Then we define some restrictions

to utility functions in order for the problem to make sense and how to exploit the utility structure

to identify when optimal conditions are met. Finally we show the two phases of the algorithm

and which problem is solved on each of those phases.

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

90000000

100000000

1
44 87

13
0

17
3

21
6

25
9

30
2

34
5

38
8

43
1

47
4

51
7

56
0

60
3

64
6

68
9

73
2

77
5

L(N)

N

26

4.1 The Size Problem

Our work focuses on problems that cannot be solved by ERASER algorithm because of its size.

Our model considers scenarios where the follower’s pure strategy space size is of about

routes and coverage is a continuous function. In our case the size explosion of the problem

comes from the follower’s pure strategy space size, which in our case, is very big. Other works

consider target attributes and characteristic in order to predict crime [21]. Our approach is

mainly algorithmic.

For each iteration we introduce a subset . This subset of routes iteratively incorporates

other routes to be considered when solving the problem. This way we will not be required to use

all the restrictions naturally involved in the problem. We also show that our approach ends on

actually reducing the number of required routes but, in some instances, delivering only a

heuristic of the solution and not the global optimal solution we were originally looking for.

EASSGAR problems can be formulated as mixed integer programs, as in the ERASER model

described above, in which adversary strategies are represented by integer variables

with if route is attacked and otherwise. Like most security games on big networks

we identify two main computational challenges for processing information as this formulation

suggests. First, the space of possible strategies for the attacker suffers from combinatorial

explosion: an EASSGAR instance with as little as 100 nodes, goes up to possible routes.

Second, integer variables are a renowned issue for optimization [13]. Our algorithm presents a

bi-level programming model where we only consider a subset of the restrictions, aiming to a

heuristic of the solution. Like most lineal problems with lots of restrictions, in the end only a

few of those are used, thus only a subset of them is enough to compute the optimal solution. In

fact, we know that only the tight inequalities are necessary to calculate to optimum. On our case,

these inequalities represent the possible routes for the follower to attack. The complication

arises in determining which inequalities are going to end up being tight. We propose an

algorithm that initializes its execution with just one single route and iteratively add new routes

in order to converge to a reasonable solution.

27

In order to achieve the global solution, we will have to iterate, to a maximum of, as many

possible routes our graph or instance allows. Each iteration consists of considering a subset of

all possible routes and solve for the defender. More specifically, given the attacker can

select any route from the subset , the defender allocate resources assuming that is the

complete set of routes the attacker can select, hence, the defender optimizes his resources to a

subset of possible responses of the attacker. On the second level, the attacker solves the problem

of which route to attack given the allocation decided by the leader. The way to select the best

route to attack is simply by solving a minimum cost network flow (MCNF) lineal problem with

analog rewards as utility for arcs. This reflects that the attacker is always considering all

possible routes and not only a subset of them each time he selects an attacking target, given the

coverage . On iteration , if the selected route by the attacker second level problem is not in

our set we proceed by adding the new route to the set of considered ones, this is:

 { }. Nevertheless, if the selected route was already present on then, given the current

defender allocation there are no more routes in the complete problem that increases the utility

for the attacker and our algorithms stops iterating. Let us note that the final strategy

obtained by our algorithm, not necessarily corresponds to a global SSE of the problem as we

will later demonstrate.

Depending on the starting point of the iterative process, the global optimal solution could not be

met. We will later show some structural properties in the rewards that will let us understand

certain characteristics of the solutions.

4.2 A Two-staged Decomposition approach to a SSG

Our algorithm considers an approach where we solve a Stackelberg security game (SSG) with

arbitrary joint schedules and routes as attack targets. Our approach takes as input the utilities for

each node being attacked of our graph for two players, attacker and defender, and solves an

heuristic solution, corresponding to a coverage vector in form of a randomized allocation of

defender recourses in order to maximize the reward for the defender, this reward can be

presented as a social reward or, as in our case, economic costs.

28

For this, we propose an algorithm that uses a column and restriction generation approach,

decomposed in two separate steps or phases where two different problems are solved, the master

(defender) and the slave or follower (attacker) problem. The master solves for the defender

strategy , given a restricted set of columns (i.e. routes) . The objective function for the slave

is updated based on the allocation solution of the master, and the slave is solved to identify the

best new column to add to the master problem (explained in detail later). If no new column can

improve the slave´s solution, the algorithm terminates.

Algorithm 1 EASSGAR Column Generation

1. Construct initial set of routes .

2. Solve “Master Problem ”.

3. Get master coverage allocation from Master Problem.

4. Solve “Slave Problem ”

5. Get route from Slave Problem.

If r != “New Route” then

6. Return

Else

7. Update matrix P with route r.

8. Repeat from Step 2

Observation: A strategy pair returned as a result of an ending process of our

algorithm corresponds to an actual feasible strategy pair for the security game. This is, given the

Master plays , the best response for the Slave is .

29

4.3 Characterization of Strong Stackelberg’s

Equilibrium

We wish to characterize situations identifying a Strong Stackelberg’s Equilibrium (SSE) result

as the end our algorithm. For this, we must first identify the number of possible multiple SSE

and its respective common elements. We exploit structural properties of the problem and

rewards in order to characterize the solutions. By considering a special class of games where the

defender always benefits by having additional resources covering the attacked targets and the

attacker, on his side, always get less benefit attacking a more heavily covered node. Also, we

define that attacking a covered node is always prejudicial for the attacker’s utility. These

assumptions are quite reasonable on security games where being captured supposedly means

getting into jail or paying a fine; and not covering an attacked node means social damage.

Formally, we restrict payoff functions to be as

 and

 . The first

one helps for the attacker not to value more a longer route than a shorter one when deciding

optimum routes and the latter represents the necessity for defender on covering attacked nodes

and the reward of catching a delinquent when certain node is attacked, this tend to be classical

assumptions in Stackelberg games [13]. This is similar in spirit to a zero-sum assumption, but

somewhat less restrictive. It is well-known that zero-sum security games often admit more

efficient solution algorithms because of the structure we give the payoff functions. Some

algorithms exploit this class of games by using the crossed information between the rational

players as a better understanding on other player strategies [22]. Note that

 also

implies

 , this means that we are describing a subset of this, last mentioned, kind of

games, thus, usual results are mostly also valid in our domain.

4.4 Exploiting the utility structure

We proceed to further analyze the structure of our utilities functions in order to identify

characteristics that will provide useful information on defining a useful stop condition. For this,

we remember that only the attacked nodes provide utility on each player.

30

∑

(

 ())

Equation 22

We will introduce a different factorization of this same function and the parameters and

 denoting (
 -

) and (
 -

), thus factorizing we have utility functions

rewritten like this:

∑

(

)

Equation 23

∑

(

)

Equation 24

Note that the strictly better preferences conditions for the covered and uncovered utilities on

each of the players, implies that and . This concept is key because we

identify that on each node used for the selected route, that node provides utility equal to a

linear function on . With and
 as slope and y-intercept respectively in case of the

defender whereas and
 for the attacker. We also note that each route represents a

lineal function on the vector = . Let us note that each route have non-negative

gradient in the case of the defender and non-positive for the attacker. The slope for the utility in

each direction will be or for any route. It fits to highlight that a slope of 0 in

direction implies that node is not included in selected route and a slope of , implies the

opposite. This specific property is a key concept when describing the payoffs structure for each

player because we can identify a form of parallelism on all the routes from the point of view of

the payoffs function. This is, all routes that include node j will be parallel on direction j. The

same goes for routes that do not include node j.

Graph 3, displays a ceteris paribus scenario of the payoff function of coverage in node , for a

sample of routes. The graph represents attacker’s utility vs. coverage in node , with the rest

of variables fixed. Start from zero coverage , to full coverage . Note that all

31

utilities only decrease or stay constant because those routes become less attractive as the node is

more covered in expectance. We can also appreciate the decrements at two possible rates only

(
 in case node is present on the route and if not).

Graph 3

Graph 3: Ceteris paribus example of payoff functions versus node coverage.

With route equations given as follows:

Route ∆U(i) Constant

1 -3 1

2 0 2

3 -3 -2

4 -3 4

5 0 1

6 -3 2

Table 2

Table 2: Parameters for example routes on Graph 3.

As our model considers that the attacker will always choose the most convenient route for him

we can understand that in case of the attacker, and with a ceteris paribus assumption in every

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5
C

(i
)

0,
04

0,
09

0,
14

0,
19

0,
24

0,
29

0,
34

0,
39

0,
44

0,
49

0,
54

0,
59

0,
64

0,
69

0,
74

0,
79

0,
84

0,
89

0,
94

0,
99

Route 1

Route 2

Route 3

Route 4

Route 5

Route 6

32

direction except of , only up to 2 routes will only matter. For instance, in graph 3, route 4 starts

being as the most attractive route for attacking. Note that this route have a strict negative slope,

this means that this specific route includes node j. As coverage on this node increases, it

becomes less attractive as a target for the attacker. All routes that also include node j will

decrease its value at the same rate as route 4. This yields that the only way that a new route can

start being attractive is that this new route does not include node . We also conclude that given

certain coverage on node if selected route does not include node j then adding more

resources to this specific node does not produce a change on the chosen route for attack.

Analogously, if a route includes node j, then decreasing coverage will only result on a

benefit for the attacker meaning that the attacked route will remain the same because no other

route can become attractive whatsoever.

We sum up these just described characteristics of the defenders reward in Property 1 as

follows.

Property 1

Let be a feasible strategy profile for an instance of our problem. Having the

information if a node is used or not in a certain route lets us guarantee a region of coverage

where the same selected route is also a best choice for the attackers.

Equation 25

Corresponds to a feasible strategy profile

Equation 26

Corresponds to a feasible strategy profile

Where coverage correspond to the same coverage except for node , that is replaced

by instead of .

33

What we are basically saying is that if a certain route is selected this immediately implies that

within a certain region that specific selected route must also be a valid best-response kind of

strategy. This way we can calculate a region where our solution is valid; in other words, for any

feasible strategy profile , we define:

 { [] }

Equation 27

Property 1 let us assure that elements of do not change route as the best response for the

attacker, formally:

 Corresponds to a feasible strategy profile

The demonstration takes advantage of the property concluded on graph 3. We start with the fact

that we are certain on the veracity of the property if only one variable is modified.

As we previously showed, the key understanding best-responses restrictions is the reward

function of the attacker. For this reason we study how does the utility for each route changes

when we move variable . We already noted that if certain node j is not being attacked, adding

resources to it will only maintain the route reward and decrease the reward for all the routes that

do not include node . For all routes that do include node , we can decrease all the amount of

coverage we want because it will only make it more attractive for the attacker in relation to all

the other routes. Note that routes without node present no changes on the reward when

variable is modified. Clearly, other routes that include node will also increase their

reward but our model structure let us guarantee that this decrement will occur at the same rate as

on route , with this we conclude that the same route will remain being the best-response for the

attacker when we do movements as we just described.

This yields that region represents an N-rectangle where we guarantee chosen route will

remain being the selected one as a best-response.

34

4.5 Master problem

Master problem (Equations 28 to 35) calculates a probability distribution for allocating

resources from among the nodes of a graph that maximizes the defender reward.

Master problem operates directly on columns of matrix with if route includes arc

 and 0 if not. Vector describes the coverage allocation in form of a probability

distribution. Equations 31, 32 and 33 enforce the SSE condition that the attacker chooses a best-

response, mirroring similar constrains from the ERASER engine. The defender expected payoff

for route is given by ∑ (

 ()). Similarly, the attackers

expected payoff is given by constrains from equations 32 and 33. Constrain 30, 34 and 35 that

only a single route may be attacked. Let us note that last two mentioned constrains are only

active for the single route attacked whereas for all other routes the inequality

compares to which is a very large number (we used instances of M=1000*V where V is the

largest payoff from among all players). Variable is defined in a way it ensures that the

allocation of resources defines a probability distribution over them.

∑

Equation 28

Equation 29

∑

Equation 30

35

 ∑

(

 ())

Equation 31

 ∑

(

 ())

Equation 32

∑

(

 ())

Equation 33

Equation 34

 { }

Equation 35

Note that instead of using the set of arcs we utilize , where is the set of arcs including all

the arcs that goes from and to the auxiliary source and destination nodes. Let node be the

origin node and node the destination node, this is:

 { } { }

Equation 36

Equations 28, 29 and 34 restricts variable to generate a feasible allocation in the form of a

mixed strategy for resources.

4.6 Slave problem

The slave problem finds the best route, in the sense of rewards, to include in . Generally, we

should calculate reduced costs over all the routes not considered but as our approach considers a

large number of possible routes this would be very inefficient. Instead, we solve another Mixed-

integer Lineal Problem (MILP) which finds the optimum new route to include in P that

36

increases the value of the slave’s objective function. Given a coverage allocation vector

 we solve a Minimum Cost Network Flow (MCNF) problem that finds the

optimal route; in the sense of best response for the attacker. A feasible route corresponds to a

feasible flow from the auxiliary origin node to the auxiliary destination node taking into

consideration that the route should maximize utility for the attacker. Is in this step that our

model defines constrains in order for the new route to be feasible in the algorithm.

For an instance of our problem we build a graph as follows. Given a set of nodes and arcs

we create two auxiliary nodes that represent a source and a destination, and respectively.

From here, we add arcs with no utility for either player from the source node to each non-

auxiliary node and from each non-auxiliary node to the target. Then, we impose that a flow of 1

has to come out from the source node and a demand of 1 has to arrive the destination node. A

route in this context would be a set of nodes that define a routing from source to destination

passing through our graph in the most rewarding flow (one target correspond to a selection of a

set of nodes). The way a flow is defined, ensures the schedule is a feasible column to add to ,

we also say that the selected route is feasible to our graph . The capacities are all set to and

the default cost for each arc is 0. Additionally, further arc values are included in order to

represent the utility for players on the usage of each arc.

In our case we consider Nodes as the main source of rewards for each player, we simply say that

the utility for each arc is equal to the reward of the initial node, or in this case node .

Equation 37

Equation 38

Constrains 43 through 49 are meant to generate a flow of 1 from origin to destination. Constrain

50 is used as the utility function for the slave problem, meaning we are maximizing that value.

37

∑ ()

()

 ∑
()

Equation 39

∑

Equation 40

∑

Equation 41

∑

Equation 42

∑

Equation 43

Equation 44

∑

Equation 45

∑

(

 ())

Equation 46

quation 47

38

The output of this problem is the variable f that represents a route within the graph. This route

was determined by rewarding the best payoff for the attacker from among all routes. This

corresponds to the route that is the best candidate to be added to , given the coverage of the

defender. If this route was previously not considered as part of the master’s allocation problem

then, we add it to and the process iterates. Basically we are representing a situation where the

police allocate assuming they are fully aware of all the possible terrorist strategies. Then the

attackers, based on the decision made by the police, identify which is the most profitable route

from among all of them. If the route was not previously considered by the defenders, then they

add it to matrix representing as if they have that route in mind when re-allocating the

resources for coverage on the next iteration. Otherwise, if the route was already considered by

the master in the previous iteration, then no new other route can improve the solution of the

attacker computed by the master because the allocation is already considering all the best

choices for the slave.

Note that we are not declaring that a given output of the algorithm will represent an

actual SSE for the original problem. On next chapter, we illustrate a counter-example where an

output of the algorithm does not represent a global optimal solution of the problem but only a

local one.

Notably, a strategy profile obtained as output of our algorithm is not guaranteed to

comply with the 3 properties that characterize a SSE (equations 1, 2 and 3). Nevertheless, it

does always accomplish to be the best response for the attacker given the coverage, equation 2.

5 Algorithm Results Examples

Chapter 5 starts with a motivating example where optimal solution is not met as a result of the

stopping conditions of the EASSGAR algorithm. This example evidences structural properties

that let us identify situations where the optimal solution is guaranteed as a result of the

algorithm. Finally, we describe the zero-sum scenario and prove that found solutions on these

instances are always a Strong Stackelberg’s Equilibrium, or what is the same, the optimal

solution for the problem.

39

5.1 Motivating example where stopping conditions do

not meet an optimal solution

Let us consider a scenario that consists in allocating up to resources between

nodes and 3 possible routes as the available strategies for the attacker; we summarize these

conditions on graph 4 further below.

Table 3 define rewards for the defender on each of the nodes, similarly, table 4 describe rewards

for the attacker:

 Covered Uncovered

Node 1 4 -1

Node 2 2 -2

Table 3

Table 3: Rewards for the defender on counter-example.

 Covered Uncovered

Node 1 -3,2 0,8

Node 2 -2,4 0,6

Table 4

Table 4: Rewards for the attacker on counter-example.

With this structure of nodes we can define up to 3 possible routes, these routes consist in:

40

 Route 1: Node 1

 Route 2: Node 2

 Route 3: Nodes 1 and 2

Graph 4 below shows a visual representation of the routes present in our example. Each route

consists in a different set of subsequent nodes.

Graph 4

Graph 4: Visual representation of a 2 node scenario and available routes.

The attacker rewards define the regions where each of the routes is the one preferred by the

attacker, given the coverage . Equations 48, 49 and 50 display attacker’s utility function for

each of the 3 routes.

41

Equation 48

Equation 49

Equation 50

These utilities determine which of the routes will be preferred by the attacker for each

allocation. Calculating the regions where each of these routes gives the maximum return for the

attacker, we divide the area as displayed in graph 5, below. Each slope represents a different

preferred route.

Graph 5

Graph 5: Attacker’s utility function example.

Similarly, the utility structure for the defender can be better understood with graph 6, below.

Each piece of surface represents the utility obtained by considering the route with most return

for the attacker.

42

Graph 6

Graph 6: Defender’s utility function example.

In this case, the exactness of the solution depends exclusively on the initial conditions arbitrarily

set at the beginning of the algorithm. For the example’s sake, we start the algorithm with values

 and . This yields to incorporate route 3 as the initial one. After first iteration the

master returns a coverage of and . Similarly, the slave verifies if a new route

applies to be included. In this case route 2 is incorporated to the algorithm. Finally, the master

solves again to deploy a coverage of and . Finally, the slave verifies that no new

route qualifies to be added, therefore, the algorithm stops and delivers the final coverage and

route attacked as and , with a defender’s utility of 2. Nevertheless, we can

verify the optimum values are and with a defender utility of 3. Thus, the

obtained strategy profile is not an optimal solution for the problem, more specifically, found

solution is does not correspond to a SSE.

The process just described can be further understood with graph 7, just below:

43

Graph 7

Graph 7: Iteration process described as a counter-example.

On the other hand, if we define as initial conditions the coverage of and . Then

the algorithm iterates as follows. Master deploys a coverage of and . Slave

answers by adding the route 1 to the problem. Finally the master returns and

which is the value that returns the most output for the defender and as we previously knew,

hence we reached a SSE or optimal solution of the problem.

The example just described has a direct implication that the algorithm does not necessarily ends

on an optimum solution of the problem. For this reason is that we need further analysis and

details on how the utilities and rewards are structured in order to understand convergence issues.

On next chapter we present the zero-sum scenario and prove that EASSGAR find a SSE in this

context.

44

5.2 Zero-Sum Utilities scenario

For our studies so far, the only restrictions made for the rewards data is that for each node ,

 and

 . Zero-sum describes situations where the adding

all players rewards, and consequently subtracting the costs, it always sum up to zero. In our

case, this will represent a dynamic where the reward obtained by the defender is the exact

opposite from the one obtained by the attacker for the same action. Equations 51 and 52

illustrate the zero-sum condition:

Equation 51

Equation 52

This gives the following intuition: money society saves when covering a possible attacked spot

is the exact amount of money that would be stolen by a thief in that node. Also, being captured

on a certain node gives the society the same amount of utility lost by the captured attacker. We

extend these implications not only to nodes, but also for routes. It is very easy to verify that for

any feasible strategy profile , utility for both players will be the exact opposite. As a

direct implication of equations 51 and 52; equation 53 shows utility for the defender at the left

side; and the additive inverse utility of the attacker on the right side:

∑

(

 ()) ∑

 ()

Equation 53

Since attacker’s utility is a continuous function, is direct that defender’s utility will be

continuous as well. This last aspect is a key concept because the master will have an actual idea

of what directions the utility functions grow and where not, whereas the general case supports

scenarios where defender’s utility presents no monotony whatsoever. We further discussed and

illustrated this case with a counter-example on previous chapter in this same work.

45

Our algorithm considered 2 phases: one where the master proposes a coverage allocation, and

another one, where the slave proposes a better route, in case this route exists. This iterative

process is very similar to the Newton method for finding optimal values of a function [23].

Basically the master moves the coverage in the most rewarding direction, as utilities are lineal

functions the gradient could be represented by vector
 ; with zeros in directions

corresponding with non included nodes (i.e.) and a slope of for directions

involving nodes included in (i.e.).

Let us note that utility for the defender is not only continuous but also non-decreasing as our

gradient evidences.

We now prove that within the context of a zero-sum scenario, the algorithm ends on a SSE for

the security game. This is a global exact solution and not only a heuristic as in the general case.

Theorem 1

Given a zero-sum instance of the EASSGAR algorithm with resources, let be the

resulting strategy profile obtained as the output after the stopping conditions of the algorithm are

met. The following affirmation is true:

Strategy profile corresponds to a SSE of the security game

As cases with and are both trivial, further on we suppose . Clearly

the first one only allows for no resources to be allocated and the latter plays a full coverage

strategy. We justify last affirmation by mentioning the non-decreasing properties of defender’s

utility.

Proof

To prove optimality, we need to verify whether or not it accomplishes the SSE

conditions described in equations 1, 2 and 3. As the slave problem solves the MCNF that

obtains the most reward from among all of possible routes, is clear that attacked route is a best

response to coverage . Besides, defender’s reward continuity and zero-sum payoffs directly

imply ties are never needed to be broken in favor of the leader, because there can be no ties. If

46

two routes have the same utility for the attacker, then they provide the same utility for the

defender.

We only need to prove is that provides the most benefit possible in the game for the defender,

i.e. equation 1. By contradiction, we start supposing there is another strategy pair

that returns a better reward for the defender than .

We define and as value of the defender’s utility for strategies and

respectively. Formally we say:

 ∑

(

 ())

Equation 54

 ∑

(

 ())

Equation 55

Note that by defining , we supposed .

On the given case that routes were exactly the same, this is . This would mean that when

the master problem was solved, route was already being considered as part of available

routes. Also, the only way that no new route was proposed for including on last iteration is that

after allocating resources on the nodes, the attacker couldn’t find a better route for him to

attack. Or what is the same, and also form a feasible strategy pair as route plays as a best

response for coverage . This yields that no greater reward could be feasibly obtained on route

then should at least provide the same reward than . This result contradicts

the hypothesis so we conclude that both routes are necessarily different, .

Utility for the defender can be understood as the minimum of a family of linear functions, this

kind of functions are known to be concave [24] This fact implies that the plane defined starting

from of the utility function will correspond to an upper bound for the defender’s reward.

Besides, since , then the plane starting from on route complies:

47

Equation 56

Note that the left side only includes route to make a feasible allocation.

We say
 is the gradient in direction of on point . Also, for simplicity issues

when calculating the gradient, we extend the definition of derivative on by utilizing the

concept of lower derivative when inconsistencies are found, formally:

Equation 57

Let us note that this limit always exists and is also unique for this kind of functions. With

and as the i-th canonic vector of . Note that linear plane defined on equation (56)

corresponds exactly to the utility function for the defender allocating resources on when

attacked route is . Even thought strategy pair is not feasible, it would at least imply

that the attacker would have proposed a new route to incorporate. Evidently, defender would

have strictly preferred to play than because it would have provided more reward for the

defender, in fact: . This contradicts the optimization

process done by the master problem, hence, it wouldn’t have met stop conditions as we initially

assumed and additional routes would have been proposed. Then we conclude there are no other

feasible solutions that increase the defender’s utility.

Now that we have verified that conditions shown in equations 1, 2 and 3 are fully met for any

instance of a zero-sum running on EASSGAR, thus it corresponds to a SSE for the problem.

6 Experimental results

The EASSGAR algorithm has been tested on several scenarios using real world networks

representing Santiago and simple grids with randomized utilities for testing purposes. We put

special attention to Santiago’s 119 nodes network were we set up a real world data set provided

48

by the results of a clustering analysis to Santiago’s downtown between 2002 and 2004 obtained

from 1
st
 Police Station at Santiago, Chile [26]. It is important to note that the problem solved in

[26], which motivates the instances used here, differs from this thesis as it does not consider a

route focus in the modeling. Our computational results are separated in three groups. The first

explores the solution time sensitivity of the EASSGAR algorithm as we change the problem size

and number of resources. Our second set of results present a Zero-Sum instance for downtown

Santiago; we recreate experiments with different amount of resources and show how they yield

different results. Finally, or last set of results compare the solution time and quality of our

method with a previously existing algorithm (ERASER-C) which has to consider the full set of

possible routes for the attacker.

Construction for the zeros-sum scenario utilities data was made by establishing that the expected

reward for attacking an uncovered node was exactly the average stolen on that node; whereas

the cost of not covering an attacked node is that same amount of average money stolen.

Similarly, capturing and being captured was defined as saving or losing the total amount of

money historically stolen in that corner for each player respectively.

We summarize this payoff structure for attacked node on table 5 below:

 Covered/ Capture Uncovered/ Steals

Defender

Attacker

Table 5

Table 5: Data structure for the Zero-sum scenario.

With this we present results based on performance type, quality of solutions and amount of

iterations needed. Our baseline for comparing EASSGAR is the RUGGED algorithm [27].

RUGGED algorithm is very similar to ours in the sense of modeling a Stackelberg security

49

problem where the attacker moves in the form of routes, the main difference is the structure of

utilities. In RUGGED case, the utility function is route oriented whereas in our case is node

oriented.

Santiago´s network structure for nodes is displayed on graph 8 below,

Graph 8

Graph 8: X vs. Y representation of Santiago’s network numbered nodes.

The arcs structure was constructed manually based on a www.mapcity.cl map (available on

graphs 17 and 18 further ahead in this document). Also note that it is only important to be aware

of which nodes are used in each route and not the order of these nodes. A same set of nodes in

different order does not change utilities value for either player whatsoever. For that reason,

technically we refer to those equivalent routes as the same route. We are interested in differences

where routes are distinguished by the involved nodes and not the order in which the route is

walked.

1

2

3
4

5

6

7

8 9

10

11

12

13
14

15
16

17

18

19

20

21 22

23

24 25 26 27

28
29

30

31 32

33

34

35

36

37

38

39
40

41

42

43

44

45

46 47 48

49

50

51

52

53

54

55
56 57

58 59
60

61
62 63 64

65

66

67

68

69

70

71

72

73 74

75

76

77
78

79

80
81

82

83

84

85

86

87

88

89

90

91
92
93

94

95

96
97

98

99

100

101

102 103 104

105

106

107
108

109

110 111

112

113

114
115

116

117
118

119

6298000

6298200

6298400

6298600

6298800

6299000

6299200

6299400

6299600

6299800

345500 346000 346500 347000 347500 348000 348500

Network of Santiago's downtown

Y

http://www.mapcity.cl/

50

6.1 Algorithm Dynamics Analysis

As a benchmark, we generated an instance of our algorithm on a grid of 10x10 nodes with

directed arcs that goes from left to right and down to up. This is, routes are set of subsequent

nodes from node (1, 1) up to node (n, n) where on each node, attacker can move up or right.

With this instance we can compare results obtained between our EASSGAR algorithm and the

complete problem. Both problems were solved with m=3 police resources.

In order to analyze the algorithm and its scalability capabilities we generated random instances

of a network with different number of nodes and resources. All the data used for these instances

was randomly generated complying with the motivational conditions described in chapter 4.3.

The graphs correspond to a squared grid of nodes. See graphs 9 and 10, below.

Graph 9

Graph 9: Visual representation of the testing grid for n=6.

51

Graph 10

Graph 10: Visual representation of the testing grid for n=9.

On each instance we generated scenarios just like the ones displayed above. For each node

random feasible numbers were generated as utility for each of the players. CPU processing and

user times were registered for each of the scenarios tested.

We noted an increase in the time of processing was positively correlated with the number of

nodes and also with the number of resources. First and as expected, more nodes meant longer

processing times. Similarly, as more resources were considered, a bigger number of iterations

were needed in order to meet stopping conditions, hence, longer times. All data present in

graphs below correspond to data collected during our studies. For the complete data set used,

see Annex 1.

52

Graph 11

Graph 11: Time vs. Resources N=25.

Graph 12

Graph 12: Time vs. Resources N=100.

0,06 0,81 2,62 3,61
12,9

152,62

0

20

40

60

80

100

120

140

160

180

1 3 5 10 15 25

Se
co

n
d

s

Resources (m)

Time vs. Resources N=25

total time

0,19 0,94

6,5

14,28

36,05

0

5

10

15

20

25

30

35

40

1 3 5 10 15

Se
co

n
d

s

Resources (m)

Time vs. Resources N=100

total time

53

Graph 13

Graph 13: Time vs. Resources N=900.

Graphs 11, 12 and 13 displays the increment of time needed as more resources are

available. This is somehow expected, because allocating more resources generates a

bigger feasible coverage region on strategy space for the defender, implying that more

route restrictions will probably be tight in the attacker’s problem.

Our studies revealed that increasing the number of available resources, increases the

amount of iterations needed by EASSGAR in order to meet stopping conditions. This

result yields that more routes are needed before achieving stopping conditions when more

resources are available. Note that this result is consistent with structural properties

described in chapter 4. More specifically, a big number of resources imply a big feasible

region of routes for the attacker to consider. Thus, the algorithm needs to generate more

routes in order to propose, at least, a local optimal solution for the algorithm.

0,51 13,44 16,46 59,65 72,7

6224,85

0

1000

2000

3000

4000

5000

6000

7000

1 3 5 8 10 20

Se
co

n
d

s

Resources (m)

Time vs. Resources N=900

total time

54

Graph 14

Graph 14: Iterations vs. Resources (aggregate)

Our instances include scenarios with data sets from 25 to 2500 nodes and from 1 to 25

resources. The greatest number of iterations was 499 with N=64 and m=25. A scenario

with those characteristics has up to possible routes. Instead, we considered only 499

restrictions for describing routes and not the original , greatly reducing the amount of

resources needed for a problem of this size.

Executions for scenarios of around 10.000 or more nodes were automatically canceled by

the system for resource reasons.

R² = 0,6699

-100

0

100

200

300

400

500

600

0 10 20 30

It
e

ra
ti

o
n

s

Resources

Iterations vs. Resources (aggregate)

Routes

Linear (Routes)

55

Graph 15

Graph 15: Time vs. Nodes m=3.

Graph 16

Graph 16: Time vs. Nodes m=5.

0,81 0,53 0,94
8,23 3,71

13,44
26,3

140,33

0

20

40

60

80

100

120

140

160

25 64 100 225 400 900 1600 2500

Se
co

n
d

s

Nodes

Time vs. Nodes m=3

total time

0,53 0,94
8,23 3,71

13,44

26,3

140,33

0

20

40

60

80

100

120

140

160

64 100 225 400 900 1600 2500

Se
co

n
d

s

Nodes

Time vs. Nodes m=5.

total time

56

6.2 Real World-sized problem

As we previously denoted, we run our algorithm with real world data on Santiago, Chile

downtown considering 119 nodes, 195 arcs and the amount of money stolen between 2002 and

2004 on each corner of the considered neighborhood. Scenarios with zero-sum instances with

the utilities schemes as displayed on tables 6 and 7 where the considered ones. We tried

scenarios with 1, 2 and 3 resources. Initial Data represents a crime scenario displayed by the

following graph.

Graph 17

Graph 17: Visual representation of Santiago’s downtown crime scene. Period: 2002 – 2004

Colored area indicate the frequency of attacks, with dark red representing more frequently

attacked areas and white the least attacked ones.

57

It’s interesting to note that frequency of attacks is highly correlated with the existence of ATMs

(Automatic Teller Machines) nearby. The following graph illustrates this by displaying the

distribution of ATMs on our studied region.

Graph 18

Graph 18: ATMs locations on Santiago’s downtown. Source: www.publiguias.cl

It can be noted in graph 19 by superposing graphs 17 and 18 a sense of how crime is distributed

in relation to the ATM density. Previous work has further studied several ways on constructing

payoffs and modeling expected crime based on attributes from the environment (ATMs,

Drugstores, Government dependencies, etc) [21]. Our contribution is mainly algorithmic and

this kind of properties analysis is focused on the implementation and calibration of the model.

For this, we didn’t consider ATMs distribution at any point of our studies and only use it to

grasp a sense of social behavior.

58

Graph 19

Graph 19: Overlap of ATMs distribution and crime frequency on Santiago’s downtown.

59

As a preliminary analysis of the situation, we ran an instance of our algorithm with no defending

resources, this is m=0.

Graph 20

 Graph 20: Route delivered by EASSGAR in non-zero-sum and zero-sum instances, m=0.

As can be appreciated, there is more than one non connected route on graph 20. Nevertheless, in

our modeling, this is considered as a single route. This situation becomes triggered when we

defined the attacker’s lineal problem (slave) feasibility constrains (equations 40 – 45). As outputs

evidence, a single route complies with the “origin to destination” condition of the LP, we name

this as the main route, plus circular routes of nodes not used in this main origin to destination

route. These circular routes correspond to positive utility cycles for the attacker on certain regions

of the map. This is, a sequence of consecutive nodes not involved in the main route that generates

a positive amount of utility to the attacker.

60

Graph 20, above displays a total of 10 routes, this suggest that 10 different areas concentrate

crime and work as independent group of individuals. We think that this situation provides a

closer to reality approach, in the sense that crime is not a single force but an aggregate of the

actions of several individuals that can work independently.

As we assign more resources to protect the city, is natural for attackers to benefit less from their

crime, hence, obtaining a lower utility. If we assign one resource to each node, the attacker

would perceive the worst case scenario where each node returns the lowest utility possible

evidently making the city a lot less attractive for the attacker to attack. As more police forces are

present in the city, there will be less cycles that provide a positive utility for the attacker.

Comparing the output of the algorithm with the current crime scene at Santiago’s downtown we

can note that routes returned as an output of EASSGAR are consistent with more heavily mugged

regions in the map. With this we can have some sort of confirmation about an actual relation

between the utilities for the attacker and the data we chose for that same purpose in our model,

see graph 21 below.

Graph 21

61

Graph 21: Overlap between Santiago’s downtown crime scene vs. EASSGAR output at zero-sum instance, m=0.

6.2.1 EASSGAR Santiago’s Downtown results, m=1, 2 and 3.

Results obtained as executions of the instance presented in this section are presented on graphs

below. Each graph displays an output of the zero-sum scenario implementation of the algorithm.

As we recently denoted, we will be considering instances with 1, 2 and 3 police resources each

time.

Graph 22

Graph 22: Route delivered by EASSGAR in zero-sum instance, m=1.

The returned solution for the m=1 instance consisted on 1 main route and 2 circular ones. The

amount of iterations needed was 238, total user elapsed time was 4198.19 seconds and system

elapsed time was 24.56 seconds; utility for the defender and attacker was -4455000 and 4455000

respectively.

62

Graph 23

Graph 23: Route delivered by EASSGAR in zero-sum instance, m=2.

Solution for the m=2 instance consisted on 1 main route and 2 circular. Amount of iterations

needed was 515, total user elapsed time was 27751.7 seconds and system elapsed time was

90.6352 seconds; utility for the defender and attacker was -1,529,080 and +1,529,080

respectively.

63

Graph 24

Graph 24: Route delivered by EASSGAR in zero-sum instance, m=3.

Solution for m=3 instance consisted on 1 main route and no circular ones. Amount of iterations

needed was 915, total user elapsed time was 41056.9 seconds and system elapsed time was

363.232 seconds; utility for the defender and attacker was 3143.97 and -3143.97 respectively.

Table 6, below, summarizes total utility for the defender (the police) for each case. As can be

appreciated, more resources increase utilities for the defender.

m Defender Utility

1 -4455000

2 -1529080

3 3143.97

Table 6

Table 6: Defender´s final utility, m=1, 2 and 3.

Graph 25, below, indicates amount of time required to process each iteration depending on the

number of routes present at that time.

64

Graph 25

Graph 25: Time to process iterations depending on the number of routes.

Marginal time on processing each iteration have polynomial dependency number of routes. With

this, is clear that trying to solve the problem for all possible routes with no intelligent approach

would take a huge amount of time and, probably, crush before it could finish.

6.3 Comparing Results

We generated an instance of our problem on a 8x8 grid (64 nodes). Utilities were randomly

generated considering zero-sum conditions and a total of 3 security resources were made

available. Each route is defined as sequences of consecutive nodes were attackers can only

move right or up. More specifically, attackers begin on node (1, 1) and finish on node (8, 8)

where only increments of 1 on a single coordinate are allowed for subsequent nodes. The

amount of routes with this characteristic is:

(

)

This instance was solved with two different methods; EASSGAR and via standard linear

programming on a problem with 3432 restrictions. The complete problem with the whole set of

0

100

200

300

400

500

600

1

67

13
3

19
9

26
5

33
1

39
7

46
3

52
9

59
5

66
1

72
7

79
3

85
9ti
m

e
 o

n
 it

e
ra

ti
o

n
 (s

e
co

n
d

s)

Number of routes on iteraion

Time on iteration vs. Number of
routes

Time on iteration vs.
Number of routes

65

restrictions is equivalent to solving the problem with the ERASER-C algorithm presented on

chapter 5 on this same document.

The complete problem took 8.6566 seconds of system processing time versus 0.15 seconds

registered by EASSGAR on the same instance. As expected, solutions were the same on both

methods (6.14607 and -6.14607 for the attacker and defender respectively). Also, EASSGAR

needed 19 iterations before finding the optimal solution; we solved a problem of 3432

restrictions but instead, we never needed the computing resources for solving a problem more

complex than 19 restrictions. This yields that both time and computing resources required can

be reduced when using the EASSGAR algorithm on problems of a bigger scale.

It fits to note that we tried the same example for an instance of 100 nodes. EASSGAR took

0.036994 seconds; in contrast, the complete problem was kept running for more than one week

looking for the solution when this document was finished but the process has not delivered a

solution yet.

Another instance with 25 nodes was also tried but in this time processing time was longer for

EASSGAR rather than solving the complete problem. In this case the complete problem

consisted on 70 routes taking 0.003999 seconds to reach the solution where EASSGAR made 7

iterations reaching the same solution but in 0.036994 seconds.

Table 7 below summarizes presented results:

Table 7

Table 7: Performing results for EASSGAR and the benchmark.

Nodes
EASSGAR processing

time (seconds)

Benchmark processing

time (seconds)

Total

Routes

Number of

EASSGAR

iterations

25 0.36994 0.003999 70 7

64 0.15 8.6566 3432 19

100 0.087986 N/A 48620 17

66

6.4 Hardware Details

Our tests and executions for EASSGAR algorithm were programmed in AMPL using the CPLEX

solver. The full license for the AMPL software was located on University of Southern California

USA, Los Angeles, California. The working environment consisted of two Dell Workstations

where we could remotely log into: feet.usc.edu and pies.usc.edu. Logging into either gave us

access to our account and the optimization software. The description of each machine was as

follows:

Hardware Dell Workstation

CPU Dual Intel(R) Xeon(TM) CPU 3.20GHz

Memory 2 GB RDRAM

Operating System Red Hat Enterprise Linux 3

7 Conclusion and Future Work

Optimally scheduling defender resources in a network-based environment is an important and

challenging problem. Especially in times where security in urban road networks, computer

networks, and other transportation networks is of growing concern, requiring the development

of novel scalable approaches. Domains similar in size as the one we presented in this work have

extremely large strategy spaces; a graph with just 50 nodes and 6 resources can have millions of

pure strategies for both players. As a result of this work, we successfully developed an

algorithm (EASSGAR) which proposes an efficient approach at solving large scale security

problems. Our work started characterizing structural properties of the domain in order to

identify scenarios with exact results. Further study of the structural properties for utility

functions could provide better criteria on the iteration process and, therefore, have a better

margin of error from the optimal solution than our algorithm and lower processing times. We

also believe that modeling the attackers differently and considering time windows in the

optimization could further improve the similarities between the model and reality in this

67

police/terrorist context. This form of approach can represent that people move differently

depending the time of day and the day of week, which considers that interests and people have

different behavior at different times of the day.

Further research should consider the points of view just mentioned when analyzing optimality

conditions. Also studies of sensibility of solution when payoffs change, this could give the

algorithm a stronger theoretic backup and, consequently find more properties to support the

algorithm.

Our studies successfully solved scenarios for up to 2500 nodes. We noted an increase in

processing times as the number of police resources and nodes increases; this is expected because

the feasible strategy space for the attacker is directly related to number of resources, with this,

more routes are necessary to be considered before stopping conditions are met.

EASSGAR can greatly reduce amount of resources needed for solving problems with a lot of

restrictions. It easily reduced problems to 10% of their size but in some cases EASSGAR takes

longer to compute the solution than the benchmark. Future studies are required in order to

exploit these properties and keep on developing method that allow us to improve the use of

computational resources and be able to determine in which cases is more efficient to use special

solving methods or when to solve the standard problem.

Finally, algorithm calibration is one of the bigger issues when implementing the algorithm on

real life instances. Wrong valorizations in the form of inaccurate utilities fail to represent the

way attackers evaluate their attacking routes, thus, providing misleading solutions. This way

found solutions probably correspond to an inefficient allocation strategy. Additional analysis of

data could be realized by considering qualitative attributes with tools like data mining or logistic

regressions.

Further studies could aim to find SSE’s in any kind of data structure and not only on zero-sum

situations. There are no reasons to believe that terrorists and police forces have exactly opposite

motivations for crime. Also, considering non zero-sum scenarios could allow us to model crime

in a more accurate way.

68

8 Bibliography

[1] Desaulniers, Desrosiers y Solomon, Column Generation, New York: Springer, 2005.

[2] T. von Stengel, Game Theory, 2001.

[3] Osborne, «An introduction to Game Theory,» Oxford University Pres USA, 2003.

[4] G. Leitmann, «On Generalized Stackelberg Strategies,» Optimization Theory and

Applications, pp. 637-643, 1978.

[5] A. a. H. Breton, Sequential Stackelberg equilibria in two-person games, 1988.

[6] Oldser y Basar, Dynamic noncooperative Game Theory, 1995.

[7] v. S. a. Zamir, «Leadership Commitment to mixed strategies,» CDAM Research Report

LSE-CDAM-2004-01, 2004.

[8] C. a. Sandholm, «A Technique for Reducing Normal-Form Games to Compute a Nash

Equilibrium,» AAMAS, pp. 537-544, 2006.

[9] O. a. Rubinstein, A Course in Game Theory, MIT Press, 1994.

[10] Paruchuri, Pearce, Marecki, Tambe, Ordoñez y Kraus, «Efficient Algorithms to Solve

Bayesian Stackelberg Games for Security applications,» AAAI, Vols. 1 of %21559-1562,

69

2008.

[11] Paruchuri, Pearce, Marecki, Tambe, Ordoñez y Kraus, «Playing games with security: An

efficient exact algorithm for Bayesian Stackelberg games,» AAMAS, Vols. %1 of %2895-

902, 2008.

[12] Jain, Tsai, Pita, Kiekintveld, Rathi y Ordoñez, «Software Assistants for Randomized

Patrol Planning for the LAX Airport police and the Federal Air Marshals Service,» Vols.

%1 of %2267-290, 2010.

[13] Kiekintveld, Jain, Tsai, Pita, Tambe y Ordonez, «Computing Optimal Randomized

Resource Allocations for Massive Security Games,» AAMAS, pp. 689-696, 2009.

[14] An, Pita, Shieh, Tambe, Kiekintveld y Marecki, «GUARDS and PROTECT: next

generation applications of security games,» Vols. %1 of %231-34, 2011.

[15] Jain, Kardes, Kiekintveld, Tambe y Ordoñez, «Security games with arbitrary schedules: A

branch and price approach,» 2010.

[16] Pita, Jain, Ordoñez, Portway, Tambe, Western, Paruchuri y Kraus, «Using Game Theory

for Los Angeles Airport Security,» 2009.

[17] Basilico, Gatti y Amigoni, «Leader-Follower Strategies for Robotic Patrolling in

Environments with Arbitrary Topologies,» 2009.

[18] An, Jain, Tambe y Kiekintveld, «Mixed-Initiative Optimization in Security Games: A

Preliminary Report,» 2011.

70

[19] Jiang y Leyton-Brown, «A Polynomial-Time Algorithm for Action-Graph Games,» 2006.

[20] Koller y Milch, «Multi-Agent Influence Diagrams for Representing and Solving Games,»

vol. 45, nº 181-221, 2003.

[21] M. P. J. Alegría, Análisis del fenómeno delictual utilizando un modelo de regresión

logística en base a atributos, Santiago, Chile: Universidad de Chile, 2011.

[22] Luce y Raiffa, «Games and Decisions: Introduction and Critical Survey,» 1957.

[23] Fletcher, «Practical methods of optimization,» 1987.

[24] Gajardo, Introducción al Analisis Convexo, Universidad de Chile, CNRS, 2006.

[25] H. Bargera, «http://www.bgu.ac.il/~bargera/tntp/,» 2011. [En línea]. Available:

http://www.bgu.ac.il/~bargera/tntp/. [Último acceso: 15 09 2011].

[26] J. Jara, «Modelo de asignación de recursos policiacos en la vía pública,» University of

Chile - Dept. of Industrial Engineering, Santiago, 2011.

[27] Jain, Korzhyk, Vanek, Pechoucek, Conitzer y Tambe, «A Double Oracle Algorithm for

Zero-sum security games on graphs,» AAMAS, 2011.

71

9 Annex 1

Coordinates and original data by node regarding Santiago´s downtown crime scene between

2002 and 2004.

Node Number X Y Total Declared Times Attacked Average Stolen

1 1644,0 1041,0 1.422.302$ 10 142.230$

2 1114,6 276,8 13.322.385$ 149 89.412$

3 1996,7 871,2 11.437.488$ 134 85.354$

4 1980,0 957,0 2.117.108$ 23 92.048$

5 1284,0 1136,0 1.290.745$ 17 75.926$

6 981,0 231,1 18.128.856$ 239 75.853$

7 1495,0 524,0 10.748.449$ 121 88.830$

8 348,0 1458,2 5.206.209$ 48 108.463$

9 435,0 1438,0 2.747.952$ 31 88.644$

10 1188,8 659,0 6.422.773$ 26 247.030$

11 1242,9 804,8 4.676.387$ 37 126.389$

12 1085,4 385,1 3.554.842$ 49 72.548$

13 1032,0 771,9 3.038.149$ 34 89.357$

14 1048,1 646,5 3.847.691$ 36 106.880$

15 1016,4 906,1 1.281.509$ 14 91.536$

16 1876,5 828,5 12.960.093$ 144 90.001$

17 1399,0 451,0 2.327.934$ 18 129.330$

18 596,0 101,3 8.053.155$ 114 70.642$

19 1167,0 283,0 2.213.830$ 17 130.225$

20 1147,0 924,2 3.372.773$ 20 168.639$

21 726,0 1287,0 4.509.178$ 50 90.184$

22 1056,2 1275,2 1.046.659$ 12 87.222$

23 988,7 1122,0 2.296.466$ 27 85.054$

24 488,0 957,1 6.897.970$ 80 86.225$

25 1240,2 937,9 1.840.500$ 10 184.050$

26 1847,0 905,0 2.642.802$ 18 146.822$

27 1492,8 904,2 2.072.792$ 12 172.733$

28 491,7 67,8 4.244.766$ 52 81.630$

29 905,5 197,2 5.099.086$ 56 91.055$

30 1065,3 511,0 1.868.210$ 21 88.962$

31 734,4 159,2 6.540.703$ 81 80.749$

32 854,8 195,0 18.984.510$ 211 89.974$

33 1247,0 993,0 1.280.500$ 11 116.409$

34 1207,0 298,0 2.214.075$ 13 170.313$

35 378,0 810,1 6.029.764$ 67 89.996$

36 999,0 1031,0 1.984.762$ 14 141.769$

37 1444,6 863,3 3.522.009$ 27 130.445$

38 1311,6 726,3 988.453$ 10 98.845$

39 1987,0 913,0 6.900.691$ 91 75.832$

40 504,9 830,4 14.024.302$ 119 117.851$

72

41 600,9 132,5 37.139.050$ 442 84.025$

42 1298,8 1210,3 975.207$ 10 97.521$

43 63,5 259,1 1.878.096$ 17 110.476$

44 115,3 0,1 5.565.590$ 69 80.661$

45 918,1 629,1 6.305.751$ 57 110.627$

46 361,0 937,8 6.147.820$ 63 97.584$

47 615,4 976,9 3.078.718$ 27 114.027$

48 739,0 991,1 2.624.589$ 35 74.988$

49 940,6 497,0 3.916.562$ 41 95.526$

50 758,0 867,9 4.502.606$ 52 86.589$

51 779,1 734,7 10.967.576$ 66 166.175$

52 567,7 322,4 23.509.606$ 269 87.396$

53 668,9 594,2 5.891.577$ 65 90.640$

54 449,0 309,0 28.581.065$ 149 191.819$

55 554,1 449,8 16.998.535$ 170 99.991$

56 650,7 330,8 4.866.082$ 39 124.771$

57 828,0 354,0 6.665.838$ 56 119.033$

58 797,0 611,8 8.572.416$ 73 117.430$

59 537,9 577,4 22.443.305$ 240 93.514$

60 523,0 703,1 13.115.621$ 151 86.858$

61 409,8 559,8 28.272.543$ 88 321.279$

62 686,9 467,4 4.824.893$ 51 94.606$

63 812,3 481,0 5.289.756$ 48 110.203$

64 431,0 434,0 5.606.353$ 53 105.780$

65 284,8 541,6 4.985.257$ 41 121.592$

66 394,0 684,0 4.560.362$ 41 111.228$

67 356,0 69,2 5.704.428$ 64 89.132$

68 320,0 291,9 1.236.073$ 15 82.405$

69 633,0 460,0 1.758.002$ 15 117.200$

70 267,1 671,0 2.486.791$ 28 88.814$

71 941,4 230,1 1.778.258$ 24 74.094$

72 539,0 113,0 1.979.009$ 30 65.967$

73 704,0 338,5 5.830.204$ 51 114.318$

74 961,0 369,0 3.226.677$ 43 75.039$

75 651,1 722,0 5.152.315$ 57 90.391$

76 630,0 852,8 2.803.753$ 27 103.843$

77 556,5 395,2 2.490.742$ 17 146.514$

78 548,0 495,1 1.103.925$ 12 91.994$

79 900,6 755,0 5.834.678$ 45 129.660$

80 904,0 362,0 1.984.349$ 13 152.642$

81 302,3 416,8 2.625.539$ 27 97.242$

82 528,9 638,8 910.175$ 11 82.743$

83 886,2 885,2 1.668.725$ 15 111.248$

84 244,0 39,0 14.375.211$ 177 81.216$

85 864,6 1009,8 898.745$ 12 74.895$

86 586,0 221,1 1.992.715$ 16 124.545$

87 257,2 792,9 2.160.698$ 11 196.427$

88 201,5 275,0 2.727.167$ 35 77.919$

89 704,9 1194,4 719.669$ 12 59.972$

73

90 332,0 1396,0 10.961.943$ 124 88.403$

91 601,7 1100,2 1.425.026$ 26 54.809$

92 713,9 1229,0 1.129.975$ 18 62.776$

93 717,8 1139,2 3.594.930$ 41 87.681$

94 472,1 1084,6 14.916.511$ 185 80.630$

95 321,0 1260,0 3.872.171$ 35 110.633$

96 344,0 1062,0 4.661.375$ 56 83.239$

97 460,1 1172,6 6.225.233$ 83 75.003$

98 112,0 772,0 1.536.870$ 19 80.888$

99 585,8 1181,8 2.767.116$ 31 89.262$

100 312,6 1320,0 13.469.926$ 157 85.796$

101 596,1 1137,1 2.171.567$ 16 135.723$

102 544,0 1335,0 2.203.369$ 33 66.769$

103 450,2 1301,0 7.734.142$ 82 94.319$

104 578,0 1265,0 3.891.144$ 33 117.913$

105 81,1 1017,5 5.689.523$ 14 406.395$

106 426,8 1306,0 3.366.018$ 35 96.172$

107 144,1 523,7 6.068.715$ 55 110.340$

108 127,9 649,5 2.737.951$ 28 97.784$

109 332,0 1164,0 4.920.395$ 65 75.698$

110 39,0 383,0 920.739$ 11 83.704$

111 170,9 400,5 3.563.643$ 27 131.987$

112 203,2 1155,2 1.255.284$ 11 114.117$

113 88,1 1379,0 2.062.782$ 18 114.599$

114 65,3 1150,0 713.120$ 10 71.312$

115 671,9 1137,1 933.030$ 10 93.303$

116 831,1 1193,0 949.241$ 11 86.295$

117 0,9 631,4 1.056.467$ 15 70.431$

118 17,9 506,3 2.145.008$ 29 73.966$

119 94,9 899,4 1.320.036$ 14 94.288$

