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DEPARTAMENTO DE INGENIERÍA MATEMÁTICA
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MONICA MUSSO

MIEMBROS DE LA COMISIÓN:
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Resumen

Hay dos partes en mi tesis. La primera parte se dedica principalmente a la construcción
de soluciones burbujeantes de algunos problemas eĺıpticos con no linealidad exponencial en
R2. En la segunda parte se considera la existencia de soluciones de punta para ecuaciones
eĺıpticas en variedades de Riemann.

En la primera parte, utilizamos el método de reducción de Lyapunov-Schmidt para obtener
la existencia de soluciones burbujeantes en el problema de contorno Dirichlet{

∆u+ λup−1eu
p
= 0, u > 0 en Ω;

u = 0 en ∂Ω,

donde Ω es un dominio suave en R2, λ > 0 pequeño. Se estudia el problema para 0 < p < 2
en dominios acotados y para p = 1 en dominios no acotados.

A continuación, se considera la existencia de solucions con concentración mixta en el interior
y la frontra para el siguiente problema de Neumann{

−∆u+ u = λup−1eu
p
, u > 0 en Ω;

∂u
∂ν

= 0 en ∂Ω,

donde Ω es un dominio suave en R2, λ > 0 es un parámetro pequeño, 0 < p < 2, y ν denota
el vector normal exterior a ∂Ω.

Además, construimos las soluciones burbujeantes para el siguiente problema de Neumann{
−∆u+ u = 0 en Ω;

∂u
∂ν

= λup−1eu
p

en ∂Ω,

donde ν es el vector normal exterior de ∂Ω, λ > 0 es un parámetro pequeño y 0 < p ≤ 2.

Por último, se estudia la existencia de puntos cŕıticos para el funcional de traza de Trudinger-
Moser.

En la segunda parte, se considera la existencia de soluciones de punta para ecuaciones eĺıpticas
en variedades de Riemann compactas.
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Abstract

There are two parts in my thesis. One is mainly devoted to construct bubbling solutions to
some elliptic problems with exponential nonlinearity in R2. The other one is to consider the
existence of peak solutions for elliptic equations on Riemannian manifolds.

In the first part, using Lyapunov-Schmidt reduction we get the existence of bubbling solutions
to the Dirichlet boundary value problem{

∆u+ λup−1eu
p
= 0, u > 0 in Ω;

u = 0 on ∂Ω,

where Ω is a smooth domain in R2, λ > 0 small. We study this problem in a bounded domain
for 0 < p < 2 and in an unbounded domain for p = 1.

Next, we consider the existence of mixed interior and boundary bubbling solutions for the
following Neumann problem{

−∆u+ u = λup−1eu
p
, u > 0 in Ω;

∂u
∂ν

= 0 on ∂Ω,

where Ω is a smooth domain in R2, λ > 0 is a small parameter, 0 < p < 2, and ν denotes
the outer normal vector to ∂Ω.

Moreover, we construct the bubbling solutions to the following Neumann problem{
−∆u+ u = 0 in Ω;

∂u
∂ν

= λup−1eu
p

on ∂Ω,

where ν is the outer normal vector of ∂Ω, λ > 0 is a small parameter and 0 < p ≤ 2.

Last, we study the existence of critical points for the super critical Trudinger-Moser trace
functional.

In the second part, we consider the existence of peak solutions for elliptic equations on
compact Riemannian manifolds.
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Chapter 1

Introduction

This thesis consists of two parts. One is mainly devoted to construct bubbling solutions to
some elliptic equations in R2 with exponential nonlinearity. The other one is to consider the
existence of peak solutions to some elliptic equations on compact Riemannian manifold.

1.1 Dirichlet Problem in R2

Consider the following boundary value problem{
∆u+ λup−1eu

p
= 0, u > 0 in Ω;

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in R2 with smooth boundary, λ > 0 is a small parameter and
0 < p ≤ 2. This problem is the Euler-Lagrange equation for the functional

Jpλ(u) =
1

2

∫
Ω

|∇u|2 − λ

p

∫
Ω

eu
p

, u ∈ H1
0 (Ω), (1.2)

which is well defined. Because for a planar domain Ω, the analogue of the Sobolev embedding

H1
0 (Ω) ↪→ L

2N
N−2 (Ω) in dimensions greater than 3, is the Orlicz space embedding

H1
0 (Ω) ∋ u 7−→ eu

2 ∈ Ls(Ω) ∀ s ≥ 1,

which is connected to the critical Trudinger-Moser inequality [94]

C(Ω) = sup

{∫
Ω

e4πu
2

/ u ∈ H1
0 (Ω),

∫
Ω

|∇u|2 = 1

}
< +∞.

1



CHAPTER 1. INTRODUCTION

If p = 1, the problem (1.1) becomes{
∆u+ λeu = 0, in Ω;

u = 0 on ∂Ω,
(1.3)

which can be called the Liouville equation after [78]. This kind of problem with exponential
nonlinearity appears in many fields of mathematics, such as the study of prescribed Gaussian
curvature on a compact Riemannian surface, Chern-Simons gauge theories, the vortex theory
for the turbulent Euler flow, and so on, and it has attracted many authors for more than
decades.

There are many results about the asymptotic behavior and existence of solution to (1.3).

Proposition 1.1. (Asymptotic Analysis of solutions to (1.3): Nagasaki-Suzuki [95])
Let uλ be an unbounded family of solutions to (1.3). Then as λ→ 0, λ

∫
Ω
euλ accumulates to

only values 8kπ for k ∈ {0}∪N∪{+∞}. According to these cases the solutions {uλ} behave
as follows

(i) If k = 0, then ∥uλ∥L∞(Ω) → 0;

(ii) If k ∈ N, then there exists k−point blow up, i.e. there are k distinct points ξj, j =
1, · · · , k, in Ω, separated uniformly from each other and from he boundary ∂Ω, such that, as
λ→ 0, uλ peaks to infinity in each one of them, and remains bounded away from them, that

is, the solutions uλ to problem (1.3) remain uniformly bounded on Ω\
k∪
j=1

Bδ(ξj) and

sup
Bδ(ξj)

uλ → +∞, as λ→ 0,

for any δ > 0.

(iii) If k = +∞, then uλ(x) → +∞ for all x ∈ Ω.
Moreover, in the case (ii), we have

uλ(x) →
k∑
k=1

GΩ(x, ξj) in C2
loc(Ω̄\{ξ1, · · · , ξk}) as λ→ 0,

where the location of the blow-up points ξ1, · · · , ξk is such that, after passing to a subsequence,
converges to a critical point of the function

φk(ξ1, · · · , ξk) =
k∑
j=1

HΩ(ξj, ξj) +
∑
i ̸=j

GΩ(ξi, ξj), (1.4)

where GΩ(x, y) is the standard Green’s function of the problem{
−∆xGΩ(x, y) = 8πδy(x), x ∈ Ω;

GΩ(x, y) = 0, x ∈ ∂Ω,
(1.5)

2



CHAPTER 1. INTRODUCTION

and HΩ(·, ·) its regular part defined as

HΩ(x, y) = GΩ(x, y)− 4 log
1

|x− y|
. (1.6)

For the proof, the authors in [95] used complex function theory, more precisely, a representa-
tion formula of solutions to (1.3), called the Liouville integral formula was a key ingredient.
For the other proof of Proposition 1.5 by using real analysis and PDE theory, see H. Brezis
and F. Merle [15], Y. Y. Li and I. Shafrir [71], L. Ma and J. Wei [83].

Conversely, many authors constructed blow-up solutions to problem (1.3) with property

lim
λ→0

λ

∫
Ω

euλ = 8kπ. (1.7)

In order to state the existence of bubbling solutions to (1.3). Let us recall some definitions.

Definition 1.2. ([46] [69]) Let D ⊂ RN and f ∈ C1(D,R). A bounded set K is called
C1−stable critical set of f provided for all σ > 0 there exists δ > 0 such that if g ∈ C1(D,R)
with the property that

max
dist(x,K)≤σ

(|g(x)− f(x)|+ |∇g(x)−∇f(x)|) ≤ δ,

then g has at least one critical point x with dist(x,K) ≤ σ.

Remark 1.3. It is known that a bounded subset K of critical point of f is stable critical set
if one of the following conditions is satisfied:

(i) K is a strict local minimum set of f , namely, f(x) = f(y) for any x, y ∈ K, and for
some open neighborhood O of K, f(x) < f(y) for all x ∈ K, y ∈ O\K;

(ii) K is a strict local maximum set of f ;

(iii) If the Brower degree deg(∇f,O, 0) ̸= 0 for any ε > 0 small, where O is an neighbor-
hood of K.

Definition 1.4. (M. del Pino, M. Kowalczyk, M. Musso [36])We say that φk links in D at
critical level C relative to B and B0 if B and B0 are closed subsets of D̄ with B connected
and B0 ⊂ B such that the following conditions hold: Let us set Γ to be the class of the maps
Φ ∈ C(B,D) with the property that there exists a function Ψ ∈ C([0, 1]×B,D) such that

Ψ(0, ·) = IdB, Ψ(1, ·) = Φ, Ψ(t, ·)|B0 = IdB0 for ∀t ∈ [0, 1].

We assume

sup
ξ∈B0

φk(ξ) < C := inf
Φ∈Γ

sup
ξ∈B

φk(Φ(ξ)), (1.8)

3



CHAPTER 1. INTRODUCTION

and for all ξ ∈ ∂D such that φk(ξ) = C, there exists a vector τ tangent to ∂D at ξ such that

∇φk(ξ) · τ ̸= 0. (1.9)

Under these conditions a critical point ξ̄ ∈ D with φk(ξ̄) = C exists, as a standard deformation
argument involving the negative gradient flow of φk shows. Condition (1.8) is a general way
of describing a change of topology in the level sets {φk ≤ c} in D taking place at c = C, while
(1.9) prevents intersection of the level set C with the boundary. It is easy to check that the
above conditions hold if

inf
ξ∈D

φk(ξ) < inf
ξ∈∂D

φk(ξ), or sup
ξ∈D

φk(ξ) > sup
ξ∈∂D

φk(ξ),

namely the case of (possibly degenerate) local minimum or maximum points of φk. The level
C may be taken in these cases respectively as that of the minimum and the maximum of φk
in D. These hold also if φk is C1−close to a function with a non-degenerate critical point in
D. We call C a non-trivial critical level of φk in D.

Proposition 1.5. (Existence of bubbling solutions to (1.3)) Let φk be defined by (1.4).
There exists a solution uλ to (1.3) such that uλ blows up on points ξ1, . . . , ξk, provided one
of the following conditions

(i) φk has a nondegenerate critical point (ξ1, . . . , ξk) (S. Baraker and F. Pacard [10]), or,

(ii) there exists a stable set K for φk (P. Esposito, M. Grossi, A. Pistoia [46]), or

(iii) φk has a topologically non trivial critical value if Ω is not simply connected (M. del
Pino, M. Kowalczyk, M. Musso [36]).

If p = 2, problem (1.1) becomes{
∆u+ λueu

2
= 0, u > 0 in Ω;

u = 0 on ∂Ω.
(1.10)

This problem is the Euler-Lagrange equation for the functional J2
λ (see (1.2)). Construction

of bubbling solutions for problem (1.10) is somehow different from the case p = 1. This has
been treated in [39]. In order to state this result, let us introduce the following function of k
distinct points ξ1, · · · , ξk ∈ Ω and k positive numbers m1, · · · ,mk,

φk,2(ξ,m) = a

k∑
j=1

m2
j + 2

k∑
j=1

m2
j logm

2
j +

k∑
j=1

m2
jHΩ(ξj, ξj) +

∑
i̸=j

mimjGΩ(ξi, ξj), (1.11)

where a > 0 is an absolute constant, and GΩ(x, y) is the Green’s function and HΩ(·, ·) its
regular part defined by (1.5) and (1.6) respectively. The authors in [39] established that,
if φk,2 has a topologically non trivial critical value (see Definition 1.4), with corresponding

4



CHAPTER 1. INTRODUCTION

critical point (ξ1, . . . , ξk,m1, . . .mk) ∈ Ωk×Rk
+, then there exists a solution uλ of (1.10) with

the shape

uλ(x) =
√
λ

[
k∑
j=1

mjGΩ(x, ξj) + o(1)

]
, as λ→ 0, (1.12)

where o(1) → 0 as λ→ 0 uniformly on compact sets of Ω \ {ξ1, . . . , ξk}. Furthermore,

J2
λ(uλ) = 2kπ + αλ+ 4πλφk,2(ξ,m) + λo(1)

where α is an absolute constant, φk,2 is defined in (1.11) and o(1) → 0 as λ→ 0. In particular,
in the case Ω is not simply connected they constructed the solution uλ of (1.10), with two
bubbling points, namely satisfying

uλ(x) =
√
λ

[
2∑
j=1

mjGΩ(x, ξj) + o(1)

]
, as λ→ 0,

where (m1,m2, ξ1, ξ2) is a critical point of φ2,2 defined in (1.11), and o(1) → 0 as λ → 0
uniformly on compact sets of Ω.

A natural problem is: what does happen to problem (1.1) for p between 1 and 2?

We will consider this in Chapter two. In fact, we can get the results for p in all region, that
is, p ∈ (0, 2). Let k be an integer, and define

M =
{
(ξ1, · · · , ξk) ∈ Ωk : dist(ξj, ∂Ω) ≥ δ, |ξi − ξj| ≥ δ for i ̸= j

}
for some δ > 0. Let ε > 0 be a parameter, which depends on λ, defined as

pλ

(
−4

p
log ε

) 2(p−1)
p

ε
2(p−2)

p = 1. (1.13)

Observe that, as λ→ 0, then ε→ 0, and λ = ε2 if p = 1. We obtain the following result.

Theorem 1.6. Let 0 < p < 2 and k an integer with k ≥ 1. If Ω is not simply connected, then
there exists λ0 > 0 so that, for any 0 < λ < λ0 problem (1.1) has a solution uλ. Moreover

lim
λ→0

ε
2(2−p)

p

∫
Ω

eu
p
λ = 8kπ, (1.14)

where ε satisfies (1.13). Furthermore, there exists a k−tuple ξλ = (ξλ1 , · · · , ξλk ) ∈ M such
that as λ→ 0

∇φk(ξλ1 , · · · , ξλk ) → 0,

and

uλ(x) = p−
1
2

√
λ ε

p−2
p

(
k∑
j=1

GΩ(x, ξ
λ
j ) + o(1)

)
(1.15)

5



CHAPTER 1. INTRODUCTION

where φk defined as (1.4), GΩ(·, ·) given by (1.5), and o(1) → 0, as λ → 0, uniformly on
each compact subset of Ω̄\{ξλ1 , · · · , ξλk}. Furthermore

Jpλ(uλ) = λε
2(p−2)

p

[
8kπ

(2− p)p
[−2 + p log 8]− 16kπ

p
log ε− 4π

2− p
φk(ξ

λ) +O(| log ε|−1)

]
(1.16)

where O(1) uniformly bounded as λ→ 0.

In [10, 36, 46], the authors considered the existence of bubbling solution to (1.3) in a smooth
bounded domain in R2. In particular, the authors in [36] obtained that there exists a solution
to (1.3) provided Ω is not simply connected and bounded domain in R2.

In Chapter three, we consider the existence of bubbling solution to (1.3) in an open, connected
and unbounded domain in R2. We define the domain as follows.

Let φ : R → [1,+∞) be a smooth function, satisfying

(a) φ(0) = 1, x1φ
′(x1) > 0 for x1 ̸= 0;

(b) φ(x1) → +∞ as x1 → ±∞, and

(c) φ′(x1) → a > 0 as x1 → +∞, and φ′(x1) → b < 0 as x1 → −∞.

Define

Ω = {x = (x1, x2) : |x2| < φ(x1)} (1.17)

We observe that Ω is symmetric with respect to line x2 = 0, and has two open directions.
Moreover, the domain is not necessary symmetric with respect to x1 = 0. We would like to

6



CHAPTER 1. INTRODUCTION

construct bubbling solutions to problem (1.3) in the domain Ω, with the location of blow-up
points on the symmetry line of Ω.

Let δ > 0 small but fixed. Let k > 1 be an integer. Given k different points on the symmetry
line of Ω, we write these points as

ξj = (tj, 0), j = 1, . . . , k, (1.18)

with t1 < t2 < . . . < tk, satisfies

ti+1 − ti > δ, i = 1, 2, . . . , k − 1. (1.19)

We have the following result.

Theorem 1.7. Let Ω be an open, connected and unbounded domain of R2 defined by (1.17),
let k > 1 be an integer. For λ > 0 small enough, problem (1.3) has at least one solution uλ,
which blow-up at k points ξ∗1 , . . . , ξ

∗
k defined as (1.18), ξ∗j = (t∗j , 0) and φk(ξ

∗) = maxφk(ξ)
with φk defined by (1.4). Moreover,

uλ(x) =
k∑
j=1

GΩ(x; ξ
∗
j ) + o(1) (1.20)

where o(1) → 0, as λ → 0, on each compact subset of Ω̄\{ξ∗1 , . . . , ξ∗k}, and GΩ(·; ·) is the
Green’s function in Ω with Dirchlet boundary condition, defined by (1.5).

1.2 Neumann problem in R2

Consider the following boundary value problem{
−∆u+ u = λup−1eu

p
, u > 0, in Ω;

∂u
∂ν

= 0, on ∂Ω,
(1.21)

which is equivalent to the stationary Keller-Segel system from chemotaxis, where Ω is a
bounded domain in R2 with smooth boundary, λ > 0 is a small parameter, 0 < p < 2, and ν
denotes the outer normal vector to ∂Ω. This problem is the Euler-Lagrange equation for the
functional

Ipλ(u) =
1

2

∫
Ω

(|∇u|2 + u2)− λ

p

∫
Ω

eu
p

, u ∈ H1(Ω). (1.22)

If p = 1, Senba-Suzuki, in [109, 110], have analyzed the asymptotic behavior of solutions to
problem (1.21). The blow-up for u takes place as a finite sum of Dirac measures at points
with masses 8π or 4π, respectively, depending on whether they are located inside the domain

7
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or at the boundary. More precisely, if uλ is a family of solutions to problem (1.21) when
p = 1, then there exist non-negative integers k, l ≥ 1, such that

lim
λ→0

λ

∫
Ω

euλ = 4π(2k + l). (1.23)

Let m = k+ l. Up to subsequences, there exist points ξj, j = 1, . . . ,m with ξj ∈ Ω for j ≤ k
and ξj ∈ ∂Ω for k < j ≤ m, for which

uλ(x) →
k∑
j=1

8πG̃(x, ξj) +
m∑

j=k+1

4πG̃(x, ξj), as λ→ 0, (1.24)

uniformly on compact subset of Ω̄\{ξ1, . . . , ξm}. Moreover, the m−tuple (ξ1, . . . , ξm) can be
characterized as critical point of a functional defined on Ωk × (∂Ω)l, given by

φ̃m(ξ) = φ̃m(ξ1, . . . , ξm) =
m∑
j=1

c2jH̃(ξj, ξj) +
∑
l ̸=j

clcjG̃(ξl, ξj), (1.25)

where
cj = 8π for j = 1, . . . , k, and cj = 4π for j = k + 1, . . . ,m,

and G̃(x, y) is the Green’s function of the problem{
−∆xG̃(x, y) + G̃(x, y) = δy(x), in Ω;

∂G̃(x,y)
∂νx

= 0, on ∂Ω,
(1.26)

and H̃(·, ·) its regular part, namely,

H̃(x, y) =

{
G̃(x, y) + 1

2π
log |x− y|, if y ∈ Ω;

G̃(x, y) + 1
π
log |x− y|, if y ∈ ∂Ω.

(1.27)

Conversely, del Pino-Wei, in [41], constructed bubbling solutions uλ to problem (1.21) when
p = 1 with the above properties (1.23) and (1.24). Moreover, the location of the bubbling
points corresponds to critical points of the function φm defined by (1.25).

Question: Does exist blow-up solutions to (1.21) for p between 0 and 2, such that that
solution blow-up inside the domain and on the boundary?

In Chapter four, we will give a positive answer fot this. Namely, we construct bubbling
solutions to problem (1.21) with bubbling profiles at points inside Ω and on the boundary of
Ω when p is between 0 and 2. In particular, we recover the result in [41] when p = 1.

8
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Theorem 1.8. Let 0 < p < 2, and k, l,m ≥ 1 be integers with m = k + l. There exists
λ0 > 0 so that, for any 0 < λ < λ0, problem (1.21) has a solution uλ, with the following
properties:

(1) uλ has m local maximum points ξ∗j , j = 1, . . . ,m such that ξ∗j ∈ Ω for 1 ≤ j ≤ k, and
ξ∗j ∈ ∂Ω for k + 1 ≤ j ≤ m. Furthermore

lim
λ→0

φ̃m(ξ
∗
1 , . . . , ξ

∗
m) = min

Ωk×(∂Ω)l
φ̃m,

where φ̃m is defined by (1.25). In particular

(2) One has

uλ(x) = p−
1
2

√
λ ε

p−2
p

[
k∑
j=1

8πG̃(x, ξ∗j ) +
m∑

j=k+1

4πG̃(x, ξ∗j ) + o(1)

]
(1.28)

where ε satisfies (1.13), and o(1) → 0, as λ→ 0, on each compact subset of Ω̄\{ξ∗1 , . . . , ξ∗m},
and G̃(·, ·) is the Green’s function given in (1.26).

(3) Moreover

lim
λ→0

ε
2(2−p)

p

∫
Ω

eu
p
λ = 4π(2k + l). (1.29)

Furthermore

Ipλ(uλ) = λε
2(p−2)

p

[
−4π(2k + l)

2− p log 8

(2− p)p
− 8π

p
(2k + l) log ε− 1

2(2− p)
φm(ξ

∗) +O(| log ε|−1)

]
(1.30)

where O(1) uniformly bounded as λ→ 0.

Consider the following Neumann boundary value problem{
−∆u+ u = 0 in Ω;

∂u
∂ν

= λup−1eu
p

on ∂Ω,
(1.31)

where Ω is a bounded domain in R2 with smooth boundary, ν is the outer normal vector of
∂Ω, λ > 0 is a small parameter and 0 < p ≤ 2. This problem is the Euler-Lagrange equation
for the functional JpN,λ : H

1(Ω) → R defined as

JpN,λ(u) =
1

2

∫
Ω

(
|∇u|2 + u2

)
− λ

p

∫
∂Ω

eu
p

.

9
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In [27], Dávila-del Pino-Musso have analyzed the asymptotic behavior of solution to problem
(1.31) when p = 1. Namely, they considered the following problem{

−∆u+ u = 0 in Ω;

∂u
∂ν

= λeu on ∂Ω.
(1.32)

Suppose that uλ is a family solution of (1.32), with the property λ
∫
∂Ω
euλ bounded, then

there is an integer k ≥ 1, up to subsequences, such that

lim
λ→0

λ

∫
∂Ω

euλ = 2kπ. (1.33)

Moreover, there are k distinct points ξj, j = 1, . . . , k, on the boundary of Ω, such that λeuλ

approaches the sum of k Dirac masses at these points ξj. The location of points can be
characterized as critical points of a functional of k points of the boundary given by

φN,k(ξ1, . . . , ξk) = −

[
k∑
j=1

HN(ξj, ξj) +
∑
l ̸=j

GN(ξl, ξj)

]
, (1.34)

where GN(x, y) is Green’s function of the problem{
−∆xGN(x, y) +GN(x, y) = 0 x ∈ Ω;

∂GN (x,y)
∂νx

= 2πδy(x) x ∈ ∂Ω,
(1.35)

and HN its regular part

HN(x, y) = GN(x, y)− 2 log
1

|x− y|
. (1.36)

The authors in [27] also described the existence of solution with above properties. More
precisely, if ∂Ω has more than one component, they showed that the function φk has topolog-
ically nontrivial critical point (ξ1, . . . , ξk), then there is a family solution to problem (1.32)
with peaks at these points.

In chapter five, we will consider the existence of solution to (1.31) when 0 < p < 2. Let ε be
a parameter, which depends on λ, satisfies,

pλ

(
−2

p
log ε

) 2(p−1)
p

ε
p−2
p = 1. (1.37)

Observe that, as λ→ 0, then ε→ 0, and ε = λ if p = 1. We have

Theorem 1.9. For 0 < p < 2, let k ≥ 1, assume that φk defined by (1.34) has a C0-stable
critical point ξ∗ = (ξ∗1 , . . . , ξ

∗
k) ∈ (∂Ω)k with

|ξ∗l − ξ∗j | > δ, for l ̸= j,

10
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for some small but fixed number δ > 0. Then the problem (1.31) has a family solutions uλ
for λ small enough, such that

lim
λ→0

ε
2−p
p

∫
∂Ω

eu
p
λ = 2kπ, (1.38)

where ε satisfies (1.37). Moreover, for λ→ 0

∇φN,k(ξ∗1 , . . . , ξ∗k) = 0,

and

uλ(x) = p−
1
2

√
λ ε

p−2
2p

[
k∑
j=1

GN(x, ξ
∗
j ) + o(1)

]
(1.39)

where o(1) → 0 on each compact subset of Ω̄\{ξ∗1 , . . . , ξ∗k}, GN(·, ·) defined by (1.35). Fur-
thermore

JpN,λ(uλ) = λε
p−2
p

[
−2kπ

p
+

2kπ

p
log

1

ε
+

π

2− p
φk(ξ) +O(| log ε|−1)

]
(1.40)

where O(1) uniformly bounded as λ→ 0.

If p = 2, problem (1.31) becomes{
−∆u+ u = 0 in Ω;

∂u
∂ν

= λueu
2

on ∂Ω,
(1.41)

For functions u ∈ H1(Ω), due to the Trudinger trace embedding (in the sense of Orlicz
spaces) [103, 114]

H1(Ω) ∋ u 7−→ eu
2 ∈ Ls(∂Ω) ∀ s ≥ 1.

This optimal embedding is related to the critical Trudinger-Moser trace inequality

Cπ(Ω) = sup

{∫
∂Ω

eπu
2

/ u ∈ H1(Ω),

∫
Ω

[|∇u|2 + u2] = 1

}
< +∞ ,

[74]. It has been proven [124] that for any bounded domain Ω in R2, with smooth boundary,
the supremum Cπ(Ω) is attained by a function u ∈ H1(Ω) with

∫
Ω
[|∇u|2 + u2] = 1. Further-

more, for any α ∈ (0, π), the supremum Cα(Ω) is finite and it is attained, while Cα(Ω) = ∞
as soon as α > π. See also [24, 72, 73, 75] for generalizations.

In Chapter six, we construct bubbling solutions to problem (1.41). To state our result, let us
introduce the following function φk : (∂Ω)

k×(R+)k → R, φk(ξ,m) = φk(ξ1, . . . , ξk,m1, . . . ,mk)
defined by

φk(ξ,m) = 2(log 2− 1)
k∑
j=1

m2
j + 2

k∑
j=1

m2
j log(m

2
j)−

k∑
j=1

m2
jHN(ξj, ξj)−

∑
i̸=j

mimjGN(ξi, ξj),

(1.42)
where GN is the Green function for the Neumann problem defined by (1.35).

11
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Theorem 1.10. Let Ω be a bounded domain in R2 with smooth boundary and let k ≥ 1 be
an integer. Then, for all small λ > 0 there exists a pair solution u1λ, u

2
λ of problem (1.41)

such that
1

2

∫
Ω

[
|∇uiλ|2 + (uiλ)

2
]
− λ

2

∫
∂Ω

e(u
i
λ)

2

=
k

2
π + o(1) i = 1, 2

where o(1) → 0 as λ → 0. Moreover, for any i = 1, 2, passing to a subsequence, there exists
(ξi,mi) = (ξi1, . . . , ξ

i
k,m

i
1, . . . ,m

i
k) ∈ (∂Ω)k × (R+)k, with ξ1 ̸= ξ2, such that ∇φk(ξi,mi) = 0

and

uλ(x) =
√
λ

(
k∑
j=1

mi
jGN(x, ξ

i
j) + o(1)

)
(1.43)

where o(1) → 0 on each compact subset of Ω̄ \ {ξi1, . . . , ξik}.

In Chapter seven, we study the existence of critical points of the Trudinger-Moser trace
functional

Eα(u) =

∫
∂Ω

eαu
2

, (1.44)

constrained to functions

u ∈M :=
{
u ∈ H1(Ω) : ∥u∥2 = 1

}
(1.45)

in the super critical regime
α > π.

We will get the following results.

Theorem 1.11. Let Ω be a bounded domain in R2. Then there exists α0 > π, such that for
any α ∈ (0, α0), there exists a function uα ∈M which locally maximizes of Eα on M .

Moreover, we will show the existence of critical points for Eα constrained to M , for α ∈
(k π, αk), for any k ≥ 1 integer and for some αk slightly to the right of k π.

Theorem 1.12. Let Ω be any bounded domain in R2 with smooth boundary. Fix a positive
integer k ≥ 1. Then there exists αk > kπ such that for α ∈ (kπ, αk), the functional Eα(u)
restricted to M has at least two critical points u1α and u2α. Furthermore, for any i = 1, 2 there
exist numbers mi

j,α > 0 and points ξij,α ∈ ∂Ω, for j = 1, . . . , k such that

lim
α→k π

mi
j,α = mi

j ∈ (0,∞), (1.46)

ξij,α → ξij ∈ ∂Ω, with ξij ̸= ξil for j ̸= l, as α→ k π (1.47)

and

uiα(x) =

√
α− kπ

α

k∑
j=1

[
mi
j,αGN(x, ξ

i
j,α) + o(1)

]
, i = 1, 2, (1.48)

12
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where o(1) → 0 uniformly on compact sets of Ω̄\{ξi1, . . . , ξik}, as α → kπ. Moreover, for any
i = 1, 2, for any δ > 0 small, for any j = 1, . . . , k,

sup
x∈B(ξij ,δ)

uiα(x) → +∞, as α→ k π. (1.49)

1.3 Elliptic equations on Riemannian manifolds

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3. In Chapter
seven, we are concerned with the following asymptotically critical elliptic problem

∆gu+ a(x)u = u2
∗−1−ε, u > 0 in M, (1.50)

where ∆g = −divg(∇) is the Laplace-Beltrami operator on M, a(x) is a C1 function on M,
2∗ = 2n

n−2
denotes the Sobolev critical exponent, ε is a small real parameter such that ε goes

to 0.

Recently, nonlinear elliptic equations on compact Riemannian manifold have been brought
much attention. Consider the following problem

ε2∆gu+ u = |u|p−2u in M, (1.51)

where (M, g) is a compact, connected, Riemannian manifold of class C∞ with Riemannian
metric g, dimM = n ≥ 3, 2 < p < 2∗ and ε is a positive parameter. In [17], the authors
proved that the problem (1.51) has a mountain pass solution uε which exhibits a spike layer.
In particular, they proved that the maximum point of uε converges to a maximum point
of the scalar curvature Scalg as ε goes to zero. Multiple solutions were obtained in [12] for
the problem (1.51), the authors showed that multiplicity of solutions to (1.51) depends on
the topological properties of the manifold M. More precisely, they showed that problem
(1.51) has at least cat(M) + 1 nontrivial solutions provided ε is small enough. Here cat(M)
denotes the Lusternik-Schnirelmann category of M. While for zero mass case, similar result
was obtained in [117]. And in [65] the author constructed an interesting example of two
manifolds having the same topology, for which the number of solutions to the problem (1.51)
is different.

In [87] the authors showed that for any stable critical point of the scalar curvature it is
possible to construct a single peak solution, whose peak approaches such a point as ε goes
to zero. In [26] the authors proved that for any fixed positive integer k, problem (1.51) has
a k−peak solution, whose peaks collapse, as ε goes to zero, to an isolated local minimum
point of the scalar curvature. Recently in [89] the authors proved that the existence of
positive or sign changing multi-peak solutions of (1.51), whose both positive and negative
peaks approach different stable critical points of the scalar curvature as ε goes to zero.
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The asymptotically critical case on Riemannian manifold in [90] the authors proved problem
(1.50) exists blowing-up families of positive solutions provide the graph of a(x) is distinct at
some point from the graph of n−2

4(n−1)
Scalg.

If a ≡ n−2
4(n−1)

Scalg, problem (1.50) is the intensively studied Yamabe problem

∆gu+
n− 2

4(n− 1)
Scalgu = u2

∗−1−ε in M u > 0 in M, (1.52)

is just the so called prescribed scalar curvature problem with ε = 0. The existence of
a conformal metric with constant scalar curvature on compact Riemannian manifolds was
studied by Yamabe [116], Trudinger [115], Aubin [8] and Schoen [108]. If u is a solution, then
4(n−1)
n−2

is the scalar curvature of the conformal metric g̃ = u
1

n−2 g. On the compact manifold
(M, g), the coercivity of the operator ∆g + a is a necessary condition for the existence of a
solution to problem (1.52). In [43] the author consider (1.13) with ε ≥ 0, for any smooth,
compact Riemannian manifold of dimensional n ≥ 3 and any smooth function a on M such
that ∆g + a is coercive and a(ξ) < n−1

4(n−2)
Scalg(ξ), then (1.50) exists a solution.

In order to state our main result, it is useful to recall some definitions and results. First, Let
us introduce the definition of C1 stable critical set.

Definition 1.13. ([69]) Let f ∈ C1(M,R), for any given integer k ≥ 2, set ξ̄ = (ξ1, ξ2, · · · , ξk),
let C1, C2, · · · , Ck ⊂ M be k mutually disjoint closed subsets of critical points of f , we say

that (C1, C2, · · · , Ck) ⊂ Mk is a C1 stable critical set of function F (ξ) :=
k∑
j=1

f(ξj), if for

any σ > 0 there exists γ > 0 such that if Φ ∈ C1(Mk,R) with

max
dg(ξj ,Cj)≤σ,1≤j≤k

(
|F (ξ)− Φ(ξ)|+ |∇gF (ξ)−∇gΦ(ξ)|

)
≤ γ,

then Φ has at least one critical point ξ in Mk with dg (ξj, Cj) ≤ σ.

Next, we introduce the following equation which correspond to limiting equation to problem
(1.50).

∆U = U2∗−1 in Rn, (1.53)

where ∆ = −div(∇) is the Laplace-Beltrami operator associated with the Euclidean metric.
It is known that [8, 115] the functions λ(2−n)/2U(λ−1z) satisfy equation (1.53), where

U(z) = U(|z|) =

(√
n(n− 2)

1 + |z|2

)(n−2)/2

. (1.54)

Let us define a smooth cut-off function χr satisfies

χr(z) :=


1 if z ∈ B(0, r

2
);

∈ (0, 1) if z ∈ B(0, r)\B(0, r
2
);

0 if z ∈ Rn\B(0, r),
(1.55)
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and |∇χr(z)| ≤ 2
r
, |∇2χr(z)| ≤ 2

r2
. For any point ξ in M and for any positive real number

λ, we define the function Wλ,ξ on M by

Wλ,ξ(x) :=

{
χr
(
exp−1

ξ (x)
)
λ

2−n
2 U

(
λ−1exp−1

ξ (x)
)

if x ∈ Bg(ξ, r);

0 otherwise.
(1.56)

We assume that the operator ∆g + a is coercive, we can provide the Hilbert space H1
g (M)

with the inner product

⟨u, v⟩a =
∫
M

(⟨∇u,∇v⟩g + a(x)uv) dµg,

which induces the norm

∥u∥2a =
∫
M

(
|∇gu|2 + a(x)u2

)
dµg.

Let

ψ(ξ) = a(ξ)− n− 1

4(n− 2)
Scalg(ξ). (1.57)

In Chapter eight, we construct a family of solutions of equation (1.50), whose peaks approach
different stable critical points of ψ(ξ) with ε small enough, which blow-up and concentrate
at some points in M, in the sense of the following definition.

Definition 1.14. For k ≥ 2 be a positive integer, let uε be a family of solution of (1.50),
we say that uε blow-up and concentrates at point ξ̄0 = (ξ01 , · · · , ξ0k) ∈ Mk if there exist
ξ̄ε = (ξε1, · · · , ξεk) ∈ Mk and (λ1(ε), · · · , λk(ε)) ∈ (R+)k with λj(ε) > 0 such that

ξεj → ξ0j , λj(ε) → 0 as ε→ 0 for j = 1, 2, · · · , k.

and ∥∥∥∥∥uε −
k∑
j=1

Wλj(ε),ξεj

∥∥∥∥∥
a

→ 0 as ε→ 0.

Our main result is the following.

Theorem 1.15. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 6,
let a(x) be a C1 positive function on M such that the operator ∆g + a is coercive, and for
any given integer k ≥ 2, set ξ̄0 = (ξ01 , · · · , ξ0k), let ξ0j be an isolated critical point of ψ(ξj) with
deg(∇gψ,Bg(ξ

0
j , ϱ), 0) ̸= 0 for some ϱ > 0 and j = 1, · · · , k, we have

(i) If ψ(ξ0j ) > 0 and ε is small enough, there exists a family of solutions of the subcritical
problem, which blow-up and concentrates at ξ̄0.

(ii) If ψ(ξ0j ) < 0 and ε is small enough, there exists a family of solutions of the supercritical
problem, which blow-up and concentrates at ξ̄0.
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In Chapter nine, Let (M, g) be a smooth, compact Riemannian manifold of dimension n ≥ 7.
We consider the Paneitz-Branson type equation

∆2
gu− divg (Adu) + au = |u|2♯−2−εu, in M,

where ∆g = −divg∇ is the Laplace-Beltrami operator, A is a smooth symmetrical (2, 0)-
tensor fields, a is a smooth function on M, 2♯ = 2n

n−4
is the critical exponent for the Sobolev

embedding and ε is a small positive parameter.

In 1983 Paneitz [102] introduced a conformally fourth order operator defined on 4-dimensional
Riemannian manifolds. Branson [14] generalized the definition to n−dimensional Riemannian
manifolds.

We let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 5. We also let
H2

2 (M) be the Sobolev space consisting of functions in L2(M) with two derivatives in L2(M).
We consider the geometric Paneitz equation

P n
g u = |u|2♯−2u in M. (1.58)

Here 2♯ = 2n
n−4

is the critical exponent for the Sobolev embedding, P n
g is the Paneitz-Branson

operator which is given by

P n
g u = ∆2

gu− divg (Agdu) +
n− 4

2
Qgu (1.59)

where ∆g = −divg∇ is the Laplace-Beltrami operator, Qg is the Q−curvature of g, Ag is the
smooth symmetrical (2, 0)−tensor field

Ag =
(n− 2)2 + 4

2(n− 1)(n− 2)
Sgg −

4

n− 2
Rcg, (1.60)

where Rcg and Sg are respectively the Ricci curvature and the Scalar curvature of g.

The Paneitz operator is conformally invariant in the sense that if g̃ = ϕ
4

n−2 g is conformal

to g then P n
g̃ u = ϕ−n+4

n−4P n
g (ϕu) for any u ∈ C∞(M). From the viewpoint of conformal

geometry equation (1.58) turns out to be the natural fourth order analogue of the second
order Yamabe problem. That is why we are led to study extensions to this operator of some
classical problems.

Using a terminology introduced by Hebey, we refer to a Paneitz-Branson type operator with
general coefficients as an operator of the form

Pgu = ∆2
gu− divg (Adu) + au (1.61)

where A ∈ Λ∞
(2,0)(M) is a smooth symmetric (2, 0)−tensor field and a ∈ C∞(M) and we refer

to Paneitz-Branson type operator with constant coefficients as an operator of the form

Pgu = ∆2
gu+ b∆gu+ cu (1.62)
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where b and c are real numbers.

The Paneitz-Branson operator (1.59) is as in (1.61) whatever (M, g) is. In particular, when
(M, g) is Einstein, i.e. Rcg = λg for some λ ∈ R, the Paneitz-Branson operator (1.59) has

constant coefficients as in (1.62) with b = n2−2n−4
2(n−1)

λ and c = n(n−4)(n2−4)
16(n−1)2

λ2.

Equation
Pgu = ∆2

gu+ b∆gu+ cu = |u|2♯−2u in M, (1.63)

when Pg is a Paneitz-Branson type operator with constant coefficients as in (1.62), was widely
studied. Examples of compact manifolds including locally conformally flat manifold for which
equations (1.63) have non constant solutions are in [42, 51]. Compactness of problem (1.63)
was studied in [61, 62, 63, 64]. Recently, in [63] Hebey and Robert also studied the stability
of problem (1.63). They introduce the following definition of stability. Equation (1.63) is
said to be stable if for any sequences (bα)α and (cα)α of real numbers converging to b and c
and for any sequence (uα)α of solutions to

∆2
guα + bα∆guα + cαuα = |uα|2

♯−2uα in M,

bounded in H2
2 (M), there holds that, up to a subsequence, uα → u in C4(M) where u is

a smooth solution of (1.63). In other words, problem (1.63) is stable if arbitrary bounded
sequences in H2

2 (M) of solutions of equations close to (1.63) do not blow up in one or more
points of the manifold. In particular, they prove that if (M, g) is locally conformally flat
and the Paneitz-Branson type operator is coercive then problem (1.63) is stable provided
b ̸= 1

n
TrgAg if n ≥ 9 or n = 7 and b < 1

8
TrgAg if n = 8. Here and in what follows, if A

denotes a smooth (2, 0)−tensor field, we let TrgA = gijAij be the trace of A with respect to
g. It is easily seen that if Ag is defined in (1.60) then

TrgAg =
n2 − 2n− 4

2(n− 1)
Sg. (1.64)

As far as we know, a few results are known about problem

Pgu = ∆2
gu− divg (Adu) + au = |u|2♯−2u in M, (1.65)

when Pg is a Paneitz-Branson type operator with general coefficients as in (1.61). In [50]
among other existence results, Esposito and Robert proved that problem (1.65) when n ≥ 8
has a non constant solution provided minM Trg(A − Ag) < 0. In [108] Sandeep proved that
problem (1.65) is stable provided A − Ag is either positive or negative definite. We would
like to point out that in the quoted results the quantity TrgA plays a crucial role in studying
existence of solutions and stability of problems (1.63) and (1.65).

We will show how stability of the problem (1.65) actually depends on the trace of Ag. In
particular, by building blowing-up solutions of the slightly subcritical problem (1.66), we
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will show that problem (1.65) is not stable if maxM Trg (A− Ag) > 0 and n ≥ 8 or if
minM Trg (A− Ag) > 0 and n ≥ 7.

More precisely, we consider the following Paneitz-Branson type equation with slightly sub-
critical growth

∆2
gu− divg ((Ag +B)du) + au = |u|2♯−2−εu, in M, (1.66)

where Ag is given in (1.60), B ∈ Λ∞
(2,0)(M) is a smooth symmetric (2, 0)−tensor field, a ∈

C∞(M) and ε is a small positive parameter.

Let Pg,B(u) := ∆2
gu− divg ((Ag +B)u) + au. We will assume that Pg,B is coercive, i.e. there

exists c > 0 such that∫
M

(Pg,Bu)udµg ≥ c

∫
M

u2dµg for any u ∈ H2
2 (M).

Coercivity was studied in [61].

Given a C1−function φ on M, we say that a critical point ξ0 of φ is C1−stable if there exists
an open neighborhood Ω of ξ0 such that for any point ξ ∈ Ω there holds ∇φ(ξ) = 0 if and
only if ξ = ξ0 and such that the Brouwer degree

deg (∇gφ,Ω, 0) ̸= 0.

If ξ0 is a strict local minimum point or a strict local maximum point of φ then ξ0 is a
C1−stable critical point of φ. Moreover, if φ is a C2−function onM , then any non degenerate
critical point of φ is C1−stable.

Theorem 1.16. Assume

� n ≥ 8 and ξ0 is a C1−stable critical point of TrgB with TrgB(ξ0) > 0,

� n ≥ 7, T rgB is not constant and min
M

TrgB > 0.

Then there exists ε0 > 0 such that for any ε ∈ (0, ε0) equation (1.66) admits a solution uε
such that the family (uε)ε is bounded in H2

2 (M) and the u′εs blow up at the point ξ0 if n ≥ 8
or at a global minimum point of TrgB if n = 7, as ε goes to zero.

We will use a very well known Lyapunov-schmidt reduction method to construct bubbling
solutions for the above problems, which was introduced in [9, 52] and already used in many
different contexts, see for instance [27, 28, 29, 36, 39, 40, 49, 46, 47, 48, 49] for Dirichlet
problem in R2, [19, 27, 41, 93] for Neumann problem in R2, and in [11, 25, 37, 38, 58, 91,
92] considered the multi-peak solutions involving the critical Sobolev exponent. In [34, 35]
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considered the super-critical case, and in [70, 88, 57, 59, 121, 122, 123] considered a peak or
multi-peak solutions to a singularly perturbed Neumann problem. In [87, 89, 90] considered
elliptic equations on Riemannian manifold, and so on. The main idea is to try to guess the
form of the solution (using the shape of the ”standard bubble”), then linearize the equation at
this approximate solution and use a Lyapunov-Schmidt reduction to arrive at a reduced finite
dimensional variational problem, whose critical points yield actual solutions of the equation.

Let us just mention that through out the thesis, the symbol C denotes a generic positive
constant independent of the small parameters, it could be changed from one line to another.
The symbols O(t) (respectively o(t)) will denote quantities for which O(t)

|t| stays bounded

(respectively, o(t)
|t| tends to zero) as the small parameter goes to zero. In particular, we will

often use the notation o(1) stands for a quantity which tends to zero as the small parameter
goes to zero.
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Chapter 2

Bubbling solutions for an exponential
nonlinearity in R2

2.1 Introduction

In this Chapter, we consider the following boundary value problem{
∆u+ λup−1eu

p
= 0, u > 0 in Ω;

u = 0 on ∂Ω,
(2.1)

where Ω is a bounded domain in R2 with smooth boundary, λ > 0 is a small parameter and
0 < p < 2. This problem is the Euler-Lagrange equation for the functional

Jpλ(u) =
1

2

∫
Ω

|∇u|2 − λ

p

∫
Ω

eu
p

, u ∈ H1
0 (Ω). (2.2)

If p = 1, the problem (2.1) becomes{
∆u+ λeu = 0, u > 0 in Ω;

u = 0 on ∂Ω,
(2.3)

which can be called the Liouville equation after [78]. This problem is related to Berger’s
problem concerning the existence of metrics in a given Riemannian surface with prescribed
Gaussian curvatures. We refer the reader to the book of T. Aubin [7] for the description of
the links between this equation and possible geometric applications.

There are many results about the behavior and existence of solution to (2.3). Thanks to the
works of H. Brezis and F. Merle [15], Y. Y. Li and I. Shafrir [71], L. Ma and J. Wei [83],
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K. Nagasaki and T. Suzuki [95], the asymptotic behavior of solutions to problem (2.3) has
been well understood. More precisely, it is by now known that if uλ is an unbounded family
of solutions to (2.1) for which λ

∫
Ω
euλ remains uniformly bounded, then there is an integer

k ≥ 1, such that necessarily

lim
λ→0

λ

∫
Ω

euλ = 8kπ. (2.4)

Moreover, there are k distinct points ξj, j = 1, · · · , k, in Ω, separated uniformly from each
other and from he boundary ∂Ω, such that, as λ → 0, uλ peaks to infinity in each one
of them, and remains bounded away from them, that is, the solutions uλ to problem (2.3)

remain uniformly bounded on Ω\
k∪
j=1

Bδ(ξj) and

sup
Bδ(ξj)

uλ → +∞, as λ→ 0,

for any δ > 0. The location of the blow-up points ξ1, · · · , ξk is such that, after passing to a
subsequence, converges to a critical point of the function

φk(ξ1, · · · , ξk) =
k∑
j=1

HΩ(ξj, ξj) +
∑
i ̸=j

GΩ(ξi, ξj), (2.5)

where GΩ(x, y) is the standard Green’s function of the problem{
−∆xGΩ(x, y) = 8πδy(x), x ∈ Ω;

GΩ(x, y) = 0, x ∈ ∂Ω,
(2.6)

and HΩ(·, ·) its regular part defined as

HΩ(x, y) = GΩ(x, y)− 4 log
1

|x− y|
. (2.7)

Conversely, many authors constructed blow-up solutions to problem (2.3) with property (2.4).
In [10], S. Baraker and F. Pacard considered problem (2.3) in an open bounded subset Ω of
C, and they showed that given a non-degenerate critical point (ξ1, . . . , ξk) of the function φk
defined in (2.5), there is a sequence uλ of solutions to (2.3), that converges to a function u∗

in C2,α
loc (Ω\{ξ1, · · · , ξk}), where u∗ is the solution of−∆u∗ =

k∑
j=1

8πδξj , in Ω;

u∗ = 0 on ∂Ω.

P. Esposito, M. Grossi, A. Pistoia [46] generalized this result relaxing the assumption of non
degenerate critical point for φk to that of stable critical point for φk. By using the notion
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of topologically non trivial critical value for φk, that we will recall later on, M. del Pino, M.
Kowalczyk, M. Musso [36] could establish the following general result: If the domain Ω is
not simply connected, and given any integer k ≥ 1, there exist k points ξ1, . . . , ξk in Ω and a
family of solutions uλ to (2.3), satisfying (2.4) and bubbling at exactly those k points. The
shape of these solutions is given by

uλ(x) =
k∑
j=1

GΩ(x, ξj) + o(1), as λ→ 0 (2.8)

where o(1) → 0 as λ→ 0 uniformly in compact sets contained in Ω\{ξ1, . . . , ξk}. Furthermore

J1
λ(uλ) = −16kπ + 8kπ log 8− 8kπ log λ− 4πφk(ξ) + o(1) (2.9)

where φk is defined in (2.5) and o(1) → 0 as λ→ 0.

If p = 2, problem (2.1) becomes{
∆u+ λueu

2
= 0, u > 0 in Ω;

u = 0 on ∂Ω.
(2.10)

This problem is the Euler-Lagrange equation for the functional J2
λ (see (2.2)) which corre-

sponds to the free energy associated to the critical Trudinger embedding (in the sense of
Orlicz spaces) [125, 103, 114]

H1
0 (Ω) ∋ u 7−→ eu

2 ∈ Lp(Ω) ∀ p ≥ 1,

which is connected to the critical Trudinger-Moser inequality

C(Ω) = sup

{∫
Ω

e4πu
2

/ u ∈ H1
0 (Ω),

∫
Ω

|∇u|2 = 1

}
< +∞ ,

[94]. Observe that, in general, critical points of the above constrained variational prob-
lem satisfy, after a simple scaling, an equation of the form (2.10). The Trudinger-Moser
embedding is critical, involving loss of compactness in H1

0 (Ω) for the functionals J2
λ which

translates into the presence of non-convergent Palais-Smale (PS) sequences. Let us consider
for instance a sequence λn → λ0 ≥ 0, and a sequence un with ∇J2

λn
(un) → 0, J2

λn
(un) → c.

For the Trudinger-Moser functional J2
λ, a classification of all PS sequences for Jλ does not

seem possible after the results in [3]. Actually PS holds as long as c < 2π, see [1, 31]. On
the other hand, for solutions more is known. From the result in [44] (see also [2, 44, 100]),
we have the following fact:

Assume that un solves problem (2.10) for λ = λn, with J
2
λn
(un) bounded and λn → 0. Then,

passing to a subsequence, there is an integer k ≥ 0 such that

J2
λn(un) = 2kπ + o(1). (2.11)
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When k = 1 a more precise answer is obtained in [2]: the solution un has for large n only one
isolated maximum, which blows up around a point x0 ∈ Ω which is characterized as a critical
point of Robin’s function x 7→ HΩ(x, x). When k > 1, such a description for the behavior of
un is not known and it seems to be still an open problem.

It is natural to ask whether or not solutions satisfying (2.11) exist. From the result in [3],
it follows that there is a λ0 > 0 such that a solution to (2.10) exists whenever 0 < λ < λ0
(this is in fact true for a larger class of nonlinearities with critical exponential growth). By
construction this solution falls, as λ → 0, into the bubbling category (2.11) with k = 1.
Struwe in [112] built in the case of a domain with a sufficiently small hole a solution taking
advantage of the presence of topology. M. del Pino, M. Musso and B. Ruf in [39] established
a general result concerning existence and multiplicity of solutions of problem (2.10).

In order to state this result, let us introduce the following function of k distinct points
ξ1, ξ2, · · · , ξk ∈ Ω and k positive numbers m1,m2, · · · ,mk,

φk,2(ξ,m) = a
k∑
j=1

m2
j + 2

k∑
j=1

m2
j logm

2
j +

k∑
j=1

m2
jHΩ(ξj, ξj) +

∑
i ̸=j

mimjGΩ(ξi, ξj), (2.12)

where a > 0 is an absolute constant, and GΩ(x, y) is the Green’s function defined in (2.6)
and HΩ(·, ·) its regular part. The authors in [39] established that, if φk,2 has a topologically
non trivial critical value, with corresponding critical point (ξ1, . . . , ξk,m1, . . .mk) ∈ Ωk×Rk

+,
then there exists a solution uλ of (2.10) with the shape

uλ(x) =
√
λ

[
k∑
j=1

mjGΩ(x, ξj) + o(1)

]
, as λ→ 0, (2.13)

where o(1) → 0 as λ→ 0 uniformly on compact sets of Ω \ {ξ1, . . . , ξk}. Furthermore,

J2
λ(uλ) = 2kπ + αλ+ 4πλφk,2(ξ,m) + λo(1)

where α is an absolute constant, φk,2 is defined in (2.12) and o(1) → 0 as λ→ 0. In particular,
in the case Ω is not simply connected they constructed the solution uλ of (2.10), with two
bubbling points, namely satisfying

uλ(x) =
√
λ

[
2∑
j=1

mjGΩ(x, ξj) + o(1)

]
, as λ→ 0,

where (m1,m2, ξ1, ξ2) is a critical point of φ2,2 defined in (2.12), and o(1) → 0 as λ → 0
uniformly on compact sets of Ω \ {ξ1, ξ2}.
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The above result show a difference between the behavior of finite-energy solutions to problem
(2.3) (or problem (2.1) with p = 1) and those to problem (2.10) (or problem (2.1) with p = 2):
far away from the concentration points ξ1, . . . , ξk, solutions to (2.3) are at main order sums of
Green’s functions centered at ξj (see (2.8)), while solutions to (2.10) are at main order sum

of Green’s functions centered at ξj but with different positive weights
√
λmj whose values

depend on the location of the concentration points ξ1, . . . , ξk (see (2.13)). In other words:
To construct solutions to (2.10), one not only needs to choose carefully the concentration
points ξ1, . . . .ξk, as for problem (2.3), but one has to carefully choose the correct weights
m1, . . . ,mk. This shows that, in some sense, problem (2.3) has a subcritical behavior while
problem (2.10) has a critical behavior.

This chapter is motivated to understand the solutions to problem (2.1) when p is between 1
and 2. In fact, we obtain existence results for (2.1) in the whole range 0 < p < 2, and we
find that in this range problem (2.1) has a subcritical behavior, in the sense described above.
Let us state our result.

Let us define

M =
{
(ξ1, · · · , ξk) ∈ Ωk : dist(ξj, ∂Ω) ≥ δ, |ξi − ξj| ≥ δ for i ̸= j

}
for some δ > 0. Let ε be a parameter, which depends on λ, defined as

pλ

(
−4

p
log ε

) 2(p−1)
p

ε
2(p−2)

p = 1. (2.14)

Observe that, as λ→ 0, then ε→ 0, and λ = ε2 if p = 1.

Our result states as follows.

Theorem 2.1. Let 0 < p < 2 and k an integer with k ≥ 1. If Ω is not simply connected, then
there exists λ0 > 0 so that, for any 0 < λ < λ0 problem (2.1) has a solution uλ. Furthermore

lim
λ→0

ε
2(2−p)

p

∫
Ω

eu
p
λ = 8kπ, (2.15)

where ε satisfies (2.14). Moreover, there exists an k−tuple ξλ = (ξλ1 , · · · , ξλk ) ∈ M such that
as λ→ 0

∇φk(ξλ1 , · · · , ξλk ) → 0,

and

uλ(x) = p−
1
2

√
λ ε

p−2
p

(
k∑
j=1

GΩ(x, ξ
λ
j ) + o(1)

)
(2.16)

where o(1) → 0, as λ→ 0, on each compact subset of Ω̄\{ξλ1 , · · · , ξλk}. Furthermore

Jpλ(uλ) = λε
2(p−2)

p

[
8kπ

(2− p)p
[−2 + p log 8]− 16kπ

p
log ε− 4π

2− p
φk(ξ

λ) +O(| log ε|−1)

]
(2.17)

where O(1) uniformly bounded as λ→ 0.
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In [101], T. Ogawa and T. Suzuki investigated the asymptotic behaviour of the blow-up
solutions for problem (2.1) when 0 < p ≤ 2 and Ω = B(0, 1). Every smooth positive solution
of this problem must be radially symmetric and decreasing in |x| by the result of Gidas-Ni-
Nirenberg [54], then u(0) = ∥u∥L∞ . Suppose uλ is a solution satisfying ∥uλ∥L∞ → ∞ as
λ→ 0, then uλ(x) → 0 locally uniformly on B̄\{0}, as λ→ 0. Thus, if we consider problem
(2.1) in the unit disk of R2, suppose u is the solution of (2.1), then u blow-up at origin as
λ→ 0.

We will prove Theorem 2.1 as consequence of a more general theorem, in a spirit similar
to the one used in [36]. To do so, we need to recall the notion of topologically non-trivial
critical level for φk. Let us consider an open set D compactly contained in the domain of the
functional φk. We recall that φk links in D at critical level C relative to B and B0 if B and
B0 are closed subsets of D̄ with B connected and B0 ⊂ B such that the following conditions
hold: Let us set Γ to be the class of the maps Φ ∈ C(B,D) with the property that there
exists a function Ψ ∈ C([0, 1]×B,D) such that

Ψ(0, ·) = IdB, Ψ(1, ·) = Φ, Ψ(t, ·)|B0 = IdB0 for ∀t ∈ [0, 1].

We assume

sup
ξ∈B0

φk(ξ) < C := inf
Φ∈Γ

sup
ξ∈B

φk(Φ(ξ)), (2.18)

and for all ξ ∈ ∂D such that φk(ξ) = C, there exists a vector τ tangent to ∂D at ξ such that

∇φk(ξ) · τ ̸= 0. (2.19)

Under these conditions a critical point ξ̄ ∈ D with φk(ξ̄) = C exists, as a standard deformation
argument involving the negative gradient flow of φk shows. Condition (2.18) is a general way
of describing a change of topology in the level sets {φk ≤ c} in D taking place at c = C, while
(2.19) prevents intersection of the level set C with the boundary. It is easy to check that the
above conditions hold if

inf
ξ∈D

φk(ξ) < inf
ξ∈∂D

φk(ξ), or sup
ξ∈D

φk(ξ) > sup
ξ∈∂D

φk(ξ),

namely the case of (possibly degenerate) local minimum or maximum points of φk. The level
C may be taken in these cases respectively as that of the minimum and the maximum of φk
in D. These hold also if φk is C1−close to a function with a non-degenerate critical point in
D. We call C a non-trivial critical level of φk in D.

Theorem 2.2. For 0 < p < 2, let k ≥ 1, assume that φk defined by (2.5) has a topologically
non trivial critical level C in D, then the problem (2.1) has a family solutions uλ for λ small
enough, such that

lim
λ→0

ε
2(2−p)

p

∫
Ω

eu
p
λ = 8kπ, (2.20)
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where ε satisfies (2.14). Moreover, there exists an k−tuple ξλ = (ξλ1 , · · · , ξλk ) ∈ M such that
as λ→ 0

φk(ξ
λ
1 , · · · , ξλk ) → c,

and

uλ(x) = p−
1
2

√
λ ε

p−2
p

(
k∑
j=1

GΩ(x, ξ
λ
j ) + o(1)

)
(2.21)

where o(1) → 0 on each compact subset of Ω̄\{ξλ1 , · · · , ξλk}. Furthermore

Jpλ(uλ) = λε
2(p−2)

p

[
8kπ

(2− p)p
[−2 + p log 8]− 16kπ

p
log ε− 4π

2− p
φk(ξ

λ) +O(| log ε|−1)

]
(2.22)

where O(1) uniformly bounded as λ→ 0.

The proof of our result relies on a Lyapunov-Schmidt reduction procedure, introduced in
[9, 52] and used in many different contexts, see for instance [36, 39, 47, 48, 49, 46]. The key
step is to find the ansatz for the solution. Usually, the ansatz is built as a sum of terms,
which turns out to be solutions of the associate limit problem, which are properly scaled and
translated. For our problem, our approximate solution is built by using the following ”basic
cells”: the radially symmetric solutions of the following Liouville equation

∆w + ew = 0 in R2,

∫
R2

ew < +∞,

which are given by

wµ(z) := log
8µ2

(µ2 + |z|2)2
, wµ(z − ξ) := log

8µ2

(µ2 + |z − ξ|2)2
(2.23)

where µ is any positive number and ξ any point in R2 (see [21]). If we use a sum of the above
basic cells, properly scaled, and centered at several points of the domain as our approximate
solution, we get a very good approximation of a solution in a region far away from the points,
which unfortunately turns out to be not good enough close to these points. Thus we need to
improve the approximation, at least near the points, and we do this adding two other terms
in the expansion of the solution. This can be done in a very natural way, which has first
been used in [47] for studying the following problem{

∆u+ up = 0, u > 0 in Ω;

u = 0 on ∂Ω,
(2.24)

where Ω is a smooth bounded domain in R2, and p is a large exponent. Later on, this method
has been applied in other contexts, see [19, 48, 49, 93]. Observe that this method allows to
improve the approximation near the points, but it is not useful to improve the approximation
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far away from this points. Nevertheless, as already mentioned, the approximation we build
for this problem is sufficiently accurate in a regime far from the points. After the approx-
imate solution is build, we find an actual solution to (2.1) as a small perturbation of the
approximation.

This chapter is organized as follows: Section 2.2 is devoted to describing a first approximation
solution to problem (2.1) and estimating the error. Furthermore, problem (2.1) is written
as a fixed point problem, which involving a linear operator. In Section 2.3, we study the
invertibility of the linear problem. In Section 2.4, we study the nonlinear problem. In
Section 2.5, we study the variational reduction, we prove Theorems 2.1 and 2.2 in Section
2.6.

2.2 Preliminaries and ansatz for the solution

In this section we describe the approximate solution for problem (2.1) and then we estimate
the error of such approximation in appropriate norms.

Let us consider k distinct points ξ1, ξ2, · · · , ξk in Ω, we choose a sufficiently small but fixed
number δ > 0 and assume that for j = 1, 2, · · · , k,

dist(ξj, ∂Ω) ≥ δ, |ξi − ξj| ≥ δ for i ̸= j, (2.1)

Furthermore, we consider k positive numbers µj such that

δ < µj < δ−1, for all j = 1, . . . , k. (2.2)

The parameters µj will be chosen properly later on. Define the function

Uµj ,ξj(x) = log
8µ2

j

(µ2
jε

2 + |x− ξj|2)2
.

Let us denote PUµj ,ξj(x) the projection of Uµj ,ξj into the space H1
0 (Ω), in other words,

PUµj ,ξj(x) is the unique solution of{
∆PUµj ,ξj = ∆Uµj ,ξj , in Ω;

PUµj ,ξj = 0, on ∂Ω.
(2.3)

Lemma 2.3. Assume (2.1) and (2.2). We have

PUµj ,ξj(x) = Uµj ,ξj(x) +HΩ(x, ξj)− log(8µ2
j) +O(µ2

jε
2) (2.4)

in C1(Ω̄) as ε→ 0, and

PUµj ,ξj(x) = GΩ(x, ξj) +O(µ2
jε

2) (2.5)

in C1
loc(Ω̄\{ξj}) as ε→ 0, where GΩ(·, ·) and HΩ(·, ·) are Green’s function and its the regular

part as defined in (2.6) and (2.7).
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Proof. Let z(x) = PUµj ,ξj(x)− Uµj ,ξj(x) + log(8µ2
j), then z(x) satisfies{

∆z(x) = 0 in Ω;

z(x) = 2 log(µ2
jε

2 + |x− ξj|2) on ∂Ω.

On the other hand, we note that η(x) = HΩ(x, ξj) satisfies{
∆η(x) = 0 in Ω;

η(x) = 2 log |x− ξj|2 on ∂Ω.

Then we get ∆(z(x)− η(x)) = 0 in Ω;

z(x)− η(x) = −2 log
|x−ξj |2

µ2jε
2+|x−ξj |2

on ∂Ω.

Since |x− ξj| > δ for x ∈ ∂Ω, then by the maximum principle we get

max
Ω̄

|z(·)− η(·)| = max
x∈∂Ω

|z(·)− η(·)| = O(µ2
jε

2),

as ε→ 0, uniformly in Ω. Then we obtain the C0-estimate in (2.4). Analogous computations
give the C1-closeness and hence the validity of (2.4). By (2.4) we deduce (2.5).

We shall show later on that PUµj ,ξj(x) is a good approximation for a solution to (2.1) far
from the points ξj, but unfortunately it is not good enough for our construction close to the
points ξj. This is the reason why we need to further adjust PUµj ,ξj(x). To do this, we need
to introduce the following functions w0

j and w1
j .

Let wµj be defined as (2.23). Define the function wij to be radial solution of

∆wij + ewµjwij = ewµj f i in R2, for i = 0, 1, (2.6)

and

f 0 = −
(
wµj +

1

2
(wµj)

2

)
, (2.7)

f 1 = −
(
w0
j +

p− 2

2(p− 1)
(wµj)

2 +
1

2
(w0

j )
2 +

1

8
(wµj)

4

+2wµjw
0
j +

1

2
(wµj)

3 +
1

2
w0
j (wµj)

2

)
. (2.8)

In fact, as shown in [47] (see also [20]), there exists radially symmetric solutions with the
properties that

wij(y) = Cij log
|y|
µj

+O(
1

|y|
) as |y| → ∞, (2.9)
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for some explicit constants Cij, which can be explicitly computed. In particular, when i = 0,
the constant C0j is given by

C0j = −8

∫ +∞

0

t
t2 − 1

(t2 + 1)3

log 8µ−2
j

(1 + t2)2
+

1

2

(
log

8µ−2
j

(1 + t2)2

)2
 dt

= −4

∫ +∞

0

t2 − 1

(t2 + 1)3

log 8µ−2
j

(1 + t2)2
+

1

2

(
log

8µ−2
j

(1 + t2)2

)2
 d(t2)

set r = t2 + 1

= −4

∫ +∞

1

r − 2

r3

[
log(8µ−2

j )− 2 log r +
1

2

(
log(8µ−2

j )
)2

−2 log(8µ−2
j ) log r + 2(log r)2

]
dr.

Since ∫ +∞

1

r − 2

r3
dr = 0,

∫ +∞

1

r − 2

r3
log r dr =

1

2
,

and ∫ +∞

1

r − 2

r3
(log r)2 dr =

3

2
.

Hence

C0j = 4 log 8− 8− 8 log µj. (2.10)

Let us define

w0
µj ,ξj

(x) := w0
j

(
x− ξj
ε

)
, w1

µj ,ξj
(x) := w1

j

(
x− ξj
ε

)
for x ∈ Ω.

Let Pw0
µj ,ξj

and Pw1
µj ,ξj

denote the projections into H1
0 (Ω) of w

0
µj ,ξj

and w1
µj ,ξj

, respectively.

By (2.9), we have that

P
(
wiµj ,ξj(x)

)
= P

(
wij

(
y − ξ′j
µj

))
= wij

(
y − ξ′j
µj

)
− Cij

4
HΩ(x, ξj) + Cij log(µjε) +O(µjε) (2.11)

in C1(Ω̄) as ε→ 0, and

P
(
wiµj ,ξj(x)

)
= P

(
wij

(
y − ξ′j
µj

))
= −Cij

4
GΩ(x, ξj) +O(µjε) (2.12)

in C1
loc(Ω̄\{ξj}) as ε→ 0.
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We define

Uλ(x) =
1

pγp−1

k∑
j=1

(
PUµj ,ξj(x) +

p− 1

p

1

γp
Pw0

µj ,ξj
(x) +

(
p− 1

p

)2
1

γ2p
Pw1

µj ,ξj
(x)

)
. (2.13)

From (2.5) and (2.12), one has, away from the points ξj,

Uλ(x) =
1

pγp−1

k∑
j=1

GΩ(x, ξj)

(
1− p− 1

p

1

γp
C0j

4
−
(
p− 1

p

)2
1

γ2p
C1j

4
+O(ε2)

)
. (2.14)

Consider now the change of variables

v(y) = pγp−1u(εy)− pγp, with γp = −4

p
log ε.

By (2.14), then problem (2.1) reduces to{
∆v + g(v) = 0, v > 0 in Ωε;

v = −pγp on ∂Ωε,
(2.15)

where Ωε = ε−1Ω, and

g(v) = (1 +
v

pγp
)p−1eγ

p[(1+ v
pγp

)p−1]. (2.16)

Let us define the first approximation solution to (2.15) as

Vλ(y) = pγp−1Uλ(εy)− pγp, (2.17)

with Uλ defined by (2.13). We write y = ε−1x, ξ′j = ε−1ξj. For |x− ξj| < δ with δ sufficiently
small but fixed, by using (2.4), (2.5), (2.11), (2.12) and the fact that Uµj ,ξj(εy) − pγp =
wj(y − ξ′j), we have

Vλ(y) = PUµj ,ξj(εy) +
p− 1

p

1

γp
Pw0

µj ,ξj
(εy) +

(
p− 1

p

)2
1

γ2p
Pw1

µj ,ξj
(εy)− pγp

+
k∑
i̸=j

(
PUµi,ξi(εy) +

p− 1

p

1

γp
Pw0

µi,ξi
(εy) +

(
p− 1

p

)2
1

γ2p
Pw1

µi,ξi
(εy)

)
= Uµj ,ξj(εy) +HΩ(εy, ξj)− log(8µ2

j) +O(µ2
jε

2)− pγp

+
p− 1

p

1

γp

[
w0
j

(
y − ξ′

µj

)
− C0j

4
HΩ(εy, ξj) + C0j log(µjε) +O(µjε)

]
+

(
p− 1

p

)2
1

γ2p

[
w1
j

(
y − ξ′

µj

)
− C1j

4
HΩ(εy, ξj) + C1j log(µjε) +O(µjε)

]
+

k∑
i̸=j

GΩ(ξi, ξj)

[
1− C0j

4

p− 1

p

1

γp
− C1j

4

(
p− 1

p

)2
1

γ2p

]
+O(ε2)
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= wj(y) +
p− 1

p

1

γp
w0
j (y) +

(
p− 1

p

)2
1

γ2p
w1
j (y)− log(8µ2

j)

+

[
1− C0j

4

p− 1

p

1

γp
− C1j

4

(
p− 1

p

)2
1

γ2p

](
HΩ(ξj, ξj) +

k∑
i ̸=j

GΩ(ξi, ξj)

)

+

[
C0j

p− 1

p

1

γp
+ C1j

(
p− 1

p

)2
1

γ2p

]
(log(µj) + log ε)

+O(ε|y − ξ′|) +O(ε2), (2.18)

where

wj(y) := wµj(y − ξ′j), w0
j (y) := w0

j

(
y − ξ′j
µj

)
, w1

j (y) := w1
j

(
y − ξ′j
µj

)
.

We now choose the parameters µj: we assume they are defined by the relation

log(8µ2
j) =

(
HΩ(ξj, ξj) +

k∑
i ̸=j

GΩ(ξi, ξj)

)
− p− 1

4
C0j

−p− 1

p

1

γp
C0j

4

(
HΩ(ξj, ξj) +

k∑
i̸=j

GΩ(ξi, ξj) + 4 log(µj)− (p− 1)
C1j

C0j

)

−
(
p− 1

p

)2
1

γ2p
C1j

4

(
HΩ(ξj, ξj) +

k∑
i ̸=j

GΩ(ξi, ξj) + 4 log(µj)

)
. (2.19)

Taking into account the explicit expression (2.10) of the constant C0j, we observe that µj
bifurcates, as λ goes to zero, from the value µ̄j defined by

µ̄j = 8−
p

2(2−p) e
p−1
2−p e

1
2(2−p)

[
HΩ(ξj ,ξj)+

k∑
i̸=j

GΩ(ξi,ξj)

]
(2.20)

solution of equation

log(8µ2
j) =

(
HΩ(ξj, ξj) +

k∑
i̸=j

GΩ(ξi, ξj)

)
− p− 1

4
C0j. (2.21)

Thus, µj is a perturbation of order 1
γp

of the value µ̄j, namely

log(8µ2
j) =

[
2(p− 1)

2− p
(1− log 8)

+
1

2− p

(
HΩ(ξj, ξj) +

k∑
i̸=j

GΩ(ξi, ξj)

)](
1 +O

(
1

γp

))
. (2.22)
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Then, by this choice of the parameters µj, we deduce that, if |y− ξ′j| < δ/ε with δ sufficiently
small but fixed, we can rewrite

Vλ(y) = wj(y) +
p− 1

p

1

γp
w0
j (y) +

(
p− 1

p

)2
1

γ2p
w1
j (y) + θ(y), (2.23)

with
θ(y) = O(ε|y − ξ′j|) +O(ε2).

We will look for solutions to (2.15) of the form

v = Vλ + ϕ,

where Vλ is defined as in (2.17), and ϕ represents a lower order correction. We aim at finding
a solution for ϕ small provided that the points ξj are suitably chosen. For small ϕ, we can
rewrite problem (2.15) as a nonlinear perturbation of its linearization, namely,{

L(ϕ) = −[Eλ +N(ϕ)], x ∈ Ωε;

ϕ = 0, x ∈ ∂Ωε,
(2.24)

where

L(ϕ) := ∆ϕ+ g′(Vλ)ϕ, (2.25)

Eλ := ∆Vλ + g(Vλ), (2.26)

N(ϕ) := g(Vλ + ϕ)− g(Vλ)− g′(Vλ)ϕ. (2.27)

We recall that g(t) = (1 + t
pγp

)p−1eγ
p[(1+ t

pγp
)p−1].

In order to solve the problem (2.24), first we have to study the invertibility properties of the
linear operator L. In order to do this, we introduce a weighted L∞-norm defined as

∥h∥∗ := sup
y∈Ωε

(
k∑
j=1

(1 + |y − ξ′j|)−3 + ε2

)−1

|h(y)| (2.28)

for any h ∈ L∞(Ωε). With respect to this norm, the error term Eλ given in (2.26) can be
estimated in the following way.

Lemma 2.4. Let δ > 0 be a small but fixed number and assume that the points ξj satisfy
(2.1). There exists C > 0, such that we have

∥Eλ∥∗ ≤
C

γ3p
=

C

| log ε|3
(2.29)

for all λ small enough.
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Proof. Far away from the points ξj, namely for |x − ξj| > δ, i.e. |y − ξ′j| > δ
ε
, for all

j = 1, · · · , k, from (2.5) and (2.12) we have that

∆Vλ(y) = pγp−1ε2∆U(εy) = O(γp−1ε4).

On the other hand, in this region we have

1 +
Vλ(y)

pγp
= 1 +

4 log ε+O(1)

pγp
=

O(1)

| log ε|
(2.30)

where O(1) denotes a smooth function, uniformly bounded, as ε → 0, in the considered
region. Hence

g(Vλ) =

(
1 +

Vλ
pγp

)p−1

eγ
p[(1+

Vλ
pγp

)p−1]

=

C ε
4
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
4
p

| log ε|p−1 e
γp

O(1)
| log ε|p if 0 < p < 1.

=

C ε
4
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
4
p

| log ε|p−1 e
O(1)

| log ε|p−1 if 0 < p < 1.

Thus if we are far away from the points ξj, or equivalently for |y − ξ′j| > δ
ε
, the size of the

error, measured with respect to the ∥ · ∥∗-norm, is relatively small. In other words, if we
denote by 1outer the characteristic function of the set {y : |y − ξ′j| > δ

ε
j = 1, . . . , k}, then in

this region we have

∥Eλ1outer∥∗ ≤


C ε

2(2−p)
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
p

| log ε|p−1 e
log ε

2−p
p + C

| log ε|p−1 if 0 < p < 1.

=

C ε
2(2−p)

p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
p

| log ε|p−1 e
− 2−p

p
| log ε|+C| log ε|1−p

if 0 < p < 1.

≤

C ε
2(2−p)

p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
p

| log ε|p−1 if 0 < p < 1.

(2.31)

Here we used that −2−p
p
| log ε| + C| log ε|1−p < 0 for 0 < p < 1 and ε small. Let us now fix

the index j in {1, · · · , k}, for |y − ξ′j| < δ
ε
, we have

∆Vλ(y) = −ewj(y) +
p− 1

p

1

γp
∆w0

j (y) +

(
p− 1

p

)2
1

γ2p
∆w1

j (y) +O(ε2). (2.32)
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On the other hand, for any R > 0 large but fixed, in the ball |y− ξ′j| < Rε := R| log ε|α, with
α ≥ 3, we can use Taylor expansion to first get

(1 +
Vλ
pγp

)p−1 = 1 +
p− 1

p

1

γp
wj + (

p− 1

p
)2

1

γ2p
[w0

j +
p− 2

2(p− 1)
(wj)

2]

+(
p− 1

p
)3

1

γ3p
(log |y|),

γp[(1 +
Vλ
pγp

)p − 1] = wj + (
p− 1

p
)
1

γp
[w0

j +
(wj)

2

2
]

+(
p− 1

p
)2

1

γ2p
(w1

j + wjw
0
j ) +

1

γ3p
(log |y|)

and

eγ
p[(1+

Vλ
pγp

)p−1] = ewj

[
1 + (

p− 1

p
)
1

γp
[w0

j +
(wj)

2

2
]

+(
p− 1

p
)2

1

γ2p
[w1

j + wjw
0
j +

1

2
(w0

j + (wj)
2)2] +

1

γ3p
(log |y|)

]
Thus we obtain

g(Vλ) := (1 +
Vλ
pγp

)p−1eγ
p[(1+

Vλ
pγp

)p−1]

= ewj

{
1 + (

p− 1

p
)
1

γp

[
w0
j +

(wj)
2

2
+ wj

]
+ (

p− 1

p

2

)
1

γ2p

[
w1
j + 2wjw

0
j +

1

2
(w0

j +
(wj)

2

2
)2 + w0

j +
p− 2

2(p− 1)
w2
j +

w3
j

2

]
+O

(
log |y − ξ′j|

γ3p

)}
.

Thus, thanks to the fact that we have improved our original approximation with the terms
w0
j and w1

j , and the definition of ∗-norm, we get that

∥Eλ1B(ξ′j ,Rε)∥∗ ≤
C

γ3p
=

C

| log ε|3
, for any j = 1, . . . , k. (2.33)

Here 1B(ξ′j ,Rε) denotes the characteristic function of B(ξj, Rε). Finally, in the remaining

region, namely where Rε < |y − ξ′j| < δ
ε
, for any j = 1, . . . , k, we have from one hand

that |∆Vλ(y)| ≤ Cewj(y), and also |g(Vλ(y))| ≤ Cewj(y) as consequence of (2.18). This fact,
together with (2.33) and (2.31) we obtain estimate (2.29).

As above computation, we find that very close to the point ξj in Ω, we have

∥g′(Vλ)− ewj∥∗ → 0 as λ→ 0, (2.34)
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and there exists some positive constant D0 such that

g′(Vλ) ≤ D0

k∑
j=1

ewj . (2.35)

Moreover, we can get

∥g′′
(Vλ)∥∗ ≤ C. (2.36)

Proof of (2.34) and (2.35): We have

g′(Vλ) =
p− 1

p

1

γp
(1 +

Vλ
pγp

)p−2eγ
p[(1+

Vλ
pγp

)p−1]

+(1 +
Vλ
pγp

)2(p−1)eγ
p[(1+

Vλ
pγp

)p−1]

:= Ia + Ib.

Far away from the points ξj, namely for |x− ξj| > δ, i.e. |y − ξ′j| > δ
ε
, for all j = 1, · · · , k, a

consequence of (2.30) is that

Ia =
ε

4
p

| log ε|p−1
O(1), and Ib =

ε
4
p

| log ε|2(p−1)
O(1)

Then we have

g′(Vλ)1outer =
ε

4
p

| log ε|p−1
O(1) (2.37)

On the other hand, fix the index j in {1, · · · , k}, for |y − ξ′j| < Rε with Rε = R| log ε|, for
any R > 0 large but fixed, we use Taylor expansion to get

Ia =
p− 1

p

1

γp

(
1 +

1

pγp

(
wj(y) +

p− 1

p

1

γp
w0
j (y) +

(
p− 1

p

)2
1

γ2p
w1
j (y) + θ(y)

))p−2

×eγ
p
[(

1+ 1
pγp

(
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

))p
−1
]

=
p− 2

p

1

γp

[
p− 1

p− 2
+
p− 1

p

1

γp
wj(y) +

(
p− 1

p

)2
1

γ2p
w0
j (y)

+

(
p− 1

p

)3
1

γ3p
w1
j (y) +

p− 1

p

1

γp
θ(y)

]

×ewj(y)e
p−1
p

1
γp
w0

j (y)e(
p−1
p )

2 1
γ2p

w1
j (y)eθ(y)e

1
2

p−1
p

1
γp

[
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

]2
,

and

Ib =

(
1 +

1

pγp

(
wj(y) +

p− 1

p

1

γp
w0
j (y) +

(
p− 1

p

)2
1

γ2p
w1
j (y) + θ(y)

))2(p−1)
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×eγ
p
[(

1+ 1
pγp

(
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

))p
−1
]

=

[
1 +

2(p− 1)

p

1

γp
wj(y) + 2

(
p− 1

p

)2
1

γ2p
w0
j (y)

+2

(
p− 1

p

)3
1

γ3p
w1
j (y) +

2(p− 1)

p

1

γp
θ(y)

]

×ewj(y)e
p−1
p

1
γp
w0

j (y)e(
p−1
p )

2 1
γ2p

w1
j (y)eθ(y)e

1
2

p−1
p

1
γp

[
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

]2
.

By the definition of w0
j and w1

j , we get that

Ia1B(ξ′j ,Rε) =
O(1)

| log ε|
, Ib1B(ξ′j ,Rε) − ewj(y) =

O(1)

| log ε|
(2.38)

Finally, in the remaining region, namely where for any j = 1, . . . , k, we have Rε < |y−ξ′j| < δ
ε
,

we have

|Ia| ≤
C

| log ε|
ewj(y), |Ib| ≤ Cewj(y). (2.39)

Then, from (2.38) and the definition of ∗−norm, we find that very close to the point ξj in Ω,
we have

∥g′(Vλ)− ewj∥∗ =
O(1)

| log ε|
which implies (2.34). Combing (2.37), (2.38) with (2.39) we obtain estimate (2.35).

Proof of (2.36): We have

g′′(Vλ) =
(p− 1)(p− 2)

p2
1

γ2p
(1 +

Vλ
pγp

)p−3eγ
p[(1+

Vλ
pγp

)p−1]

=
3(p− 1)

p

1

γp
(1 +

Vλ
pγp

)2p−3eγ
p[(1+

Vλ
pγp

)p−1]

+(1 +
Vλ
pγp

)3(p−1)eγ
p[(1+

Vλ
pγp

)p−1]

:= Ic + Id + Ie.

By a similar computation as above: Far away from the points ξj, namely for |x− ξj| > δ, i.e.
|y − ξ′j| > δ

ε
, for all j = 1, · · · , k, we have

Ic =
ε

4
p

| log ε|p−1
O(1), Id =

ε
4
p

| log ε|2(p−1)
O(1) , and Ie =

ε
4
p

| log ε|3(p−1)
O(1)

Then

g′′(Vλ)1outer =
ε

4
p

| log ε|p−1
O(1) (2.40)
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where again O(1) denotes a function which is uniformly bounded, as ε→ 0, in the considered
region. Let us now fix the index j in {1, · · · , k}, for |y − ξ′j| < Rε with any Rε := R| log ε|
for some R > 0 large but fixed, by Taylor expansion, we have

Ic =
(p− 1)(p− 2)

p2
1

γ2p

(
1 +

1

pγp

(
wj(y) +

p− 1

p

1

γp
w0
j (y) +

(
p− 1

p

)2
1

γ2p
w1
j (y) + θ(y)

))p−3

×eγ
p
[(

1+ 1
pγp

(
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

))p
−1
]

=
(p− 2)(p− 3)

p2
1

γ2p

[
p− 1

p− 3
+
p− 1

p

1

γp
wj(y) +

(
p− 1

p

)2
1

γ2p
w0
j (y)

+

(
p− 1

p

)3
1

γ3p
w1
j (y) +

p− 1

p

1

γp
θ(y)

]

×ewj(y)e
p−1
p

1
γp
w0

j (y)e(
p−1
p )

2 1
γ2p

w1
j (y)eθ(y)e

1
2

p−1
p

1
γp

[
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

]2
,

Id =
3(p− 1)

p

1

γp

(
1 +

1

pγp

(
wj(y) +

p− 1

p

1

γp
w0
j (y) +

(
p− 1

p

)2
1

γ2p
w1
j (y) + θ(y)

))2p−3

×eγ
p
[(

1+ 1
pγp

(
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

))p
−1
]

=
3(2p− 3)

p

1

γp

[
p− 1

2p− 3
+
p− 1

p

1

γp
wj(y) +

(
p− 1

p

)2
1

γ2p
w0
j (y)

+

(
p− 1

p

)3
1

γ3p
w1
j (y) +

p− 1

p

1

γp
θ(y)

]

×ewj(y)e
p−1
p

1
γp
w0

j (y)e(
p−1
p )

2 1
γ2p

w1
j (y)eθ(y)e

1
2

p−1
p

1
γp

[
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

]2
,

and

Ie =

(
1 +

1

pγp

(
wj(y) +

p− 1

p

1

γp
w0
j (y) +

(
p− 1

p

)2
1

γ2p
w1
j (y) + θ(y)

))3(p−1)

×eγ
p
[(

1+ 1
pγp

(
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

))p
−1
]

=

[
1 +

3(p− 1)

p

1

γp
wj(y) + 3

(
p− 1

p

)2
1

γ2p
w0
j (y)

+3

(
p− 1

p

)3
1

γ3p
w1
j (y) +

3(p− 1)

p

1

γp
θ(y)

]

×ewj(y)e
p−1
p

1
γp
w0

j (y)e(
p−1
p )

2 1
γ2p

w1
j (y)eθ(y)e

1
2

p−1
p

1
γp

[
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

]2
.

Therefore, we get

Ic1B(ξ′j ,Rε) =
O(1)

| log ε|
, Id1B(ξ′j ,Rε) =

O(1)

| log ε|2
, Ie1B(ξ′j ,Rε) = O(1). (2.41)
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Finally, for Rε < |y − ξ′j| < δ
ε
, for any j, we have

|Ic| ≤
C

| log ε|
, |Id| ≤

C

| log ε|2
, |Ie| = O(1) + Cewj(y). (2.42)

From (2.40), (2.41) with (2.42), by the definition of ∗−norm, we obtain (2.36) holds.

2.3 The linearized problem

In this section, we prove the bounded invertibility of the operator L. We observe that the
operator L can be approximately regarded as a superposition of the linear operator

Lj(ϕ) = ∆ϕ+ ewjϕ = ∆ϕ+
8µ2

j(
µ2
j + |y − ξ′j|2

)2ϕ.
The key fact to develop a satisfactory solvability theory for the operator L is the nondegen-
eracy of w up to the natural invariances of the equation under translations and dilations,
which translates into the fact that

z0j(y) = ∂µjwµj(y), zij(y) = ∂yiwµj(y), i = 1, 2,

satisfy the function ∆Z + ewjZ = 0, see [10] for a proof. Define for i = 0, 1, 2 and j =
1, 2, · · · , k,

Zij(y) := zij
(
y − ξ′j

)
, i = 0, 1, 2. (2.43)

Consider a large but fixed number R0 > 0 and a radial and smooth cut-off function η with
η(r) = 1 if r < R0 and η(r) = 0 if r > R0 + 1. Write

ηj(y) = η
(
|y − ξ′j|

)
. (2.44)

Given h ∈ L∞(Ωε), we consider the problem of finding a function ϕ such that for certain
scalars cij, i = 1, 2, j = 1, 2, · · · , k, it satisfies

L(ϕ) = h+
2∑
i=1

k∑
j=1

cijZijηj, in Ωε;

ϕ = 0 on ∂Ωε;∫
Ωε
ϕZijηj = 0 for i = 1, 2, j = 1, · · · , k.

(2.45)

Consider the norm
∥ϕ∥∞ = sup

y∈Ωε

|ϕ(y)|.

The main result of this section is the following:
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Proposition 2.5. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for
any points ξj, j = 1, · · · , k, in Ω, satisfying (2.1), µj is given by (2.22), and h ∈ L∞(Ωε),
there is a unique solution ϕ := Tλ(h) to problem (2.45) for all λ ≤ λ0. Moreover,

∥ϕ∥∞ ≤ C

(
log

1

ε

)
∥h∥∗. (2.46)

The proof will be split into a series of lemmas which we state and prove next.

Lemma 2.6. The operator L satisfies the maximum principle in Ω̃ε = Ωε \
k∪
j=1

B(ξ′j, R) for

R large. Namely, if L(ϕ) ≤ 0 in Ω̃ε and ϕ ≥ 0 on ∂Ω̃ε, then ϕ ≥ 0 in Ω̃ε.

Proof. Given a > 0, we consider the function

Z(y) =
k∑
j=1

z0
(
a|y − ξ′j|

)
, y ∈ Ωε, (2.47)

where z0(r) =
r2−1
r2+1

is the radial solution in R2 of

∆z0 +
8

(1 + r2)2
z0 = 0.

First, we observe that, if |y − ξ′j| ≥ R for R > 1
a
, then Z(y) > 0. By the definition of z0 we

have

−∆Z(y) =
k∑
j=1

8a2(a2|y − ξ′j|2 − 1)

(1 + a2|y − ξ′j|2)3

≥
k∑
j=1

1

3

8a2

(1 + a2|y − ξ′j|2)2

≥
k∑
j=1

4

27

8

a2|y − ξ′j|4

provided R >
√
2
a
. On the other hand, in the same region, we have

g′(Vλ)Z(x) ≤ D0

k∑
j=1

ewjZ(y) ≤ D0

k∑
j=1

C

|y − ξ′j|4
,

for some constant C > 0 and D0 satisfies (2.35). Hence if a is taken small and fixed, and
R > 0 is chosen sufficiently large depending on this a, then we have L(Z) < 0 in Ω̃ε, The
function Z(y) is what we are looking for.
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Let us fix such a number R > 0 which we may take large whenever it is needed. Define the
” inner norm ” of ϕ in the following way

∥ϕ∥i = sup
y∈∪k

j=1B(ξ′j ,R)

|ϕ(y)|.

Lemma 2.7. There exists a uniform constant C > 0 such that if L(ϕ) = h in Ωε, ϕ = 0 on
∂Ωε, then

∥ϕ∥∞ ≤ C[∥ϕ∥i + ∥h∥∗], (2.48)

for any h ∈ L∞(Ωε).

Proof. We will establish this estimate with the use of suitable barriers. Let M be large, such
that Ωε ⊂ B(ξ′j,

M
ε
) for all j. Consider the solution ψj of the following problem{

−∆ψj =
2

|y−ξ′j |3
+ 2ε2, R < |y − ξ′j| < M

ε
;

ψj(y) = 0 for |y − ξ′j| = R, |y − ξ′j| = M
ε
.

We observe that by the direct computation we have that

ψj(r) =
1

R
− 1

r
− ε2(r −R)−

[
1

R
− 1

r
− ε2

(
M

ε
−R

)]
log r

R

log M
εR

.

Therefore, this function is uniform bound independent of ε as long as a < R < 1
2ε
.

Define now the function

ϕ̃(y) = 2∥ϕ∥iZ(y) + ∥h∥∗
k∑
j=1

ψj(y),

where Z is the function defined in (2.47). First, observe that by the definition of Z, choosing
R large if necessary,

ϕ̃(y) ≥ 2∥ϕ∥iZ(y) ≥ ∥ϕ∥i ≥ |ϕ(y)| for |y − ξ′j| = R, j = 1, · · · , k,

and, by the positivity of Z(y) and ψj(y),

ϕ̃(y) ≥ 0 = ϕ(y) for y ∈ ∂Ωε.

Finally, by the definition of ∥ · ∥∗ we have that

|h(y)| ≤

(
k∑
j=1

(1 + |y − ξ′j|)−3 + ε2

)
∥h∥∗,
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then

L(ϕ̃) = 2∥ϕ∥iL(Z) + ∥h∥∗L(
k∑
j=1

ψj) ≤ ∥h∥∗
k∑
j=1

(∆ψj + g′(Vλ)ψj)

= ∥h∥∗
k∑
j=1

(
− 2

|y − ξ′j|3
− 2ε2 + g′(Vλ)ψj

)

≤ ∥h∥∗
k∑
j=1

(
− 2

|y − ξ′j|3
− 2ε2 +

2kD0

R
ewj

)

≤ −∥h∥∗

(
k∑
j=1

(1 + |y − ξ′j|)−3 + ε2

)
≤ −|h(y)| ≤ |L(ϕ)(y)|,

provided R large enough. Hence, from Lemma 2.6, we obtain that

|ϕ(y)| ≤ ϕ̃(y) for y ∈ Ω̃ε,

and, since Z(y) ≤ 1 we get

∥ϕ∥∞ ≤ C[∥ϕ∥i + ∥h∥∗].

Next we prove uniform a priori estimates for the problem (2.45) when ϕ satisfies additionally
orthogonality under dilations. Specifically, we consider the problem

L(ϕ) = h, in Ωε;

ϕ = 0 on ∂Ωε;∫
Ωε
ηjZijϕ = 0 for i = 0, 1, 2, j = 1, · · · , k,

(2.49)

and prove the following estimate.

Lemma 2.8. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for any
points ξj, j = 1, · · · , k, in Ω, satisfying (2.1), µj is given by (2.22), and h ∈ L∞(Ωε), and
any solution ϕ to problem (2.49), one has

∥ϕ∥∞ ≤ C∥h∥∗. (2.50)

Proof. We carry out the proof of lemma by a contradiction. If the result was false, then there
exist a sequence λn → 0, points ξnj ∈ Ω, j = 1, · · · , k in Ω, satisfying (2.1), function hn with
∥hn∥∗ → 0 and ϕn with ∥ϕn∥∞ = 1,

L(ϕn) = hn in Ωεn ;

ϕn = 0 on ∂Ωεn ;∫
Ωε
ηjZijϕn = 0 for all i = 0, 1, 2, j = 1, · · · , k.

(2.51)
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Then from lemma 2.7, we see that ∥ϕn∥i stays away from zero. Up to a subsequence, for one
of the indices, say j, we can assume that there exists R > 0 such that,

sup
|y−(ξnj )

′|<R
|ϕn(y)| ≥ κ > 0 for all n.

Let us set ϕ̂n(z) = ϕn((ξ
n
j )

′ + z). Elliptic estimate allow us to assume that ϕ̂n converges

uniformly over compact subsets of R2 to a bounded, nonzero solution ϕ̂ of

∆ϕ+
8µ2

j

(µ2
j + |z|2)2

ϕ = 0.

This implies that ϕ̂ is a linear combination of the functions zij, i = 0, 1, 2. But orthogonality

conditions over ϕ̂n pass to the limit thanks to ∥ϕ̂n∥∞ ≤ 1. By the dominated conver-
gence theorem then yields that

∫
R2 η(z)zijϕ̂ = 0 for i = 0, 1, 2, thus a contradiction with

lim infn→∞ ∥ϕn∥i > 0.

Now we establish a priori estimates for the problem (2.49) with the orthogonality condition∫
Ωε
ηjZ0jϕ = 0 dropped. We consider the problem

L(ϕ) = h in Ωε;

ϕ = 0 on ∂Ωε;∫
Ωε
ηjZijϕ = 0 for i = 1, 2, j = 1, · · · , k,

(2.52)

Lemma 2.9. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for any
points ξj ∈ Ω, j = 1, · · · , k, satisfying (2.1), µj is given by (2.22), and h ∈ L∞(Ωε), and any
solution ϕ to problem (2.52), one has

∥ϕ∥∞ ≤ C

(
log

1

ε

)
∥h∥∗, (2.53)

for all λ < λ0.

Proof. The proof is already contained in [36] but we reproduce it here for sake of completeness.
Let R > R0 + 1 be a large and fixed number, and ẑ0 be the solution of the problem

∆ẑ0j +
8µ2j

(µ2j+|y−ξ′j |2)
2 ẑ0j = 0,

ẑ0j(y) = z0j(R) for |y − ξ′j| = R,

ẑ0j(y) = 0 for |y − ξ′j| = δ
3ε
.

By computation, this function is explicitly given by

ẑ0j(y) = z0j(y)

1−
∫ r
R

ds
sz20j(s)∫ δ

3ε

R
ds

sz20j(s)

 , r = |y − ξ′j|.
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Next we consider the radial smooth cut-off functions χ1 and χ2 withe the following properties:

0 ≤ χ1 ≤ 1, χ1 ≡ 1 in B(0, R), χ1 ≡ 0 in B(0, R + 1)c; and

0 ≤ χ2 ≤ 1, χ2 ≡ 1 in B(0,
δ

4ε
), χ1 ≡ 0 in B

(
0,
δ

3ε

)c
,

and |χ′
2(r)| ≤ Cε, |χ′′

2(r)| ≤ Cε2. Then we set

χ1j(y) = χ1(|y − ξ′j|), χ2j(y) = χ2(|y − ξ′j|),

and define the test function

z̃0j = χ1jZ0j + (1− χ1j)χ2j ẑ0j.

Let ϕ be a solution to (2.52), we will modify ϕ so that the extra orthogonality conditions
with respect to Z0j is satisfies. We set

ϕ̃ = ϕ+
k∑
j=1

dj z̃0j

with the number dj is defined as

dj = −
∫
Ωε
ηjZ0jϕ∫

Ωε
ηj|Z0j|2

.

Then

L(ϕ̃) = h+
k∑
j=1

djL(z̃0j), (2.54)

and the orthogonality condition∫
Ωε

ηjZ0iϕ̃ = 0, for all i = 0, 1, 2,

hold. Then from the previous lemma we have the following estimate

∥ϕ̃∥∞ ≤ C[∥h∥∗ +
k∑
j=1

|dj|∥L(z̃0j)∥∗]. (2.55)

Next, we show that

∥L(z̃0j)∥∗ ≤
C

log 1
ε

, and |dj| ≤ C

(
log

1

ε

)2

∥h∥∗. (2.56)
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Indeed, we have

L(z̃0j) = 2∇χ1j∇(Z0j − ẑ0j) + ∆χ1j(Z0j − ẑ0j)

+2∇χ2j∇ẑ0j +∆χ2j ẑ0j +O(ε4).

We consider the following four regions

Ω1 = {y : |y − ξ′j| ≤ R}, Ω2 = {y : R < |y − ξ′j| < R + 1},

Ω3 = {y : R + 1 ≤ |y − ξ′j| ≤
δ

4ε
}, Ω2 = {y :

δ

4ε
< |y − ξ′j| <

δ

3ε
}.

First, we note that L(z̃0) = O(ε4) for y ∈ Ω1 ∪ Ω3. For y ∈ Ω2, we have

ẑ0j − Z0j = −z0j(r)

∫ r
R

ds
sz20j(s)∫ δ

3ε

R
ds

sz20j(s)

,

so that

|ẑ0j − Z0j| ≤
C

log 1
ε

.

Similarly, in this region, we have

|ẑ′0j − Z ′
0j| ≤

C

log 1
ε

.

On the other hand, for y ∈ Ω4, we have

ẑ0j(r) ≤
C

log 1
ε

, and ẑ′0j(r) ≤
Cε

log 1
ε

.

Therefore, from the definition of the ∗−norm, we get

∥L(z̃0j)∥∗ ≤
C

log 1
ε

, (2.57)

where the number C depends in principle of the chosen large constant R.

Next we show the other inequality of (2.56) holds. Testing equation (2.54) against z̃0l we
have

⟨ϕ̃, L(z̃0l)⟩ = ⟨h, z̃0l⟩+ dl⟨L(z̃0l), z̃0l⟩,

where ⟨f, g⟩ =
∫
Ωε
fg. This relation and (2.55) gives us that

dl⟨L(z̃0l), z̃0l⟩ ≤ C∥h∥∗[1 + ∥L(z̃0l)∥∗] + C

k∑
j=1

|dj|∥L(z̃0l)∥2∗. (2.58)
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We want to measure the size of ⟨L(z̃0l), z̃0l⟩. We decompose

⟨L(z̃0l), z̃0l⟩ =

∫
Ω2

L(z̃0l)z̃0l +

∫
Ω4

L(z̃0l)z̃0l +O(ε). (2.59)

Since ∣∣∣∣∫
Ω4

L(z̃0l)z̃0l

∣∣∣∣ ≤ C

∫
|∇χ2l||∇ẑ0l||ẑ0l|+ C

∫
|∆χ2l||ẑ0l|2 +O(ε2) ≤ C(

log 1
ε

)2 . (2.60)

Moreover, for y ∈ Ω2, we have∫
Ω2

L(z̃0l)z̃0l = 2

∫
∇χ1l∇(Z0l − ẑ0l)ẑ0 +

∫
∆χ1l(Z0l − ẑ0l)ẑ0l +O(ε)

=

∫
∇χ1l∇(Z0l − ẑ0l)ẑ0l −

∫
∇χ1l(Z0l − ẑ0l)∇ẑ0l +O(ε),

from the integration by parts. Now, we observe that in the considered region Ω2, |ẑ0l−Z0l| ≤
C

log 1
ε

, while |ẑ′0l| ∼ 1
R3 +

1
R

1
log 1

ε

. Then, for R is large but independent of ε we have∣∣∣∣∫ ∇χ1l(Z0l − ẑ0l)∇ẑ0l
∣∣∣∣ ≤ C1

R3

1

log 1
ε

,

with C1 is a constant to be chosen independent R. Moreover∫
∇χ1l∇(Z0l − ẑ0l)ẑ0l = 2π

∫ R+1

R

χ′
1l(z0l − ẑ0l)

′ẑ0lr dr

=
2π∫ δ
3ε

R
ds
sz20l

∫ R+1

R

χ′
1l

[
1−

4µ2
l r

2z0l
∫ r
R

ds
sz20l

(µ2
l + r2)2

]
dr

= − C2

log 1
ε

[
1 +O

(
1

log 1
ε

)]
,

where C2 is a positive constant independent on ε. Thus, choosing R large enough, we get∫
Ω2

L(z̃0l)z̃0l ∼ − C2

log 1
ε

.

Combining this and (2.59), (2.60) we get

⟨L(z̃0l), z̃0l⟩ ≤ − C2

log 1
ε

[
1 +O

(
1

log 1
ε

)]
. (2.61)

From (2.57), (2.58) and (2.60) we have

|dj| ≤ C

(
log

1

ε

)2

∥h∥∗.
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We thus from estimate (2.55) that

∥ϕ∥∞ ≤ C

(
log

1

ε

)
∥h∥∗.

Proof of Proposition 2.5 We first establish the validity of the a priori estimate (2.46).
The previous lemma yields

∥ϕ∥∞ ≤ C

(
log

1

ε

)[
∥h∥∗ +

2∑
i=1

k∑
j=1

|cij|

]
. (2.62)

Let us consider the cut-off function χ2j defined in previous lemma. We multiply the first
equation of (2.45) by Zijχ2j, we find

⟨L(ϕ), Zijχ2j⟩ = ⟨h, Zijχ2j⟩+ cij

∫
Ωε

ηj|Zij|2. (2.63)

We have
L(Zijχ2j) = ∆χ2jZij + 2∇Zij∇χ2j + εO((1 + r)−3),

with r = |y − ξ′j|. Since ∆χ2j = O(ε2), ∇χ2j = O(ε), and Zij = O(r−1), ∇Zij = O(r−2), we
get

L(Zijχ2j) = O(ε3)εO((1 + r)−3).

Then we have
|⟨L(ϕ), Zijχ2j⟩| = |⟨ϕ, L(Zijχ2j)⟩| ≤ Cε∥ϕ∥∞.

Combining this with (2.62) and (2.63) we find

|cij| ≤ C

[
∥h∥∗ + ε log

1

ε

∑
l,m

|clm|

]
. (2.64)

Then,
|cij| ≤ C∥h∥∗.

Combining this with (2.62) we obtain the estimate (2.46) holds.

Next prove the solvability of problem (2.45). We consider the Hilbert space

H =

{
ϕ ∈ H1

0 (Ωε) :

∫
Ωε

ϕZijηj = 0 for i = 1, 2, j = 1, 2, · · · , k
}
,

endowed with the usual inner product ⟨ϕ, ψ⟩ =
∫
Ωε

∇ϕ∇ψ. Problem (2.45), expressed in a
weak form, is equivalent to find ϕ ∈ H such that

⟨ϕ, ψ⟩ =
∫
Ωε

(Wϕ− h)ψ dx, for all ψ ∈ H,
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where W = g′(Vλ). With the aid of Riesz’s representation theorem, this equation gets
rewritten in H in the operator form

(Id−K)ϕ = h̃, (2.65)

for certain h̃ ∈ H, where K is a compact operator in H. The homogeneous equation ϕ = Kϕ
in H, which is equivalent to (2.45) with h ≡ 0, has only the trivial solution in view of the
a priori estimate (2.46). Now, Fredholm’s alternative guarantees unique solvability of (2.65)
for any h̃ ∈ H. This finishes the proof.

The result of Proposition 2.5 implies that the unique solution ϕ = Tλ(h) of (2.45) defines a
continuous linear map form the Banach space C∗ of all functions h in L∞ for which ∥h∥∗ <∞
into L∞, with norm bounded uniformly in λ.

Lemma 2.10. The operator Tλ is differentiable with respect to the variable ξ1, . . . , ξk in Ω
satisfying (2.1), one has the estimate

∥∂(ξ′m)lTλ(h)∥∞ ≤ C

(
log

1

ε

)2

∥h∥∗ for l = 1, 2, m = 1, 2, · · · , k, (2.66)

for a given positive C, independent of ε, and for all ε small enough.

Proof. Differentiating equation (2.45), formally Z := ∂(ξ′m)lϕ should satisfy

L(Z) = −∂(ξ′m)l(g
′(Vλ))ϕ+

2∑
i=1

cim∂(ξ′m)l (ηmZim) +
2∑
i=1

k∑
j=1

dijZijηj

with dij = ∂(ξ′m)lcij, and the orthogonality conditions now become∫
Ωε

ZimηmZ = −
∫
Ωε

∂(ξ′m)l (Zlmηm)ϕ.

We consider the constants bim defined as

bim

∫
Ωε

ηmZ
2
im =

∫
Ωε

∂(ξ′m)l (Zimηm)ϕ, for l = 1, 2.

Define

Z̃ = Z +
2∑
i=1

bimηmZim,

and

f = −∂(ξ′m)l (g
′(Vλ))ϕ+

2∑
i=1

cim∂(ξ′m)l (Zimηm) +
2∑
i=1

bimL(ηmZim).

47



CHAPTER 2. BUBBLING SOLUTIONS FOR AN EXPONENTIAL
NONLINEARITY IN R2

We then have 
L(Z̃) = f +

2∑
i=1

k∑
j=1

bimηmZim in Ωε;

Z̃ = 0 on ∂Ωε;∫
Ωε
ηmZimZ̃ = 0 for i = 0, 1, 2.

Namely, Z̃ = Tλ(f). Using the result of Proposition 2.5 we find that

∥f∥∗ ≤ C

(
log

1

ε

)
∥h∥∗,

hence,

∥∂(ξ′m)lTλ(h)∥∞ ≤ C

(
log

1

ε

)2

∥h∥∗ for l = 1, 2, m = 1, 2, · · · , k.

2.4 The nonlinear problem

In what follows we keep the notation introduced in the previous sections. We recall that our
goal is to solve problem (2.45). The strategy is to solve first the following problem

L(ϕ) = −[Eλ +N(ϕ)] +
2∑
i=1

k∑
j=1

cijηjZij, in Ωε;

ϕ = 0 on ∂Ωε;∫
Ωε
ηjZijϕ = 0 for all i = 1, 2, j = 1, 2, · · · , k.

(2.67)

We have the following result.

Lemma 2.11. Under the assumptions of Proposition 2.5, there exist positive numbers C and
λ0, such that problem (2.67) has a unique solution ϕ which satisfies

∥ϕ∥∞ ≤ C

| log ε|2
,

for all λ < λ0. Moreover, if we consider the map ξ′ 7→ ϕ into the space C(Ω̄ε), the derivative
Dξ′ϕ exists and defines a continuous function of ξ′. Besides, there is a constant C > 0, such
that

∥Dξ′ϕ∥∞ ≤ C

| log ε|
. (2.68)
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Proof. In terms of the operator Tλ defined in Proposition 2.5, problem (2.67) becomes

ϕ = Tλ(−(N(ϕ) + Eλ)) := A(ϕ). (2.69)

For a given number M > 0, let us consider the region

FM :=

{
ϕ ∈ C(Ω̄) : ∥ϕ∥∞ ≤ M

| log ε|2

}
.

From Proposition 2.5, we get

∥A(ϕ)∥∞ ≤ C

(
log

1

ε

)
[∥N(ϕ)∥∗ + ∥Eλ∥∗] .

By the definition of N(ϕ) in (2.27), we can write

|N(ϕ)| ≤ C|g′′(Vλ + sϕ)||ϕ|2 ≤ C|g′′(Vλ + sϕ)|∥ϕ∥2∞

for some 0 < s < 1. Thus, using the fact that ∥ϕ∥∞ → 0 as λ→ 0, and (2.36), we obtain

∥N(ϕ)∥∗ ≤ C∥ϕ∥2∞

Thus

∥A(ϕ)∥∞ ≤ C| log ε|
(
C∥ϕ∥2∞ +

1

| log ε|3

)
.

We then get that A(FM) ⊂ FM for a sufficiently large but fixedM and all small λ. Moreover,
for any ϕ1, ϕ2 ∈ FM , one has

∥N(ϕ1)−N(ϕ2)∥∗ ≤ C

(
max
i=1,2

∥ϕi∥∞
)
∥ϕ1 − ϕ2∥∞.

In fact,
N(ϕ1)−N(ϕ2) = g(Vλ + ϕ1)− g(Vλ + ϕ2)− g′(Vλ)(ϕ1 − ϕ2)

=

∫ 1

0

(
d

dt
g(Vλ + ϕ2 + t(ϕ1 − ϕ2))

)
dt− g′(Vλ)(ϕ1 − ϕ2)

=

∫ 1

0

(g′(Vλ + ϕ2 + t(ϕ1 − ϕ2))− g′(Vλ)) dt (ϕ1 − ϕ2).

Thus, for a certain t∗ ∈ (0, 1), and s ∈ (0, 1)

|N(ϕ1)−N(ϕ2)| ≤ C|g′(Vλ + ϕ2 + t∗(ϕ1 − ϕ2))− g′(Vλ)|∥ϕ1 − ϕ2∥∞

≤ C|g′′(Vλ + sϕ2 + t∗(ϕ1 − ϕ2))|(∥ϕ1∥∞ + ∥ϕ2∥∞)∥ϕ1 − ϕ2∥∞.
Thanks to (2.36) and the fact that ∥ϕ1∥∞, ∥ϕ2∥∞ → 0 as λ→ 0, we conclude that

∥N(ϕ1)−N(ϕ2)∥∗ ≤ C∥g′′(Vλ)∥∗(∥ϕ1∥∞ + ∥ϕ2∥∞)∥ϕ1 − ϕ2∥∞
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≤ C(∥ϕ1∥∞ + ∥ϕ2∥∞)∥ϕ1 − ϕ2∥∞.

Then we have

∥A(ϕ1)− A(ϕ2)∥∞ ≤ C| log ε|∥N(ϕ1)−N(ϕ2)∥∗

≤ C| log ε|
(
max
i=1,2

∥ϕi∥∞
)
∥ϕ1 − ϕ2∥∞.

Thus the operator A has a small Lipschitz constant in FM for all small λ, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map ξ′ = (ξ′1, · · · , ξ′k) 7→ ϕ. Assume for
instance that the partial derivative ∂(ξ′j)iϕ exists for i = 1, 2. Since ϕ = Tλ (−(N(ϕ) + Eλ)),
formally that

∂(ξ′j)iϕ = (∂(ξ′j)iTλ) (−(N(ϕ) + Eλ)) + Tλ

(
−(∂(ξ′j)iN(ϕ) + ∂(ξ′j)iEλ)

)
.

From Lemma 2.10, we have

∥∂(ξ′j)iTλ (−(N(ϕ) + Eλ)) ∥∞ ≤ C| log ε|2∥N(ϕ) + Eλ∥∗ ≤ C
1

| log ε|
.

On the other hand,

∂(ξ′j)iN(ϕ) = [g′(Vλ + ϕ)− g′(Vλ)− g
′′
(Vλ)ϕ]∂(ξ′j)iVλ + ∂(ξ′j)i [g

′(Vλ)− ewj ]ϕ

+[g′(Vλ + ϕ)− g′(Vλ)]∂(ξ′j)iϕ+ [g′(Vλ)− ewj ]∂(ξ′j)iϕ.

Then,

∥∂(ξ′j)iN(ϕ)∥∗ ≤ C

{
∥ϕ∥2∞ +

1

| log ε|
∥ϕ∥∞ + ∥∂(ξ′j)iϕ∥∞∥ϕ∥∞ +

1

| log ε|
∥∂(ξ′j)iϕ∥∞

}
.

Since ∥∂(ξj)iEλ∥∗ ≤ C
| log ε|3 , and by Proposition 2.5 we then have

∥∂(ξ′j)iϕ∥∞ ≤ C

| log ε|
,

for all i = 1, 2, j = 1, · · · , k. Then, the regularity of the map ξ′ 7→ ϕ can be proved by stan-
dard arguments involving the implicit function theorem and the fixed point representation
(2.69). This concludes proof of the Lemma.

2.5 Variational reduction

We have solved the nonlinear problem (2.67). In order to find a solution to the original
problem we need to find ξ′ such that

cij(ξ
′) = 0 for all i = 1, 2, j = 1, · · · , k. (2.70)
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This problem is variational: indeed it is equivalent to finding critical points of a function of
ξ = εξ′. Associated to (2.1), let us consider the energy functional Jλ given by

Jλ(u) =
1

2

∫
Ω

|∇u|2 dx− λ

p

∫
Ω

eu
p

dx, u ∈ H1
0 (Ω), (2.71)

and the finite-dimensional restriction

Fλ(ξ) = Jλ

((
Uλ + ϕ̃

)
(x, ξ)

)
, (2.72)

where (
Uλ + ϕ̃

)
(x, ξ) = γ +

1

pγp−1

(
(Vλ + ϕ) (

x

ε
,
ξ

ε
)

)
(2.73)

with Vλ defined in (2.17), ϕ is the unique solution to problem (2.67) given by Lemma 2.11.
Critical points of Fλ correspond to solutions of (2.70) for a small λ, as the following result
states.

Lemma 2.12. Under the assumptions of Proposition 2.5, the functional Fλ(ξ) is of class
C1. Moreover, for all λ > 0 sufficiently small, if DξFλ(ξ) = 0, then ξ satisfies (2.70).

Proof. A direct consequence of the results obtained in Lemma 2.11 and the definition of
function Uλ is the fact the map ξ 7→ Fλ(ξ) is of class C

1. Define

Iλ(v) =
1

2

∫
Ωε

|∇v|2 dy −
∫
Ωε

eγ
p[(1+ v

pγp
)p−1] dy. (2.74)

Let us differentiate the function Fλ(ξ) with the respect to ξ. Since

Jλ

((
Uλ + ϕ̃

)
(x, ξ)

)
=

1

p2γ2(p−1)
Iλ

(
(Vλ + ϕ) (

x

ε
,
ξ

ε
)

)
, (2.75)

we can differentiate directly Iλ (Vλ(ξ) + ϕ(ξ)) under the integral sign. Let m ∈ {1, . . . , k}
and l ∈ 1, 2. We have

∂ξm,l
Fλ(ξ)

=
1

p2γ2(p−1)
ε−1DIλ (Vλ(ξ) + ϕ(ξ))

[
∂(ξ′m)lVλ(ξ) + ∂(ξ′m)lϕ(ξ)

]
=

1

p2γ2(p−1)
ε−1

2∑
i=1

k∑
j=1

∫
Ωε

cijηjZij
[
∂(ξ′m)lVλ(ξ) + ∂(ξ′m)lϕ(ξ)

]
=

1

p2γ2(p−1)
ε−1

[
2∑
i=1

k∑
j=1

∫
Ωε

cijηjZij∂(ξ′m)lVλ(ξ) +
2∑
i=1

k∑
j=1

∫
Ωε

cijηjZij∂(ξ′m)lϕ(ξ)

]

By the expansion of Vλ, we have

∂(ξ′m)lVλ

51



CHAPTER 2. BUBBLING SOLUTIONS FOR AN EXPONENTIAL
NONLINEARITY IN R2

= ∂(ξ′m)l

(
k∑

m=1

(
PUµm,ξm(εy) +

p− 1

p

1

γp
Pw0

µm,ξm(εy) +

(
p− 1

p

)2
1

γ2p
Pw1

µm,ξm(εy)

)
− pγp

)

= ∂(ξ′m)l

(
wm(y) +

p− 1

p

1

γp
w0
m(y) +

(
p− 1

p

)2
1

γ2p
w1
m(y) + θ(y)

)

= ∂(ξ′m)lwm(y) +
p− 1

p

1

γp
∂(ξ′m)lw

0
m(y) +

(
p− 1

p

)2
1

γ2p
∂(ξ′m)lw

1
m(y) + ∂(ξ′m)lθ(y)

= −Zlm +
p− 1

p

1

γp
∂(ξ′m)lw

0
m(y) +

(
p− 1

p

)2
1

γ2p
∂(ξ′m)lw

1
m(y) + ∂(ξ′m)lθ(y).

Hence, for j ̸= m, we have∫
Ωε

ηjZij∂(ξ′m)lVλ(ξ) =

(
−
∫
B(ξ′j ,R)

ηjZijZlm

)
(1 +O(

1

γp
)) = O(ε),

while for j = m and i ̸= l, by symmetry we get∫
Ωε

ηjZij∂(ξ′m)lVλ(ξ)

=

(
−
∫
B(ξ′j ,R)

ηjZij(Zlm +
p− 1

p

1

γp
∂(ξ′m)lw

0
m(y))

)
(1 +O(

1

γ2p
)) = O(

1

γp
).

If now j = m and i = l, we get∫
Ωε

ηjZij∂(ξ′m)lVλ(ξ) =

(
−
∫
B(ξ′m,R)

ηmZlmZlm

)
(1 +O(

1

γp
)).

We thus conclude that

2∑
i=1

k∑
j=1

∫
Ωε

cijηjZij∂(ξ′m)lVλ(ξ) = −clm
∫
B(ξ′m,R)

ηmZlmZlm +O(
1

γp
).

On the other hand, given (2.68), we have that∣∣∣∣∣
2∑
i=1

k∑
j=1

∫
Ωε

cijηjZij∂(ξ′m)lϕ(ξ)

∣∣∣∣∣ ≤ C
∑
i,j

|cij|∥∂(ξ′m)lϕ∥∞ ≤ o(1)
∑
i,j

|cij|.

Thus, if DξFλ(ξ) = 0, for i, l = 1, 2, j = 1, 2, · · · , k, we then have

clm(

∫
Ωε

ηmZlmZlm)(1 + o(1)) = 0, m = 1, . . . , k, l = 1, 2. (2.76)

This concludes the proof of the Lemma.
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Next we give an asymptotic estimate of Fλ(ξ) defined in (2.72). We have the following result.

Lemma 2.13. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that µj are
given by (2.17), the following expansion holds

λ−1ε
2(2−p)

p Fλ(ξ) =
8kπ

(2− p)p
[−2 + p log 8]− 16kπ

p
log ε

− 4π

2− p
φk(ξ) + | log ε|−1θλ(ξ) (2.77)

uniformly for any points ξj, j = 1, · · · , k in Ω, satisfying (2.1), where

φk(ξ) = φk(ξ1, · · · , ξk) =
k∑
j=1

HΩ(ξj, ξj) +
∑
i̸=j

GΩ(ξi, ξj). (2.78)

Furthermore

λ−1ε
2(2−p)

p ∇(ξm)lFλ(ξ) = − 4π

(2− p)p
∇(ξm)lφk(ξ) + | log ε|−1θλ(ξ). (2.79)

In (2.77) and (2.79), the function θλ denotes a smooth function of the points ξ, which is
uniformly bounded, as λ→ 0, for points ξ satisfying (2.1).

Proof. We have

Fλ(ξ) = Jλ

(
Uλ(ξ) + ϕ̃(ξ)

)
=

1

2

∫
Ω

|∇
(
Uλ(ξ) + ϕ̃(ξ)

)
|2 dx− λ

p

∫
Ω

e(Uλ(ξ)+ϕ̃(ξ))
p

dx. (2.80)

Using the change of variables (4.3), namely
(
Uλ + ϕ̃

)
(x, ξ) = γ + 1

pγp−1

(
(Vλ + ϕ) (x

ε
, ξ
ε
)
)
,

together with (2.74) and (2.75), we have that

Jλ

(
Uλ(ξ) + ϕ̃(ξ)

)
− Jλ (Uλ(ξ)) =

1

p2γ2(p−1)
[Iλ(Vλ + ϕ)− Iλ(Vλ)]

Since by construction I ′λ(Vλ + ϕ)[ϕ] = 0, we have

Jλ

(
Uλ(ξ) + ϕ̃(ξ)

)
− Jλ (Uλ(ξ)) =

1

p2γ2(p−1)

∫ 1

0

D2Iλ(Vλ + tϕ)ϕ2(1− t) dt

=
1

p2γ2(p−1)

∫ 1

0

[∫
Ωε

(Eλ +N(ϕ))ϕ+

∫
Ωε

[g′λ(Vλ)− g′λ(Vλ + tϕ)]ϕ2

]
(1− t) dt

Since ∥Eλ∥∗ ≤ c
| log ε|3 , ∥ϕ∥∞ ≤ c

| log ε|2 , ∥N(ϕ)∥∗ ≤ c
| log ε|4 and (2.36), we get that∣∣∣Jλ (Uλ(ξ) + ϕ̃(ξ)

)
− Jλ (Uλ(ξ))

∣∣∣ ≤ C

γ2(p−1)| log ε|3
(2.81)
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Next we expand

Jλ (Uλ(ξ)) =
1

2

∫
Ω

|∇ (Uλ(ξ)) |2 dx−
λ

p

∫
Ω

e(Uλ(ξ))
p

dx. (2.82)

First we expand the term
∫
Ω
|∇Uλ|2. By (2.23) we have

1

2

∫
Ω

|∇ (Uλ(ξ)) |2

=
1

2

1

p2γ2(p−1)

{
k∑
j=1

∫
Ω

|∇PUµj ,ξj |2 +
∑
l ̸=j

∫
Ω

∇PUµl,ξl∇PUµj ,ξj

+
p− 1

p

1

γp

k∑
j=1

∫
Ω

∇PUµj ,ξj(x)∇Pw0
µj ,ξj

(x)

+

(
p− 1

p

)2
1

γ2p

k∑
j=1

∫
Ω

∇PUµj ,ξj∇Pw1
µj ,ξj

+

(
p− 1

p

)2
1

γ2p

[
k∑
j=1

∫
Ω

|∇Pw0
µj ,ξj

|2 +
∑
l ̸=j

∫
Ω

∇Pw0
µl,ξl

∇Pw0
µj ,ξj

]

+

(
p− 1

p

)3
1

γ3p

k∑
j=1

∫
Ω

∇Pw0
µj ,ξj

∇Pw1
µj ,ξj

+

(
p− 1

p

)4
1

γ4p

[
k∑
j=1

∫
Ω

|∇w1
µj ,ξj

|2 +
∑
l ̸=j

∫
Ω

∇Pw1
µl,ξl

∇Pw1
µj ,ξj

]}
. (2.83)

Let us estimate the first two terms. We observe that the remaining terms are O( 1
γ2(p−1)γp

).
First, we note that PUµj ,ξj satisfies

−∆PUµj ,ξj = ε2eUµj,ξj , in Ω, PUµj ,ξj = 0 on ∂Ω.

Then we have∫
Ω

|∇PUµj ,ξj(x)|2 = ε2
∫
Ω

eUµj,ξjPUµj ,ξj(x)

= ε2
∫
Ω

eUµj,ξj
(
Uµj ,ξj(x) +HΩ(x, ξj)− log(8µ2

j) +O(µ2
jε

2)
)

=

∫
Ω

8ε2µ2
j

(ε2µ2
j + |x− ξj|2)2

(
log

1

(ε2µ2
j + |x− ξj|2)2

+HΩ(x, ξj) +O(µ2
jε

2)

)
=

∫
Ω

8ε−2µ−2
j

(1 + |x−ξj
εµj

|2)2

(
log

ε−4µ−4
j

(1 + |x−ξj
εµj

|2)2
+HΩ(x, ξj) +O(µ2

jε
2)

)

=

∫
Ωεµj

8

(1 + |z|2)2

(
log

1

(1 + |z|2)2
+HΩ(ξj + εµjz, ξj)− 4 log(εµj)

)
+O(µ2

jε
2)
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=

∫
Ωεµj

8

(1 + |z|2)2
log

1

(1 + |z|2)2
+

∫
Ωεµj

8

(1 + |z|2)2
(HΩ(ξj + εµjz, ξj)−HΩ(ξj, ξj))

+

∫
Ωεµj

8

(1 + |z|2)2
HΩ(ξj, ξj)− 4 log(εµj)

∫
Ωεµj

8

(1 + |y|2)2
+O(µ2

jε
2).

(2.84)

But ∫
Ωεµj

8

(1 + |y|2)2
= 8π +O(ε), (2.85)

and ∫
Ωεµj

8

(1 + |y|2)2
log

1

(1 + |y|2)2
= −16π +O(ε). (2.86)

Moreover, ∫
Ωεµj

8

(1 + |y|2)2
(HΩ(ξj + εµjy, ξj)−HΩ(ξj, ξj))

=

∫
Ωεµj

1

(1 + |y|2)2
O (εα|y|α) = O(ε). (2.87)

Therefore from (2.84)-(2.87), we have∫
Ω

|∇PUµj ,ξj(x)|2 dx

= −16π + 8πHΩ(ξj, ξj)− 32π log ε− 16π log(8µ2
j)

+16π log(8) +O

(
1

γp

)
. (2.88)

Now, we calculate that∑
l ̸=j

∫
Ω

∇PUµl,ξl∇PUµj ,ξj dx =
∑
l ̸=j

∫
Ω

ε2eUµl,ξlPUµj ,ξj

=
∑
l ̸=j

∫
Ω

8ε2µ2
l

(ε2µ2
l + |x− ξl|2)2

(
log

8µ2
j

(ε2µ2
j + |x− ξj|2)2

+HΩ(x, ξj)− log(8µ2
j) +O(µ2

jε
2)

)
=

∑
l ̸=j

∫
Ω

8ε2µ2
l

(ε2µ2
l + |x− ξl|2)2

(
log

1

(ε2µ2
j + |x− ξj|2)2

+HΩ(x, ξj) +O(µ2
jε

2)

)
=

∑
l ̸=j

∫
Ωεµl

8

(1 + |z|2)2

(
log

1

(ε2µ2
j + |εµlz + ξl − ξj|2)2

+HΩ(ξl + εµlz, ξj)

)
+O(µ2

jε
2)

=
∑
l ̸=j

∫
Ωεµl

8

(1 + |z|2)2
G(ξl, ξj) +O(µ2

jε
2)
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= 8π
∑
l ̸=j

G(ξl, ξj) +O(µ2
jε

2). (2.89)

Thus, from (2.83), (2.88), (2.89) and (2.22) we have

1

2

∫
Ω

|∇Uλ(x)|2 dx

=
1

p2γ2(p−1)

{
−8kπ − 16kπ log ε+ 8kπ log(8)− 8kπ

2(p− 1)

2− p
(1− log 8)

− 4pπ

2− p

(
k∑
j=1

HΩ(ξj, ξj) +
k∑
i ̸=j

GΩ(ξi, ξj)

)
+O

(
1

| log ε|

)}
. (2.90)

Finally, let us evaluate the second term in the energy

λ

p

∫
Ω

e(Uλ)
p

dx =
λ

p

∫
Ω

eγ
p(1+ 1

pγp
(Vλ)(

x
ε
))

p

dx

=
λ

p

k∑
j=1

∫
B(ξj ,δ̃)

eγ
p(1+ 1

pγp
(Vλ)(

x
ε
))

p

dx

+
λ

p

∫
Ω\

k∪
j=1

B(ξj ,δ̃)

eγ
p(1+ 1

pγp
(Vλ)(

x
ε
))

p

dx

:= I + II. (2.91)

First we observe that

II = λΘλ(ξ) (2.92)

with Θλ(ξ) a function, uniformly bounded, as λ→ 0. On the other hand,

I =
1

p2γ2(p−1)

k∑
j=1

∫
B(ξ′j ,δ̃/ε)

eγ
p[(1+ 1

pγp
(Vλ)(y))

p
−1] dy

=
1

p2γ2(p−1)

k∑
j=1

∫
B(ξ′j ,δ̃/ε)

e

{
wj(y)+

p−1
p

1
γp
w0

j (y)+(
p−1
p )

2 1
γ2p

w1
j (y)+θ(y)

}
(1 +O(

1

γp
))dy

=
1

p2γ2(p−1)

k∑
j=1

∫
B(0, δ̃

µjε
)

8

(1 + |y|2)2

(
1 +O(

1

γp
)

)
dy

=
1

p2γ2(p−1)
8kπ

(
1 + | log ε|−1Θλ(ξ)

)
, (2.93)

with Θλ(ξ) a function, uniformly bounded, as λ→ 0. From (2.91)-(2.93) we get

λ

p

∫
Ω

e(Uλ)
p

dx =
1

p2γ2(p−1)
8kπ

(
1 + | log ε|−1Θλ(ξ)

)
, (2.94)
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Therefore, from (2.80), (2.81), (2.82), (2.90), (2.94) and (2.14) and by the choice of the
parameters µj in (2.22), and (2.14), we can write the whole asymptotic expansion of Fλ(ξ),
namely (2.77) holds.

Let us now prove the validity of (2.79). Fix m ∈ {1, . . . , k} and l ∈ {1, 2}. Arguing as in the
proof of Lemma 2.12, we have

∂(ξm)lFλ(ξ) =
1

p2γ2(p−1)
ε−1

[
2∑
i=1

k∑
j=1

cij

∫
Ωε

ηjZij∂(ξ′m)lVλ

]
(1 +O(

1

γp
)). (2.95)

On the one hand, if we multiply equation in (2.67) against ∂(ξ′m)lVλ, we get∫
Ωε

(∆υξ + g(υξ))∂(ξ′m)lVλ =
2∑
i=1

k∑
j=1

cij

∫
Ωε

ηjZij∂(ξ′m)lVλ

where υξ = (Vλ + ϕ)(y, ξ′) = (Vλ + ϕ)(x
ε
, ξ
ε
). On the other hand, we have that

∂(ξm)lUλ(x) =
ε−1

pγp−1
∂(ξ′m)lVλ(

x

ε
).

Putting together these information, we have that

∂(ξm)lFλ(ξ) =

(∫
Ω

[
∆(Uλ + ϕ̃) + λ(Uλ + ϕ̃)p−1e(Uλ+ϕ̃)

p
]
∂(ξm)lUλ

)
(1 + o(1)).

Furthermore, since ∥ϕ̃∥∞ ≤ C
γp−1∥ϕ∥∞, by definition of Uλ we have that

(U + ϕ̃)(x) = Uλ(x)

(
1 +O(

1

γp
)

)
in Ω.

Hence, by means of integrations by parts, and the boundary conditions satisfied by Uλ, we
get that

∂(ξm)lFλ(ξ) =

(∫
Ω

[
∆Uλ + λUp−1

λ eU
p
λ

]
∂(ξm)lUλ

)
(1 +O(

1

γp
)),

where O(1) here denotes a smooth function of the points ξ, which is uniformly bounded as
λ→ 0. We thus conclude that

∂(ξm)lFλ(ξ) =

(∫
Ω

[
−∇Uλ∇∂(ξm)lUλ + λUp−1

λ eU
p
λ∂(ξm)lUλ

])
(1 +O(

1

γp
))

= −∂(ξm)lJλ(Uλ)(1 +O(
1

γp
)).

Computations analogous to the ones we performed to get expansion (2.77) give us the validity
of (2.79). This concludes the proof of the Lemma.
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2.6 Proof of the main results

In this section, we will prove the main result.

Proof of Theorem 2.2: From Lemma 2.12, the function

Uλ(ξ) + ϕ̃(ξ) =
1

pγp−1

(
pγp + (Vλ + ϕ)(

x

ε
)
)

where Vλ defined by (2.17) and ϕ(ξ) is the unique solution of problem (2.67), is a solution of
problem (2.1) if we adjust ξ so that it is a critical point of Fλ(ξ) defined by (2.72). This is
equivalent to finding a critical point of

F̃λ(ξ) := Aλ−1ε
2(2−p)

p Fλ(ξ) +B + C log ε,

for suitable constants A, B and C. On the other hand, from Lemmas 2.13, for ξ ∈ M, we
have that,

F̃λ(ξ) = φk(ξ) +O(| log ε|−1)Θλ(ξ),

where φk is given by (2.5), and Θλ(ξ) is uniformly bounded in consider region as λ→ 0.

Let us observe that if M > C, then assumptions (2.18), (2.19) still hold for the function
min{M,φk(ξ)} as well as for min{M,φk(ξ)+O(| log ε|−1)Θλ(ξ)}. It follows that the function
min{M, F̃ (ξ)} satisfies for all λ small assumptions (2.18),(2.19) in D and therefore has a
critical value Cλ < M which is close to the value C in this region. If ξλ ∈ D is a critical point
at this level for F̃λ(ξ) + β, then since

F̃λ(ξλ) ≤ Cλ < M

we have that there exists a δ > 0 such that |ξλ,j − ξλ,i| > δ, dist(ξλ,j, ∂Ω) > 0. This
implies C1-closeness of F̃λ(ξ) and φk(ξ) at this level, hence ∇φk(ξλ) → 0. The function
uλ = U(ξλ) + ϕ̃(ξλ) is therefore a solution as predicted by the theorem.

Expansion (2.20) follows from (2.14) and (2.94), while (2.16) holds as a direct consequence
of the construction of Uλ. Expansion (2.17) is consequence of (2.77)

Proof of Theorem 2.1: According to the result of Theorem 2.2, the proof of Theorem 2.2
reduces to show that, for any k ≥ 1 the function φk has a non trivial critical values in some
open set D, compactly contained in Ωk. This fact has already been established in [36] for the
function (−φk) in the context of construction of solutions to the Liouville problem

∆u+ ε2eu = 0, in Ω, u = 0, on ∂Ω

for a not simply connected domain Ω in R2. For completeness, we recall here the principal
ingredients employed in the proof of the existence of a non trivial critical value for (−φk)
and we refer the reader to [36] for a complete proof of each step.
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Let D be given by
D = {x ∈ Ωk : dist(x, ∂Ωk) > δ}

for some positive and small δ to be chosen. Let Ω1 be a bounded non empty component of
R2 \ Ω̄ and let γ be a closed, smooth Jordan curve contained in Ω which encloses Ω1. Let S
be the image of γ, B0 = ∅ and B = Sk. Define

C = inf
Φ∈Γ

sup
z∈B

(−φk) (Φ(z)) (2.96)

where

Γ = {Φ(z) = Ψ(1, z) : Ψ : [0, 1]×B → D continuous and Ψ(0, z) = z}.

Observe that, since
∑

j HΩ(ξj, ξj) is bounded in D and
∑

i̸=j GΩ(ξi, ξj) is bounded below, the
function (−φk) is bounded above in D.

With an argument based on degree theory, in Lemma 7.1 in [36], it is proven that:

There exists K > 0, independent of δ in the definition of D, such that C ≥ −K.

This fact ensures the validity of (2.18).

A delicate analysis of the behavior of H and G contained in Lemma 7.2 and Lemma 7.3 in
[36] is the key step to show the validity of the following result

Given K > 0, there exists δ > 0 such that, if (ξ1, . . . , ξk) ∈ ∂D, and |φk(ξ1, . . . , ξk)| ≤ K,
then there exists a vector τ , tangent to ∂D, such that ∇φk(ξ1, . . . , ξk) · τ ̸= 0.

This fact is proved in Lemma 7.4 in [36] and it shows the validity of (2.19). Having established
(2.18) and (2.19), we conclude that φk has a non trivial critical value in D, which gives the
proof of Theorem 2.1.
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Chapter 3

Bubbling solutions for Liouville
equation in unbounded domain

3.1 Introduction

Let us consider the following boundary value problem{
∆u+ ε2eu = 0, in Ω;

u = 0, on ∂Ω,
(3.1)

where Ω is an open, connected and unbounded domain in R2, and ε > 0 is a small parameter.

Let G(x; y) be the Green’s function for the negative Laplacian with Dirichlet boundary
condition in Ω, namely {

−∆xG(x; y) = 8πδy(x), x ∈ Ω;

G(x; y) = 0, x ∈ ∂Ω,
(3.2)

and H(x; y) its regular part, given by

H(x; y) = G(x; y)− 4 log
1

|x− y|
. (3.3)

For every x ∈ Ω, the leading term of the regular part of the Green’s function

R(x) = H(x;x)

is called the Robin function of Ω at the point x.
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Define the function

φk(ξ1, · · · , ξk) =
k∑
j=1

H(ξj, ξj) +
∑
i ̸=j

G(ξi, ξj),

In this chapter, we consider problem (3.1) on unbounded domain, which is open, connected
in R2, we define it as follows. For x ∈ R2, we write x = (x1, x2). Let φ : R → [1,+∞) be a
smooth function, satisfying

(1) φ(0) = 1, x1φ
′(x1) > 0 for x1 ̸= 0;

(2) φ(x1) → +∞ as x1 → ±∞, and

(3) φ′(x1) → a > 0 as x1 → +∞, and φ′(x1) → b < 0 as x1 → −∞.
Define the domain(see figure 1):

Ω = {x = (x1, x2) : |x2| < φ(x1)} (3.4)

Figure 1: Ω = {x = (x1, x2) : |x2| ≤ φ(x1)}

We observe that Ω is symmetric with respect to line x2 = 0, and has two open directions.
Moreover, the domain is not necessary symmetric with respect to x1 = 0. We would like to
construct bubbling solutions to problem (3.1) in domain Ω, the location of blow-up points
on the symmetric line of Ω.

Let δ > 0 small but fixed. Let k > 1 be an integer. Given k different points on the symmetry
line of Ω, we write these points as

ξj = (tj, 0), j = 1, . . . , k, (3.5)
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with t1 < t2 < . . . < tk, satisfies

ti+1 − ti > δ, i = 1, 2, . . . , k − 1. (3.6)

Ore results sates as follows.

Theorem 3.1. Let Ω be an open, connected and unbounded domain of R2 defined by (3.4),
let k > 1 be an integer. For ε > 0 small enough, problem (3.1) has at least one solution uε,
which blow-up at k points ξ∗1 , . . . , ξ

∗
k defined as (3.5) satisfies (3.6). Moreover,

uε(x) =
k∑
j=1

G(x; ξ∗j ) + o(1) (3.7)

where o(1) → 0, as ε → 0, on each compact subset of Ω̄\{ξ∗1 , . . . , ξ∗k}, and G(·; ·) is the
Green’s function given in (3.2).

Remark 3.2. Let R > 0 be a large number, if we scaling the domain Ω, set ΩR = Ω
R
, then

domain ΩR approximates two sectors in plane. In fact, we can construct bubbling solutions
to (3.1) in any open, connected and unbounded domain, which has multiplicity ends. For
instance, in Ω̃ (see Yellow area in figure 2), which has four ends and is symmetric with
respect to axis. By the same proof of Theorem 3.1, we can obtain that there exists a solution
to (3.1)in Ω̃, that blows-up at k peaks for any k, the location of bubbling points on the
symmetry lines x1 = 0 and x2 = 0.

Figure 2: Ω̃
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This chapter is organized as follows. In Section 3.2, we give the behavior of Green function
G(x; y) of domain Ω. In Section 3.3, we describe a first approximation solution to problem
(3.1) and estimating the error. We give the proof of the main result in Section 3.4. Section
3.5 is devoted to give the asymptotic expansion of the reduced energy.

3.2 The asymptotic behavior of the Green function of

Ω

In this section. we are devoted to study the behavior of the Green function G(x; y) of Ω. In
order to do this, we first consider the Green function in a sector. For x ∈ R2, we write it in
the polar coordinate as x = (r, θ) with r = |x|. Let α > 0, define the sector in R2 as

Dα =
{
(r, θ) ∈ R2 : 0 < r < +∞,−α ≤ θ ≤ α

}
. (3.8)

Let GDα be the Green function in the sector Dα with Dirichlet boundary condition, that is{
−∆yGDα(x; y) = 8πδx(y), y ∈ Dα;

GDα(x; y) = 0, y ∈ ∂Dα.
(3.9)

We write it as

GDα(x; y) = HDα(x; y) + 4 log
1

|x− y|
,

where HDα(x; y) denotes its regular part. Let RDα be the Robin function in Dα.

Lemma 3.3. Let x = (r, θ), y = (t, η) ∈ Dα, we have

(a)

GDα(x; y) = 2 ln
r

π
α + 2r

π
2α t

π
2α cos

(
π
[
θ+η
2α

])
+ t

π
α

r
π
α − 2r

π
2α t

π
2α cos

(
π
[
θ−η
2α

])
+ t

π
α

.

(b) For point x on the symmetry line of Dα, i.e. x = (ξ, 0), we have

RDα(x) = 4 ln
(α
π
|ξ|
)
. (3.10)

Proof. (a) We set ȳ = (t,−η − 2α). The conformal map of Dα into the unit disk is

w(x, y) =
x

π
2α − y

π
2α

x
π
2α − ȳ

π
2α

We note that: (i) Since x
π
2α is analytic, and the function of analytic function is analytic,

so w(x, y) is a analytic function of x;
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(ii) w(x, x) = 0 and w(x, y) ̸= 0 for x ̸= y, and w(x, y) = 1 for y ∈ ∂Dα;

(iii) ∂w
∂x
(x, y) everywhere in Dα.

Hence by the method of conformal mapping,

−4 ln |w(x; y)|

is the Green function of Dα. That is

GDα(x; y) = 4 ln
|x π

2α − ȳ
π
2α |

|x π
2α − y

π
2α |

= 2 ln
|x π

2α − ȳ
π
2α |2

|x π
2α − y

π
2α |2

= 2 ln
r

π
α + 2r

π
2α t

π
2α cos

(
π
[
θ+η
2α

])
+ t

π
α

r
π
α − 2r

π
2α t

π
2α cos

(
π
[
θ−η
2α

])
+ t

π
α

.

We have that

(i) GDα(x; y) = GDα(y;x),

(ii) GDα(x; y)
∣∣
y∈∂Dα

= 0, and

(iii) GDα(x; y) → 0 as |x− y| → +∞ satisfies t
r
→ +∞.

(b) For x, y on the symmetry line of Dα, we write x = (r, 0), y = (t, 0), assume that r > t,
from (a) we have

GDα ((r, 0); (t, 0)) = 2 ln
1 + 2( t

r
)

π
2α + ( t

r
)
π
α

1− 2( t
r
)

π
2α + ( t

r
)
π
α

= 4 ln
r

π
α + t

π
α

r
π
α − t

π
α

.

We recall that

GDα(x; y) = HDα(x; y) + 4 log
1

|x− y|
, x, y ∈ Dα.

Thus

HDα ((r, 0); (t, 0)) = GDα ((r, 0); (t, 0))− 4 log
1

r − t

= 4 ln

(
r

π
α + t

π
α

r
π
α − t

π
α

(r − t)

)
.

Therefore

RDα(x) = HDα ((r, 0); (r, 0)) = lim
t→r

HDα ((r, 0); (t, 0))

= 4 lim
t→r

ln

(
r

π
α + t

π
α

r
π
α − t

π
α

(r − t)

)
= 4 lim

ϵ→0
ln

(
r

π
α + (r − ϵ)

π
α

r
π
α − (r − ϵ)

π
α

ϵ

)
= 4 ln

(α
π
r
)
.
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For the Green function G(x; y) in Ω, we have the following result.

Lemma 3.4. For x = (x1, x2), y = (y1, y2) ∈ Ω, one has

G(x; y) ∼ GDσ(x; y) for x1, y1 > 0, (3.11)

and

G(x; y) ∼ GDϱ,2π−ϱ(x; y) for x1, y1 < 0, (3.12)

where GDσ(x; y) is the Green function of the sector Dσ defined as (3.8) with σ = arctan(a) ∈
(0, π

2
), and

Dϱ,2π−ϱ =
{
(r, θ) ∈ R2 : ϱ < θ < 2π − ϱ

}
with ϱ = arctan(b) ∈ (π

2
, π).

Proof. We may assume that x1, y1 > 0. Given R > 0 large, making the scaling of domain, set
ΩR = Ω

R
. By the definition of Ω, according to property (3) of φ, φ′(x1) → a > 0 as x1 → +∞.

Then domain ΩR approaches to a sector Dσ if R goes to infinity, with σ = arctan(a) ∈ (0, π
2
).

Thus, x̃ = x
R
= (r̃, 0) ∈ Dσ ⊂ ΩR, and the ray {(r̃, 0) : r̃ ≥ 0} is the symmetry line of Dσ.

Let us denote GR(x̃; ỹ) and GDσ(x̃; ỹ) are Green function in ΩR and Dσ with Dirichlet bound-
ary condition. We note that

G(x; y) = G(Rx̃;Rỹ) = GR(x̃; ỹ) (3.13)

We observe that the function
v(r̃, ρ) = r̃

π
2σ cos

( π
2σ
ρ
)

is harmonic in sector Dσ and satisfies Dirichlet boundary condition. By Phragmèn-Lindelöf
principle [104], we have that GDσ(x̃; ỹ) > 0 in Dσ(x̃; ỹ). For r0 > 0, we define

m1 = r
− π

2σ
0 inf

r̃=r0

GR(x̃, ỹ)−GDσ(x̃, ỹ)

cos
(
π
2σ
ρ
) ,

and

m2 = r
− π

2σ
0 sup

r̃=r0

GDσ(x̃, ỹ)−GR(x̃, ỹ)

cos
(
π
2σ
ρ
) .

Set

ψ(x̃) = GR(x̃; ỹ)−GDσ(x̃; ỹ)−m1v(r̃, ρ).

Then we have {
−∆ψ(x̃) = 0, x̃ ∈ Dσ ∩ {x̃ = (r̃, θ) : r̃ ≤ r0};
ψ(x̃) ≥ 0, x̃ ∈ ∂ (Dσ ∩ {z̃ = (r̃, θ) : r̃ ≤ r0}) .
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Then by the maximum principle we get

ψ(x̃) ≥ 0 for x̃ ∈ Dσ ∩ {x̃ = (r̃, θ) : r̃ ≤ r0}.

From (3.13), we then obtain, for x, y ∈ Ω,

G(x; y) ≥ GDσ(x; y)−m1

( x
R

) π
2σ
cos
( π
2σ
ρ
)

(3.14)

with ρ ∈ (−σ, σ). On the other hand, set

ψ̃(x̃) = GDσ(x̃; ỹ)−GR(x̃; ỹ)−m2v(r̃, ρ).

By the same way, we have{
−∆ψ̃(x̃) = 0, x̃ ∈ Dσ ∩ {z̃ = (r̃, θ) : r̃ ≤ r0};

ψ̃(x̃) ≤ 0, x̃ ∈ ∂ (Dσ ∩ {z̃ = (r̃, θ) : r̃ ≤ r0}) .

Then by the maximum principle we get

ψ̃(x̃) ≤ 0 for x̃ ∈ Dσ ∩ {x̃ = (r̃, θ) : r̃ ≤ r0}.

From (3.13), we also obtain, for x, y ∈ Ω,

G(x; y) ≤ GDσ(x; y)−m2

( x
R

) π
2σ
cos
( π
2σ
ρ
)

(3.15)

with ρ ∈ (−σ, σ). From (3.14) and (3.15), letting R → +∞, we obtain that, for x, y ∈ Dσ ⊂
Ω,

G(x; y) ∼ GDσ(x; y)

that is (3.11) holds.

On the other hand, if x1, y1 < 0. Since φ′(x1) → b < 0 as x1 → −∞. We have that, if
R → +∞, ΩR approaches to a sector

Dϱ,2π−ϱ =
{
(r, θ) ∈ R2 : ϱ < θ < 2π − ϱ

}
with ϱ = arctan(b) ∈ (π

2
, π). Then (3.12) follows from the same argument.

It is consequence of above Lemma 3.4 and (3.10), we have

Corollary 3.5. For points on the symmetry line of Ω, then we have the asymptotic behavior
of Robin function R(x) for x = (ξ, 0),

R(x) ∼ 4 ln
(σ
π
|ξ|
)
, with some σ > 0. (3.16)
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3.3 The first approximation solution

In this Section, we build the first approximation solution and to estimate its error. Let us
introduce the radially symmetric solutions of the following limit equation

∆w + ew = 0 in R2,

∫
R2

ew < +∞,

which are given by the one parameter family of functions

wµ(z) = log
8µ2

(µ2 + |z|2)2
. (3.17)

Let δ > 0 small but fixed, and k > 1 be an integer. Let ξ = (ξ1, . . . , ξk) given by (3.5) satisfies
(3.6). Moreover, consider k positive numbers µj such that

δ < µj < δ−1, for all j = 1, . . . , k. (3.18)

The parameters µj will be chosen properly later on. Define the function

uj(x) = log
1

(µ2
jε

2 + |x− ξj|2)2

= wµj

(
x− ξj
ε

)
+ 4 log

1

ε
− log(8µ2

j). (3.19)

Given a radial smooth cut-off function ηδ : R 7→ [0, 1] such that ηδ(x) = 1 for |x| ≤ δ
2
,

0 < ηδ(x) < 1 for δ
2
< |x| < δ, and ηδ(x) = 0 for |x| ≥ δ. Set

Uj(x) = (uj(x) +H(x, ξj)) ηδ(x− ξj) + (1− ηδ(x− ξj))G(x, ξj).

We now define the first ansatz is given by

U(x) =
k∑
j=1

Uj(x). (3.20)

Consider now the change of variables

v(y) = u(εy)− 4 log
1

ε
.

If u is a solutions of problem (3.1), then v satisfies the following problen{
∆v + ev = 0, in Ωε;

v = −4 log 1
ε
, on ∂Ωε,

(3.21)
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where Ωε = ε−1Ω. We also write ξ′j = ε−1ξj and define the first approximation solutions to
(3.21) as

V (y) = U(εy)− 4 log
1

ε
. (3.22)

We will look for solutions to (3.21) of the form

v = V + ϕ,

where V is defined as in (3.22), and ϕ represents a lower order correction. We aim at finding
a solution for ϕ small provided that the points ξj are suitably chosen. For small ϕ, we can
rewrite problem (3.21) as a nonlinear perturbation of its linearization, namely,{

∆ϕ+ eV (y)ϕ = −[E +N(ϕ)], x ∈ Ωε;

ϕ = 0, x ∈ ∂Ωε,
(3.23)

where

E := ∆V (y) + eV (y), (3.24)

N(ϕ) := eV+ϕ − eV (y) − eV (y)ϕ. (3.25)

We aim to choose suitable µj, j = 1, . . . , k such that the error term is small.

In fact, we observe that eV (y) = ε4eU(x) with x = εy. If δ > 0 small but fixed, for |x− ξj| ≥ δ
2
,

that is |y − ξ′j| ≥ δ
2ε
, we have

uj(x) +H(x, ξj) = log
1

(µ2
jε

2 + |x− ξj|2)2
+H(x, ξj)

= G(x, ξj) +O(µ2
jε

2).

Then we have that Uj(x) = G(x, ξj) +O(µ2
jε

2). Hence, for all j = 1, . . . , k,

eV (y) = ε4eU(x) = ε4e

k∑
j=1

G(x,ξj)+O(µ2jε
2)

= O(ε4) if |y − ξ′j| ≥
δ

2ε
. (3.26)

Moreover, ∆V (y) = ε2∆U(x) and then we obtain

∆V (y) = O(ε4) if |y − ξ′j| ≥
δ

2ε
. (3.27)

On the other hand, fix j ∈ {1, . . . , k}, for |y − ξ′j| ≤ δ
2ε
, we have Uj(x) = uj(x) + H(x, ξj).

We write y = ξ′j + z, then

eV (y) = ε4eU(x) = ε4e

k∑
j=1

[uj(x)+H(x,ξj)]
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= ε4euj(x)e
H(x,ξj)+

k∑
i ̸=j

[ui(x)+H(x,ξi)]

= ewµj (z)e
− log(8µ2j )+H(x,ξj)+

k∑
i̸=j

[ui(x)+H(x,ξi)]

= ewµj (z)e
− log(8µ2j )+H(ξj ,ξj)+O(ε|y−ξ′j |)+

k∑
i̸=j

[ui(x)+H(x,ξi)]

.

since

k∑
i ̸=j

[ui(x) +H(x, ξi)]

=
k∑
i ̸=j

[
log

1

(µ2
jε

2 + |ξj − ξi + εz|2)2
+H(ξj + εz, ξi)

]

=
k∑
i ̸=j

[G(ξj, ξi) +O(ε|z|)]

If we choose µj satisfies

log(8µ2
j) = R(ξj) +

k∑
i̸=j

G(ξj, ξi). (3.28)

Then we have

eV (y) = ewµj (z) ×O(ε|y − ξ′j|) if |y − ξ′j| ≤
δ

2ε
. (3.29)

And, we have

∆V (y) = ewµj (z) if |y − ξ′j| ≤
δ

2ε
.

Therefore

|E(y)| ≤ Cε
k∑
j=1

1

1 + |y − ξ′j|3
. (3.30)

3.4 The Existence result

Let us define
z0j(y) = ∂µjwµj(y), zij(y) = ∂yiwµj(y), i = 1, 2,

It is known [10] that the solutions of ∆Z + ewjZ = 0 are given by z0j, z1j, z2j. Define for
i = 0, 1, 2 and j = 1, 2, · · · , k,

Zij(y) := zij
(
y − ξ′j

)
, i = 0, 1, 2. (3.31)
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Consider a large but fixed number R0 > 0 and a radial and smooth cut-off function χ with
χ(r) = 1 if r < R0 and χ(r) = 0 if r > R0 + 1. Write

χj(y) = χ
(
|y − ξ′j|

)
. (3.32)

Given h of class C0,α(Ωε), we consider the linear problem of finding a function ϕ and scalars
cij, i = 1, 2, j = 1, ..., k such that

∆V (y) + eV (y)ϕ = −[E +N(ϕ)] +
2∑
i=1

k∑
j=1

cijZijχj in Ωε;

ϕ = 0 on ∂Ωε;∫
Ωε
ϕZijχj = 0 for i = 1, 2, j = 1, · · · , k.

(3.33)

Consider the norms

∥ϕ∥∞ = sup
y∈Ωε

|ϕ(y)|, ∥h∥∗ = sup
y∈Ωε

(
k∑
j=1

(1 + |y − ξ′j|)−3 + ε2

)−1

|h(y)|.

By the same argument in [36], we have the following result.

Proposition 3.6. There exist positive constant ε0 and C, such that, for ξj, j = 1, . . . , k
given by (3.5), then there is a unique solution ϕ to problem (3.33) for all ε < ε0. Moreover

∥ϕ∥∞ ≤ Cε| log ε|.

Furthermore, the map ξ′ 7→ ϕ ∈ H1
0 (Ωε) is C1, and

∥Dξ′ϕ∥∞ ≤ Cε| log ε|2.

After problem (3.33) has been solved, we find a solution to problem (3.23), if we can find a
point ξ′ = ξ

ε
= (ξ′1, . . . , ξ

′
k) such that coefficients cij(ξ

′) in (3.33) satisfy

cij(ξ
′) = 0 for all i = 1, 2, j = 1, · · · , k. (3.34)

We now introduce the finite dimensional restriction Iε(ξ), given by

Iε(ξ) = J
((
U + ϕ̃

)
(x, ξ)

)
(3.35)

where J is the energy function of (3.1), that is

J(u) =
1

2

∫
Ω

|∇u|2 − ε2
∫
Ω

eu,

and (
U + ϕ̃

)
(x, ξ) = (V + ϕ) (

x

ε
,
ξ

ε
) (3.36)

with V defined in (3.22), ϕ is the unique solution to problem (3.33) given by Proposition 3.6.

The next result, whose proof is postponed until Section 3.5.
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Proposition 3.7. (i) The functional Iε(ξ) is of class C1. Moreover, for all ε > 0 sufficiently
small, if DξIε(ξ) = 0, then ξ satisfies (3.34).

(ii) Let δ > 0 small but fixed, then there exist positive numbers ε0 and C, such that for any
points ξj, j = 1, . . . , k given by (3.5), µj are given by (3.28), the following expansion holds

Iε(ξ) = 8kπ(log 8− 2)− 16kπ log ε+ 4πΦ(ξ)

+δ log δΘ(ξ) + δΥ(ξ) + εΘ(ξ) +O(ε2)|Ω|. (3.37)

where |Ω| denotes the measure of Ω, and

Φ(ξ) = −

[
k∑
j=1

R(ξj) +
∑
i̸=j

G(ξi, ξj)

]
. (3.38)

and Θ(ξ) is a smooth function in the consider region, and Υ(ξ) is a smooth function so that
|Υ(ξ)| ≤ CΦ(ξ).

Proof of Theorem 3.1: According to Proposition 3.7, we have a solution to (3.1) if we
find a critical point ξ of Iε(ξ), it is equivalent to finding a critical point of the function Φ(ξ),
given points ξj, j = 1, . . . , k as (3.5), thus it is suffice to find a critical point of Φ(ξ), which
defined by

Φ(ξ) = −4π

[
k∑
j=1

R(ξj) +
∑
i ̸=j

G(ξi, ξj)

]
.

By the properties of Green function, we know that if δ → 0, then points ξj, j = 1, . . . , k
given by (3.5) satisfies (3.6), we have

Φ(ξ) → −∞ as δ → 0.

On the other hand, we note that points ξj (given by (3.5))on the symmetric line x2 = 0, from
Corollary 3.5, we have

Φ(ξ) → −∞ for some |tj| → +∞, i = 1, 2, 3.

Thus Φ(ξ) has a maximum point, denote it by ξ∗, that is, there exists critical points ξ∗ =
(ξ∗1 , . . . , ξ

∗
k) of Φ(ξ).

Moreover, while (3.7) holds as a direct consequence of the construction of U .

3.5 Expansion of energy

Proof of Proposition 3.7: (i) The proof is the standard way, see [36].
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(ii) According to the same proof of Lemma 5.2 in [36], we have

Iε(ξ) = J(U) + θε(ξ), (3.39)

where |θε(ξ)|+ |∇θε(ξ)| → 0 uniformly on points given by (3.5). We now give the expansion
of energy J(U), we have

J(U) =
1

2

∫
Ω

|∇U |2 − ε2
∫
Ω

eU := I − II (3.40)

We first claim

I = 8kπ(log 8− 1)− 16kπ log ε+ 4πΦ(ξ) + δ log δΘ(ξ) + δΥ(ξ), (3.41)

where Φ(ξ) given by (3.38), Θ(ξ) is a smooth function in the consider region, and Υ(ξ) is a
smooth function so that |Υ(ξ)| ≤ CΦ(ξ).

Proof of (3.41): We can write it as

I =
1

2

k∑
j=1

∫
B δ

2
(ξj)

|∇U |2 + 1

2

∫
Ω\∪k

j=1B δ
2
(ξj)

|∇U |2

:=
1

2

(
k∑
j=1

Ij + I2

)
(3.42)

where

Ij =

∫
B δ

2
(ξj)

|∇U |2 =
∫
B δ

2
(ξj)

∣∣∣∣∣∇
(

k∑
l=1

Ul(x)

)∣∣∣∣∣
2

=
k∑
l=1

∫
B δ

2
(ξj)

|∇Ul(x)|2 +
∑
i̸=l

∫
B δ

2
(ξj)

∇Ui(x)∇Ul(x)

=

∫
B δ

2
(ξj)

|∇Uj(x)|2 +
k∑
l ̸=j

∫
B δ

2
(ξj)

|∇Ul(x)|2

+
∑
i̸=j

∫
B δ

2
(ξj)

∇Ui(x)∇Uj(x) +
∑
i̸=l ̸=j

∫
B δ

2
(ξj)

∇Ui(x)∇Ul(x)

:= Ij1 + Ij2 + Ij3 + Ij4. (3.43)

Estimate Ij1: We observe that Uj(x) = uj(x) +H(x, ξj) for x ∈ B δ
2
(ξj), and integrating by

parts, using −∆H(x, ξj) = 0 in Ω, we have

Ij1 =

∫
B δ

2
(ξj)

|∇Uj(x)|2 =
∫
B δ

2
(ξj)

|∇(uj(x) +H(x, ξj))|2
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=

∫
B δ

2
(ξj)

|∇uj(x)|2 + 2

∫
B δ

2
(ξj)

∇uj(x)∇H(x, ξj) +

∫
B δ

2
(ξj)

|∇H(x, ξj)|2

=

∫
B δ

2
(ξj)

|∇uj(x)|2 + 2

∫
∂B δ

2
(ξj)

uj(x)
∂H(x, ξj)

∂ν

+

∫
∂B δ

2
(ξj)

H(x, ξj)
∂H(x, ξj)

∂ν

=

∫
B δ

2
(ξj)

|∇uj(x)|2 + 2

∫
∂B δ

2
(ξj)

log
1

(µ2
jε

2 + | δ
2
|2)2

∂H(x, ξj)

∂ν

+

∫
∂B δ

2
(ξj)

H(x, ξj)
∂H(x, ξj)

∂ν

=

∫
B δ

2
(ξj)

|∇uj(x)|2 + δ log δΘ(ξ) + δΥ(ξ). (3.44)

where now, and the rest of the proof, ν will denote the out normal vector of Ω, Θ(ξ) is a
smooth function in the consider region, and Υ(ξ) is a smooth function so that |Υ(ξ)| ≤ CΦ(ξ).
Moreover ∫

B δ
2
(ξj)

|∇uj(x)|2 = 16

∫
B δ

2
(ξj)

|x− ξj|2

(µ2
jε

2 + |x− ξj|2)2
dx

= 16

∫
B δ

2µjε
(ξj)

|y|2

(1 + |y|2)2
dy

= 16π

[
−2 log(µjε)− 1 + log[(µjε)

2 + (
δ

2
)2] +

(µjε)
2

(µjε)2 + ( δ
2
)2

]
= 16π

[
− log(8µ2

j)− 2 log(ε) + log 8− 1

+ log[(µjε)
2 + (

δ

2
)2] +

(µjε)
2

(µjε)2 + ( δ
2
)2

]
(3.45)

Estimate Ij2: We note that for δ > 0 arbitrarily small, and ξ = (ξ1, · · · , ξk) given as (3.5),
then we have Ul(x) = G(x, ξl) for x ∈ B δ

2
(ξj) with δ > 0 small.

Ij2 =
k∑
l ̸=j

∫
B δ

2
(ξj)

|∇Ul(x)|2 =
k∑
l ̸=j

∫
B δ

2
(ξj)

|∇G(x, ξl)|2

=
k∑
l ̸=j

∫
∂B δ

2
(ξj)

G(x, ξl)
∂G(x, ξl)

∂ν
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= δΥ(ξ) (3.46)

where Υ denotes a smooth function of ξ so that |Υ(ξ)| ≤ CΦ(ξ).

Estimate Ij3: since δ is arbitrarily small, in B δ
2
(ξj) we have Uj(x) = uj(x) + H(x, ξj), and

Ui(x) = G(x, ξi) for i ̸= j, integrating by parts, we have

Ij3 =
∑
i̸=j

∫
B δ

2
(ξj)

∇Ui(x)∇Uj(x) =
∑
i ̸=j

∫
B δ

2
(ξj)

∇G(x, ξi)∇[uj(x) +H(x, ξj)]

=
∑
i̸=j

∫
∂B δ

2
(ξj)

[
log

1

(µ2
jε

2 + | δ
2
|2)2

+H(x, ξj)

]
∂G(x, ξi)

∂ν

= δ log δΘ(ξ), (3.47)

where Θ denotes again a smooth function of ξ.

Estimate Ij4: Using again δ is arbitrarily small and by a Taylor expansion, if i ̸= l ̸= j, on
B δ

2
(ξj) we have Ui(x) = G(x, ξi) and Ul(x) = G(x, ξl), then

Ij4 =
∑
i ̸=l ̸=j

∫
B δ

2
(ξj)

∇Ui(x)∇Ul(x) =
∑
i̸=j

∫
B δ

2
(ξj)

∇G(x, ξi)∇G(x, ξl)

=
∑

l ̸=l;i,l ̸=j

∫
∂B δ

2
(ξj)

G(x, ξi)
∂G(x, ξl)

∂ν

= δΥ(ξ), (3.48)

where Υ denotes again a smooth function of ξ so that |Υ(ξ)| ≤ CΦ(ξ).

Thus, from (3.43) to (3.48), we obtain

Ij = −16π log(8µ2
j)− 32kπ log ε+ 16kπ(log 8− 1)

+δ log δΘ(ξ) + δΥ(ξ) (3.49)

with Φ(ξ) given by (3.38), Θ(ξ) is a smooth function in the consider region, and Υ(ξ) is a
smooth function so that |Υ(ξ)| ≤ CΦ(ξ).

Next we estimate I2.

I2 =

∫
Ω\∪k

j=1Bδ(ξj)

|∇U |2 +
∫

∪k
j=1(Bδ(ξj)\B δ

2
(ξj))

|∇U |2 := I2A + I2B. (3.50)

We first estimate the first term of above. Since δ is arbitrarily small, and points ξj given by

(3.5). We have that on Ω\ ∪kj=1 Bδ(ξj), U(x) =
k∑
l=1

G(x, ξl). Then

I2A =
k∑
l=1

∫
Ω\∪k

j=1B δ
2
(ξj)

|∇Ul|2 +
k∑
i̸=l

∫
Ω\∪k

j=1B δ
2
(ξj)

∇Ui∇Ul

74



CHAPTER 3. BUBBLING SOLUTIONS FOR LIOUVILLE EQUATION IN
UNBOUNDED DOMAIN

=
k∑
l=1

∫
Ω\∪k

j=1B δ
2
(ξj)

|∇G(x, ξl)|2 +
k∑
i̸=l

∫
Ω\∪k

j=1Bδ(ξj)

∇G(x, ξi)∇G(x, ξl)

=

∫
Ω\∪k

j=1Bδ(ξj)

|∇G(x, ξj)|2 +
k∑
l ̸=j

∫
Ω\∪k

j=1Bδ(ξj)

|∇G(x, ξl)|2

+
k∑
i ̸=l

∫
Ω\∪k

j=1Bδ(ξj)

∇G(x, ξi)∇G(x, ξl)

=
k∑
j=1

∫
Ω\Bδ(ξj)

|∇G(x, ξj)|2 +
k∑
j=1

k∑
l ̸=j

∫
Ω\Bδ(ξj)

|∇G(x, ξl)|2

+
k∑
i ̸=j

∫
Ω\Bδ(ξj)

∇G(x, ξi)∇G(x, ξj) +
k∑

i̸=l ̸=j

∫
Ω\Bδ(ξj)

∇G(x, ξi)∇G(x, ξl)

= I2a + I2b + I2c + I2d. (3.51)

Using the fact −∆G(x, ξj) = 8πδξj(x) in Ω and G(x, ξj) = 0 for x on the boundary of Ω,
integrating by parts, we have

I2a =
k∑
j=1

∫
Ω\Bδ(ξj)

|∇G(x, ξj)|2

=
k∑
j=1

∫
∂(Ω\Bδ(ξj))

G(x, ξj)
∂G(x, ξj)

∂ν
−

k∑
j=1

∫
Ω\Bδ(ξj)

G(x, ξj)∆G(x, ξj)

=
k∑
j=1

∫
∂(Ω\Bδ(ξj))

G(x, ξj)
∂G(x, ξj)

∂ν
+ 8π

k∑
j=1

∫
Ω\Bδ(ξj)

G(x, ξj)δξj(x)

=
k∑
j=1

∫
∂(Ω\Bδ(ξj))

G(x, ξj)
∂G(x, ξj)

∂ν

=
k∑
j=1

∫
∂Bδ(ξj)

G(x, ξj)
∂G(x, ξj)

∂ν
. (3.52)

We observe that on ∂Bδ(ξj), we have G(x, ξj) = −4 log δ + H(x, ξj) and
∂G(x,ξj)

∂ν
= 4

δ
+

∇H(x, ξj) · ν, and by a Taylor expansion, we have∫
∂Bδ(ξj)

G(x, ξj)
∂G(x, ξj)

∂ν
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=

∫
∂Bδ(ξj)

[−4 log δ +H(x, ξj)]

[
4

δ
+∇H(x, ξj) · ν

]

=

∫
∂Bδ(ξj)

[−4 log δ +R(ξj) +H(x, ξj)−H(ξj, ξj)]

×
[
4

δ
+∇H(x, ξj) · ν

]
= 8πR(ξj)− 32π log

δ

2
+ δ log δΘ(ξ) + δΘ(ξ). (3.53)

And

I2b =
k∑
j=1

k∑
l ̸=j

∫
Ω\Bδ(ξj)

|∇G(x, ξl)|2

=
k∑
l ̸=j

∫
∂B δ

2
(ξj)

G(x, ξl)
∂G(x, ξl)

∂ν
= δΥ(ξ). (3.54)

On the other hand,

I2c =
k∑
i̸=j

∫
Ω\Bδ(ξj)

∇G(x, ξi)∇G(x, ξj)

=
k∑
i̸=j

∫
∂(Ω\Bδ(ξj))

G(x, ξi)
G(x, ξj)

∂ν
−

k∑
i̸=j

∫
Ω\Bδ(ξj)

G(x, ξi)∆G(x, ξj)

=
k∑
i̸=j

∫
∂Bδ(ξj)

G(x, ξi)
G(x, ξj)

∂ν

=
k∑
i̸=j

∫
∂Bδ(ξj)

[G(ξi, ξj) +O(δ)][
4

δ
+∇H(x, ξj) · ν]

= 8π
k∑
i ̸=j

G(ξi, ξj) + δΥ(ξ). (3.55)

Moreover,

I2d =
k∑

i̸=l ̸=j

∫
Ω\Bδ(ξj)

∇G(x, ξi)∇G(x, ξl)
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=
k∑

i̸=l ̸=j

∫
∂Bδ(ξj)

G(x, ξi)
∂G(x, ξl)

∂ν

= δΥ(ξ). (3.56)

We observe that on Bδ(ξj)\B δ
2
(ξj), we have Uj(x) = G(x, ξj) +O(µ2

jε
2) and Ul(x) = G(x, ξl)

for l ̸= j. Then we have

I2B =

∫
∪k
j=1(Bδ(ξj)\B δ

2
(ξj))

|∇U |2 =
∫

∪k
j=1(Bδ(ξj)\B δ

2
(ξj))

∣∣∣∣∣∇
(

k∑
l=1

Uj

)∣∣∣∣∣
2

=

∫
∪k
j=1(Bδ(ξj)\B δ

2
(ξj))

|∇Uj|2 +
∑
l ̸=j

∫
∪k
j=1(Bδ(ξj)\B δ

2
(ξj))

|∇Ul|2

=
k∑
j=1

∫
Bδ(ξj)\B δ

2
(ξj)

|∇(G(x, ξj) +O(µ2
jε

2))|2

+
k∑
j=1

∑
l ̸=j

∫
Bδ(ξj)\B δ

2
(ξj)

|∇G(x, ξl)|2

= δΥ(ξ). (3.57)

Thus, from (3.50) to (3.57), we obtain

I2 = 8π

[
k∑
j=1

R(ξj) +
k∑
i̸=j

G(ξi, ξj)

]
+ δ log δΘ(ξ) + δΥ(ξ) (3.58)

Therefore (3.41) follows from (3.49), (3.58) and the choice of µj in (3.28).

Finally, let is estimate the second term II in the energy.

II = ε2
∫
Ω

eU =
k∑
j=1

ε2
∫

B δ
2
(ξj)

eU + ε2
∫

Ω\∪k
j=1B δ

2
(ξj)

eU (3.59)

where

ε2
∫

B δ
2
(ξj)

eU = ε2
∫

B δ
2
(ξj)

e
Uj+

∑
i ̸=j

Ui

= ε2
∫

B δ
2
(ξj)

euj(x)e
H(x,ξj)+

∑
i ̸=j

Ui
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= ε2
∫

B δ
2
(ξj)

1

(µ2
jε

2 + |x− ξj|2)2
e
H(x,ξj)+

∑
i̸=j

Ui

=

∫
B δ

2
(ξj)

8µ2
jε

2

(µ2
jε

2 + |x− ξj|2)2
e
− log(8µ2j )+H(x,ξj)+

∑
i ̸=j

Ui

=

∫
B δ

2
(ξj)

8µ2
jε

2

(µ2
jε

2 + |x− ξj|2)2
e
− log(8µ2j )+R(ξj)+

∑
i̸=j

G(ξi,ξj)+O(|x−ξj |)

= 8π + εΘε(ξ) (3.60)

Moreover,

ε2
∫

Ω\∪k
j=1B δ

2
(ξj)

eU = ε2
∫

Ω\∪k
j=1B δ

2
(ξj)

eO(1) = O(ε2)|Ω|. (3.61)

Thus

II = 8kπ +O(ε2)|Ω|+ εΘ(ξ). (3.62)

Therefore, (3.37) follows (3.39), (3.40), (3.41) and (3.62). This completes the proof.
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Chapter 4

Mixed interior and boundary bubbling
solutions for Neumann problem in R2

1

4.1 Introduction

Consider the following boundary value problem{
−∆u+ u = λup−1eu

p
, u > 0, in Ω;

∂u
∂ν

= 0, on ∂Ω,
(4.1)

where Ω is a bounded domain in R2 with smooth boundary, λ > 0 is a small parameter,
0 < p < 2, and ν denotes the outer normal vector to ∂Ω. This problem is the Euler-Lagrange
equation for the functional

Jpλ(u) =
1

2

∫
Ω

(|∇u|2 + u2)− λ

p

∫
Ω

eu
p

, u ∈ H1(Ω). (4.2)

If p = 1, Senba-Suzuki, in [109, 110], have analyzed the asymptotic behavior of solutions to
problem (4.1). If uλ is a family of solutions to problem (4.1) when p = 1, then there exist
non-negative integers k, l ≥ 1, such that

lim
λ→0

λ

∫
Ω

euλ = 4π(2k + l). (4.3)

1The main result of this chapter was published in Journal of Differential Equations, Volume 253, Issue 2,
15 July 2012, 727-763.
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Let m = k+ l. Up to subsequences, there exist points ξj, j = 1, . . . ,m with ξj ∈ Ω for j ≤ k
and ξj ∈ ∂Ω for k < j ≤ m, for which

uλ(x) →
k∑
j=1

8πG(x, ξj) +
m∑

j=k+1

4πG(x, ξj), as λ→ 0, (4.4)

uniformly on compact subset of Ω̄\{ξ1, . . . , ξm}. Moreover, the m−tuple (ξ1, . . . , ξm) can be
characterized as critical point of a functional defined on Ωk × (∂Ω)l, given by

φm(ξ) = φm(ξ1, . . . , ξm) =
m∑
j=1

c2jH(ξj, ξj) +
∑
l ̸=j

clcjG(ξl, ξj), (4.5)

where
cj = 8π for j = 1, . . . , k, and cj = 4π for j = k + 1, . . . ,m,

and G(x, y) is the Green’s function of the problem{
−∆xG(x, y) +G(x, y) = δy(x), in Ω;

∂G(x,y)
∂νx

= 0, on ∂Ω,
(4.6)

and H(·, ·) its regular part, namely,

H(x, y) =

{
G(x, y) + 1

2π
log |x− y|, if y ∈ Ω;

G(x, y) + 1
π
log |x− y|, if y ∈ ∂Ω.

(4.7)

Conversely, del Pino-Wei, in [41], constructed bubbling solutions uλ to problem (4.1) when
p = 1 with the above properties (4.3) and (4.4). Moreover, the location of the bubbling
points corresponds to critical points of the function φm defined by (4.5). Furthermore, they
obtained the following expansion of the energy functional

J1
λ(uλ) = −4π(2k + l)(2− log 8)− 8π(2k + l) log ε− 1

2
φm(ξ) + o(1),

where o(1) → 0 as λ→ 0.

This chapter is devoted to construct solutions to problem (4.1) with bubbling profiles at
points inside Ω and on the boundary of Ω when p is between 0 and 2. In particular, we
recover the result in [41] when p = 1.

Let ε be a parameter, which depends on λ, defined as

pλ

(
−4

p
log ε

) 2(p−1)
p

ε
2(p−2)

p = 1. (4.8)

Observe that, as λ→ 0, then ε→ 0, and λ = ε2 if p = 1. Our result states as follows.
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Theorem 4.1. Let 0 < p < 2, and k, l,m ≥ 1 be integers with m = k+ l. There exists λ0 > 0
so that, for any 0 < λ < λ0, problem (4.1) has a solution uλ, with the following properties:

(1) uλ has m local maximum points ξ∗j , j = 1, . . . ,m such that ξ∗j ∈ Ω for 1 ≤ j ≤ k, and
ξ∗j ∈ ∂Ω for k + 1 ≤ j ≤ m. Furthermore

lim
λ→0

φm(ξ
∗
1 , . . . , ξ

∗
m) = min

Ωk×(∂Ω)l
φm,

where φm is defined by (4.5). In particular

(2) One has

uλ(x) = p−
1
2

√
λ ε

p−2
p

[
k∑
j=1

8πG(x, ξ∗j ) +
m∑

j=k+1

4πG(x, ξ∗j ) + o(1)

]
(4.9)

where ε satisfies (4.8), and o(1) → 0, as λ → 0, on each compact subset of Ω̄\{ξ∗1 , . . . , ξ∗m},
and G(·, ·) is the Green’s function given in (4.6).

(3) Moreover

lim
λ→0

ε
2(2−p)

p

∫
Ω

eu
p
λ = 4π(2k + l). (4.10)

Furthermore

Jpλ(uλ) = λε
2(p−2)

p

[
−4π(2k + l)

2− p log 8

(2− p)p
− 8π

p
(2k + l) log ε− 1

2(2− p)
φm(ξ

∗) +O(| log ε|−1)

]
(4.11)

where O(1) uniformly bounded as λ→ 0.

This chapter is organized as follows. In Section 4.2, describing a first approximation solution
to problem (4.1) and estimating the error. We describe the proof of the main result in Section
4.3. Section 4.4 is devoted to perform the finite dimensional reduction. Section 4.5 contains
the asymptotic expansion of the reduced energy.

4.2 Preliminaries and ansatz for the solution

In this section we describe the approximate solution for problem (4.1) and then we estimate
the error of such approximation in appropriate norms.

let us introduce the following limit problem

∆w + ew = 0 in R2,

∫
R2

ew dx < +∞. (4.12)
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It is well known that the solutions to (4.12) can be all written in the following form

wµ(z) = log
8µ2

(µ2 + |z|2)2
, and wµ,ξ(z) := wµ(z − ξ) (4.13)

where µ is any positive number and ξ any point in R2 (see [21]).

We choose a sufficiently small but fixed number δ > 0 and define

Mδ :=

{
ξ := (ξ1, . . . , ξm) ∈ Ωk × (∂Ω)l

∣∣∣ min
i=1,...,k

dist(ξi, ∂Ω) ≥ δ, min
i ̸=j

|ξi − ξj| ≥ δ

}
.(4.14)

Let us consider m distinct points (ξ1, . . . , ξm) ∈ Mδ, with ξ1, . . . , ξk in Ω and ξk+1, . . . , ξm on
∂Ω. Moreover we consider m positive numbers µj such that

δ < µj < δ−1, for all j = 1, . . . ,m. (4.15)

We define the function

uj(x) = log
8µ2

j

(µ2
jε

2 + |x− ξj|2)2
,

and a correction term defined as the solution of{
−∆Hj +Hj = −uj, in Ω;

∂Hj

∂ν
= −∂uj

∂ν
, on ∂Ω.

(4.16)

Lemma 4.2. For any 0 < α < 1, ξ = (ξ1, . . . , ξm) ∈ Mδ, then we have

Hj(x) = cjH(x, ξj)− log(8µ2
j) +O(εα), (4.17)

uniformly in Ω̄ as ε→ 0, where H(·, ·) is the regular part of Green’s function defined in (4.7).

Proof. First, on the boundary, we have

∂Hj

∂ν
= −∂uj

∂ν
= 4

(x− ξj) · ν(x)
µ2
jε

2 + |x− ξj|2
.

Thus,

lim
ε→0

∂Hj

∂ν
= 4

(x− ξj) · ν(x)
|x− ξj|2

, ∀ x ∈ ∂Ω\{ξj}.

On the other hand, the regular part of Green’s function H(x, y) satisfies{
−∆xH(x, y) +H(x, y) = − 4

cj
log 1

|x−y| , in Ω;

∂H(x,y)
∂νx

= 4
cj

(x−y)·ν(x)
|x−y|2 , on ∂Ω.

(4.18)
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Set z(x) = Hj(x)− cjH(x, ξj) + log(8µ2
j), then we get{

−∆z(x) + z(x) = log 1
|x−ξj |4 − log 1

(µ2jε
2+|x−ξj |2)2

, in Ω;

∂z(x)
∂ν

=
∂Hj(x)

∂ν
− 4

(x−ξj)·ν(x)
|x−ξj |2 , on ∂Ω.

A direct computation shows that, there is a positive constant C such that∥∥∥∥∂Hj(x)

∂ν
− 4

(x− ξj) · ν(x)
|x− ξj|2

∥∥∥∥
Lq(∂Ω)

≤ Cε1/q, ∀ q > 1, (4.19)

and ∥∥∥∥log 1

|x− ξj|4
− log

1

(µ2
jε

2 + |x− ξj|2)2

∥∥∥∥
Lq(Ω)

≤ Cε, for any 1 < q < 2.

Then by elliptic regularity theory, we obtain

∥zε∥W 1+s,q(Ω) ≤

(∥∥∥∥∂zε∂ν
∥∥∥∥
Lq(∂Ω)

+ ∥∆zε∥Lq(Ω)

)
≤ Cε1/q (4.20)

for any 0 < s < 1
q
. By the Morrey embedding we obtain

∥zε∥Cβ(Ω̄) ≤ Cε1/q

for any 0 < β < 1
2
+ 1

q
. Then we obtain that (4.17) holds with α = 1

q
.

We now define the first ansatz is given by

U(x) =
1

pγp−1

m∑
j=1

[uj(x) +Hj(x)] ,

with some number γ, to be fixed later on. We want to show that U(x) is a good approximation
for a solution to (4.1) far from the points ξj, but unfortunately it is not good enough for our
construction close to the points ξj. Thus we need to further adjust this ansatz. In order to
do this, we set

wµj(y) = wµj(y − ξ′j) = log
8µ2

j

(µ2
j + |y − ξ′j|2)2

.

Define the function wij to be the radial solution of

∆wij + ewµjwij = ewµj f i in R2, for i = 0, 1, (4.21)

where

f 0 = −
(
wµj +

1

2
(wµj)

2

)
,
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f 1 = −

(
2wµjw0j +

1

2

[
w0j +

(wµj)
2

2

]2
+w0j +

p− 2

2(p− 1)
(wµj)

2 +
(wµj)

3

2

)
.

In fact, as shown in [47] (see also [20]), there exists radially symmetric solutions with the
properties that

wij(y) = Cij log
|y − ξ′j|
µj

+O(
1

|y − ξ′j|
) as |y − ξj| → ∞, (4.22)

for some explicit constants Cij, which can be explicitly computed. In particular, when i = 0,
the constant C0j is given by

C0j = −8

∫ +∞

0

t
t2 − 1

(t2 + 1)3

log 8µ−2
j

(1 + t2)2
+

1

2

(
log

8µ−2
j

(1 + t2)2

)2
 dt

= −4

∫ +∞

0

t2 − 1

(t2 + 1)3

log 8µ−2
j

(1 + t2)2
+

1

2

(
log

8µ−2
j

(1 + t2)2

)2
 d(t2)

= −4

∫ +∞

1

r − 2

r3

[
log(8µ−2

j )− 2 log r +
1

2

(
log(8µ−2

j )
)2

−2 log(8µ−2
j ) log r + 2(log r)2

]
dr.

Since ∫ +∞

1

r − 2

r3
dr = 0,∫ +∞

1

r − 2

r3
log r dr =

1

2
,

and ∫ +∞

1

r − 2

r3
(log r)2 dr =

3

2
.

Hence

C0j = 4 log 8− 8− 8 log µj. (4.23)

Let Hij, for i = 0, 1, be a new correction defined as the solution of{
−∆Hij +Hij = −wij(x/ε), in Ω;

∂Hij

∂ν
= −∂wij

∂ν
, on ∂Ω.

(4.24)
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Lemma 4.3. For any 0 < α < 1, for i = 0, 1, one has

Hij(x) = −Cijcj
4

H(x, ξj) + Cij log(µj) + Cij log ε+O(εα) (4.25)

uniformly in Ω̄ as ε→ 0, where H is the regular part of Green’s function defined in (4.7).

Proof. The proof is the same as Lemma 4.2. First we note that, on the boundary, we have

lim
ε→0

∂Hij

∂ν
= −Cij

(x− ξj) · ν(x)
|x− ξj|2

, ∀ x ∈ ∂Ω\{ξj}.

Define z̃(x) = Hij(x) +
Cijcj

4
H(x, ξj)− Cij log(µjε), by using (4.18), then we can get{

−∆z̃(x) + z̃(x) = −Cij log 1
|x−ξj | − wij, in Ω;

∂z̃(x)
∂ν

=
∂Hij(x)

∂ν
+ 4Cij

(x−ξj)·ν(x)
|x−ξj |2 , on ∂Ω.

From (4.22), we can get∥∥∥∥Cij log 1

|x− ξj|
− wij

∥∥∥∥
Lq(Ω)

≤ Cε, for any 1 < q < 2,

for some constant C > 0, and∥∥∥∥∂Hij(x)

∂ν
+ 4Cij

(x− ξj) · ν(x)
|x− ξj|2

∥∥∥∥
Lq(∂Ω)

≤ Cε1/q, ∀ q > 1,

Then by the same procedure as proof of Lemma 4.2, we obtain that (4.25) holds.

Now we define the first approximation solution to (4.1) as

Uλ(x) =
1

pγp−1

m∑
j=1

[
uj(x) +Hj(x) +

p− 1

p

1

γp
(w0j(x) +H0j(x))

+

(
p− 1

p

)2
1

γ2p
(w1j(x) +H1j(x))

]
. (4.26)

From Lemma 4.2 and Lemma 4.3, one has, away from the points ξj,

Uλ(x) =
1

pγp−1

m∑
j=1

cjG(x, ξj)

[
1− p− 1

p

1

γp
C0j

4
−
(
p− 1

p

)2
1

γ2p
C1j

4
+O(εα)

]
. (4.27)

Consider now the change of variables

v(y) = pγp−1u(εy)− pγp, with γp = −4

p
log ε.
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By the choice of ε in (4.8), then problem (4.1) reduces to{
−∆v + ε2v = f(v)− pγpε2, v > 0, in Ωε;

∂v
∂ν

= 0, on ∂Ωε,
(4.28)

where Ωε = ε−1Ω, and

f(v) = (1 +
v

pγp
)p−1eγ

p[(1+ v
pγp

)p−1]. (4.29)

Let us define the first approximation solution to (4.28) as

Vλ(y) = pγp−1Uλ(εy)− pγp, (4.30)

with Uλ defined by (4.26).

We write y = ε−1x, ξ′j = ε−1ξj. For |x− ξj| < δ with δ sufficiently small but fixed, by using
Lemma 4.2, Lemma 4.3 and (4.27), and the fact that uj(εy)− pγp = wµj(y − ξ′j), we have

Vλ(y) = uj(εy) +Hj(εy) +
p− 1

p

1

γp
(w0j(εy) +H0j(εy))

+

(
p− 1

p

)2
1

γ2p
(w1j(εy) +H1j(εy))− pγp

+
m∑
l ̸=j

[
ul(εy) +Hl(εy) +

p− 1

p

1

γp
(w0l(εy) +H0l(εy))

+

(
p− 1

p

)2
1

γ2p
(w1l(εy) +H1l(εy))

]
= wµj(y − ξ′j) + cjH(εy, ξj)− log(8µ2

j) +O(εα)

+
p− 1

p

1

γp

[
w0j (εy)−

C0jcj
4

H(x, ξj) + C0j log(µj) + C0j log ε+O(εα)

]
+

(
p− 1

p

)2
1

γ2p

[
w1j (εy)−

C1jcj
4

H(x, ξj) + C1j log(µj) + C1j log ε+O(εα)

]
+

m∑
l ̸=j

cl G(ξl, ξj)

[
1− C0l

4

p− 1

p

1

γp
− C1l

4

(
p− 1

p

)2
1

γ2p

]

= wj(y) +
p− 1

p

1

γp
w0j (y) +

(
p− 1

p

)2
1

γ2p
w1j (y) +O(ε|y − ξ′j|) +O(εα)

− log(8µ2
j) + cjH(ξj, ξj) +

∑
l ̸=j

clG(ξl, ξj)−
p− 1

4
C0j

−p− 1

p

1

γp

[
C0j

4

(
cjH(ξj, ξj) +

∑
l ̸=j

clG(ξl, ξj)− 4 log µj

)
+

(p− 1)C1j

4

]
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−
(
p− 1

p

)2
1

γ2p

[
C1j

4

(
cjH(ξj, ξj) +

∑
l ̸=j

clG(ξl, ξj)− 4 log µj

)]
, (4.31)

where
wj(y) = wµj(y − ξj), w0j(y) = w0j(y − ξj), w1j(y) = w1j(y − ξj).

We now choose the parameters µj: we assume they are defined by the relation

log(8µ2
j) = cjH(ξj, ξj) +

∑
l ̸=j

clG(ξl, ξj)−
p− 1

4
C0j

−p− 1

p

1

γp

[
C0j

4

(
cjH(ξj, ξj) +

∑
l ̸=j

clG(ξl, ξj)− 4 log µj

)
+

(p− 1)C1j

4

]

−
(
p− 1

p

)2
1

γ2p

[
C1j

4

(
cjH(ξj, ξj) +

∑
l ̸=j

clG(ξl, ξj)− 4 log µj

)]
. (4.32)

Taking into account the explicit expression (4.23) of the constant C0j, we observe that µj
bifurcates, as λ goes to zero, from the value

µ̄j = 8−
p

2(2−p) e
p−1
2−p e

1
2(2−p)

[
cjH(ξj ,ξj)+

∑
l̸=j

clG(ξl,ξj)

]
(4.33)

solution of equation

log(8µ2
j) = cjH(ξj, ξj) +

∑
l ̸=j

clG(ξl, ξj)−
p− 1

4
C0j. (4.34)

Thus, µj is a perturbation of order 1
γp

of the value µ̄j, namely

log(8µ2
j) =

[
2(p− 1)

2− p
(1− log 8) +

1

2− p

(
cjH(ξj, ξj) +

∑
l ̸=j

clG(ξl, ξj)

)]

×
(
1 +O

(
1

γp

))
. (4.35)

Then, by this choice of the parameters µj, we deduce that, if |y− ξ′j| < δ/ε with δ sufficiently
small but fixed, we can rewrite

Vλ(y) = wj(y) +
p− 1

p

1

γp
w0j (y) +

(
p− 1

p

)2
1

γ2p
w1j (y) + θ(y), (4.36)

with
θ(y) = O(ε|y − ξ′j|) +O(εα).
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In the rest of this chapter, we will look for solutions for problem (4.28) in the form v = Vλ+ϕ,
where ϕ will represent a lower order correction. For small ϕ, we can rewrite problem (4.28)
as a nonlinear perturbation of its linearization, namely,{

L(ϕ) = Eλ +N(ϕ), x ∈ Ωε;

∂ϕ
∂ν

= 0, x ∈ ∂Ωε,
(4.37)

where

L(ϕ) := −∆ϕ+ ε2ϕ−Wϕ, with W = f ′(Vλ), (4.38)

Eλ = ∆Vλ + f(Vλ)− ε2Vλ + 4ε2 log ε, (4.39)

and

N(ϕ) = f(Vλ + ϕ)− f(Vλ)− f ′(Vλ)ϕ. (4.40)

For any h ∈ L∞(Ωε), let us define a weighted L∞-norm defined as

∥h∥∗ := sup
y∈Ωε

(
m∑
j=1

(1 + |y − ξ′j|)−2−σ + ε2

)−1

|h(y)| (4.41)

where we fix 0 < σ < 1. With respect to this norm, the error term Eλ given in (4.39) can be
estimated in the following way.

Lemma 4.4. Let δ > 0 be a small but fixed number and assume that the points ξ =
(ξ1, . . . , ξm) ∈ Mδ. There exists C > 0, such that we have

∥Eλ∥∗ ≤
C

γ3p
=

C

| log ε|3
(4.42)

for all λ small enough.

Proof. First we observe that

− ε2Vλ + 4ε2 log ε = O(ε2). (4.43)

Far away from the points ξj, namely for |x − ξj| > δ, i.e. |y − ξ′j| > δ
ε
, for all j = 1, . . . ,m,

from (4.27) we have that

∆Vλ(y) = pγp−1ε2∆U(εy) = O(γp−1ε4).

On the other hand, in this region we have

1 +
Vλ(y)

pγp
= 1 +

4 log ε+O(1)

pγp
=

O(1)

| log ε|
(4.44)
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where O(1) denotes a smooth function, uniformly bounded, as ε → 0, in the considered
region. Hence

f(Vλ) =

(
1 +

Vλ
pγp

)p−1

eγ
p[(1+

Vλ
pγp

)p−1]

=

C ε
4
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
4
p

| log ε|p−1 e
γp

O(1)
| log ε|p if 0 < p < 1.

=

C ε
4
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
4
p

| log ε|p−1 e
O(1)

| log ε|p−1 if 0 < p < 1.

Thus if we are far away from the points ξj, or equivalently for |y − ξ′j| > δ
ε
, the size of the

error, measured with respect to the ∥ · ∥∗-norm, is relatively small. In other words, if we
denote by 1outer the characteristic function of the set {y : |y − ξ′j| > δ

ε
, j = 1, . . . ,m}, then

in this region we have

∥Eλ1outer∥∗ ≤


C ε

2(2−p)
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
p

| log ε|p−1 e
log ε

2−p
p + C

| log ε|p−1 if 0 < p < 1.

=

C ε
2(2−p)

p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
p

| log ε|p−1 e
− 2−p

p
| log ε|+C| log ε|1−p

if 0 < p < 1.

≤

C ε
2(2−p)

p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
p

| log ε|p−1 if 0 < p < 1.

(4.45)

Here we used that −2−p
p
| log ε| + C| log ε|1−p < 0 for 0 < p < 1 and ε small. Let us now fix

the index j in {1, . . . ,m}, for |y − ξ′j| < δ
ε
, we have

∆Vλ(y) = −ewj(y) +
p− 1

p

1

γp
∆w0j(y) +

(
p− 1

p

)2
1

γ2p
∆w1j(y) +O(ε2). (4.46)

On the other hand, for any R > 0 large but fixed, in the ball |y− ξ′j| < Rε := R| log ε|α, with
α ≥ 3, we can use Taylor expansion to first get

(1 +
Vλ
pγp

)p−1 = 1 +
p− 1

p

1

γp
wj + (

p− 1

p
)2

1

γ2p
[w0j +

p− 2

2(p− 1)
(wj)

2]

+(
p− 1

p
)3

1

γ3p
(log |y − ξ′j|),

γp[(1 +
Vλ
pγp

)p − 1] = wj + (
p− 1

p
)
1

γp
[w0j +

(wj)
2

2
]
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+(
p− 1

p
)2

1

γ2p
(w1j + wjw0j) +

1

γ3p
(log |y − ξ′j|),

and

eγ
p[(1+

Vλ
pγp

)p−1] = ewj

{
1 + (

p− 1

p
)
1

γp

[
w0j +

(wj)
2

2

]
+(
p− 1

p
)2

1

γ2p

[
w1j + wjw0j +

1

2
(w0j + (wj)

2)2
]
+

1

γ3p
(log |y − ξ′j|)

}
.

Thus we obtain

f(Vλ) = (1 +
Vλ
pγp

)p−1eγ
p[(1+

Vλ
pγp

)p−1]

= ewj

{
1 + (

p− 1

p
)
1

γp

[
w0j +

(wj)
2

2
+ wj

]
+(
p− 1

p
)2

1

γ2p

[
w1j + 2wjw0j +

1

2

(
w0j +

(wj)
2

2

)2

+w0j +
p− 2

2(p− 1)
(wj)

2 +
(wj)

3

2

]
+O

(
log |y − ξ′j|

γ3p

)}
.

Thus, thanks to the fact that we have improved our original approximation with the terms
w0j and w1j, and the definition of ∗-norm, we get that

∥Eλ1B(ξ′j ,Rε)∥∗ ≤
C

γ3p
=

C

| log ε|3
, for any j = 1, . . . ,m. (4.47)

Here 1B(ξ′j ,Rε) denotes the characteristic function of B(ξj, Rε). Finally, in the remaining

region, namely where Rε < |y − ξ′j| < δ
ε
, for any j = 1, . . . ,m, we have from one hand

that |∆Vλ(y)| ≤ Cewj(y), and also |f(Vλ(y))| ≤ Cewj(y) as consequence of (4.31). This fact,
together with (4.47) and (4.45), (4.43) we obtain estimate (4.42).

As the proof of (2.34), (2.35) and (2.36), we have that very close to the point ξj in Ω,

∥f ′(Vλ)− ewj∥∗ → 0 as λ→ 0, (4.48)

and there exists some positive constant D0 such that

f ′(Vλ) ≤ D0

m∑
j=1

ewj . (4.49)

Moreover, we can get

∥f ′′
(Vλ)∥∗ ≤ C. (4.50)
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4.3 The existence result

The operator L defined in (4.38) can be seen as a superposition of linear operators,

L∗(ϕ) = −∆ϕ− 8

(1 + |z|2)2
ϕ,

namely, equation −∆w−ew = 0 linearized around the radial solution w(y) = log 8
(1+|y|2)2 . The

key face to develop a satisfactory solvability theory for the operator L is the nondegeneracy
of w up to the natural invariances of the equation under translations and dilations. In fact,
the functions

z0j(y) = ∂µjwµj(y), zij(y) = ∂yiwµj(y), i = 1, 2,

satisfy the function ∆Z + ewµjZ = 0, where wµj defined by (4.13), see [10] for a proof.

Let us consider a large but fixed number R0 > 0 and a radial and smooth cut-off function η
with η(r) = 1 if r < R0 and η(r) = 0 if r > R0 + 1, 0 ≤ η ≤ 1.

The interior bubble case: for j = 1, . . . , k, we define

ηj(y) = η
(
|y − ξ′j|

)
, Zij(y) := zij

(
y − ξ′j

)
, i = 0, 1, 2, j = 1, 2, . . . , k. (4.51)

The boundary bubble case: for j = k+1, . . . ,m, we first strengthen the boundary. Namely, at
the boundary point ξj ∈ ∂Ω, without loss of generality, we assume that ξj = 0 and the unit
outward normal at ξj is −e2 = (0,−1). Let G(x1) be the defining function for the boundary

∂Ω in a neighbourhood Bρ(ξj) of ξj, that is, Ω ∩ Bρ(ξj) = {(x1, x2)
∣∣∣ x2 > G(x1), (x1, x2) ∈

Bρ(ξj)}. Then, let Fj : Bρ(ξj) ∩ Ω → R2 be defined by

Fj = (Fj,1, Fj,2), with Fj,1 = x1 +
x2 −G(x1)

1 + |G′(x1)|2
G′(x1), Fj,2 = x2 −G(x1). (4.52)

Then we set F ε
j (y) =

1
ε
Fj(εy), and define

ηj(y) = η
(
|F ε
j (y)|

)
, Zij(y) := zij

(
F ε
j (y)

)
, i = 0, 1, j = k + 1, . . . ,m. (4.53)

It is important to observe that Fj preserves the Neumann boundary condition and

∆Z0j +
8µ2

j

(µ2
j + |y − ξ′j|2)2

Z0j = O

(
εα

(1 + |y − ξ′j|)3

)
. (4.54)

Define the norm
∥ϕ∥∞ = sup

y∈Ωε

|ϕ(y)|.
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Consider the problem of finding a function ϕ such that for certain scalars cij, it satisfies
−∆ϕ+ ε2ϕ−Wϕ = [Eλ +N(ϕ)] +

m∑
j=1

Jj∑
i=1

cijZijηj, in Ωε;

∂ϕ
∂ν

= 0, on ∂Ωε;∫
Ωε
ϕZijηj = 0, for i = 1, Jj, j = 1, . . . ,m,

(4.55)

where Jj = 2 if j = 1, . . . , k and Jj = 1 if j = k + 1, . . . ,m.

Equation (4.55) is solved in the following Proposition, whose proof is postponed to Section
4.4.

Proposition 4.5. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for
any points ξj, j = 1, . . . ,m, in Mδ, µj is given by (4.35), then problem (4.55) has a unique
solution ϕ which satisfies

∥ϕ∥∞ ≤ C

| log ε|2
,

for all λ < λ0. Moreover, if we consider the map ξ′ 7→ ϕ into the space C(Ω̄ε), the derivative
Dξ′ϕ exists and defines a continuous function of ξ′. Besides, there is a constant C > 0, such
that

∥Dξ′ϕ∥∞ ≤ C

| log ε|
. (4.56)

In order to find a solution to the original problem we need to find ξ′ such that

cij(ξ
′) = 0 for all i = 1, Jj, j = 1, . . . ,m. (4.57)

This problem is indeed variational: it is equivalent to finding critical points of a function of
ξ = εξ′. Associated to (4.1), let us consider the energy functional Jλ given by

Jpλ(u) =
1

2

∫
Ω

(|∇u|2 + u2) dx− λ

p

∫
Ω

eu
p

dx, (4.58)

and the finite-dimensional restriction

Fλ(ξ) = Jpλ

((
Uλ + ϕ̃

)
(x, ξ)

)
, (4.59)

where (
Uλ + ϕ̃

)
(x, ξ) = γ +

1

pγp−1

(
(Vλ + ϕ) (

x

ε
,
ξ

ε
)

)
with Vλ defined in (4.30), ϕ is the unique solution to problem (4.55) given by Proposition
4.5.

The next result, whose proof is postponed until Section 4.5.
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Proposition 4.6. (i) The functional Fλ(ξ) is of class C
1. Moreover, for all λ > 0 sufficiently

small, if DξFλ(ξ) = 0, then ξ satisfies (4.57).

(ii) Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for any points ξj,
j = 1, . . . ,m in Mδ, µj are given by (4.35), the following expansion holds

λ−1ε
2(2−p)

p Fλ(ξ) = −4π(2k + l)
2− p log 8

(2− p)p
− 8π

p
(2k + l) log ε

− 1

2(2− p)
φm(ξ) +O(| log ε|−1), (4.60)

where

φm(ξ) = φm(ξ1, . . . , ξm) =
m∑
j=1

c2jH(ξj, ξj) +
∑
l ̸=j

clcjG(ξl, ξj). (4.61)

Proof of Theorem 4.1: First, from the same argument as Lemma 6.1 in [41], we have that

min
∂Mδ

φm(ξ) → +∞, as δ → 0. (4.62)

We state it here for completeness. Let ξ = (ξ1, . . . , ξm) ∈ ∂Mδ. There are two possibilities:
either there exists j0 ≤ k such that d(ξj0 , ∂Ω) = δ, or exists i0 ̸= j0, |ξi0 − ξj0 | = δ.

In the first case, a consequence of the properties of the Green’s function is that for all ξ ∈ Ω

H(ξ, ξ) ≥ C
1

d(ξ, ∂Ω)
. (4.63)

In the second case, we may assume that there exists a fixed constant C such that d(ξi, ∂Ω) ≥
C, i = 1, . . . , k, as otherwise it follows into the first case. But then it is easy to see that

G(ξi, ξj) ≥ C
1

|ξi − ξj|
. (4.64)

Then by (4.63) and (4.64) we obtain (4.62).

From (i) of Proposition 4.6, the function(
Uλ + ϕ̃

)
(x, ξ) = γ +

1

pγp−1

(
(Vλ + ϕ) (

x

ε
,
ξ

ε
)

)
where Vλ defined by (4.30) and ϕ(ξ) is the unique solution of problem (4.55), is a solution of
problem (4.1) if we adjust ξ so that it is a critical point of Fλ(ξ) defined by (4.59). This is
equivalent to finding a critical point of

F̃λ(ξ) := aλ−1ε
2(2−p)

p Fλ(ξ) + b+ c log ε,
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for suitable constants a, b and c. On the other hand, from (ii) of Proposition 4.6, for ξ ∈ Mδ,
we have that,

F̃λ(ξ) = φm(ξ) +O(| log ε|−1)Θλ(ξ),

where φm is given by (4.61), and Θλ(ξ) is uniformly bounded in consider region as λ→ 0.

From (4.62), the function φm is C1, bounded from below in Mδ, we have that, for δ is

arbitrarily small, φm has an absolute minimum in Mδ. This implies that F̃λ also has an
absolute minimum (ξ∗1 , . . . , ξ

∗
m) ∈ Mδ such that

lim
λ→0

φm(ξ
∗
1 , . . . , ξ

∗
m) = min

Mδ

φm.

Moreover, while (4.9) holds as a direct consequence of the construction of Uλ, and (3) of
Theorem holds from (ii) of Proposition 4.6.

Remark 4.7. Using Ljusternik-Schnirelmann theory, one can get a second, distinct solution
satisfying Theorem 4.1. The proof is similar to [27].

4.4 The finite dimensional reduction

This section is devoted to the proof of Proposition 4.5. Given h ∈ L∞(Ωε), we first consider
the problem of finding a function ϕ such that for certain scalars cij, it satisfies

−∆ϕ+ ε2ϕ−Wϕ = h+
m∑
j=1

Jj∑
i=1

cijZijηj, in Ωε;

∂ϕ
∂ν

= 0, on ∂Ωε;∫
Ωε
ϕZijηj = 0, for i = 1, Jj, j = 1, . . . ,m.

(4.65)

First we show that the following result:

Proposition 4.8. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for
any points ξj, j = 1, . . . ,m, in Mδ, µj is given by (4.35), and h ∈ L∞(Ωε), there is a unique
solution ϕ := Tλ(h) to problem (4.65) for all λ ≤ λ0. Moreover,

∥ϕ∥∞ ≤ C

(
log

1

ε

)
∥h∥∗. (4.66)

The proof will be spit into a series of lemmas which we state and prove next.

Lemma 4.9. There exist constants R1 > 0, C > 0 such that for λ > 0 small enough and for

any points ξj ∈ Ω̄, j = 1, . . . ,m, in Mδ, set Ω̃ε = Ωε \
m∪
j=1

B(ξ′j, R1), we have

ψ : Ω̃ε → [1,∞)
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smooth and positive verifying

L(ψ) := −∆ψ + ε2ψ −Wψ ≥
m∑
j=1

1

|y − ξ′j|2+σ
+ ε2 in Ω̃ε,

with
∂ψ

∂ν
≥ 0 on ∂Ω̃ε, ψ > 0 in Ω̃ε.

Moreover ψ is bounded uniformly,

1 ≤ ψ ≤ C in Ω̃ε.

Proof. We take

ψ1j(r) = 1− 1

rσ
, where r = |y − ξ′j|. (4.67)

A direct computation shows that, we have

−∆ψ1j = σ2 1

r2+σ
.

If ξ′j ∈ Ωε, then we have
∂ψ1j

∂ν
= O(ε1+σ).

If ξ′j ∈ Ωε and |y − ξ′j| > R1, we have

∂ψ1j

∂ν
= σ

(y − ξ′j) · ν
r2+σ

.

We write the boundary ∂Ωε near point ξ
′
j as the graph {(y1, y2) : y2 = Gε(y1)} with Gε(y1) =

1
ε
G(εy1) and G a smooth function such that G(0) = 0 and G′(0) = 0. Fix δ > 0 small. Then

for R1 < r < δ/ε we have that r is comparable with y1, G
′
ε(y1) = O(εr) and Gε(y1) = O(εr2).

Then and G′(0) = 0. Then

∂ψ1j

∂ν
=

σ

r2+σ
1√

G′
ε(y1)

2 + 1
(−y1G′

ε(y1) +Gε(y1))

=
σ

r2+σ
1√

O(δ2) + 1
O(εr2)

= O(
ε

rσ
), ∀ R1 < r <

δ

ε
.

Hence, we obtain that
∂ψ1j

∂ν
= o(ε), on ∂Ωε.
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Next, let us define

ψ =
m∑
j=1

ψ1j + Cψ0,

where ψ0 is the solution of the following problem

−∆ψ0 + ε2ψ0 = ε2 in Ωε;
∂ψ0

∂ν
= ε on ∂Ωε.

It is directly checked that 4
σ2ψ satisfies the required condition.

Lemma 4.10. The operator L satisfies the maximum principle in Ω̃ε for R ≥ R1 large but
independent of λ, with R1 in Lemma 4.9. Namely, if L(ϕ) ≥ 0 in Ω̃ε and ϕ ≥ 0 on ∂Ω̃ε, then
ϕ ≥ 0 in Ω̃ε.

Proof. Given a > 0, we consider the function

Z(y) =
m∑
j=1

z0
(
a|y − ξ′j|

)
, y ∈ Ωε, (4.68)

where z0(r) =
r2−1
r2+1

is the radial solution in R2 of

∆z0 +
8

(1 + r2)2
z0 = 0.

First, we observe that, if |y − ξ′j| ≥ R for R > 1
a
, then Z(y) > 0. By the definition of z0 we

have

−∆Z(y) + ε2Z(y) =
m∑
j=1

(8a2 + ε2)(a2|y − ξ′j|2 − 1)

(1 + a2|y − ξ′j|2)3

≥
m∑
j=1

1

3

8a2 + ε2

(1 + a2|y − ξ′j|2)2

≥
m∑
j=1

1

3

8a2

(1 + a2|y − ξ′j|2)2
≥

m∑
j=1

4

27

8

a2|y − ξ′j|4

provided R >
√
2
a
. On the other hand, from (4.48), in the same region, we have

f ′(Vλ)Z(y) ≤ D0

m∑
j=1

ewjZ(y) ≤
m∑
j=1

C

|y − ξ′j|4
.

Hence if a is taken small and fixed, and R > 0 is chosen sufficiently large depending on this
a, then we have L(Z) > 0 in Ω̃ε. Thus the function Z(y) is what we are looking for.
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Let us fix such a number R > 0 which we may take large whenever it is needed. Define the
following inner norm of ϕ in the following way

∥ϕ∥i = sup
y∈∪m

j=1B(ξ′j ,R)

|ϕ(y)|.

Lemma 4.11. There exists a uniform constant C > 0 such that if L(ϕ) = h in Ωε, ϕ = 0 on
∂Ωε, then

∥ϕ∥∞ ≤ C[∥ϕ∥i + ∥h∥∗], (4.69)

for any h ∈ L∞(Ωε).

Proof. Define now the function

ϕ̃(y) = 2∥ϕ∥iZ(y) + ∥h∥∗ψ(y),

where Z is the function defined in (4.68), and the function ψ satisfying the properties of
lemma 4.9. First, observe that by the definition of Z, choosing R large if necessary,

ϕ̃(y) ≥ 2∥ϕ∥iZ(y) ≥ ∥ϕ∥i ≥ |ϕ(y)| for |y − ξ′j| = R,

and, by the positivity of Z(y) and ψ(y),

ϕ̃(y) ≥ 0 = ϕ(y) for y ∈ ∂Ωε.

Finally, by the definition of ∥ · ∥∗ we have that

|h(y)| ≤

(
m∑
j=1

(1 + |y − ξ′j|)−2−σ + ε2

)
∥h∥∗,

we then have

L(ϕ̃) = 2∥ϕ∥iL(Z) + ∥h∥∗L(ψ)

≥ ∥h∥∗

(
m∑
j=1

(1 + |y − ξ′j|)−2−σ + ε2

)
≥ |h(y)| ≥ L(ϕ)(y),

provided R large enough. Hence, from Lemma 4.10, we obtain that

|ϕ(y)| ≤ ϕ̃(y) for y ∈ Ω̃ε,

and, since Z(y) ≤ 1 and from lemma 4.9 we get

∥ϕ∥∞ ≤ C[∥ϕ∥i + ∥h∥∗].
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Next we prove uniform a priori estimates for the problem (4.65) when ϕ satisfies additionally
orthogonality under dilations. Specifically, we consider the problem

L(ϕ) = h, in Ωε;

∂ϕ
∂ν

= 0, on ∂Ωε;∫
Ωε
ϕZijηj = 0, for i = 0, . . . , Jj, j = 1, . . . ,m,

(4.70)

and prove the following estimate.

Lemma 4.12. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for any
points ξj, j = 1, . . . ,m, in Mδ, µj is given by (4.35), and h ∈ L∞(Ωε), and any solution ϕ
to problem (4.70), one has

∥ϕ∥∞ ≤ C∥h∥∗. (4.71)

Proof. We carry out the proof of lemma by a contradiction. If the result was false, then there
exist a sequence λn → 0, points ξnj , j = 1, . . . ,m in Mδ, function hn with ∥hn∥∗ → 0 and ϕn
with ∥ϕn∥∞ = 1,

L(ϕn) = hn, in Ωεn ;

∂ϕn
∂ν

= 0, on ∂Ωεn ;∫
Ωεn

ϕnZijηj = 0, for all i = 0, . . . , Jj, j = 1, . . . ,m.

(4.72)

Then from lemma 4.11, we see that ∥ϕn∥i stays away from zero. Up to a subsequence, for
one of the indices, say j, we can assume that there exists R > 0 such that,

sup
|y−(ξnj )

′|<R
|ϕn(y)| ≥ κ > 0 for all n.

Let us set ϕ̂n(z) = ϕn((ξ
n
j )

′ + z). Elliptic estimate allow us to assume that ϕ̂n converges

uniformly over compact subsets of R2 to a bounded, nonzero solution ϕ̂ of

∆ϕ+
8µ2

j

(µ2
j + |z|2)2

ϕ = 0.

This implies that ϕ̂ is a linear combination of the functions zij, i = 0, . . . , Jj. But or-

thogonality conditions over ϕ̂n pass to the limit thanks to ∥ϕ̂n∥∞ ≤ 1. By the dominated
convergence theorem then yields that

∫
R2 η(|z|)zijϕ̂ = 0 for i = 0, . . . , Jj, thus a contradiction

with lim infn→∞ ∥ϕn∥i > 0.

Now we establish a priori estimates for the problem (4.70) with the orthogonality condition∫
Ωε
ηjZ0jϕ = 0 dropped. We consider the problem

L(ϕ) = h, in Ωε;

∂ϕ
∂ν

= 0, on ∂Ωε;∫
Ωε
ηjZijϕ = 0, for i = 1, Jj, j = 1, . . . ,m,

(4.73)
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Lemma 4.13. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that for any
points ξj, j = 1, . . . ,m, in Mδ, µj is given by (4.35), and h ∈ L∞(Ωε), and any solution ϕ
to problem (4.73), one has

∥ϕ∥∞ ≤ C

(
log

1

ε

)
∥h∥∗, (4.74)

for all λ < λ0.

Proof. Let ϕ satisfies (4.73). We modify ϕ to ϕ̃, such that ϕ̃ satisfies all orthogonality
condition. For this, let us set R > R0 + 1 large and fixed. Set

a0j =
1

µj

(
4
cj
log 1

εR
+H(ξj, ξj)

) .
Define

Ẑ0j(y) = Z0j(y)−
1

µj
+ a0jG(ξj, εy).

We note that the function Ẑ0j satisfies the Neumann boundary condition. Let χ be a radial
smooth cut-off function on R2 so that 0 ≤ χ ≤ 1, |∇χ| ≤ C in R2, χ ≡ 1 in BR(0) and χ ≡ 0
in R2\BR+1(0). Set

χj(y) = χ(|y − ξ′j|) for j = 1, . . . , k; χj(y) = χ(F ε
j (y)) for j = k + 1, . . . ,m. (4.75)

Now, we define
Z̃0j = χjZ0j + (1− χj)Ẑ0j.

Given ϕ satisfying (4.73), we set

ϕ̃ = ϕ+
m∑
j=1

djZ̃0j, where dj = −
∫
Ωε
ηjZ0jϕ∫

Ωε
Z2

0jηj
.

Therefore, our result is a direct consequence of the following claim.

Claim:

|dj| ≤ C| log ε|∥h∥∗ ∀ j = 1, . . . ,m. (4.76)

First, using the notation L = −∆+ ε2I −W , we observe that ϕ̃ satisfiesL(ϕ̃) = h+
m∑
j=1

djL(Z̃0j), in Ωε;

∂ϕ̃
∂ν

= 0, on ∂Ωε,

(4.77)
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Thus by Lemma 4.12, we have

∥ϕ̃∥L∞(Ωε) ≤ C

m∑
j=1

|dj|∥L(Z̃0j)∥∗ + C∥h∥∗. (4.78)

Multiplying the first equation in (4.77) by Z̃0s, for s = 1, . . . ,m, integrating by parts and
using the second equation in (4.77), we find

m∑
j=1

dj

∫
Ωε

L(Z̃0j)Z̃0s ≤ C∥h∥∗

(
1 +

m∑
j=1

∥L(Z̃0j)∥∗

)

+C
m∑
j=1

|dj|∥L(Z̃0j)∥2∗. (4.79)

Next we estimate the size of ∥L(Z̃0j)∥∗. From (4.54), we have

L(Ẑ0j) = ewjZ0j −WẐ0j +O(ε(1 + |y − ξ′j|)3)

= ewj

(
1

µj
− a0jG(ξj, εy)

)
+O(ε(1 + |y − ξ′j|)3).

Thus, we have

∥(1− χj)L(Ẑ0j)∥∗ ≤
C

log(1/ε)
,

where C is a constant, which depends on the chosen large constant R. Hence

L(Z̃0j) = χjL(Z0j) + (1− χj)L(Ẑ0j) + 2∇χj∇(Z0j − (̂Z)0j) + ∆χj(Z0j − Ẑ0j)

= O(ε2+α) + (1− χj)e
wj

(
1

µj
− a0jG(ξj, εy)

)
+2∇χj∇(Z0j − (̂Z)0j) + ∆χj(Z0j − Ẑ0j). (4.80)

Since, for r = |y − ξ′j| ∈ (R,R + 1), we have

Ẑ0j − Z0j = a0jG(ξj, εy)−
1

µj

= a0j

(
4

cj
log

1

ε|y − ξ′j|
+H(ξj, εy)

)
− 1

µj
.

Therefore, for r = |y − ξ′j| ∈ (R,R + 1), we have

Ẑ0j − Z0j =
C

log(1/ε)
log

1

r
+O

(
εα

log(1/ε)

)
, (4.81)

and

∇(Ẑ0j − Z0j) = − C

log(1/ε)

1

r
+O

(
εα

log(1/ε)

)
. (4.82)
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From (4.80), (4.81) and (4.82) we obtain

∥L(Z̃0j)∥∗ ≤
C

log(1/ε)
. (4.83)

Now we estimate the left term of (4.79). From (4.80), we see that for j ̸= s,∫
Ωε

L(Z̃0j)Z̃0s = O(εα) +

∫
Ωε

O

(
1

log(1/ε)
(|∇χj|+ |∆χj|)

)
Z̃0s

= O

((
1

log(1/ε)

)2
)
.

Moreover, for j = s, we have ∫
Ωε

L(Z̃0s)Z̃0s = I1 + I2 +O(ε),

where

I2 =

∫
Ωε

O(ε2+α) + (1− χs)e
wj

(
1

µs
− a0sG(ξj, εy)

)
= O(εα) +O

(
1

log(1/ε)

)
and

I1 =

∫
Ωε

[
2∇χs∇(Z0s − Ẑ0s) + ∆χs(Z0s − Ẑ0s)

]
Z̃0s

=

∫
Ωε

∇χs∇(Z0s − Ẑ0s)Ẑ0s −
∫
Ωε

∇χs(Z0s − Ẑ0s)∇Ẑ0s +O(ε).

We observe that in the consider region, r ∈ (R,R+1) with r = |y− ξ′j|, |Z0s− Ẑ0s| ≤ C
log(1/ε)

while |∇Z ′
0s| ≤ 1

R3 +
C

log(1/ε)
. Thus∣∣∣∣∫
Ωε

∇χs∇(Z0s − Ẑ0s)Ẑ0s

∣∣∣∣ ≤ D

R3

1

log(1/ε)
,

where D may be chosen independent on R. Now we have∫
Ωε

∇χs(Z0s − Ẑ0s)∇Ẑ0s = − E

log(1/ε)

[
1 +O

(
1

R

)]
where E may be chosen independent on ε. Thus we choose R large enough, we then have
I1 ∼ − E

log(1/ε)
. Therefore, we have∫

Ωε

L(Z̃0s)Z̃0s = − E

log(1/ε)

[
1 +O

(
1

R

)]
,
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and ∫
Ωε

L(Z̃0j)Z̃0s = O

(
1

R

1

log(1/ε)

)
for j ̸= s.

Thus, we obtain that (4.76) holds. This finishes the proof of Lemma.

Proof of Proposition 4.8 We first establish the validity of the a priori estimate (4.66).
The previous lemma yields

∥ϕ∥∞ ≤ C

(
log

1

ε

)∥h∥∗ + Jj∑
i=1

m∑
j=1

|cij|

 . (4.84)

Let χj be a smooth cut-off function defined as (4.75). We multiply the first equation of (4.65)
by Zijχj, we find

⟨L(ϕ), Zijχj⟩ = ⟨h, Zijχj⟩+ cij

∫
Ωε

ηjχj|Zij|2. (4.85)

We have
−L(Zijχj) = ∆χjZij + 2∇Zij∇χj + εO((1 + r)−3),

with r = |y − ξ′j|. Since ∆χj = O(ε2), ∇χj = O(ε), and Zij = O(r−1), ∇Zij = O(r−2), we
get

−L(Zijχj) = O(ε3)εO((1 + r)−3).

Then we have
|⟨L(ϕ), Zijχj⟩| = |⟨ϕ, L(Zijχj)⟩| ≤ Cε∥ϕ∥∞.

Combining this with (4.84) and (4.85) we find

|cij| ≤ C

[
∥h∥∗ + ε

(
log

1

ε

)∑
a,b

|cab|

]
.

Then, |cij| ≤ C∥h∥∗. Combining this with (4.84) we obtain the estimate (4.66) holds.

Next prove the solvability of problem (4.65). To this purpose we consider the space

H =

{
ϕ ∈ H1(Ωε) :

∫
Ωε

ϕZijηj = 0 for i = 1, Jj, j = 1, 2, . . . ,m

}
,

endowed with the usual inner product ⟨ϕ, ψ⟩ =
∫
Ωε
(∇ϕ∇ψ+ε2ϕψ). Problem (4.65), expressed

in a weak form, is equivalent to find ϕ ∈ H such that

⟨ϕ, ψ⟩ =
∫
Ωε

(Wϕ+ h)ψ dx, for all ψ ∈ H,
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With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the
operator form

(Id−K)ϕ = h̃, (4.86)

for certain h̃ ∈ H, where K is a compact operator in H. The homogeneous equation ϕ = Kϕ
in H, which is equivalent to (4.65) with h ≡ 0, has only the trivial solution in view of the
a priori estimate (4.66). Now, Fredholm’s alternative guarantees unique solvability of (4.86)
for any h̃ ∈ H. This finishes the proof.

The result of Proposition 4.8 implies that the unique solution ϕ = Tλ(h) of (4.65) defines a
continuous linear map form the Banach space C∗ of all functions h in L∞ for which ∥h∥∗ <∞
into L∞, with norm bounded uniformly in λ.

Lemma 4.14. The operator Tλ is differentiable with respect to the variable ξa in Ω̄ with
ξ ∈ Mδ, one has the estimate

∥∂(ξ′a)bTλ(h)∥∞ ≤ C

(
log

1

ε

)2

∥h∥∗ for b = 1, Jj, a = 1, 2, . . . ,m. (4.87)

Proof. Differentiating equation (4.65), formally Z := ∂(ξ′a)bϕ should satisfy

L(Z) = −∂(ξ′a)bWϕ+

Jj∑
i=1

cia∂(ξ′a)b (ηaZia) +

Jj∑
i=1

m∑
j=1

dijZijηj

with dij = ∂(ξ′a)bcij, and the orthogonality conditions now become∫
Ωε

ZijηjZ = −
∫
Ωε

∂(ξ′a)b (Zijηj)ϕ.

We consider the constants bia defined as

bia

∫
Ωε

ηaZ
2
ia =

∫
Ωε

∂(ξ′a)b (Ziaηa)ϕ.

Define

Z̃ = Z +

Jj∑
i=1

biaηaZia,

and

g = −∂(ξ′a)bWϕ+

Jj∑
i=1

cia∂(ξ′a)b (Ziaη2a) +

Jj∑
i=1

biaL(η2aZia).

We then have
L(Z̃) = g +

Jj∑
i=1

m∑
j=1

biaηaZia, in Ωε;

Z̃ = 0, on ∂Ωε;∫
Ωε
ZiaηaZ̃ = 0, for i = 0, . . . , Jj, a = 1, . . . ,m.
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Furthermore, Z̃ = Tλ(g). Using the result of Proposition 4.8 we find that

∥g∥∗ ≤ C

(
log

1

ε

)
∥h∥∗,

hence,

∥∂(ξ′a)bTλ(h)∥∞ ≤ C

(
log

1

ε

)2

∥h∥∗ for b = 1, Jj, a = 1, 2, . . . ,m.

Next, we will prove Proposition 4.5.

Proof of Proposition 4.5 In terms of the operator Tλ defined in Proposition 4.5, problem
(4.55) becomes

ϕ = Tλ(N(ϕ) + Eλ) := A(ϕ). (4.88)

For a given number M > 0 let us consider the region

FM :=

{
ϕ : ∥ϕ∥∞ ≤ M

| log ε|2

}
.

From Proposition 4.8, we get

∥A(ϕ)∥∞ ≤ C| log ε| [∥N(ϕ)∥∗ + ∥Eλ∥∗] .

From Lemma 4.4, we have ∥Eλ∥∗ ≤ C
| log ε|3 . And, by the definition of N(ϕ) in (4.40), and

from (4.50) then we have
∥N(ϕ)∥∗ ≤ C∥ϕ∥2∞

Thus

∥A(ϕ)∥∞ ≤ C| log ε|
(
C∥ϕ∥2∞ +

1

| log ε|3

)
.

We then get that A(FM) ⊂ FM for a sufficiently large but fixedM and all small λ. Moreover,
for any ϕ1, ϕ2 ∈ FM , one has

∥N(ϕ1)−N(ϕ2)∥∗ ≤ C

(
max
i=1,2

∥ϕi∥∞
)
∥ϕ1 − ϕ2∥∞.

In fact,
N(ϕ1)−N(ϕ2) = f(Vλ + ϕ1)− f(Vλ + ϕ2)− f ′(Vλ)(ϕ1 − ϕ2)

=

∫ 1

0

(
d

dt
f(Vλ + ϕ2 + t(ϕ1 − ϕ2)

)
dt− f ′(Vλ)(ϕ1 − ϕ2)
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=

∫ 1

0

(f ′(Vλ + ϕ2 + t(ϕ1 − ϕ2)− f ′(Vλ)) dt (ϕ1 − ϕ2).

Thus, for a certain t∗ ∈ (0, 1), and s ∈ (0, 1)

|N(ϕ1)−N(ϕ2)| ≤ C|f ′(Vλ + ϕ2 + t∗(ϕ1 − ϕ2)− f ′(Vλ)|∥ϕ1 − ϕ2∥∞
≤ C|f ′′(Vλ + sϕ2 + t∗(ϕ1 − ϕ2))|(∥ϕ1∥∞ + ∥ϕ2∥∞)∥ϕ1 − ϕ2∥∞.

Thanks to (4.50) and the fact that ∥ϕ1∥∞, ∥ϕ2∥∞ → 0 as λ→ 0, we conclude that

∥N(ϕ1)−N(ϕ2)∥∗ ≤ C∥f ′′(Vλ)∥∗(∥ϕ1∥∞ + ∥ϕ2∥∞)∥ϕ1 − ϕ2∥∞
≤ C(∥ϕ1∥∞ + ∥ϕ2∥∞)∥ϕ1 − ϕ2∥∞.

Then we have

∥A(ϕ1)− A(ϕ2)∥∞ ≤ C| log ε|∥N(ϕ1)−N(ϕ2)∥∗

≤ C| log ε|
(
max
i=1,2

∥ϕi∥∞
)
∥ϕ1 − ϕ2∥∞.

Thus the operator A has a small Lipschitz constant in FM for all small λ, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map ξ′ = (ξ′1, . . . , ξ
′
m) 7→ ϕ. Assume for

instance that the partial derivative ∂(ξ′j)iϕ exists for i = 1, Jj. Since ϕ = Tλ (N(ϕ) + Eλ),
formally that

∂(ξ′j)iϕ = (∂(ξ′j)iTλ) (N(ϕ) + Eλ) + Tλ

(
∂(ξ′j)iN(ϕ) + ∂(ξ′j)iEλ

)
.

From Lemma 4.14, we have

∥∂(ξ′j)iTλ (N(ϕ) + Eλ) ∥∞ ≤ C| log ε|2∥N(ϕ) + Eλ∥∗ ≤ C
1

| log ε|
.

On the other hand,

∂(ξ′j)iN(ϕ) = [f ′(Vλ + ϕ)− f ′(Vλ)− f
′′
(Vλ)ϕ]∂(ξ′j)iVλ + ∂(ξ′j)i [f

′(Vλ)− ewj ]ϕ

+[f ′(Vλ + ϕ)− f ′(Vλ)]∂(ξ′j)iϕ+ [f ′(Vλ)− ewj ]∂(ξ′j)iϕ.

Then,

∥∂(ξ′j)iN(ϕ)∥∗ ≤ C

{
∥ϕ∥2∞ +

1

| log ε|
∥ϕ∥∞ + ∥∂(ξ′j)iϕ∥∞∥ϕ∥∞ +

1

| log ε|
∥∂(ξ′j)iϕ∥∞

}
.

Since ∥∂(ξj)iEλ∥∗ ≤ C
| log ε|3 , and by Proposition 4.8 we then have

∥∂(ξ′j)iϕ∥∞ ≤ C

| log ε|
,

for all i = 1, Jj, j = 1, . . . ,m. Then, the regularity of the map ξ′ 7→ ϕ can be proved by stan-
dard arguments involving the implicit function theorem and the fixed point representation
(4.88). This concludes proof of Proposition 4.5.
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4.5 Variational reduction

In this Section, we prove Proposition 4.6.

Proof of (i) of Proposition 4.6 A direct consequence of the results obtained in Proposition
4.5 and the definition of function Uλ is the fact the map ξ 7→ Fλ(ξ) is of class C

1.

Define

Iλ(v) =
1

2

∫
Ωε

(
|∇v|2 + ε2v2

)
dy −

∫
Ωε

eγ
p[(1+ v

pγp
)p−1] dy. (4.89)

Let us differentiate the function Fλ(ξ) with the respect to ξ. Since

Jpλ

((
Uλ + ϕ̃

)
(x, ξ)

)
=

1

p2γ2(p−1)
Iλ

(
(Vλ + ϕ) (

x

ε
,
ξ

ε
)

)
, (4.90)

we can differentiate directly Iλ (Vλ(ξ) + ϕ(ξ)) under the integral sign, for a ∈ {1, . . . ,m} and
b ∈ {1, Jj}, so that

∂(ξa)bFλ(ξ)

=
1

p2γ2(p−1)
ε−1DIλ (Vλ(ξ) + ϕ(ξ))

[
∂(ξ′a)bVλ(ξ) + ∂(ξ′a)bϕ(ξ)

]
=

1

p2γ2(p−1)
ε−1

Jj∑
i=1

m∑
j=1

∫
Ωε

cijηjZij
[
∂(ξ′a)bVλ(ξ) + ∂(ξ′a)bϕ(ξ)

]
=

1

p2γ2(p−1)
ε−1

 Jj∑
i=1

m∑
j=1

∫
Ωε

cijηjZij∂(ξ′a)bVλ(ξ) +

Jj∑
i=1

m∑
j=1

∫
Ωε

cij∂(ξ′a)b (ηjZij)ϕ(ξ)

 ,
since

∫
Ωε
ηjZijϕ(ξ) = 0. By the expansion of Vλ, we have

∂(ξ′a)bVλ = ∂(ξ′a)bwa(y) +
p− 1

p

1

γp
∂(ξ′a)bw0a(y)

+

(
p− 1

p

)2
1

γ2p
∂(ξ′a)bw1m(y) + ∂(ξ′a)bθ(y)

= −Zba +
p− 1

p

1

γp
∂(ξ′a)bw0a(y) +

(
p− 1

p

)2
1

γ2p
∂(ξ′m)lw1a(y) + ∂(ξ′a)bθ(y).

Moreover, ∫
Ωε

cij∂(ξ′a)b (ηjZij)ϕ(ξ) = o(1)

∫
Ωε

cijηjZij∂(ξ′a)b (Vλ)

Then, if DξFλ(ξ) = 0, for i, b = 1, Jj; j, a = 1, . . . ,m, we then have

Jj∑
i=1

m∑
j=1

cij

∫
Ωε

ηjZij(Zba + o(1)) = 0. (4.91)
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This is a strictly diagonal dominant system. It implies that cij = 0 for i = 1, Jj; j = 1, . . . ,m.
This concludes the proof of (i) of Proposition 4.6.

Proof of (ii) of Proposition 4.6 We have

Fλ(ξ) = Jpλ

(
Uλ(ξ) + ϕ̃(ξ)

)
=

1

2

∫
Ω

[
|∇
(
Uλ + ϕ̃

)
|2 +

(
Uλ + ϕ̃

)2]
− λ

p

∫
Ω

e(Uλ+ϕ̃)
p

.

From (4.90) we have that

Jpλ

(
Uλ(ξ) + ϕ̃(ξ)

)
− Jpλ (Uλ(ξ)) =

1

p2γ2(p−1)
[Iλ(Vλ + ϕ)− Iλ(Vλ)] .

Since by construction I ′λ(Vλ + ϕ)[ϕ] = 0, we have

Jpλ

(
Uλ(ξ) + ϕ̃(ξ)

)
− Jpλ (Uλ(ξ))

=
1

p2γ2(p−1)

∫ 1

0

D2Iλ(Vλ + tϕ)ϕ2(1− t) dt

=
1

p2γ2(p−1)

∫ 1

0

[∫
Ωε

(Eλ +N(ϕ))ϕ+

∫
Ωε

[f ′(Vλ)− f ′(Vλ + tϕ)]ϕ2

]
(1− t) dt

Since ∥Eλ∥∗ ≤ C
| log ε|3 , ∥ϕ∥∞ ≤ C

| log ε|2 , ∥N(ϕ)∥∗ ≤ C
| log ε|4 and (4.50), we get that∣∣∣Jpλ (Uλ(ξ) + ϕ̃(ξ)

)
− Jpλ (Uλ(ξ))

∣∣∣ ≤ C

γ2(p−1)| log ε|3
(4.92)

Next we expand

Jpλ (Uλ(ξ)) =
1

2

∫
Ω

[
|∇ (Uλ(ξ)) |2 + Uλ(ξ)

2
]
− λ

p

∫
Ω

e(Uλ(ξ))
p

. (4.93)

Now we write

Uj(x) := uj(x) +Hj(x), U0j := w0j(x) +H0j(x), U1j := w1j(x) +H1j(x).

By (4.26),

Uλ(x) =
1

pγp−1

m∑
j=1

(
Uj(x) +

p− 1

p

1

γp
U0j(x) +

(
p− 1

p

)2
1

γ2p
U1j(x)

)
.

We have

1

2

∫
Ω

[
|∇ (Uλ(ξ)) |2 + Uλ(ξ)

2
]
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=
1

p2γ2(p−1)

{
1

2

m∑
j=1

∫
Ω

(|∇Uj|2 + U2
j ) +

∑
l ̸=j

∫
Ω

(∇Ul∇Uj + UlUj)

+
p− 1

p

1

γp

m∑
j=1

∫
Ω

(∇Uj∇U0j + UjU0j) +

(
p− 1

p

)2
1

γ2p

m∑
j=1

∫
Ω

(∇Uj∇U1j + UjU1j)

+

(
p− 1

p

)2
1

γ2p

[
1

2

m∑
j=1

∫
Ω

(|∇U0j|2 + U2
0j) +

∑
l ̸=j

∫
Ω

(∇U0l∇U0j + U0lU0j)

]

+

(
p− 1

p

)3
1

γ3p

m∑
j=1

∫
Ω

(∇U0j∇U1j + U0jU1j)

+

(
p− 1

p

)4
1

γ4p

[
1

2

m∑
j=1

∫
Ω

(|∇U1j|2 + U2
1j) +

∑
l ̸=j

∫
Ω

(∇U1l∇U1j + U1lU1j)

]}
. (4.94)

Let us estimate the first two terms. We observe that the remaining terms are O( 1
γ2(p−1)γp

).
First, we note that Uj satisfies

−∆Uj + Uj = ε2euj , in Ω,
∂Uj
∂ν

= 0 on ∂Ω.

Then we have∫
Ω

(|∇Uj(x)|2 + Uj(x)
2) dx

= ε2
∫
Ω

eujUj(x) = ε2
∫
Ω

euj(uj(x) +Hj(x))

= ε2
∫
Ω

8µ2
j

(ε2µ2
j + |x− ξj|2)2

(
log

8µ2
j

(ε2µ2
j + |x− ξj|2)2

+ cjH(x, ξj)− log(8µ2
j) +O(εα)

)
= ε2

∫
Ω

8µ2
j

(ε2µ2
j + |x− ξj|2)2

(
log

1

(ε2µ2
j + |x− ξj|2)2

+ cjH(x, ξj) +O(εα)

)
=

∫
Ωεµj

8

(1 + |y|2)2

(
log

1

(1 + |y|2)2
+ cjH(ξj + εµjy, ξj)− 4 log(εµj)

)
+O(εα)

=

∫
Ωεµj

8

(1 + |y|2)2
log

1

(1 + |y|2)2
+ cj

∫
Ωεµj

8

(1 + |y|2)2
(H(ξj + εµjy, ξj)−H(ξj, ξj))

+cj

∫
Ωεµj

8

(1 + |y|2)2
H(ξj, ξj)− 4 log(εµj)

∫
Ωεµj

8

(1 + |y|2)2
+O(εα). (4.95)

But ∫
Ωεµj

8

(1 + |y|2)2
= cj +O(ε), (4.96)

∫
Ωεµj

8

(1 + |y|2)2
log

1

(1 + |y|2)2
= −2cj +O(εα). (4.97)
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Moreover, for 0 < α < 1, ∫
Ωεµj

8

(1 + |y|2)2
(H(ξj + εµjy, ξj)−H(ξj, ξj))

=

∫
Ωεµj

1

(1 + |y|2)2
O (εα|y|α) = O(εα). (4.98)

Therefore from (4.95)-(4.98), we have∫
Ω

(|∇Uj(x)|2 + Uj(x)
2) dx

= −2cj + c2jH(ξj, ξj)− 4cj log ε− 4cj log µj +O(εα)

= −2cj + c2jH(ξj, ξj)− 4cj log ε− 2cj log(8µ
2
j) + 2cj log(8) +O(εα). (4.99)

Now, we calculate that∑
l ̸=j

∫
Ω

(∇Ul∇Uj + UlUj) dx

= ε2
∑
l ̸=j

∫
Ω

eulUj = ε2
∑
l ̸=j

∫
Ω

eul(uj +Hj) dx

= ε2
∑
l ̸=j

∫
Ω

8µ2
l

(ε2µ2
l + |x− ξl|2)2

(
log

8µ2
j

(ε2µ2
j + |x− ξj|2)2

+ cjH(x, ξj)− log(8µ2
j) +O(εα)

)
= ε2

∑
l ̸=j

∫
Ω

8µ2
l

(ε2µ2
l + |x− ξl|2)2

(
log

1

(ε2µ2
j + |x− ξj|2)2

+ cjH(x, ξj) +O(εα)

)
=

∑
l ̸=j

∫
Ωεµl

8

(1 + |y|2)2

(
log

1

(ε2µ2
j + |εµly + ξl − ξj|2)2

+ cjH(ξl + εµly, ξj)

)
+O(εα)

=
∑
l ̸=j

∫
Ωεµl

8

(1 + |y|2)2
cjG(ξl, ξj) +O(εα)

=
∑
l ̸=j

clcjG(ξl, ξj) +O(εα). (4.100)

Thus, from (4.94), (4.99) and (4.100) we have

1

2

∫
Ω

(|∇Uλ(x)|2 + Uλ(x)
2) dx

=
1

p2γ2(p−1)

{
−4π(2k + l)

p

2− p
(1− log 8)− 8π(2k + l) log ε

− p

2(2− p)

m∑
j=1

[
c2jH(ξj, ξj) +

∑
l ̸=j

clcjG(ξl, ξj)

]
+O(| log ε|−1)

}
. (4.101)

109



CHAPTER 4. MIXED INTERIOR AND BOUNDARY BUBBLING SOLUTIONS
FOR NEUMANN PROBLEM IN R2

Finally, let us evaluate the second term in the energy

λ

p

∫
Ω

e(Uλ)
p

dx =
λ

p

∫
Ω

eγ
p(1+ 1

pγp
(Vλ)(

x
ε
))

p

dx

=
λ

p

k∑
j=1

∫
B(ξj ,δ̃)

eγ
p(1+ 1

pγp
(Vλ)(

x
ε
))

p

dx

+
λ

p

∫
Ω\

k∪
j=1

B(ξj ,δ̃)

eγ
p(1+ 1

pγp
(Vλ)(

x
ε
))

p

dx

:= I + II. (4.102)

First we observe that

II = λΘλ(ξ) (4.103)

with Θλ(ξ) a function, uniformly bounded, as λ→ 0. On the other hand,

I =
1

p2γ2(p−1)

m∑
j=1

∫
B(ξ′j ,δ̃/ε)

eγ
p[(1+ 1

pγp
(Vλ)(y))

p
−1] dy

=
1

p2γ2(p−1)

m∑
j=1

∫
B(ξ′j ,δ̃/ε)

e

{
wj(y)+

p−1
p

1
γp
w0j(y)+( p−1

p )
2 1
γ2p

w1j(y)+θ(y)
}
(1 +O(

1

γp
))dy

=
1

p2γ2(p−1)

m∑
j=1

∫
B(0, δ̃

µjε
)

8

(1 + |y|2)2

(
1 +O(

1

γp
)

)
dy

=
1

p2γ2(p−1)
4π(2k + l)

(
1 + | log ε|−1Θλ(ξ)

)
, (4.104)

with Θλ(ξ) a function, uniformly bounded, as λ→ 0. From (4.102)-(4.104) we get

λ

p

∫
Ω

e(Uλ)
p

dx =
1

p2γ2(p−1)
4π(2k + l)

(
1 + | log ε|−1Θλ(ξ)

)
. (4.105)

Thus from (4.92), (4.93), (4.101) and (4.105), we obtain that

Fλ(ξ) =
1

p2γ2(p−1)

{
−4π(2k + l)

2− p log 8

2− p
− 8π(2k + l) log ε

− p

2(2− p)

m∑
j=1

c2jH(ξj, ξj) +
∑
l ̸=j

clcjG(ξl, ξj) +O(| log ε|−1)

}
,

which implies (4.60) by (4.8). This concludes the proof of Proposition 4.6.
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Chapter 5

Bubbling solutions for elliptic
equation with exponential Neumann
data in R2

1

5.1 Introduction

Consider the following boundary value problem{
−∆u+ u = 0 in Ω;

∂u
∂ν

= λup−1eu
p

on ∂Ω,
(5.1)

where Ω is a bounded domain in R2 with smooth boundary, ν is the outer normal vector of
∂Ω, λ > 0 is a small parameter and 0 < p < 2.

In [27], Dávila-del Pino-Musso have analyzed the asymptotic behavior of solution to problem
(5.1) when p = 1. Namely, they considered the following problem{

−∆u+ u = 0 in Ω;

∂u
∂ν

= λeu on ∂Ω.
(5.2)

Suppose that uλ is a family solution of (5.2), with the property λ
∫
∂Ω
euλ bounded, then there

1The main result of this chapter was worked with Monica Musso, to appear in Annali Scuola Normale
Superiore di Pisa, DOI Number: 10.2422/2036-2145.201204−007.
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is an integer k ≥ 1, up to subsequences, such that

lim
λ→0

λ

∫
∂Ω

euλ = 2kπ. (5.3)

Moreover, there are k distinct points ξj, j = 1, . . . , k, on the boundary of Ω, such that λeuλ

approaches the sum of k Dirac masses at these points ξj. The location of points can be
characterized as critical points of a functional of k points of the boundary given by

φk(ξ1, . . . , ξk) = −

[
k∑
j=1

H(ξj, ξj) +
∑
l ̸=j

G(ξl, ξj)

]
, (5.4)

where G(x, y) is Green’s function of the problem{
−∆xG(x, y) +G(x, y) = 0 x ∈ Ω;

∂G(x,y)
∂νx

= 2πδy(x) x ∈ ∂Ω,
(5.5)

and H its regular part

H(x, y) = G(x, y)− 2 log
1

|x− y|
. (5.6)

The authors in [27] also described the existence of solution with above properties. More
precisely, if ∂Ω has more than one component, they showed that the function φk has topo-
logically nontrivial critical point (ξ1, . . . , ξk), then there is a family solution to problem (5.2)
with peaks at these points.

In this chapter, we will consider the existence of solution to (5.1) when 0 < p < 2. This
problem is the Euler-Lagrange equation for the functional Jλ : H

1(Ω) → R defined as

Jλ(u) =
1

2

∫
Ω

(
|∇u|2 + u2

)
− λ

p

∫
∂Ω

eu
p

.

By Young’s and Hödler inequalities, we know that Jλ corresponds to the critical Trudinger-
Moser trace embedding

H1(Ω) ∋ u 7→ eu
2 ∈ Lr(∂Ω) ∀ r ≥ 1,

which is connected to the following critical Trudinger-Moser trace inequalities

Sα := sup

{∫
∂Ω

eαu
2

: u ∈ H1(Ω)\{0}, ∥u∥H1 ≤ 1,

∫
∂Ω

u = 0

}
<∞ (5.7)

for any α ≤ π, see [6]. By multiplying a suitable test function, we can find that smallness
of λ is necessary for the existence of a solution. From (5.7), there is a minimizer solution
near zero. On the other hand, there is a second solution exists for (5.1) by Mountain Pass
Theorem.

In this chapter, we will establish the existence of solution to (5.1) by Lyapunov-Schmidt
reduction procedure. In order to state our result, let us first introduce the following definition.
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Definition 5.1. We say that ξ is a C0-stable critical point of φ : M → R if for any sequence
of function φn : M → R such that φn → φ uniformly on compact sets of M, φn has a critical
point ξn such that φn(ξ

n) → φ(ξ).

In particular, if ξ is a strict local minimum or maximum point of φ, then ξ is C0-stable
critical point.

Let ε be a parameter, which depends on λ, satisfies,

pλ

(
−2

p
log ε

) 2(p−1)
p

ε
p−2
p = 1. (5.8)

Observe that, as λ→ 0, then ε→ 0, and ε = λ if p = 1.

Our result states as follows.

Theorem 5.2. For 0 < p < 2, let k ≥ 1, assume that φk defined by (5.4) has a C0-stable
critical point ξ∗ = (ξ∗1 , . . . , ξ

∗
k) ∈ (∂Ω)k with

|ξ∗l − ξ∗j | > δ, for l ̸= j,

for some small but fixed number δ > 0. Then the problem (5.1) has a family solutions uλ for
λ small enough, such that

lim
λ→0

ε
2−p
p

∫
∂Ω

eu
p
λ = 2kπ, (5.9)

where ε satisfies (5.8). Moreover, for λ→ 0

∇φk(ξ∗1 , . . . , ξ∗k) = 0,

and

uλ(x) = p−
1
2

√
λ ε

p−2
2p

[
k∑
j=1

G(x, ξ∗j ) + o(1)

]
(5.10)

where o(1) → 0 on each compact subset of Ω̄\{ξ∗1 , . . . , ξ∗k}. Furthermore

Jλ(uλ) = λε
p−2
p

[
−2kπ

p
+

2kπ

p
log

1

ε
+

π

2− p
φk(ξ) +O(| log ε|−1)

]
(5.11)

where O(1) uniformly bounded as λ→ 0.

The proof of our result relies on a very well known Lyapunov-Schmidt reduction procedure,
introduced in [9, 52] and used in many different contexts, see for instance [19, 27, 29, 36, 39,
46, 47, 48, 49, 93]. We use Lyapunov-Schmidt reduction method to reduce the problem
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to a finite dimensional one, with some reduced energy. Then, the solutions in Theorem turn
out to be generated by critical points of the reduced energy functionals. The key step is to
find the ansatz for the solution. Usually, the ansatz is built as a sum of terms, which turns
out to be solutions of the associate limit problem, which are properly scaled and translated.
For our problem, let us introduce the following limit problem

∆v = 0 in R2
+;

∂v
∂ν

= ev on ∂R2
+;∫

∂R2
+
ev <∞.

(5.12)

A family solutions to (5.12) is given by

wt,µ(x) = wt,µ(x1, x2) = log
2µ

(x1 − t)2 + (x2 + µ)2
, (5.13)

where t ∈ R and µ > 0 are parameters. Set

wµ(x) := w0,µ(x) = log
2µ

x21 + (x2 + µ)2
. (5.14)

If we use above solution, properly scaled, and centered at several points on the boundary of
domain as our approximate solution, we get a very good approximation of a solution in a
region far away from the points, which unfortunately turns out to be not good enough close
to these points. Thus we need to improve the approximation, at least near the points, and
we do this adding two other terms in the expansion of the solution. This can be done in a
very natural way, which has first been used, for instance, in [47] for studying the following
problem {

∆u+ up = 0, u > 0 in Ω;

u = 0 on ∂Ω,
(5.15)

where Ω is a smooth bounded domain in R2, and p is a large exponent. Later on, this method
has been applied in other contexts, see [19, 48, 49, 93]. In particular, H. Castro in [19] used
this method to study the following Neumann problem{

−∆u+ u = 0, u > 0 in Ω;

∂u
∂ν

= up on ∂Ω,
(5.16)

where Ω is a bounded domain in R2 with smooth boundary ∂Ω, ν is the outer normal vector
to ∂Ω and p is a large exponent. They showed that, if p > 1 is a large parameter, for any
integer k ≥ 1, there exists at least two families of solution up, which developing exactly k

peaks ξj ∈ ∂Ω, and in the sense that pupp ⇀ 2eπ
∑k

j=1 δξj as p→ +∞.

This chapter is organized as follows: Section 5.2 is devoted to describing a first approximation
solution to problem (5.1) and estimating the error. Furthermore, problem (5.1) is written
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as a fixed point problem, which involving a linear operator. In Section 5.3, we study the
invertibility of the linear problem. In Section 5.4, we study the nonlinear problem. In
Section 5.5, we study the variational reduction, we prove the main Theorem 5.2 in Section
5.6. We will give some estimates in Section 5.7.

5.2 Preliminaries and ansatz for the solution

For any parameter ε > 0, we can produce a solution to{
∆u = 0 in R2

+;

∂u
∂ν

= εeu on ∂R2
+,

(5.1)

by taking

u(x) = wµ(x/ε)− 2 log ε = log
2µ

x21 + (x2 + εµ)2
,

where wµ defined by (5.14). Based on this, we choose a sufficiently small but fixed number
δ > 0 and assume that for any points ξj, j = 1, . . . , k, on ∂Ω, satisfying

|ξl − ξj| > δ, for l ̸= j. (5.2)

Furthermore, we consider k positive numbers µj such that

δ < µj < δ−1, for all j = 1, . . . , k. (5.3)

We define

uj(x) = log
2µj

|x− ξj − εµjν(ξj)|2
.

We note that

uj(x) = wµj

(
Aj

(
x− ξj
ε

))
− 2 log ε,

where Aj : R2
+ → R2

+ a rotation map, satisfies

AνΩ(ξ) = νR2
+
(0),

without lost of generality, in the follows, we will denote that Aj = I.

We define the first ansatz is given by

U(x) =
1

pγp−1

k∑
j=1

[
uj(x) +Hε

j (x)
]
,
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with some number γ, to be fixed later on, where Hε
j is a correction term defined as the

solution of {
−∆Hε

j +Hε
j = −uj in Ω;

∂Hε
j

∂ν
= εeuj − ∂uj

∂ν
on ∂Ω,

(5.4)

Lemma 5.3. Assume (5.2) and (5.3), for any 0 < α < 1, one has

Hε
j (x) = H(x, ξj)− log(2µj) +O(εα) (5.5)

uniformly in Ω̄, where H is the regular part of Green’s function defined (5.5).

Proof. On the boundary, we have

∂Hε
j

∂ν
= εeuj − ∂uj

∂ν
= 2εµj

1− ν(ξj) · ν(x)
|x− ξj − εµjν(ξj)|2

+ 2
(x− ξj) · ν(x)

|x− ξj − εµjν(ξj)|2
.

Thus,

lim
ε→0

∂Hε
j

∂ν
= 2

(x− ξj) · ν(x)
|x− ξj|2

, ∀ x ̸= ξj.

Let zε(x) = Hε
j (x)+log(2µj)−H(x, ξj), then from the definition of H(x, ξj) and H

ε
j , we have{−∆zε + zε = log 1

|x−ξj |2 − log 1
|x−ξj−εµjν(ξj)|2 in Ω;

∂zε
∂ν

=
∂Hε

j

∂ν
− 2

(x−ξj)·ν(x)
|x−ξj |2 on ∂Ω,

First, we claim that there is a positive constant C such that∥∥∥∥∂Hε
j

∂ν
− 2

(x− ξj) · ν(x)
|x− ξj|2

∥∥∥∥
Lq(∂Ω)

≤ Cε1/q, ∀ q > 1, (5.6)

In fact,

∂Hε
j

∂ν
− 2

(x− ξj) · ν(x)
|x− ξj|2

= 2εµj
1− ν(ξj) · ν(x)

|x− ξj − εµjν(ξj)|2
+ 2

(x− ξj) · ν(x)
|x− ξj − εµjν(ξj)|2

− 2
(x− ξj) · ν(x)

|x− ξj|2

= 2εµj
1− ν(ξj) · ν(x)

|x− ξj − εµjν(ξj)|2
+ 2εµj

(x− ξj) · ν(x) [2(x− ξj) · ν(x)− εµj]

|x− ξj|2|x− ξj − εµjν(ξj)|2
.

Now, we observe that

|1− ν(ξj) · ν(x)| ≤ C|x− ξj|2, |(x− ξj) · ν(x)| ≤ C|x− ξj|2, ∀ x ∈ ∂Ω.
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Hence, ∣∣∣∣∂Hε
j

∂ν
− 2

(x− ξj) · ν(x)
|x− ξj|2

∣∣∣∣ ≤ Cε+ C
ε|2(x− ξj) · ν(ξj)− εµj|

|x− ξj − εµjν(ξj)|2
. (5.7)

For ρ > 0 small, we have∣∣∣∣∂Hε
j

∂ν
− 2

(x− ξj) · ν(x)
|x− ξj|2

∣∣∣∣ ≤ Cε, for ∀ |x− ξj| ≥ ρ, x ∈ ∂Ω. (5.8)

Now let q > 1, we have ∫
Bρ(ξj)∩∂Ω

∣∣∣∣ε|2(x− ξj) · ν(ξj)− εµj|
|x− ξj − εµjν(ξj)|2

∣∣∣∣q dx
= Cε

∫
Bρ/ε(0)∩∂Ωε

∣∣∣∣2y · ν(0)− µj
y − µjν(0)

∣∣∣∣q dy
≤ Cε

∫ ρ/ε

0

1

(1 + s)q
ds ≤ Cε. (5.9)

Combining (5.7) with (5.8) and (5.9) we conclude that (5.6) holds.

Next, we show that∥∥∥∥log 1

|x− ξj|2
− log

1

|x− ξj − εµjν(ξj)|2

∥∥∥∥
Lq(Ω)

≤ Cε, for any 1 < q < 2. (5.10)

In fact, for q ≥ 1, we write∥∥∥∥log 1

|x− ξj|2
− log

1

|x− ξj − εµjν(ξj)|2

∥∥∥∥q
Lq(Ω)

=

∫
B10εµj

(ξj)∩Ω
. . . +

∫
Ω\B10εµj

(ξj)

. . . := I1 + I2. (5.11)

Next we estimate I1 and I2. For I1, we observe that∫
B10εµj

(ξj)∩Ω

∣∣∣∣log 1

|x− ξj|2

∣∣∣∣q dx ≤ C

∫ Cε

0

| log r|qrdr ≤ Cε2
(
log

1

ε

)q
,

and the same bound is true for the integral of | log 1
|x−ξj−εµjν(ξj)|2 |

q in B10εµj(ξj) ∩ Ω. Hence,

we have

|I1| ≤ Cε2
(
log

1

ε

)q
. (5.12)

For I2, if |x− ξj| ≥ 10εµj, we have

|x− ξj| ≤ |x− ξj − tεµjν(ξj)|+ µjε ≤ |x− ξj − tεµjν(ξj)|+
1

10
|x− ξj|
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for any t ∈ [0, 1], then we have |x− ξj| ≤ C|x− ξj− tεµjν(ξj)|. Using this fact, we can obtain∣∣∣∣log 1

|x− ξj|2
− log

1

|x− ξj − εµjν(ξj)|2

∣∣∣∣
≤ C sup

0≤t≤1

Cε

|x− ξj − εµjν(ξj)|
≤ Cε

|x− ξj|
.

Thus for 1 < q < 2,

|I1| ≤ Cεq
∫ D

10εµj

r1−qdr ≤ Cεq, (5.13)

where D is the diameter of Ω. Thus, combining (5.11) with (5.12) and (5.13) we obtain that
(5.10) holds.

Therefore by elliptic regularity theory, we obtain

∥zε∥W 1+s,q(Ω) ≤

(∥∥∥∥∂zε∂ν
∥∥∥∥
Lq(∂Ω)

+ ∥∆zε∥Lq(Ω)

)
≤ Cε1/q (5.14)

for any 0 < s < 1
q
. By the Morrey embedding we obtain

∥zε∥Cβ(Ω̄) ≤ Cε1/q

for any 0 < β < 1
2
+ 1

q
. This proves the Lemma with α = 1

q
.

We shall show later on that U(x) is a good approximation for a solution to (5.1) far from the
points ξj, but unfortunately it is not good enough for our construction close to the points ξj.
This is the reason why we need to further adjust this ansatz. In order to do this, let us first
introduce the following result, whose proof is given in [27].

Proposition 5.4. Any bounded solution of the following problem{
∆ϕ = 0 in R2

+;

∂ϕ
∂ν

− ewµϕ = 0 on ∂R2
+,

(5.15)

is a linear combination of

z0µ(x) = − 1

µ
(x · ∇wµ(x) + 1) =

1

µ
− 2

x2 + µ

x21 + (x2 + µ)2
, (5.16)

and

z1µ(x) =
∂wµ
∂x1

= −2
x1

x21 + (x2 + µ)2
. (5.17)
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Now, let us consider the following problem{
∆ϕ = 0 in R2

+;

∂ϕ
∂ν

− ewµϕ = ewµg on ∂R2
+,

(5.18)

with wµ defined in (5.14). In [19] it is showed that

Proposition 5.5. Let g be a C1(∂R2
+) function such that, for µ > 0, k ≥ 0, satisfies

g(x) = O(logk(1 + |x|)) as |x| → ∞, (5.19)

and ∫
∂R2

+

ewµgz0µ = 0 =

∫
∂R2

+

ewµgz1µ. (5.20)

Then (5.18) has a solution ϕ ∈ Cα(R2
+). Moreover, for any 0 < α < 1, and |x| → ∞,

|ϕ(x)| ≤ C
1

|x|α
, |∇ϕ(x)| ≤ C

1

|x|1+α
, |∇2ϕ(x)| ≤ C

1

|x|2+α
, (5.21)

where C is a positive constant, which depends on ∥g∥Lp(∂R2
+), for some p = p(α) > 1.

Let us define ϕ1j the solution of the problem{
∆ϕ1j = 0 in R2

+;

∂ϕ1j
∂ν

− ewµjϕ1j = ewµj g1 on ∂R2
+,

(5.22)

where wµj(y) = log
2µj

y21+(y2+µj)2
and

g1 = α1j(wµj − 1) + wµj +
1

2
(wµj)

2

with α1j is a constant to be fixed, which depend on µj. Let us observe that the function g1
satisfies (5.19) by the definition. We now choose α1j such that the orthogonality condition
(5.20) hold. First we observe that g1 is a symmetric function for any choice of α1j, hence∫

∂R2
+

ewµj g1z1µj = 0.

Next, we choose parameter α1j such that the other orthogonality condition satisfies. Since∫
∂R2

+

ewµj g1z0µj

= − 1

µj

∫
∂R2

+

ewµj

(
α1j(wµj − 1) + wµj +

1

2
(wµj)

2

)(
y · ∇wµj(y) + 1

)
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= − 1

µj
α1j

∫ ∞

−∞

(
ewµj (y1,0)

(
wµj(y1, 0)− 1

) ∂wµj
∂y1

(y1, 0)y1 + ewµj (y1,0)
(
wµj(y1, 0)− 1

))
dy1

− 1

µj

∫ ∞

−∞

(
ewµj (y1,0)wµj(y1, 0)

∂wµj
∂y1

(y1, 0)y1 + ewµj (y1,0)wµj(y1, 0)

)
dy1

− 1

µj

∫ ∞

−∞

(
ewµj (y1,0)

(wµj)
2

2
(y1, 0)

∂wµj
∂y1

(y1, 0)y1 + ewµj (y1,0)
(wµj)

2

2
(y1, 0)

)
dy1

= − 1

µj

[
α1j

∫ ∞

−∞
ewµj (y1,0)dy1 +

∫ ∞

−∞
ewµj (y1,0)wµj(y1, 0)dy1

]
.

Thus we need to choose α1j such that

α1j

∫ ∞

−∞
ewµj (y1,0)dy1 +

∫ ∞

−∞
ewµj (y1,0)wµj(y1, 0)dy1 = 0.

Since ∫ ∞

−∞
ewµj (y1,0)dy1 =

∫ ∞

−∞

2µj
y21 + µ2

j

dy1 = 2

∫ ∞

−∞

1

t2 + 1
dt = 2π,

and ∫ ∞

−∞
ewµj (y1,0)wµj(y1, 0)dy1

=

∫ ∞

−∞

2µj
y21 + µ2

j

log
2µj

y21 + µ2
j

dy1

= 2

∫ ∞

−∞

1

t2 + 1

[
log

1

t2 + 1
+ log(2µ−1

j )

]
dt = −2π log(2µj).

Here we use the following fact (See the proof in the Appendix)∫ ∞

−∞

1

t2 + 1
log

1

t2 + 1
dt = −2π log 2. (5.23)

Therefore, we choose α1j satisfies

α1j = log(2µj). (5.24)

Then we get the existence of ϕ1j by Proposition 5.5. With this function, we define

w1j(y) = ϕ1j(y) + α1jwµj(y).

We observe that w1j satisfies{
∆w1j = 0 in R2

+;

∂w1j

∂ν
− ewµjw1j = ewµj

(
wµj +

1
2
(wµj)

2
)

on ∂R2
+.
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Next, we consider ϕ2j, a solution of{
∆ϕ2j = 0 in R2

+;

∂ϕ2j
∂ν

− ewµjϕ2j = ewµj g2 on ∂R2
+,

(5.25)

where

g2 = α2j(wµj − 1) + w1j +
p− 2

2(p− 1)
(wµj)

2 +
1

2
(w1j)

2

+
1

8
(wµj)

4 + wµjw1j +
1

2
(wµj)

3 +
1

2
w1j(wµj)

2

with some parameter α2j such that the orthogonality condition (5.20) satisfies as above, and
we note that g2 satisfies (5.19) by the definition. Then we have the existence of function ϕ2j

by Proposition 5.5.

For ξj ∈ ∂Ω, let δ > 0 be a fixed small radius, depending only in the geometry of Ω, such
that

Fj : Bδ(0) ∩ (Ω− ξj) →M ∩ R2
+, (5.26)

is a C2 diffeomorphism, and M an open neighborhood of the origin such that

Fj (Bδ(0) ∩ (∂Ω− ξj)) ⊆M ∩ ∂R2
+,

We can select Fj so that it preserves area. For i = 1, 2, define

w̃ij(x) = ϕij

(
Fj(x− ξj)

ε

)
+ αijwµj

(
(x− ξj)

ε

)
:= ϕ̃ij(y) + αijw̃j(y),

where

w̃j(y) := wµj
(
y − ξ′j

)
= log

2µj
|y − ξ′j − µjν(ξ′j)|2

,

with ξ′j = ξj/ε and where we will write ν for the exterior normal unit vector to ∂Ω and ∂Ωε.
Then, let us define the first approximation solution to (5.1) is

Uλ(x) =
1

pγp−1

k∑
j=1

[
uj(x) +Hε

j (x) +
p− 1

p

1

γp
(
w̃1j(x) +Hε

1j(x)
)

+

(
p− 1

p

)2
1

γ2p
(
w̃2j(x) +Hε

2j(x)
)]

(5.27)
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where Hε
ij, i = 1, 2, is a new correction term, that is, which is the solution of−∆Hε

ij +Hε
ij = −αijw̃j(x/ε) in Ω;

∂Hε
ij

∂ν
= αij

(
εeuj − ∂uj

∂ν

)
on ∂Ω.

(5.28)

By the same arguments as Lemma 5.3, we have the following result.

Lemma 5.6. For any 0 < α < 1, for i = 1, 2, one has

Hε
ij(x) = αijH(x, ξj)− αij log(2µj)− 2αij log ε+O(εα) (5.29)

uniformly in Ω̄, where H is the regular part of Green’s function defined (5.5).

Proof. The proof follows from the same arguments as those to prove Lemma 5.3. First, on
the boundary, we have

lim
ε→0

∂Hε
j

∂ν
(x) = 2αij

(x− ξj) · ν(x)
|x− ξj|2

, ∀ x ̸= ξj.

The regular part of Green’s function satisfies{
−∆xH(x, ξj) +H(x, ξj) = − log 1

|x−ξj |2 in Ω;

∂H(x,ξj)

∂νx
= 2

(x−ξj)·ν(x)
|x−ξj |2 on ∂Ω.

Set z̃ε = Hε
j (x) + αij log(2µjε

2)− αijH(x, ξj), we have

−∆z̃ε + z̃ε = −∆Hε
j +Hε

j + αij log(2µjε
2)− αij [−∆H(x, ξj) +H(x, ξj)]

= −αijw̃j + αij log(2µjε
2)− αij [−∆H(x, ξj) +H(x, ξj)]

= αij

[
log

1

|x− ξj|2
− log

1

|x− ξj − εµjν(ξj)|2

]
, in Ω.

On the other hand, on the boundary, we have

∂z̃ε
∂ν

= αij

[
∂Hε

j

∂ν
− 2

(x− ξj) · ν(x)
|x− ξj|2

]
.

From (5.6) and (5.14), by the same procedure as proof of Lemma 5.3, we obtain that (5.29)
holds.

Consider now the change of variables

v(y) = pγp−1u(εy)− pγp, with γp = −2

p
log ε.
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Then under the choice of ε in (5.8), problem (5.1) reduces to{
−∆v + ε2v = 2ε2 log ε in Ωε;

∂v
∂ν

= f(v) on ∂Ωε,
(5.30)

where Ωε = ε−1Ω, and

f(v) = (1 +
v

pγp
)p−1eγ

p[(1+ v
pγp

)p−1].

Let us define the first approximation solution to (5.30) as

Vλ(y) = pγp−1Uλ(εy)− pγp, (5.31)

with Uλ defined by (5.27). We write y = ε−1x, ξ′j = ε−1ξj. For |x− ξj| < δ with δ sufficiently
small but fixed, by Lemma 5.3 and 5.6, and the fact uj(εy)− pγp = w̃j(y), we have

Vλ(y)

= uj(εy) +Hε
j (εy) +

p− 1

p

1

γp
(
w̃1j(εy) +Hε

1j(εy)
)
+

(
p− 1

p

)2
1

γ2p
(
w̃2j(εy) +Hε

2j(εy)
)
− pγp

+
k∑
l ̸=j

(
w̃l(εy) +Hε

l (εy) +
p− 1

p

1

γp
(w̃1l(εy) +Hε

1l(εy)) +

(
p− 1

p

)2
1

γ2p
(w̃2l(εy) +Hε

2l(εy))

)

= w̃j(y) +
p− 1

p

1

γp
w̃1j(εy) +

(
p− 1

p

)2
1

γ2p
w̃2j(εy) +O(ε|y − ξ′j|) +O(εα)

− log(2µj) +

[
1 + α1j

p− 1

p

1

γp
+ α2j

(
p− 1

p

)2
1

γ2p

](
H(ξj, ξj) +

k∑
l ̸=j

G(ξl, ξj)

)

−

[
α1j

p− 1

p

1

γp
+ α2j

(
p− 1

p

)2
1

γ2p

]
(log(2µj) + 2 log ε) . (5.32)

We now choose the parameters µj: we assume they are defined by the relation

log(2µj) =

(
H(ξj, ξj) +

k∑
l ̸=j

G(ξl, ξj)

)
+ (p− 1)α1j

+α1j
p− 1

p

1

γp

(
H(ξj, ξj) +

k∑
l ̸=j

G(ξl, ξj)− log(2µj) + (p− 1)
α2j

α1j

)

+α2j

(
p− 1

p

)2
1

γ2p

(
H(ξj, ξj) +

k∑
l ̸=j

G(ξl, ξj)− log(2µj)

)
. (5.33)

Taking into account the explicit expression (5.24) of the constant α1j, we observe that µj
bifurcates, as λ goes to zero, from the value

µ̄j =
1

2
e

1
2−p

[
H(ξj ,ξj)+

k∑
l̸=j

G(ξl,ξj)

]
(5.34)
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solution of equation

log(2µj) =

(
H(ξj, ξj) +

k∑
l ̸=j

G(ξl, ξj)

)
+ (p− 1)α1j. (5.35)

Thus, µj is a perturbation of order 1
γp

of the value µ̄j, namely

log(2µj) =
1

2− p

(
H(ξj, ξj) +

k∑
l ̸=j

G(ξl, ξj)

)(
1 +O

(
1

γp

))
. (5.36)

Then, by this choice of the parameters µj, we deduce that, if |y− ξ′j| < δ/ε with δ sufficiently
small but fixed, we can rewrite

Vλ(y) = w̃j(y) +
p− 1

p

1

γp
w̃1j(εy) +

(
p− 1

p

)2
1

γ2p
w̃2j(εy) + θ(y), (5.37)

with
θ(y) = O(ε|y − ξ′j|) +O(εα).

We will look for solutions to (5.30) of the form

v = Vλ + ϕ,

where Vλ is defined as in (5.31), and ϕ represents a lower order correction. We aim at finding
a solution for ϕ small provided that the points ξj is suitably chosen. For small ϕ, we can
rewrite problem (5.30) as a nonlinear perturbation of its linearization, namely,{

−∆ϕ+ ε2ϕ = 0 x ∈ Ωε;

L(ϕ) = Eλ +N(ϕ) x ∈ ∂Ωε,
(5.38)

where

L(ϕ) :=
∂ϕ

∂ν
− f ′(Vλ)ϕ, (5.39)

Eλ := f(Vλ)−
∂Vλ
∂ν

, (5.40)

N(ϕ) := f(Vλ + ϕ)− f(Vλ)− f ′(Vλ)ϕ. (5.41)

We recall that f(t) = (1 + t
pγp

)p−1eγ
p[(1+ t

pγp
)p−1].
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In order to solve the problem (5.38), first we have to study the invertibility properties of the
linear operator L. In order to do this, we introduce a weighted L∞-norm defined as

∥h∥∗,∂Ωε := sup
y∈∂Ωε

(
k∑
j=1

(1 + |y − ξ′j|)−1−σ + ε

)−1

|h(y)| (5.42)

for any h ∈ L∞(∂Ωε), where we fix 0 < σ < 1 will be made later on. With respect to this
norm, the error term Eλ given in (5.40) can be estimated in the following way.

Lemma 5.7. Let δ > 0 be a small but fixed number, assume (5.2) and (5.3). Then there
exists C > 0 such that

∥Eλ∥∗,∂Ωε ≤
C

γ3p
=

C

| log ε|3
(5.43)

for λ small enough.

Proof. Far away from the points ξj, namely for |x − ξj| > δ, i.e. |y − ξ′j| > δ
ε
, for all

j = 1, . . . , k, we have that

∂Vλ
∂ν

= pγp−1ε
∂Uλ(εy)

∂ν
= O(γp−1ε2).

On the other hand, in this region we have

1 +
Vλ(y)

pγp
= 1 +

2 log ε+O(1)

pγp
=

O(1)

| log ε|

where O(1) denotes a smooth function, uniformly bounded, as ε → 0, in the considered
region. Hence

f(Vλ) =

(
1 +

Vλ
pγp

)p−1

eγ
p[(1+

Vλ
pγp

)p−1]

=

C ε
2
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2
p

| log ε|p−1 e
γp

O(1)
| log ε|p if 0 < p < 1.

=

C ε
2
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2
p

| log ε|p−1 e
O(1)

| log ε|p−1 if 0 < p < 1.

Hence if we are far away from the points ξj, or equivalently for |y − ξ′j| > δ
ε
, the size of the

error, measured with respect to the ∥ · ∥∗,∂Ωε-norm, is relatively small. Namely, if we denote
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by 1outer the characteristic function of the set {y : |y − ξ′j| > δ
ε
, j = 1, . . . , k}, then in this

region we have

∥Eλ1outer∥∗,∂Ωε ≤


C ε

2−p
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
2p

| log ε|p−1 e
log ε

2−p
2p + C

| log ε|p−1 if 0 < p < 1.

=


C ε

2−p
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
2p

| log ε|p−1 e
− 2−p

2p
| log ε|+C| log ε|1−p

if 0 < p < 1.

≤


C ε

2−p
p

| log ε|p−1 if 1 ≤ p < 2;

C ε
2−p
2p

| log ε|p−1 if 0 < p < 1.

(5.44)

Here we used that −2−p
2p

| log ε| + C| log ε|1−p < 0 for 0 < p < 1 and ε small. Let us now fix

the index j in {1, . . . , k}, for |y − ξ′j| < δ
ε
, we have

∂Vλ
∂ν

= ew̃j(y) +
p− 1

p

1

γp
∂w̃1j(x)

∂ν
+

(
p− 1

p

)2
1

γ2p
∂w̃2j(x)

∂ν
+O(ε2)

= ew̃j(y) +
p− 1

p

1

γp

(
∂ϕ̃1j(y)

∂ν
+ α1je

w̃j

)

+

(
p− 1

p

)2
1

γ2p

(
∂ϕ̃2j(y)

∂ν
+ α2je

w̃j

)
+O(ε2).

On the other hand, for any R > 0 large but fixed, in the ball |y− ξ′j| < Rε := R| log ε|α, with
α ≥ 3, we can use Taylor expansion to obtain

f(Vλ)

=

(
1 +

1

pγp

(
w̃j(y) +

p− 1

p

1

γp
w̃1j(εy) +

(
p− 1

p

)2
1

γ2p
w̃2j(εy) + θ(y)

))p−1

×eγ
p
[(

1+ 1
pγp

(
w̃j(y)+

p−1
p

1
γp
w̃1j(εy)+( p−1

p )
2 1
γ2p

w̃2j(εy)+θ(y)
))p

−1
]

=

(
1 +

p− 1

p

1

γp
w̃j(y) +

(
p− 1

p

)2
1

γ2p
w̃1j(εy) +

(
p− 1

p

)3
1

γ3p
w̃2j(εy) +

p− 1

p

1

γp
θ(y)

)

×ew̃j(y)e
p−1
p

1
γp
w̃1j(εy)e(

p−1
p )

2 1
γ2p

w̃2j(εy)eθ(y)e
1
2

p−1
p

1
γp

[
w̃j(y)+

p−1
p

1
γp
w̃1j(εy)+( p−1

p )
2 1
γ2p

w̃2j(εy)+θ(y)
]2

= ew̃j(y) +
p− 1

p

1

γp

{
ew̃j w̃1j(εy) + ew̃j

[
w̃j +

1

2
(w̃j)

2

]}
+

(
p− 1

p

)2
1

γ2p

×
{
ew̃j w̃2j(εy) + ew̃j

[
w̃1j +

p− 2

2(p− 1)
(w̃j)

2 +
1

2
(w̃1j)

2 +
1

8
(w̃j)

4 + w̃jw̃1j +
1

2
(w̃j)

3 +
1

2
w̃1j(w̃j)

2

]}
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+
p− 1

p

1

γp
ew̃jθ(y) +

(
p− 1

p

)2
1

γ2p
ew̃j [w̃j + w̃1j(εy)] θ(y) +

(
p− 1

p

)3
1

γ3p

{
ew̃j w̃2j(εy)

+ew̃j

[1
6
(w̃1j)

3(εy) +
1

48
(w̃j)

6 + w̃jw̃1j(εy) +
1

2
(w̃1j)

2(εy) + 2w̃jw̃2j(εy) +
1

2
w̃1j(εy)(w̃j)

3

+
2p− 3

2(p− 1)
w̃j(w̃1j)

2(εy) +
1

8
(w̃j)

5 + (w̃1j)
2(εy) +

1

2
w̃1j(εy)(w̃j)

2 +
p− 2

4(p− 1)
(w̃j)

4

+w̃1j(εy)w̃2j(εy) +
1

8
w̃1j(εy)(w̃j)

4 +
1

4
(w̃jw̃1j(εy))

2 +
1

2
w̃2j(εy)(w̃j)

2
]}

+O

(
log |y − ξ′j|

γ3p

)
.

Thus, thanks to the fact that we have improved our original approximation with the terms
w̃1j(εy) and w̃2j(εy), and the definition of ∗-norm, we get that

∥Eλ1B(ξ′j ,Rε)∥∗,∂Ωε ≤
C

γ3p
=

C

| log ε|3
. (5.45)

Here 1B(ξ′j ,Rε) denotes the characteristic function of B(ξ′j, Rε). Finally, in the remaining

region, namely where Rε < |y − ξ′j| < δ
ε
, for any j = 1, . . . , k, we have from one hand that

|∂Vλ(y)
∂ν

| ≤ Cew̃j(y), and also |f(Vλ(y))| ≤ Cew̃j(y) as consequence of (5.32). This fact, together
with (5.44) and (5.45) we obtain estimate (5.43).

As the proof of (2.34), (2.35) and (2.36), we have the following two Lemmas.

Lemma 5.8. For very close to the point ξj on ∂Ω, we have

f ′(Vλ) ≈ ew̃j as λ→ 0, (5.46)

and there exists some positive constant D0 such that

f ′(Vλ) ≤ D0

k∑
j=1

ew̃j . (5.47)

Lemma 5.9. We have

∥f ′′
(Vλ)∥∗,∂Ωε ≤ C (5.48)

for some positive constant.

5.3 The linearized problem

In this section, we prove the bounded invertibility of the operator L. First of all, we will
solve the following linear problem. Given h ∈ C(∂Ωε), find a function ϕ such that

−∆ϕ+ ε2ϕ = 0 in Ωε;

L(ϕ) = h+
k∑
j=1

cjχjZ1j on ∂Ωε;∫
Ωε
χjZ1jϕ = 0 for j = 1, . . . , k,

(5.49)
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for certain scalars cj, where operator L defined as (5.39), and Z1j, χj are defined as follows:
Define

F ε
j (y) =

1

ε
Fj(εy), (5.50)

with Fj is given by (5.26). Set

Zij(y) = zij(F
ε
j (y)), i = 0, 1, j = 1, . . . , k.

with z0j and z1j defined as (5.16) and (5.17).

Next, let us consider a large but fixed number R0 > 0 and a nonnegative radial and smooth
cut-off function χ with χ(r) = 1 if r < R0 and χ(r) = 0 if r > R0 + 1, 0 ≤ χ ≤ 1. Then set

χj(y) = χ(|F ε
j (y)|).

Equation (5.49) is solved in the following Proposition.

Proposition 5.10. Let δ > 0 be a small but fixed number, assume (5.2) and (5.3), and µj
is given by (5.36). Then there exist positive numbers λ0 and C, such that problem (5.49) has
a unique solution ϕ = Tλ(h) which satisfies

∥ϕ∥L∞(Ωε) ≤ C

(
log

1

ε

)
∥h∥∗,∂Ωε , (5.51)

for all λ < λ0.

We carry the proof out in the following steps.

Step 1: Constructing a suitable barrier.

Lemma 5.11. There exist positive constants R1 and C, independent of λ, such that if λ
small enough, there exists ψ : Ωε\ ∪kj=1 BR1(ξ

′
j) → R , smooth and positive, satisfies

−∆ψ + ε2ψ ≥
k∑
j=1

1
|y−ξ′j |2+σ + ε2 in Ωε\ ∪kj=1 BR1(ξ

′
j);

∂ψ
∂ν

− f ′(Vλ)ψ ≥
k∑
j=1

1
|y−ξ′j |1+σ + ε on ∂Ωε\ ∪kj=1 BR1(ξ

′
j);

ψ ≥ 1 on Ωε ∩ (∪kj=1∂BR1(ξ
′
j)).

Moreover, we have a uniform bound

0 < ψ ≤ C in Ωε\ ∪kj=1 BR1(ξ
′
j).
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Proof. Let ηj ∈ C∞
0 (R2) be such that 0 ≤ ηj ≤ 1, ηj ≡ 1 in Ωε ∩ Bδ/2ε(ξ

′
j), ηj ≡ 0 in

Ωε\Bδ/ε(ξ
′
j), |∇ηj| ≤ Cε in Ωε, |∆ηj| ≤ Cε2 in Ω. Let ψ0(y) = ψ̃(εy), where ψ̃ is the solution

to {
−∆ψ̃ + ψ̃ = 1 in Ω;

∂ψ̃
∂ν

= 1 on ∂Ω,

so that

−∆ψ0 + ε2ψ = ε2 in Ωε, and
∂ψ0

∂ν
= ε on ∂Ωε.

In particular, ψ0 is uniformly bounded in Ωε. Take the function

ψ =
k∑
j=1

ηj

[
(y − ξ′j) · ν(ξ′j)

r1+σ
+ C

1

rσ

]
+ Cψ0,

where r = |y− ξ′j−µjν(ξ′j)|. It is directly checked that ψ satisfies the required condition.

Step 2: Transferring a linear equation. We study first the linear equation{
−∆ϕ+ ε2ϕ = h1 in Ωε;

∂ϕ
∂ν

− f ′(Vλ)ϕ = h on ∂Ωε,
(5.52)

where h1, h are in suitable weight spaces: we consider for h the norm defined in (5.42) and
for h1

∥h1∥∗∗,Ωε := sup
y∈Ωε

(
k∑
j=1

(1 + |y − ξ′j|)−2−σ + ε2

)−1

|h1(y)|. (5.53)

For the solution of (5.52) under some orthogonality conditions, we have an a priori estimate.

Lemma 5.12. There are R0 > 0 and λ0 > 0 such that for 0 < λ < λ0 and any solution of
(5.52) with the orthogonality conditions∫

Ωε

χjZijϕ = 0 ∀ i = 0, 1; j = 1, . . . , k, (5.54)

we have

∥ϕ∥L∞(Ωε) ≤ C (∥h∥∗,∂Ωε + ∥h1∥∗∗,Ωε) (5.55)

where C is independent of λ.
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Proof. We take R0 = 2R1, with R1 being the constant of Lemma 5.11. Thanks to the barrier
ψ of that Lemma we deduce the following maximum principle holds in Ωε\ ∪kj=1 BR1(ξ

′
j): if

ϕ ∈ H1(Ωε\ ∪kj=1 BR1(ξ
′
j)) satisfies
−∆ϕ+ ε2ϕ ≥ 0 in Ωε\ ∪kj=1 BR1(ξ

′
j);

∂ϕ
∂ν

− f ′(Vλ)ϕ ≥ 0 on ∂Ωε\ ∪kj=1 BR1(ξ
′
j);

ϕ ≥ 0 on Ωε ∩ (∪kj=1∂BR1(ξ
′
j)),

then ϕ ≥ 0 in Ωε\ ∪kj=1 BR1(ξ
′
j).

Let h1, h be bounded and ϕ a solution to (5.52) satisfying (5.54). Define the inner norm of
ϕ as

∥ϕ∥i = sup
Ωε∩(∪k

j=1BR1
(ξ′j))

|ϕ|,

and set
ϕ̃ = C1ψ (∥ϕ∥i + ∥h∥∗,∂Ωε + ∥h1∥∗∗,Ωε)

with C1 a constant independent of λ, and ψ is the function given in Lemma 5.11. By the
above maximum principle we deduce that ϕ ≤ ϕ̃ and −ϕ ≤ ϕ̃ in Ωε\ ∪kj=1 BR1(ξ

′
j). Since ψ

is uniformly bounded, then we have

∥ϕ∥L∞(Ωε) ≤ C (∥ϕ∥i + ∥h∥∗,∂Ωε + ∥h1∥∗∗,Ωε) (5.56)

for some constant C independent of ϕ and λ.

We prove the Lemma by contradiction. Assume that there exist a sequence λn → 0, and
points ξn1 , . . . , ξ

n
k on ∂Ω satisfies (5.2) and functions ϕn, fn and hn with ∥ϕn∥L∞(Ωεn ) = 1,

∥h1∥∗∗,Ωεn
→ 0, ∥h∥∗,∂Ωεn

→ 0, such that for each n, ϕn solves (5.52) satisfying (5.54). By
(5.56) we see that ∥ϕn∥i stays away from zero. For of the indices, say j, we can assume that
supBR1

(ξ′j)
|ϕn| ≥ c > 0 for all n. Consider ϕ̂n = ϕn(z − ξ′j), and let us translate and rotate

Ωεn such that Ωεn approaches the upper half-plane and ξ′j = 0. Then by elliptic estimate ϕ̂n

converges uniformly on compact sets to a nontrivial solution ϕ̂ of (5.15). By Proposition 5.4
ϕ̂ is a linear combination of z0j and z1j. On the other hand, we can take the limit in the

orthogonality relation (5.54), we find that
∫
R2
+
χϕ̂zij = 0 for i = 0, 1. This contradicts the

fact that ϕ̂ ̸≡ 0.

Step 3: Establishing an a priori estimate. In what follows, we will establish an a priori
estimate for solution to (5.52) with the orthogonality condition

∫
Ωε
χjZ1jϕ = 0 only.

Lemma 5.13. For λ small enough, if ϕ is a solution of (5.52) and satisfies∫
Ωε

χjZ1jϕ = 0 ∀ j = 1, . . . , k, (5.57)
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then there holds

∥ϕ∥L∞(Ωε) ≤ C| log ε| (∥h∥∗,∂Ωε + ∥h1∥∗∗,Ωε) , (5.58)

where C is independent of λ.

Proof. Let ϕ satisfies (5.52) and (5.57). In order to use Lemma 5.12, we will modify ϕ to ϕ̃
so that satisfy all orthogonality with respect to Zij for i = 0, 1. Let R > R0 + 1 be large but
fixed, δ > 0 be small and fixed. Set

Ẑ0j(y) = ψZ0j(y),

where

ψ(y) = h̃(|F ε
j (y)|), h̃(x) =

log(δ/ε)− log |x|
log(δ/ε)− logR

with F ε
j is the change of variables defined in (5.50). We observes that h̃ is just the solution

to 
∆h̃ = 0 in Bδ/ε(0)\B̄R(0);

h̃ = 1 |x| = R;

h̃ = 0 |x| = δ/ε.

Let η̄1j, η̄2j be radial smooth cut-off functions on R2 such that

0 ≤ η̄1j ≤ 1, |∇η̄1j| ≤ C in R2,

η̄1j ≡ 1 in BR(0), η̄1j = 0 in R2\BR+1(0),

and

0 ≤ η̄2j ≤ 1, |∇η̄2j| ≤ Cε/δ, |∇2η̄2j| ≤ Cε2/δ2 in R2,

η̄2j ≡ 1 in B δ
4ε
(0), η̄2j = 0 in R2\B δ

3ε
(0).

Now, we write

η1j(y) = η̄1j(F
ε
j (y)), η2j(y) = η̄2j(F

ε
j (y)). (5.59)

Define
Z̃0j = η1jZ0j + (1− η1j)η2jẐ0j.

Given ϕ satisfying (5.52) and (5.57), we set

ϕ̃ = ϕ+
k∑
j=1

djZ̃0j, where dj = −
∫
Ωε
χjZ0jϕ∫

Ωε
Z2

0jχj
.

Therefore, our result is a direct consequence of the following claim.
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Claim:

|dj| ≤ C| log ε| (∥h∥∗,∂Ωε + ∥h1∥∗∗,Ωε) ∀ j = 1, . . . , k. (5.60)

First, using the notation L̃ = −∆+ ε2I, we observe that ϕ̃ satisfies
L̃(ϕ̃) = h1 +

k∑
j=1

djL̃(Z̃0j) in Ωε;

∂ϕ̃
∂ν

− f ′(Vλ)ϕ̃ = h+
k∑
j=1

dj

(
∂Z̃0j

∂ν
− f ′(Vλ)Z̃0j

)
on ∂Ωε,

(5.61)

Thus by Lemma 5.12, we have

∥ϕ̃∥L∞(Ωε) ≤ C

k∑
j=1

|dj|

∥∥∥∥∥∂Z̃0j

∂ν
− f ′(Vλ)Z̃0j

∥∥∥∥∥
∗,∂Ωε

+ ∥L̃(Z̃0j)∥∗∗,Ωε


+C∥h∥∗,∂Ωε + C∥h1∥∗∗,Ωε . (5.62)

Multiplying the first equation in (5.61) by Z̃0l, integrating by parts and using the second
equation in (5.61), we find

dl

[∫
Ωε

L̃(Z̃0l)Z̃0l +

∫
∂Ωε

Z̃0l

(
∂Z̃0l

∂ν
− f ′(Vλ)Z̃0l

)]

= −
∫
∂Ωε

hZ̃0l −
∫
Ωε

h1Z̃0l +

∫
∂Ωε

ϕ̃

(
∂Z̃0l

∂ν
− f ′(Vλ)Z̃0l

)
+

∫
Ωε

ϕ̃L̃(Z̃0l). (5.63)

Thus by (5.62), we deduced that

dl

[∫
Ωε

L̃(Z̃0l)Z̃0l +

∫
∂Ωε

Z̃0l

(
∂Z̃0l

∂ν
− f ′(Vλ)Z̃0l

)]

≤ C∥h∥∗,∂Ωε + C∥h1∥∗∗,Ωε + ∥ϕ̃∥L∞(Ωε)

∥∥∥∥∥∂Z̃0l

∂ν
− f ′(Vλ)Z̃0l

∥∥∥∥∥
∗,∂Ωε

+∥ϕ̃∥L∞(Ωε)∥L̃(Z̃0l)∥∗∗,Ωε

≤ C (∥h∥∗,∂Ωε + ∥h1∥∗∗,Ωε)

1 +

∥∥∥∥∥∂Z̃0l

∂ν
− f ′(Vλ)Z̃0l

∥∥∥∥∥
∗,∂Ωε

+ ∥L̃(Z̃0l)∥∗∗,Ωε


+C

k∑
j=1

∥∥∥∥∥∂Z̃0j

∂ν
− f ′(Vλ)Z̃0j

∥∥∥∥∥
∗,∂Ωε

+ ∥L̃(Z̃0j)∥∗∗,Ωε

 . (5.64)
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To achieve the claim by proving the following estimates: for some constant C > 0 independent
of λ, ∫

Ωε

L̃(Z̃0j)Z̃0j +

∫
∂Ωε

Z̃0j

(
∂Z̃0j

∂ν
− f ′(Vλ)Z̃0j

)
≥ C

| log ε|
, (5.65)

∥L̃(Z̃0j)∥∗∗,Ωε ≤
C

| log ε|
, (5.66)

∥∥∥∥∥∂Z̃0j

∂ν
− f ′(Vλ)Z̃0j

∥∥∥∥∥
∗,∂Ωε

≤ C

| log ε|
. (5.67)

In [27] it is showed that estimates (5.65), (5.66) and (5.67) hold.

Step 4: In proving the solvability of (5.49), we may first solve the following problem: for
given h ∈ L∞(Ωε) and find ϕ ∈ L∞(Ωε) and d1, . . . , dk ∈ R, such that

−∆ϕ+ ε2ϕ =
k∑
j=1

djχjZ1j in Ωε;

∂ϕ
∂ν

− f ′(Vλ)ϕ = h on ∂Ωε;∫
Ωε
χjZ1jϕ = 0 for j = 1, . . . , k,

(5.68)

First we prove that for any ϕ, d1, . . . , dk solution to (5.68) the bound

∥ϕ∥L∞(Ωε) ≤ C| log ε|∥h∥∗,∂Ωε (5.69)

holds. In fact, by Lemma 5.13, we have

∥ϕ∥L∞(Ωε) ≤ C| log ε|

(
∥h∥∗,∂Ωε +

k∑
j=1

|dj|

)
(5.70)

and therefore it is enough to prove that |dj| ≤ C∥h∥∗,∂Ωε .

Let η2j be the cut-off function defined in (5.59), and multiply (5.68) by η2lZ1l. Integrating
by parts we get

dl

∫
Ωε

χlZ
2
1l = −

∫
∂Ωε

hη2lZ1l +

∫
∂Ωε

ϕ
∂η2l
∂ν

Z1l +

∫
∂Ωε

ϕη2lZ1l

(
∂Z1l

∂ν
− f ′(Vλ)Z1l

)
+

∫
Ωε

ϕ(−∆(η2lZ1l) + ε2η2lZ1l). (5.71)
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Since, Z1l = O( 1
1+r

) and ∇η2l = O(ε), we have∣∣∣∣∫
∂Ωε

ϕ
∂η2l
∂ν

Z1l

∣∣∣∣ ≤ Cε log
1

ε
.

On the other hand, we can estimate that

∂Z1l

∂ν
− f ′(Vλ)Z1l = O

(
ε

1 + r

)
+O

(
εα

1 + r2

)
, |y| < δ

ε
, y ∈ ∂Ωε,

and which implies that ∫
∂Ωε

∣∣∣∣∂Z1l

∂ν
− f ′(Vλ)Z1l

∣∣∣∣ = O(εα). (5.72)

Moreover, we implies that∫
∂Ωε

∣∣−∆(η2lZ1l) + ε2η2lZ1l

∣∣ = O

(
ε log

1

ε

)
. (5.73)

Thus from (5.71)-(5.73), we conclude that

dl

∫
Ωε

χlZ
2
1l ≤ C∥h∥∗,∂Ωε + Cεα∥ϕ∥L∞(Ωε). (5.74)

Combing (5.70) and (5.74) we have

|dl| ≤ C

(
∥h∥∗,∂Ωε + Cεα log

1

ε2

k∑
j=1

|dj|

)
.

This implies that

|dl| ≤ C∥h∥∗,∂Ωε (5.75)

which proves (5.69).

Now consider the Hilbert space

H =

{
ϕ ∈ H1(Ωε) :

∫
Ωε

χjZ1jϕ = 0 ∀ j = 1, . . . , k

}
,

endowed the norm ∥ϕ∥2H1 =
∫
Ωε

|∇ϕ|2 + ε2ϕ2. Problem (5.68), expressed in a weak form, is
equivalent to find ϕ ∈ H such that∫

Ωε

∇ϕ∇ψ + ε2ϕψ −
∫
∂Ωε

f ′(Vλ)ψ =

∫
∂Ωε

hψ, for all ψ ∈ H,
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With the aid of Fredholm’s alternative guarantees unique solvability of (5.68), which is guar-
antees by (5.69).

Step 5: In order to solve (5.49), let Yi ∈ L∞(Ωε), dij ∈ R be the solution of (5.68) with
h = χiZ1i, that is 

−∆Yi + ε2Yi =
k∑
j=1

djχjZ1j in Ωε;

∂Yi
∂ν

− f ′(Vλ)Yi = χiZ1i on ∂Ωε;∫
Ωε
χjZ1jYi = 0 for j = 1, . . . , k,

(5.76)

From Step 4, there is a unique solution Yi ∈ L∞(Ωε) of (5.76), and

∥Yi∥L∞(Ωε) ≤ C| log ε|, |dij| ≤ C (5.77)

for some constant C independent on λ.

Multiplying (5.76) by η2jZ1j, and integrates by parts, we have

dij

∫
Ωε

χjZ
2
1j + δij

∫
∂Ωε

χjZ
2
1j =

∫
∂Ωε

(
∂Z1j

∂ν
− f ′(Vλ)Z1j

)
η2jYi +

∫
∂Ωε

∂η2j
∂ν

Z1jYi,

where δij is Kronecker’s delta. From (5.72), (5.73) and (5.75) we obtain

dij

∫
Ωε

χjZ
2
1j + δij

∫
∂Ωε

χjZ
2
1j = O

(
εα log

1

ε

)
Then we get

dij = Aδij +O

(
εα log

1

ε

)
(5.78)

with A > 0 is independent of ε. Hence the matrix D with entries dij in invertible for small ε
and ∥D−1∥ ≤ C uniformly in ε. Then, given h ∈ L∞(∂Ωε) we find ϕ1, d1, . . . , dk, the solution
to (5.76) and define

ϕ = ϕ1 +
k∑
i=1

ciYi,

where ci satisfies
k∑
i=1

cidij = −dj, ∀ j = 1, . . . , k.

Then ϕ satisfies (5.49) and we have

∥ϕ∥L∞(Ωε) ≤ ∥ϕ1∥L∞(Ωε) + log
1

ε

k∑
i=1

|ci|
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≤ C log
1

ε
∥h∥∗,∂Ωε + log

1

ε

k∑
i=1

|di|

≤ C log
1

ε
∥h∥∗,∂Ωε

by (5.75). This finishes the proof of Proposition 5.10.

Remark 5.14. A slight modification of the proof above also shows that for any h ∈ L∞(∂Ωε)
and h1 ∈ L∞(Ωε), the equation

−∆ϕ+ ε2ϕ = h1 in Ωε;

L(ϕ) = h+
k∑
j=1

cjχjZ1j on ∂Ωε;∫
Ωε
χjZ1jϕ = 0 for j = 1, . . . , k,

has a unique solution ϕ, c1, . . . , ck and that satisfy

∥ϕ∥L∞(Ωε) ≤ C log
1

ε
(∥h∥∗,∂Ωε + ∥h1∥∗∗,Ωε) ,

|cj| ≤ C (∥h∥∗,∂Ωε + ∥h1∥∗∗,Ωε) , ∀ j = 1, . . . , k

holds for C independent of λ.

The result of Proposition 5.10 implies that the unique solution ϕ = Tλ(h) of (5.49) defines a
continuous linear map form the Banach space C∗ of all functions h in L∞ for which ∥h∥∗ <∞
into L∞, with norm bounded uniformly in λ.

Lemma 5.15. The operator Tλ is differentiable with respect to the variable ξ1, . . . , ξk on ∂Ω
satisfying 5.2, one has the estimate

∥∂ξ′lTλ(h)∥L∞(Ωε) ≤ C

(
log

1

ε

)2

∥h∥∗,∂Ωε for l = 1, . . . , k, (5.79)

for a given positive C, independent of λ, and for all λ small enough.

Proof. Differentiating equation (5.49), formally Z := ∂ξ′lϕ should satisfy in Ωε the equation

−∆Z + ε2Z = 0 in Ωε,

and on the boundary ∂Ωε

L(Z) = −∂ξ′l(f
′(Vλ))ϕ+ cl∂ξ′l (χlZ1l) +

k∑
j=1

djZ1jχj
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with dj = ∂ξ′lcj, and the orthogonality conditions now become∫
Ωε

Z1jχjZ = 0 if j ̸= l.

∫
Ωε

Z1lχlZ = −
∫
Ωε

∂ξ′l (Z1lχl)ϕ.

We consider the constants bl defined as

bl

∫
Ωε

χ2
l |Z2

1l =

∫
Ωε

∂ξ′l (Z1lχl)ϕ, for l = 1, . . . , k.

Define
Z̃ = Z + blχlZ1l.

We then have 
−∆Z̃ + ε2Z̃ = a in Ωε;

L(Z̃) = b+
k∑
j=1

djZ1jχj on ∂Ωε;∫
Ωε
χjZ1jZ̃ = 0 for j = 1, . . . , k,

where
a = bl(−∆(χlZ1l) + ε2χlZ1l),

b = −∂ξ′l (f
′(Vλ))ϕ+ cl∂ξ′l (Z1lχl) + L(χlZ1l),

and we have

∥a∥∗∗,Ωε ≤ C log
1

ε
∥h∥∗,∂Ωε , ∥b∥∗,∂Ωε ≤ C log

1

ε
∥h∥∗,∂Ωε .

Hence, using the result of Proposition 5.10 we obtain that

∥∂ξ′lTλ(h)∥L∞(Ωε) ≤ C

(
log

1

ε

)2

∥h∥∗,∂Ωε for l = 1, . . . , k.

5.4 The nonlinear problem

Let us now introduce the following auxiliary nonlinear problem
−∆ϕ+ ε2ϕ = 0 in Ωε;

L(ϕ) = Eλ +N(ϕ) +
k∑
j=1

cjχjZ1j on ∂Ωε;∫
Ωε
χjZ1jϕ = 0 for j = 1, . . . , k,

(5.80)
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Proposition 5.16. Under the condition of Proposition 5.10, there exist positive numbers λ0
and C, such that problem (5.80) has a unique solution ϕ which satisfies

∥ϕ∥L∞(Ωε) ≤
C

| log ε|2
, (5.81)

for all λ < λ0. Moreover, if we consider the map ξ′ 7→ ϕ into the space C(Ω̄ε), the derivative
Dξ′ϕ exists and defines a continuous function of ξ′. Besides, there is a constant C > 0, such
that

∥Dξ′ϕ∥L∞(Ωε) ≤
C

| log ε|
. (5.82)

Proof. In terms of the operator Tλ defined in Proposition 5.10, problem (5.80) becomes

ϕ = Tλ (N(ϕ) + Eλ) := A(ϕ). (5.83)

For a given number M > 0, let us consider the region

FM :=

{
ϕ ∈ C(Ω̄ε) : ∥ϕ∥L∞(Ωε) ≤

M

| log ε|2

}
.

From Proposition 5.10, we get

∥A(ϕ)∥L∞(Ωε) ≤ C

(
log

1

ε

)
[∥N(ϕ)∥∗,∂Ωε + ∥Eλ∥∗,∂Ωε ] .

From (5.43) and (5.48), by the definition of N(ϕ) in (5.41), we have

∥A(ϕ)∥L∞(Ωε) ≤ C| log ε|
(
C∥ϕ∥2L∞(Ωε) +

1

| log ε|3

)
.

We then get that A(FM) ⊂ FM for a sufficiently large but fixedM and all small λ. Moreover,
for any ϕ1, ϕ2 ∈ FM , one has

∥N(ϕ1)−N(ϕ2)∥∗,∂Ωε ≤ C

(
max
i=1,2

∥ϕi∥L∞(Ωε)

)
∥ϕ1 − ϕ2∥L∞(Ωε),

In fact,
N(ϕ1)−N(ϕ2) = f(Vλ + ϕ1)− f(Vλ + ϕ2)− f ′(Vλ)(ϕ1 − ϕ2)

=

∫ 1

0

(
d

dt
f(Vλ + ϕ2 + t(ϕ1 − ϕ2)

)
dt− f ′(Vλ)(ϕ1 − ϕ2)

=

∫ 1

0

(f ′(Vλ + ϕ2 + t(ϕ1 − ϕ2)− f ′(Vλ)) dt (ϕ1 − ϕ2).

Thus, for a certain t∗ ∈ (0, 1), and s ∈ (0, 1)

|N(ϕ1)−N(ϕ2)| ≤ C|f ′(Vλ + ϕ2 + t∗(ϕ1 − ϕ2)− f ′(Vλ)|∥ϕ1 − ϕ2∥L∞(Ωε)
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≤ C|f ′′(Vλ + sϕ2 + t∗(ϕ1 − ϕ2))|
(
∥ϕ1∥L∞(Ωε) + ∥ϕ2∥L∞(Ωε)

)
∥ϕ1 − ϕ2∥L∞(Ωε).

Thanks to (5.48) and the fact that ∥ϕ1∥L∞(Ωε), ∥ϕ2∥L∞(Ωε) → 0 as λ→ 0, we conclude that

∥N(ϕ1)−N(ϕ2)∥∗,∂Ωε

≤ C∥f ′′(Vλ)∥∗,∂Ωε

(
∥ϕ1∥L∞(Ωε) + ∥ϕ2∥L∞(Ωε)

)
∥ϕ1 − ϕ2∥L∞(Ωε)

≤ C(∥ϕ1∥L∞(Ωε) + ∥ϕ2∥L∞(Ωε))∥ϕ1 − ϕ2∥L∞(Ωε).

Then we have

∥A(ϕ1)− A(ϕ2)∥L∞(Ωε)

≤ C| log ε|∥N(ϕ1)−N(ϕ2)∥∗,∂Ωε

≤ C| log ε|
(
max
i=1,2

∥ϕi∥L∞(Ωε)

)
∥ϕ1 − ϕ2∥L∞(Ωε).

Thus the operator A has a small Lipschitz constant in FM for all small λ, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map ξ′ = (ξ′1, . . . , ξ
′
k) 7→ ϕ. Assume for

instance that the partial derivative ∂ξ′lϕ exists, for l = 1, . . . , k. Since ϕ = Tλ (N(ϕ) + Eλ),
formally that

∂ξ′lϕ = (∂ξ′lTλ) (N(ϕ) + Eλ) + Tλ
(
∂ξ′lN(ϕ) + ∂ξ′lEλ

)
.

From (5.79), we have

∥∂ξ′lTλ (N(ϕ) + Eλ) ∥L∞(Ωε) ≤ C| log ε|2∥N(ϕ) + Eλ∥∗,∂Ωε ≤
C

| log ε|
.

On the other hand,

∂ξ′mN(ϕ) = [f ′(Vλ + ϕ)− f ′(Vλ)− f
′′
(Vλ)ϕ]∂ξ′lVλ + ∂ξ′l [f

′(Vλ)− ewµj ]ϕ

+[f ′(Vλ + ϕ)− f ′(Vλ)]∂ξ′lϕ+ [f ′(Vλ)− ewµj ]∂ξ′lϕ.

Then,

∥∂ξ′lN(ϕ)∥∗,∂Ωε

≤ C

{
∥ϕ∥2L∞(Ωε) +

1

| log ε|
∥ϕ∥L∞(Ωε) + ∥∂ξ′lϕ∥L∞(Ωε)∥ϕ∥L∞(Ωε) +

1

| log ε|
∥∂ξ′lϕ∥L∞(Ωε)

}
.

Since ∥∂ξ′lEλ∥∗,∂Ωε ≤ C
| log ε|3 , and by Proposition 5.10 we then have

∥∂ξ′lϕ∥L∞(Ωε) ≤
C

| log ε|

for all l = 1, . . . , k. Then, the regularity of the map ξ′ 7→ ϕ can be proved by standard
arguments involving the implicit function theorem and the fixed point representation (5.83).
This concludes proof of the Proposition.
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5.5 Variational reduction

After problem (5.80) has been solved, in order to find a solution to the original problem we
need to find ξ′ such that

cj(ξ
′) = 0 for all j = 1, . . . , k. (5.84)

This problem is indeed variational: it is equivalent to finding critical points of a function of
ξ = εξ′. Associated to (5.1), let us introduce the energy functional Jλ : H

1(Ω) → R given by

Jλ(u) =
1

2

∫
Ω

(|∇u|2 + u2)− λ

p

∫
∂Ω

eu
p

, (5.85)

and the finite-dimensional restriction

Fλ(ξ) = Jλ

(
Uλ(ξ) + ϕ̃(ξ)

)
, (5.86)

where ϕ̃ = ϕ̃(ξ) = ϕ̃(x, ξ) is the function defined in Ω from the relation ϕ̃(x, ξ) = ϕ(x
ε
, ξ
ε
),

with ϕ is the unique solution to problem (5.80) given by Proposition 5.10.

Lemma 5.17. The functional Fλ(ξ) is of class C
1. Moreover, for all λ > 0 sufficiently small,

if DξFλ(ξ) = 0, then ξ satisfies (5.84).

Proof. A direct consequence of the results obtained in Proposition 5.16 and the definition of
function Uλ is the fact the map ξ 7→ Fλ(ξ) is of class C

1. Define

Iλ(v) =
1

2

∫
Ωε

(
|∇v|2 + ε2v2

)
−
∫
∂Ωε

eγ
p[(1+ v

pγp
)p−1].

Let us differentiate the function Fλ(ξ) with the respect to ξ. Since

Jλ

((
Uλ + ϕ̃

)
(x, ξ)

)
=

1

p2γ2(p−1)
Iλ

(
(Vλ + ϕ) (

x

ε
,
ξ

ε
)

)
, (5.87)

we can differentiate directly Iλ (Vλ(ξ) + ϕ(ξ)) under the integral sign, so that

∂ξlFλ(ξ) =
1

p2γ2(p−1)
ε−1DIλ (Vλ(ξ) + ϕ(ξ))

[
∂ξ′lVλ(ξ) + ∂ξ′lϕ(ξ)

]
=

1

p2γ2(p−1)
ε−1

k∑
j=1

∫
∂Ωε

cjχjZ1j

[
∂ξ′lVλ(ξ) + ∂ξ′lϕ(ξ)

]
=

1

p2γ2(p−1)
ε−1

[
k∑
j=1

∫
∂Ωε

cjχjZ1j∂ξ′lVλ(ξ) +
k∑
j=1

∫
∂Ωε

cj∂ξ′l (χjZ1j)ϕ(ξ)

]
,
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since
∫
Ωε
χjZ1jϕ = 0. By the expansion of Vλ, we have

∂ξ′lVλ = ∂ξ′l

(
w̃l(y) +

p− 1

p

1

γp
w̃1l(εy) +

(
p− 1

p

)2
1

γ2p
w̃2l(εy) + θ(y)

)

= ∂ξ′lw̃l(y) +
p− 1

p

1

γp
∂ξ′lw̃1l(εy) +

(
p− 1

p

)2
1

γ2p
∂ξ′lw̃2l(εy) + ∂ξ′lθ(y)

= −Z1l +
p− 1

p

1

γp
∂ξ′lw̃1l(εy) +

(
p− 1

p

)2
1

γ2p
∂ξ′lw̃2l(εy) + ∂ξ′lθ(y).

Moreover, ∫
∂Ωε

cj∂ξ′l (χjZ1j)ϕ(ξ) = o(1)

∫
∂Ωε

cjχjZ1j∂ξ′lVλ.

Then, if DξFλ(ξ) = 0, for j = 1, 2, . . . , k, we then have

k∑
j=1

cj

∫
∂Ωε

χjZ1j(Z1l + o(1)) = 0. (5.88)

This is a strictly diagonal dominant system. It implies that cj = 0 for j = 1, . . . , k. This
concludes the proof of the Lemma.

Next, we will write the expansion of Jλ as λ goes to zero.

Lemma 5.18. Let δ > 0 be fixed. There exist positive numbers λ0 and C, such that µj are
given by (5.36), the following expansion holds

λ−1ε
2−p
p Fλ(ξ) = −2kπ

p
+

2kπ

p
log

1

ε
+

π

2− p
φk(ξ) +O(| log ε|−1) (5.89)

uniformly for any points ξj, j = 1, . . . , k on ∂Ω, where

φk(ξ) = φk(ξ1, . . . , ξk) = −

[
k∑
j=1

H(ξj, ξj) +
∑
l ̸=j

G(ξl, ξj)

]
. (5.90)

Proof. We have

Fλ(ξ) = Jλ

(
Uλ(ξ) + ϕ̃(ξ)

)
=

1

2

∫
Ω

[
|∇
(
Uλ + ϕ̃

)
|2 +

(
Uλ + ϕ̃

)2]
− λ

p

∫
∂Ω

e(Uλ+ϕ̃)
p

.

From (5.87) we have that

Jλ

(
Uλ(ξ) + ϕ̃(ξ)

)
− Jλ (Uλ(ξ)) =

1

p2γ2(p−1)
[Iλ(Vλ + ϕ)− Iλ(Vλ)] .
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Since by construction I ′λ(Vλ + ϕ)[ϕ] = 0, we have

Jλ

(
Uλ(ξ) + ϕ̃(ξ)

)
− Jλ (Uλ(ξ)) =

1

p2γ2(p−1)

∫ 1

0

D2Iλ(Vλ + tϕ)ϕ2(1− t) dt

=
1

p2γ2(p−1)

∫ 1

0

[∫
∂Ωε

(Eλ +N(ϕ))ϕ+

∫
∂Ωε

[f ′
λ(Vλ)− f ′

λ(Vλ + tϕ)]ϕ2

]
(1− t) dt

Since ∥Eλ∥∗,∂Ωε ≤ C
| log ε|3 , ∥ϕ∥L∞(Ωε) ≤ C

| log ε|2 , ∥N(ϕ)∥∗,∂Ωε ≤ C
| log ε|4 and (5.48), we get that∣∣∣Jλ (Uλ(ξ) + ϕ̃(ξ)

)
− Jλ (Uλ(ξ))

∣∣∣ ≤ C

γ2(p−1)| log ε|3
(5.91)

Next we expand

Jλ (Uλ(ξ)) =
1

2

∫
Ω

[
|∇ (Uλ(ξ)) |2 + Uλ(ξ)

2
]
− λ

p

∫
∂Ω

e(Uλ(ξ))
p

. (5.92)

Now we write

Uj(x) := uj(x) +Hε
j (x), U1j := w̃1j(x) +Hε

1j(x), U2j := w̃2j(x) +Hε
2j(x)

By (5.27),

Uλ(x) =
1

pγp−1

k∑
j=1

(
Uj(x) +

p− 1

p

1

γp
U1j(x) +

(
p− 1

p

)2
1

γ2p
U2j(x)

)

Then we have

1

2

∫
Ω

[
|∇ (Uλ(ξ)) |2 + Uλ(ξ)

2
]

=
1

p2γ2(p−1)

{1
2

k∑
j=1

∫
Ω

(|∇Uj|2 + U2
j ) +

∑
l ̸=j

∫
Ω

(∇Ul∇Uj + UlUj)

+
p− 1

p

1

γp

k∑
j=1

∫
Ω

(∇Uj∇U1j + UjU1j) +

(
p− 1

p

)2
1

γ2p

k∑
j=1

∫
Ω

(∇Uj∇U2j + UjU2j)

+

(
p− 1

p

)2
1

γ2p

[
1

2

k∑
j=1

∫
Ω

(|∇U1j|2 + U2
1j) +

∑
l ̸=j

∫
Ω

(∇U1l∇U1j + U1lU1j)

]

+

(
p− 1

p

)3
1

γ3p

k∑
j=1

∫
Ω

(∇U1j∇U2j + U1jU2j)

+

(
p− 1

p

)4
1

γ4p

[
1

2

k∑
j=1

∫
Ω

(|∇U2j|2 + U2
2j) +

∑
l ̸=j

∫
Ω

(∇U2l∇U2j + U2lU2j)

]}
. (5.93)
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Let us estimate the first two terms. We observe that the remaining terms are O( 1
γ2(p−1)γp

).
We have ∫

Ω

(|∇Uj|2 + U2
j ) =

∫
Ω

|∇uj|2 +
∫
Ω

u2j +

∫
Ω

|∇Hε
j |2 +

∫
Ω

(Hε
j )

2

+2

∫
Ω

∇uj∇Hε
j + 2

∫
Ω

ujH
ε
j . (5.94)

Multiplying (5.4) by Hε
j , it yields∫

Ω

|∇Hε
j |2 +

∫
Ω

(Hε
j )

2 = −
∫
Ω

ujH
ε
j +

∫
∂Ω

∂Hε
j

∂ν
Hε
j

= −
∫
Ω

ujH
ε
j + ε

∫
∂Ω

eujHε
j −

∫
∂Ω

∂uj
∂ν

Hε
j ,

Multiplying (5.4) by uj again, we find∫
Ω

u2j +

∫
Ω

Hε
juj = −

∫
Ω

∇uj∇Hε
j + ε

∫
∂Ω

eujuj −
∫
∂Ω

∂uj
∂ν

uj,

Then we get∫
Ω

(|∇Uj|2 + U2
j )

=

∫
Ω

|∇uj|2 −
∫
∂Ω

∂uj
∂ν

uj +

∫
Ω

∇uj∇Hε
j −

∫
∂Ω

∂uj
∂ν

Hε
j + ε

∫
∂Ω

euj(uj +Hε
j )

= ε

∫
∂Ω

euj(uj +Hε
j )

= ε

∫
∂Ω

2µj
|x− ξj − εµjν(ξj)|2

(
log

1

|x− ξj − εµjν(ξj)|2
+H(x, ξj) +O(εα)

)
.

Taking the changing variables y =
x−ξj
εµj

, we have∫
Ω

(|∇Uj|2 + U2
j )

=

∫
∂Ωεµj

2

|y − ν(0)|2

(
log

1

|y − ν(0)|2
+H(ξj + εµjy, ξj)− 2 log(µjε)

)
+O(εα).(5.95)

Since ∫
∂Ωεµj

1

|y − ν(0)|2
= π +O(ε).

∫
∂Ωεµj

1

|y − ν(0)|2
log

1

|y − ν(0)|2
=

∫ ∞

−∞

1

1 + t2
log

1

1 + t2
dt+O(εα)
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= −2π log(2) +O(εα).

and ∫
∂Ωεµj

2

|y − ν(0)|2
(H(ξj + εµjy, ξj)−H(ξj, ξj))

=

∫
∂Ωεµj

2

|y − ν(0)|2
O(εα|y|α) = O(εα).

Then we obtain

1

2

k∑
j=1

∫
Ω

(|∇Uj|2 + U2
j )

= −2kπ log 2 + π
k∑
j=1

[H(ξj, ξj)− 2 log(εµj)] +O(εα)

= −2kπ log ε+ π
k∑
j=1

[H(ξj, ξj)− 2 log(2µj)] +O(εα). (5.96)

On the other hand, we have∑
l ̸=j

∫
Ω

(∇Ul∇Uj + UlUj)

=
∑
l ̸=j

∫
Ω

∇ul∇uj + 2

∫
Ω

∇ul∇Hε
j +

∫
Ω

∇Hε
l∇Hε

j

+

∫
Ω

uluj + 2

∫
Ω

ulH
ε
j +

∫
Ω

Hε
lH

ε
j . (5.97)

Multiplying (5.4) by Hε
l , it yields∫

Ω

∇Hε
j∇Hε

l +

∫
Ω

Hε
jH

ε
l = −

∫
Ω

ujH
ε
l + ε

∫
∂Ω

eujHε
l −

∫
∂Ω

∂uj
∂ν

Hε
l . (5.98)

Multiplying (5.4) by uεl again, we have∫
Ω

∇uεj∇uεl +
∫
Ω

Hε
ju

ε
l = −

∫
Ω

∇Hε
j∇ul + ε

∫
∂Ω

eujuεl −
∫
∂Ω

∂uj
∂ν

ul. (5.99)

By (5.97)-(5.99) we find that∑
l ̸=j

∫
Ω

(∇Ul∇Uj + UlUj)

=
∑
l ̸=j

∫
Ω

∇ul∇uj + 2

∫
Ω

∇ul∇Hε
j +

∫
Ω

∇Hε
l∇Hε

j
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+

∫
Ω

uluj + 2

∫
Ω

ulH
ε
j +

∫
Ω

Hε
lH

ε
j

= π
∑
l ̸=j

G(ξl, ξj) +O(εα). (5.100)

Therefore, by (5.93), (5.96) and (5.100), using the choice of µj in (5.36) we get

1

2

∫
Ω

[
|∇ (Uλ(ξ)) |2 + Uλ(ξ)

2
]

=
1

p2γ2(p−1)

[
−2kπ log ε− p

2− p
π

(
k∑
j=1

H(ξj, ξj) +
k∑
l ̸=j

G(ξl, ξj)

)
+O(| log ε|−1)

]
.(5.101)

Finally, let use estimate the second term in (5.92). We have

λ

p

∫
∂Ω

eU
p
λ =

λ

p

∫
∂Ω

eγ
p(1+ 1

pγp
Vλ(

x
ε
))

p

=
λ

p

k∑
j=1

∫
∂Ω∩B(ξj ,δ̃)

eγ
p(1+ 1

pγp
Vλ(

x
ε
))

p

+
λ

p

∫
∂Ω\

k∪
j=1

B(ξj ,δ̃)

eγ
p(1+ 1

pγp
Vλ(

x
ε
))

p

:= I1 + I2. (5.102)

First we observe that

I2 = λΘλ(ξ) (5.103)

with Θλ(ξ) a function, uniformly bounded, as λ→ 0. On the other hand,

I1 =
1

p2γ2(p−1)

k∑
j=1

∫
∂Ωε∩B(ξ′j ,δ̃/ε)

eγ
p[(1+ 1

pγp
Vλ(y))

p
−1]

=
1

p2γ2(p−1)

k∑
j=1

∫
∂Ωε∩B(ξ′j ,δ̃/ε)

e

{
w̃j(y)+

p−1
p

1
γp
w̃1j(y)+( p−1

p )
2 1
γ2p

w̃2j(y)+θ(y)
}
(1 +O(

1

γp
))

=
1

p2γ2(p−1)

k∑
j=1

∫
∂Ωε∩B(0, δ̃

µjε
)

2

|y − ν(0)|2

(
1 +O(

1

γp
)

)

=
1

p2γ2(p−1)
2kπ

(
1 + | log ε|−1Θλ(ξ)

)
, (5.104)

with Θλ(ξ) a function, uniformly bounded, as λ→ 0. From (5.102)-(5.104) we get

λ

p

∫
∂Ω

eU
p
λ =

1

p2γ2(p−1)

[
2kπ

(
1 + | log ε|−1Θλ(ξ)

)]
. (5.105)
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By (5.8), (5.91), (5.92), (5.101) and (5.105), we can write the whole asymptotic expansion of
Fλ(ξ), namely (5.89) holds.

5.6 Proof of The main Theorem

Proof of Theorem 5.2: From Lemma 5.17, the function

Uλ(ξ) + ϕ̃(ξ) =
1

pγp−1

(
pγp + (Vλ + ϕ)(

x

ε
)
)

where Vλ defined by (5.31) and ϕ(ξ) is the unique solution of problem (5.80), is a solution of
problem (5.1) if we adjust ξ so that it is a critical point of Fλ(ξ) defined by (5.86). This is
equivalent to finding a critical point of

F̃λ(ξ) := Aλ−1ε
2−p
p Fλ(ξ) +B + C log ε,

for suitable constants A, B and C. On the other hand, from Lemmas 5.18, for ξ =
(ξ1, . . . , ξk) ∈ ∂Ω satisfies (5.2), we have that,

F̃λ(ξ) = φk(ξ) +O(| log ε|−1)Θλ(ξ),

where φk is given by (5.4), and Θλ(ξ) is uniformly bounded in consider region as λ→ 0.

By the assumptions φk has a C
0- stable critical point (ξ∗1 , . . . , ξ

∗
k), by Definition 5.1 we deduce

that if λ is small enough, there exists a critical point ξn of F̃λ(ξ) such that F̃λ(ξ)(ξ
n) → φk(ξ

∗).
Moreover,, up to subsequence, ξn → ξ as λ goes to zero, with φk(ξ) = φk(ξ

∗) and ∇φk(ξ∗) =
0.

Expansion (5.9) follows from (5.8) and (5.105), while (5.10) holds as a direct consequence of
the construction of Uλ. Expansion (5.11) is consequence of (5.89).

Remark 5.19. Using Ljusternik-Schnirelmann theory, one can get a second, distinct solution
satisfying Theorem 5.2. The proof is similar to [27].

5.7 Appendix

Proof of (5.23): Since (arctan t)′ = 1
1+t2

, by integration parts, we have∫ ∞

0

1

t2 + 1
log

1

t2 + 1
dt =

∫ ∞

0

log
1

t2 + 1
d (arctan t)

=

[
arctan t log

1

1 + t2

] ∣∣∣+∞

0
+

∫ +∞

0

2t arctan t

1 + t2
dt.
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Set t = tanx, we have 1 + t2 = sec2 t, dt = sec2 tdx, then we have∫ +∞

0

2t arctan t

1 + t2
dt = 2

∫ π
2

0

x tan xdx

= −2

∫ π
2

0

xd(log(cos x))

= [−2x log(cos x)]
∣∣∣π2
0
+ 2

∫ π
2

0

log(cos x) dx

= [−2 arctan t log[cos(arctan t)]]
∣∣∣+∞

0
+ 2

∫ π
2

0

log(cosx) dx

=
[
− arctan t log[cos2(arctan t)]

] ∣∣∣+∞

0
+ 2

∫ π
2

0

log(cos x) dx.

Since

cos2(arctan t) = cos2 x =
1

sec2 x
=

1

1 + tan2 x
=

1

1 + t2
.

On the other hand, we note that∫ π
2

0

log(cosx) dx =

∫ π
2

0

log(sinx) dx.

Then we have

2

∫ π
2

0

log(cos x) dx

=

∫ π
2

0

log(cos x) dx+

∫ π
2

0

log(sin x) dx

=

∫ π
2

0

log

(
sin(2x)

2

)
dx =

1

2

∫ π

0

log

(
sin(x)

2

)
dx

=
1

2

∫ π

0

log(sin x)dx− π

2
log 2

=

∫ π
2

0

log(sin x)dx− π

2
log 2

=

∫ π
2

0

log(cos x)dx− π

2
log 2.

Hence we get ∫ ∞

−∞

1

t2 + 1
log

1

t2 + 1
dt = 2

∫ ∞

0

1

t2 + 1
log

1

t2 + 1
dt

= 4

∫ π
2

0

log(cos x) dx = −2π log 2.
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Chapter 6

New solutions for critical Neumann
problems R2

6.1 Introduction

Let Ω be a bounded domain in R2 with smooth boundary and λ > 0. This chapter is
concerned with the existence of positive solutions to the boundary value problem{

−∆u+ u = 0 in Ω; u > 0 in Ω

∂u
∂ν

= λueu
2

on ∂Ω,
(6.1)

where ν denotes the outer unitary normal vector of ∂Ω. Elliptic equations with nonlinear
Neumann boundary condition of exponential type arise in conformal geometry (prescribing
Gaussian curvature of the domain and curvature of the boundary), see for instance [22, 23, 76]
and references therein, and in corrosion modelling, see [16, 66, 84].

Problem (6.1) is the Euler-Lagrange equation for the functional

Jλ(u) =
1

2

∫
Ω

[
|∇u|2 + u2

]
− λ

2

∫
∂Ω

eu
2

, u ∈ H1(Ω). (6.2)

For functions u ∈ H1(Ω), the maximal growth of integrability on the boundary is of expo-
nential type, due to the Trudinger trace embedding (in the sense of Orlicz spaces) [103, 114]

H1(Ω) ∋ u 7−→ eu
2 ∈ Lp(∂Ω) ∀ p ≥ 1.

This optimal embedding is related to the critical Trudinger-Moser trace inequality

Cπ(Ω) = sup{
∫
∂Ω

eπu
2

/ u ∈ H1(Ω),

∫
Ω

[|∇u|2 + u2] = 1} < +∞ ,
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[74]. It has been proven [124] that for any bounded domain Ω in R2, with smooth boundary,
the supremum Cπ(Ω) is attained by a function u ∈ H1(Ω) with

∫
Ω
[|∇u|2 + u2] = 1. Further-

more, for any α ∈ (0, π), the supremum Cα(Ω) is finite and it is attained, while Cα(Ω) = ∞
as soon as α > π. See also [24, 72, 73, 75] for generalizations. Observe that critical points of
the above constrained variational problem satisfy, after a simple scaling, an equation of the
form (6.1).

The Trudinger-Moser trace embedding is critical, involving loss of compactness analogous to
that related to the Trudinger-Moser embedding for functions u with zero boundary value,

H1
0 (Ω) ∋ u 7−→ eu

2 ∈ Lp(Ω) ∀ p ≥ 1

for which the analogous problem to (6.1) is{
∆u+ λueu

2
= 0 in Ω;

u = 0 on ∂Ω,
(6.3)

whose energy functional is given by Iλ : H
1
0 (Ω) → R

Iλ(u) =
1

2

∫
Ω

|∇u|2 − λ

2

∫
Ω

eu
2

. (6.4)

Even though Iλ satisfies the compactness PS-condition for energy levels less that 2π [1], loss
of compactness in H1

0 (Ω) is described by the presence of families of blowing up solutions for
Problem (6.3). It has been proven in [44] that if un solves problem (6.3) for λ = λn, with
Iλn(un) bounded and λn → 0, then, passing to a subsequence, there is an integer k ≥ 0 such
that

Iλn(un) = 2kπ + o(1) . (6.5)

[2, 44]. This quantization property is not known for general Palais-Smale sequences associated
to Iλ [3]. When k = 1 a more precise description of the blowing up behavior of these families
of solutions is known [2]. On the other hand, concerning existence of solutions to (6.3), a
first observation is that the functional Iλ has the mountain pass structure. In [1, 6] it is
shown that there exists λ0 > 0 such that for 0 < λ < λ0 the mountain pass level is below 2π
where PS-condition holds. Thus a solution to (6.3) exists. As λ→ 0, the family of mountain
pass solutions satisfies (6.5) with k = 1. In [112] it is proven that if Ω has a sufficiently
small hole, a solution to (6.3), satisfying (6.5), exists. Further results were obtained in [39]:
if Ω has a hole of any size, namely Ω is not simply connected, then a solution satisfying
property (6.5) with k = 2 exists. This solution happens to blow up exactly at 2 points
in Ω. General conditions for the existence of solutions of problem (6.3) for small λ, which
satisfy the bubbling condition (6.5), for any k ≥ 1, are provided in [39], together with the
precise characterization of their blow up profile. In fact, blowing up solutions satisfying (6.5)
happens to blow up at exactly k points which are located in the interior of Ω. See also
[5, 32, 40] for related results.
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In this chapter, we are concerned with the construction of solutions to (6.1), in the same
spirit as the result described above in [39]. Assume Ω is any bounded domain with smooth
boundary. For any integer k we find existence of a pair of solutions uλ to problem (6.1) for
small λ, whose energy satisfy the bubbling condition

Jλ(uλ) = k
π

2
+ o(1) as λ→ 0. (6.6)

Furthermore, we give a precise description of their bubbling behavior.

To state our result, let us introduce the following function φk : (∂Ω)
k×(R+)k → R, φk(ξ,m) =

φk(ξ1, . . . , ξk,m1, . . . ,mk) defined by

φk(ξ,m) = 2(log 2− 1)
k∑
j=1

m2
j + 2

k∑
j=1

m2
j log(m

2
j)

−
k∑
j=1

m2
jH(ξj, ξj)−

∑
i ̸=j

mimjG(ξi, ξj), (6.7)

where G is the Green function for the Neumann problem{
−∆xG(x, y) +G(x, y) = 0 x ∈ Ω;

∂G(x,y)
∂νx

= 2πδy(x) x ∈ ∂Ω,
(6.8)

and H its regular part defined as

H(x, y) = G(x, y)− 2 log
1

|x− y|
. (6.9)

Theorem 6.1. Let Ω be a bounded domain in R2 with smooth boundary and let k ≥ 1 be an
integer. Then, for all small λ > 0 there exists a pair solution u1λ, u

2
λ of problem (6.1) such

that
1

2

∫
Ω

[
|∇uiλ|2 + (uiλ)

2
]
− λ

2

∫
∂Ω

e(u
i
λ)

2

=
k

2
π + o(1) i = 1, 2

where o(1) → 0 as λ → 0. Moreover, for any i = 1, 2, passing to a subsequence, there exists
(ξi,mi) = (ξi1, . . . , ξ

i
k,m

i
1, . . . ,m

i
k) ∈ (∂Ω)k × (R+)k, with ξ1 ̸= ξ2, such that ∇φk(ξi,mi) = 0

and

uλ(x) =
√
λ

(
k∑
j=1

mi
jG(x, ξ

i
j) + o(1)

)
(6.10)

where o(1) → 0 on each compact subset of Ω̄ \ {ξi1, . . . , ξik}.

These solutions blow up at points located near ξ1, . . . , ξk ∈ ∂Ω, while far away from these
points the solutions looks like a combination of Green function with positive weights m1, ....,
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mk. These points and parameters (ξ1, . . . , ξk,m1, . . . ,mk) correspond to two distinct critical
points of φk.

We can actually show a stronger version of this result. If ∂Ω has more than one component,
then pairs of families of solutions blowing up at k points on each component happen to
exist. In reality, associated to each topologically nontrivial critical point situation associated
to φk (for instance local maxima or saddle points possibly degenerate), a solution with
concentration peaks at a corresponding critical point exists. We will not elaborate more on
this point, and we refer the interested reader to [27].

It is important to remark the interesting analogy between these results and those known for
other problems with exponential non linearity on the boundary, as−∆u+ u = 0 in Ω

∂u

∂ν
= λeu on ∂Ω,

(6.11)

and −∆u+ u = 0 in Ω

∂u

∂ν
= λ sinhu on ∂Ω.

(6.12)

[16, 27, 29, 66, 84, 85]. See also [19, 37] for related problems.

We will just describe the analogy between our Problem (6.1) and the problem of finding
positive solutions to (6.11). Similar analogy exists with the problem of finding sign changing
solutions to (6.12). But in this case we refer the reader to the results in [16, 29, 66, 84].

In [27], construction of solutions to (6.11) with λ
∫
∂Ω
euλ bounded is carried out: for any

integer k ≥ 1, there are at least two distinct families of solutions uλ which approaches the
sum of k Dirac masses at the boundary. The location of these possible points of concentration
may be further characterized as critical points of the functional of k points ξ1, . . . , ξk of the
boundary defined as

Ψk(ξ1, . . . , ξk) = −

[
k∑
j=1

H(ξj, ξj) +
∑
i ̸=j

G(ξi, ξj)

]
,

where G and H are defined in (6.8) and (6.9) respectively. Observe that the function Ψk

only depends on points on the boundary ∂Ω and it does not depend on positive parameters
m1, . . .mk, unlike function φk which is defined in (6.7) and which determines the bubbling
behavior of solutions to (6.1). Furthermore, far from ξ1, . . . ξk, the solutions to Problem (6.11)
found in [27] look like

uλ(x) =
k∑
j=1

G(x, ξj) + o(1) as λ→ 0.
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Thus, also the solutions to Problem (6.11) found in [27] are combinations of Green function,
far from the concentration points, but unlike the solutions obtained in Theorem 6.1 for
Problem (6.1), the weights in from of the Green functions are always equal to 1. Thus, to
construct solutions to Problem (6.1), not only we have to find the location of the bubbling
points ξ1, . . . , ξk on the boundary, but also the weights m1, . . . ,mk in front of the Green
functions in (6.10).

The solutions predicted in Theorem 6.1 are constructed as a small additive perturbation of
an appropriate initial approximation. A linearization procedure leads to a finite dimensional
reduction, where the reduced problem corresponds to that of adjusting variationally the
location of the concentration points ξ1, . . . , ξk and of the weights m1, . . . ,mk. A precise
description of the approximation and a detailed outline of the proof and of the organization
of this chapter are given in Section 6.2.

6.2 A first approximation and outline of the argument

It is useful for our purpose to consider the change of variables u =
√
λũ so that problem (6.1)

gets rewritten as {
−∆ũ+ ũ = 0 in Ω; ũ > 0 in Ω;

∂ũ
∂ν

= λũeλũ
2

on ∂Ω.
(6.13)

The first part of this section is devoted to construct a good approximation for a solution to
Problem (6.13) and to estimate its error. To do so, let us introduce the following problem in
the entire plane {

∆v = 0 in R2
+;

∂v
∂ν

= ev on ∂R2
+;

∫
∂R2

+
ev <∞.

(6.14)

The positive solutions to Problem (6.14) are the basic elements for our construction. So, let
us recall that all positive solutions to (6.14) are given by

wt,µ(x) = wt,µ(x1, x2) = log
2µ

(x1 − t)2 + (x2 + µ)2
, (6.15)

where t is any real number and µ > 0 is any strictly positive number (see [76, 99, 126]). Set

wµ(x) := w0,µ(x) = log
2µ

x21 + (x2 + µ)2
. (6.16)

We next describe an approximate solution to (6.13) whose shape is given by the sum of
functions wµ centered at points on the boundary of Ω and properly scaled. Let k be an
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integer, ξ1, . . . , ξk be points on the boundary of Ω and m1, . . . ,mk positive numbers. We
assume there exists a positive, small number δ such that

|ξi − ξj| > δ for i ̸= j, δ < mj <
1

δ
. (6.17)

We thus define the functions

uj(x) = log
1

|x− ξj − εjµjν(ξj)|2
, for any j = 1, . . . , k

and

Ũ(x) =
k∑
j=1

mj [uj(x) +Hj(x)] , (6.18)

where Hj is the unique solution to the problem{
−∆Hj +Hj = −uj in Ω;

∂Hj

∂ν
= 2εjµje

uj − ∂uj
∂ν

on ∂Ω.
(6.19)

In the above definitions, µj and εj are positive numbers. These numbers µj and εj will be
defined later on in terms of λ, ξj and mj in order to ensure that Ũ is a function very close to
a solution for Problem (6.13). Let us just mention that, a posteriori, the parameters εj will
tend to zero, as λ→ 0, namely

lim
λ→0

εj = 0, for any j = 1, . . . , k, (6.20)

while the numbers µj will remain bounded from above and strictly positive, as λ→ 0. Taking
this into account, we easily see that the shape of the function Ũ change depending whether
you evaluate it far from the fixed points ξj or in a region very close to one of the points ξj.
Let us then describe carefully the shape of Ũ in these two regions. For this purpose, we need
the following

Lemma 6.2. Assume (6.17) and (6.20). For any 0 < α < 1, one has

Hj(x) = H(x, ξj) + εαjO(1), as λ→ 0 (6.21)

where O(1) denotes a function in Ω which is uniformly bounded as λ → 0, and H is the
regular part of Green’s function defined in (6.8).

Proof. The proof has been done by del Pino- Dávila-Musso in [27], see also the proof of
Lemma 5.3.
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A direct consequence of Lemma 6.2 is that, for a given δ > 0 small and fixed, in the region
|x− ξj| > δ for all j = 1, . . . , k, the function Ũ looks like

Ũ(x) =
k∑
j=1

mj

[
G(x, ξj) +O(εαj )

]
, as λ→ 0. (6.22)

Here and in what follows, with O(εαj ) we denote a general function in Ω of the form εαjΘ(x)
where Θ(x) is uniformly bounded in Ω as λ→ 0.

Let us now examine Ũ in a neighborhood of a given ξj. Assume |x− ξj| < δ and set y = x
εj
,

ξ′j =
ξj
εj
. Explicit computations give that

Ũ(x) = mj [uj(x) +Hj(x)] +
∑
i ̸=j

mi [ui(x) +Hi(x)]

= mj

[
log

2µj
|x− ξj − εjµjν(ξj)|2

− log(2µj) +H(x, ξj) +O(εαj )

]
+
∑
i̸=j

mi

[
log

1

|x− ξi − εiµiν(ξi)|2
+H(x, ξi) +O(εαi )

]
= mj

[
log

2µj
|y − ξ′j − µjν(ξ′j)|2

+ 2 log
1

εj
− log(2µj) +H(ξj, ξj) +O(|x− ξj|) +O(εαj )

]
+
∑
i̸=j

mi

[
log

1

|ξi − ξj|2
+H(ξj, ξi)

]
+
∑
i̸=j

mi

[
log

1

|x− ξi − εiµiν(ξi)|2
− log

1

|ξi − ξj|2
+O(|x− ξj|) +O(εαi )

]
= mj

[
log

2µj
|y − ξ′j − µjν(ξ′j)|2

+ 2 log
1

εj
− log(2µj) +H(ξj, ξj) +O(|x− ξj|) +O(εαj )

]
+
∑
i̸=j

miG(ξj, ξi) +
∑
i̸=j

mi

[
log

1

|x− ξi − εiµiν(ξi)|2
− log

1

|ξi − ξj|2
+O(|x− ξj|) +O(εαi )

]
,

as λ→ 0. We set

wj(x) = wµj(
x− ξj
εj

) = log
2µj

|y − ξ′j − µjν(ξ′j)|2
,

and

βj = − log(2µj) +H(ξj, ξj) +
∑
i ̸=j

m−1
j miG(ξj, ξi), θ(x) = O(|x− ξj|) +

k∑
j=1

O(εαj ).

We thus write the above expansion in the following compact form: for |x− ξj| < δ,

Ũ(x) = mj

(
wj(x) + log ε−2

j + βj + θ(x)
)
, as λ→ 0. (6.23)
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Formulas (6.22) and (6.23) give a precise description of the function Ũ .

The solution to (6.13) we are looking for has the form

ũ = Ũ + ϕ, (6.24)

where Ũ is defined as in (6.18), and ϕ represents a lower order correction. In fact, we aim
at finding a solution ũ for a function ϕ small in some proper sense provided that the points
ξj and the parameters mj are suitably chosen. Assuming for the moment that ϕ is small, we
rewrite problem (6.13) as follows{

−∆ϕ+ ϕ = 0 in Ω;

L(ϕ) = E +N(ϕ) on ∂Ω,
(6.25)

where

L(ϕ) :=
∂ϕ

∂ν
−

[
k∑
j=1

ε−1
j ewj

]
ϕ, (6.26)

E := f(Ũ)− ∂Ũ

∂ν
, (6.27)

and

N(ϕ) := f(Ũ + ϕ)− f(Ũ)− f ′(Ũ)ϕ+

[
f ′(Ũ)−

k∑
j=1

ε−1
j ewj

]
ϕ. (6.28)

Here and in what follows f denotes the nonlinearity

f(ũ) = λũeλũ
2

.

It is not hard to believe that having a good approximation Ũ to a solution of Problem (6.13)
is reflected into the fact that the function E is small, in some sense to be made precise. It is
in this context that we will choose µj and εj in such a way that the error of approximation
E for Ũ is small around each point ξj under some appropriate norm.

Let us be more precise. The error E is clearly defined by (6.27). Assume δ > 0 is a small
but fixed positive number and x ∈ ∂Ω with |x− ξj| < δ. In this region, we have that

f(Ũ) = λ
[
mj

(
wj(x) + log ε−2

j + βj + θ(x)
)]
eλ[mj(wj(x)+log ε−2

j +βj+θ(x))]
2

=

(
λmj(log

1

ε2j
+ βj) + λmj(wj +O(1))

)
×e

λm2
j (log

1

ε2
j

+βj)
2

e
2λm2

j (log
1

ε2
j

+βj)wj

e
2λm2

j (log
1

ε2
j

+βj)θ(x)

eλm
2
j (wj+θ(x))

2
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= λmj(log
1

ε2j
+ βj)

(
1 + (log

1

ε2j
+ βj)

−1(wj +O(1))

)
×e

λm2
j (log

1

ε2
j

+βj)
2

e
2λm2

j (log
1

ε2
j

+βj)wj

e
2λm2

j (log
1

ε2
j

+βj)θ(x)

eλm
2
j (wj+θ(x))

2

as λ→ 0. We thus choose εj to be defined as

2λm2
j

(
log

1

ε2j
+ βj

)
= 1. (6.29)

It is immediate to see that, with this definition, (6.20) holds true. Thanks to (6.29), one has

f(Ũ) =
1

2mj

(
1 + 2λm2

j(wj +O(1))
)
e

1
2
(log 1

ε2
j

+βj)

ewjeθ(x)eλm
2
j (wj+θ(x))

2

=
1

2mj

ε−1
j eβj/2

(
1 + 2λm2

j(wj +O(1))
)
ewjeθ(x)eλm

2
jw

2
j (1 +O(λ)wj).

On the other hand, in the same region, we have

∂Ũ

∂ν
=

∂

∂ν

[
mj

(
wj(x) + log ε−2

j + βj + θ(x)
)]

= mjε
−1
j ewj +

k∑
j=1

O(ε2j), as λ→ 0.

Thus, in order to match at main order the two terms ∂Ũ
∂ν

and f(Ũ) in a region near the point
ξj, we fix the parameter µj such that the number βj satisfies

eβj/2 = 2m2
j . (6.30)

This condition defines the parameter µj as follows

log(2µj) = −2 log(2m2
j) +H(ξj, ξj) +

∑
i̸=j

mim
−1
j G(ξi, ξj). (6.31)

With these choices of µj we get

f(Ũ) = mj

(
1 + 2λm2

j(wj +O(1))
)
ε−1
j ewjeλm

2
jw

2
j (1 +O(θ(x)))(1 +O(λ)wj)

= mj

(
1 + 2λm2

j(wj +O(1))
)
ε−1
j ewjeλm

2
jw

2
j (1 +O(λwj)).

As a conclusion, the election we made of µj and of εj gives that in the region |x − ξj| < δ,
the error of approximation can be described as follows

E = mj

{(
1 + 2λm2

j(wj +O(1))
)
eλm

2
jw

2
j (1 +O(λwj))− 1

}
ε−1
j ewj . (6.32)

Let us mention now that a direct computation shows that E(x) ∼ λε−1
j ewj(x) in the region

|x− ξj| = O(λ); while, in the region |x− ξj| > δ for all j, we have that |E(x)| ≤ Cλ, for some
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positive constant C. We thus conclude that the error of approximation satisfies the global
bound

|E| ≤ Cλρ(x),

where

ρ(x) :=
k∑
j=1

ρj(x)χBδ(ξj)(x) + 1.

Here χBδ(ξj) is the characteristic function on Bδ(ξj)
∩
∂Ω and

ρj(x) :=
1

2λm2
j

{(
1 + 2λm2

j(wj +O(1))
)
eλm

2
jw

2
j (1 +O(λwj))− 1

}
ε−1
j ewj

From now on, let us write

ρj(x) = cγj

{(
1 +

1

γj
(wj + 1)

)(
1 +

1

γj
(1 + |wj|)

)
e

w2
j

2γj − 1

}
ε−1
j ewj , (6.33)

where γj = log ε−2
j . We define the L∞−weight norm

∥h∥∗,∂Ω = sup
x∈∂Ω

ρ(x)−1|h(x)|. (6.34)

We thus have the validity of the following key estimate for the error term E

∥E∥∗,∂Ω ≤ Cλ. (6.35)

We conclude this section explaining the strategy to solve Problem (6.25), which guarantees
the existence of a solution to Problem (6.13) of the form (6.18). In fact, we will solve Problem
(6.25) into two steps. The first step consists in solving Problem (6.25) in a projected space.
Let us be more precise.

Define in R2
+ = {(x1, x2) : x2 > 0}

z0j(x1, x2) =
1

µj
− 2

x2 + µj
x21 + (x2 + µj)2

, z1j(x1, x2) = −2
x1

x21 + (x2 + µj)2
.

It has been shown in [27] that these functions are all the bounded solutions to the linearized
equation around wµj (6.16) associated to Problem (6.14), that is they solve

∆ψ = 0 in R2
+, − ∂ψ

∂x2
= ewµjψ on ∂R2

+. (6.36)

For ξj ∈ ∂Ω, we define Fj : Bδ(ξj) → M to be a diffeomorphism, where M is an open
neighborhood of the origin in R2

+ such that Fj(Ω ∩ Bδ(ξj)) = R2
+ ∩M , Fj(∂Ω ∩ Bδ(ξj)) =

∂R2
+ ∩M . We can select Fj so that it preserves area. Define

Zij(x) = zij
(
ε−1
j Fj(x)

)
, i = 0, 1, j = 1, . . . , k. (6.37)
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Next, let us consider a large but fixed number R0 > 0 and a nonnegative radial and smooth
cut-off function χ with χ(r) = 1 if r < R0 and χ(r) = 0 if r > R0 + 1, 0 ≤ χ ≤ 1. Then set

χj(x) = ε−1
j χ

(
ε−1
j Fj(x)

)
. (6.38)

The problem we first solve is to find a function ϕ and numbers cij such that
−∆ϕ+ ϕ = 0 in Ω;

L(ϕ) = E +N(ϕ) +
∑
i=0,1

k∑
j=1

cijZijχj on ∂Ω;∫
Ω
ϕZijχj = 0 for i = 0, 1, j = 1, · · · , k.

(6.39)

Consider the norm
∥ϕ∥∞ = sup

x∈Ω
|ϕ(x)|.

We prove the following

Proposition 6.3. Let δ > 0 be a small but fixed number. Assume the points ξ1, . . . , ξk ∈ ∂Ω
and the parameters m1, . . . ,mk satisfy

|ξi − ξj| ≥ δ, ∀ i ̸= j, δ < mj <
1

δ
. (6.40)

Then there exist positive numbers λ0 and C, such that, for any 0 < λ < λ0, Problem (6.39)
has a unique solution ϕ, cij which satisfies

∥ϕ∥∞ ≤ Cλ, |cij| ≤ Cλ

for all λ < λ0. Moreover, if we consider the map (ξ,m) 7→ ϕ into the space C(Ω̄), the
derivative Dξϕ and Dmϕ exists and defines a continuous function of (ξ,m). Besides, there
is a constant C > 0, such that

∥Dξslϕ∥∞ ≤ Cλ, ∥Dmsϕ∥∞ ≤ Cλ (6.41)

for all s, l.

The proof of this result is contained in Section 6.3.

At this stage of our argument, we have solved the nonlinear problem (6.39). In order to find
a solution to the original problem we need to find ξ and m such that

cij(ξ,m) = 0 for all i = 0, 1, j = 1, · · · , k. (6.42)

This problem is indeed variational: it is equivalent to finding critical points of a function of
ξ and m. Associated to (6.1), let us consider the energy functional Jλ given by

Jλ(u) =
1

2

∫
Ω

(|∇u|2 + u2)− λ

2

∫
∂Ω

eu
2

, u ∈ H1(Ω), (6.43)
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and the finite-dimensional restriction

Iλ(ξ,m) = Jλ

(√
λ
(
Ũ(ξ,m) + ϕ(ξ,m)

))
, (6.44)

where ϕ is the unique solution to problem (6.39) given by Proposition 6.3. Critical points of
Iλ correspond to solutions of (6.42) for a small λ, as the following result states.

Proposition 6.4. Under the assumptions of Proposition 6.3, the functional Iλ(ξ,m) is of
class C1. Moreover, for all λ > 0 sufficiently small, if Dξ,mIλ(ξ,m) = 0, then (ξ,m) satisfies
(6.42).

The proof of the above Proposition, together with the expansion of the functional Iλ(ξ,m)
is given in Section 6.4. Section 6.5 is devoted to conclude the proof of Theorem 6.1. The
final Appendix, Section 6.6, contains the proofs of some estimates we have used through the
paper.

6.3 Proof of Proposition 6.3

The proof of Proposition 6.3 is based on a fixed point argument and the invertibility property
of the following linear Problem: Given h ∈ L∞(∂Ω), find a function ϕ and constants cij such
that 

−∆ϕ+ ϕ = 0 in Ω;

L(ϕ) = h+
∑
i=0,1

k∑
j=1

cijχjZij on ∂Ω;∫
Ω
χjZijϕ = 0 for i = 0, 1, j = 1, . . . , k.

(6.45)

We shall prove the validity of the following

Proposition 6.5. Let δ > 0 be a small but fixed number and assume we have ξ1, . . . , ξk ∈ ∂Ω
and m1, . . . ,mk with

|ξi − ξj| ≥ δ, ∀ i ̸= j, δ < mj <
1

δ
. (6.46)

Then there exist positive numbers λ0 and C such that, for any 0 < λ < λ0 and any h ∈
L∞(∂Ω), there is a unique solution ϕ ≡ Tλ(h), and cij ∈ R to (6.45). Moreover,

∥ϕ∥∞ ≤ C∥h∥∗,∂Ω. (6.47)

159



CHAPTER 6. NEW SOLUTIONS FOR CRITICAL NEUMANN PROBLEMS R2

The proof of this result is based on the a-priori estimate for solutions to the following problem
−∆ϕ+ ϕ = f in Ω;

L(ϕ) = h+
∑
i=0,1

k∑
j=1

cijχjZij on ∂Ω;∫
Ω
χjZijϕ = 0 for i = 0, 1, j = 1, . . . , k.

(6.48)

Define

∥f∥∗∗,Ω := sup
x∈Ω

(
k∑
j=1

εσj
(1 + |x− ξj − εjµjν(ξj)|)2+σ

+ 1

)−1

|f(x)| (6.49)

where 0 < σ < 1.

Lemma 6.6. Under the assumptions of Proposition 6.5, if ϕ is a solutions of (6.48) for some
h ∈ L∞(∂Ω) and for some f ∈ L∞(Ω) with ∥h∥∗,∂Ω, ∥f∥∗∗,Ω <∞ and cij ∈ R, then

∥ϕ∥∞ ≤ C [∥h∥∗,∂Ω + ∥f∥∗∗,Ω] . (6.50)

Proof. We will carry out the proof of the a priori estimate (6.50) by contradiction. We assume
then the existence of sequences λn → 0, points ξnj ∈ ∂Ω and numbers mn

j , µ
n
j which satisfy

relations (6.46) and (6.31), functions hn, fn with ∥hn∥∗,∂Ω, ∥fn∥∗∗,Ω → 0, ϕn with ∥ϕn∥∞ = 1,
constants cij,n,

−∆ϕn + ϕn = fn, in Ω, (6.51)

L(ϕn) = hn +
2∑
i=0

k∑
j=1

cij,nZijχj, on ∂Ω, (6.52)∫
Ω

Zijχjϕn = 0, for all i, j. (6.53)

We will prove that in reality under the above assumption we must have that ϕn → 0 uniformly
in Ω̄, which is a contradiction that concludes the result of the Lemma.

Passing to a subsequence we may assume that the points ξnj approach limiting, distinct points
ξ∗j in ∂Ω. We claim that ϕn → 0 in C1 local sense on compacts of Ω̄\{ξ∗1 , . . . , ξ∗k}. Indeed, let
us observe that fn → 0 locally uniformly in Ω̄, away from the points ξj. Away from the ξ∗j ’s
we have then −∆ϕn + ϕn → 0 uniformly on compact subsets on Ω̄ \ {ξ∗1 , . . . , ξ∗k}. Since ϕn
is bounded it follows also that passing to a further subsequence, ϕn approaches in C1 local
sense on compacts of Ω̄\{ξ∗1 , . . . , ξ∗k} a limit ϕ∗ which is bounded and satisfies −∆ϕ∗+ϕ∗ = 0
in Ω\{ξ∗1 , . . . , ξ∗k}. Furthermore, observe that far from {ξ∗1 , . . . , ξ∗k}, hn → 0 locally uniformly
on ∂Ω \ {ξ∗1 , . . . , ξ∗k} and so we also have ∂ϕn

∂ν
→ 0 on ∂Ω \ {ξ∗1 , . . . , ξ∗k}. Hence ϕ∗ extends
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smoothly to a function which satisfies −∆ϕ∗+ϕ∗ = 0 in Ω, and ∂ϕ∗

∂ν
= 0 on ∂Ω. We conclude

that ϕ∗ = 0, and the claim follows.

For notational convenience, we shall omit the explicit dependence on n in the rest of the
proof. We shall next show that

|cij| ≤ C(∥ϕ∥∞ + ∥h∥∗,∂Ω + ∥f∥∗∗,Ω). (6.54)

Multiplying the first equation of (6.48) by Zij and integrating over B(ξj, δ), we find∑
l=0,1

clj

∫
∂Ω
∩
B(ξj ,δ)

χjZljZij = −
∫
∂Ω
∩
B(ξj ,δ)

hZij +

∫
∂Ω
∩
B(ξj ,δ)

L(Zij)ϕ−
∫
Ω
∩
∂B(ξj ,δ)

∂ϕ

∂ν
Zij

+

∫
Ω
∩
B(ξj ,δ)

(−∆Zij + Zij)ϕ−
∫
Ω
∩
B(ξj ,δ)

fZij (6.55)

Having in mind that ϕn → 0 in C1 sense in Ω
∩
∂B(ξj, δ), we have that

∫
Ω
∩
∂B(ξj ,δ)

∂ϕ
∂ν
Zij → 0

as λ→ 0. Furthermore, a direct computation shows that∫
∂Ω
∩
B(ξj ,δ)

χjZljZij =Miδli + o(1), as λ→ 0 (6.56)

where Mi is some universal constant and δli = 1 if i = l, and = 0 if i ̸= l. On the other hand,
we have that∫

∂Ω
∩
B(ξj ,δ)

(
∂Zij
∂ν

− [
k∑
j=1

ε−1
j ewj ]Zij

)
ϕ+

∫
Ω
∩
B(ξj ,δ)

(−∆Zij + Zij)ϕ ≤ C∥ϕ∥∞ (6.57)

and ∣∣∣∣∫
Ω

fZij

∣∣∣∣ ≤ C∥f∥∗∗,Ω. (6.58)

In fact, estimate (6.58) is a direct consequence of the definition of the ∥ · ∥∗∗,Ω-norm. Let us
prove the validity of (6.57). Recall that in Ω

∩
B(ξj, δ), we have that Zij(x) = zij(ε

−1
j Fj(x)),

where Fj is chosen to preserve area (see (6.37)). Performing the change of variables y =
ε−1
j Fj(x), we get that∫

Ω
∩
B(ξj ,δ)

(−∆Zij + Zij)ϕ = (1 + o(1))

∫
R2
+

∩
B(0, δ

εj
)

(
Lzij + ε2jzij

)
ϕ̃ (6.59)

where ϕ̃(y) = ϕ(F−1
j (εjy)) and L is a second order differential operator defined as follows

L = −∆+O(εj|y|)∇2 +O(εj)∇, in R2
+

∩
B(0,

δ

εj
). (6.60)
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Hence ∣∣∣∣∣
∫
Ω
∩
B(ξj ,δ)

(−∆Zij + Zij)ϕ

∣∣∣∣∣ ≤ C∥ϕ∥∞.

On the other hand, we observe that, after a possible rotation, we can assume that ∇Fj(ξj) =
I. Hence, using again the change of variables y = ε−1

j Fj(x), we get∫
∂Ω
∩
B(ξj ,δ)

L(Zij)ϕ = (1 + o(1))

∫
∂R2

+

∩
B(0, δ

εj
)

(B(zij)− W̃zij)b(y)ϕ̃ (6.61)

where W̃ (y) = εjW (F−1
j (εjy)) with W (x) =

∑k
j=1 ε

−1
j ewj , and b(y) is a positive function,

coming from the change of variables, which is uniformly positive and bounded as λ → 0.
Furthermore B is a differential operator of order one on ∂R2

+. In fact, we have that

B = − ∂

∂y2
+O(εj|y|)∇ on ∂R2

+

∩
B(0,

δ

εj
) (6.62)

On the other hand, since

W (x) = ε−1
j

2µjε
2
j

|x− ξj − εjµjν(ξj)|2

(
1 +

∑
l ̸=j

εlεjO(1)

)

we get

W̃ (y) =
2µj

y21 + µ2
j

+
∑
l

εαl
(1 + |y|)

on ∂R2
+

∩
B(0,

δ

εj
), (6.63)

for some 0 < α < 1. Thus we can conclude that∣∣∣∣∣
∫
∂Ω
∩
B(ξj ,δ)

L(Zij)ϕ

∣∣∣∣∣ ≤ C∥ϕ∥∞.

This shows the validity of (6.57).

We shall now estimate the term
∫
∂Ω
hZij. Using the definition of the ∥·∥∗,∂Ω-norm, we observe

that∣∣∣∣∫
∂Ω

hZij

∣∣∣∣ =

∫
∂Ω

ρ(x)−1|h|ρ(x)Zij ≤ ∥h∥∗,∂Ω
∫
∂Ω

ρ(x)Zij

= ∥h∥∗,∂Ω
∫
∂Ω

(
k∑
l=1

ρlχBδ(ξl)(x) + 1

)
Zij

≤ C∥h∥∗,∂Ω
k∑
l=1

∫
∂Ω∩Bδ(ξl)

γl

{(
1 +

wl + 1

γl

)(
1 +

1 + |wl|
γl

)
e

w2
l

2γl − 1

}
ε−1
l ewl
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+C∥h∥∗,∂Ω
∫

∂Ω\
∪k

l=1 Bδ(ξl)

Zij. (6.64)

Since Zij are uniformly bounded, as λ → 0, in ∂Ω \
∪k
l=1Bδ(ξl), we just need to estimate∫

∂Ω∩Bδ(ξj)

γj

{(
1 +

wj+1

γj

)(
1 +

1+|wj |
γj

)
e

w2
j

2γj − 1

}
ε−1
j ewj . Recall that the functions wj are de-

fined as

wj(x) = log
2µj

|y − ξ′j − µjν(ξ′j)|2
,

with y = x
εj
, ξ′j =

ξj
εj
, and γj = −2 log εj. We decompose ∂Ω ∩ Bδ(ξj) into the union of

∂Ω ∩B δ
γj

(ξj) and ∂Ω ∩
(
Bδ(ξj)\B δ

γj

(ξj)

)
. We write

∫
∂Ω∩Bδ(ξj)

γj

{(
1 +

wj + 1

γj

)(
1 +

1 + |wj|
γj

)
e

w2
j

2γj − 1

}
ε−1
j ewj

=

∫
∂Ω∩B δ

γj

(ξj)

γj

{(
1 +

wj + 1

γj

)(
1 +

1 + |wj|
γj

)
e

w2
j

2γj − 1

}
ε−1
j ewj

+

∫
∂Ω∩

(
Bδ(ξj)\B δ

γj

(ξj)

) γj

{(
1 +

wj + 1

γj

)(
1 +

1 + |wj|
γj

)
e

w2
j

2γj − 1

}
ε−1
j ewj

= L1 + L2. (6.65)

Using the change of variables εjy = x− ξj, we have

L1 =

∫
∂Ωεj∩B δ

γjεj

(0)

γj

{(
1 +

w̄j + 1

γj

)(
1 +

1 + |w̄j|
γj

)
e

w̄2
j

2γj − 1

}
ew̄j

and

L2 =

∫
∂Ωεj∩

(
B δ

εj

(0)\B δ
γjεj

(0)

) γj

{(
1 +

w̄j + 1

γj

)(
1 +

1 + |w̄j|
γj

)
e

w̄2
j

2γj − 1

}
ew̄j

where Ωεj =
Ω−ξj
εj

and

w̄j = log
2µj

|y − µjν(0)|2
.
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First we estimate L1:

L1 =

∫
∂Ωεj∩B δ

γjεj

(0)

γj

{(
1 +

w̄j + 1

γj

)(
1 +

1 + |w̄j|
γj

)
e

w̄2
j

2γj − 1

}
ew̄j

≤ C

∫
∂Ωεj∩B δ

γjεj

(0)

ew̄j = C

∫
∂Ωεj∩B δ

γjεj

(0)

1

|y − µjν(0)|2

≤ C

∫ µj

µj− δ
γjεj

1

r2
dr ≤ C.

On the other hand, using the fact that w̄j = −2 log r +O(1) with r = |y − µjν(0)|, the term
L2 can be estimated as follows

L2 =

∫
∂Ωεj∩

(
B δ

εj

(0)\B δ
γjεj

(0)

) γj

{(
1 +

w̄j + 1

γj

)(
1 +

1 + |w̄j|
γj

)
e

w̄2
j

2γj − 1

}
ew̄j

≤ C

∫
∂Ωεj∩

(
B δ

εj

(0)\B δ
γjεj

(0)

) γje
w̄2
j

2γj
γj + w̄j
γj

ew̄j

≤ C

∫ δ
εj

δ
γjεj

1

r2
e

(log r)2

| log εj | (γj − 2 log r)dr

≤ C

∫ log δ
εj

log δ
γjεj

e−te
t2

| log εj | (γj − t)dt ≤ C

∫ log δ
εj

log δ
γjεj

e−σt(γj − t)dt ≤ C

for some positive σ. Therefore we get∣∣∣∣∫
∂Ω

hZij

∣∣∣∣ ≤ C∥h∥∗,∂Ω. (6.66)

Thus, from (6.55)-(6.66) we find the validity of (6.54).

We now conclude our argument by contradiction to prove (6.50). From (6.54), we have that
cij,n is bounded, thus we may assume that cij,n → cij as n→ ∞.

Let us fix R > 0 large sufficiently but fixed. By the maximum principe and the Hopf Lemma
we find that,

max
Ω̄\
∪k

j=1 BRεj
(ξj,n)

|ϕn| = max
Ω̄\
∪k

j=1 ∂BRεj
(ξj,n)

|ϕn|.
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Thus, from ∥ϕn∥∞ = 1, we can find that there is some fixed j0 ∈ {1, 2, · · · , k} such that

max
Ω̄∩ ∂BRεj0

(ξj0,n)
|ϕn| = 1. (6.67)

Set Ωεj0
=

Ω−ξj0,n
εj0,n

, and consider

ϕ̂n(z) = ϕn(ξj0,n + εj0,nz), ĥn(z) = hn(ξj0,n + εj0,nz), f̂n(z) = fn(ξj0,n + εj0,nz),

Ẑij(z) = Zij(ξj0,n + εj0,nz)

Then
−∆ϕ̂n(z) + ε2j0ϕ̂n(z) = ε2j0fn(z) in Ωεj0

,

∂ϕ̂n
∂ν

− εj0 [
k∑
j=1

ε−1
j ewj ]ϕ̂n = εj0ĥn +

∑
i=0,1

k∑
j=1

εj0cij,nχjẐij on ∂Ωεj0
.

Then by elliptic estimate ϕ̂n (up to subsequence) converges uniformly on compact sets to a
nontrivial solution ϕ̂ ̸= 0 of the problem{

∆ϕ = 0, in R2
+;

∂ϕ
∂ν

− 2µj
x21+µ

2
j
ϕ = 0 on ∂R2

+.

By the nondegeneracy result ([27]), we conclude that ϕ̂ is a linear combination of z0j and
z1j. On the other hand, we can take the limit in the orthogonality relation and we find that∫
∂R2

+
χϕ̂zij = 0 for i = 0, 1. This contradicts the fact that ϕ̂ ̸≡ 0. This ends the proof of the

Lemma.

Proof of Proposition 6.5 In proving the solvability of (6.45), we may first solve the fol-
lowing problem: for given h ∈ L∞(∂Ω), with ∥h∥∗,∂Ω bounded, find ϕ ∈ L∞(Ω) and dij ∈ R,
i = 0, 1 j = 1, . . . , k such that

−∆ϕ+ ϕ =
∑
i=0,1

k∑
j=1

dijχjZij in Ω;

∂ϕ
∂ν

− [
k∑
j=1

ε−1
j ewj ]ϕ = h on ∂Ω;∫

Ω
χjZijϕ = 0 for i = 0, 1, j = 1, . . . , k.

(6.68)

First we prove that for any ϕ, dij solution to (6.68) the bound

∥ϕ∥∞ ≤ C∥h∥∗,∂Ω (6.69)

holds. In fact, by Lemma 6.6, we have

∥ϕ∥∞ ≤ C

(
∥h∥∗,∂Ω +

∑
i=0,1

k∑
j=1

εj|dij|

)
(6.70)
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and therefore it is enough to prove that εj|dij| ≤ C∥h∥∗,∂Ω.

Fix an integer j. To show that εj|dij| ≤ C∥h∥∗,∂Ω, we shall multiply equation (6.68) against a
test function, properly chosen. Let us observe that, the proper test function depends whether
we are considering the case i = 0 or i = 1. We start with i = 0. We define ẑ0j(y) = h(y)z0j(y),

where h(y) =
log( δ

εj
)−log |y|

log δ
εj

−logR
. In fact, we recognize that ∆h = 0 in B(0, δ

εj
) \ B(0, R), h = 1 on

∂B(0, R) and h = 0 on ∂B(0, δ
εj
).

Let η1 and η2 be two smooth cut-off functions defined in R2 as

η1 ≡ 1 in B(0, R), ≡ 0 in R2 \B(0, R + 1)

so that
0 ≤ η1 ≤ 1, |∇η1| ≤ C

and

η2 ≡ 1 in B(0,
δ

4εj
), ≡ 0 in R2 \B(0,

δ

3εj
)

so that
0 ≤ η2 ≤ 1, |∇η2| ≤ C

εj
δ
, |∇2η2| ≤ C(

εj
δ
)2.

We assume that R > R0 (see (6.38)) and we define

Z̃0j(x) = η1(ε
−1
j Fj(x))Z0j(x) +

(
1− η1(ε

−1
j Fj(x))

)
η2
(
ε−1
j Fj(x)

)
ẑ0j
(
ε−1
j Fj(x)

)
, (6.71)

for x ∈ B(ξj, δ)
∩

Ω.

We multiply equation (6.68) against Z̃0j and we integrate by parts. We get∑
a=0,1

daj

∫
Ω

χjZajZ̃0j =

∫
Ω

(−∆Z̃0j + Z̃0j)ϕ+

∫
∂Ω

hZ̃0,j +

∫
∂Ω

L(Z̃0j)ϕ

Observe first that, assuming R > R0, we have

daj

∫
Ω

χjZajZ̃0j = daj

∫
Ω

χjZajZ0j = εjM0δa0daj(1 + o(1)), as λ→ 0. (6.72)

Furthermore we have that ∣∣∣∣∫
∂Ω

hZ̃0j

∣∣∣∣ ≤ C∥h∥∗,∂Ω. (6.73)

We claim that

∥ −∆Z̃0j + Z̃0j∥∗∗,Ω ≤ C

| log εj|
(6.74)

∥L(Z̃0j)∥∗,∂Ω ≤ C

| log εj|
(6.75)
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The proof of estimates (6.74) and (6.75) is postponed to the Appendix, Section 6.6. Assuming
for the moment the validity of (6.74) and (6.75), from estimates (6.72)–(6.75) we conclude
that

|εjd0j| ≤ C
(
∥h∥∗,∂Ω + | log εj|−1∥ϕ∥∞

)
. (6.76)

We shall now obtain an estimate similar to (6.76) for εjd1j. To do so, we use another test
function. Indeed we multiply equation (6.68) against η2Z1j and we integrate by parts. We
get ∑

a=0,1

daj

∫
Ω

χjZajη2Z1j =

∫
Ω

(−∆(η2Z1j) + η2Z1j)ϕ−
∫
∂Ω

hη2Z1,j

+

∫
∂Ω

L(Z1j)η2ϕ+

∫
∂Ω

Z1j
∂η2
∂ν

ϕ

Observe first that, assuming R > R0, we have

daj

∫
Ω

χjZajη2Z1j = daj

∫
Ω

χjZajZ1j =M1δa1εjd1j(1 + o(1)), as λ→ 0,

and
∣∣∫
∂Ω
hη2Z1j

∣∣ ≤ C∥h∥∗,∂Ω. Using the change of variables y = ε−1
j Fj(x), we get that∫

∂Ω

Z1j
∂η2
∂ν

ϕ =

∫
∂Ωεj

z1j
∂η2
∂ν

ϕ̃

where Ωεj = Ω
εj

and ϕ̃(y) = ϕ(F−1
j (ε−1

j y)). But z1j = O( 1
1+r

) and ∇η2 = O(εj) so

|
∫
∂Ω
Z1j

∂η2
∂ν
ϕ| ≤ Cεj| log εj|. Using again the change of variables y = ε−1

j Fj(x), and pro-
ceeding similarly to (6.61), (6.62) and (6.63), one gets∫

∂Ω

L(Zij)η2ϕ = (1 + o(1))

∫
∂Ωεj

[
∂zij
∂ν

− W̃zij]η2ϕ̃

where ϕ̃(y) = ϕ(F−1
j (εjy)) and b(y) is a positive function, coming from the change of variables,

which is uniformly positive and bounded as λ → 0. Observe that
∂zij
∂ν

− W̃zij = O(
εj
1+r

) +

O(
εαj

1+r2
) for y ∈ Ωεj and |y| < δε−1

j , and this implies that∫
∂Ωεj

∣∣∣∣∂zij∂ν
− W̃zij

∣∣∣∣ ≤ Cεαj

for some 0 < α < 1. Thus we can conclude that∣∣∣∣∫
∂Ω

L(Zij) η2ϕ

∣∣∣∣ ≤ Cεαj ∥ϕ∥∞.

Consider once again the change of variables y = ε−1
j Fj(x). Arguing as in (6.59) and (6.60)

we get that ∫
Ω

(−∆(η2Zij) + η2Zij)ϕ = (1 + o(1))

∫
Ωεj

(
−∆(η2zij) + ε2jη2zij

)
ϕ̃
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where ϕ̃(y) = ϕ(F−1
j (εjy)). We thus compute in y ∈ Ωε1 , with |y| < δε−1

j ,

∆(η2z1j) = ∆η2 z1j + 2∇η2∇z1j + η2∆z1j = O(
ε21

1 + r
) +O(

εj
1 + r

) + η2∆z1j.

On the other hand, in this region we have −∆z1j + ε2jz1j = O(
εj

1+r2
) +O(

ε2j
1+r

). Thus∫
Ωεj

∣∣−∆(η2zij) + ε2jη2zij
∣∣ ≤ Cεj| log εj|

Summarizing all the above information, we get

|εjd1j| ≤ C (∥h∥∗,∂Ω + εj∥ϕ∥∞) (6.77)

Estimates (6.76), (6.77) combined with (6.70) yields

|εjdij| ≤ C∥h∥∗,∂Ω.

which gives the validity of (6.69). Now consider the Hilbert space

H =

{
ϕ ∈ H1(Ω) :

∫
Ω

χjZijϕ = 0 ∀ i = 0, 1, j = 1, . . . , k

}
,

endowed the norm ∥ϕ∥2H1 =
∫
Ω
(|∇ϕ|2 + ϕ2). Problem (6.68), expressed in a weak form, is

equivalent to find ϕ ∈ H such that∫
Ω

(∇ϕ∇ψ + ϕψ)−
∫
∂Ω

[
k∑
j=1

ε−1
j ewj ]ψ =

∫
∂Ω

hψ, for all ψ ∈ H,

With the aid of Fredholm’s alternative guarantees unique solvability of (6.68), which is guar-
antees by (6.69).

In order to solve (6.45), let Yls ∈ L∞(Ωε), d
ls
ij ∈ R be the solution of (6.68) with h = χsZls,

that is 
−∆Yls + Yls =

∑
i=0,1

k∑
j=1

dlsijχjZij in Ω;

∂Yls
∂ν

− [
k∑
j=1

ε−1
j ewj ]Yls = χsZls on ∂Ω;∫

Ω
χjZijYls = 0 for l = 0, 1, s = 1, . . . , k,

(6.78)

Then there is a unique solution Yls ∈ L∞(Ω) of (6.78), and

∥Yls∥∞ ≤ C, εj|dlsij| ≤ C (6.79)

for some constant C independent on λ.
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Multiplying (6.78) by Zij, and integrates by parts, we have

∑
i=0,1

k∑
j=1

∫
B(ξj ,δ)

dij,lsχj(Zij)
2 =

∫
∂B(ξj ,δ)

χsZlsZij +

∫
B(ξj ,δ)

(−∆Zij + Zij)Yls

+

∫
∂B(ξj ,δ)

(
∂Zij
∂ν

− [
k∑
j=1

ε−1
j ewj ]Zij

)
Yls

= δilδjs

∫
∂B(ξj ,δ)

χj(Zij)
2 + o(1)

where δil, δjs are Kronecker’s delta. Then we get

d0j,0s = aδjs + o(1), d1j,1s = bδjs + o(1) (6.80)

with a, b > 0 are independent of εj. Hence the matrix D1 (or D2) with entries d0j,0s (or d1j,1s)
in invertible for small εj and ∥D−1

i ∥ ≤ C(i = 1, 2) uniformly in εj.

Now, given h ∈ L∞(∂Ω) we find ϕ1, dij, solution to (6.68). Define constants cls as

∑
l=0,1

k∑
s=1

clsd
ls
ij = −dij, ∀ i = 0, 1, j = 1, . . . , k.

The above linear system is almost diagonal, since arguing as before one can show that dlsij =

ε−1
j Miδjsδil(1 + o(1)), as λ→ 0, where Mi is a positive universal constant. Then define

ϕ = ϕ1 +
∑
l=0,1

k∑
s=1

clsYls,

A direct computation shows that ϕ satisfies (6.45) and furthermore

∥ϕ∥∞ ≤ ∥ϕ1∥∞ +
∑
l=0,1

k∑
s=1

|cls| ≤ C∥h∥∗,∂Ω +
∑
i=0,1

k∑
j=1

εj|dij| ≤ C∥h∥∗,∂Ω

by (6.69). This finishes the proof of Proposition 6.5.

Remark 6.7. A slight modification of the proof above also shows that for any h ∈ L∞(∂Ω)
and f ∈ L∞(Ω), with ∥h∥∗,∂Ω, ∥f∥∗∗,Ω <∞, the equation

−∆ϕ+ ϕ = f in Ω;

L(ϕ) = h+
∑
i=0,1

k∑
j=1

cijχjZij on ∂Ω;∫
Ω
χjZijϕ = 0 for i = 0, 1, j = 1, . . . , k,
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has a unique solution ϕ, cij, i = 0, 1, j = 1, . . . , k and that satisfy

∥ϕ∥∞ ≤ C (∥h∥∗,∂Ω + ∥f∥∗∗,Ω) ,

|cij| ≤ C (∥h∥∗,∂Ω + ∥f∥∗∗,Ω) , ∀ i = 0, 1, j = 1, . . . , k

holds for C independent of λ.

The result of Proposition 6.5 implies that the unique solution ϕ = Tλ(h) of (6.45) defines
a continuous linear map form the Banach space C∗ of all functions h in L∞(∂Ω) for which
∥h∥∗,∂Ω <∞ into L∞, with norm bounded uniformly in λ.

Lemma 6.8. The operator Tλ is differentiable with respect to the variable ξ1, . . . , ξk on ∂Ω
satisfying 6.46, and m1, . . . ,mk, one has the estimate

∥DξTλ(h)∥∞ ≤ C∥h∥∗,∂Ω, ∥DmTλ(h)∥∞ ≤ C∥h∥∗,∂Ω. (6.81)

for a given positive C, independent of λ, and for all λ small enough.

Proof. Differentiating equation (6.45), formally Z := ∂ξslϕ, for all s, l, should satisfy in Ω the
equation

−∆Z + Z = 0 in Ω,

and on the boundary ∂Ω

L(Z) = −∂ξsl

(
k∑
j=1

ε−1
j ewj

)
ϕ+

∑
i=0,1

k∑
j=1

cij∂ξsl (χjZij) +
∑
i=0,1

k∑
j=1

dijZijχj

with dij = ∂ξslcij, and the orthogonality conditions now become∫
Ω

ZijχjZ = 0 if s ̸= j.

∫
Ω

ZisχsZ = −
∫
Ω

∂ξsl (Zisχs)ϕ.

We consider the constants αab, a = 0, 1, b = 1, . . . , k, defined as

αab

∫
Ω

χ2
b |Zab|2 =

∫
Ω

∂ξsl (Zabχb)ϕ, for a = 0, 1, b = 1, . . . , k.

Define

Z̃ = Z +
∑
a=0,1

k∑
b=1

αabχbZab.
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We then have
−∆Z̃ + Z̃ = f1 in Ω;

L(Z̃) = h1 +
∑
i=0,1

k∑
j=1

dijZijχj on ∂Ω;∫
Ω
χjZijZ̃ = 0 for i = 0, 1, j = 1, . . . , k,

where

f1 =
∑
a=0,1

k∑
b=1

αab(−∆(χbZab) + χbZab),

h1 = −∂ξsl

(
k∑
j=1

ε−1
j ewj

)
ϕ+

∑
i=0,1

k∑
j=1

cij∂ξls (Zijχj) +
∑
a=0,1

k∑
b=1

αabL(χbZab).

Hence, using the result of Proposition 6.5 we have that

∥Z̃∥∞ ≤ C (∥h1∥∗,∂Ω + ∥f1∥∗∗,Ω) .

By the definition of αab, we get |αab| ≤ C∥ϕ∥∞. Since ∥ϕ∥∞ ≤ C∥h∥∗,∂Ω, |cij| ≤ C∥h∥∗,∂Ω we
obtain that

∥Z̃∥∞ ≤ C∥h∥∗,∂Ω.

Hence we get
∥∂ξslTλ(h)∥∞ ≤ C∥h∥∗,∂Ω for all s, l.

Analogous computation holds true if we differentiate with respect to mj.

We are now in the position to prove Proposition 6.3.

Proof of Proposition 6.3. In terms of the operator Tλ defined in Proposition 6.5, problem
(6.39) becomes

ϕ = Tλ (E +N(ϕ)) := A(ϕ). (6.82)

For a given number γ > 0, let us consider the region

Fγ :=
{
ϕ ∈ C(Ω̄) : ∥ϕ∥∞ ≤ γλ

}
.

From Proposition 6.5, we get

∥A(ϕ)∥∞ ≤ C [∥E∥∗,∂Ω + ∥N(ϕ)∥∗,∂Ω] .

We claim that ∥∥∥∥∥f ′(Ũ)−
k∑
j=1

ε−1
j ewj

∥∥∥∥∥
∗,∂Ω

≤ Cλ. (6.83)
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and ∥∥∥f ′′(Ũ)
∥∥∥
∗,∂Ω

≤ C. (6.84)

We postpone the proofs of (6.83) and (6.84) to the Appendix, Section 6.6. From (6.35),
(6.83) and (6.84), from the definition of N(ϕ) in (6.28), it follows that

∥A(ϕ)∥∞ ≤ C
(
λ+ ∥ϕ∥2∞ + λ∥ϕ∥∞

)
.

We then get that A(Fγ) ⊂ Fγ for a sufficiently large but fixed γ and all small λ. Moreover,
for any ϕ1, ϕ2 ∈ Fγ, one has

∥N(ϕ1)−N(ϕ2)∥∗,∂Ω ≤ C

[(
max
i=1,2

∥ϕi∥∞
)
+ λ

]
∥ϕ1 − ϕ2∥∞,

In fact, since

N(ϕ1)−N(ϕ2)

= f(Ũ + ϕ1)− f(Ũ + ϕ2)− f ′(Ũ)(ϕ1 − ϕ2) +

[
f ′(Ũ)−

k∑
j=1

ε−1
j ewj

]
(ϕ1 − ϕ2)

=

∫ 1

0

(
d

dt
f(Ũ + ϕ2 + t(ϕ1 − ϕ2))

)
dt− f ′(Ũ)(ϕ1 − ϕ2) +

[
f ′(Ũ)−

k∑
j=1

ε−1
j ewj

]
(ϕ1 − ϕ2)

=

∫ 1

0

(
f ′(Ũ + ϕ2 + t(ϕ1 − ϕ2))− f ′(Ũ)

)
dt (ϕ1 − ϕ2) +

[
f ′(Ũ)−

k∑
j=1

ε−1
j ewj

]
(ϕ1 − ϕ2)

Thus, for a certain t∗ ∈ (0, 1), and s ∈ (0, 1)

|N(ϕ1)−N(ϕ2)|

≤ C

[
|f ′(Ũ + ϕ2 + t∗(ϕ1 − ϕ2))− f ′(Ũ)|+

(
f ′(Ũ)−

k∑
j=1

ε−1
j ewj

)]
∥ϕ1 − ϕ2∥∞

≤ C
[
|f ′′(Ũ + sϕ2 + t∗(ϕ1 − ϕ2))|

(
∥ϕ1∥L∞(Ω) + ∥ϕ2∥∞

)
+[f ′(Ũ)−

k∑
j=1

ε−1
j ewj ]

]
∥ϕ1 − ϕ2∥∞.

Thanks to (6.83), (6.84) and the fact that ∥ϕ1∥∞, ∥ϕ2∥∞ → 0 as λ→ 0, we conclude that

∥N(ϕ1)−N(ϕ2)∥∗,∂Ω ≤ C [∥ϕ1∥∞ + ∥ϕ2∥∞ + λ] ∥ϕ1 − ϕ2∥∞.

Then we have

∥A(ϕ1)− A(ϕ2)∥∞ ≤ C∥N(ϕ1)−N(ϕ2)∥∗,∂Ω ≤ C

[
max
i=1,2

∥ϕi∥∞ + λ

]
∥ϕ1 − ϕ2∥∞.
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Thus the operator A has a small Lipschitz constant in Fγ for all small λ, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map (ξ,m) = (ξ1, . . . , ξk,m1, . . . ,mk) 7→ ϕ.
Assume for instance that the partial derivative ∂ξslϕ exists, for s = 1, . . . , k, l = 1, 2. Since
ϕ = Tλ (N(ϕ) + E), formally we have that

∂ξslϕ = (∂ξslTλ) (N(ϕ) + E) + Tλ (∂ξslN(ϕ) + ∂ξslE) .

From (6.81), we have

∥∂ξslTλ (N(ϕ) + E) ∥∞ ≤ C∥N(ϕ) + E∥∗,∂Ω ≤ Cλ.

On the other hand,

∂ξslN(ϕ) = [f ′(Ũ + ϕ)− f ′(Ũ)− f
′′
(Ũ)ϕ]∂ξslŨ + ∂ξsl

(
∂Zij
∂ν

− [
k∑
j=1

ε−1
j ewj ]

)
ϕ

+[f ′(Ũ + ϕ)− f ′(Ũ)]∂ξslϕ+

(
f ′(Ũ)− [

k∑
j=1

ε−1
j ewµj ]

)
∂ξslϕ.

Then,

∥∂ξslN(ϕ)∥∗,∂Ω ≤ C
{
∥ϕ∥2∞ + λ∥ϕ∥∞ + ∥ϕ∥∞∥∂ξslϕ∥∞ + λ∥∂ξslϕ∥∞

}
.

Since ∥∂ξslE∥∗,∂Ω ≤ λ, Proposition 6.5 guarantees that

∥∂ξslϕ∥∞ ≤ Cλ

for all s, l. Analogous computation holds true if we differentiate with respect to mj. Then,
the regularity of the map (ξ,m) 7→ ϕ can be proved by standard arguments involving the
implicit function theorem and the fixed point representation (6.82). This concludes proof of
the Proposition.

6.4 Variation Reduction

Up to now we have solved the nonlinear problem (6.39). In order to find a solution to the
original problem we need to find ξ and m such that

cij(ξ,m) = 0 for all i = 0, 1, j = 1, · · · , k. (6.85)

We recall the following definitions: the energy functional associated to Problem (6.1) is

Jλ(u) =
1

2

∫
Ω

(|∇u|2 + u2)− λ

2

∫
∂Ω

eu
2

, u ∈ H1(Ω), (6.86)
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and the finite-dimensional restriction

Iλ(ξ,m) = Jλ

(√
λ
(
Ũ(ξ,m) + ϕ(ξ,m)

))
, (6.87)

where ϕ is the unique solution to problem (6.39) given by Proposition 6.3. Critical points of
Iλ correspond to solutions of (6.85) for a small λ, as the result of Proposition (6.4) states.
We give the proof of this result.

Proof of Proposition 6.4 A direct consequence of the results obtained in Proposition 6.3
and the definition of function Ũ is the fact the map (ξ,m) 7→ Iλ(ξ,m) is of class C1.

From Proposition 6.3, we have

Dξ,mIλ(ξ,m)

= Dξ,mJλ

(√
λ
(
Ũ(ξ,m) + ϕ(ξ,m)

)) [√
λDξ,mŨ(ξ,m) +

√
λDξ,mϕ(ξ,m)

]
= Dξ,mJλ

(√
λ
(
Ũ(ξ,m) + ϕ(ξ,m)

)) [√
λDξ,mŨ(ξ,m)

]
(1 + o(1)).

(6.88)

We can rewrite

(Ũ + ϕ)(ξ,m)(x) = mlvl

(
x− ξl
εl

)
+

1

2λml

with

vl(y) := wµl(y) +
k∑
j=1

(
O(|εly + ξl − ξj|) +O(ε2j)

)
for |y| ≤ δ

εl
.

Since Ũ + ϕ is the solution of (6.39), then vl satisfies

−∆vl + ε2l

(
vl +

1

2λm2
l

)
= 0, in Ωl

and

∂vl
∂ν

− (1 + 2λm2
l vl)e

vleλm
2
l v

2
l

= m−1
l εl

∑
i=0,1

k∑
j=1

cijε
−1
j χ

(
Fj(εly + ξl − ξj)

εj

)
zij

(
Fj(εly + ξl − ξj)

εj

)
, on ∂Ωl

where Ωl =
Ω−ξl
εl

. For any l, we define

Il(vl) =
1

2

∫
Ωl

[
|∇vl|2 + ε2l

(
vl +

1

2λm2
l

)2
]
−
∫
∂Ωl

evleλm
2
l v

2
l .
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We note that
Iλ(ξ,m) = λm2

l Il(vl).

We compute the differential DmsIλ(ξ,m), s = 1, · · · , k, thus we have

DmsIλ(ξ,m)

= λm2
lDmsIl(vl) = λm2

lDIl(vl)[Dmsvl]

= λmlεl
∑
i=0,1

k∑
j=1

(∫
∂Ωl

ε−1
j χ

(
Fj(εly + ξl − ξj)

εj

)
zij

(
Fj(εly + ξl − ξj)

εj

)
Dmsvl(y) dy

)
cij.

Now, fix i and j, we compute the coefficient in front of cij, we choose l = j and obtain∫
∂Ωl

ε−1
j χ

(
Fj(εly + ξl − ξj)

εj

)
zij

(
Fj(εly + ξl − ξj)

εj

)
Dmsvl(y) dy

=

∫
∂Ωl

ε−1
j χ (y) zij (y)Dms

[
wµj(y) +

k∑
j=1

(
O(|εjy|) +O(ε2j)

)]
dy

=
∂µj
∂ms

∫
∂R2

+

z20j(y) dy(1 + o(1)).

Thus we concludes that for any s = 1, 2, · · · , k, we have

DmsIλ(ξ,m) = λmlεl

k∑
j=1

∂µj
∂ms

∫
∂R2

+

z20j(y) dyc0j(1 + o(1)).

Similarly, we get that for all s, l

Dξs1Iλ(ξ,m)

= λmlεl

[
k∑
j=1

(
∂µj
∂ξs1

∫
∂R2

+

z20j(y)dy

)
c0j +

(∫
∂R2

+

z21s(y)dy

)
c1s

]
(1 + o(1)).

Thus, we can conclude that Dξ,mIλ(ξ,m) = 0, is equivalent to the following system[
k∑
j=1

∂µj
∂ms

c0j

]
(1 + o(1)) = 0, s = 1, 2, · · · , k, (6.89)

[
A

k∑
j=1

∂µj
∂ξs1

c0j + c1s

]
(1 + o(1)) = 0, for all s, (6.90)

for some fixed constant A, with o(1) small in the sense of the L∞ norm as λ → 0. The

conclusion of the Lemma follows if we show that the matrix
∂µj
∂ms

of dimension k × k is

175



CHAPTER 6. NEW SOLUTIONS FOR CRITICAL NEUMANN PROBLEMS R2

invertible in the range of the points ξj and parameters mj we are considering. Indeed, this
fact implies unique solvability of (6.89). Inserting this in (6.90) we get unique solvability of
(6.90).

Consider the definition of the µj, in terms ofm′
js and points ξj given in (6.46). These relations

correspond to the gradient DmF (m, ξ) of the function F (m, ξ) defined as follows

F (m, ξ) =
1

2

k∑
j=1

m2
j

[
−2 log

(
2m2

j

)
− log(2µj) + 2 +H(ξj, ξj)

]
+
∑
i ̸=j

mimjG(ξi, ξj).

We set sj = m2
j , then the above function can be written as follows

F (s, ξ) =
1

2

k∑
j=1

sj [−2 log(2sj)− log(2µj) + 2 +H(ξj, ξj)] +
∑
i̸=j

G(ξi, ξj)
√
sisj.

This function is strictly convex function of the parameters sj, for parameters sj uniformly
bounded and uniformly bounded away from 0 and for points ξj in Ω uniformly far away from

each other and from the boundary. For this reason, the matrix ( ∂2F
∂si∂sj

) is invertible in the

range of parameters and points we are considering. Thus, by the implicit function theorem,
relation (6.31) defines a diffeomorphism between µj and mj. This fact gives the invertibility

of (
∂µj
∂ms

). This concludes the proof of Lemma.

In order to solve for critical points of the functional Iλ, a key step is its expected closeness
to the functional Jλ(

√
λŨ). This fact is contained in the following

Lemma 6.9. The following expansion holds

Iλ(ξ,m) = Jλ(
√
λŨ) + ϑλ(ξ,m),

where
|ϑλ(ξ,m)|+ |∇ϑλ(ξ,m)| = O(λ3),

uniformly on points ξ1, . . . , ξk and parameters m1, . . . ,mk satisfying the constraints in Propo-
sition 6.5.

Proof. Taking into account DJλ(
√
λ(Ũ + ϕ))[ϕ] = 0, a Taylor expansion gives

Jλ(
√
λ(Ũ + ϕ))− Jλ(

√
λŨ)

= λ

∫ 1

0

D2Jλ

(√
λ(Ũ + tϕ)

)
[ϕ]2(1− t) dt (6.91)

= λ

∫ 1

0

(∫
∂Ω

[N(ϕ) + E]ϕ+

∫
∂Ω

[f ′(Ũ)− f ′(Ũ + tϕ)]ϕ2

)
(1− t) dt.

Since ∥ϕ∥∞ ≤ Cλ, we have

Jλ(
√
λ(Ũ + ϕ))− Jλ(

√
λŨ) = ϑλ(ξ,m) = O(λ3).
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Let us differentiate with respect to ξ. We use the representation (6.91) and differentiate
directly under the integral sign, we get that, for all j, l

∂ξjl

[
Jλ(

√
λ(Ũ + ϕ))− Jλ(

√
λŨ)

]
= λ

∫ 1

0

(∫
∂Ω

∂ξjl [(N(ϕ) + E)ϕ] +

∫
∂Ω

∂ξjl [(f
′(Ũ)− f ′(Ũ + tϕ))ϕ2]

)
(1− t) dt.

Since ∥∂ξjlϕ∥∞ ≤ Cλ and the computations in the proof of Lemma 6.3 we get

∂ξjl [Jλ(
√
λ(Ũ + ϕ))− Jλ(

√
λŨ)] = ∂ξjlϑλ(ξ,m) = O(λ3).

And, in the same argument, we get

∂mj
[Jλ(

√
λ(Ũ + ϕ))− Jλ(

√
λŨ)] = O(λ3).

The continuity in ξ andm of all these expressions is inherited from that of ϕ and its derivatives
in ξ and m in the L∞ norm. This concludes the proof.

We end this section with the asymptotic estimate of Jλ(U), where

U(x) =
√
λŨ(x) =

√
λ

k∑
j=1

mj

[
log

1

|x− ξj − εjµjν(ξj)|2
+Hj(x)

]
and Jλ is the energy functional associated to (6.1), whose definition is as follows

Jλ(u) =
1

2

∫
Ω

(|∇u|2 + u2)− λ

2

∫
∂Ω

eu
2

.

We have the following result.

Lemma 6.10. Let µj be given by (6.31). Then

Jλ(U) =
kπ

2
− |∂Ω|

2
λ+ πφk(ξ,m)λ+ λ2Θλ(ξ,m), (6.92)

with |∂Ω| denotes the measure of domain ∂Ω, and Θλ(ξ,m) is a function, uniformly bounded
with its derivatives, as λ→ 0, for points ξ and parameters m satisfying (6.46). Furthermore
the function φk(ξ,m) = φk(ξ1, . . . , ξk,m1, . . . ,mk) is defined by

φk(ξ,m) = 2(log 2− 1)
k∑
j=1

m2
j + 2

k∑
j=1

m2
j log(m

2
j)

−
k∑
j=1

m2
jH(ξj, ξj)−

∑
i ̸=j

mimjG(ξi, ξj).
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Proof. Let us set

U(x) =
k∑
j=1

Uj(x), with Uj(x) =
√
λmj[uj(x) +Hj(x)]

where

uj(x) = log
1

|x− ξj − εjµjν(ξj)|2

and Hj defined in (6.19). Then

Jλ(U) =
1

2

∫
Ω

∣∣∣∣∣
k∑
j=1

∇Uj

∣∣∣∣∣
2

+
1

2

∫
Ω

(
k∑
j=1

Uj

)2

− λ

2

∫
∂Ω

eU
2

=
k∑
j=1

1

2

∫
Ω

(
|∇Uj|2 + U2

j

)
+

1

2

∑
i̸=j

∫
Ω

(∇Ui∇Uj + UiUj)−
λ

2

∫
∂Ω

eU
2

= I1 + I2 + I3. (6.93)

First, we write∫
Ω

(|∇Uj|2 + U2
j ) = λm2

j

[∫
Ω

|∇uj|2 +
∫
Ω

u2j +

∫
Ω

|∇Hj|2 +
∫
Ω

(Hj)
2

+2

∫
Ω

∇uj∇Hj + 2

∫
Ω

ujHj

]
. (6.94)

Multiplying (6.19) by Hj, it yields∫
Ω

|∇Hj|2 +
∫
Ω

(Hj)
2 = −

∫
Ω

ujHj +

∫
∂Ω

∂Hj

∂ν
Hj

= −
∫
Ω

ujHj + 2εjµj

∫
∂Ω

eujHj −
∫
∂Ω

∂uj
∂ν

Hj,

Multiplying (7.31) by uj again, we find∫
Ω

u2j +

∫
Ω

Hjuj = −
∫
Ω

∇uj∇Hj + 2εjµj

∫
∂Ω

eujuj −
∫
∂Ω

∂uj
∂ν

uj,

Then we get∫
Ω

(|∇Uj|2 + U2
j )

= λm2
j

[∫
Ω

|∇uj|2 −
∫
∂Ω

∂uj
∂ν

uj +

∫
Ω

∇uj∇Hj −
∫
∂Ω

∂uj
∂ν

Hj + 2εjµj

∫
∂Ω

euj(uj +Hj)

]
= 2λm2

jεjµj

∫
∂Ω

euj(uj +Hj)
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= 2λm2
j

∫
∂Ω

εjµj
|x− ξj − εjµjν(ξj)|2

(
log

1

|x− ξj − εµjν(ξj)|2
+H(x, ξj) +O(εαj )

)
.

Taking the change of variables y =
x−ξj
εjµj

, we have∫
Ω

(|∇Uj|2 + U2
j )

= 2λm2
j

[∫
∂Ωεjµj

1

|y − ν(0)|2

(
log

1

|y − ν(0)|2
+H(ξj + εjµjy, ξj)− 2 log(µjεj)

)
+O(εαj )

]

= 2λm2
j

[∫
∂Ωεjµj

1

|y − ν(0)|2

(
log

1

|y − ν(0)|2
+H(ξj, ξj)− 2 log(εj)− 2 log(2µj) + 2 log 2

)

+2λm2
j

[∫
∂Ωεjµj

1

|y − ν(0)|2
(H(ξj + εjµjy, ξj)−H(ξj, ξj)) +O(εαj )

]
.

We have ∫
∂Ωεjµj

1

|y − ν(0)|2
= π +O(εαj ).

∫
∂Ωεjµj

1

|y − ν(0)|2
log

1

|y − ν(0)|2
=

∫ ∞

−∞

1

1 + t2
log

1

1 + t2
dt+O(εαj )

= −2π log(2) +O(εαj ).

and ∫
∂Ωεjµj

1

|y − ν(0)|2
(H(ξj + εµjy, ξj)−H(ξj, ξj))

=

∫
∂Ωεjµj

1

|y − ν(0)|2
O(εαj |y|α) = O(εαj ).

Using the definition of εj, we thus conclude that∫
Ω

(|∇Uj|2 + U2
j )

= 2λm2
j

[
−2π log 2 + π(H(ξj, ξj)− 2 log(εj)− 2 log(2µj) + 2 log 2) +O(εαj )

]
= π + 2λm2

j

[
πH(ξj, ξj)− 2π log(2m2

j)− 2π log(2µj) +O(εαj )
]

Therefore

I1 =
1

2

k∑
j=1

∫
Ω

(|∇Uj|2 + U2
j )
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=
kπ

2
+

k∑
j=1

λm2
j

[
πH(ξj, ξj)− 2π log(2m2

j)− 2π log(2µj) +O(εαj )
]
. (6.95)

On the other hand, we have∑
i̸=j

∫
Ω

(∇Ui∇Uj + UiUj)

=
∑
i̸=j

λmimj

[∫
Ω

∇ui∇uj +
∫
Ω

∇ui∇Hj +

∫
Ω

∇uj∇Hi +

∫
Ω

∇Hi∇Hj

+

∫
Ω

uiuj +

∫
Ω

uiHj +

∫
Ω

ujHi +

∫
Ω

HiHj

]
.

Multiplying (6.19) by Hi and integrating we find∫
Ω

∇Hj∇Hi +

∫
Ω

HjHi = −
∫
Ω

ujHi + 2εjµj

∫
∂Ω

eujHi −
∫
∂Ω

∂uj
∂ν

Hi.

Hence ∑
i̸=j

∫
Ω

(∇Ui∇Uj + UiUj)

=
∑
i̸=j

λmimj

[∫
Ω

∇ui∇uj +
∫
Ω

∇ui∇Hj +

∫
Ω

∇uj∇Hi

+

∫
Ω

uiuj +

∫
Ω

uiHj + 2εjµj

∫
∂Ω

eujHi −
∫
∂Ω

∂uj
∂ν

Hi

]
. (6.96)

Multiplying (6.19) by ui again and integrating we find∫
Ω

∇Hj∇ui +
∫
Ω

ujui = −
∫
Ω

Hjui + 2εjµj

∫
∂Ω

eujui −
∫
∂Ω

∂uj
∂ν

ui. (6.97)

By (6.96)-(6.97) we find that∑
i̸=j

∫
Ω

(∇Ui∇Uj + UiUj)

=
∑
i̸=j

λmimj

[∫
Ω

∇ui∇uj −
∫
∂Ω

∂uj
∂ν

ui +

∫
Ω

∇uj∇Hi −
∫
∂Ω

∂uj
∂ν

Hi

+2εjµj

∫
∂Ω

euj(ui +Hi)

]
.

Then

I2 =
1

2

∑
i̸=j

∫
Ω

(∇Ui∇Uj + UiUj) =
∑
i̸=j

λmimjεjµj

∫
∂Ω

euj(ui +Hi)
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=
∑
i ̸=j

λmimj

∫
∂Ω

εjµj
|x− ξj − εjµjν(ξj)|2

(
log

1

|x− ξj − εjµjν(ξj)|2
+Hi(x)

)
set

x− ξj
εjµj

= y

=
∑
i ̸=j

λmimj

∫
∂Ωεjµj

1

|y − ν(0)|2

(
log

1

|x− ξj − εjµjν(ξj)|2
+Hi(εjµjy + ξj)

)
=

∑
i ̸=j

λπmimj

[
G(ξi, ξj) +O

(
ε2i log

1

εi
+ ε2j log

1

εj

)
+O(εαi + εαj )

]
.

(6.98)

Finally, let us evaluate the third term in the energy

λ

2

∫
∂Ω

eU
2(x) =

λ

2

k∑
j=1

∫
∂Ω∩B(ξj ,δ

√
εj)

eU
2(x) +

λ

2

∫
∂Ω\

k∪
j=1

B(ξj ,δ
√
εj)

eU
2(x)

:= I + II. (6.99)

Since ∫
∂Ω∩B(ξj ,δ

√
εj)

eU
2(x)

=

∫
∂Ω∩B(ξj ,δεj | log εj |)

eU
2(x) +

∫
∂Ω∩(B(ξj ,δ

√
εj)\B(ξj ,δεj | log εj |))

eU
2(x) := IA + IB,

where

IA =

∫
∂Ω∩B(ξj ,δεj | log εj |)

eU
2(x)

=

∫
∂Ω∩B(ξj ,δεj | log εj |)

e[
√
λmj(−2 log εj+βj+wj+θ(x))]

2

= ε−1
j e

βj
2

∫
∂Ω∩B(ξj ,δεj | log εj |)

ewjeθ(x)eλm
2
j [w

2
j+2wjθ(x)+θ

2(x)]

= 2m2
jε

−1
j

∫
∂Ω∩B(ξj ,δεj | log εj |)

2µj

|x−ξj
εj

− µjν(ξ′j)|2
(1 +O(λ))

= 2m2
j

∫
∂Ω−ξj
εjµj

∩B(0,
δ| log εj |

µj
)

2

|y − ν(0)|2
(1 +O(λ))
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= 4πm2
j (1 + λΘλ(m, ξ)) , (6.100)

with Θλ(m, ξ) a function, uniformly bounded with its derivatives, as λ→ 0.

|IB| ≤ C

δε
− 1

2
j∫

δ| log εj |

1

r2
e

log2 r

γ2
j r dr

set t = log r

= C

R2+
γ2j
4∫

R1+log γ2j

e
−2t+ 4t2

γ2
j dt ≤ C

R2+
γ2j
4∫

R1+log γ2j

e−tdt = O(λ). (6.101)

Moreover, we have

II =
λ

2

[
|∂Ω|+

k∑
j=1

λ2Θλ(m, ξ)

]
, (6.102)

with |∂Ω| denotes the measure of domain ∂Ω, and Θλ(m, ξ) is a function, uniformly bounded
with its derivatives, as λ→ 0. Then from (6.99)-(6.102), we get

I3 = −2λπ
k∑
j=1

m2
j (1 + λΘλ(m, ξ)) . (6.103)

Hence from (6.95), (6.98) and (6.103) we obtain

Jλ(U) = π

[
k∑
j=1

m2
jH(ξj, ξj) +

∑
i̸=j

mimjG(ξi, ξj)− 2
k∑
j=1

m2
j − 2

k∑
j=1

m2
j log(2m

2
j)

]
λ

+
kπ

2
− |∂Ω|

2
λ− 2πλ

k∑
j=1

m2
j log(2µj) + o(λ).

By the choice of µj in (6.31), we get that the function Θ(ξ,m) in the expansion (6.92) is
uniformly bounded, as λ → 0, for points ξ and parameters m satisfying (6.46). In order to
prove that also the derivatives, in ξ and inm, of this function Θ(ξ,m) are uniformly bounded,
as λ → 0, in the same region, one argues similarly as for the C0 expansion of Jλ(U). We
leave the details to the reader. Thus the proof of Lemma is complete.

6.5 Proof of Theorem 6.1

In this section, we will prove the main result.
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Proof of Theorem 6.1 Let D be the open set such that

D̄ ⊂
{
(ξ,m) ∈ (∂Ω)k × Rk

+ : ξi ̸= ξj, ∀ i ̸= j)
}

From Lemma 6.4, the function

uλ(x) =
√
λ
(
Ũ(ξ,m) + ϕ(ξ,m)

)
where Ũ(ξ,m) defined by (6.18) and ϕ is the unique solution to problem (6.39) given by
Proposition 6.3, is a solution of problem (6.1) if we adjust (ξ,m) so that it is a critical point
of Iλ(ξ,m) defined by (6.44). This is equivalent to finding a critical point of

Ĩλ(ξ,m) =
1

πλ

[
Iλ(ξ,m)− kπ

2
+

|∂Ω|
2
λ

]
.

On the other hand, from Lemmas 6.9 and 6.10, for (ξ,m) ∈ D satisfies (6.17), we have that,

Ĩλ(ξ,m) = φk(ξ,m) + o(1)Θλ(m, ξ), (6.104)

where Θλ(m, ξ) and ∇Θλ(m, ξ) are uniformly bounded in consider region as λ → 0. Thus
we need to find a critical point of

φk(ξ,m) = 2(log 2− 1)
k∑
j=1

m2
j + 2

k∑
j=1

m2
j log(m

2
j)−

k∑
j=1

m2
jH(ξj, ξj)−

∑
i ̸=j

mimjG(ξi, ξj).

We make the change of variables sj = m2
j , and set b = 2(log 2− 1). And we next find critical

point of

φk(ξ, s) = b
k∑
j=1

sj + 2
k∑
j=1

sj log(sj)

−

[
k∑
j=1

sjH(ξj, ξj) +
k∑
i ̸=j

√
sisjG(ξi, ξj)

]
, (6.105)

which is well defined on D̄. For j ∈ {1, 2, . . . , k}, we have

∂sjφk(ξ, s) = b+ 2 + 2 log(sj)−H(ξj, ξj)−
1

2

k∑
i ̸=j

√
si
sj
G(ξi, ξj),

and

∂2sjsjφk(ξ, s) =
2

sj
+

1

4

k∑
i ̸=j

√
si
sj

1

sj
G(ξi, ξj),
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∂2sjsiφk(ξ, s) =
1

4

k∑
i ̸=j

1
√
sisj

G(ξi, ξj).

We have that φk(ξ, s) is strictly convex as a function s, and it is bounded below. Hence it
has a unique minimum point, which we denote by s̄ = (s̄1, . . . , s̄k), each component of s̄ is a
function of points ξ1, . . . , ξk, namely

s̄j = s̄j(ξ1, . . . , ξk)

satisfies

b+ 2 + 2 log(s̄j)−H(ξj, ξj)−
1

2

k∑
i ̸=j

√
s̄i
s̄j
G(ξi, ξj) = 0. (6.106)

We have

(1) s̄j is a C
1 function with respect to ξ defined in (∂Ω)k;

(2) There is a positive constant c0, such that s̄j ≥ c0 for each j = 1, . . . , k;

(3) s̄j → +∞ as |ξi − ξj| → 0 for some i ̸= j.

In fact, (1) directly holds by the implicit function theorem. Moreover, since G(ξi, ξj) is
positive and H(ξj, ξj) is bounded, from (6.106) we have

s̄2j > e−(b+2)+H(ξj ,ξj)

Then we get (2) holds. Furthermore, for some i ̸= j we have G(ξi, ξj) → +∞ as |ξi−ξj| → 0,
so (3) holds by (6.106).

A direct computation shows that

Φk(ξ) := φk(ξ, s̄) = −2
k∑
j=1

s̄j(ξ)

for ξ ∈ Ω̂k = {(ξ1, . . . , ξk) ∈ (∂Ω)k : ξi ̸= ξj if i ̸= j}.

Given one component C0 of ∂Ω. Let Λ : S1 → C0 be a continuous bijective function the
parametrizes C0. Set

Ω̃k = {(ξ1, . . . , ξk) ∈ Ck0 : |ξi − ξj| > δ for i ̸= j}.

Next, we find critical point of Φk. The function Φk is C1, bounded from above in Ω̃k, and
from (3) we have

Φk(ξ) = Φk(ξ1, . . . , ξk) → −∞ as |ξi − ξj| → 0 for some i ̸= j.
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Hence, since δ is arbitrarily small, Φk has an absolute maximum M in Ω̃k.

On the other hand, Using Ljusternik-Schnirelmann theory as the proof in [27], we get that Φk

has at least two distinct points in Ω̃k. Let cat(Ω̃k) be the Ljusternik-Schnirelmann category of
Ω̃k relative to Ω̃k, which is the minimum number of closed and contractible in Ω̃k sets whose
union covers Ω̃k. We will estimate the number of critical points for Φk below by cat(Ω̃k).

Claim: cat(Ω̃k) > 1.

Indeed, by contradiction, suppose that cat(Ω̃k) = 1. This means that Ω̃k is contractible in
itself, namely there exist a point ξ0 ∈ Ω̃k and a continuous function Γ : [0, 1] × Ω̃k → Ω̃k,
such that, for all ξ ∈ Ω̃k,

Γ(0, ξ) = ξ, Γ(1, ξ) = ξ0.

Define f : S1 → Ω̃k to be the continuous function given by

f(ξ̄) =
(
Λ(ξ̄),Λ(e2πi

1
k ξ̄), . . . ,Λ(e2πi

k−1
k ξ̄)

)
.

Let η : [0, 1]× S1 → S1 be the well defined continuous map given by

η(t, ξ̄) = Λ−1 ◦ π1 ◦ Γ(t, f(ξ̄)),

where π1 is the projection on the first component. The function η is a contraction of S1 to
a point and this gives a contradiction, then claim follows.

Therefore we have that cat(Ω̃k) ≥ 2 for any k ≥ 1. Define

c = sup
C∈Ξ

inf
ξ∈C

Φk(ξ)

where
Ξ = {C ⊂ Ω̃k : C closed and cat(C) ≥ 2}.

Then by Ljusternik-Schnirelmann theory we obtain that c is a critical level.

If c ̸= M , we conclude that Φk has at least two distinct critical points in Ω̃k. If c = M ,
there is at least one set C such that cat(C) ≥ 2, where the function Φk reaches its absolute
maximum. In this case we conclude that there are infinitely many critical points for Φk in
Ω̃k.

Thus we obtain that the function Φk has at least two distinct critical points in Ω̃k, denote
by ξ1, ξ2. Hence (ξ1, s̄(ξ1)) and (ξ2, s̄(ξ2)) are two distinct critical points for the function
φk(ξ, s). From (6.104) we then have that Ĩλ(ξ,m) has at least two critical points. This ends
the proof of Theorem.
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6.6 Appendix

Proof of (6.74). We shall prove

∥ −∆Z̃0j + Z̃0j∥∗∗,Ω ≤ C

| log εj|

where Z̃0j is defined in (6.71). Performe the change of variables y = ε−1
j Fj(x) and denote

z̃0j(y) = Z̃0j(F
−1
j (εjy)). Then −∆Z̃0j + Z̃0j =

(
Lz̃0j + ε2j z̃0j

)
, where L is defined in (6.60).

We shall show that

∣∣(Lz̃0j + ε2j z̃0j
)∣∣ ≤ C

| log εj|

[
ε2j +

m∑
j=1

(1 + |y − ξ′j|)−2−σ

]
, y ∈ Ω

εj
.

This fact implies (6.74).

Let us first consider the region where |y| < R. In this region, z̃0j = z0j. Since ∆z0j = 0 and
since (6.60) holds, we have that(

Lz̃0j + ε2j z̃0j
)
= O(εj) for |y| < R. (6.107)

In the region R + 1 < |y| < δ
4εj

, we have z̃0j = hz0j. Therefore, in this region,

|∆z̃0j| = 2|∇h∇z0j| ≤
C

r3 log δ
ε j

R + 1 < r <
δ

4εj
, r = |y|.

For the other terms we find

|∇2z̃0j| ≤ |∇2h|z0j + 2|∇h∇z0j|+ h|∇2z0j|

= O(
1

r2 log δ
ε j

) +O(
1

r3 log δ
ε j

) +O(
1

r3
) R + 1 < r <

δ

4εj

so

O(εj|y|)|∇2z̃0j| = O(
εj

r log δ
ε j

) +O(
εj
r2
) R + 1 < r <

δ

4εj
.

Also

|∇z̃0j| ≤ |∇h|z0j + h|∇z0j| = O(
1

r log δ
ε j

) +O(
1

r2
) R + 1 < r <

δ

4εj
.

Hence(
Lz̃0j + ε2j z̃0j

)
= O(

1

r3 log δ
ε j

) +O(
εj

r log δ
ε j

) +O(
εj
r2
) + ε2j z̃0j R + 1 < r <

δ

4εj
. (6.108)
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In the region δ
4ε
< r < δ

3ε
the definition of z̃0j is z̃0j = η2hz0j. We will estimate each term of

(6.60) using the facts that ∇η2 = O(
εj
δ
), |∇2η2| = O(

ε2j
δ2
) and that in the considered region

h = O( 1
log δ

ε j

) which implies also z̃0j = O( 1
log δ

ε j

). We obtain

∆z̃0j = ∆η2hz0j + 2∇η2∇(hz0j) + η2∆(hz0j)

= ∆η2hz0j + 2∇η2∇hz0j + 2∇η2∇z0jh+ 2η2∇h∇z0j

= O(
ε2j

δ2 log δ
ε j

) +O(
εj

rδ log δ
ε j

) +O(
εj

r2δ log δ
ε j

) +O(
1

r3 log δ
ε j

)

= O(
ε2j

δ2 log δ
ε j

)
δ

4εj
< r <

δ

3εj
.

Next

∇2z̃0j = ∇2η2hz0j + 2∇η2∇(hz0j) + η2∇2(hz0j)
δ

4εj
< r <

δ

3εj
.

and by the above computations, for δ
4εj

< r < δ
3εj

,

∇2z̃0j = O(
ε2j

δ2 log δ
ε j

) + η2(∇2hz0j + 2∇h∇z0j + h∇2z0j) = O(
ε2j

δ2 log δ
ε j

).

Similarly, for δ
4εj

< r < δ
3εj

∇z̃0j = ∇η2hz0j + η2∇hz0j + η2h∇z0j = O(
εj

δ log δ
ε j

)

This shows that (
Lz̃0j + ε2j z̃0j

)
= O(

ε2

δ2 log δ
ε j

)
δ

4εj
< r <

δ

3εj
. (6.109)

Thus we only need to estimate the size of Lz̃0j + ε2j z̃0j in the region R < r < R + 1. In this
region we have z̃0j = η1z0j + (1− η1j)hz0j and hence

∆z̃0j = ∆η1(1− h)z0j − 2∇η1∇hz0j + 2∇η1∇z0j(1− h) + η1∆z0j

+ (1− η1)∆(hz0j)

= O(
1

log δ
ε j

) + +η1∆z0j + (1− η1)∆(hz0j) R < r < R + 1.

First we recall that ∆z0j = 0 and, for R < r < R + 1,

∆(hZ0j) = 2∇h∇z0j +O(εj) = O(
1

log δ
ε j

) +O(εj).
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Thus

Lz̃0j + ε2j z̃0j = O(
1

log δ
ε

) R < r < R + 1. (6.110)

This bound and (6.107), (6.108) and (6.109) imply (6.74).

Proof of (6.75). We shall prove

∥L(Z̃0j)∥∗,∂Ω ≤ C

| log εj|

We perform the change of variables y = ε−1
j Fj(x). We already observed that we can assume

that ∇Fj(ξj) = I. Hence,

L(Z̃0j) = (1 + o(1))
[
B(z̃0j)− W̃ z̃0j

]
where z̃0j = Z̃0j(F

−1
j (εjy)) and W̃ (y) = W (F−1

j (εjy)). B is the differential operator of order

one on ∂R2
+, defined in (6.62) and W̃ is described in (6.63). Thus in the region y ∈ ∂

(
Ω
εj

)
,

with |y| < R, we get
B(z̃0j)− W̃ z̃0j = O(εj) (6.111)

Next, in the region R < |x| < R + 1 we have

∇z̃0j = ∇(η1(1− h)z0j + hz0j)

= ∇η1(1− h)z0j − η1∇hz0j + η1(1− h)∇z0j +∇hz0j + h∇z0j

= O(
1

log δ
ε j

) + η1(1− h)∇z0j + h∇z0j.

Since h is radial this implies

B(z̃0j) = −h∂z0j
∂x2

+O(
1

R2 log δ
ε j

) +O(
Rεj

log δ
ε j

) R < |y| < R + 1, y ∈ ∂R2
+.

Using (6.63) we see that

B(z̃0j)− W̃ z̃0j = O(
1

R2 log δ
ε j

) +O(
Rεj

log δ
ε j

) R < |y| < R + 1, y ∈ ∂R2
+. (6.112)

Using the fact that h has zero normal derivative on ∂R2
+ we deduce

B(h̃z0j) = −h∂z0j
∂x2

+O(εjr)(∇hz0j + h∇z0j) (6.113)

= −h∂z0j
∂x2

+O(
εj

log δ
ε j

) +O(
εj
r
) R + 1 < r <

δ

εj
.
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On the other hand, using (6.63) we have in R + 1 < r < δ
εj

B(z̃0j)− W̃ z̃0j = O(
εj

log δ
ε j

) +O(
εαj
r
) (6.114)

for some 0 < α < 1. Finally we consider δ
4εj

< r < δ
3εj

. Here we have z̃0j = η2hz0j and

h, z0j = O( 1
log δ

ε j

), ∇η̄2 = O(
εj
δ
). Using these facts, estimate (6.113) and that η2 has zero

normal derivative we find

B(z̃0j) = B(η2)hz0j + η2B(hz0j)

= O(
ε2jr

δ log δ
ε j

) +O(
1

r2
) +O(

εj

log δ
ε j

) +O(
εj
r
)

δ

4εj
< r <

δ

3εj
.

From (6.63) we have

W̃ = O(
εαj
r
)

δ

4εj
< r <

δ

εj
.

Thus we conclude that for y ∈ ∂Ωεj ,
δ

4εj
< r < δ

3εj

B(z̃0j)− W̃ z̃0j = O(
ε2jr

δ log δ
ε j

) +O(
1

r2
) +O(

εj

log δ
ε j

) +O(
εj
r
). (6.115)

Estimates (6.111), (6.112), (6.114) and (6.115) give the validity of (6.75).

Proof of (6.83). We shall prove∥∥∥∥∥f ′(Ũ)−
k∑
j=1

ε−1
j ewj

∥∥∥∥∥
∗,∂Ω

≤ Cλ.

Indeed, we have

f ′(Ũ) = λeλŨ
2

+ 2λ2Ũ2eλŨ
2

:= Ia + Ib.

For x ∈ ∂Ω, far away from the points ξj, namely for |x − ξj| > δ, i.e. |y − ξ′j| > δ
εj
, for all

j = 1, 2, . . . , k, a consequence of (6.22) is that

Ia = λO(1), Ib = λ2O(1).

Then we have
f ′(Ũ)1outer = λO(1), (6.116)

where 1outer is the characteristic function of the set {y : |y−ξ′j| > δ
εj
, j = 1, . . . , k}. Moreover,

for |x− ξj| > δ, we have

k∑
j=1

ε−1
j ewj1outer = O(1)

k∑
j=1

εj = O(1)
k∑
j=1

2m2
je

− 1

4m2
j

1
λ
= λO(1). (6.117)
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On the other hand, fix the index j in {1, 2, . . . , k}, for |x − ξj| < δ, from (6.23), (6.29) and
(6.30) we have

Ia = λeλm
2
j(wj(x)+log ε−2

j +βj+θ(x))
2

= λe
λm2

j (log
1

ε2
j

+βj)
2

e
2λm2

j (log
1

ε2
j

+βj)wj

e
2λm2

j (log
1

ε2
j

+βj)θ(x)
eλm

2
j (wj+θ(x))

2

= λe
1
2
(log 1

ε2
j

+βj)

ewjeθ(x)eλm
2
j (wj+θ(x))

2

= λeβj/2ε−1
j ewjeθ(x)eλm

2
jw

2
j (1 +O(λ)wj)

= 2λm2
je
λm2

jw
2
j (1 +O(λwj))ε

−1
j ewj ,

and

Ib = 2λ2
(
wj(x) + log ε−2

j + βj + θ(x)
)2
eλm

2
j(wj(x)+log ε−2

j +βj+θ(x))
2

= 2λ2(log
1

ε2j
+ βj)

2

(
1 + (log

1

ε2j
+ βj)

−1(wj +O(1))

)2

×e
λm2

j (log
1

ε2
j

+βj)
2

e
2λm2

j (log
1

ε2
j

+βj)wj

e
2λm2

j (log
1

ε2
j

+βj)θ(x)

eλm
2
j (wj+θ(x))

2

=
1

2m4
j

(
1 + 2λm2

j(wj +O(1))
)2
e

1
2
(log 1

ε2
j

+βj)

ewjeθ(x)eλm
2
j (wj+θ(x))

2

=
1

2m4
j

(
1 + 2λm2

j(wj +O(1))
)2
eβj/2ε−1

j ewjeθ(x)eλm
2
jw

2
j (1 +O(λ)wj)

=
1

m2
j

(
1 + 2λm2

j(wj +O(1))
)
eλm

2
jw

2
j (1 +O(λwj))ε

−1
j ewj .

Then we find

Ia1inter = λ
k∑
j=1

ρj(x)O(1), Ib1inter −
k∑
j=1

ε−1
j ewj = λ

k∑
j=1

ρj(x)O(1). (6.118)

where 1inter is the characteristic function of the set ∪kj=1{y : |y − ξ′j| < δ
εj
}. Then from

(6.116), (6.117), (6.118) and the definition of ∗−norm, we obtain estimate (6.83).

Proof of (6.84). We shall prove ∥∥∥f ′′(Ũ)
∥∥∥
∗,∂Ω

≤ C.

Indeed, we have

f ′′(Ũ) = 6λ2ŨeλŨ
2

+ 4λ3Ũ3eλŨ
2

:= Ic + Id.

For x ∈ ∂Ω, far away from the points ξj, namely for |x − ξj| > δ, i.e. |y − ξ′j| > δ
εj
, for all

j = 1, 2, . . . , k, a consequence of (6.22) is that

Ic = λ2O(1), Id = λ3O(1).
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Then we have
f ′′(Ũ)1outer = λ2O(1). (6.119)

On the other hand, fix the index j in {1, 2, . . . , k}, for |x − ξj| < δ, from (6.23), (6.29) and
(6.30) we have

Ic = 6λ2
(
wj(x) + log ε−2

j + βj + θ(x)
)
eλm

2
j(wj(x)+log ε−2

j +βj+θ(x))
2

= 6λ2(log
1

ε2j
+ βj)

(
1 + (log

1

ε2j
+ βj)

−1(wj +O(1))

)
×e

λm2
j (log

1

ε2
j

+βj)
2

e
2λm2

j (log
1

ε2
j

+βj)wj

e
2λm2

j (log
1

ε2
j

+βj)θ(x)
eλm

2
j (wj+θ(x))

2

=
3λ

m2
j

(
1 + 2λm2

j(wj +O(1))
)
e

1
2
(log 1

ε2
j

+βj)
ewjeθ(x)eλm

2
j (wj+θ(x))

2

=
3λ

m2
j

(
1 + 2λm2

j(wj +O(1))
)
eβj/2ε−1

j ewjeθ(x)eλm
2
jw

2
j (1 +O(λ)wj)

= 6λ
(
1 + 2λm2

j(wj +O(1))
)
eλm

2
jw

2
j (1 +O(λwj))ε

−1
j ewj

= 6λ
{(

1 + 2λm2
j(wj +O(1))

)
eλm

2
jw

2
j (1 +O(λwj))− 1

}
ε−1
j ewj + 6λε−1

j ewj

= 12λ2m2
j

1

2λm2
j

{(
1 + 2λm2

j(wj +O(1))
)
eλm

2
jw

2
j (1 +O(λwj))− 1

}
ε−1
j ewj︸ ︷︷ ︸

=ρj(x)

+ 6λε−1
j ewj︸ ︷︷ ︸

=λρj(x)O(1)

= λρj(x)O(1),

and

Id = 4λ3
(
wj(x) + log ε−2

j + βj + θ(x)
)3
eλm

2
j(wj(x)+log ε−2

j +βj+θ(x))
2

= 4λ3(log
1

ε2j
+ βj)

3

(
1 + (log

1

ε2j
+ βj)

−1(wj +O(1))

)3

×e
λm2

j (log
1

ε2
j

+βj)
2

e
2λm2

j (log
1

ε2
j

+βj)wj

e
2λm2

j (log
1

ε2
j

+βj)θ(x)

eλm
2
j (wj+θ(x))

2

=
1

2m6
j

(
1 + 2λm2

j(wj +O(1))
)3
e

1
2
(log 1

ε2
j

+βj)

ewjeθ(x)eλm
2
j (wj+θ(x))

2

=
1

2m6
j

(
1 + 2λm2

j(wj +O(1))
)3
eβj/2ε−1

j ewjeθ(x)eλm
2
jw

2
j (1 +O(λ)wj)

=
1

m4
j

(
1 + 2λm2

j(wj +O(1))
)
eλm

2
jw

2
j (1 +O(λwj))ε

−1
j ewj

=
2λ

m2
j

1

2λm2
j

{(
1 + 2λm2

j(wj +O(1))
)
eλm

2
jw

2
j (1 +O(λwj))− 1

}
ε−1
j ewj︸ ︷︷ ︸

=ρj(x)

+
1

m4
j

ε−1
j ewj︸ ︷︷ ︸

=ρj(x)O(1)

= ρj(x)O(1).
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Thus we obtain

f ′′(Ũ)1inter = O(1)
k∑
j=1

ρj(x). (6.120)

Then from (6.119), (6.120) and the definition of ∗−norm, we obtain estimate (6.84).
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Chapter 7

Critical points of the Trudinger-Moser
trace funcational

7.1 Introduction

Let Ω be a bounded domain in R2 with smooth boundary, and let H1(Ω) be the Sobolev
space, equipped with the norm

∥u∥ =

(∫
Ω

(|∇u|2 + u2)dx

) 1
2

.

Let α be a positive number, the Trudinger-Moser trace inequality states that

Cα(Ω) = sup
u∈H1(Ω), ∥u∥≤1

∫
∂Ω

eα |u|2
{

≤ C < +∞ , if α ≤ π

= +∞, if α > π
(7.1)

[6, 22, 23, 74, 114]. For (7.1) there is a loss of compactness at the limiting exponent α = π.
Despite of that, it has been proven in [124] that the supremum Cπ(Ω) is attained by a function
u ∈ H1(Ω) with

∫
Ω
[|∇u|2+u2] = 1, for any bounded domain Ω in R2, with smooth boundary.

Also, for any α ∈ (0, π), the supremum Cα(Ω) is finite and it is attained. But the exponent
α = π is critical in the sense that for any α > π, Cα(Ω) = ∞. See also [24, 72, 73] for
generalizations.

The aim of this chapter is to study the existence of critical points of the Trudinger-Moser
trace functional

Eα(u) =

∫
∂Ω

eαu
2

, (7.2)

constrained to functions

u ∈M =
{
u ∈ H1(Ω) : ∥u∥2 = 1

}
(7.3)

193



CHAPTER 7. CRITICAL POINTS OF THE TRUDINGER-MOSER TRACE
FUNCATIONAL

in the super critical regime
α > π.

In view of the results described above, we will be interested in critical points other than global
supremum. As far as we know, no results are known in the literature concerning existence of
critical points for the Trudinger-Moser trace constrained problem in the super critical regime.
Nevertheless, much more is known for the corresponding Trudinger-Moser functional.

Let us recall that the Trudinger-Moser inequality in dimension 2 states that

sup
u∈H1

0 (Ω), ∥∇u∥2≤1

∫
Ω

eµ |u|2dx

{
≤ C < +∞ , if µ ≤ 4π

= +∞, if µ > 4π.
(7.4)

Here again Ω is a bounded domain of R2, with smooth boundary. For problem (7.4) there is a
loss of compactness at the limiting exponent µ = 4π [79]. Despite of this loss of compactness,
the supremum

sup
u∈H1

0 (Ω), ∥∇u∥2≤1

∫
Ω

e4π |u|2dx

is attained for any bounded domain Ω ⊂ R2. This was proven first in the seminal work [18]
for the ball Ω = B1(0) (see also an alternative proof in [30]). In [111] the result was proven for
domains Ω which are small perturbation of the ball. The general result in dimension 2 was
proven by Flucher in [53], and Lin [80] extended it for the corresponding Trudinger-Moser
inequality for general domain of RN , with N > 2.

Concerning the super critical regime for the Trudinger-Moser functional, namely

Iµ(u) =

∫
Ω

eµ |u|2dx , u ∈ H1
0 (Ω), ∥∇u∥22 = 1, with µ > 4π, (7.5)

some results are known. In the works [111] and [68] it has been proven that a local maxima
and saddle point solutions in the supercritical regime µ ∈ (4π, µ0) for the functional (7.5) do
exist, for some µ0 > 4π.

Our first result is an extension of the existence of a local maxima for the Trudinger-Moser
trace functional in the super critical regime α ∈ (π, α0). Namely, a local maximizer for
Problem (7.2)-(7.3) exists when the value of α is slightly to the right of π.

Theorem 7.1. Let Ω be a bounded domain in R2. Then there exists α0 > π, such that for
any α ∈ (0, α0), there exists a function uα ∈M which locally maximizes of Eα on M .

This result is proved in Section 7.2.

Much more is known for Problem (7.5) and µ > 4π. Recently in [40] (see also [39]), the
authors obtained several results concerning critical points for Problem (7.5) also in a very
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super critical regime. They found general conditions on the domain Ω under which there is
a critical point for Iµ(u) with

∫
Ω
|∇u|2dx = 1 when µ ∈ (4πk, µk), for any integer k ≥ 1 and

for some µk slightly bigger than 4 π k. In particular, for any bounded domain Ω, they found
a critical point for Iµ(u) with

∫
Ω
|∇u|2dx = 1 when µ ∈ (4π, µ1), for some µ1 > 4 π. The

L∞-norm of this solution converges to ∞ as µ → 4π and its mass is concentrated, in some
proper sense, as µ → 4π, around a point in the interior of Ω. On the other hand, if Ω has
a hole, namely it is not simply connected, they proved the existence of a critical point for
Iµ(u) with

∫
Ω
|∇u|2dx = 1 also in the super critical range µ ∈ (8π, µ2), for some µ2 > 8π.

Again in this case, the L∞-norm of these solutions converges to ∞ as µ → 8π, but now its
mass concentrates, as µ → 8π, around two distinct points inside Ω. Furthermore, if Ω is an
annulus, taking advantage of the symmetry, a critical point for Iµ(u) with

∫
Ω
|∇u|2dx = 1

and µ ∈ (4πk, µk) does exist. In this latter case, the L∞-norm of the solution converges to
∞ as µ → 4πk and its mass concentrates, as µ → 4πk, around k points distributed along
the vertices of a proper regular polygon with k sides lying inside Ω.

The second result of this chapter establishes the counterpart of the above situation for the
Trudinger-Moser trace functional in the super critical regime: we will show the existence of
critical points for Eα constrained to M , for α ∈ (k π, αk), for any k ≥ 1 integer and for some
αk slightly to the right of k π . We next describe our result.

Let G(x, y) be the Green’s function of the problem{
−∆xG(x, y) +G(x, y) = 0 x ∈ Ω;

∂G(x,y)
∂νx

= 2πδy(x) x ∈ ∂Ω,
(7.6)

and H its regular part defined as

H(x, y) = G(x, y)− 2 log
1

|x− y|
. (7.7)

Our second result reads as follows.

Theorem 7.2. Let Ω be any bounded domain in R2 with smooth boundary. Fix a positive
integer k ≥ 1. Then there exists αk > kπ such that for α ∈ (kπ, αk), the functional Eα(u)
restricted to M has at least two critical points u1α and u2α. Furthermore, for any i = 1, 2 there
exist numbers mi

j,α > 0 and points ξij,α ∈ ∂Ω, for j = 1, . . . , k such that

lim
α→k π

mi
j,α = mi

j ∈ (0,∞), (7.8)

ξij,α → ξij ∈ ∂Ω, with ξij ̸= ξil for j ̸= l, as α→ k π (7.9)

and

uiα(x) =

√
α− kπ

α

k∑
j=1

[
mi
j,αG(x, ξ

i
j,α) + o(1)

]
, i = 1, 2, (7.10)
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where o(1) → 0 uniformly on compact sets of Ω̄\{ξi1, . . . , ξik}, as α → kπ. Moreover, for any
i = 1, 2, for any δ > 0 small, for any j = 1, . . . , k,

sup
x∈B(ξij ,δ)

uiα(x) → +∞, as α→ k π. (7.11)

There are two important differences between the result stated in Theorem 7.2 and the corre-
sponding result obtained in [40] for the Trudinger-Moser functional (7.5). A first difference
is that for Problem (7.2)-(7.3) existence of critical points in the range α ∈ (k π, αk) is guar-
anteed in any bounded domain Ω with smooth boundary, at any integer level k. No further
hypothesis on Ω is needed, unlike the Trudinger-Moser case (7.5). The second difference is
that, we do find two families of critical points for Problem (7.2)-(7.3) when α ∈ (k π, αk),
and not only one as in the Trudinger-Moser case (7.5).

7.2 The local maximizer: proof of Theorem 7.1

We set

E(u) =

∫
∂Ω

eu
2

, (7.12)

and
Mα =

{
u ∈ H1(Ω) : ∥u∥2 = α

}
. (7.13)

We note that by the obvious scaling property, finding critical points of Eα on M (see (7.2)
and (7.3)) is equivalent to finding critical points of E on Mα (see (7.12) and (7.13)). In this
section, we study the local maximizer for the functional E constrained on the set Mα with α
in the right neighborhood of π.

We start with the following Lion’s type Lemma. The proof is quite standard, but we repro-
duce it here for completeness.

Lemma 7.3. Let um be a sequence of functions in H1(Ω) with ∥um∥ = 1. Suppose that
um ⇀ u0 weakly in H1(Ω). Then either u0 = 0, or there exists α > π such that the family
eu

2
m is uniformly bounded in Lα(∂Ω), and thus we have∫

∂Ω

eπu
2
m →

∫
∂Ω

eπu
2
0 as m→ ∞.

Proof. Since ∥um∥ = 1 and um ⇀ u0 weakly in H1(Ω), we have∫
Ω

(∇um∇u0 + umu0) →
∫
Ω

(|∇u0|2 + u20) as m→ ∞.
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Thus we find that

lim
m→∞

∥um − u0∥2 = lim
m→∞

{∫
Ω

[|∇(um − u0)|2 + (um − u0)
2]

}
= lim

m→∞

{
∥um∥2 − 2

∫
Ω

(∇um∇u0 + umu0) + ∥u0∥2
}

= 1− ∥u0∥2.

Assume u0 ̸= 0. Take p ∈ (1, 1
1−∥u0∥2 ), and choose q1 and q2 such that 1 < pq1 <

1
∥um−u0∥2

and 1
q1
+ 1

q2
= 1. By Hölder inequality we have∫

∂Ω

eπpu
2
m =

∫
∂Ω

eπp(um−u0+u0)2 =

∫
∂Ω

eπp[(um−u0)2+2(um−u0)u0+u20]

=

∫
∂Ω

eπp[(um−u0)2+2umu0−u20] ≤
∫
∂Ω

eπp[(um−u0)2+2umu0]

=

∫
∂Ω

eπp(um−u0)2e2πpumu0 ≤
(∫

∂Ω

eπpq1(um−u0)2
) 1

q1

(∫
∂Ω

e2πpq2umu0
) 1

q2

.

We now recall that

π = sup

{
θ : sup

u∈H1(Ω),∥u∥≤1

∫
∂Ω

eθu
2

dσ <∞

}
. (7.14)

see for instance [6, 22, 23, 74]. Hence, given the choice of p and q1, we get that there exists
a constant C, independent of m, such that∫

∂Ω

eπpq1(um−u0)2 < C.

On the other hand, Young’s inequality implies that 2|umu0| ≤ ε2u2m+ 1
ε2
u20, with ε > 0 small.

Then from (7.14), we have∫
∂Ω

e2πpq2umu0 <

∫
∂Ω

eπpq2[ε
2u2m+ 1

ε2
u20] =

∫
∂Ω

eπpq2ε
2u2meπpq2

1
ε2
u20 < C

by choosing ε so that pq2ε
2 < 1. Here again C is a constant, independent of m. Thus, we

have that there exists α = pπ > π such that the family eu
2
m is uniformly bounded in Lα(∂Ω).

We shall now show that ∫
∂Ω

eπu
2
m →

∫
∂Ω

eπu
2
0 as m→ ∞. (7.15)

Indeed, let l be a positive number and p > 1. We have∣∣∣∣∫
∂Ω

eπu
2
m −

∫
∂Ω∩{|um|≤l}

eπu
2
m

∣∣∣∣ =

∣∣∣∣∫
∂Ω∩{|um|>l}

eπu
2
m

∣∣∣∣ ≤ 1

l
2(p−1)

p

∫
∂Ω

eπu
2
mu

2(p−1)
p

m
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≤ 1

l
2(p−1)

p

(∫
∂Ω

eπpu
2
m

) 1
p
(∫

∂Ω

u2m

) p−1
p

≤ C

l
2(p−1)

p

.

From the above relation, we conclude that∫
∂Ω

eπu
2
m ≤ |∂Ω|eπl2 + C

l
2(p−1)

p

.

Hence dominated convergence Theorem implies (7.15).

Suppose now that eu
2
m is not bounded in Lα(∂Ω) for any α > π. Using Stokes theorem, for

α > π we have∫
∂Ω

eαu
2
mdσ =

∫
Ω

div(eαu
2
m)dx ≤ C

∫
Ω

|∇um||um|eαu
2
mdx

≤ C

(∫
Ω

|∇um|2dx
) 1

2
(∫

Ω

|um|qdx
) 1

q
(∫

Ω

eβu
2
mdx

)α
β

where q > 1 satisfies 1
2
+ 1

q
+ α

β
= 1 with β > 2π. Then we get that

∫
Ω
eβu

2
mdx is unbounded

for all β > 2π.

Observe now that we can assume that
∫
Ω
umdx = 0, since otherwise we set ūm = um −

1
|Ω|

∫
Ω
umdx and obtain

∫
Ω
umdx = 0. We can also assume that

∫
Ω
|∇um|2 = 1. Furthermore,

by Poincaré inequality, (um) is bounded in H1(Ω), and also (|um|) is bounded in H1(Ω).
Hence there exists u ∈ H1(Ω) such that |um|⇀ u0 weakly in H1(Ω). We claim that

lim
m→∞

∫
Ω

|∇(um − η)+|2dx = 1 ∀ η > 0. (7.16)

By contradiction, assume there exists η > 0 such that limm→∞
∫
Ω
|∇(um − η)+|2dx ̸= 1.

Define γ = inf
m

∫
Ω
|∇(um − η)+|2dx < 1 and choose a sufficiently small ε > 0 such that

α′ := 2π
γ+ε

> 2π. Let us recall that

2π = sup

{
θ : sup

u∈H1(Ω),
∫
Ω |∇u|2≤1,

∫
Ω u=0

∫
Ω

eθu
2

dx <∞

}
, (7.17)

(see [6, 22, 23, 124]). From (7.17), there exists a positive constant C such that

∫
Ω

eα
′[(|um|−η)+− 1

|Ω|
∫
Ω(|um|−η)+]

2

dx =

∫
Ω

e
2π

[
(|um|−η)+− 1

|Ω|
∫
Ω(|um|−η)+

√
γ+ε

]2
dx < C,

where we use the fact that
∫
Ω
|∇ (um−η)+√

γ+ε
|2dx < 1.
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Define dm = 1
|Ω|

∫
Ω
(|um| − η)+. Choosing ε′ > 0 small such that α̃ := α′

1+ε′
> 2π, and by the

Young’s inequality,

u2m ≤ (η + dm)
2 + 2(η + dm)[(|um| − η)+ − dm] + [(|um| − η)+ − dm]

2

≤ (1 + ε′)[(|um| − η)+ − dm]
2 + (

1

ε′
+ 1)(η + dm)

2.

Thus, since there dm = O(1) as m→ ∞,∫
Ω

eα̃u
2
mdx =

∫
Ω

e
α′

1+ε′ u
2
mdx ≤ C1

∫
Ω

eα
′[(|um|−η)+− 1

|Ω|
∫
Ω(|um|−η)+]

2

dx ≤ C2,

for some positive constants C1 and C2. This is a contradiction, thus (7.16) holds.

Set vm = min{|um|, η}, then vm is bounded in H1(Ω) and, up to subsequence, we have that
vm ⇀ v. Observe now that |um| = vm + (|um| − η)+, and

1 =

∫
Ω

|∇um|2 ≥
∫
Ω

|∇|um||2dx =

∫
Ω

|∇vm|2dx+
∫
Ω

|∇(|um| − η)+|2dx.

Therefore (7.16) implies that that
∫
Ω
|∇vm|2dx → 0 as m → ∞, so v is constant. On the

other hand,

lim
m→∞

∫
Ω

|∇vm|2dx = lim
m→∞

∫
Ω∩{|um|≤η}

|∇|um||2dx = 0.

This implies that |{x : |um| ≥ η}| → 0 as m→ ∞. By Fatou Lemma,

|{x : u0 ≥ η}| ≤ lim inf
m→∞

|{x : |um| ≥ η}| = 0,

then |{x : u0 ≥ η}| = 0 for any η > 0. Hence we get u0 = 0.

We denote β := sup
u∈Mπ

E(u) = sup
u∈M

Eπ(u). A direct consequence of the previous Lemma is the

following

Proposition 7.4. Let um be a bounded sequence in H1(Ω) with ∥um∥ = 1. Suppose that
um ⇀ u0 weakly in H1(Ω). Suppose Eπ(um) → β with β > |∂Ω|. Then there exists α > π
such that the family eu

2
m is uniformly bounded in Lα(∂Ω). In particular Eπ(um) → Eπ(u0)

and u0 ̸= 0.

Proof. Suppose eu
2
m is unbounded in Lα(∂Ω) for all α > π, and assume the supremum of Eπ

onM is not attained. Then by Lemma 7.3, we have that u0 = 0, which is impossible because
Eπ(um) → β > |∂Ω|.

Let Kπ be the set defined by

Kπ = {u ∈M : Eπ(u) = β}.
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Lemma 7.5. The set Kπ is compact.

Proof. Let {um} ⊂ Kπ be such that um ⇀ u0 weakly in H1(Ω), then by Proposition 7.4,

Eπ(um) → Eπ(u0).

Moreover, ∥u0∥ ≤ ∥um∥ = 1, then

Eπ(u0) ≤ Eπ(
u0

∥u0∥
) ≤ sup

v∈M
Eπ(v) = β.

Then we get Eπ(u0) = β, and ∥u0∥ = 1, hence um → u0 strongly in H1(Ω), hence Kπ is
compact.

The property of Kπ of being compact implies that the family of norm-neighborhoods

Nε = {u ∈M | ∃ v ∈ Kπ : ∥u− v∥ < ε}

constitutes a basic neighborhood for Kπ in M .

Lemma 7.6. For sufficiently small ε > 0, one has

sup
N2ε\Nε

Eπ < β = sup
Nε

Eπ. (7.18)

Proof. We argue by contradiction. We suppose that there is a sequence um ∈ N2ε\Nε such
that Eπ(um) → β. Then we have um ∈ H1(Ω) with ∥um∥2 = 1. Up to subsequence, we can
assume that um ⇀ u0 weakly in H1(Ω). By the definition of N2ε, there is zm ∈ Kπ such that
∥zm − um∥ < 2ε. By the compactness of Kπ, we have that zm → z strongly, with z ∈ Kπ,
and z satisfies

−∆z + z = 0 in Ω,
∂z

∂ν
=

πzez
2∫

∂Ω
z2ez2

on ∂Ω.

By the maximum principle, we have z ∈ L∞(Ω).

By the lower-semi continuity, we have ∥z − u0∥ ≤ 2ε. Then

∥z − u0
∥u0∥

∥ ≤ ∥z − u0∥+ ∥u0 −
u0

∥u0∥
∥ = ∥z − u0∥+ 1− ∥u0∥ ≤ 4ε.

Thus u0
∥u0∥ ∈ N4ε, and so Eπ(u0) ≤ Eπ(

u0
∥u0∥) ≤ β. If Eπ(u0) = β then ∥u0∥ = 1, and um → u0.

On the other hand, our assumption implies that u0 ̸∈ Nε, thus u0 does not belong to Kπ and
u0 can not be relatively maximal. Thus we necessarily get Eπ(u0) < β.

Set wm = um − zm + z, so we have wm ⇀ u0 weakly in H1(Ω). Since

eπ|wm|2 = eπ|um−zm+z|2 ≤ e2π|um−zm|2e2π|z|
2

= e2π∥um−zm∥2( um−zm
∥um−zm∥ )

2

e2π|z|
2 ≤ e8πε

2( um−zm
∥um−zm∥ )

2

e2π|z|
2

.
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Choosing ε small such that 16ε2 ≤ 1, then from (7.14) we have that eπ|wm|2 is uniformly
bounded in L2(∂Ω), as m → ∞. Thus lim

m→∞
Eπ(wm) = Eπ(u0). On the other hand, we have

wm−um → 0 strongly in H1(Ω). By uniform local continuity of Eπ, and compactness of Kπ,
we obtain that Eπ(wm)− Eπ(um) → 0, and Eπ(u0) = β. This is a contradiction.

Lemma 7.7. There exists α∗ > π, ε > 0 such that for all α ∈ [π, α∗), then we have

(i)

sup
N2ε\Nε

Eα < sup
Nε

Eα. (7.19)

(ii) βα := sup
Nε

Eα is achieved in Nε.

(iii) Kα = {u ∈ Nε | Eα(u) = βα} is compact.

Proof. (i) Since Kπ is compact, there is a neighborhood N of Kπ such that, for any ς > 0
there exists δ′ > 0 such that for all |α − π| < δ then Eα(u) − Eπ(u)| ≤ ς, for all u ∈ N .
Choose ε > 0 such that (7.18) holds and Nε ⊂ N , then (7.19) will be valid for all α in a
small neighborhood of π.

(ii) For such α, and let um ∈ Nε be a maximizing sequence of Eα, that is, Eα(um) → βα and
let vm ∈ Kπ satisfy ∥um − vm∥ ≤ ε.We may assume that vm → v strongly in H1(Ω) with
v ∈ L∞, and um → u weakly in H1(Ω). Set wm = um − vm + v, as the proof of Lemma 7.6,
we obtain that for ε > 0 small, α in a neighborhood of π we have that

Eα(wm) → Eα(u), Eα(um)− Eα(wm) → 0 as m→ ∞.

Then Eα(u) = βα. Moreover, by the lower-semi continuity, we have ∥v − u∥ ≤ ε. Then

∥v − u

∥u∥
∥ ≤ ∥v − u∥+ ∥u− u

∥u∥
∥ = ∥v − u∥+ 1− ∥u∥ ≤ 2ε.

We get that u
∥u∥ ∈ N̄2ε and Eα(

u
∥u∥) ≤ βα. Furthermore, since ∥u∥ ≤ 1, we can get Eα(

u
∥u∥) ≤

Eα(u) and ∥u∥ = 1. It implies that u ∈ M , that is u ∈ Nε and βα is attained. Moreover,
um → u strongly in H1(Ω).

(iii) As the proof of (ii), if um ∈ Kα, we may assume that um ⇀ u weakly in H1(Ω), we then
get u ∈ Kα, that is Kα is compact.

Proof of Theorem 7.1: From (7.14), we have that sup
Mα

E is achieved for α < π. Moreover,

since sup
u∈Mπ

E(u) > |∂Ω|, from Lemma 7.7 we have that for α sufficiently close to π, then E

has relative maximizers on Mα.
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7.3 The proof of Theorem 7.2

In this section, we consider critical points of functional E(u) constrained on the setMα (which
is equivalent to consider critical points of Eα(u) constrained on the setM with α = kπ(1+µ),
where µ > 0 small). We observe that this problem is equivalent to finding solutions of the
following problem {

−∆u+ u = 0 in Ω;

∂u
∂ν

= λueu
2

on ∂Ω,
(7.20)

where

λ =
α∫

∂Ω
u2eu2

=
kπ(1 + µ)∫
∂Ω
u2eu2

. (7.21)

In this section we shall prove the existence of solutions to Problem (7.20)-(7.21) with the
properties described in Theorem 7.2. In fact, we will construct a solution to (7.20)-(7.21) of
the form

u = U + ϕ, (7.22)

where U is the principal part while ϕ represents a lower order correction. In what follows
we shall first describe explicitly the function U(x). The definition of this function depends
on several parameters: some points ξ on the boundary of Ω and some positive numbers m.
Next we find the correction ϕ so that U + ϕ solves our Problem in a certain projected sense
(see Proposition 7.8). Finally we select proper points ξ and numbers m in the definition of
U to get an exact solution to Problem (7.20)-(7.21).

To define the function U , first we introduce the following limit problem
∆w = 0 in R2

+;

∂w
∂ν

= ew on ∂R2
+;∫

∂R2
+
ew <∞.

(7.23)

A family solutions to (7.23) is given by

wt,µ(x) = wt,µ(x1, x2) = log
2µ

(x1 − t)2 + (x2 + µ)2
, (7.24)

where t ∈ R and µ > 0 are parameters. See [76, 99, 126]. Set

wµ(x) := w0,µ(x) = log
2µ

x21 + (x2 + µ)2
. (7.25)
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Let ξ1, . . . , ξk be k distinct points on the boundary and m1, . . . ,mk be k positive numbers.
We assume there exists a sufficiently small but fixed number δ > 0 such that

|ξi − ξj| > δ for i ̸= j, δ < mj <
1

δ
. (7.26)

For notational convenience through out the paper we will use the notation

(ξ,m) = (ξ1, . . . , ξk,m1, . . . ,mk).

For any j = 1, . . . , k, we define εj to be the positive numbers given by the relation

2λm2
j

(
log

1

ε2j
+ 2 log(2m2

j)

)
= 1. (7.27)

Since the parameters mj satisfy assumption (7.26), it follows that limλ→0 εj = 0. Define
moreover µj to be the positive constants given by

log(2µj) = −2 log(2m2
j) +H(ξj, ξj) +

∑
i̸=j

mim
−1
j G(ξi, ξj). (7.28)

Using once more assumption (7.26), we get that there exists two positive constants c and C,
such that c ≤ µj ≤ C, as λ→ 0.

We define the function U in (7.22) to be given by

U(x) =
√
λ

k∑
j=1

mj [uj(x) +Hj(x)] , (7.29)

where

uj(x) = log
1

|x− ξj − εjµjν(ξj)|2
, (7.30)

ν(ξj) denoting the unitary outer normal to ∂Ω at the point ξj, and where Hj is a correction
term given as the solution of{

−∆Hj +Hj = −uj in Ω;

∂Hj

∂ν
= 2εjµje

uj − ∂uj
∂ν

on ∂Ω.
(7.31)

The maximum principle allows a precise asymptotic description of the functions Hj, namely
we have that

Hj(x) = H(x, ξj) +O(εσj ) for 0 < σ < 1 (7.32)

uniformly in Ω, as λ → 0. Recall that H is the regular part of the Green’s function, as
defined in (7.6). Therefore, the function U can be described as follows

U(x) =
√
λ

k∑
j=1

mj

[
G(x, ξj) +O(εσj )

]
(7.33)
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uniformly on compact sets of Ω̄ \ {ξ1, . . . , ξk}, as λ → 0. On the other hand, if we consider
a region close to ξj, for some j fixed, say for |x− ξj| < δ, with sufficiently small but fixed δ,
we can rewrite

U(x) =
√
λmj

(
wj(x) + log ε−2

j + βj + θ(x)
)
, (7.34)

where

wj(x) = wµj(
x− ξj
εj

) = log
2µj

|y − ξ′j − µjν(ξ′j)|2
, y =

x

εj
, ξ′j =

ξj
εj
, (7.35)

and

βj = − log(2µj) +H(ξj, ξj) +
∑
i ̸=j

m−1
j miG(ξj, ξi), θ(x) = O(|x− ξj|) +

k∑
j=1

O(εαj ).

Define on the boundary ∂Ω the error of approximation

R := f(U)− ∂U

∂ν
. (7.36)

Here and in what follows f denotes the nonlinearity

f(ũ) = λũeũ
2

.

The choice we made of µj in (7.28) and of εj in (7.27) gives that in the region |x− ξj| < δ,
the error of approximation can be described as follows

R = mj

√
λ
{(

1 + 2λm2
j(wj +O(1))

)
eλm

2
jw

2
j (1 +O(λwj))− 1

}
ε−1
j ewj , (7.37)

where wj is defined in (7.35). Indeed, for x ∈ ∂Ω with |x− ξj| < δ, we have that

λ−
1
2f(U) = λ

[
mj

(
wj(x) + log ε−2

j + βj + θ(x)
)]
eλ[mj(wj(x)+log ε−2

j +βj+θ(x))]
2

=

(
λmj(log

1

ε2j
+ βj) + λmj(wj +O(1))

)
×e

λm2
j (log

1

ε2
j

+βj)
2

e
2λm2

j (log
1

ε2
j

+βj)wj

e
2λm2

j (log
1

ε2
j

+βj)θ(x)

eλm
2
j (wj+θ(x))

2

= λmj(log
1

ε2j
+ βj)

(
1 + (log

1

ε2j
+ βj)

−1(wj +O(1))

)
×e

λm2
j (log

1

ε2
j

+βj)
2

e
2λm2

j (log
1

ε2
j

+βj)wj

e
2λm2

j (log
1

ε2
j

+βj)θ(x)
eλm

2
j (wj+θ(x))

2

=
1

2mj

(
1 + 2λm2

j(wj +O(1))
)
e

1
2
(log 1

ε2
j

+βj)
ewjeθ(x)eλm

2
j (wj+θ(x))

2

=
1

2mj

ε−1
j eβj/2

(
1 + 2λm2

j(wj +O(1))
)
ewjeθ(x)eλm

2
jw

2
j (1 +O(λ)wj)
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thanks to the definition of εj in (7.27). On the other hand, in the same region, we have

λ−
1
2
∂U

∂ν
=

∂

∂ν

[
mj

(
wj(x) + log ε−2

j + βj + θ(x)
)]

= mjε
−1
j ewj +

k∑
j=1

O(ε2j), as λ→ 0.

The definition of µj in (7.28) allows to match at main order the two terms ∂Ũ
∂ν

and f(Ũ) in
the region under consideration, since we , we easily get that

λ−
1
2f(Ũ) = mj

(
1 + 2λm2

j(wj +O(1))
)
ε−1
j ewjeλm

2
jw

2
j (1 +O(λwj)).

These facts imply the validity of expansion (7.37). Let us now observe that a direct com-

putation shows that R(x) ∼ λ
3
2 ε−1
j ewj(x) in the region |x − ξj| = O(λ); while, in the region

|x − ξj| > δ for all j, we have that |R(x)| ≤ Cλ
3
2 , for some positive constant C. We thus

conclude that the error of approximation satisfies the global bound

|R| ≤ Cλ
3
2ρ(x),

where

ρ(x) :=
k∑
j=1

ρj(x)χBδ(ξj)(x) + 1.

Here χBδ(ξj) is the characteristic function on Bδ(ξj)
∩
∂Ω and

ρj(x) :=
1

2λm2
j

{(
1 + 2λm2

j(wj +O(1))
)
eλm

2
jw

2
j (1 +O(λwj))− 1

}
ε−1
j ewj

From now on, let us write

ρj(x) = cγj

{(
1 +

1

γj
(wj + 1)

)(
1 +

1

γj
(1 + |wj|)

)
e

w2
j

2γj − 1

}
ε−1
j ewj , (7.38)

where γj = log ε−2
j . We define the L∞−weight norm

∥h∥∗,∂Ω = sup
x∈∂Ω

ρ(x)−1|h(x)|. (7.39)

We thus have the validity of the following key estimate for the error term R

∥R∥∗,∂Ω ≤ Cλ
3
2 . (7.40)

Up to this point, we have defined a function U , whose expression depends of ξ1, . . . , ξk points
on ∂Ω, and depends of m1, . . . ,mk positive numbers. These points and numbers satisfy the
bounds (7.26). We next describe the problem that the function ϕ in (7.22) solves.
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Define in R2
+ = {(x1, x2) : x2 > 0} the functions

z0j(x1, x2) =
1

µj
− 2

x2 + µj
x21 + (x2 + µj)2

, z1j(x1, x2) = −2
x1

x21 + (x2 + µj)2
.

It has been shown in [27] that these functions are all the bounded solutions to the linearized
equation around wµj (7.25) associated to Problem (7.23), that is they are the only bounded
solutions to

∆ψ = 0 in R2
+, − ∂ψ

∂x2
= ewµjψ on ∂R2

+. (7.41)

For ξj ∈ ∂Ω, we define Fj : Bδ(ξj) → O to be a diffeomorphism, where O is an open
neighborhood of the origin in R2

+ such that Fj(Ω ∩ Bδ(ξj)) = R2
+ ∩ O, Fj(∂Ω ∩ Bδ(ξj)) =

∂R2
+ ∩ O. We can select Fj so that it preserves area. Define

Zij(x) = zij
(
ε−1
j Fj(x)

)
, i = 0, 1, j = 1, . . . , k. (7.42)

Next, let us consider a large but fixed number R0 > 0 and a nonnegative radial and smooth
cut-off function χ with χ(r) = 1 if r < R0 and χ(r) = 0 if r > R0 + 1, 0 ≤ χ ≤ 1. Then set

χj(x) = ε−1
j χ

(
ε−1
j Fj(x)

)
. (7.43)

The problem we solve is the following: given ξ1, . . . , ξk and m1, . . . ,mk satisfying the bounds
(7.26), find a function ϕ and numbers cij such that

−∆(U + ϕ) + (U + ϕ) = 0 in Ω;

∂(U+ϕ)
∂ν

= λ(U + ϕ)e(U+ϕ)2 +
√
λ
∑
i=0,1

k∑
j=1

cijχjZij on ∂Ω;∫
Ω
χjZijϕ = 0 for i = 0, 1, j = 1, . . . , k.

(7.44)

Consider the norm
∥ϕ∥∞ = sup

x∈Ω
|ϕ(x)|.

We have the following result.

Proposition 7.8. Let δ > 0 be a small but fixed number and assume points the ξ1, . . . , ξk ∈
∂Ω and the numbers m1, . . . ,mk satisfy (7.26). Furthermore we assume that εj and µj are
given by (7.27) and (7.28). Then there exist positive numbers λ0 and C, such that for any
0 < λ < λ0, there is a unique solution ϕ = ϕ(λ, ξ,m), cij = cij(λ, ξ,m) to (7.44). Moreover,

∥ϕ∥∞ ≤ Cλ
3
2 , |cij| ≤ Cλ. (7.45)

Furthermore, function ϕ and constant cij are C
1 with respect to (ξ,m), and we have

∥Dξ,mϕ∥∞ ≤ Cλ
3
2 , |Dξ,mcij| ≤ Cλ. (7.46)
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We will sketch the proof in Section 7.4.

Assuming for the moment the validity of the statement in the above Proposition, we observe
that U + ϕ is an exact solution to Problem (7.20), if there exists a proper choice of λ, of the
points ξj and the parameters mj, such that

λ =
kπ(1 + µ)∫

∂Ω
(U + ϕ)2e(U+ϕ)2

and cij = 0, for all i, j, (7.47)

or equivalently∫
Ω

[
|∇(U + ϕ)|2 + (U + ϕ)2

]
dx = kπ(1 + µ) and cij = 0, for all i, j. (7.48)

In order to solve (7.48), we are in the need of understanding the asymptotic expansion, as
λ → 0, of

∫
Ω
[|∇(U + ϕ)|2 + (U + ϕ)2] dx in terms of the localization of the points ξ and

the values of the parameters m. Next Proposition contains this result, together with the
asymptotic expansion of

∫
∂Ω
e(U+ϕ)2 , as λ→ 0, again in terms of in terms of ξ and m.

Proposition 7.9. Under the conditions of Proposition 7.8, Assume that εj and µj are given
by (7.27) and (7.28). Furthermore, we assume that λ is a free parameter. Then, as λ → 0,
we have ∫

Ω

[
|∇(U + ϕ)|2 + (U + ϕ)2

]
dx = kπ

{
1 + λfk(ξ,m) + λ2Θλ(ξ,m)

}
(7.49)

where

fk(ξ,m) =
2

k

[
2

k∑
j=1

m2
j log(2m

2
j)−

k∑
j=1

m2
jH(ξj, ξj)−

∑
i̸=j

mimjG(ξi, ξj)

]
. (7.50)

Moreover, as λ→ 0,∫
∂Ω

e(U+ϕ)2 = |∂Ω|+ 4π
k∑
j=1

m2
j + λ

k∑
j=1

m2
j

[
c̃+

∫
∂Ω

G2(x, ξj)

]
+ λ2Θλ(ξ,m), (7.51)

where c̃ is a positive constant. In (7.50) and (7.51) the function Θλ(ξ,m)(x) denotes a
generic smooth function, uniformly bounded together with its derivatives, as λ → 0, for
(ξ,m) satisfying (7.26). In (7.50) and (7.51), G is the Green function defined in (7.6) and
H its regular part, as defined in (7.7).

Next Proposition will suggest how to solve Problem in (7.48).
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Proposition 7.10. Under the conditions of Proposition 7.8, let R be the set of points (ξ,m)
satisfy (7.26). then there exist µ0 > 0 and a subregion R′ of R such that for all 0 < µ < µ0

and for all (ξ,m) ∈ R′, there exists a function λ = λ(µ, ξ,m) such that∫
Ω

[
|∇(U + ϕ)|2 + (U + ϕ)2

]
dx = kπ(1 + µ) for all µ > 0, µ→ 0. (7.52)

Moreover, λ is a smooth function of the free parameter µ, of the points ξ1, . . . , ξk and of the
parameters m1, . . . ,mk. Furthermore, λ → 0 as µ → 0 for points ξ1, . . . , ξk and parameters
m1, . . . ,mk belonging to R′. With this definition of λ, we have that the function ϕ and the
constants cij are C

1 with respect to (ξ,m). We finally have that

Dξ,mE(U + ϕ) = 0 =⇒ cij = 0 for all i, j. (7.53)

See (7.12) for the definition of E.

The proofs of Proposition 7.9 and of Proposition 7.10 are postponed to Section 7.5.

Given the choice of λ defined through formula (7.52), for all µ > 0 small, Proposition 7.10
gives that U + ϕ is a solution to problem (7.20)-(7.21) if we can find (ξ,m) to be a critical
point of the function

I(ξ,m) := E(U + ϕ). (7.54)

We have now all the elements to give the

Proof of Theorem 7.2: Let D be the open set such that

D̄ ⊂
{
(ξ,m) ∈ (∂Ω)k × Rk

+ : ξi ̸= ξj, ∀ i ̸= j
}

Let U(x) be defined as in (7.29), and ϕ(x) be the solution of problem (7.44), whose existence
and properties are stated in Proposition 7.8. Proposition 7.10 gives that

u(x) = U(x) + ϕ(x)

is a solution to problem (7.20)-(7.21) if we can find (ξ,m) to be a critical point of the function

I(ξ,m) := E(U + ϕ).

From (7.52) and (7.49), we have

λfk(ξ,m) + λ2Θλ(ξ,m) = µ (7.55)

where

fk(ξ,m) =
2

k

[
2

k∑
j=1

m2
j log(2m

2
j)−

k∑
j=1

m2
jH(ξj, ξj)−

∑
i̸=j

mimjGξi, ξj)

]
.
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In (7.55), Θλ(ξ,m)(x) denotes a smooth function, uniformly bounded together with its deriva-
tives, as λ → 0, for (ξ,m) satisfying (7.26). Make the change of variables sj = m2

j . So we
write, with abuse of notation,

fk(ξ, s) =
2

k

[
2

k∑
j=1

sj log(2sj)−
k∑
j=1

sjH(ξj, ξj)−
∑
i̸=j

√
sisjGξi, ξj)

]

Fix ξ. Observe that the function s→ fk(ξ, s) has a unique zero, namely there exists a unique
s̄ = (s̄1(ξ), . . . , s̄k(ξ)) ∈ Rk

+ satisfying fk(ξ, s̄) = 0. We have the following properties:

(i) s̄j is a C
1 function with respect to ξ defined in (∂Ω)k;

(ii) There is a positive constant c0, independent of the points ξ, such that s̄j ≥ c0 for each
j = 1, . . . , k;

(iii) s̄j → +∞ as |ξi − ξj| → 0 for some i ̸= j;

(iv) Define

M+ = {(ξ, s) ∈ (∂Ω)k × Rk
+ : s1s2 . . . sk ̸= 0, fk(ξ, s) > 0}.

Then (ξ, (1 + r)s̄) ∈M+ for r > 0 small.

Proof of (i). Since f(ξ, s̄) = 0, and for j fixed,

∂sjfk(ξ, s)
∣∣
s=s̄

=
2

k

{
2 log(2s̄j) + 2−

[
H(ξj, ξj)−

1

2

∑
i̸=j

√
s̄i/s̄jG(ξi, ξj)

]}
.

Then

∇sfk(ξ, s̄) · s̄ = ∂s1fk(ξ, s̄)s̄1 + . . .+ ∂skfk(ξ, s̄)s̄k =
4

k

k∑
j=1

s̄j > 0 (7.56)

Thus we get ∇sfk(ξ, s)
∣∣
s=s̄

̸= 0. The implicit function theorem implies the validity of (i).

Proof of (ii). According to the definition of s̄, we know that

2

k

k∑
j=1

s̄j

[
2 log(2s̄j)−H(ξj, ξj)−

∑
i̸=j

√
s̄i
s̄j
Gξi, ξj)

]
= 0.

It yields that

2 log(2s̄j)−H(ξj, ξj) =
∑
i ̸=j

√
s̄i
s̄j
Gξi, ξj) > 0.

So

s̄j >
1

2
e

H(ξj ,ξj)

2
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Then we get (ii).

Proof of (iii). Since G(ξi, ξj) → +∞ if |ξi − ξj| → 0, for some i ̸= j, if we suppose that s̄l
is bounded, for some l, then the relation fk(ξ, s̄) = 0 would provide a contradiction. This
proves (iii).

Proof of (iv). For r > 0 small, by the Taylor expansion, from (7.56) we have

fk(ξ, (1 + r)s̄) = fk(ξ, s̄) + [∂s1fk(ξ, s̄)s̄1 + . . .+ ∂skfk(ξ, s̄)s̄k] r + o(r)

=
4

k
r

k∑
j=1

s̄j + o(r) > 0. (7.57)

Making the change of variable, define s = (1+r)s̄ with r > 0 small, we have (ξ, (1+r)s̄) ∈M+.

Thanks to the above properties, we conclude that relation (7.55) defines λ as a function of
the free parameter µ and (ξ, s). More precisely,

λ =
µ

fk(ξ, (1 + r)s̄)
+

µ2

fk(ξ, (1 + r)s̄)3
Θλ(ξ, s) (7.58)

where Θλ(ξ, s) is a smooth function, uniformly bounded together with its derivatives, as
λ→ 0.

Taking (7.58) into (7.51), we get that

I(ξ, (1 + r)s̄)

= |∂Ω|+ 4(1 + r)π
k∑
j=1

s̄j + µ

k∑
j=1

s̄j
[
c̃+

∫
∂Ω
G2(x, ξj)

]
fk(ξ, (1 + r)s̄)

+

(
µ

fk(ξ, (1 + r)s̄)

)2

Θµ(ξ, s)

= |∂Ω|+ 4(1 + r)π
k∑
j=1

s̄j + µ

k∑
j=1

s̄j
[
c̃+

∫
∂Ω
G2(x, ξj)

]
4
k
r

k∑
j=1

s̄j

+ µΘµ(ξ, s), (7.59)

where Θµ(ξ, s) is a smooth function, uniformly bounded together with its derivatives, as
µ→ 0.

We claim that, given δ > 0, for all µ > 0 small enough, the function

φµ(ξ, s̄, r) := |∂Ω|+ 4π
k∑
j=1

s̄j + 4rπ
k∑
j=1

s̄j + µ

k∑
j=1

s̄j
[
c̃+

∫
∂Ω
G2(x, ξj)

]
4
k
r

k∑
j=1

s̄j
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has a critical point in the region |ξi − ξj| > δ for i ̸= j, ξj ∈ ∂Ω, and δ
√
µ < r < δ−1√µ,

with value |∂Ω| + 4π
k∑
j=1

s̄j + O(
√
µ), as µ → 0, in the region considered. By construction,

the critical point situation is stable under proper small C1 perturbation of φµ: to be more
precise, any function ψ such that ∥ψ−φµ∥∞+∥∇ψ−∇φµ∥∞ ≤ Cµ in the region considered,
also has a critical point. This fact will conclude the proof of Theorem 7.2.

Observe that the function

r 7→ φµ(ξ, s̄, r) := |∂Ω|+ 4π
k∑
j=1

s̄j + 4rπ
k∑
j=1

s̄j + µ

k∑
j=1

s̄j
[
c̃+

∫
∂Ω
G2(x, ξj)

]
4
k
r

k∑
j=1

s̄j

has a critical point r̄ given by

r̄ =

√
k∑
j=1

s̄j
[
c̃+

∫
∂Ω
G2(x, ξj)

]
4
√
π√
k

k∑
j=1

s̄j

√
µ,

which is a non-degenerate mimimum, since

∂2rrφµ(ξ, s̄, r) = µ

k∑
j=1

s̄j
[
c̃+

∫
∂Ω
G2(x, ξj)

]
2
k

k∑
j=1

s̄j

1

r3
> 0.

Inserting the value of r̄ in φµ, in the new variables ξ ∈ (∂Ω)k, we get

Φ(ξ) := I(ξ, (1 + r̄)s̄)

= |∂Ω|+ 4π
k∑
j=1

s̄j + 2
√
kπ

√√√√ k∑
j=1

s̄j

[
c̃+

∫
∂Ω

G2(x, ξj)

]
√
µ+ µΘµ(ξ, s)

= |∂Ω|+ 4π
k∑
j=1

s̄j +O(
√
µ) as µ→ 0

for ξ ∈ Ω̂k = {(ξ1, . . . , ξk) ∈ (∂Ω)k : ξi ̸= ξj if i ̸= j}.

Next we show that functional Φ(ξ) has at least two critical points. Let C0 be a component
of ∂Ω. Let Λ : S1 → C0 be a continuous bijective function that parametrizes C0. Set

Ω̃k = {(ξ1, . . . , ξk) ∈ Ck0 : |ξi − ξj| > δ for i ̸= j}.
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The function Φ is C1, bounded from below in Ω̃k, and from (iii) we have

Φ(ξ) = Φ(ξ1, . . . , ξk) → +∞ as |ξi − ξj| → 0 for some i ̸= j.

Hence, since δ is arbitrarily small, Φ has an absolute minimum cm in Ω̃k.

On the other hand, using the Ljusternik-Schnirelmann theory, we get that Φ has at least two
distinct points in Ω̃k. Let cat(Ω̃k) be the Ljusternik-Schnirelmann category of Ω̃k relative to
Ω̃k, which is the minimum number of closed and contractible sets in Ω̃k whose union covers
Ω̃k. We will estimate the number of critical points for Φ by cat(Ω̃k).

Claim: cat(Ω̃k) > 1.

Indeed, by contradiction, suppose that cat(Ω̃k) = 1. This means that Ω̃k is contractible in
itself, namely there exist a point ξ0 ∈ Ω̃k and a continuous function Γ : [0, 1] × Ω̃k → Ω̃k,
such that, for all ξ ∈ Ω̃k,

Γ(0, ξ) = ξ, Γ(1, ξ) = ξ0.

Define f : S1 → Ω̃k to be the continuous function given by

f(ξ̄) =
(
Λ(ξ̄),Λ(e2πi

1
k ξ̄), . . . ,Λ(e2πi

k−1
k ξ̄)

)
.

Let η : [0, 1]× S1 → S1 be the well defined continuous map given by

η(t, ξ̄) = Λ−1 ◦ π1 ◦ Γ(t, f(ξ̄)),

where π1 is the projection on the first component. The function η is a contraction of S1 to
a point and this gives a contradiction, then claim follows.

Therefore we have that cat(Ω̃k) ≥ 2 for any k ≥ 1. Define

c = sup
C∈Ξ

inf
ξ∈C

Φ(ξ)

where
Ξ = {C ⊂ Ω̃k : C closed and cat(C) ≥ 2}.

Then by Ljusternik-Schnirelmann theory we obtain that c is a critical level.

If c ̸= cm, we conclude that Φ has at least two distinct critical points in Ω̃k. If c = cm, there is
at least one set C such that cat(C) ≥ 2, where the function Φ reaches its absolute minimum.
In this case we conclude that there are infinitely many critical points for Φ in Ω̃k.

Thus we obtain that the function Φ has at least two distinct critical points in Ω̃k, denoted
say by ξ1, ξ2. Hence, for µ sufficiently small, the function I(ξ, s) has two distinct points(
ξ1µ, s

1
µ

)
and

(
ξ2µ, s

2
µ

)
close respectively to (ξ1, (1 + r̄(ξ1))s̄(ξ1)) and to (ξ2, (1 + r̄(ξ2))s̄(ξ2)).

This implies the existence of a solution to our Problem of the form U + ϕ. Finally, let us
remark that (7.10) holds as a direct consequence of the construction of U and of the fact
that ϕ is a smaller perturbation. This ends the proof of the Theorem.
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7.4 Proof of Proposition 7.8

The proof of Proposition 7.8 is based on a fixed point argument and the invertibility property
of the following linear Problem: Given h ∈ L∞(∂Ω), find a function ϕ and constants cij such
that 

−∆ϕ+ ϕ = 0 in Ω;

L(ϕ) = h+
∑
i=0,1

k∑
j=1

cijχjZij on ∂Ω;∫
Ω
χjZijϕ = 0 for i = 0, 1, j = 1, . . . , k.

(7.60)

In chapter six, we have proven the following result, see Proposition 6.3 and Lemma 6.8.

Proposition 7.11. Let δ > 0 be a small but fixed number and assume we have ξ1, . . . , ξk ∈ ∂Ω
and m1, . . . ,mk with

|ξi − ξj| ≥ δ, ∀ i ̸= j, δ < mj <
1

δ
. (7.61)

Then there exist positive numbers λ0 and C such that, for any 0 < λ < λ0 and any h ∈
L∞(∂Ω), there is a unique solution ϕ ≡ Tλ(h), and cij ∈ R to (7.60). Moreover,

∥ϕ∥∞ ≤ C∥h∥∗,∂Ω. (7.62)

Moreover, the operator Tλ is differentiable with respect to the variable ξ1, . . . , ξk on ∂Ω, and
m1, . . . ,mk, one has the estimate

∥DξTλ(h)∥∞ ≤ C∥h∥∗,∂Ω, ∥DmTλ(h)∥∞ ≤ C∥h∥∗,∂Ω. (7.63)

for a given positive C, independent of λ, and for all λ small enough.

We are now in the position to prove Proposition 7.8.

Proof of Proposition 7.8 In terms of the operator Tλ defined in Proposition 7.11, problem
(7.44) becomes

ϕ = Tλ (R +N(ϕ)) := A(ϕ), (7.64)

where R is defined in (7.36). For a given number γ > 0, let us consider the region

Fγ :=
{
ϕ ∈ C(Ω̄) : ∥ϕ∥∞ ≤ γλ

3
2

}
.

From Proposition 7.11, we get

∥A(ϕ)∥∞ ≤ C [∥R∥∗,∂Ω + ∥N(ϕ)∥∗,∂Ω] .
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An involved but direct computation shows that, see the proof of (6.83) and (6.84),∥∥∥∥∥f ′(Ũ)−
k∑
j=1

ε−1
j ewj

∥∥∥∥∥
∗,∂Ω

≤ Cλ
3
2 . (7.65)

and ∥∥∥f ′′(Ũ)
∥∥∥
∗,∂Ω

≤ C. (7.66)

From (7.40), (7.65) and (7.66), from the definition of N(ϕ) in (7.64), namely

N(ϕ) := f(Ũ + ϕ)− f(Ũ)− f ′(Ũ)ϕ+

[
f ′(Ũ)−

k∑
j=1

ε−1
j ewj

]
ϕ, (7.67)

it follows that

∥A(ϕ)∥∞ ≤ C
(
λ

3
2 + ∥ϕ∥2∞ + λ∥ϕ∥∞

)
.

We then get that A(Fγ) ⊂ Fγ for a sufficiently large but fixed γ and all small λ. Moreover,
for any ϕ1, ϕ2 ∈ Fγ, one has

∥N(ϕ1)−N(ϕ2)∥∗,∂Ω ≤ C

[(
max
i=1,2

∥ϕi∥∞
)
+ λ

]
∥ϕ1 − ϕ2∥∞,

In fact, using directly (7.67),

N(ϕ1)−N(ϕ2)

= f(Ũ + ϕ1)− f(Ũ + ϕ2)− f ′(Ũ)(ϕ1 − ϕ2) +

[
f ′(Ũ)−

k∑
j=1

ε−1
j ewj

]
(ϕ1 − ϕ2)

=

∫ 1

0

(
d

dt
f(Ũ + ϕ2 + t(ϕ1 − ϕ2))

)
dt− f ′(Ũ)(ϕ1 − ϕ2) +

[
f ′(Ũ)−

k∑
j=1

ε−1
j ewj

]
(ϕ1 − ϕ2)

=

∫ 1

0

(
f ′(Ũ + ϕ2 + t(ϕ1 − ϕ2))− f ′(Ũ)

)
dt (ϕ1 − ϕ2) +

[
f ′(Ũ)−

k∑
j=1

ε−1
j ewj

]
(ϕ1 − ϕ2)

Thus, for a certain t∗ ∈ (0, 1), and s ∈ (0, 1)

|N(ϕ1)−N(ϕ2)|

≤ C

[
|f ′(Ũ + ϕ2 + t∗(ϕ1 − ϕ2))− f ′(Ũ)|+

(
f ′(Ũ)−

k∑
j=1

ε−1
j ewj

)]
∥ϕ1 − ϕ2∥∞

≤ C
[
|f ′′(Ũ + sϕ2 + t∗(ϕ1 − ϕ2))|

(
∥ϕ1∥L∞(Ω) + ∥ϕ2∥∞

)
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+[f ′(Ũ)−
k∑
j=1

ε−1
j ewj ]

]
∥ϕ1 − ϕ2∥∞.

Thanks to (7.65), (7.66) and the fact that ∥ϕ1∥∞, ∥ϕ2∥∞ → 0 as λ→ 0, we conclude that

∥N(ϕ1)−N(ϕ2)∥∗,∂Ω ≤ C [∥ϕ1∥∞ + ∥ϕ2∥∞ + λ] ∥ϕ1 − ϕ2∥∞.

Then we have

∥A(ϕ1)− A(ϕ2)∥∞ ≤ C∥N(ϕ1)−N(ϕ2)∥∗,∂Ω ≤ C

[
max
i=1,2

∥ϕi∥∞ + λ

]
∥ϕ1 − ϕ2∥∞.

Thus the operator A has a small Lipschitz constant in Fγ for all small λ, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map (ξ,m) = (ξ1, . . . , ξk,m1, . . . ,mk) 7→ ϕ.
Assume for instance that the partial derivative ∂ξslϕ exists, for s = 1, . . . , k, l = 1, 2. Since
ϕ = Tλ (N(ϕ) +R), formally we have that

∂ξslϕ = (∂ξslTλ) (N(ϕ) +R) + Tλ (∂ξslN(ϕ) + ∂ξslR) .

From (7.63), we have

∥∂ξslTλ (N(ϕ) +R) ∥∞ ≤ C∥N(ϕ) +R∥∗,∂Ω ≤ Cλ
3
2 .

On the other hand,

∂ξslN(ϕ) = [f ′(Ũ + ϕ)− f ′(Ũ)− f
′′
(Ũ)ϕ]∂ξslŨ + ∂ξsl

(
∂Zij
∂ν

− [
k∑
j=1

ε−1
j ewj ]

)
ϕ

+[f ′(Ũ + ϕ)− f ′(Ũ)]∂ξslϕ+

(
f ′(Ũ)− [

k∑
j=1

ε−1
j ewµj ]

)
∂ξslϕ.

Then,

∥∂ξslN(ϕ)∥∗,∂Ω ≤ C
{
∥ϕ∥2∞ + λ∥ϕ∥∞ + ∥ϕ∥∞∥∂ξslϕ∥∞ + λ∥∂ξslϕ∥∞

}
.

Since ∥∂ξslR∥∗,∂Ω ≤ λ
3
2 , Proposition 7.11 guarantees that

∥∂ξslϕ∥∞ ≤ Cλ
3
2

for all s, l. Analogous computation holds true if we differentiate with respect to mj. Then,
the regularity of the map (ξ,m) 7→ ϕ can be proved by standard arguments involving the
implicit function theorem and the fixed point representation (7.64). This concludes proof of
the Proposition.
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7.5 Proofs of Proposition 7.9 and of Proposition 7.10

7.5.1 Proof of Proposition 7.9

Let us write

U(x) =
k∑
j=1

Uj(x), with Uj(x) =
√
λmj[uj(x) +Hj(x)]

where uj and Hj are given by (7.30) and (7.31). We observe that Uj satisfies{
−∆Uj(x) + Uj(x) = 0 in Ω;

∂Uj(x)

∂ν
= 2

√
λmjεjµje

uj(x) on ∂Ω.
(7.68)

We have ∫
Ω

[
|∇(U + ϕ)|2 + (U + ϕ)2

]
=

∫
Ω

(
|∇U |2 + U2

)
+

∫
Ω

[
2 (∇U∇ϕ+ Uϕ) + (|∇ϕ|2 + ϕ2)

]
:= Ia + Ib. (7.69)

For Ia, we have

Ia =
k∑
j=1

∫
Ω

(
|∇Uj|2 + U2

j

)
+
∑
i ̸=j

∫
Ω

(∇Ui∇Uj + UiUj) := Ia,1 + Ia,2. (7.70)

Multiplying (7.68) by Uj and integrating on Ω, by (7.32) we find

Ia,1 =
k∑
j=1

2
√
λmjεjµj

∫
∂Ω

euj(x)Uj(x) =
k∑
j=1

2λm2
jεjµj

∫
∂Ω

euj(uj +Hj)

=
k∑
j=1

2λm2
j

∫
∂Ω

εjµj
|x− ξj − εjµjν(ξj)|2

(
log

1

|x− ξj − εjµjν(ξj)|2
+H(x, ξj) +O(εσj )

)

=
k∑
j=1

2λm2
j

∫
∂Ωεjµj

1

|y − ν(0)|2

[
log

1

|y − ν(0)|2
+H(ξj, ξj)− 2 log(εjµj) +O(εσj )

]

where Ωεjµj =
Ω−ξj
εjµj

. Using the following facts∫
∂Ωεjµj

1

|y − ν(0)|2
= π +O(εσj ),

∫
∂Ωεjµj

1

|y − ν(0)|2
log

1

|y − ν(0)|2
= −2π log 2 +O(εσj ),
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and the definition of εj given in (7.27), we obtain

Ia,1 =
k∑
j=1

2λm2
j

[
−2π log 2 + πH(ξj, ξj)− 2π log(εjµj) +O(εσj )

]
= kπ + 2πλ

k∑
j=1

m2
j

[
H(ξj, ξj)− 2 log(2m2

j)− 2 log(2µj) +O(εαj )
]
. (7.71)

Multiplying (7.68) by Ui and integrating on Ω, we find

Ia,2 =
∑
i ̸=j

∫
∂Ω

2
√
λmjεjµje

uj(x)Ui(x) = 2
∑
i̸=j

λmimjεjµj

∫
∂Ω

euj(ui +Hi)

= 2
∑
i̸=j

λmimj

∫
∂Ωεjµj

1

|y − ν(0)|2

[
log

1

|ξj − ξi + εjµjy − εiµiν(ξi)|2
+Hi(εjµjy + ξj)

]
= 2πλ

∑
i̸=j

mimj

[
G(ξi, ξj) +O

(
εi log

1

εi
+ εj log

1

εj

)
+O(εσi + εσj )

]
. (7.72)

Thus from (7.70), (7.71), (7.72) and the definition of µj given in (7.28) we get∫
Ω

(
|∇U |2 + U2

)
= kπ

{
1 + λfk(ξ,m) +

k∑
j=1

εj log
1

εj
Θλ(ξ,m)

}
(7.73)

where fk is the function defined in (7.50) and Θλ(ξ,m) is a smooth function, uniformly
bounded as λ → 0, in the region for (ξ,m) satisfying (7.26). This is a estimate in the
C0−sense. For C1−closeness, the derivatives in ξ and in m, by the same argument of
C0−estimate, we have

Dξ

(∫
Ω

(
|∇U |2 + U2

))
= kπλDξ (fk(ξ,m)) +

k∑
j=1

εj log
1

εj
Θλ(ξ,m), (7.74)

Dm

(∫
Ω

(
|∇U |2 + U2

))
= kπλDm (fk(ξ,m)) +

k∑
j=1

εj log
1

εj
Θλ(ξ,m), (7.75)

where Θ(ξ,m) is uniformly bounded, as λ → 0, in the region for (ξ,m) satisfying (7.26).
From the choice of εj in (7.27), we note that εj log

1
εj

= o(λ3).

On the other hand, for Ib given in (7.69). We have

Ib ≤ 2

∣∣∣∣∫
Ω

[∇(U + ϕ)∇ϕ+ (U + ϕ)ϕ]

∣∣∣∣
Multiplying (7.44) by ϕ and integrating on Ω, we find∫

Ω

[∇(U + ϕ)∇ϕ+ (U + ϕ)ϕ] = λ

∫
∂Ω

(U + ϕ)e(U+ϕ)2ϕ.
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By (7.45) we have ∥ϕ∥∞ ≤ Cλ
3
2 for some fixed constant C independent of λ, and using a

Taylor expansion, we find

λ

∫
∂Ω

(U + ϕ)e(U+ϕ)2ϕ ≤ λ∥ϕ∥∞
∣∣∣∣∫
∂Ω

(U + ϕ)e(U+ϕ)2
∣∣∣∣ ≤ Cλ

5
2

∣∣∣∣∫
∂Ω

UeU
2

∣∣∣∣+ Cλ4.

Since, for some δ > 0 small, we write∫
∂Ω

UeU
2

=
k∑
j=1

∫
∂Ω∩B(ξj ,δ

√
εj)

UeU
2

+

∫
∂Ω\

k∪
j=1

B(ξj ,δ
√
εj)

UeU
2

:= Ic + Id,

where ∫
∂Ω∩B(ξj ,δ

√
εj)

UeU
2

=

∫
∂Ω∩B(ξj ,δεj | log εj |)

UeU
2

+

∫
∂Ω∩(B(ξj ,δ

√
εj)\B(ξj ,δεj | log εj |))

UeU
2

:= Ic,1 + Ic,2.

From (7.27) and (7.34), for x close to point ξj, we have U =
√
λmj

(
wj +

1
2λm2

j
+O(1)

)
and

eU
2
= 2m2

jε
−1
j ewj(1 +O(λ)), where wj is defined in (7.35). Hence,

Ic,1 = 2
√
λm3

jε
−1
j

∫
∂Ω∩B(ξj ,δεj | log εj |)

(
wj +

1

2λm2
j

+O(1)

)
ewj(1 +O(λ))

= 2
√
λm3

j

∫
∂Ω−ξj
εjµj

∩B(0,
δ| log εj |

µj
)

(
log

2µ−1
j

|y − ν(0)|2
+

1

2λm2
j

+O(1)

)
2

|y − ν(0)|2
(1 +O(λ)) .

Moreover,

|Ic,2| ≤ C
√
λ

δε
− 1

2
j∫

δ| log εj |

1

r2
e

log2 r

γ2
j r dr

= C
√
λ

R2+
γ2j
4∫

R1+log γ2j

e
−2t+ 4t2

γ2
j dt ≤ C

√
λ

R2+
γ2j
4∫

R1+log γ2j

e−tdt = O(λ
3
2 ).

For Id, since in the region ∂Ω\
k∪
j=1

B(ξj, δ
√
εj), the function U(x) satisfies U(x) =

√
λ[
∑k

j=1mjG(x, ξj)+

o(1)], with o(1) → 0 as λ→ 0, we then have

Id =

∫
∂Ω\

k∪
j=1

B(ξj ,δ
√
εj)

UeU
2
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=
√
λ

k∑
j=1

mj

∫
∂Ω

G(x, ξj)

1 + λ

(
k∑
j=1

mjG(x, ξj)

)2
 (1 + o(1))

=
√
λ

k∑
j=1

mj

∫
∂Ω

G(x, ξj)(1 + o(1)).

Thanks to above facts, we obtain

Ib = λ3Θλ(m, ξ) (7.76)

with Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (7.26), as
λ→ 0. Therefore, from (7.69), (7.73) and (7.76) we obtain that estimate (7.49) holds in the
C0 sense.

Next let us show the C1−closeness in estimate (7.49). From (7.44) and (7.46) we have

Dξ

(∫
Ω

(
|∇(U + ϕ)|2 + (U + ϕ)2

))
= 2

∫
Ω

[∇(U + ϕ)∇(∂ξU + ∂ξϕ) + (U + ϕ)(∂ξU + ∂ξϕ)]

= 2

∫
∂Ω

∂(U + ϕ)

∂ν
(∂ξU + ∂ξϕ) = 2

∫
∂Ω

∂U

∂ν
∂ξU + λ2Θλ(m, ξ)(7.77)

where Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (7.26),

as λ → 0, here we use the facts ∥∂ξϕ∥∞ ≤ Cλ
3
2 and

∫
∂Ω

∂U
∂ν

≤ C
√
λ. On the other hand, we

note that −∆U + U = 0 in Ω, hence

Dξ

(∫
Ω

(
|∇U |2 + U2

))
= 2

∫
Ω

[∇U∇∂ξU + U∂ξU ] = 2

∫
∂Ω

∂U

∂ν
∂ξU. (7.78)

From (7.74), (7.77) and (7.78), we obtain the C1−closeness in estimate (7.49)

Dξ

(∫
Ω

(
|∇(U + ϕ)|2 + (U + ϕ)2

))
= kπλDξ (fk(ξ,m)) + λ2Θλ(ξ,m), (7.79)

and by the same argument, we have

Dm

(∫
Ω

(
|∇(U + ϕ)|2 + (U + ϕ)2

))
= kπλDm (fk(ξ,m)) + λ2Θλ(ξ,m), (7.80)

where Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (7.26),
as λ→ 0.

Finally, let us evaluate
∫
∂Ω
e(U+ϕ)2 . By a Taylor expansion, we find∫
∂Ω

e(U+ϕ)2 =

∫
∂Ω

eU
2

+ λ2Θλ(m, ξ). (7.81)
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We write ∫
∂Ω

eU
2

=
k∑
j=1

∫
∂Ω∩B(ξj ,δ

√
εj)

eU
2(x) +

∫
∂Ω\

k∪
j=1

B(ξj ,δ
√
εj)

eU
2(x) := Ie + If . (7.82)

Since ∫
∂Ω∩B(ξj ,δ

√
εj)

eU
2(x) =

∫
∂Ω∩B(ξj ,δεj | log εj |)

eU
2(x) +

∫
∂Ω∩(B(ξj ,δ

√
εj)\B(ξj ,δεj | log εj |))

eU
2(x) := Ie,1 + Ie,2.

From (7.27), (7.28), (7.34) and definition of βj, we have

Ie,1 =

∫
∂Ω∩B(ξj ,δεj | log εj |)

eU
2(x) = ε−1

j e
βj
2

∫
∂Ω∩B(ξj ,δεj | log εj |)

ewjeθ(x)eλm
2
j [w

2
j+2wjθ(x)+θ

2(x)]

= 2m2
j

∫
∂Ω−ξj
εjµj

∩B(0,
δ| log εj |

µj
)

2

|y − ν(0)|2
(1 +O(λ)) = 4πm2

j (1 +O(λ)) , (7.83)

with Θλ(m, ξ) a function, uniformly bounded, in the region for (ξ,m) satisfying (7.26), as
λ→ 0. Moreover,

|Ie,2| ≤ C

∫ δε
− 1

2
j

δ| log εj |

1

r2
e

log2 r

γ2
j r dr = C

∫ R2+
γ2j
4

R1+log γ2j

e
−2t+ 4t2

γ2
j dt ≤ C

∫ R2+
γ2j
4

R1+log γ2j

e−tdt = O(λ). (7.84)

Furthermore, we have

If =

∫
∂Ω\

k∪
j=1

B(ξj ,δ
√
εj)

eU
2

=

∫
∂Ω\

k∪
j=1

B(ξj ,δ
√
εj)

[
1 + λ

k∑
j=1

m2
jG

2(x, ξj)

]
(1 + o(1))

= |∂Ω|+ λ
k∑
j=1

m2
j

∫
∂Ω

G2(x, ξj) + λ2Θλ(m, ξ) (7.85)

with |∂Ω| denotes the measure of domain ∂Ω, and Θλ(m, ξ) is a function, uniformly bounded,
in the region for (ξ,m) satisfying (7.26), as λ → 0. Then from (7.81)-(7.85) we get that
estimate (7.51) hold true in C0−sense.

On the other hand, by a Taylor expansion and the facts ∥ϕ∥∞ ≤ Cλ
3
2 and

∫
∂Ω
U ≤ C

√
λ, we

have

Dξ

(∫
∂Ω

e(U+ϕ)2
)

= 2

∫
∂Ω

eU
2

U∂ξU + λ2Θλ(m, ξ) = Dξ

(∫
∂Ω

eU
2

)
+ λ2Θλ(m, ξ),
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and

Dm

(∫
∂Ω

e(U+ϕ)2
)

= Dm

(∫
∂Ω

eU
2

)
+ λ2Θλ(m, ξ)

with Θλ(m, ξ) is a function, uniformly bounded, in the region for (ξ,m) satisfying (7.26), as
λ → 0. Then we obtain that the C1−closeness in (7.51) by the same way as in the proof of
C1−closeness in (7.49).

7.5.2 Proof of Proposition 7.10

Define the set
R′ = {(ξ,m) ∈ R : fk(ξ,m) ̸= 0}.

From Proposition 7.9, replacing expansion (7.49) into (7.52), we see that (7.52) gives

λfk(ξ,m) + λ2Θλ(ξ,m) = µ. (7.86)

In R′, (7.86) defines λ as a function of µ, ξ and m, which is smooth in (ξ,m) in the region
R′. Furthermore, as µ→ 0,

λ =
µ

fk(ξ,m)
+

µ2

f 3
k (ξ,m)

Θµ(ξ,m)

with Θµ(m, ξ) is a function, uniformly bounded with its derivatives, as µ→ 0.

Assume now (7.52), we shall prove (7.53). Let us denote ∂ by the partial derivative with
respect tomj for any j = 1, . . . , k, or the partial derivative with respect to ξj1 for j = 1, . . . , k.
By a direct computation we have

J ′(U + ϕ) [∂(U + ϕ)] =
1

2
∂

(∫
Ω

(|∇(U + ϕ)|2 + (U + ϕ)2)

)
− λ

2
∂

(∫
∂Ω

e(U+ϕ)2
)
.

From (7.52) we have that ∂
(∫

Ω
(|∇(U + ϕ)|2 + (U + ϕ)2)

)
= 0. Thus ∂

(∫
∂Ω
e(U+ϕ)2

)
= 0 if

and only if J ′(U + ϕ) [∂(U + ϕ)] = 0. Let us now rewrite

1√
λ
(U + ϕ)(ξ,m)(x) = mlvl

(
x− ξl
εl

)
+

1

2λml

for some l = 1, . . . , k, with

vl(y) := wµl(y) +
k∑
j=1

(
O(|εly + ξl − ξj|) +O(ε2j)

)
for |y| ≤ δ

εl
.
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Since U + ϕ is the solution of (7.44), then vl satisfies
−∆vl + ε2l

(
vl +

1
2λm2

l

)
= 0 in Ωl;

∂vl
∂ν

− (1 + 2λm2
l vl)e

vleλm
2
l v

2
l = m−1

l εl
∑
i=0,1

k∑
j=1

cijε
−1
j χ

(
Fj(εly+ξl−ξj)

εj

)
zij

(
Fj(εly+ξl−ξj)

εj

)
on ∂Ωl,

where Ωl =
Ω−ξl
εl

. For any l, we define

Il(vl) =
1

2

∫
Ωl

[
|∇vl|2 + ε2l

(
vl +

1

2λm2
l

)2
]
−
∫
∂Ωl

evleλm
2
l v

2
l .

We observe that
J ′(U + ϕ) [∂(U + ϕ)] = λm2

l I
′
l(vl)[∂vl].

and

λm2
l I

′
l(vl)[∂vl]

= λmlεl
∑
i=0,1

k∑
j=1

(∫
∂Ωl

ε−1
j χ

(
Fj(εly + ξl − ξj)

εj

)
zij

(
Fj(εly + ξl − ξj)

εj

)
∂vl dy

)
cij.

Now, fix i and j, we compute the coefficient in front of cij, we choose l = j, ∂vl = Dmsvl(y),
and obtain ∫

∂Ωl

ε−1
j χ

(
Fj(εly + ξl − ξj)

εj

)
zij

(
Fj(εly + ξl − ξj)

εj

)
Dmsvl(y) dy

=

∫
∂Ωl

ε−1
j χ (y) zij (y)Dms

[
wµj(y) +

k∑
j=1

(
O(|εjy|) +O(ε2j)

)]
dy

=
∂µj
∂ms

∫
∂R2

+

z20j(y) dy(1 + o(1)).

Thus we concludes that for any s = 1, 2, · · · , k, we have

J ′(U + ϕ) [∂ms(U + ϕ)] = λmlεl

k∑
j=1

∂µj
∂ms

∫
∂R2

+

z20j(y) dyc0j(1 + o(1)).

Similarly, we get that for all s, l

J ′(U + ϕ) [∂ξs1(U + ϕ)]

= λmlεl

[
k∑
j=1

(
∂µj
∂ξs1

∫
∂R2

+

z20j(y)dy

)
c0j +

(∫
∂R2

+

z21s(y)dy

)
c1s

]
(1 + o(1)).
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Thus, we can conclude that J ′(U + ϕ) [∂(U + ϕ)] = 0, that is Dξ,mE(U + ϕ) = 0 then we
have the following system[

k∑
j=1

∂µj
∂ms

c0j

]
(1 + o(1)) = 0, s = 1, 2, · · · , k, (7.87)

[
A

k∑
j=1

∂µj
∂ξs1

c0j + c1s

]
(1 + o(1)) = 0, for all s, (7.88)

for some fixed constant A, with o(1) small in the sense of the L∞ norm as λ → 0. Then

(7.53) follows if we show that the matrix
∂µj
∂ms

of dimension k × k is invertible in the region
for (ξ,m) satisfying (7.26). Indeed, this fact implies unique solvability of (8.99). Inserting
this in (8.100) we get unique solvability of (8.100).

Consider the definition of the µj, in terms ofm′
js and points ξj given in (7.26). These relations

correspond to the gradient DmF (m, ξ) of the function F (m, ξ) defined as follows

F (m, ξ) =
1

2

k∑
j=1

m2
j

[
−2 log

(
2m2

j

)
− log(2µj) + 2 +H(ξj, ξj)

]
+
∑
i ̸=j

mimjG(ξi, ξj).

We set sj = m2
j , then the above function can be written as follows

F (s, ξ) =
1

2

k∑
j=1

sj [−2 log(2sj)− log(2µj) + 2 +H(ξj, ξj)] +
∑
i̸=j

√
sisjG(ξi, ξj).

This function is strictly convex function of the parameters sj, for parameters sj uniformly
bounded and uniformly bounded away from 0 and for points ξj in Ω uniformly far away from

each other and from the boundary. For this reason, the matrix ( ∂2F
∂si∂sj

) is invertible in the

range of parameters and points we are considering. Thus, by the implicit function theorem,
relation (7.28) defines a diffeomorphism between µj and mj. This fact gives the invertibility

of (
∂µj
∂ms

). Thus we finish the proof of Proposition 7.10.
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Chapter 8

Multipeak solutions for
asymptotically critical elliptic
equations on Riemannian manifold

1

8.1 Introduction

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 3, where g denotes
the metric tensor. We are interested in the following asymptotically critical elliptic equation

∆gu+ a(x)u = u2
∗−1−ε, u > 0 in M, (8.1)

where ∆g = −divg(∇) is the Laplace-Beltrami operator on M, a(x) is a C1 function on M,
2∗ = 2n

n−2
denotes the Sobolev critical exponent, ε is a small real parameter such that ε→ 0.

The equation with ε > 0 is subcritical, and the equation with ε < 0 is supercritical.

Recently, nonlinear elliptic equations on compact Riemannian manifold have been brought
much attention. Consider the following problem

ε2∆gu+ u = |u|p−2u in M, (8.2)

where (M, g) is a compact, connected, Riemannian manifold of class C∞ with Riemannian
metric g, dimM = n ≥ 3, 2 < p < 2∗ and ε is a positive parameter. In [10], the authors
proved that the problem (8.2) has a mountain pass solution uε which exhibits a spike layer.

1The main result of this chapter was published in Nonlinear Analysis: Theory, Methods and Applica-
tions,74(3)(2011), 859-881.
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In particular, they proved that the maximum point of uε converges to a maximum point
of the scalar curvature Scalg as ε goes to zero. Multiple solutions were obtained in [12] for
the problem (8.2), the authors showed that multiplicity of solutions to (8.2) depends on the
topological properties of the manifoldM. More precisely, they showed that problem (8.2) has
at least cat(M)+1 nontrivial solutions provided ε is small enough. Here cat(M) denotes the
Lusternik-Schnirelmann category of M. While for zero mass case, similar result was obtained
in [117]. And in [65] the author constructed an interesting example of two manifolds having
the same topology, for which the number of solutions to the problem (8.2) is different.

In [87] the authors showed that for any stable critical point of the scalar curvature it is
possible to construct a single peak solution, whose peak approaches such a point as ε goes
to zero. In [26] the authors proved that for any fixed positive integer k, problem (8.2) has a
k−peak solution, whose peaks collapse, as ε goes to zero, to an isolated local minimum point
of the scalar curvature. Recently in [89] the authors proved that the existence of positive or
sign changing multi-peak solutions of (8.2), whose both positive and negative peaks approach
different stable critical points of the scalar curvature as ε goes to zero.

The asymptotically critical case on Riemannian manifold in [90] the authors proved problem
(8.1) exists blowing-up families of positive solutions provide the graph of a(x) is distinct at
some point from the graph of n−2

4(n−1)
Scalg.

If a ≡ n−2
4(n−1)

Scalg, problem (8.9) is the intensively studied Yamabe problem

∆gu+
n− 2

4(n− 1)
Scalgu = u2

∗−1−ε in M u > 0 in M, (8.3)

is just the so called prescribed scalar curvature problem with ε = 0. The existence of
a conformal metric with constant scalar curvature on compact Riemannian manifolds was
studied by Yamabe [116], Trudinger [115], Aubin [8] and Schoen [108]. If u is a solution, then
4(n−1)
n−2

is the scalar curvature of the conformal metric g̃ = u
1

n−2 g. On the compact manifold
(M, g), the coercivity of the operator ∆g + a is a necessary condition for the existence of
a solution to problem (8.3). In [43] the author consider (8.1) with ε ≥ 0, for any smooth,
compact Riemannian manifold of dimensional n ≥ 3 and any smooth function a on M such
that ∆g + a is coercive and a(ξ) < n−1

4(n−2)
Scalg(ξ), then (8.1) exists a solution.

In order to state our main result, it is useful to recall some definitions and results. First, Let
us introduce the definition of C1 stable critical set.

Definition 8.1. ([69]) Let f ∈ C1(M,R), for any given integer k ≥ 2, set ξ̄ = (ξ1, ξ2, · · · , ξk),
let C1, C2, · · · , Ck ⊂ M be k mutually disjoint closed subsets of critical points of f , we say

that (C1, C2, · · · , Ck) ⊂ Mk is a C1 stable critical set of function F (ξ) :=
k∑
j=1

f(ξj), if for

any σ > 0 there exists γ > 0 such that if Φ ∈ C1(Mk,R) with

max
dg(ξj ,Cj)≤σ,1≤j≤k

(
|F (ξ)− Φ(ξ)|+ |∇gF (ξ)−∇gΦ(ξ)|

)
≤ γ,
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then Φ has at least one critical point ξ in Mk with dg (ξj, Cj) ≤ σ.

Remark 8.2. ([69]) (C1, C2, · · · , Ck) ⊂ Mk is a C1 stable critical set of function F if one
of the following condition is satisfied:

(i) Each Cj is a strict local minimum set of f .

(ii) Each Cj is a strict local maximum set of f .

(iii) Each Cj =
(
{ξ0j }

)
is an isolated critical point of f with deg

(
∇gf,Bg(ξ

0
j , ϱ), 0

)
̸= 0

for some ϱ > 0, where deg denotes the Brouwer degree.

Next, we introduce the following equation which correspond to limiting equation to problem
(8.1).

∆U = U2∗−1 in Rn, (8.4)

where ∆ = −div(∇) is the Laplace-Beltrami operator associated with the Euclidean metric.
It is known that [8, 115] the functions λ(2−n)/2U(λ−1z) satisfy equation (8.4), where

U(z) = U(|z|) =

(√
n(n− 2)

1 + |z|2

)(n−2)/2

. (8.5)

Let us define a smooth cut-off function χr satisfies

χr(z) :=


1 if z ∈ B(0, r

2
);

∈ (0, 1) if z ∈ B(0, r)\B(0, r
2
);

0 if z ∈ Rn\B(0, r),
(8.6)

and |∇χr(z)| ≤ 2
r
, |∇2χr(z)| ≤ 2

r2
. For any point ξ in M and for any positive real number

λ, we define the function Wλ,ξ on M by

Wλ,ξ(x) :=

{
χr
(
exp−1

ξ (x)
)
λ

2−n
2 U

(
λ−1exp−1

ξ (x)
)

if x ∈ Bg(ξ, r);

0 otherwise.
(8.7)

We assume in this chapter that the operator ∆g + a is coercive, we can provide the Hilbert
space H1

g (M) with the inner product

⟨u, v⟩a =
∫
M

(⟨∇u,∇v⟩g + a(x)uv) dµg,

which induces the norm

∥u∥2a =
∫
M

(
|∇gu|2 + a(x)u2

)
dµg.
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Let

φ(ξ) = a(ξ)− n− 1

4(n− 2)
Scalg(ξ). (8.8)

In this chapter we construct a family of solutions of equation (8.1), whose peaks approach
different stable critical points of φ(ξ) with ε small enough, which blow-up and concentrate
at some points in M, in the sense of the following definition.

Definition 8.3. For k ≥ 2 be a positive integer, let uε be a family of solution of (8.1),
we say that uε blow-up and concentrates at point ξ̄0 = (ξ01 , · · · , ξ0k) ∈ Mk if there exist
ξ̄ε = (ξε1, · · · , ξεk) ∈ Mk and (λ1(ε), · · · , λk(ε)) ∈ (R+)k with λj(ε) > 0 such that

ξεj → ξ0j , λj(ε) → 0 as ε→ 0 for j = 1, 2, · · · , k.

and ∥∥∥∥∥uε −
k∑
j=1

Wλj(ε),ξεj

∥∥∥∥∥
a

→ 0 as ε→ 0.

Our main result is the following.

Theorem 8.4. Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 6,
let a(x) be a C1 positive function on M such that the operator ∆g + a is coercive, and for
any given integer k ≥ 2, set ξ̄0 = (ξ01 , · · · , ξ0k), let ξ0j be an isolated critical point of φ(ξj) with
deg(∇gφ,Bg(ξ

0
j , ϱ), 0) ̸= 0 for some ϱ > 0 and j = 1, · · · , k, we have

(i) If φ(ξ0j ) > 0 and ε is small enough, there exists a family of solutions of the subcritical
problem, which blow-up and concentrates at ξ̄0.

(ii) If φ(ξ0j ) < 0 and ε is small enough, there exists a family of solutions of the supercritical
problem, which blow-up and concentrates at ξ̄0.

When M is a flat domain of Rn, problems like (8.1) have been widely investigated. In the
bounded domain, with the Neumann boundary condition, the following problem

−∆u+ µu = uq−1 u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω, (8.9)

arises in several branches of the applied sciences. For example, it can be viewed as a steady-
state equation for the shadow system of the Gierer-Meinhardt system in biological pattern
formation [96] or of parabolic equations in chemotaxis, such as Keller-Segel model [81]. When
q is subcritical, that is q < n+2

n−2
, Lin, Ni, and Takagi in [81] proved that the only solution, for

small µ, is the constant one, whereas nonconstant solutions appear for large µ, the solution
blow up at one or several points as µ goes to infinity. In [97, 98], the authors proved that the
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least energy solution blows up at a boundary point which maximizes the mean curvature of
the boundary. Higher energy solutions exist which blow up at one or several points, located
on the boundary [57, 59], and in the interior of the domain [56]. In the critical case, as in the
subcritical case the least energy solution blows up, as µ goes to infinity, at a unique point
which maximizes the mean curvature of the boundary [98]. The higher energy solutions have
also been exhibited, blow up at one [118] or several points [119, 120]. In the asymptotically
critical case, in [105, 106], the authors considered the problem (8.9) for fixed µ, when the
exponent q is close to the critical one, i.e. q = 2n

n−2
+ ε and ε is a small nonzero number,

they proved that a single interior or boundary peak solution exist for finite µ, provided that
q is close enough to the critical exponent. In super-critical case, del Pino-Musso-Pistoia
in [38] proved that the existence of solutions with blow-up points located on the boundary
and determined by the mean curvature of ∂Ω, see also [34, 35, 37]. In the unbounded
case, Micheletti-Pistoia in [86] constructed a family of positive solutions for both the slightly
subcritical and slightly supercritical equation

−∆u+ V (x)u = n(n− 2)(u+)2
∗−1−ε, in Rn,

with ε is small, the solutions blow-up and concentrate at a single point as ε goes to 0 under
certain conditions on the potential V .

This chapter is organized as follows. In Section 2, we introduce some framework and pre-
liminary results. The proof of the main result is given in Section 3. Section 4 is devoted to
perform the finite dimensional reduction. Section 5 contains the asymptotic expansion of the
reduced energy. Some technical estimates are given in Section 6.

8.2 The framework and preliminary results

Let M be a compact Riemannian manifold of class C∞. On the tangent bundle of M it is
defined the exponential map exp : TM → M which has the following properties:

(i) exp is of class C∞;

(ii) there exists a constant r > 0 such that expξ
∣∣
B(0,r)

: B(0, r) → Bg(ξ, r) is a diffeomorphism

for all ξ ∈ M.
where B(0, r) denotes the ball in Rn centered at 0 with radius r and Bg(ξ, r) denotes the ball
in M centered at ξ with radius r with respect to the distance induced by the metric g.

Fix such an r in this paper with r < ig/2, where ig denotes the injectivity radius of (M, g).
Let C be the atlas on M whose charts are given by the exponential map and P = {ψω}ω∈C
be a partition of unity subordinate to the atlas C. For u ∈ H1

g (M), we have∫
M

|∇gu|2 dµg =
∑
ω∈C

∫
ω

ψω(x)|∇gu|2 dµg,
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where dµg =
√
det g dz denotes the volume form on M associated to the metric g. Moreover,

if u has support inside one chart ω = Bg(ξ, r), then∫
ω

|∇gu|2 dµg =
∫
B(0,r)

(
n∑

a,b=1

gabξ (z)
∂u(expξ(z))

∂za

∂u(expξ(z))

∂zb

)
|gξ(z)|

1
2 dz, (8.10)

where gξ denotes the Riemannian metric reading in B(0, r) through the normal coordinates
defined by the exponential map expξ at ξ. We denote |gξ(z)| := det(gξ(z)) and (gabξ )(z) is
the inverse matrix of gξ(z). In particular, it holds

gabξ (0) = δab, gξ(0) = Id, (8.11)

where δab is the Kronecker symbol and

∂gabξ
∂zc

(0) = 0 for any a, b, c. (8.12)

Since M is compact, there are two strictly positive constants C and C̃ such that

∀ ξ ∈ M, ∀ υ ∈ TξM, C∥υ∥2 ≤ gξ(υ, υ) ≤ C̃∥υ∥2.

Hence, we have
∀ ξ ∈ M, Cn ≤ |gξ| ≤ C̃n.

Let Lq be the Banach space Lq(M) with the norm

|u|q =
(∫

M
|u|q dµg

)1/q

.

It is clear that the embedding i : H1
g (M) ↪→ L2∗(M) is a continuous map. We let i∗ :

L2n/(n+2)(M) ↪→ H1
g (M) be the adjoint operator of the embedding i, the embedding i∗ is a

continuous map such that for any w in L2n/(n+2)(M), the function u = i∗(w) in H1
g (M) is

the unique solution of the equation ∆gu+au = w in M. By the continuity of the embedding
H1
g (M) into L2∗(M), we have

∥i∗(w)∥a ≤ C|w|2n/(n+2) (8.13)

for some positive constant C independent of w.

In order to study the supercritical, by the standard elliptic estimates (see [55]), given a real
number s > 2n/(n − 2), that is ns/(n + 2s) > 2n/(n + 2), for any w in Lns/(n+2s)(M), the
function i∗(w) belongs to Ls(M) and satisfies

|i∗(w)|s ≤ C|w|ns/(n+2s) (8.14)
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for some positive constant C independent of w. For ε small, we set

sε :=

{
2∗ − n

2
ε if ε < 0;

2∗ if ε > 0,

and set Hε = H1
g (M) ∩ Lsε(M) be the Banach space provided with the norm

∥u∥a,sε = ∥u∥a + |u|sε .

If ε > 0, the subcritical case, the space Hε is the Sobolev space H1
g (M), and the norm ∥·∥a,sε

is equivalent to the norm ∥ · ∥a. And we can compute that there holds

nsε
n+ 2sε

=

{
sε

2∗−1−ε if ε < 0;
2n
n+2

if ε > 0,
(8.15)

and by (8.13) (or (8.14) in the supercritical case), we can write problem (8.1) as

u = i∗ (fε(u)) , u ∈ Hε, (8.16)

where fε(u) = u2
∗−1−ε

+ and u+ = max{u, 0}.

It is known that [13] every solution of the linear equation

∆v = (2∗ − 1)U2∗−2v, v ∈ D1,2
0 (Rn) (8.17)

is a linear combination of the functions

V0(z) =
d
(
λ(2−n)/2U(λ−1z)

)
dλ

∣∣∣
λ=1

=
1

2
n

n−2
4 (n− 2)

n+2
4

|z|2 − 1

(1 + |z|2)n/2
, (8.18)

and

Vi(z) = −∂U
∂zi

(z) = n
n−2
4 (n− 2)

n+2
4

zi
(1 + |z|2)n/2

for i = 1, 2, · · · , n. (8.19)

Let us define on M the functions

Zi
λ,ξ(x) :=

{
χr
(
exp−1

ξ (x)
)
λ

2−n
2 Vi

(
λ−1exp−1

ξ (x)
)

if x ∈ Bg(ξ, r);

0 otherwise,
(8.20)

for i = 0, 1, 2, · · · , n. We set Λε(d̄) = (λ1, λ2. · · · , λk) ∈ (R+)k, d̄ = (d1, d2, · · · , dk) ∈ (R+)k

with

λj =
√

|ε|dj, η < dj <
1

η
, (8.21)

for fixed small η > 0, and we denote ξ = (ξ1, ξ2, · · · , ξk) ∈ Mk. For ρ > 0, we define

Oη,ρ :=
{
(Λε(d̄), ξ) ∈ (R+)k ×Mk : dg(ξj, ξl) ≥ ρ > 2r for j, l = 1, 2, · · · , k, j ̸= l

}
.(8.22)

230



CHAPTER 8. MULTIPEAK SOLUTIONS FOR ASYMPTOTICALLY CRITICAL
ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLD

Let
KΛε(d̄),ξ

= Span
{
Zi
λj ,ξj

: i = 0, 1, 2, · · · , n; j = 1, 2, · · · , k
}
,

and
K⊥

Λε(d̄),ξ
=
{
ϕ ∈ Hε : ⟨ϕ, Zi

λj ,ξj
⟩a = 0, ∀ i = 0, 1, 2, · · · , n; j = 1, 2, · · · , k

}
.

We will look for a solution to (8.16), or equivalently to (8.1), of the form

uε = VΛε(d̄),ξ
+ ϕε,d̄,ξ with VΛε(d̄),ξ

=
k∑
j=1

Wλj ,ξj (8.23)

for (Λε(d̄), ξ) ∈ Oη,ρ, where the rest term ϕε,d̄,ξ belongs to the space K⊥
Λε(d̄),ξ

and the functions

Wλj ,ξj are defined in (8.7) with r < ρ/2, so that Wλj ,ξj and Wλl,ξl have disjoint supports if
j ̸= l.

Let ΠΛε(d̄),ξ
: Hε → KΛε(d̄),ξ

and Π⊥
Λε(d̄),ξ

: Hε → K⊥
Λε(d̄),ξ

be the orthogonal projections. In

order to solve problem (8.16) we will solve the system

Π⊥
Λε(d̄),ξ

{
VΛε(d̄),ξ

+ ϕ− i∗
[
fε

(
VΛε(d̄),ξ

+ ϕ
)]}

= 0, (8.24)

ΠΛε(d̄),ξ

{
VΛε(d̄),ξ

+ ϕ− i∗
[
fε

(
VΛε(d̄),ξ

+ ϕ
)]}

= 0. (8.25)

8.3 The existence result

We first give the result whose proof is postponed until Section 4 to solve equation (8.24).

Proposition 8.5. If n ≥ 6, for any η, ρ > 0, (Λε(d̄), ξ) ∈ Oη,ρ, if ε is small enough,
there exists a unique ϕε,d̄,ξ = ϕ(ε, d̄, ξ) which solves equation (8.24), which is continuously

differential with respect to ξ and d̄, moreover,

∥ϕε,d̄,ξ∥a,sε ≤ C

{
|ε| |ln |ε| |2/3 if n = 6 and ε > 0;
|ε| |ln |ε| | otherwise,

(8.26)

where C is a positive constant.

We introduce the functional Jε : H
1
g (M) → R defined by

Jε(u) =
1

2

∫
M

|∇gu|2 dµg +
1

2

∫
M
a(x)u2 dµg −

1

2∗ − ε

∫
M
u2

∗−ε
+ dµg,

231



CHAPTER 8. MULTIPEAK SOLUTIONS FOR ASYMPTOTICALLY CRITICAL
ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLD

It is well known that any critical point of Jε is solution to problem (8.1). We also define the

functional J̃ε : (R+)k ×Mk → R by

J̃ε(d̄, ξ) = Jε

(
VΛε(d̄),ξ

+ ϕε,d̄,ξ

)
, (8.27)

where VΛε(d̄),ξ
is as (8.23) and ϕε,d̄,ξ is given by Proposition 8.5.

The next result, whose proof is postponed until Section 5, allows to solve equation (8.25), by
reducing the problem to a finite dimensional one. We denote Kn the sharp constant for the

embedding of D1,2(Rn) into L2∗(Rn), that is, Kn =
√

4

n(n−2)ω
1/n
n

with ωn is the volume of the

unite n−sphere.

Proposition 8.6. (i) For ε small, if (d̄, ξ) is a critical point of the functional J̃ε, then
VΛε(d̄),ξ

+ ϕε,d̄,ξ is a solution of (8.16), or equivalently of problem (8.1).

(ii) If n ≥ 6, for (Λε(d̄), ξ) ∈ Oη,ρ, there holds

Jε(VΛε(d̄),ξ̄) =
k

n
K−n
n − k

n
K−n
n αnε+

1

n
K−n
n Ψk(d̄, ξ̄) + o(ε), (8.28)

as ε→ 0, C1−uniformly with respect to ξ̄ in Mk and to d̄ in compact subsets of (R+)k, where

αn = 2n−3(n− 2)2
ωn−1

ωn

∫ +∞

0

t(n−2)/2 ln(1 + t)

(1 + t)n
dt+K−n

n

(n− 2)2

4n

(
1− n ln

√
n(n− 2)

)
,(8.29)

Ψk(d̄, ξ̄) =
k∑
j=1

[−c1ε ln (|ε|dj) + c2dj|ε|φ(ξj)] , (8.30)

with c1 =
(n−2)2

8
, c2 =

2(n−1)
(n−2)(n−4)

.

(iii) If n ≥ 6, for (Λε(d̄), ξ) ∈ Oη,ρ, there holds

J̃ε(d̄, ξ) = Jε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ) = Jε(VΛε(d̄),ξ̄) + o(ε)

as ε→ 0, C1 uniformly with respect to ξ̄ ∈ Mk and to d̄ in compact subsets of (R+)k.

Proof of Theorem 8.4:

(i) We first prove part (i) of Theorem 8.4.

We define the functional J̃ : (R+)k ×Mk → R by

J̃(d̄, ξ̄) =
k∑
j=1

f(dj, ξj), with f(dj, ξj) = −c1 ln dj + c2djφ(ξj). (8.31)
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Since ξ0j be an isolated critical point of φ(ξj) with φ(ξ
0
j ) > 0 for ε > 0, and set d0j =

c1
c2φ(ξ0j )

, we

have d0j > 0 and (d0j , ξ
0
j ) is an isolated critical point of f(dj, ξj). Since deg(∇gφ,Bg(ξ

0
j , ϱ), 0) ̸=

0 for some ϱ > 0, then deg(∇gf,Bg(ξ
0
j , ϱ), 0) ̸= 0, by the continuity of the Brouwer degree

via homotopy considering the function H : [0, 1]× (R+)k ×Mk → Rk×(n+1) defined by

H(τ, d̄, ξ̄) = τ


∂J̃(d̄,ξ̄)
∂d1

(
∂f(d1,ξ1(y1))

∂y11

)
|y=0

· · ·
(
∂f(d1,ξ1(y1))

∂y1n

)
|y=0

...
...

. . .
...

∂J̃(d̄,ξ̄)
∂dk

(
∂f(dk,ξk(y

k))

∂yk1

)
|y=0

· · ·
(
∂f(dk,ξk(y

k))
∂ykn

)
|y=0



+(1− τ)


d1 − d01

(
∂(φ◦ξ1(y1))

∂y11

)
|y=0

· · ·
(
∂(φ◦ξ1(y1))

∂y1n

)
|y=0

...
...

. . .
...

dk − d0k

(
∂(φ◦ξk(yk))

∂yk1

)
|y=0

· · ·
(
∂(φ◦ξk(yk))

∂ykn

)
|y=0


We get that (d̄0, ξ̄0) is an isolated critical point of J̃(d̄, ξ̄), where d̄0 = (d01, d

0
2, · · · , d0k), ξ̄0 =

(ξ01 , ξ
0
2 , · · · , ξ0k), such that

deg(∇gJ̃ , Bg(ξ
0
j , ϱ), 0) ̸= 0,

thus by Remark 8.2, we have that (d̄0, ξ̄0) is a C1 stable critical set of J̃(d̄, ξ̄). By Propo-

sition 3.2, we have
[∣∣∣∂d̄ (1

ε
J̃ε − J̃

)∣∣∣+ ∣∣∣∂ξ̄ (1
ε
J̃ε − J̃

)∣∣∣→ 0 for j = 1, 2, · · · , k,
]
asε → 0,

uniformly with respect to ξ̄ in Mk and to d̄ in compact subsets of (R+)k. By the proper-
ties of the Brouwer degree, it follows that there exists a family of critical points (d̄ε, ξ̄ε) of
J̃ε converging to (d̄0, ξ̄0) as ε → 0. Then, from Proposition 8.6, we get that the function
uε = Vλε(d̄ε),ξ̄ε + ϕε,d̄ε,ξ̄ε is a solution of equation (8.16), and it is a solution of problem (8.1)

for ε small enough. Moreover, by Definition 8.3, We get that the u′εs blow up at ξ̄0 as ε→ 0.

(ii) For supercritical case when ε < 0, we introduce the function f on R+×M by f(dj, ξj) =
−c1 ln dj − c2djφ(ξj) replace in (8.31), and then we proceed in a similar way as in proof of
part (i).

8.4 The finite dimensional reduction

This section is devoted to the proof of Proposition 8.5. Let us introduce the linear operator
Lε,d̄,ξ : Hε ∩K⊥

Λε(d̄),ξ
→ K⊥

Λε(d̄),ξ
defined by

Lε,d̄,ξ(ϕ) := Π⊥
Λε(d̄),ξ

{
ϕ− i∗

[
f ′
ε(VΛε(d̄),ξ

)ϕ
]}

.

This operator is well defined by using (8.13) and (8.14). Therefore equation (8.24) is equiv-
alent to

Lε,d̄,ξ(ϕ) = Nε,d̄,ξ(ϕ) +Rε,d̄,ξ (8.32)
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where

Nε,d̄,ξ(ϕ) = Π⊥
Λε(d̄),ξ

{
i∗
[
fε(VΛε(d̄),ξ

+ ϕ)− fε(VΛε(d̄),ξ
)− f ′

ε(VΛε(d̄),ξ
)ϕ
]}

, (8.33)

and

Rε,d̄,ξ = Π⊥
Λε(d̄),ξ

{
i∗
(
fε(VΛε(d̄),ξ

)
)
− VΛε(d̄),ξ

}
. (8.34)

As a first step, we want to study the invertibility of Lε,d̄,ξ.

Lemma 8.7. If n ≥ 6 and for any η, ρ > 0, for any (Λε(d̄), ξ̄) ∈ Oη,ρ, and for any ϕ ∈
Hε ∩K⊥

Λε(d̄),ξ
, if ε is small enough, there holds

∥Lε,d̄,ξ(ϕ)∥a,sε ≥ C∥ϕ∥a,sε , (8.35)

where C is a positive constant.

Proof. We argue by contradiction. Assume there exist η, ρ > 0 and a sequences εα → 0,
(Λεα(d̄α), ξα) ∈ Oη,ρ, with ξα = (ξ1α, ξ2α, · · · , ξkα) ∈ Mk, and a sequences of functions
ϕα ∈ Hεα ∩K⊥

Λεα (d̄α),ξα
such that

Lεα,d̄α,ξα(ϕα) = ψα, ∥ϕα∥a,sεα = 1 and ∥ψα∥a,sεα → 0. (8.36)

For any α, for notation’s convenience we will write Λα = Λεα(d̄α). From (8.36) we get there
exists ζα ∈ Hεα ∩KΛα,ξα

such that

ϕα − i∗
[
f ′
εα(VΛα,ξα

)ϕα

]
= ψα + ζα. (8.37)

Step 1, we claim that

∥ζα∥a,sεα → 0 as α → ∞. (8.38)

Let ζα :=
∑

i=0,··· ,n

∑
j=1,··· ,k

λijαZ
i
λjα,ξjα

. For any h = 0, 1, · · · , n and l = 1, · · · , k, we multiply

(8.37) by Zh
λlα,ξlα

, and taking into account that ϕα, ψα ∈ K⊥
Λα,ξα

, we get∑
i=0,··· ,n

∑
j=1,··· ,k

λijα

⟨
Zi
λjα,ξjα

, Zh
λlα,ξlα

⟩
a
= −

⟨
i∗
[
f ′
εα(VΛα,ξα

)ϕα

]
, Zh

λlα,ξlα

⟩
a

(8.39)

Since dg(ξjα, ξlα) ≥ ρ > 2r, from the definition of χr, and by properties of the exponential

map, we get,
⟨
Zi
λjα,ξjα

, Zh
λlα,ξlα

⟩
a
= 0 if jα ̸= lα. Therefore, by changing of variable x =

expξjα(λjαz), for i, h = 0, 1, · · · , n and for any α, we have⟨
Zi
λjα,ξjα

, Zh
λlα,ξlα

⟩
a
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=

∫
M

⟨
∇Zi

λjα,ξjα
,∇Zh

λlα,ξlα

⟩
g
dµg +

∫
M
a(x)Zi

λjα,ξjα
Zh
λlα,ξlα

dµg

= δjαlα

{∫
M

⟨
∇Zi

λjα,ξjα
,∇Zh

λlα,ξlα

⟩
g
dµg +

∫
M
a(x)Zi

λjα,ξjα
Zh
λlα,ξlα

dµg

}
= δjαlαλ

2−n
jα

∫
Bg(ξjα,r)

∇g

(
χr(exp

−1
ξjα

(x))Vi(λ
−1
jα exp

−1
ξjα

(x))
)

×∇g

(
χr(exp

−1
ξjα

(x))Vh(λ
−1
jα exp

−1
ξjα

(x))
)
dµg

+δjαlαλ
2−n
jα

∫
Bg(ξjα,r)

a(x)χ2
r(exp

−1
ξjα

(x))Vi(λ
−1
jα exp

−1
ξjα

(x))Vh(λ
−1
jα exp

−1
ξjα

(x)) dµg

= δjαlαλ
2
jα

∫
B(0,r/λjα)

n∑
a,b=1

gabξjα(λjαz)

[
1

λjα

∂Vi(z)

∂za
χr(λjαz) +

∂χr(λjαz)

∂za
Vi(z)

]

×
[

1

λjα

∂Vh(z)

∂zb
χr(λjαz) +

∂χr(λjαz)

∂zb
Vh(z)

] ∣∣gξjα(λjαz)∣∣ 12 dz

+δjαlαλ
2
jα

∫
B(0,r/λjα)

a
(
expξjα(λjαz)

)
χr(λjαz)Vi(z)Vh(z)

∣∣gξjα(λjαz)∣∣ 12 dz

:= I1 + I2. (8.40)

By the Taylor’s expansion, from (8.12), we have

gabξjα(λjαz) = δab +O(λ2jα|z|2) = δab +O(|εα|djα|z|2); (8.41)

and ∣∣gξjα(λjαz)∣∣ 12 = 1 +O(λ2jα|z|2) = 1 +O(|εα|djα|z|2). (8.42)

Moreover, for i, h = 1, 2, · · · , n∫
B(0,r/λjα)−B(0,r/2λjα)

ViVh dz = n
n−2
2 (n− 2)

n+2
2

∫
B(0,r/λjα)−B(0,r/2λjα)

zizh
(1 + |z|2)n

dz

≤ C

∫ r/λjα

r/2λjα

t−n+1dt = O(1). (8.43)

and by the similar way we have ∫
B(0,r/λjα)−B(0,r/2λjα)

∂Vi
∂za

Vh dz = O(1),

∫
B(0,r/λjα)−B(0,r/2λjα)

V0Vh dz = O(1), (8.44)

235



CHAPTER 8. MULTIPEAK SOLUTIONS FOR ASYMPTOTICALLY CRITICAL
ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLD∫
B(0,r/λjα)−B(0,r/2λjα)

∂V0
∂za

Vh dz = O(1).

From (8.41)-(8.44), by the property of function χr, we have

I1 → δjαlαδih∥Vi∥D1,2(Rn), as α → ∞. (8.45)

Moreover,

I2 = |εα|dlα
∫
Rn

a
(
expξjα(λjαz)

)
χ2
r(λlαz)ViVh

∣∣gξjα(λjαz)∣∣ 12 dz → 0, (8.46)

as α→ ∞. Thus, by (8.40), (8.45) and (8.46), we get⟨
Zi
λjα,ξjα

, Zh
λlα,ξlα

⟩
a
= δjαlαδih∥Vi∥D1,2(Rn) + o(1), as α → ∞. (8.47)

Now, set

ϕ̃α(z) :=

{
λ
(n−2)/2
lα ϕα

(
expξlα(λlαz)

)
if z ∈ B(0, r/λlα);

0 otherwise.

By (8.36) and by an change of variable, we get that the sequence {ϕ̃α}α is bounded in

D1,2(Rn). Passing if necessary to a subsequence, we may assume that {ϕ̃α}α converges
weakly to a function ϕ̃ in D1,2(Rn), and thus in L2∗(Rn) by the continuity of the embedding
of D1,2(Rn) into L2∗(Rn).

Since, for any α, the function ϕα ∈ K⊥
Λα,ξα

, by the same change of variable for x = expξlα(λlαz),

we have

0 =
⟨
Zh
λlα,ξlα

, ϕα
⟩
a
=

∫
Rn

⟨
∇ (χr(λlαz)Vh) ,∇ϕ̃α

⟩
gα

dµgα

+λ2lα

∫
Rn

a
(
expξlα(λlαz)

)
χr(λlαz)Vhϕ̃α dµgα , (8.48)

where gα(z) = exp∗
ξlα
g(λlαz) with dµgα = |gξlα(λlαz)|

1
2 dz. Then, passing the limit in (8.48),

we get ∫
Rn

⟨∇Vh,∇ϕ̃⟩ dz = 0.

Since the function Vh is a solution of equation (8.17), it yields that∫
Rn

⟨∇Vh,∇ϕ̃⟩ dz = (2∗ − 1)

∫
Rn

U2∗−2Vhϕ̃ dz = 0. (8.49)

Moreover, ∫
M
f ′
εα(VΛα,ξα

)Zh
λlα,ξlα

ϕαdµg
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=

∫
M
f ′
εα(VΛα,ξα

)χr(exp
−1
ξlα
(x))λ

(2−n)/2
lα Vh(λ

−1
lα exp

−1
ξlα
(x))ϕαdµg

= λ2lα

∫
B(0,r/λlα)

f ′
εα

(
k∑
j=1

χr(λlαz)λ
(2−n)/2
jα U(z)

)
χr(λlαz)Vh(z)ϕ̃α(z)dµgα

= (2∗ − 1− εα)λ
(n−2)εα

2
lα

∫
B(0,r/λlα)

(χr(λlαz)U(z))
2∗−2−εα χr(λlαz)Vh(z)ϕ̃α(z)dµgα .(8.50)

Since there holds

λ
(n−2)εα

2
lα = (|εα|dlα)

(n−2)εα
4 → 1, as α → ∞. (8.51)

And the sequence {ϕ̃α}α converges weakly to ϕ̃ in D1,2(Rn), then taking the limit into (8.50)
yields ∫

M
f ′
εα(VΛα,ξα

)Zh
λlα,ξlα

ϕα dµg → (2∗ − 1)

∫
Rn

U(z)2
∗−2Vh(z)ϕ̃(z) dz = 0, (8.52)

as α→ ∞, because (8.49) holds.

It follows from (8.39), (8.47) and (8.52) that for any i = 0, 1, · · · , n and for any j = 1, 2, · · · , k,
there holds λijα → 0 as α → ∞, therefore our claim (8.38) is proved.

Step 2: We prove that

lim inf
α→∞

∫
M
f ′
εα(VΛα,ξα

)u2α dµg → c > 0. (8.53)

where

uα = ϕα − ψα − ζα, with ∥uα∥a,sεα → 1. (8.54)

Let us write equation (8.37) as

∆guα + a(x)uα = f ′
εα(VΛα,ξα

)uα + f ′
εα(VΛα,ξα

)(ψα + ζα), (8.55)

We first prove that

lim inf
α→∞

∥uα∥a = c > 0. (8.56)

In fact, by (8.55) we deduce

uα = i∗
{
f ′
εα(VΛα,ξα

)uα + f ′
εα(VΛα,ξα

)(ψα + ζα)
}
, (8.57)
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and by (8.14), (8.36), (8.38) and (8.54), from (i) and (ii) in Lemma 8.15, use the Hölder
inequality, we get

|uα|sεα ≤ C

[∣∣∣f ′
εα(VΛα,ξα

)uα

∣∣∣
nsεα

n+2sεα

+
∣∣∣f ′
εα(VΛα,ξα

)(ψα + ζα)
∣∣∣

nsεα
n+2sεα

]

≤ C

[∣∣∣f ′
εα(VΛα,ξα

)
∣∣∣

2nsεα
2n−(n−6)sεα

|uα|2∗ +
∣∣∣f ′
εα(VΛα,ξα

)
∣∣∣
n
2

|ψα + ζα|sεα

]
≤ C

∣∣∣f ′
εα(VΛα,ξα

)
∣∣∣

2nsεα
2n−(n−6)sεα

|uα|2∗ + C
∣∣∣f ′
εα(VΛα,ξα

)
∣∣∣
n
2

(
∥ψα∥a,sεα + ∥ζα∥a,sεα

)
≤ C

∣∣∣f ′
εα(VΛα,ξα

)
∣∣∣

2nsεα
2n−(n−6)sεα

|uα|2∗ + o(1)

≤ C∥uα∥a + o(1), (8.58)

as α → ∞. Then, if ∥uα∥a → 0, by (8.58) we deduce that also |uα|sεα → 0, this is not
impossible because of (8.54). This gives the validity of (8.56).

We multiply (8.55) by uα we deduce that

∥uα∥2a =
∫
M
f ′
εα(VΛα,ξα

)u2α dµg +

∫
M
f ′
εα(VΛα,ξα

)(ψα + ζα)uα dµg. (8.59)

By Hölder inequality, from (8.36), (8.38) and (i) of Lemma 8.15, we have∣∣∣∣∫
M
f ′
εα(VΛα,ξα

)(ψα + ζα)uα dµg

∣∣∣∣ ≤
∣∣∣f ′
εα(VΛα,ξα

)
∣∣∣
n
2

|ψα + ζα| 2n
n−2

|uα| 2n
n−2

≤ C∥ψα + ζα∥a,sεα∥uα∥a,sεα = o(1). (8.60)

Then, (8.53) follows by (8.56), (8.59) and (8.60).

Step 3: Let us prove that a contradiction arises, by showing that

lim inf
α→∞

∫
M
f ′
εα(VΛα,ξα

)u2α dµg → 0. (8.61)

In fact, for l ∈ {1, 2, · · · , k}, set

ũα(z) :=

{
λ
(n−2)/2
lα uα

(
expξlα(λlαz)

)
if z ∈ B(0, r/λlα);

0 otherwise.
(8.62)

We will show that

ũα → 0 weakly in D1,2(Rn) and strongly in Lqloc(R
n), (8.63)

for any q ∈ [2, 2∗) if n ≥ 3 or q ≥ 2 if n = 2. That fact implies that∫
M
f ′
εα(VΛα,ξα

)u2α dµg =
k∑
l=1

∫
Bg(ξlα,r)

f ′
εα(Wλlα,ξlα)u

2
α dµg
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=
k∑
l=1

∫
Bg(ξlα,r)

f ′
εα

(
χr(exp

−1
ξlα
(x))λ

2−n
2

lα U(λ−1
lα exp

−1
ξlα
(x))

)
u2α dµg

=
k∑
l=1

λ
n−2
2
εα

lα

∫
B(0,r/λlα)

f ′
εα (χr(λlαz)U(z)) ũ

2
α |gξlα(λlαz)|

1
2 dz

≤ C

k∑
l=1

λ
n−2
2
εα

lα

∣∣f ′
εα(U(z))

∣∣
Ln/2(Rn)

|ũα|L2∗ (Rn) = o(1), (8.64)

for ε small enough, because (8.51) and
∣∣f ′
εα(U(z))

∣∣
Ln/2(Rn)

= O(1) hold.

Finally, we prove (8.63). By (8.55) we get∫
M

|∇guα|g dµg +
∫
M
a(x)u2α dµg

=

∫
M
f ′
εα(VΛα,ξα

)u2α dµg +

∫
M
f ′
εα(VΛα,ξα

)(ψα + ζα)uα dµg

=

∫
M
f ′
εα(VΛα,ξα

)u2α dµg + o(1), (8.65)

because (8.60) holds.

By an change of variable x = expξlα(λlαz) in (8.65), we get∫
Rn

|∇gũα|gα dµα + λ2lα

∫
Rn

a
(
expξlα(λlαz)

)
ũ2α dµgα

= λ
n−2
2
εα

lα

∫
Rn

f ′
εα (χr(λlαz)U(z)) ũ

2
α dµgα + o(1). (8.66)

Moreover, we observe that ∥ũα∥D1,2(Rn) ≤ c∥uα∥a,sεα ≤ c, that is the sequence {ũα} is bounded
in D1,2(Rn), then there exists ũ such that ũα(z) → ũ weakly in D1,2(Rn) and strongly in
Lq(Rn) for any q ∈ [2, 2∗) if n ≥ 3 or q ≥ 2 if n = 2. Then we deduce that ũ solve the
problem

∆ũ = (2∗ − 1)U2∗−2ũ in Rn, (8.67)

by (8.49), we get that the function ũ is identically zero, then (8.63) holds.

Therefore from the contradiction (8.53) with (8.61), we end proof of Lemma 8.7.

Next, we want to study the estimate the term of Rε,d̄,ξ.
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Lemma 8.8. If n ≥ 6 and for any η, ρ > 0,(Λε(d̄), ξ) ∈ Oη,ρ, if ε is small enough, there
holds

∥Rε,d̄,ξ∥a,sε ≤ C

{
|ε| |ln |ε||2/3 if n = 6 and ε > 0;
|ε| |ln |ε|| otherwise,

(8.68)

where C is a positive constant.

Proof. Let us introduce the function ZΛε(d̄),ξ
defined by VΛε(d̄),ξ

:= i∗(ZΛε(d̄),ξ
), that is,

∆gVΛε(d̄),ξ
+ a(x)VΛε(d̄),ξ

= ZΛε(d̄),ξ
on M.

We remark that VΛε(d̄),ξ
(x) = 0 if x /∈ Bg(ξ1, r) ∪ · · · ∪ Bg(ξk, r), VΛε(d̄),ξ

(x) = Wλl,ξl if
x ∈ Bg(ξl, r). Therefore, we have ZΛε(d̄),ξ

(x) = 0, if x /∈ Bg(ξ1, r) ∪ · · · ∪Bg(ξk, r) and

ZΛε(d̄),ξ
= ∆gWλl,ξl + a(x)Wλl,ξl , if x ∈ Bg(ξl, r).

We have ∥∥∥i∗ (fε(VΛε(d̄),ξ
)
)
− VΛε(d̄),ξ

∥∥∥
a,sε

=
∥∥∥i∗ (fε(VΛε(d̄),ξ

)
)
− i∗(ZΛε(d̄),ξ

)
∥∥∥
a,sε

≤ C
∣∣∣fε(VΛε(d̄),ξ

)− ZΛε(d̄),ξ

∣∣∣
nsε

n+2sε

= C

(∫
M

∣∣∣fε(VΛε(d̄),ξ
)− ZΛε(d̄),ξ

∣∣∣ nsε
n+2sε

dµg

)n+2sε
nsε

= C

k∑
l=1

 ∫
Bg(ξl,r)

∣∣∣fε(VΛε(d̄),ξ
)− ZΛε(d̄),ξ

∣∣∣ nsε
n+2sε

dµg


n+2sε
nsε

= C

k∑
l=1

 ∫
Bg(ξl,r)

|fε(Wλl,ξl)− (∆gWλl,ξl + a(x)Wλl,ξl)|
nsε

n+2sε dµg


n+2sε
nsε

(8.69)

By Lemma 3.2 in [90], for any l = 1, 2, · · · , k, we have ∫
Bg(ξl,r)

|fε(Wλl,ξl)− (∆gWλl,ξl + a(x)Wλl,ξl)|
nsε

n+2sε dµg


n+2sε
nsε

≤ C

{
|ε| |ln |ε||2/3 if n = 6 and ε > 0;
|ε| |ln |ε|| otherwise.

(8.70)

Then (8.68) holds from (8.69) and (8.70), that concludes the proof of Lemma 8.8.
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Proof of Proposition 8.5: In order to solve (8.24) or equivalently equation (8.32), we need
to find a fixed point for the operator Tε,d̄,ξ : Hε ∩K⊥

Λε(d̄),ξ
→ Hε ∩K⊥

Λε(d̄),ξ
defined

Tε,d̄,ξ(ϕ) = L−1

ε,d̄,ξ

(
Nε,d̄,ξ(ϕ) +Rε,d̄,ξ

)
,

for ε small and for any (Λε(d̄), ξ) ∈ Oη,ρ. We also let

B(β) =
{
ϕ ∈ Hε ∩K⊥

Λε(d̄),ξ
: ∥ϕ∥a,sε ≤ β∥Rε,d̄,ξ̄∥a,sε

}
,

where β is a positive constant to be chosen later on.

By Lemma 8.7, we deduce∥∥Tε,d̄,ξ(ϕ)∥∥a,sε ≤ C
(∥∥Nε,d̄,ξ(ϕ)

∥∥
a,sε

+
∥∥Rε,d̄,ξ

∥∥
a,sε

)
, (8.71)

and ∥∥Tε,d̄,ξ(ϕ1)− Tε,d̄,ξ(ϕ2)
∥∥
a,sε

≤ C
(∥∥Nε,d̄,ξ(ϕ1)−Nε,d̄,ξ(ϕ2)

∥∥
a,sε

)
. (8.72)

By (8.13) and (8.14), we deduce∥∥Nε,d̄,ξ(ϕ)
∥∥
a,sε

≤ C
∣∣∣fε(VΛε(d̄),ξ

+ ϕ)− fε(VΛε(d̄),ξ
)− f ′

ε(VΛε(d̄),ξ
)ϕ
∣∣∣

nsε
n+2sε

+
∣∣∣fε(VΛε(d̄),ξ

+ ϕ)− fε(VΛε(d̄),ξ
)− f ′

ε(VΛε(d̄),ξ
)ϕ
∣∣∣

2n
n+2

, (8.73)

and ∥∥Nε,d̄,ξ(ϕ1)−Nε,d̄,ξ(ϕ2)
∥∥
a,sε

≤ C
∣∣∣fε(VΛε(d̄),ξ

+ ϕ1)− fε(VΛε(d̄),ξ
+ ϕ2)− f ′

ε(VΛε(d̄),ξ
)(ϕ1 − ϕ2)

∣∣∣
nsε

n+2sε

+
∣∣∣fε(VΛε(d̄),ξ

+ ϕ1)− fε(VΛε(d̄),ξ
+ ϕ2)− f ′

ε(VΛε(d̄),ξ
)(ϕ1 − ϕ2)

∣∣∣
2n
n+2

. (8.74)

Then by the mean value theorem and the Hölder inequality, by Lemma 8.16, it follows that
if n = 6 and ε > 0, for any τ ∈ (0, 1),∣∣∣fε(VΛε(d̄),ξ

+ ϕ1)− fε(VΛε(d̄),ξ
+ ϕ2)− f ′

ε(VΛε(d̄),ξ
)(ϕ1 − ϕ2)

∣∣∣
2n
n+2

=
∣∣∣(f ′

ε(VΛε(d̄),ξ
+ ϕ2 + τ(ϕ1 − ϕ2))− f ′

ε(VΛε(d̄),ξ
)
)
(ϕ1 − ϕ2)

∣∣∣
2n
n+2

≤ C
(
|ϕ1|

2sε
n
sε + |ϕ2|

2sε
n
sε

)
|ϕ1 − ϕ2| 2n

n−2
≤ C

(
∥ϕ1∥1−εa,sε + ∥ϕ2∥1−εa,sε

)
∥ϕ1 − ϕ2∥a,sε . (8.75)

We note that by (8.15) we have nsε
n+2sε

= 2n
n+2

for ε > 0.
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If n ≥ 7 or ε < 0, there holds∣∣∣fε(VΛε(d̄),ξ
+ ϕ1)− fε(VΛε(d̄),ξ

+ ϕ2)− f ′
ε(VΛε(d̄),ξ

)(ϕ1 − ϕ2)
∣∣∣

nsε
n+2sε

=
∣∣∣(f ′

ε(VΛε(d̄),ξ
+ τϕ2 + (1− τ)ϕ1)− f ′

ε(VΛε(d̄),ξ
)
)
(ϕ1 − ϕ2)

∣∣∣
nsε

n+2sε

≤ C
∣∣∣(|VΛε(d̄),ξ

|2∗−3−ε|τϕ2 + (1− τ)ϕ1|+ |τϕ2 + (1− τ)ϕ1|2
∗−2−ε

)
(ϕ1 − ϕ2)

∣∣∣
nsε

n+2sε

= C
(
|VΛε(d̄),ξ

|sε + |ϕ1|sε + |ϕ2|sε
)2∗−3−ε (

|ϕ1|sε + |ϕ2|sε
)
|ϕ1 − ϕ2|sε

≤ C
(
|VΛε(d̄),ξ

|sε + ∥ϕ1∥a,sε + ∥ϕ2∥a,sε
)2∗−3−ε (

∥ϕ1∥a,sε + ∥ϕ2∥a,sε
)
∥ϕ1 − ϕ2∥a,sε .(8.76)

Since the problem is supercritical if ε < 0, s > 2n
n−2

, i.e., nsε
n+2sε

> 2n
n+2

, by the embedding

L
nsε

n+2sε (M) ↪→ L
2n
n+2 (M), we get∣∣∣fε(VΛε(d̄),ξ

+ ϕ1)− fε(VΛε(d̄),ξ
+ ϕ2)− f ′

ε(VΛε(d̄),ξ
)(ϕ1 − ϕ2)

∣∣∣
2n
n+2

= C

(∣∣∣VΛε(d̄),ξ

∣∣∣
sε
+ ∥ϕ1∥a,sε + ∥ϕ2∥a,sε

)2∗−3−ε (
∥ϕ1∥a,sε + ∥ϕ2∥a,sε

)
∥ϕ1 − ϕ2∥a,sε .

(8.77)

Moreover, if n ≥ 7 and ε > 0, from (8.15), we have nsε
n+2sε

= 2n
n+2

.

Taking ϕ1 = ϕ, ϕ2 = 0 into (8.75) or (8.76) and (8.77), from (8.73), we can get

∥Nε,d̄,ξ̄(ϕ)∥a,sε ≤

{
C∥ϕ∥2−εa,sε if n = 6 and ε > 0;

C
(
|VΛε(d̄),ξ

|2∗−3−ε
sε ∥ϕ∥2a,sε + ∥ϕ∥2∗−1−ε

a,sε

)
if n ≥ 7 or ε < 0.

(8.78)

By Lemma 8.15 (iii), we have |VΛε(d̄),ξ
|sε = O(1) for ε small. By the definition of B(β), from

(8.68), (8.71) and (8.78), we can get that there exists β > 0 such that

ϕ ∈ B(β) =⇒ Tε,d̄,ξ(ϕ) ∈ B(β), (8.79)

provided that ε is sufficiently small. Next we will show that the map Tε,d̄,ξ is a contraction
map for any ε small enough.

If n = 6 and ε > 0, by (8.72), (8.74) and (8.75), we deduce that there exists ϑ ∈ (0, 1) such
that

∥ϕ1∥a,sε , ∥ϕ2∥a,sε ≤ |ε| |ln |ε||2/3

=⇒ ∥Tε,d̄,ξ(ϕ1)− Tε,d̄,ξ(ϕ2)∥a,sε ≤ ϑ∥ϕ1 − ϕ2∥a,sε . (8.80)

If n ≥ 7 or ε < 0, by (8.72), (8.74),(8.76) and (8.77), we can deduce that there exists ϑ ∈ (0, 1)
such that

∥ϕ1∥a,sε , ∥ϕ2∥a,sε ≤ |ε| |ln |ε||
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=⇒ ∥Tε,d̄,ξ(ϕ1)− Tε,d̄,ξ(ϕ2)∥a,sε ≤ ϑ∥ϕ1 − ϕ2∥a,sε . (8.81)

By (8.79) and (8.80) or (8.81), we deduce that Tε,d̄,ξ is a contraction mapping from B(β) into
B(β) for ε small enough, so it has a fixed point ϕε,d̄,ξ which satisfies (8.24), and (8.26) holds
from (8.68).

In order to prove that the map (d̄, ξ) → ϕε,d̄,ξ is a C1 map, we apply the Implicit Function

Theorem to the function G(d̄, ξ, u) : (R+)k ×Mk ×Hε → Hε defined by

G(d̄, ξ, u) = u− L−1

ε,d̄,ξ

(
Nε,d̄,ξ(u) +Rε,d̄,ξ

)
.

Indeed, ϕε,d̄,ξ satisfies

G(d̄, ξ, ϕε,d̄,ξ) = 0. (8.82)

We have

∂uG(d̄, ξ, u)[v] = v − L−1

ε,d̄,ξ

(
(∂uNε,d̄,ξ)(u)v

)
. (8.83)

Moreover, by the mean value theorem we have

Nε,d̄,ξ(ϕ1)−Nε,d̄,ξ(ϕ2) = (∂uNε,d̄,ξ)(u)(ϕ1 − ϕ2),

for some u = τϕ1 + (1 − τ)ϕ2, τ ∈ [0, 1]. Then from (8.26), (8.74) and (8.75), there exists a
positive constant c such that

∥∂uNε,d̄,ξ∥a,sε ≤ c|ε| for n = 6 or ε > 0. (8.84)

In the similarly that if n > 6 or ε < 0, from (8.26), (8.74), (8.76) and (8.77) , it holds that

∥∂uNε,d̄,ξ∥a,sε ≤ c|ε| for n ≥ 7 or ε < 0. (8.85)

Consequently, using Lemma 8.7, (8.83), (8.84) or (8.85) we obtain that ∂uG(d̄, ξ, ϕε,d̄,ξ) is

invertible with uniformly bounded inverse. Then, the fact that (d̄, ξ) 7→ ϕε,d̄,ξ is C1 follows

from the fact that (d̄, ξ, ϕε,d̄,ξ) 7→ L−1

ε,d̄,ξ

(
Nε,d̄,ξ(u)

)
is C1 and the implicit functions theorem.

8.5 Expansion of the energy

This section is devoted to the proof of Proposition 8.6. At the first step, we have

Lemma 8.9. For ε small, if (d̄, ξ) is a critical point of the functional J̃ε, then VΛε(d̄),ξ
+ϕε,d̄,ξ

is a solution of (8.16), or equivalently of problem (8.1).
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Proof. Let (d̄, ξ) be a critical point of J̃ε, where d̄ = (d1, d2, · · · , dk) ∈ (R+)k and ξ =
(ξ1, ξ2, · · · , ξk) ∈ Mk. Let ξj = ξj(y

j) = expξj(y
j), yj ∈ B(0, r) and

ξ = ξ(y) =
(
expξ1(y

1), · · · , expξk(y
k)
)
, y := (y1, . . . , yk) ∈ B(0, r)× · · · ×B(0, r).

We remark that ξ(0) = ξ, since (d̄, ξ) is a critical point of J̃ε, for c = 1, · · · , n, j = 1, · · · , k,
there holds

J ′
ε

(
VΛε(d̄),ξ

+ ϕε,d̄,ξ

)[ ∂

∂dj
VΛε(d̄),ξ

+
∂

∂dj
ϕε,d̄,ξ

]
= 0, (8.86)

and

J ′
ε

(
VΛε(d̄),ξ

+ ϕε,d̄ε,ξ

)[ ∂

∂yjc
VΛε(d̄),ξ

+
∂

∂yjc
ϕε,d̄,ξ

]
= 0. (8.87)

Let ∂m denotes ∂dh or ∂yhc for h = 1, 2, · · · , k and c = 1, · · · , n. By (8.24) we get

0 = ∂mJ̃ε(d̄, ξ) = J ′
ε

(
VΛε(d̄),ξ

+ ϕε,d̄,ξ

) [
∂mVΛε(d̄),ξ

+ ∂mϕε,d̄,ξ

]
=

⟨
VΛε(d̄),ξ

+ ϕε,d̄,ξ − i∗
[
fε(VΛε(d̄),ξ

+ ϕε,d̄,ξ)
]
, ∂mVΛε(d̄),ξ

+ ∂mϕε,d̄,ξ

⟩
a

=
n∑
i=0

k∑
j=1

cijε

⟨
Zi
λj ,ξj(yj)

, ∂mVΛε(d̄),ξ
+ ∂mϕε,d̄,ξ

⟩
a
, (8.88)

for some cijε ∈ R. We have to prove that if we compute (8.88) at y = 0 then, provided ε is
small enough, it holds

cijε = 0 for any i = 0, 1, · · ·n; j = 1, 2, · · · , k. (8.89)

First of all, from (8.126) and (8.127) in Lemma 8.14 we have

n∑
i=0

k∑
j=1

cijε

⟨
Zi
λj ,ξj(yj)

,

(
∂

∂yhc
Wλh,ξh(yh)

) ∣∣∣
y=0

⟩
a

=
n∑
i=0

k∑
j=1

1

λj
cijε δjhδic∥Vi∥2D1,2(RN ) +

n∑
i=0

k∑
j=1

o(1)cijε δjhδic, (8.90)

and

n∑
i=0

k∑
j=1

cijε

⟨
Zi
λj ,ξj(yj)

,
∂

∂dh
VΛε(d̄),ξ

⟩
a

=
1

2dj

n∑
i=0

k∑
j=1

cijε δjhδi0∥V0∥2D1,2(RN ) +
n∑
i=0

k∑
j=1

cijε δjhδi0o
(∥∥∥Z0

λj ,ξj(yj)

∥∥∥
a

)
. (8.91)
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Moreover, since ϕε,d̄,ξ̄ ∈ K⊥
Λε(d̄),ξ̄

, it holds
⟨
Zi
λj ,ξj(yj)

, ϕε,d̄,ξ̄

⟩
a
= 0, which implies⟨

Zi
λj ,ξj(yj)

, ∂mϕε,d̄,ξ

⟩
a

= −
⟨
∂mZ

i
λj ,ξj(yj)

, ϕε,d̄,ξ

⟩
a

= O
(∥∥∥∂mZi

λj ,ξj(yj)

∥∥∥
a

∥∥ϕε,d̄,ξ∥∥a) . (8.92)

From Lemma 8.13, there hold∥∥∥∂djZi
λj ,ξj(yj)

∥∥∥
a
= O(|ε|1/2),

∥∥∥∥∥
(

∂

∂yjc
Zi
λj ,ξj(yj)

)
|y=0

∥∥∥∥∥
a

= O(|ε|−1/2). (8.93)

By Proposition 3.1, from (8.92) and (8.93), for any κ ∈ (0, 1), we get⟨
Zi
λj ,ξj(yj)

, ∂mϕε,d̄,ξ

⟩
a
= o (|ε|κ) . (8.94)

Therefore, by (8.90), (8.91), (8.92) and (8.94) we deduce that the linear system in (8.88)
has only the trivial solution provide ε small. That concludes the proof of the part (i) of
Proposition 8.6.

In the next Lemma, we give the expansion of Jε(VΛε(d̄),ξ̄) as ε→ 0 for (Λε(d̄), ξ) ∈ Oη,ρ.

Lemma 8.10. If n ≥ 5 and (Λε(d̄), ξ) ∈ Oη,ρ satisfies (8.22), then there holds

Jε(VΛε(d̄),ξ̄) =
k

n
K−n
n − k

n
K−n
n αnε+

1

n
K−n
n Ψk(d̄, ξ̄) + o(ε), (8.95)

as ε→ 0, C1−uniformly with respect to ξ̄ in Mk and to d̄ in compact subsets of (R+)k, where
αn and Ψk(d̄, ξ̄) defined in (8.29) and (8.30).

Proof. We have

Jε(VΛε(d̄),ξ̄) = Jε

(
k∑
j=1

Wλj ,ξj

)

=
1

2

∫
M

∣∣∣∣∣∇g

(
k∑
j=1

Wλj ,ξj

)∣∣∣∣∣
2

dµg +
1

2

∫
M
a(x)

(
k∑
j=1

Wλj ,ξj

)2

dµg

− 1

2∗ − ε

∫
M

(
k∑
j=1

Wλj ,ξj

)2∗−ε

+

dµg

=
k∑
j=1

[
1

2

∫
M

∣∣∇gWλj ,ξj

∣∣2 dµg +
1

2

∫
M
a(x)W 2

λj ,ξj
dµg −

1

2∗ − ε

∫
M

(
W 2∗−ε
λj ,ξj

)
+
dµg

]
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+
k∑

j,l=1;j ̸=l

1

2

∫
M

∇gWλj ,ξj∇gWλl,ξl dµg +
1

2

k∑
j,l=1;j ̸=l

∫
M
a(x)Wλj ,ξjWλl,ξl dµg

− 1

2∗ − ε

∫
M


∣∣∣∣∣
k∑
j=1

Wλj ,ξj

∣∣∣∣∣
2∗−ε

−
k∑
j=1

∣∣Wλj ,ξj

∣∣2∗−ε dµg. (8.96)

Since Wλj ,ξj and Wλl,ξl have disjoint supports, we get∫
M

∇gWλj ,ξj∇gWλl,ξl dµg =

∫
M
a(x)Wλj ,ξjWλl,ξl dµg = 0, for j ̸= l,

and ∫
M


∣∣∣∣∣
k∑
j=1

Wλj ,ξj

∣∣∣∣∣
2∗−ε

−
k∑
j=1

∣∣Wλj ,ξj

∣∣2∗−ε dµg = 0.

Moreover, by Lemma 4.1 in [90], we get that for any j = 1, 2, · · · , k

1

2

∫
M

∣∣∇gWλj ,ξj

∣∣2 dµg +
1

2

∫
M
a(x)W 2

λj ,ξj
dµg −

1

2∗ − ε

∫
M

(
W 2∗−ε
λj ,ξj

)
+
dµg

=
K−n
n

n

(
1− (n− 2)2

8
ε ln(|ε|dj)− αnε

)
+
K−n
n

n

2(n− 1)

(n− 2)(n− 4)
|ε|dj

(
a(ξj)−

n− 2

4(n− 1)
Scalg(ξj)

)
+ o(ε). (8.97)

Thus, (8.95) follows from (8.96) and (8.97).

Lemma 8.11. If n ≥ 6 and Λε(d̄) = (λ1, λ2, · · · , λk) satisfies (8.21), then there holds

J̃ε(d̄, ξ) = Jε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ) = Jε(VΛε(d̄),ξ̄) + o(ε) (8.98)

as ε→ 0, C0 uniformly with respect to ξ̄ ∈ Mk and to d̄ in compact subsets of (R+)k.

Proof. We argue as Lemma 4.2 in [90]. From the equation (8.24), it holds

J̃ε(d̄, ξ)− Jε(VΛε(d̄),ξ̄) = Jε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ)− Jε(VΛε(d̄),ξ̄)

=
1

2

∥∥ϕε,d̄,ξ)∥∥2a + ∫
M

[
∇gVΛε(d̄),ξ̄∇gϕε,d̄,ξ + a(x)VΛε(d̄),ξ̄ϕε,d̄,ξ − fε(VΛε(d̄),ξ̄)ϕε,d̄,ξ

]
dµg

−
∫
M

[
Fε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ)− Fε(VΛε(d̄),ξ̄)− fε(VΛε(d̄),ξ̄)ϕε,d̄,ξ

]
dµg

=
1

2

∥∥ϕε,d̄,ξ)∥∥2a + ∫
M

[
fε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ)− fε(VΛε(d̄),ξ̄)

]
ϕε,d̄,ξ dµg

−
∫
M

[
Fε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ)− Fε(VΛε(d̄),ξ̄)− fε(VΛε(d̄),ξ̄)ϕε,d̄,ξ

]
dµg. (8.99)
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We prove that the right hand side of (8.99) is o(ε). In fact, the first term in the right side of
(8.99) is o(ε) because of (8.26). Moreover, by the mean value theorem, for some τ1, τ2 ∈ [0, 1],
we have ∫

M

[
f(VΛε(d̄),ξ̄ + ϕε,d̄,ξ)− fε(VΛε(d̄),ξ̄)

]
ϕε,d̄,ξ dµg

=

∫
M
f ′
ε(VΛε(d̄),ξ̄ + τ1ϕε,d̄,ξ)ϕ

2
ε,d,ξ

dµg, (8.100)

and ∫
M

[
Fε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ)− Fε(VΛε(d̄),ξ̄)− fε(VΛε(d̄),ξ̄)ϕε,d̄,ξ

]
dµg

=

∫
M
f ′
ε(VΛε(d̄),ξ̄ + τ2ϕε,d̄,ξ)ϕ

2
ε,d,ξ

dµg. (8.101)

By the Hölder inequality and (8.26), we have for any τ ∈ [0, 1]∫
M

∣∣f ′
ε(VΛε(d̄),ξ̄ + τϕε,d̄,ξ)

∣∣ϕ2
ε,d,ξ

dµg

≤ C

∫
M
V 2∗−2−ε
Λε(d̄),ξ̄

ϕ2
ε,d,ξ

dµg + C

∫
M
ϕ2∗−ε
ε,d,ξ

dµg

≤ C
∣∣∣V 2∗−2−ε

Λε(d̄),ξ̄

∣∣∣
n
2

∣∣ϕε,d̄,ξ∣∣ 2n
n−2

+ C|ϕε,d̄,ξ|2
∗−ε
sε

≤ C

k∑
j=1

∣∣∣W 2∗−2−ε
λj ,ξj

∣∣∣
n
2

∥∥ϕε,d̄,ξ∥∥a,sε + C∥ϕε,d̄,ξ∥2
∗−ε
a,sε

= o(ε), (8.102)

because of
∣∣∣W 2∗−2−ε

λj ,ξj

∣∣∣
n
2

= O(1) by (i) in Lemma 8.15. Therefore (8.98) follows from (8.99),

(8.100), (8.101) and (8.102). By Lemma 8.10, we deduced that (8.28) holds.

Next, we estimate the gradient of the reduced energy.

Lemma 8.12. For any η, ρ > 0 in (8.22), if ε is small enough, for j = 1, 2, · · · , k, it holds

∂dj
[
Jε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)

]
= ∂djΨk(d̄, ξ̄) + o(ε), (8.103)

and set ξ = ξ(y) =
(
expξ1(y

1), · · · , expξk(y
k)
)
, y := (y1, . . . , yk) ∈ B(0, r)× · · · ×B(0, r), for

any c = 1, 2, · · · , n and j = 1, · · · , k, it holds that(
∂

∂yjc
Jε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)

)
|y=0

=

(
∂

∂yjc
Ψk(d̄, ξ̄)

)
|y=0

+ o(ε), (8.104)

C0 uniformly with respect to ξ̄ in Mk and d̄ in (R+)k, the function Ψk is defined in (8.30).
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Proof. It holds

∂dj
[
Jε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)

]
− ∂djΨ(d̄, ξ̄)

=
(
J ′
ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)− J ′

ε(VΛε(d̄),ξ̄)
) [
∂djVΛε(d̄),ξ̄

]
+J ′

ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)
[
∂djϕε,d̄,ξ̄

]
+
(
∂djJε(VΛε(d̄),ξ̄)− ∂djΨ(d̄, ξ̄)

)
:= I3 + I4 + I5. (8.105)

First, because the parameters d̄ is bounded and bounded from zero, using Lemma 8.10 the
expansion of Jε(VΛε(d̄),ξ̄), we have I5 = o(ε). Next we show that I3, I4 = o(ε).

From (8.130) in Lemma 8.14 and the function ϕε,d̄,ξ̄ belongs to K
⊥
Λε(d̄),ξ̄

, we have,

I3 =
(
J ′
ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)− J ′

ε(VΛε(d̄),ξ̄)
) [
∂djVΛε(d̄),ξ̄

]
=

∫
M

(
∇gϕε,d̄,ξ̄∇g

(
∂djVΛε(d̄),ξ̄

)
+ a(x)ϕε,d̄,ξ̄∂djVΛε(d̄),ξ̄

)
dµg

−
∫
M

(
fε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)− fε(VΛε(d̄),ξ̄)

)
∂djVΛε(d̄),ξ̄ dµg

=
1

2dj

∫
M

(
∇gϕε,d̄,ξ̄∇gZ

0
λj ,ξj

+ a(x)ϕε,d̄,ξ̄Z
0
λj ,ξj

)
dµg

− 1

2dj

∫
M

(
fε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)− fε(VΛε(d̄),ξ̄)

)
Z0
λj ,ξj

dµg

= − 1

2dj

∫
M
f ′
ε(VΛε(d̄),ξ̄)ϕε,d̄,ξ̄Z

0
λj ,ξj

dµg −
1

2dj

∫
M

{
fε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)

−fε(VΛε(d̄),ξ̄)− f ′
ε(VΛε(d̄),ξ̄)ϕε,d̄,ξ̄

}
Z0
λj ,ξj

dµg. (8.106)

From (8.26), by the boundary of dj, using the similarly proof of (8.60), we have∣∣∣∣ 1

2dj

∫
M
f ′
ε(VΛε(d̄),ξ̄)ϕε,d̄,ξ̄Z

0
λj ,ξj

dµg

∣∣∣∣ = o(|ε|). (8.107)

Moreover, ∣∣∣∣∫
M

(
fε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)− fε(VΛε(d̄),ξ̄)− f ′

ε(VΛε(d̄),ξ̄)ϕε,d̄,ξ̄
)
Z0
λj ,ξj

dµg

∣∣∣∣
≤

∫
M

∣∣f ′
ε(VΛε(d̄),ξ̄ + tϕε,d̄,ξ̄)− f ′

ε(VΛε(d̄),ξ̄)
∣∣ϕε,d̄,ξ̄Z0

λj ,ξj
dµg

≤

{
C
∫
M ϕ2∗−1−ε

ε,d̄,ξ̄
Z0
λj ,ξj

dµg if n = 6 and ε > 0;

C
∫
M

(
V 2∗−3−ε
Λε(d̄),ξ̄

ϕ2
ε,d̄,ξ̄

Z0
λj ,ξj

+ ϕ2∗−1−ε
ε,d̄,ξ̄

Z0
λj ,ξj

)
dµg otherwise

≤


C
∣∣ϕε,d̄,ξ̄∣∣2∗−1−ε

sε

∣∣∣Z0
λj ,ξj

∣∣∣
nsε

nsε−n−2sε

if n = 6 and ε > 0;

C
( ∣∣∣V 2∗−3−ε

Λε(d̄),ξ̄

∣∣∣
sε

sε−3

∣∣ϕε,d̄,ξ̄∣∣2sε ∣∣∣Z0
λj ,ξj

∣∣∣
sε

+
∣∣ϕε,d̄,ξ̄∣∣2∗−1−ε

sε

∣∣∣Z0
λj ,ξj

∣∣∣
nsε

nsε−n−2sε

)
otherwise.

(8.108)
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From (8.26), (8.106), (8.107), (8.108) and (iv) in Lemma 8.15, we get I3 = o(|ε|) for ε small
enough.

Now, for ε small, for any (Λε(d̄), ξ) ∈ Oη,ρ, since (8.24), we have

I4 = J ′
ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)

[
∂djϕε,d̄,ξ̄

]
=

n∑
i=1

k∑
j=1

cij
⟨
Zi
λj ,ξj

, ∂djϕε,d̄,ξ̄

⟩
a

= −
n∑
i=1

k∑
j=1

cij
⟨

∂

∂dj
Zi
λj ,ξj

, ϕε,d̄,ξ̄

⟩
a

. (8.109)

We argue in Lemma 4.2 in [90], we have that for any κ ∈ (0, 1), there holds

n∑
i=1

k∑
j=1

|cij| = O(|ε|κ). (8.110)

Then, from (8.26), (8.110) and (8.120) in Lemma 8.13, we have I4 = o(|ε|), therefore, the
estimate (8.103) holds.

Next, we prove (8.104) holds. From Lemma 8.10, we have

∂

∂yjc
Jε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)−

∂

∂yjc
Ψk(d̄, ξ̄)

=
∂

∂yji
Jε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)−

∂

∂yjc
Jε(VΛε(d̄),ξ̄) +

∂

∂yjc

[
Jε(VΛε(d̄),ξ̄)−Ψk(d̄, ξ̄)

]
= J ′

ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)

[
∂

∂yjc
VΛε(d̄),ξ̄ +

∂

∂yjc
ϕε,d̄,ξ̄

]
− J ′

ε(VΛε(d̄),ξ̄)

[
∂

∂yjc
VΛε(d̄),ξ̄

]
+ o(ε)

=
[
J ′
ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)− J ′

ε(VΛε(d̄),ξ̄)
] [ ∂

∂yjc
VΛε(d̄),ξ̄

]
+J ′

ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)

[
∂

∂yjc
ϕε,d̄,ξ̄

]
+ o(ε). (8.111)

We will prove that

J ′
ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)

[
∂

∂yjc
ϕε,d̄,ξ̄

]
= o(ε) (8.112)

and [
J ′
ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)− J ′

ε(VΛε(d̄),ξ̄)
] [ ∂

∂yjc
VΛε(d̄),ξ̄

]
= o(ε) (8.113)

Then (8.104) will follow from (8.112) and (8.113).
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First, we prove (8.112). Since (8.24) holds, and we take into account that ϕε,d̄,ξ̄ ∈ K⊥
Λε(d̄),ξ̄

,

we have

J ′
ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)

[
∂

∂yjc
ϕε,d̄,ξ̄

]
=

k∑
l=1

n∑
h=0

clhε

⟨
Zh
λl,ξl

,
∂

∂yjc
ϕε,d̄,ξ̄

⟩
a

= −
k∑
l=1

n∑
h=0

clhε

⟨
∂

∂yjc
Zh
λl,ξl

, ϕε,d̄,ξ̄

⟩
a

. (8.114)

Then, from (8.26), (8.110) and (8.120) in Lemma 8.13, we have (8.112) holds.

Finally, by the mean value theorem for some τ ∈ [0, 1], from (8.26) and (8.128), it holds

[
J ′
ε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)− J ′

ε(VΛε(d̄),ξ̄)
] [ ∂

∂yjc
VΛε(d̄),ξ̄

]
=

∫
M

(
∇gϕε,d̄,ξ̄∇g

(
∂

∂yjc
VΛε(d̄),ξ̄

)
+ a(x)ϕε,d̄,ξ̄

∂

∂yjc
VΛε(d̄),ξ̄

)
dµg

−
∫
M

(
fε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)− fε(VΛε(d̄),ξ̄)

) ∂

∂yjc
VΛε(d̄),ξ̄ dµg

=

⟨
ϕε,d̄,ξ̄,

1

λj
Zi
λj ,ξj

+ o(|ε|)
⟩
a

−
∫
M

(
fε(VΛε(d̄),ξ̄ + ϕε,d̄,ξ̄)− fε(VΛε(d̄),ξ̄)

)( 1

λj
Zi
λj ,ξj

+ o(|ε|)
)
dµg

= −
∫
M
f ′
ε(VΛε(d̄),ξ̄ + τϕε,d̄,ξ̄)ϕε,d̄,ξ̄

(
1

λj
Zi
λj ,ξj

+ o(|ε|)
)
dµg + o(ε)

= o(ε).

The proof of the part (ii) of Proposition 8.6 follows from Lemma 8.10, 8.11, 8.12.

8.6 Appendix

Let ξ̄0 = (ξ01 , · · · , ξ0k) ∈ Mk be fixed. Let ξj = ξj(y
j) = expξ0j (y

j), yj ∈ B(0, r) ⊂ Rn and set

ξ̄ = ξ̄(y) =
(
expξ01(y

1), · · · , expξ0k(y
k)
)
, y = (y1, · · · , yk) ∈ B(0, r)× · · · ×B(0, r).

We remark that ξ̄(0) = ξ̄0. Let us introduce the function E defined by

E(y, x) =
(
E1(y1, x), · · · , Ek(yk, x)

)
, x ∈ M,
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where E j(yj, x) = exp−1
ξj(yj)

(x) = exp−1
exp

ξ0
j
(yj)

(x) ∈ B(0, r).

Now, by (8.7), we can write
[
Wλj ,ξj(yj)(x) = λ

2−n
2

j χr (E j(yj, x))U
(
λ−1
j E j(yj, x)

)
,
]
setx=expξj(yj)(λjz) =

expexp
ξ0
j
(yj)(λjz), for c = 1, 2, · · · , n we have(

∂

∂yjc
Wλj ,ξj(yj)

)
(x)

=
n∑
a=1

λ
2−n
2

j

[
1

λj

∂U(z)

∂za
χr(λjz) +

∂χr(λjz)

∂za
U(z)

]
∂E ja
∂yjc

(
yj, expexp

ξ0
j
(yj)(λjz)

)
.(8.115)

In particular, (
∂

∂yjc
Wλj ,ξj(yj)

)∣∣
y=0

=
n∑
a=1

λ
2−n
2

j

[
1

λj

∂U(z)

∂za
χr(λjz) +

∂χr(λjz)

∂za
U(z)

]
∂E ja
∂yjc

(
0, expξ0j (λjz)

)
. (8.116)

In a similar way, for c = 1, 2, · · · , n,(
∂

∂yjc
Zi
λj ,ξj(yj)

)
(x)

=
n∑
a=1

λ
2−n
2

j

[
1

λj

∂Vi(z)

∂za
χr(λjz) +

∂χr(λjz)

∂za
Vi(z)

]
∂E ja
∂yjc

(
yj, expexp

ξ0
j
(yj)(λjz)

)
,(8.117)

and, (
∂

∂yjc
Zi
λj ,ξj(yj)

)∣∣
y=0

=
n∑
a=1

λ
2−n
2

j

[
1

λj

∂Vi(z)

∂za
χr(λjz) +

∂χr(λjz)

∂za
Vi(z)

]
∂E ja
∂yjc

(
0, expξ0j (λjz)

)
. (8.118)

From Lemma 6.4 in [87], we deduce the Taylor’s expansion

∂E ja
∂yjc

(
0, expξ0j (λjz)

)
=
∂E ja
∂yjc

(
0, expξ0j (0)

)
+O(λ2j |z|2) = δac +O(dj|ε||z|2). (8.119)

Lemma 8.13. Let ∂m denote ∂dj or ∂yjc for j = 1, 2, · · · , k and c = 1, · · · , n, it holds

∥∥∥∂mZi
λj ,ξj(yj)

∥∥∥
a
=


∥∥∥ ∂

∂yjc
Zi
λj ,ξj(yj)

∥∥∥
a
= O

(
|ε|− 1

2

)
if c = 1, 2, · · · , n; for y = 0;∥∥∥ ∂

∂dl
Zi
λj ,ξj(yj)

∥∥∥
a
= 0 if l = 1, 2, · · · , k, l ̸= j;∥∥∥ ∂

∂dj
Z i
λj ,ξj(yj)

∥∥∥
a
= O

(
|ε| 12
)
.

(8.120)
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Proof. By (8.118) and (8.119), we have

∫
M

∣∣∣∣∣∇g

(
∂

∂yjc
Zi
λj ,ξj(yj)

)
|y=0

∣∣∣∣∣
2

dµg =

∫
B(0, r

λj
)

∣∣gξj(yj)(λjz)∣∣ 12 n∑
a,b=1

gabξj(yj)(λjz)

× ∂

∂za

{
n∑
d=1

[
1

λj

∂Vi(z)

∂zd
χr(λjz) +

∂χr(λjz)

∂zd
Vi(z)

]
∂E jd
∂yjc

(
yj, expexp

ξ0
j
(yj)(λjz)

)}

× ∂

∂zb

{
n∑
d=1

[
1

λj

∂Vi(z)

∂zd
χr(λjz) +

∂χr(λjz)

∂zd
Vi(z)

]
∂E jd
∂yjc

(
yj, expexp

ξ0
j
(yj)(λjz)

)}
dz

= O

(
1

λ2j

)
= O

(
1

|ε|

)
. (8.121)

And ∫
M
a(x)

(
∂

∂yjc
Zi
λj ,ξj(yj)

)2∣∣
y=0

dµg

=

∫
B(0, r

λj
)

∣∣gξj(yj)(λjz)∣∣ 12 a(expexp
ξ0
j
(yj)(λjz)

)

×

{
n∑
a=1

[
1

λj

∂Vi(z)

∂za
χr(λjz) +

∂χr(λjz)

∂za
Vi(z)

]
∂E ja
∂yjc

(
yj, expexp

ξ0
j
(yj)(λjz)

)}2

dz

= O

(
1

λ2j

)
= O

(
1

|ε|

)
. (8.122)

By (8.121) and (8.122) we can get the first estimate holds.

From (8.20), we have
∥∥∥ ∂
∂dl
Zi
λj ,ξj(yj)

∥∥∥
a
= 0 for l, j = 1, 2, · · · , k, l ̸= j. Moreover

∂

∂dj
Zi
λj ,ξj(yj)

=
∂

∂λj

{
χr

(
exp−1

ξj
(x)
)
λ

2−n
2

j Vi

(
λ−1
j exp−1

ξj
(x)
)} ∂λj

∂dj

=
|ε|
2λj

χr

(
exp−1

ξj
(x)
){2− n

2
λ

−n
2
j Vi

(
λ−1
j exp−1

ξj
(x)
)

+λ
2−n
2

j

∂

∂λj
Vi

(
λ−1
j exp−1

ξj
(x)
)}

. (8.123)

It yields that∥∥∥∥ ∂

∂dj
Z i
λj ,ξj(yj)

∥∥∥∥2
a
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=

∫
B(0,r/λj)

∣∣gξj(yj)(λjz)∣∣ 12 n∑
a,b=1

gabξj(yj)(λjz)

× ∂

∂za

{
|ε|
2λj

χr (λjz)

[
2− n

2
Vi (z) +

∂

∂λj
Vi (z)

]}
× ∂

∂zb

{
|ε|
2λj

χr (λjz)

[
2− n

2
Vi (z) +

∂

∂λj
Vi (z)

]}
dz

+

∫
B(0,r/λj)

∣∣gξj(yj)(λjz)∣∣ 12 a(expexp
ξ0
j
(yj)(λjz)

)

×
{

|ε|
2λj

χr (λjz)

[
2− n

2
Vi (z) +

∂

∂λj
Vi (z)

]}2

dz

=

(
|ε|
2λj

)2 ∫
B(0,r/λj)

∣∣gξj(yj)(λjz)∣∣ 12 n∑
a,b=1

gabξj(yj)(λjz)

×
{ ∂

∂za
χr (λjz)

[
2− n

2
Vi (z) +

∂

∂λj
Vi (z)

]
+χr (λjz)

∂

∂za

[
2− n

2
Vi (z) +

∂

∂λj
Vi (z)

]}
×
{ ∂

∂zb
χr (λjz)

[
2− n

2
Vi (z) +

∂

∂λj
Vi (z)

]
+χr (λjz)

∂

∂zb

[
2− n

2
Vi (z) +

∂

∂λj
Vi (z)

]}
dz

+

(
|ε|
2λj

)2 ∫
B(0,r/λj)

∣∣gξj(yj)(λjz)∣∣ 12 a(expξj(yj)(λjz))

×
{
χr (λjz)

[
2− n

2
Vi (z) +

∂

∂λj
Vi (z)

]}2

dz

≤ C

(
2− n

2

)2( |ε|
2λj

)2 ∫
B(0,r/λj)

n∑
a,b=1

(
Vi(z) +

∂

∂za
Vi(z)

)(
Vi(z) +

∂

∂zb
Vi(z)

)
dz

+C

(
2− n

2

)2( |ε|
2λj

)2 ∫
B(0,r/λj)

a
(
expξj(yj)(λjz)

)
V 2
i dz

= O(|ε|). (8.124)

Lemma 8.14. For i, h = 0, 1, · · · , n and j, l = 1, 2, · · · k, it holds⟨
Zi
λj ,ξj(yj)

, Zh
λl,ξl(yl)

⟩
a
= δjlδih ∥Vi∥2D1,2(Rn) + o(1), as ε→ 0. (8.125)
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Moreover for c = 1, 2, · · · , n, if ε is small, we have⟨
Zi
λj ,ξj(yj)

,

(
∂

∂ylc

k∑
l=1

Wλl,ξl(yl)

)
|y=0

⟩
a

=
1

λj
δjlδic ∥Vi∥2D1,2(Rn) + o(1), (8.126)

and ⟨
Z i
λj ,ξj(yj)

,
∂

∂dj
VΛε(d̄ε),ξ

⟩
a

=
1

2dj
δi0 ∥V0∥2D1,2(Rn) + o

(∥∥∥Z0
λj ,ξj(yj)

∥∥∥
a

)
. (8.127)

Proof. By the similar way as proof of (8.47), we can get (8.125) holds.

Next, we prove (8.126). From (8.116) and (8.119), set x = expξl(yl)(λlz), we have(
∂

∂ylc
Wλl,ξl(yl)

)
|y=0

= λ
2−n
2

l

n∑
a=1

{
1

λl

∂U(z)

∂za
χr (λlz) +

∂χr(λlz)

∂za
U (z)

}(
δac +O(λ2l |z|2)

)
=

1

λl
λ

2−n
2

l χr (λlz)
∂U(z)

∂zc
+ λ

2−n
2

l

∂χr(λlz)

∂zc
U (z) +O(λ2l |z|2)

=
1

λl
Zc
λl,ξl

+ o(|λl|2) =
1

λl
Zc
λl,ξl

+ o(|ε|). (8.128)

Then, from (8.125) we have⟨
Zi
λj ,ξj(yj)

,

(
∂

∂ylc

k∑
l=1

Wλl,ξl(yl)

)
|y=0

⟩
a

=

⟨
Zi
λj ,ξj(yj)

,
k∑
l=1

1

λl
Zc
λl,ξl

+ o(|ε|)

⟩
a

=
1

λl

⟨
Z i
λj ,ξj(yj)

, Zc
λl,ξl

⟩
a
+ o(|ε|)∥Zi

λj ,ξj(yj)
∥a =

1

λj
δjlδic ∥Vi∥2D1,2(Rn) + o(1) (8.129)

for ε→ 0.

Finally, we prove (8.127) holds. From (8.23), a straightforward computation establishes that

∂

∂dj
VΛε(d̄ε),ξ

=
1

2dj
Z0
λj ,ξj

. (8.130)

Then, by (8.125) and (8.130), for ε small enough, we have⟨
Zi
λj ,ξj(yj)

,
∂

∂dj
VΛε(d̄ε),ξ

⟩
a

=

⟨
Zi
λj ,ξj(yj)

,
1

2dj
Z0
λj ,ξj(yj)

⟩
a

=
1

2dj

⟨
Zi
λj ,ξj(yj)

, Z0
λj ,ξj(yj)

⟩
a
=

1

2dj
δi0 ∥V0∥2D1,2(Rn) + o

(∥∥∥Z0
λj ,ξj(yj)

∥∥∥
a

)
.

254



CHAPTER 8. MULTIPEAK SOLUTIONS FOR ASYMPTOTICALLY CRITICAL
ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLD

Lemma 8.15. For (Λε(d̄), ξ̄) ∈ Oη,ρ, for ε is small enough, we have

(i)
∣∣f ′
ε

(
VΛε(d̄),ξ̄

)∣∣
n
2

= O(1).

(ii)
∣∣∣f ′
ε(VΛε(d̄),ξ

)
∣∣∣

2nsε
2n−(n−6)sε

= O(1).

(iii)
∣∣∣VΛε(d̄),ξ

∣∣∣
sε
= O(1), for n ≥ 7 or ε < 0.

(iv)
∣∣f ′′
ε

(
VΛε(d̄),ξ̄

)∣∣
sε

sε−3

= O(1) for n ≥ 7 or ε < 0.

Proof. (i) ∣∣f ′
ε

(
VΛε(d̄),ξ̄

)∣∣n2
n
2

=

∫
M

∣∣f ′
ε

(
VΛε(d̄),ξ̄

)∣∣n2 dµg

= (2∗ − 1− ε)
n
2

∫
M

∣∣∣∣∣
k∑
j=1

Wλj ,ξj

∣∣∣∣∣
(2∗−2−ε)n

2

dµg

= (2∗ − 1− ε)
n
2

k∑
j=1

λnj

∫
B(0,r/λj)

∣∣∣χr(λjz)λ 2−n
2

j U(z)
∣∣∣(2∗−2−ε)n

2 ∣∣gξj(λjz)∣∣ 12 dz

≤ C(2∗ − 1− ε)
n
2

k∑
j=1

λ
n(2−n)

4
(2∗−2−ε)+n

j

∫
B(0,r/λj)

|U(z)|(2∗−2−ε)n
2 dz

≤ C(2∗ − 1− ε)
n
2

k∑
j=1

λ
n(n−2)

4
ε

j (n(n− 2))
n
2
−n(n−2)

8
ε ωn

∫ r/λj

0

t−1+
n(n−2)

4
ε dt

= O(1).

(ii) Since

∣∣∣f ′
ε(VΛε(d̄),ξ

)
∣∣∣

2nsε
2n−(n−6)sε

=

∣∣∣∣∣f ′
ε

(
k∑
j=1

Wλj ,ξj

)∣∣∣∣∣
2nsε

2n−(n−6)sε

=

∣∣∣∣∣f ′
ε

(
k∑
j=1

χr(exp
−1
ξj
(x))λ

2−n
2

j U(λ−1
j exp−1

ξj
(x))

)∣∣∣∣∣
2nsε

2n−(n−6)sε

≤ Cλ
2−n
2

(2∗−2−ε)+n
jα

(∫ rλ−1
jα

0

|U(z)|(2
∗−2−ε) 2nsε

2n−(n−6)sε dz

) 2n−(n−6)sε
2nsε
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≤ Cλ
(n−2)(1+ ε

2
)

jα

(∫ rλ−1
jα

0

t(−4+(n−2)ε)θ+n−1 dz

) 1
θ

= O(1) as ε→ 0,

because (−4 + (n− 2)ε) θ + n− 1 < 0, where θ = 2nsε
2n−(n−6)sε

.

(iii) We have∣∣∣VΛε(d̄),ξ

∣∣∣sε
sε

=

∫
M

∣∣∣VΛε(d̄),ξ

∣∣∣sε dµg =

∫
M

∣∣∣∣∣
k∑
j=1

Wλj ,ξj

∣∣∣∣∣
sε

dµg

=
k∑
j=1

∫
Bg(ξj ,r)

∣∣∣χr(exp−1
ξj
(x))λ

2−n
2

j U(λ−1
j exp−1

ξj
(x))

∣∣∣sε dµg

=
k∑
j=1

λ
2−n
2
sε+n

j

∫
B(0,r/λj)

|χr(λjz)U(z)|sε
∣∣gξj(λjz)∣∣ 12 dz

≤
k∑
j=1

λ
2−n
2
sε+n

j

∫
B(0,r/λj)

|U(z)|sε dz

≤ (n(n− 2))
n−2
4
sε

k∑
j=1

λ
n(n−2)

4
ε

j

∫ λ−1
j r

0

t−n−1+
n(n−2)ε

2 dt

= O(1).

(iv) We have ∣∣∣f ′′

ε

(
VΛε(d̄),ξ̄

)∣∣∣ sε
sε−3

sε
sε−3

= [(2∗ − 1− ε)(2∗ − 2− ε)]
sε

sε−3

∫
M

∣∣VΛε(d̄),ξ̄

∣∣(2∗−3−ε) sε
sε−3 dµg

≤ [(2∗ − 1− ε)(2∗ − 2− ε)]
sε

sε−3

k∑
j=1

∫
Bg(ξj ,r)

∣∣Wλj ,ξj

∣∣(2∗−3−ε) sε
sε−3 dµg

≤ C

k∑
j=1

λ
2−n
2

(2∗−3−ε) sε
sε−3

+n

j

∫
B(0,r/λj)

|U(z)|(2
∗−3−ε) sε

sε−3

∣∣gξj(λjz)∣∣ 12 dz

≤ C

∫ r/λj

0

tn−1−(n−2)(2∗−3−ε) sε
sε−3 dt = C

∫ r/λj

0

t
−(n−6)(n+1)+n(n−2)(3n−13)

n(n−2)ε+2(n−6) dt

= O(1).
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Lemma 8.16. ([69]) For any a > 0, b real, we have

∣∣|a+ b|β − aβ
∣∣ ≤ { C(β)min{|b|β, aβ−1|b|} if 0 < β < 1;

C(β)
(
aβ−1|b|+ |b|β

)
if β ≥ 1.

(8.131)

In particular, we get for any ϕ ∈ Hε, we have

∣∣∣f ′
ε(VΛε(d̄),ξ

+ ϕ)− f ′
ε(VΛε(d̄),ξ

)
∣∣∣ ≤ { C|ϕ|2∗−2−ε if n = 6 and ε > 0;

C
(
V 2∗−3−ε
Λε(d̄),ξ

|ϕ|+ |ϕ|2∗−2−ε
)

otherwise.
(8.132)
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Chapter 9

Blow-up Solutions for
Paneitz-Branson type equations with
critical growth

1

9.1 Introduction

In 1983 Paneitz [102] introduced a conformally fourth order operator defined on 4-dimensional
Riemannian manifolds. Branson [14] generalized the definition to n−dimensional Riemannian
manifolds.

We let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 5. We also let
H2

2 (M) be the Sobolev space consisting of functions in L2(M) with two derivatives in L2(M).
We consider the geometric Paneitz equation

P n
g u = |u|2♯−2u in M. (9.1)

Here 2♯ = 2n
n−4

is the critical exponent for the Sobolev embedding, P n
g is the Paneitz-Branson

operator which is given by

P n
g u = ∆2

gu− divg (Agdu) +
n− 4

2
Qgu (9.2)

where ∆g = −divg∇ is the Laplace-Beltrami operator, Qg is the Q−curvature of g, Ag is the

1The main result of this chapter was worked with Angela Pistoia, was published in Asymptotic Analysis,
Volume 73(4), 2011, 225-248.
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smooth symmetrical (2, 0)−tensor field

Ag =
(n− 2)2 + 4

2(n− 1)(n− 2)
Sgg −

4

n− 2
Rcg, (9.3)

where Rcg and Sg are respectively the Ricci curvature and the Scalar curvature of g.

The Paneitz operator is conformally invariant in the sense that if g̃ = ϕ
4

n−2 g is conformal to

g then P n
g̃ u = ϕ−n+4

n−4P n
g (ϕu) for any u ∈ C∞(M). From the viewpoint of conformal geometry

equation (9.1) turns out to be the natural fourth order analogue of the second order Yamabe
problem. That is why we are led to study extensions to this operator of some classical
problems.

Using a terminology introduced by Hebey, we refer to a Paneitz-Branson type operator with
general coefficients as an operator of the form

Pgu = ∆2
gu− divg (Adu) + au (9.4)

where A ∈ Λ∞
(2,0)(M) is a smooth symmetric (2, 0)−tensor field and a ∈ C∞(M) and we refer

to Paneitz-Branson type operator with constant coefficients as an operator of the form

Pgu = ∆2
gu+ b∆gu+ cu (9.5)

where b and c are real numbers.

The Paneitz-Branson operator (9.2) is as in (9.4) whatever (M, g) is. In particular, when
(M, g) is Einstein, i.e. Rcg = λg for some λ ∈ R, the Paneitz-Branson operator (9.2) has

constant coefficients as in (9.5) with b = n2−2n−4
2(n−1)

λ and c = n(n−4)(n2−4)
16(n−1)2

λ2.

Equation
Pgu = ∆2

gu+ b∆gu+ cu = |u|2♯−2u in M, (9.6)

when Pg is a Paneitz-Branson type operator with constant coefficients as in (9.5), was widely
studied. Examples of compact manifolds including locally conformally flat manifold for which
equations (9.6) have non constant solutions are in [42, 51]. Compactness of problem (9.6)
was studied in [61, 62, 63, 64]. Recently, in [63] Hebey and Robert also studied the stability
of problem (9.6). They introduce the following definition of stability. Equation (9.6) is said
to be stable if for any sequences (bα)α and (cα)α of real numbers converging to b and c and
for any sequence (uα)α of solutions to

∆2
guα + bα∆guα + cαuα = |uα|2

♯−2uα in M,

bounded in H2
2 (M), there holds that, up to a subsequence, uα → u in C4(M) where u is

a smooth solution of (9.6). In other words, problem (9.6) is stable if arbitrary bounded
sequences in H2

2 (M) of solutions of equations close to (9.6) do not blow up in one or more
points of the manifold. In particular, they prove that if (M, g) is locally conformally flat
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and the Paneitz-Branson type operator is coercive then problem (9.6) is stable provided
b ̸= 1

n
TrgAg if n ≥ 9 or n = 7 and b < 1

8
TrgAg if n = 8. Here and in what follows, if A

denotes a smooth (2, 0)−tensor field, we let TrgA = gijAij be the trace of A with respect to
g. It is easily seen that if Ag is defined in (9.3) then

TrgAg =
n2 − 2n− 4

2(n− 1)
Sg. (9.7)

As far as we know, a few results are known about problem

Pgu = ∆2
gu− divg (Adu) + au = |u|2♯−2u in M, (9.8)

when Pg is a Paneitz-Branson type operator with general coefficients as in (9.4). In [50]
among other existence results, Esposito and Robert proved that problem (9.8) when n ≥ 8
has a non constant solution provided minM Trg(A − Ag) < 0. In [108] Sandeep proved that
problem (9.8) is stable provided A−Ag is either positive or negative definite. We would like
to point out that in the quoted results the quantity TrgA plays a crucial role in studying
existence of solutions and stability of problems (9.6) and (9.8).

The aim of the present paper is to show how stability of the problem (9.8) actually depends
on the trace of Ag. In particular, by building blowing-up solutions of the slightly subcritical
problem (9.9), we will show that problem (9.8) is not stable if maxM Trg (A− Ag) > 0 and
n ≥ 8 or if minM Trg (A− Ag) > 0 and n ≥ 7.

More precisely, we consider the following Paneitz-Branson type equation with slightly sub-
critical growth

∆2
gu− divg ((Ag +B)du) + au = |u|2♯−2−εu, in M, (9.9)

where Ag is given in (9.3), B ∈ Λ∞
(2,0)(M) is a smooth symmetric (2, 0)−tensor field, a ∈

C∞(M) and ε is a small positive parameter.

Let Pg,B(u) := ∆2
gu− divg ((Ag +B)u) + au. We will assume that Pg,B is coercive, i.e. there

exists c > 0 such that∫
M

(Pg,Bu)udµg ≥ c

∫
M

u2dµg for any u ∈ H2
2 (M).

Coercivity was studied in [61].

Given a C1−function φ on M, we say that a critical point ξ0 of φ is C1−stable if there exists
an open neighborhood Ω of ξ0 such that for any point ξ ∈ Ω there holds ∇φ(ξ) = 0 if and
only if ξ = ξ0 and such that the Brouwer degree

deg (∇gφ,Ω, 0) ̸= 0.

If ξ0 is a strict local minimum point or a strict local maximum point of φ then ξ0 is a
C1−stable critical point of φ. Moreover, if φ is a C2−function onM , then any non degenerate
critical point of φ is C1−stable.
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Theorem 9.1. Assume

� n ≥ 8 and ξ0 is a C1−stable critical point of TrgB with TrgB(ξ0) > 0,

� n ≥ 7, T rgB is not constant and min
M

TrgB > 0.

Then there exists ε0 > 0 such that for any ε ∈ (0, ε0) equation (8.1) admits a solution uε
such that the family (uε)ε is bounded in H2

2 (M) and the u′εs blow up at the point ξ0 if n ≥ 8
or at a global minimum point of TrgB if n = 7, as ε goes to zero.

In particular, as far as it concerns the stability of equation (9.8), we can extend the definition
given by Hebey and Robert in [63]. We say that equation (9.8) is stable if for any sequences
(εα)α of positive real numbers converging to zero and for any sequence (uα)α of solutions to

∆2
guα − divg ((Ag +B)uα) + auα = |uα|2

♯−2−εαuα in M,

bounded in H2
2 (M), there holds that, up to a subsequence, uα → u in C4(M) where u is a

smooth solution of (9.9) with ϵ = 0.

Therefore, Theorem 9.1 immediately implies the following stability result.

Corollary 9.2. Assume

� n ≥ 8 and ξ0 is a C1−stable critical point of TrgB with TrgB(ξ0) > 0,

� n ≥ 7, T rgB is not constant and min
M

TrgB > 0.

Then (9.9) with ϵ = 0 is not stable.

The proof of our result relies on a very well known Liapunov-Schmidt reduction procedure,
introduced in [9, 52]. We use Liapunov-Schmidt reduction method to reduce the problem
to a finite dimensional one, with some reduced energy. Then, the solutions in Theorems 9.1
turn out to be generated by critical points of the reduced energy functionals. In particular,
we follow some ideas recently developed in [90], where the authors studied the Yamabe type
equation with slightly subcritical growth

∆gu+

(
n− 2

4(n− 1)
Sg + h

)
u = u2

∗−1−ε, u > 0, in M,

where 2∗ = 2n
n−2

is the critical exponent for the Sobolev embedding, h ∈ C∞(M) and ε is a
small positive parameter.

This chapter is organized as follows. In Section 9.2, we describe the proof of the main result.
Section 9.3 is devoted to perform the finite dimensional reduction. Section 9.4 contains the
asymptotic expansion of the reduced energy.
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9.2 The existence result

Let H2
2 (M) be the standard Sobolev space defined as the completion of C∞(M) with respect

to the norm

∥u∥H2
2 (M) =

(∫
M

(∆gu)
2 dµg +

∫
M

|∇gu|2 dµg +
∫
M

u2 dµg

)1/2

.

Let Lq(M) be the Banach space equipped with the standard norm

|u|q =
(∫

M

|u|q dµg
)1/q

,

The Sobolev embedding theorem asserts that H2
2 (M) is continuously embedded in Lq(M) for

1 < q ≤ 2♯, and this embedding is compact when q < 2♯.

Since Pg,B is assumed to be coercive, we can provide the Hilbert space H2
2 (M) with the inner

product

⟨u, v⟩ =
∫
M

Pg,B(u)v dµg =

∫
M

[∆gu∆gv + (Ag +B) (∇gu,∇gv) + auv] dµg,

which induces the norm equivalent to the standard one

∥u∥ =

(∫
M

[
(∆gu)

2 + (Ag +B)|∇gu|2 + au2
]
dµg

)1/2

.

It will be useful to rewrite equation (9.9) in a differential setting, we introduce the following
operator.

Definition 9.3. Let i∗ : L
2n
n+4 (M) → H2

2 (M) be the adjoint operator of the embedding i :
H2

2 (M) → L2♯(M), namely

i∗(w) = u⇔ ⟨u, v⟩ =
∫
M

uv dµg, ∀v ∈ H2
2 (M) ⇔ Pg,B(u) = w on M, u ∈ H2

2 (M).(9.10)

By the continuity of the embedding H2
2 (M) into L2♯(M), we get

∥i∗(w)∥ ≤ C|w|2n/(n+4) for any w ∈ L
2n
n+4 (M), (9.11)

where C is a positive constant independent of w.

We can rewrite equation (9.9) in the equivalent way

u = i∗ (fε(u)) , u ∈ H2
2 (M), (9.12)
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where fε(s) := |s|2♯−2−εs.

Let δ be a positive number less or equal than the injectivity radius of M and χ be a smooth
cut-off function such that 0 ≤ χ ≤ 1 in Rn, χ ≡ 1 in B(0, δ) and χ ≡ 0 out of B(0, 2δ),
|∇χ(z)| ≤ 2

δ
and |∇2χ(z)| ≤ 2

δ2
.

For any point ξ in M and for any positive real number λ, we define the function Wλ,ξ on M
by

Wλ,ξ(x) :=

{
χ
(
exp−1

ξ (x)
)
λ

4−n
2 U

(
λ−1exp−1

ξ (x)
)

if x ∈ Bg(ξ, 2δ);

0 otherwise,
(9.13)

where

U(z) = αn

(
1

1 + |z|2

)n−4
2

, with αn =
(
n(n− 4)(n2 − 4)

)n−4
8 . (9.14)

In particular, the functions λ
4−n
2 U(λ−1z) satisfy the following equation (see [80])

∆2U = U2♯−1 in Rn, u ∈ D2,2(Rn)

where ∆ = −div(∇) is the Laplace-Beltrami operator in Rn associated with the Euclidean
metric.

We will look for a solution to (9.12), or equivalently to (9.9) of the form

uε = Wλε(t),ξ + ϕε,λ,ξ with λε(t) =
√
εt, t > 0, and ξ ∈M (9.15)

where the functionsWλε(t),ξ are defined in (9.13), and the rest term ϕε,λ,ξ belongs to the space
K⊥
λε(t),ξ

defined as follows.

It is known that (see [82]) every solution of the linear equation

∆2v = (2♯ − 1)U2♯−2v in Rn, v ∈ D2,2(Rn) (9.16)

is a linear combination of the functions

V0(z) =
d
(
λ(4−n)/2U(λ−1z)

)
dλ

∣∣∣
λ=1

= αn
n− 4

2

|z|2 − 1

(1 + |z|2)(n−2)/2
, (9.17)

and

Vi(z) = −∂U
∂zi

(z) = αn(n− 4)
zi

(1 + |z|2)(n−2)/2
for i = 1, 2, · · · , n. (9.18)

Let us define on M the functions

Zi
λ,ξ(x) :=

{
χ
(
exp−1

ξ (x)
)
λ

4−n
2 Vi

(
λ−1exp−1

ξ (x)
)

if x ∈ Bg(ξ, 2δ);

0 otherwise,
(9.19)
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for i = 0, 1, 2, · · · , n. We also define the projections Πλ,ξ and Π⊥
λ,ξ of the Sobolev space

H2
2 (M) onto the respective subspaces Kλ,ξ = Span

{
Zi
λ,ξ : i = 0, 1, 2, · · · , n

}
and K⊥

λ,ξ =
{
ϕ ∈ H2

2 (M) : ⟨ϕ, Zi
λ,ξ⟩ = 0, ∀ i = 0, 1, 2, · · · , n

}
.

Finally, in order to solve problem (9.12) we will solve the system

Π⊥
λε(t),ξ

{
Wλε(t),ξ + ϕ− i∗

[
fε
(
Wλε(t),ξ + ϕ

)]}
= 0, (9.20)

Πλε(t),ξ

{
Wλε(t),ξ + ϕ− i∗

[
fε
(
Wλε(t),ξ + ϕ

)]}
= 0. (9.21)

Equation (9.20) is solved in the following Proposition, whose proof is postponed to Section
3.

Proposition 9.4. If n ≥ 7 and λε(t) is as in (9.15), then for any real numbers c1 and c2
satisfying 0 < c1 < c2, such that for ε small, for any point ξ in M , and for any real number
t in [c1, c2], equation (9.20) admits a unique solution ϕε,λ,ξ in K

⊥
λε(t),ξ

, which is continuously
differential with respect to ξ and t, moreover,

∥ϕε,λ,ξ∥ ≤ C

{
ε

3
4 if n = 7;
ε| ln ε| if n ≥ 8.

(9.22)

where C is a positive constant dependent on c1 and c2.

Then, we introduce the functional Jε : H
2
2 (M) → R defined by

Jε(u) =
1

2

∫
M

Pg,B(u)u dµg −
1

2♯ − ε

∫
M

u2
♯−ε dµg,

whose critical points are solutions to equation (9.9). We also define the functional J̃ε :
R∗

+ ×M → R by

J̃ε(t, ξ) = Jε
(
Wλε(t),ξ + ϕε,λ,ξ

)
, (9.23)

where Wλε(t),ξ is defined as (9.13) and ϕε,λ,ξ is given by Proposition 9.4.

The next result, whose proof is postponed until Section 4, allows to solve equation (9.21), by
reducing the problem to a finite dimensional one.

Proposition 9.5. (i) If n ≥ 7 and λε(t) is as in (9.15), there holds

Jε(Wλε(t),ξ) =
2

n
K

−n
4

n

{
1− Cnε−

(n− 4)2

16
ε ln (εt) +

(n− 1)

(n− 6)(n2 − 4)
TrgB(ξ)εt+ o(ε)

}
(9.24)

as ε→ 0, C1−uniformly with respect to ξ in M and t in compact subsets of R∗
+. Here

Cn = 2n−4(n− 4)2
ωn−1

ωn

∫ +∞

0

r
n−2
2 ln(1 + r)

(1 + r)n
dr +

(n− 4)2

8(n− 2)

(
1− n ln

√
n(n− 4)

)
.
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(ii) If n ≥ 8 and λε(t) is as in (9.15), there holds

J̃ε(t, ξ) = Jε(Wλε(t),ξ) + o(ε) (9.25)

as ε → 0, C1−uniformly with respect to ξ in M and t in compact subsets of R∗
+. If n = 7

estimate (9.25) holds only C0−uniformly with respect to ξ in M and t in compact subsets of
R∗

+.

(iii) For ε small, if (t, ξ) is a critical point of the functional J̃ε, then Wλε(t),ξ + ϕε,λ,ξ is a
solution of (9.12), or equivalently of equation (9.9).

Proof of Theorem 9.1: By (i) and (ii) of Proposition 9.5, we have

J̃ε(t, ξ) = C1 − C2ε− C3ε ln (εt) + C4TrgB(ξ)εt+ o(ε) as ε→ 0.

Here C1, C2, C3, C4 are positive constants which only depend on n. We define the functional
J̃ : R∗

+ ×M → R by

J̃(t, ξ) = −C3 ln t+ C4TrgB(ξ)t.

If n ≥ 8 we argue exactly as in the proof of Theorem 1.1 in [90]. If n ≥ 7 and TrgB has a
strict global minimum point with minM TrgB > 0, then the function J̃ has a global minimum
point which is stable under C0−perturbation, which easily implies the existence for ε small
enough of a critical point (tε, ξε) of the function J̃ε such that ξε approaches the minimum set
of TrgB as ε goes to zero. The claim follows by (iii) of Proposition 9.5.

9.3 The finite dimensional reduction

This section is devoted to the proof of Proposition 9.4. Let us introduce the linear operator
Lε,λ,ξ : K

⊥
λ,ξ → K⊥

λ,ξ defined by

Lε,λ,ξ(ϕ) := Π⊥
λε(t),ξ

{
ϕ− i∗

[
f ′
ε(Wλε(t),ξ)ϕ

]}
.

This operator is well defined because of (9.11). Therefore equation (9.20) turns out to be
equivalent to

Lε,λ,ξ(ϕ) = Nε,λ,ξ(ϕ) +Rε,λ,ξ, (9.26)

where

Nε,λ,ξ(ϕ) = Π⊥
λε(t),ξ

{
i∗
[
fε(Wλε(t),ξ + ϕ)− fε(Wλε(t),ξ)− f ′

ε(Wλε(t),ξ)ϕ
]}
, (9.27)

and

Rε,λ,ξ = Π⊥
λε(t),ξ

{
i∗
(
fε(Wλε(t),ξ)

)
−Wλε(t),ξ

}
. (9.28)

As a first step, we want to study the invertibility of Lε,λ,ξ.
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Lemma 9.6. If λε(t) is as in (9.15), then for any real numbers c1 and c2 satisfying 0 < c1 <
c2, there exists a positive constant C dependent on c1 and c2 such that for ε small, for any
point ξ in M , any real number t in [c1, c2], and any function ϕ ∈ K⊥

λε(t),ξ
, there holds

∥Lε,λ,ξ(ϕ)∥ ≥ C∥ϕ∥. (9.29)

Proof. We argue by contradiction. Assume there exist a sequences of (εα)α converging to 0,
a sequence of points (ξα)α in M , a sequence of real numbers (tα)α in [c1, c2], and a sequence
of functions (ϕα)α ∈ K⊥

λεα (tα),ξα
satisfying

Lεα,λεα (tα),ξα(ϕα) = ψα, ∥ϕα∥ = 1 and ∥ψα∥ → 0. (9.30)

For any α, for notation’s convenience we will write λα = λεα(tα). From (9.30) we get there
exists ζα ∈ Kλα,ξα such that

ϕα − i∗
[
f ′
εα(Wλα,ξα)ϕα

]
= ψα + ζα. (9.31)

We set gα(z) = exp∗
ξα
g(λαz).

Step 1. We claim that

∥ζα∥ → 0 as α → ∞. (9.32)

Let ζα :=
n∑
i=0

Ci
αZ

i
λα,ξα

. For any j = 0, 1, · · · , n, we multiply (9.31) by Zj
λα,ξα

, and taking into

account that ϕα, ψα ∈ K⊥
λα,ξα

, we get

n∑
i=0

Ci
α

⟨
Zi
λα,ξα , Z

j
λα,ξα

⟩
= −

⟨
i∗
[
f ′
εα(Wλα,ξα)ϕα

]
, Zj

λα,ξα

⟩
. (9.33)

For i, j = 0, 1, · · · , n and any α, we have⟨
Zi
λα,ξα , Z

j
λα,ξα

⟩
=

∫
M

Pg,B(Z
i
λα,ξα)Z

j
λα,ξα

dµg

=

∫
M

∆gZ
i
λα,ξα∆gZ

j
λα,ξα

dµg

+

∫
M

(Ag +B)
(
∇gZ

i
λα,ξα ,∇gZ

j
λα,ξα

)
dµg

+

∫
M

aZi
λα,ξαZ

j
λα,ξα

dµg

=: I1 + I2 + I3. (9.34)

By (9.55) we have

I1 =

∫
M

∆gZ
i
λα,ξα∆gZ

j
λα,ξα

dµg
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= λ4−nα

∫
Bg(ξα,2δ)

∆g

(
χ
(
exp−1

ξα
(x)
)
Vi
(
λ−1
α exp−1

ξα
(x)
))

×∆g

(
χ
(
exp−1

ξα
(x)
)
Vj
(
λ−1
α exp−1

ξα
(x)
))

dµg

=

∫
B(0,2λ−1

α δ)

(
n∑

a,b,c=1

(
gabα (z)

∂2 (χ(λαz)Vi(z))

∂za∂zb
− λαΓ

c
ab(λαz)

∂ (χ(λαz)Vi(z))

∂zc

))

×

(
n∑

a,b,c=1

(
gabα (z)

∂2 (χ(λαz)Vj(z))

∂za∂zb
− λαΓ

c
ab(λαz)

∂ (χ(λαz)Vj(z))

∂zc

))
|gα(z)|

1
2 dz,

→
{ ∫

Rn ∆
2Vi dz if i = j;

0 if i ̸= j
as α→ +∞. (9.35)

Moreover, setting (Ag +B)α(z) = (Ag +B)(expξα(λαz)), we have

I2 =

∫
M

(Ag +B)
(
∇gZ

i
λα,ξα ,∇gZ

j
λα,ξα

)
dµg

= λ4−nα

∫
Bg(ξα,2δ)

(Ag +B)
(
∇g

(
χ
(
exp−1

ξα
(x)
)
Vi
(
λ−1
α exp−1

ξα
(x)
))
,

∇g

(
χ
(
exp−1

ξα
(x)
)
Vj
(
λ−1
α exp−1

ξα
(x)
)))

dµg

= λ4α

∫
B(0,2λ−1

α δ)

n∑
a,b=1

((Ag +B)α(z))st g
sa
α g

tb
α (z)

(
1

λα

∂Vi(z)

∂za
χ(λαz) +

∂χ(λαz)

∂za
Vi(z)

)
×
(

1

λα

∂Vj(z)

∂zb
χ(λαz) +

∂χ(λαz)

∂zb
Vj(z)

)
|gα(z)|

1
2 dz

→ 0 as α→ +∞, (9.36)

and setting aα(z) = a(expξα(λαz)) we also have

I3 =

∫
M

aZi
λα,ξαZ

j
λα,ξα

dµg

= λ4−nα

∫
Bg(ξα,2δ)

aχ2
(
exp−1

ξα
(x)
)
Vi
(
λ−1
α exp−1

ξα
(x)
)
Vj
(
λ−1
α exp−1

ξα
(x)
)
dµg

= λ4α

∫
B(0,2λ−1

α δ)

aαχ
2(λαz)Vi(z)Vj(z) |gα(z)|

1
2 dz

→ 0 as α→ +∞. (9.37)

Then from (9.34)- (9.37) we have⟨
Zi
λα,ξα , Z

j
λα,ξα

⟩
→

{ ∫
Rn ∆

2Vi dz if i = j;
0 if i ̸= j.

(9.38)

Now, set

ϕ̃α(z) :=

{
λ
(n−4)/2
α ϕα

(
expξα(λαz)

)
if z ∈ B(0, 2λ−1

α δ),
0 otherwise.
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By (9.30), we deduce that the sequence {ϕ̃α}α is bounded in D2,2(Rn), where D2,2(Rn) is
the completion of C∞

0 (Rn) with respect to the norm ∥u∥D2,2(Rn) = ∥∆u∥L2(Rn). Passing to a

subsequence, we may assume that {ϕ̃α}α converges weakly to a function ϕ̃ in D2,2(Rn), and
thus in L2♯(Rn) by the continuity of the embedding of D2,2(Rn) into L2♯(Rn).

Since, for any α, the function ϕα ∈ K⊥
λα,ξα

, we have

0 =
⟨
Zj
λα,ξα

, ϕα
⟩
=

∫
M

Pg,B(Z
j
λα,ξα

)ϕα dµg

=

∫
M

∆gZ
j
λα,ξα

∆gϕα + (Ag +B)
(
∇gZ

j
λα,ξα

,∇gϕα
)
dµg

+

∫
M

aZj
λα,ξα

ϕα dµg

=

∫
Rn

∆Vj∆ϕ̃ dz + o(1) as α→ ∞, (9.39)

Since the function Vj solves (9.16), it yields that∫
Rn

∆Vj∆ϕ̃ dz = (2♯ − 1)

∫
Rn

U2♯−2Vjϕ̃ dz = 0. (9.40)

Moreover, we have⟨
i∗
[
f ′
εα(Wλα,ξα)ϕα

]
, Zj

λα,ξα

⟩
=

∫
M

f ′
εα(Wλα,ξα)Z

j
λα,ξα

ϕαdµg

=

∫
M

f ′
εα(Wλα,ξα)χ(exp

−1
ξα
(x))λ

4−n
2

α Vj(λ
−1
α exp−1

ξα
(x))ϕαdµg

= λ4α

∫
B(0,2λ−1

α δ)

f ′
εα

(
χ(λαz)λ

4−n
2

α U(z)
)
χ(λαz)Vj(z)ϕ̃α(z) dµgα

= (2♯ − 1− εα)λ
(n−4)εα

2
α

∫
B(0,2λ−1

α δ)

[χ(λαz)U(z)]
2♯−2−εα χ(λαz)Vh(z)ϕ̃α(z)dµgα

→ (2♯ − 1)

∫
Rn

U(z)2
♯−2Vj(z)ϕ̃(z) dz = 0 as α→ +∞, (9.41)

because λ
(n−4)εα

2
α = (εαt)

(n−4)εα
4 → 1, the sequence {ϕ̃α}α converges weakly to ϕ̃ in D2,2(Rn)

and (9.40) holds. It follows from (9.33), (9.38) and (9.41) that for any i = 0, 1, · · · , n C i
α → 0

as α→ ∞ and, so (9.32) is proved.

Step 2. We prove that

lim inf
α→∞

∫
M

f ′
εα(Wλα,ξα)u

2
α dµg → 1, (9.42)
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where

uα = ϕα − ψα − ζα, with ∥uα∥ → 1. (9.43)

Let us write equation (9.31) as

Pg,B(uα) = f ′
εα(Wλα,ξα)uα + f ′

εα(Wλα,ξα)(ψα + ζα). (9.44)

If we multiply (9.44) by uα, we get

∥uα∥2 =

∫
M

f ′
εα(Wλα,ξα)u

2
α dµg +

∫
M

f ′
εα(Wλα,ξα)(ψα + ζα)uα dµg (9.45)

By Hölder inequality, from (9.11), (9.30) and (9.32), then we have∣∣∣∣∫
M

f ′
εα(Wλα,ξα)(ψα + ζα)uα dµg

∣∣∣∣
≤

∣∣f ′
εα(Wλα,ξα)

∣∣
n/4

|ψα + ζα|2n/n−4 |uα|2n/n−4 = o(1). (9.46)

Therefore, from (9.43), (9.45) and (9.46) (9.42) follows.

Step 3. Set

ũα(z) :=

{
λ
(n−4)/2
α uα

(
expξα(λαz)

)
if z ∈ B(0, 2λ−1

α δ);
0 otherwise.

(9.47)

We claim that

ũα ⇀ 0 weakly in D2,2(Rn) and strongly in Lq(Rn) for any q ∈ [1, 2n
n−4

). (9.48)

In fact, by (9.43) we get that (ũα)α are bounded in D2,2(Rn). Then, up to a subsequence,
ũα ⇀ ũ weakly in D2,2(Rn) and strongly in Lq(Rn) for any q ∈ [1, 2n

n−4
). By (9.44) we easily

deduce that ũ solves the linearized problem (9.16) and by (9.40) we also deduce that the
function ũ is identically zero and (9.48) holds.

Therefore, we have that

lim inf
α→∞

∫
M

f ′
εα(Wλα,ξα)u

2
α dµg → 0. (9.49)

In fact, by (9.48) we deduce that the sequence
(
f ′
εα(Wλα,ξα)

)
α
converges strongly to f ′

0(U)

in L
n
4 (Rn) and by the fact that the functions ũ2α are uniformly bounded in L

n
n−4 (Rn) and

converge almost everywhere to zero in Rn we deduce that they converge weakly to zero in
L

n
n−4 (Rn).

Finally a contradiction arises, because of (9.42) and (9.49).

That concludes the proof.
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Next, we want to study the estimate the term of Rε,λ,ξ.

Lemma 9.7. If λε(t) is as in (9.15), then for any real numbers c1 and c2 satisfying 0 < c1 <
c2, there exists a positive constant C dependent on c1 and c2 such that for ε small, for any
point ξ in M , any real number t in [c1, c2], there holds

∥Rε,λ,ξ∥ ≤ C

{
ε

3
4 if n = 7;
ε| ln ε| if n ≥ 8.

(9.50)

Proof. Let us introduce the function Zλ,ξ defined by Wλ,ξ := i∗(Zλ,ξ), i.e. Pg,B(Wλ,ξ) = Zλ,ξ
on M.

By (9.28) and (9.11), we get there exists a positive constant C such that for ε small, for any
point ξ in M and any positive real number t ∈ [c1, c2], there holds,

∥Rε,λ,ξ∥ ≤ C |fε(Wλ,ξ)− Pg,B(Wλ,ξ)| 2n
n+4

.

The claim will follow once we prove that

|fε(Wλ,ξ)− Pg,B(Wλ,ξ)| 2n
n+4

≤ C

{
ε

3
4 if n = 7;
ε| ln ε| if n ≥ 8.

(9.51)

We have

|fε(Wλ,ξ)− Pg,B(Wλ,ξ)| 2n
n+4

≤ |fε(Wλ,ξ)− f0(Wλ,ξ)| 2n
n+4

+ |f0(Wλ,ξ)− Pg,B(Wλ,ξ)| 2n
n+4

. (9.52)

Let us estimate the first term of the right hand side of (9.52). A change of variable yields
(setting χε,λ = χ(λε(t)z))

|fε(Wλ,ξ)− f0(Wλ,ξ)| 2n
n+4

≤ Cλε(t)
n−4
2
ε
∥∥∥χ2♯−1−ε

ε,λ

(
U2♯−1−ε − U2♯−1

)∥∥∥
L

2n
n+4 (Rn)

+C
∥∥∥(λε(t)n−4

2
εχ2♯−1−ε

ε,λ − χ2♯−1
ε,λ

)
U2♯−1

∥∥∥
L

2n
n+4 (Rn)

= O (|ε ln ε|) , (9.53)

because ∫
Rn

∣∣∣χ2♯−1−ε
ε,λ

(
U2♯−1−ε − U2♯−1

)∣∣∣ 2n
n+4

dz

= O

(∫
B(0,2λε(t)−1δ)

∣∣∣U2♯−1−ε − U2♯−1
∣∣∣ 2n
n+4

dz

)
270



CHAPTER 9. BLOW-UP SOLUTIONS FOR PANEITZ-BRANSON TYPE
EQUATIONS WITH CRITICAL GROWTH

= O

(∫ 2δ
λε(t)

0

sn−1

(1 + s2)n

∣∣∣(1 + s2)
n−4
2
ε − 1

∣∣∣ 2n
n+4

dz

)

= O

(∫ 2δ
λε(t)

0

sn−1

(1 + s2)n

∣∣∣∣n− 4

2
ε ln(1 + s2)

∣∣∣∣ 2n
n+4

dz

)
= O

(
ε

2n
n+4

)
,

and ∫
Rn

∣∣∣(λε(t)n−4
2
εχ2♯−1−ε

ε,λ − χ2♯−1
ε,λ

)
U2♯−1

∣∣∣ 2n
n+4

dz

= O

(
|ε lnλε(t)|

2n
n+4

∫ δ
2λε(t)

0

sn−1

(1 + s2)n
dz +

∫ +∞

δ
2λε(t)

sn−1

(1 + s2)n
dz

)
= O

(
|ε lnλε(t)|

2n
n+4 + λε(t)

n
)

= O
(
|ε ln ε|

2n
n+4

)
.

Let us estimate the second term of the right hand side of (9.52).

We claim that

Pg,Bu = ∆2u+Ru, Ru = O
(
|u|+ |∂ku|+ |∂2iku|+ |x||∂3ijku|+ |x|2|∂4ijlku|

)
. (9.54)

In fact, by standard properties of the exponential map, in geodesic normal coordinates, there
hold

∆gu = −∆u+ aij∂2iju+ bk∂ku, (9.55)

aij(x) := −
[
gij(x)− δij(x)

]
=

1

3
Riαβj(ξ)x

αxβ +O(|x|3), (9.56)

and
bk(x) := gij(x)Γkij(x) = ∂lΓ

k
ii(ξ)x

l +O(|x|2). (9.57)

By (9.55) we can compute

∆g

[
−∆u+ ars∂2rsu+ bh∂hu

]
= −∆

[
−∆u+ ars∂2rsu+ bh∂hu

]
+ aij∂2ij

[
−∆u+ ars∂2rsu+ bh∂hu

]
+bk∂k

[
−∆u+ ars∂2rsu+ bh∂hu

]
and by (9.56) and (9.57), using the definition of Pg,B, estimate (9.54) follows.
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We perform a change of variable x = exp−1
ξ (z) and set Uλ(x) := λ−

n−4
2 U(x/λ). By (9.54),

taking into account that ∆2Uλ = f0 (Uλ) we deduce that

Pg,B(Wλ,ξ)− f0(Wλ,ξ) = RUλ + r, (9.58)

where r := Pg,Bg [(χ− 1) (Wλ,ξ)]− (χp − χ) f0 (Wλ,ξ) .

We also point out that for some positive constant c we have

|∂kU | ≤ c
1

(1 + |x|2)
n−3
2

, |∂2ikU |+ |x||∂3ijkU |+ |x|2|∂4ijlkU | ≤ c
1

(1 + |x|2)
n−2
2

.

Therefore, by (9.54) we deduce

∥RUλ∥ 2n
n+4

= O
(∥∥|Uλ|+ |∂kUλ|+ |∂2ikUλ|+ |x||∂3ijkUλ|+ |x|2|∂4ijlkUλ|

∥∥
2n
n+4

)

=


O
(
λ2
)
if n ≥ 9,

O
(
λ2| lnλ|

)
if n = 8,

O
(
λ

n−4
2

)
if 5 ≤ n ≤ 7,

(9.59)

because

∥Uλ∥ 2n
n+4

=


O
(
λ4
)
if n ≥ 13,

O
(
λ4| lnλ|

)
if n = 12,

O
(
λ

n−4
2

)
if 5 ≤ n ≤ 11,

∥∂kUλ∥ 2n
n+4

=


O
(
λ3
)
if n ≥ 11,

O
(
λ3| lnλ|

)
if n = 10,

O
(
λ

n−4
2

)
if 5 ≤ n ≤ 9

and

∥∥|∂2ikUλ|+ |x||∂3ijkUλ|+ |x|2|∂4ijlkUλ
∥∥

2n
n+4

=


O
(
λ2
)
if n ≥ 9,

O
(
λ2| lnλ|

)
if n = 8,

O
(
λ

n−4
2

)
if 5 ≤ n ≤ 7.

Is it easy to check that the term

∥r∥ 2n
n+4

= o
(
∥RUλ∥ 2n

n+4

)
. (9.60)

Finally, by (9.58), (9.59) and (9.60) we get

|f0(Wλ,ξ)− Pg,B(Wλ,ξ)| 2n
n+4

=


O (ε) if n ≥ 9,

O (ε| ln ϵ|) if n = 8,

O
(
ε

3
4

)
if n = 7.

(9.61)
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Finally, by (9.52), (9.53) and (9.61), estimate (9.51) follows.

Proof of Proposition 9.4: For ε small, for any point ξ in M and any positive real number
t ∈ [c1, c2], we let Tε,λ,ξ : K

⊥
λ,ξ → K⊥

λ,ξ be defined by

Tε,λ,ξ(ϕ) = L−1
ε,λ,ξ (Nε,λ,ξ(ϕ) +Rε,λ,ξ) ,

where Nε,λ,ξ(ϕ) and Rε,λ,ξ are as (9.27) and (9.28). We also set

Bε,λ,ξ(γ) =
{
ϕ ∈ K⊥

λ,ξ

∣∣ ∥ϕ∥ ≤ γ∥Rε,λ,ξ∥
}
,

where γ is a positive constant to be chosen large later on. We take λ = λε(t) for some real
number t in [c1, c2]. In order to solve (9.20) or equivalently equation (9.26), it suffices to
show that the map Tε,λε(t),ξ admits a fixed point ϕε,λ,ξ.

By Lemma 9.6, we deduce that∥∥Tε,λε(t),ξ(ϕ)∥∥ ≤ C
(∥∥Nε,λε(t),ξ(ϕ)

∥∥+ ∥∥Rε,λε(t),ξ

∥∥) , (9.62)

and ∥∥Tε,λε(t),ξ(ϕ1)− Tε,λε(t),ξ(ϕ2)
∥∥ ≤ C

(∥∥Nε,λε(t),ξ(ϕ1)−Nε,λε(t),ξ(ϕ2)
∥∥) . (9.63)

By (9.11) and (9.27), we deduce∥∥Nε,λε(t),ξ(ϕ)
∥∥ ≤ C

∣∣fε(Wλε(t),ξ + ϕ)− fε(Wλε(t),ξ)− f ′
ε(Wλε(t),ξ)ϕ

∣∣
2n
n+4

, (9.64)

and ∥∥Nε,λε(t),ξ(ϕ1)−Nε,λε(t),ξ(ϕ2)
∥∥

≤ C
∣∣fε(Wλε(t),ξ + ϕ1)− fε(Wλε(t),ξ + ϕ2)− f ′

ε(Wλε(t),ξ)(ϕ1 − ϕ2)
∣∣

2n
n+4

. (9.65)

Then by the mean value theorem and Hölder and Sobolev inequalities, it follows that, for
any τ ∈ (0, 1), we have∣∣fε(Wλε(t),ξ + ϕ1)− fε(Wλε(t),ξ + ϕ2)− f ′

ε(Wλε(t),ξ)(ϕ1 − ϕ2)
∣∣

2n
n+4

=
∣∣[f ′

ε

(
Wλε(t),ξ + τϕ2 + (1− τ)ϕ1

)
− f ′

ε(Wλε(t),ξ)
]
(ϕ1 − ϕ2)

∣∣
2n
n+4

≤
∣∣f ′
ε

(
Wλε(t),ξ + τϕ2 + (1− τ)ϕ1

)
− f ′

ε(Wλε(t),ξ)
∣∣
n
4

|ϕ1 − ϕ2|2♯

≤ C
∣∣f ′
ε

(
Wλε(t),ξ + τϕ2 + (1− τ)ϕ1

)
− f ′

ε(Wλε(t),ξ)
∣∣
n
4

∥ϕ1 − ϕ2∥ .

By Lemma 8.16, we deduce that∣∣fε(Wλε(t),ξ + ϕ1)− fε(Wλε(t),ξ + ϕ2)− f ′
ε(Wλε(t),ξ)(ϕ1 − ϕ2)

∣∣
2n
n+4
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≤

 C
(
|ϕ1|2

♯−2−ε
2♯ + |ϕ2|2

♯−2−ε
2♯

)
∥ϕ1 − ϕ2∥ if n ≥ 12;

C
(
|Wλε(t),ξ|2♯ + |ϕ1|2♯ + |ϕ2|2♯

)2♯−3−ε
(|ϕ1|2♯ + |ϕ2|2♯) ∥ϕ1 − ϕ2∥ if 5 ≤ n < 12,

≤

 C
(
∥ϕ1∥2

♯−2−ε + ∥ϕ2∥2
♯−2−ε

)
∥ϕ1 − ϕ2∥ if n ≥ 12;

C
(
|Wλε(t),ξ|2♯ + ∥ϕ1∥+ ∥ϕ2∥

)2♯−3−ε
(∥ϕ1∥+ ∥ϕ2∥) ∥ϕ1 − ϕ2∥ if 5 ≤ n < 12.

(9.66)

Taking ϕ1 = ϕ, ϕ2 = 0 into (9.66), from (9.64) we have

∥∥Nε,λε(t),ξ(ϕ)
∥∥ ≤

{
C∥ϕ∥2♯−1−ε if n ≥ 12;

C
(
|Wλε(t),ξ|2

♯−3−ε
2♯

∥ϕ∥2 + ∥ϕ∥2♯−1−ε
)

if 5 ≤ n < 12.
(9.67)

Since

|Wλε(t),ξ|2
♯

2♯ =

∫
M

|Wλε(t),ξ|2
♯

dµg = O

(∫
B(0, 2δ

λε(t)
)

sn−1

(1 + s2)n
ds

)
= O(1), (9.68)

then we have |Wλε(t),ξ|2
♯−3−ε

2♯
= O(1). From (9.62), (9.63), (9.65), (9.66) and (9.67), for any

functions ϕ, ϕ1 and ϕ2 in Bε,λε(t),ξ(γ) and for ε small, we have

∥∥Tε,λε(t),ξ(ϕ)∥∥ ≤

 C
(
γ2

♯−1−ε∥Rε,λε(t),ξ∥2
♯−1−ε +

∥∥Rε,λε(t),ξ

∥∥) if n ≥ 12;

C
(
γ2∥Rε,λε(t),ξ∥2 + γ2

♯−1−ε∥Rε,λε(t),ξ∥2
♯−1−ε +

∥∥Rε,λε(t),ξ

∥∥) if 5 ≤ n < 12,

and ∥∥Tε,λε(t),ξ(ϕ1)− Tε,λε(t),ξ(ϕ2)
∥∥ ≤ Cγ2

♯−2−ε∥Rε,λε(t),ξ∥2
♯−2−ε ∥ϕ1 − ϕ2∥ ,

where C is a positive constant independent of γ, ε, ξ, t, ϕ, ϕ1 and ϕ2. By Lemma 9.7, it follows
that if γ is fixed large enough, then for ε small, for any point ξ in M , and any real number t
in [c1, c2], Tε,λε(t),ξ is a contraction mapping on Bε,λε(t),ξ(γ) and satisfies

ϕ ∈ Bε,λε(t),ξ(γ) =⇒ Tε,λε(t),ξ(ϕ) ∈ Bε,λε(t),ξ(γ),

therefore Tε,λε(t),ξ has a fixed point ϕε,λ,ξ which satisfies (9.20), and (9.22) holds from (9.50).
The regularity of the map (t, ξ) → ϕε,λ,ξ can be proved by standard arguments involving the
implicit function theorem.

9.4 The reduced problem: proof of Proposition 9.5

Let Kn be the sharp constant for the embedding of D2,2(Rn) into L2♯(Rn), i.e.

1

Kn

=
n(n2 − 4)(n− 4)ω

4
n
n

16
,
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where ωn is the volume of Sn.

Proof of (i) of Proposition 9.5:

Let us prove the C0−estimate. The C1−estimate can be proved using the same argument as
in [87, 90].

In Section 4 of [50] it was proved that for n ≥ 7

1

2

∫
M

Pg,B
(
Wλε(t),ξ

)
Wλε(t),ξ dµg

=
1

2
K

−n
4

n

{
1 +

[
4(n− 1)

n(n− 6)(n2 − 4)
(TrgAg(ξ) + TrgB(ξ))− (n2 + 4n− 20)

6(n− 6)(n2 − 4)
Scalg(ξ)

]
λε(t)

2

}
+o
(
λε(t)

2
)

=
1

2
K

−n
4

n

{
1 +

4(n− 1)

n(n− 6)(n2 − 4)

(
(TrgAg(ξ) + TrgB(ξ))− n(n2 + 4n− 20)

24(n− 1)
Scalg(ξ)

)
εt

}
+o (ε) , (9.69)

as ε→ 0, C0−uniformly with respect to ξ in M and t in compact subsets of R∗
+.

Now, let us estimate the term 1
2♯−ε

∫
M
W 2♯−ε
λε(t),ξ

dµg. It is useful to introduce some notations.

For any positive real numbers p and q satisfying p− q > 1, we set

Iqp =

∫ +∞

0

sq

(1 + s)p
ds and Ĩqp =

∫ +∞

0

sq ln(1 + s)

(1 + s)p
ds.

As is easily checked (see [8]) there hold

Iq+1
p+1 =

q + 1

p− q − 1
Iqp+1 and Iqp+1 =

p− q − 1

p
Iqp .

Moreover, we have

In/2n =
nωn

2n−1(n− 2)ωn−1

=
2K

−n/4
n

α2
n(n− 2)(n− 4)(n2 − 4)ωn−1

.

We also recall the Cartan expansion of the metric√
|g|(z) = 1− 1

6
Rijz

izj +O(|z|3),

where the Rij is the component of the Ricci tensor in the exponential chart and |g| is the
determinant of the components of the metric g in geodesic normal coordinates. Moreover,
we point out that

I
n−2
2

n−n−4
2
ε
= I

n−2
2

n +
n− 4

2
Ĩ

n−2
2

n ε+O(ε2), and I
n
2

n−n−4
2
ε
= I

n
2
n +

n

2
Ĩ

n−2
2

n ε+O(ε2).
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Finally, using both the previous facts, we compute

1

2♯ − ε

∫
M

W 2♯−ε
λε(t),ξ

dµg

=
1

2♯ − ε

∫
M

(
χ
(
exp−1

ξ (x)
)
λε(t)

4−n
2 U

(
λε(t)

−1 exp−1
ξ (x)

))2♯−ε
dµg

=
1

2♯ − ε
λε(t)

n−4
2
ε

∫
B(0,2δ/λε(t))

(χε,t(z)U(z))
2♯−ε

√
|gε,ξ|(z) dz

=
1

2♯ − ε
λε(t)

n−4
2
ε

∫
B(0,δ/λε(t))

U(z)2
♯−ε
√
|gε,ξ|(z) dz

=
1

2♯ − ε
λε(t)

n−4
2
ε

∫
B(0,δ/λε(t))

(
αn

(
1

1 + |z|2

)n−4
2

)2♯−ε√
|gε,ξ|(z) dz

=
α2♯−ε
n

2♯ − ε
λε(t)

n−4
2
ε

∫
B(0,δ/λε(t))

(
1

1 + |z|2

)n−n−4
2
ε√

|gε,ξ|(z) dz

=
α2♯−ε
n

2♯ − ε
λε(t)

n−4
2
εωn−1

2

(
I

n−2
2

n−n−4
2
ε
− 1

6n
Scalg(ξ)I

n
2

n−n−4
2
ε
λε(t)

2 + o(λε(t)
2)

)
= λε(t)

n−4
2
ε α

2♯−ε
n

2♯ − ε

ωn−1

2

(
I

n−2
2

n +
n− 4

2
Ĩ

n−2
2

n ε− 1

6n
Scalg(ξ)I

n
2
n λε(t)

2 + o(λε(t)
2)

)
= λε(t)

n−4
2
ε (n(n− 4)(n2 − 4))

n
4
−n−4

8
ε

2♯ − ε

ωn−1

2

(
I

n−2
2

n +
n− 4

2
Ĩ

n−2
2

n ε− 1

6n
Scalg(ξ)I

n
2
n λε(t)

2 + o(λε(t)
2)

)
=

(n(n− 4)(n2 − 4))
n
4 ωn−1

2

n− 4

2n

{
I

n−2
2

n +
n− 4

2
I

n−2
2

n ε ln(λε(t))

+
n− 4

2n

(
nĨ

n−2
2

n + (1− n ln
√
n(n− 4))I

n
2
n

)
ε− 1

6n
Scalg(ξ)I

n
2
n λε(t)

2 + o(λε(t)
2)
}

=
n− 4

2n

(n(n− 4)(n2 − 4))
n
4 ωn−1

2
I

n−2
2

n

{
1 +

n− 4

2
ε ln(λε(t))

+
1

I
n−2
2

n

n− 4

2n

(
nĨ

n−2
2

n + (1− n ln
√
n(n− 4))I

n
2
n

)
ε− 1

6(n− 2)
Scalg(ξ)λε(t)

2 + o(λε(t)
2)
}

=
n− 4

2n
K

−n
4

n

{
1 +

n− 4

4
ε ln(εt) +

n− 4

2n

nĨ n−2
2

n /I
n−2
2

n +
n
(
1− n ln

√
n(n− 4)

)
n− 2

 ε

− 1

6(n− 2)
Scalg(ξ)εt+ o(ε)

}
, (9.70)

as ε→ 0, C0−uniformly with respect to ξ inM and t in compact subsets of R∗
+. Thus, (9.24)

follows by (9.7), (9.69) and (9.70).
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Proof of (ii) of Proposition 9.5:

We argue as Lemma 4.2 in [90]. Let us write:

J̃ε(t, ξ)− Jε(Wλε(t),ξ)

=

∫
M

(
Pg,B(Wλε(t),ξ)− fε(Wλε(t),ξ)

)
ϕε,λ,ξ dµg

−
∫
M

(
Fε(Wλε(t),ξ + ϕε,λ,ξ)− Fε(Wλε(t),ξ)− fε(Wλε(t),ξ)ϕε,λ,ξ

)
dµg, (9.71)

where Fε(u) =
∫ u
0
fε(v) dv. We firstly estimate the first term in the right hand side of (9.71).

By Hölder and Sobolev inequalities, we have∣∣∣∣∫
M

(
Pg,B(Wλε(t),ξ)− fε(Wλε(t),ξ)

)
ϕε,λ,ξ dµg

∣∣∣∣
≤

∣∣Pg,B(Wλε(t),ξ)− fε(Wλε(t),ξ)
∣∣

2n
n+4

|ϕε,λ,ξ|2♯

≤ C
∣∣Pg,B(Wλε(t),ξ)− fε(Wλε(t),ξ)

∣∣
2n
n+4

∥ϕε,λ,ξ∥ = o (ε) , (9.72)

because of estimates (9.51) and (9.22). Next, we estimate the second term in the right hand
side of (9.71). By the mean value theorem and Hölder inequality, it holds that∣∣∣∣∫

M

(
Fε(Wλε(t),ξ + ϕε,λ,ξ)− Fε(Wλε(t),ξ)− fε(Wλε(t),ξ)ϕε,λ,ξ

)
dµg

∣∣∣∣
≤

∫
M

W 2♯−2−ε
λε(t),ξ

ϕ2
ε,λ,ξ dµg +

∫
M

ϕ2♯−ε
ε,λ,ξ dµg

≤ C|ϕε,λ,ξ|22♯
(
|Wλε(t),ξ|2

♯−2−ε
n
4

+ |ϕε,λ,ξ|2
♯−2−ε

2♯

)
≤ C∥ϕε,λ,ξ∥2

(
|Wλε(t),ξ|2

♯−2−ε
n
4

+ ∥ϕε,λ,ξ∥2
♯−2−ε

)
= o (ε) , (9.73)

because of (9.22). The C0−uniform estimate (9.25) then follows from (9.72) and (9.73).

Now, let us show the C1−uniform estimate (9.25). From Proposition 9.4, for ε small, for any
point ξ in M and any positive real number t, there holds

DJε(Wλε(t),ξ + ϕε,λ,ξ) =
n∑
i=0

Ci
λε(t),ξ⟨Z

i
λε(t),ξ, ·⟩ (9.74)

for some real numbers C0
λε(t),ξ

, · · · , Cn
λε(t),ξ

, where the functions Zi
λε(t),ξ

are as in (9.19). First,
we claim that

n∑
i=0

|C i
λε(t),ξ| = O

(
ε3/4 if n = 7, ε| ln ε| if n ≥ 8

)
. (9.75)
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Indeed, for i, j = 0, 1, 2, · · · , n we have⟨
Zi
λε(t),ξ, Z

j
λε(t),ξ

⟩
→

{
∥Vi∥2D2,2(Rn) if i = j;

0 if i ̸= j.
(9.76)

On the other hand, from (9.74) and (9.76), for i = 0, 1, · · · , n, there holds

DJε(Wλε(t),ξ + ϕε,λ,ξ)[Z
i
λε(t),ξ] = Ci

λε(t),ξ∥Vi∥
2
D2,2(Rn) + o

(
n∑
j=0

|Cj
λε(t),ξ

|

)
. (9.77)

Let us prove that

DJε(Wλε(t),ξ + ϕε,λ,ξ)[Z
i
λε(t),ξ] = O

(
ε3/4 if n = 7, ε| ln ε| if n ≥ 8

)
. (9.78)

Estimate (9.75) will follow by (9.77) and (9.78).

Let us prove (9.78). Since, for ε small, the function ϕε,λ,ξ belongs to K⊥
ε,λ,ξ, by Hölder

inequality and Lemma 8.16 we have

DJε(Wλε(t),ξ + ϕε,λ,ξ)[Z
i
λε(t),ξ]

=

∫
M

(
Pg,B(Wλε(t),ξ)− fε(Wλε(t),ξ)

)
Zi
λε(t),ξ dµg

−
∫
M

(
fε(Wλε(t),ξ + ϕε,λ,ξ)− fε(Wλε(t),ξ)

)
Zi
λε(t),ξ dµg

= O
(∣∣Pg,B(Wλε(t),ξ)− fε(Wλε(t),ξ)

∣∣
2n
n+4

∣∣Zi
λε(t),ξ

∣∣
2♯

)
+O

(
|ϕε,λ,ξ|2♯|Zi

λε(t),ξ|2♯
(
|Wλε(t),ξ|2

♯−2−ε
n
4

+ |ϕε,λ,ξ|2
♯−2−ε

n
4

))
= O

(
ε3/4 if n = 7, ε| ln ε| if n ≥ 8

)
, (9.79)

because of (9.51) and (9.22).

Finally, let us compute the derivative of J̃ε(t, ξ). Firstly, we remark that

d(Wλε(t),ξ)

dt
=

1

2t
Z0
λε(t),ξ, (9.80)

which implies

dJ̃ε(t, ξ)

dt
−
dJε(Wλε(t),ξ)

dt

=
1

2t

{∫
M

(
Pg,B(Z

0
λε(t),ξ)− f ′

ε(Wλε(t),ξ)Z
0
λε(t),ξ

)
ϕε,λ,ξ dµg

−
∫
M

(
fε(Wλε(t),ξ + ϕε,λ,ξ)− fε(Wλε(t),ξ)− f ′

ε(Wλε(t),ξ)ϕε,λ,ξ
)
Z0
λε(t),ξ µg

}
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+DJε(Wλε(t),ξ + ϕε,λ,ξ)

[
d(ϕε,λ,ξ)

dt

]
. (9.81)

Secondly, if ξ = ξ(y) = expξ(y), y ∈ B(0, r), with ξ(0) = ξ, we have for any i = 1, 2, · · · , n
(see estimate (6.13) in [87])

∂(Wλε(t),expξ(y))

∂yi

∣∣∣
y=0

=
1

λε(t)
Zi
λε(t),ξ +Rλε(t),ξ, ∥Rλε(t),ξ∥ = O(λε(t)

2), (9.82)

which easily implies

∂J̃ε(t, expξ(y))

∂yi

∣∣∣
y=0

−
∂Jε(Wλε(t),expξ(y))

∂yi

∣∣∣
y=0

=
1

λε(t)

{∫
M

(
Pg,B(Z

i
λε(t),ξ)− f ′

ε(Wλε(t),ξ)Z
i
λε(t),ξ

)
ϕε,λ,ξ dµg

−
∫
M

(
fε(Wλε(t),ξ + ϕε,λ,ξ)− fε(Wλε(t),ξ)− f ′

ε(Wλε(t),ξ)ϕε,λ,ξ
)
Zi
λε(t),ξ µg

}
+DJε(Wλε(t),ξ + ϕε,λ,ξ)

[
∂(ϕε,λ,expξ(y))

∂yi

∣∣∣
y=0

]
+O

(
∥ϕε,λ,ξ∥ ∥Rλε(t),ξ∥

)
. (9.83)

We will estimate each term of the right hand of (9.81) and (9.83). By Hölder inequality and
(9.22), for i = 0, 1, · · · , n, we have∣∣∣∣∫

M

(
Pg,B(Z

i
λε(t),ξ)− f ′

ε(Wλε(t),ξ)Z
i
λε(t),ξ

)
ϕε,λ,ξ dµg

∣∣∣∣
≤

∣∣Pg,B(Zi
λε(t),ξ)− f ′

ε(Wλε(t),ξ)Z
i
λε(t),ξ

∣∣
2n
n+4

|ϕε,λ,ξ|2♯

= O
(
ε3/2 if n = 7, ε2| ln ε|2 if n ≥ 8

)
, (9.84)

because arguing exactly as in the proof of Lemma 9.7, we can show that for any i = 0, 1, · · · , n∣∣Pg,B(Zi
λε(t),ξ)− f ′

ε(Wλε(t),ξ)Z
i
λε(t),ξ

∣∣
2n
n+4

= O
(
ε

3
4 if n = 7, ε| ln ε| if n ≥ 8

)
(9.85)

From Lemma 9.7, by Hölder inequality and (9.22), we have∣∣∣∣∫
M

(
fε(Wλε(t),ξ + ϕε,λ,ξ)− fε(Wλε(t),ξ)− f ′

ε(Wλε(t),ξ)ϕε,λ,ξ
)
Zi
λε(t),ξ dµg

∣∣∣∣
≤


C
∫
M
W 2♯−3−ε
λε(t),ξ

ϕ2
ε,λ,ξZ

i
λε(t),ξ

dµg if n ≥ 12;

C
∫
M

[
W 2♯−3−ε
λε(t),ξ

ϕ2
ε,λ,ξ + ϕ2♯−1−ε

ε,λ,ξ

]
Zi
λε(t),ξ

dµg if 5 ≤ n < 12,

≤


C|ϕε,λ,ξ|22n

n−4

|W 2♯−3−ε
λε(t),ξ

Zi
λε(t),ξ

|n
4

if n ≥ 12;

C
(
|ϕε,λ,ξ|22n

n−4

|W 2♯−3−ε
λε(t),ξ

Zi
λε(t),ξ

|n
4
+ |ϕε,λ,ξ|2

♯−1−ε
2n
n−4

|Zi
λε(t),ξ

| 2n
n−4

)
if 5 ≤ n < 12.
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= O
(
ε2
)
, (9.86)

because |W 2♯−3−ε
λε(t),ξ

Zi
λε(t),ξ

|n
4
= O (1) .

Finally, since the function ϕε,λ,ξ belongs to K
⊥
ε,λ,ξ, from (9.74) we have

DJε(Wλε(t),ξ + ϕε,λ,ξ)

[
d(ϕε,λ,ξ)

dt

]
=

n∑
j=0

Cj
λε(t),ξ

⟨
Zj
λε(t),ξ

,
d(ϕε,λ,ξ)

dt

⟩

= −
n∑
j=0

Cj
λε(t),ξ

⟨
d(Zj

λε(t),ξ
)

dt
, ϕε,λ,ξ

⟩
, (9.87)

and for i = 1, 2, · · · , n

DJε(Wλε(t),ξ + ϕε,λ,ξ)

[
∂(ϕε,λ,expξ(y))

∂yi

∣∣∣
y=0

]
=

n∑
j=0

Cj
λε(t),ξ

⟨
Zj
λε(t),ξ

,
∂(ϕε,λ,expξ(y))

∂yi

∣∣∣
y=0

⟩

= −
n∑
j=0

Cj
λε(t),ξ

⟨
∂(Zj

λε(t),ξ
)

∂yi

∣∣∣
y=0

, ϕε,λ,ξ

⟩
.(9.88)

It is easy to check that∥∥∥∥∥d(Z
j
λε(t),ξ

)

dt

∥∥∥∥∥→ 1

2t

∥∥∥∥∥∥
d
(
λ

4−n
4 Vj(λ

−1y)
)

dλ

∣∣∣
λ=1

∥∥∥∥∥∥ = O(1), (9.89)

and ∥∥∥∥∥∂(Z
j
λε(t),ξ

)

∂yi

∣∣∣
y=0

∥∥∥∥∥→ 1

λε(t)

∥∥∥∥∂Vj∂yi

∥∥∥∥ = O

(
1

λε(t)

)
(9.90)

By (9.87) (9.89), (9.22) and (9.75), we get

DJε(Wλε(t),ξ + ϕε,λ,ξ)

[
d(ϕε,λ,ξ)

dt

]
= O

(
∥ϕε,λ,ξ∥

n∑
j=0

|Cj
λε(t),ξ

|

)
= O

(
ε3/2 if n = 7, ε2| ln ε|2 if n ≥ 8

)
, (9.91)

and by (9.88),(9.90), (9.22) and (9.75) we get

DJε(Wλε(t),ξ + ϕε,λ,ξ)

[
∂(ϕε,λ,expξ(y))

∂yi

∣∣∣
y=0

]
= O


∥ϕε,λ,ξ∥

n∑
j=0

|Cj
λε(t),ξ

|

λε(t)


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= O
(
ε if n = 7, ε5/2| ln ε|2 if n ≥ 8

)
.(9.92)

By (9.22) and (9.82) we get

O
(
∥ϕε,λ,ξ∥ ∥Rλε(t),ξ∥

)
= o (ε) . (9.93)

Finally, collecting all the estimates (9.81), (9.83), (9.84), (9.86), (9.91), (9.92) and (9.93) we
get the C1−uniform estimate (9.25).

That concludes the proof.

Proof of (iii) of Proposition 9.5: We argue exactly as in [90], see also the proof of Lemma
8.9 in chapter eight.
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