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Resumen

Hay dos partes en mi tesis. La primera parte se dedica principalmente a la construccion
de soluciones burbujeantes de algunos problemas elipticos con no linealidad exponencial en
R2. En la segunda parte se considera la existencia de soluciones de punta para ecuaciones
elipticas en variedades de Riemann.

En la primera parte, utilizamos el método de reduccion de Lyapunov-Schmidt para obtener
la existencia de soluciones burbujeantes en el problema de contorno Dirichlet

Au+ P~ te =0, u>0  en O
u=>0 en 052,

donde € es un dominio suave en R%, A > 0 pequeiio. Se estudia el problema para 0 < p < 2
en dominios acotados y para p = 1 en dominios no acotados.

A continuacién, se considera la existencia de solucions con concentracién mixta en el interior
y la frontra para el siguiente problema de Neumann
— p

—Au+u= Pt u>0 enQ;

Ju — () en Of)

ov Il ’
donde Q es un dominio suave en R, X > 0 es un pardmetro pequeiio, 0 < p < 2, y v denota
el vector normal exterior a 0f).

Ademas, construimos las soluciones burbujeantes para el siguiente problema de Neumann
—Au+u=0 en {2,
{ % = P~ te?” en 012,
donde v es el vector normal exterior de 92, A > 0 es un parametro pequeno y 0 < p < 2.

Por tdltimo, se estudia la existencia de puntos criticos para el funcional de traza de Trudinger-
Moser.

En la segunda parte, se considera la existencia de soluciones de punta para ecuaciones elipticas
en variedades de Riemann compactas.



Abstract

There are two parts in my thesis. One is mainly devoted to construct bubbling solutions to
some elliptic problems with exponential nonlinearity in R%. The other one is to consider the
existence of peak solutions for elliptic equations on Riemannian manifolds.

In the first part, using Lyapunov-Schmidt reduction we get the existence of bubbling solutions
to the Dirichlet boundary value problem

Au+ P e =0, w>0  in
u=0 on 0f),

where 2 is a smooth domain in R?, A > 0 small. We study this problem in a bounded domain
for 0 < p < 2 and in an unbounded domain for p = 1.

Next, we consider the existence of mixed interior and boundary bubbling solutions for the
following Neumann problem

—Au+u=P"te, u>0 in

g—“ =0 on 02,
14

where  is a smooth domain in R?, A\ > 0 is a small parameter, 0 < p < 2, and v denotes

the outer normal vector to 0f2.

Moreover, we construct the bubbling solutions to the following Neumann problem
{ —Au+u=0 in €;

Gu — \ur~te”” on 01,
1%

where v is the outer normal vector of 92, A > 0 is a small parameter and 0 < p < 2.

Last, we study the existence of critical points for the super critical Trudinger-Moser trace
functional.

In the second part, we consider the existence of peak solutions for elliptic equations on
compact Riemannian manifolds.
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Chapter 1

Introduction

This thesis consists of two parts. One is mainly devoted to construct bubbling solutions to
some elliptic equations in R? with exponential nonlinearity. The other one is to consider the
existence of peak solutions to some elliptic equations on compact Riemannian manifold.

1.1 Dirichlet Problem in R?
Consider the following boundary value problem

(1.1)

Au+ P e =0, u>0  in
u=>0 on 0f),

where  is a bounded domain in R? with smooth boundary, A > 0 is a small parameter and
0 < p < 2. This problem is the Euler-Lagrange equation for the functional

1 A v
S (u) = §/Q|Vu|2 — ]—Q/Qe” . u€ Hy(Q), (1.2)

which is well defined. Because for a planar domain €2, the analogue of the Sobolev embedding
2N
H}(Q2) — L¥-2(Q) in dimensions greater than 3, is the Orlicz space embedding

HYQ) 3 ur— e e L3(Q) Vs> 1,

which is connected to the critical Trudinger-Moser inequality [94]

() :sup{/ﬂew J e HYQ), /Q|Vu|2 - 1} < too.



CHAPTER 1. INTRODUCTION

If p =1, the problem (1.1) becomes
{Au—i—)\e“:O, in €2;

1.3
u=>0 on 0, (1.3)

which can be called the Liouville equation after [78]. This kind of problem with exponential
nonlinearity appears in many fields of mathematics, such as the study of prescribed Gaussian
curvature on a compact Riemannian surface, Chern-Simons gauge theories, the vortex theory
for the turbulent Euler flow, and so on, and it has attracted many authors for more than
decades.

There are many results about the asymptotic behavior and existence of solution to (1.3).

Proposition 1.1. (Asymptotic Analysis of solutions to (1.3): Nagasaki-Suzuki [95])
Let uy, be an unbounded family of solutions to (1.3). Then as A — 0, )\fQ e accumulates to
only values 8km for k € {0} UNU{+oo}. According to these cases the solutions {uy} behave
as follows

(Z) ]fk’ = O, then ||u>\||Loo(Q) — O,'

(11) If k € N, then there exists k—point blow up, i.e. there are k distinct points §;, j =
1,--+ ,k, in Q, separated uniformly from each other and from he boundary OS2, such that, as
A — 0, uy peaks to infinity in each one of them, and remains bounded away from them, that

k
is, the solutions uy to problem (1.3) remain uniformly bounded on Q\ |J Bs(§;) and
j=1

sup uy — 400, as A — 0,
Bs (&)

for any 6 > 0.

(iii) If k = +oo, then uy(x) — +oo for all x € Q.
Moreover, in the case (ii), we have

k
ux(r) = > Galx,&) in CrON{&, - &}) as A —0,
k=1

where the location of the blow-up points &1, -+ -, & is such that, after passing to a subsequence,
converges to a critical point of the function

k
oe(€ - &) =D Hol6,&) + Y Gal&, &), (1.4)
j=1 i
where Gq(x,y) is the standard Green’s function of the problem
{ —A,Ga(x,y) = 8nd,(x), x e (L5)
Ga(z,y) =0, x € 0f),
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and Hgq(-,-) its reqular part defined as

Ho(z,y) = Ga(r,y) — 4log (1.6)

lz —y|

For the proof, the authors in [95] used complex function theory, more precisely, a representa-
tion formula of solutions to (1.3), called the Liouville integral formula was a key ingredient.
For the other proof of Proposition 1.5 by using real analysis and PDE theory, see H. Brezis
and F. Merle [15], Y. Y. Li and I. Shafrir [71], L. Ma and J. Wei [83].

Conversely, many authors constructed blow-up solutions to problem (1.3) with property

lim)\/ e"r = 8k. (1.7)
Q

A—0
In order to state the existence of bubbling solutions to (1.3). Let us recall some definitions.

Definition 1.2. (/6] [69]) Let D C RN and f € C*(D,R). A bounded set K is called
Cl—stable critical set of f provided for all o > 0 there exists § > 0 such that if g € C*(D,R)
with the property that

max _(|g(z) — f(2)] + [Vg(z) = Vf(2)]) <0,

dist(z,K)<o
then g has at least one critical point x with dist(x, K) < o.

Remark 1.3. It is known that a bounded subset K of critical point of f is stable critical set
if one of the following conditions is satisfied:

(i) K is a strict local minimum set of f, namely, f(x) = f(y) for any z,y € K, and for
some open neighborhood O of K, f(x) < f(y) for allz € K,y € O\K;

(ii) K is a strict local mazimum set of f;

(iii) If the Brower degree deg(V f,0,0) # 0 for any € > 0 small, where O is an neighbor-
hood of K.

Definition 1.4. (M. del Pino, M. Kowalczyk, M. Musso [36])We say that ¢y, links in D at
critical level C relative to B and By if B and By are closed subsets of D with B connected
and By C B such that the following conditions hold: Let us set I' to be the class of the maps
® € C(B, D) with the property that there exists a function ¥ € C([0,1] x B, D) such that

U(0,:)=1Idg, Y(1,)=®, V(t )|, =Idg, forVvte[0,1].
We assume

sup ¢ (§) < € := inf sup px(P(£)), (1.8)

£€By oel’ £eB

3



CHAPTER 1. INTRODUCTION

and for all & € OD such that vi(§) = C, there exists a vector T tangent to OD at & such that

Ver() -7 # 0. (1.9)

Under these conditions a critical point & € D with ¢(€) = C exists, as a standard deformation
argument involving the negative gradient flow of ¢y, shows. Condition (1.8) is a general way
of describing a change of topology in the level sets {¢r < c} in D taking place at ¢ = C, while
(1.9) prevents intersection of the level set C with the boundary. It is easy to check that the
above conditions hold if

glggsok(ﬁ) < 516%%%(5), or zlelgsok(@ > {S;I;%(&%

namely the case of (possibly degenerate) local minimum or mazximum points of ¢r. The level
C may be taken in these cases respectively as that of the minimum and the maximum of i
in D. These hold also if oy, is C1—close to a function with a non-degenerate critical point in
D. We call C a non-trivial critical level of py in D.

Proposition 1.5. (Existence of bubbling solutions to (1.3)) Let ¢y, be defined by (1.4).
There exists a solution uy to (1.3) such that uy blows up on points &1, ..., &, provided one
of the following conditions

(i) ox has a nondegenerate critical point (&1, ...,&) (S. Baraker and F. Pacard [10]), or,
(i) there exists a stable set K for py (P. Esposito, M. Grossi, A. Pistoia [46]), or

(7ii) @r has a topologically non trivial critical value if Q is not simply connected (M. del
Pino, M. Kowalczyk, M. Musso [30]).

If p =2, problem (1.1) becomes

Au+ e =0, u>0 in ;
(1.10)

u =0 on 0f2.

This problem is the Euler-Lagrange equation for the functional J (see (1.2)). Construction
of bubbling solutions for problem (1.10) is somehow different from the case p = 1. This has
been treated in [39]. In order to state this result, let us introduce the following function of k&
distinct points &;,--- , & € € and k positive numbers my, - - -, my,

k k k
or2(§,m) = aZm? +2 me log m? + Zm?HQ(fj,ﬁj) + Zmim]’GQ(fi7£j), (1.11)
=1 i=1 i=1 i#j
where a > 0 is an absolute constant, and Gg(z,y) is the Green’s function and Hg(-,-) its

regular part defined by (1.5) and (1.6) respectively. The authors in [39] established that,
if @2 has a topologically non trivial critical value (see Definition 1.4), with corresponding

4
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critical point (&1, ..., &, m,...mg) € Q¥ x RE | then there exists a solution uy of (1.10) with
the shape
k
uy(z) = VA ijGQ(m,ﬁj) +o(l)|, as A—0, (1.12)
j=1
where o(1) — 0 as A — 0 uniformly on compact sets of 2\ {&1,...,&}. Furthermore,

Ji(uy) = 2k + a) + 47 dgp2(€,m) + Ao(1)

where « is an absolute constant, ¢y » is defined in (1.11) and o(1) — 0 as A — 0. In particular,
in the case €2 is not simply connected they constructed the solution uy of (1.10), with two
bubbling points, namely satisfying

2
up(z) = VA ijGQ(x,fj) +o(l)|, as A—0,
j=1

where (my,ma,&1,&) is a critical point of ¢y9 defined in (1.11), and o(1) — 0 as A — 0
uniformly on compact sets of €.

A natural problem is: what does happen to problem (1.1) for p between 1 and 27

We will consider this in Chapter two. In fact, we can get the results for p in all region, that
is, p € (0,2). Let k be an integer, and define

M={(&,-,&) €QF + dist(&,00) >4, |&—&| >0 fori#j)

for some 9 > 0. Let ¢ > 0 be a parameter, which depends on A, defined as

2(p—1)
4 p 2(p—2)
PA (——logs) e r» =1 (1.13)
p
Observe that, as A — 0, then ¢ — 0, and A = €2 if p = 1. We obtain the following result.

Theorem 1.6. Let 0 < p < 2 and k an integer with k > 1. If Q is not simply connected, then
there exists A\g > 0 so that, for any 0 < A < Ag problem (1.1) has a solution uy. Moreover

2(2—p) P
lime™ » /e“A = 8k, (1.14)
Q

A—0

where € satisfies (1.13). Furthermore, there exists a k—tuple £* = (&,--+ ,&)) € M such
that as A — 0

and

k
urn(@) =p 2 VAT (Z Go(z,&)) + 0(1)) (1.15)

b}
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where i defined as (1.4), Ga(-,-) given by (1.5), and o(1) — 0, as A — 0, uniformly on
each compact subset of Q\{&}, -+ , &)}, Furthermore

2(p—2) 8k 16k 4dr
J¥(up) = Xe » o= [—2 + plog 8] — loga—Q_p

where O(1) uniformly bounded as A — 0.

(€ +o<|1oga|—1>]
(1.16)

In [10, 36, 46], the authors considered the existence of bubbling solution to (1.3) in a smooth
bounded domain in R?. In particular, the authors in [36] obtained that there exists a solution
to (1.3) provided Q is not simply connected and bounded domain in R?.

In Chapter three, we consider the existence of bubbling solution to (1.3) in an open, connected
and unbounded domain in R?. We define the domain as follows.

Let ¢ : R — [1,+00) be a smooth function, satisfying

(a) p(0) =1, 19 (x1) > 0 for x; # 0;

(b) ¢p(x1) = +00 as x; — +oo, and

(c) ¢'(x1) = a>0as x; — 400, and ¢'(x1) = b <0 as ;1 — —o0.
Define

Q={z=(r1,22) : |x2| < p(x1)} (1.17)

&Iy

We observe that {2 is symmetric with respect to line zo = 0, and has two open directions.
Moreover, the domain is not necessary symmetric with respect to x; = 0. We would like to

6
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construct bubbling solutions to problem (1.3) in the domain €2, with the location of blow-up
points on the symmetry line of (2.

Let 0 > 0 small but fixed. Let k£ > 1 be an integer. Given k different points on the symmetry
line of (2, we write these points as

& =(t,0), j=1,...,k, (1.18)
with t; <ty < ... < 1, satisfies

ti+1—ti>(5, 221,2,,]{7—1 (119)

We have the following result.

Theorem 1.7. Let Q2 be an open, connected and unbounded domain of R? defined by (1.17),
let k > 1 be an integer. For A > 0 small enough, problem (1.3) has at least one solution uy,
which blow-up at k points &, ..., & defined as (1.18), & = (t5,0) and ¢(§*) = max p(§)
with ¢y defined by (1.4). Moreover,

k

ur(z) =Y Galw;€) +o(1) (1.20)

J=1

where o(1) — 0, as A — 0, on each compact subset of Q\{&5, ..., &}, and Go(+;-) is the
Green’s function in Q0 with Dirchlet boundary condition, defined by (1.5).

1.2 Neumann problem in R?

Consider the following boundary value problem

—Au+u=uP""te”, u>0, in Q;
(1.21)

% =0, on 0,

which is equivalent to the stationary Keller-Segel system from chemotaxis, where 2 is a
bounded domain in R? with smooth boundary, A > 0 is a small parameter, 0 < p < 2, and v
denotes the outer normal vector to 9€). This problem is the Euler-Lagrange equation for the
functional

I{(u) = %/Q(]VU\Q + u?) — I—))\/Qe“p, u€ H'Y(Q). (1.22)

If p = 1, Senba-Suzuki, in [109, 110], have analyzed the asymptotic behavior of solutions to
problem (1.21). The blow-up for u takes place as a finite sum of Dirac measures at points
with masses 87 or 47, respectively, depending on whether they are located inside the domain

7
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or at the boundary. More precisely, if uy is a family of solutions to problem (1.21) when
p = 1, then there exist non-negative integers k,[ > 1, such that

lim )\/ e =An(2k +1). (1.23)
Q

A—0

Let m = k + 1. Up to subsequences, there exist points §;, 7 =1,...,m with {; € Q for j <k
and & € 0N2 for k < j < m, for which

k m
x) — Z8Wé(x,fj) + Z 4nG(x,&5), as A — 0, (1.24)

j=k+1

uniformly on compact subset of Q\{&1,...,&,}. Moreover, the m—tuple (&1, ...,&,) can be
characterized as critical point of a functional defined on QF x (9Q)!, given by

Pml(€) = GmEr,- - Em) = j{j H(,6) + ) agG&.6), (1.25)
J=1 I#j

where
c;=8m for j=1,...,k, and c¢;j=4r for j=k+1,...,m,

and G(z,y) is the Green’s function of the problem

—0,G(x,y) + G(x,y) = 5, (), in ©;
. (1.26)
—6(;’3/) =0, on 09,
and H(-,-) its regular part, namely,
. G(z,y) + £ log |z —y, if y €
H(z,y) = o) o -l . (1.27)
G(z,y) + +log |z —yl, if y € 0.

Conversely, del Pino-Wei, in [41], constructed bubbling solutions u, to problem (1.21) when
p = 1 with the above properties (1.23) and (1.24). Moreover, the location of the bubbling
points corresponds to critical points of the function ¢,, defined by (1.25).

Question: Does exist blow-up solutions to (1.21) for p between 0 and 2, such that that
solution blow-up inside the domain and on the boundary?

In Chapter four, we will give a positive answer fot this. Namely, we construct bubbling
solutions to problem (1.21) with bubbling profiles at points inside 2 and on the boundary of
Q2 when p is between 0 and 2. In particular, we recover the result in [41] when p = 1.
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Theorem 1.8. Let 0 < p < 2, and k,l,m > 1 be integers with m = k + (. There exists
Xo > 0 so that, for any 0 < X\ < Ao, problem (1.21) has a solution uy, with the following
properties:

(1) ux has m local mazimum points 5, j = 1,...,m such that §§ € 2 for 1 < j <k, and
§ €0 for k+1<j<m. Furthermore

lm G, (65, ..., €5) = min G,
lim @ (&7, - ) llin &

where @, is defined by (1.25). In particular
(2) One has
o k ~ m ~
ur(r) =p Ve r [Z 8nG(x,&5) + Z 4rG(z,&;) +o(1) (1.28)
j=1 j=k+1

where ¢ satisfies (1.13), and o(1) = 0, as A — 0, on each compact subset of O\{&},..., &5},
and G(-,-) is the Green’s function given in (1.26).

(3) Moreover

lime 7" / e’y = 47 (2k +1). (1.29)
Furthermore
2(p—2) 2—plog8 8w 1 _
F(uy)=Xe » {—47r 2k + 1) ———2— — —(2k+1Dloge — ————— 0, (£%) + O(|loge| ™! }
) (2 +1) 52— Lk 4 1) log e — s (€) + O] ogel )
(1.30)
where O(1) uniformly bounded as A — 0.
Consider the following Neumann boundary value problem
—Au+u=0 in ;
] (1.31)
Gu — \up~tet on 0f),

where € is a bounded domain in R? with smooth boundary, v is the outer normal vector of
0, A > 0 is a small parameter and 0 < p < 2. This problem is the Euler-Lagrange equation
for the functional J3 , : H'(2) — R defined as

1 AN
72 () :§/Q(|Vu|2—|—u2) —;/896 |
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In [27], Dévila-del Pino-Musso have analyzed the asymptotic behavior of solution to problem
(1.31) when p = 1. Namely, they considered the following problem

(1.32)

Qu — \eu on ON).

{—Au+u:0 in Q;
ov

Suppose that wuy is a family solution of (1.32), with the property A faQ e“* bounded, then
there is an integer £ > 1, up to subsequences, such that

lim A / e = k. (1.33)
[2)9]

A—0

Moreover, there are k distinct points &;, j = 1,..., k, on the boundary of €2, such that Ae"*
approaches the sum of k Dirac masses at these points §;. The location of points can be
characterized as critical points of a functional of k points of the boundary given by

ong(rs e, &k) = — [Z Hy(&,6)+ > Gn(&.8)| (1.34)

j=1 1]

where Gn(x,y) is Green’s function of the problem

—AIGN(-T,@/)‘FGN(CE,Q):O $€Q,
0Cn () (1.35)
v, 27T(5y(l’) WS 89,

and Hy its regular part

lz —y|

The authors in [27] also described the existence of solution with above properties. More
precisely, if 02 has more than one component, they showed that the function ¢ has topolog-
ically nontrivial critical point (&y,...,&), then there is a family solution to problem (1.32)
with peaks at these points.

In chapter five, we will consider the existence of solution to (1.31) when 0 < p < 2. Let ¢ be
a parameter, which depends on A, satisfies,

2(p—1)
2 P p—2
PA (——logs) er =1 (1.37)
p
Observe that, as A — 0, then ¢ — 0, and ¢ = X if p = 1. We have

Theorem 1.9. For 0 < p < 2, let k > 1, assume that @y defined by (1.34) has a C°-stable
critical point & = (&5,...,&) € (OQ)* with

& =&l >0, Jor 1 #],
10
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for some small but fized number § > 0. Then the problem (1.31) has a family solutions w,
for A small enough, such that

lim gzpp/ e = 2k, (1.38)
where € satisfies (1.37). Moreover, for A — 0
VQON,k(€T7 s 752) = 07

and
k

> G +o(1)

]:

where o(1) — 0 on each compact subset of QO\{&5,..., &}, Gn(+,+) defined by (1.35). Fur-

thermore

uy(x) = Ne' (1.39)

p—2 2k 2k 1
Jua(ur) = Ae b {—TW TWlog +

Qip%(ﬁ)JrO(\lOgell)} (1.40)

where O(1) uniformly bounded as X — 0.

If p =2, problem (1.31) becomes
{ —Au+u=0 in €;

] 1.41
9 — \yet on 0, ( )

For functions v € H'(Q), due to the Trudinger trace embedding (in the sense of Orlicz
spaces) [103, 114]
HY Q)3 ur—s e € L3(0Q) Vs> 1.

This optimal embedding is related to the critical Trudinger-Moser trace inequality

0 () :sup{/mem2 /e HY(Q), /Q[\Vu|2+u2] — 1} < +00,

[74]. Tt has been proven [124] that for any bounded domain €2 in R?, with smooth boundary,
the supremum C(12) is attained by a function v € H'(Q) with [,[|[Vu[? +u*] = 1. Further-
more, for any « € (0,7), the supremum C,(€2) is finite and it is attained, while C,(2) = oo
as soon as « > 7. See also [24, 72, 73, 75| for generalizations.

In Chapter six, we construct bubbling solutions to problem (1.41). To state our result, let us
introduce the following function @, : (9Q)*x (R*)k — R, p,.(&,m) = or(&1, ..o &y a, ..., T)
defined by

?(&,m) =2(log2 — 1) Zm +2Zm log(m Zm Hy(&,6) =Y mim;Gu (4. &),
i#j
(1.42)
where G is the Green function for the Neumann problem defined by (1.35).

11
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Theorem 1.10. Let 2 be a bounded domain in R? with smooth boundary and let k > 1 be
an integer. Then, for all small X > 0 there exists a pair solution u}, u3 of problem (1.41)

such that
1

4 A ek |
[P+ ) =3 [ e = o) i=12

where o(1) — 0 as A\ — 0. Moreover, for any i = 1,2, passing to a subsequence, there exists
(& m") = (&, .., & mi,...,my) € (0Q)F x (RY)*, with £ # €, such that Vg, (§',m") =0
and

ur(z) = VA (Zm;GN(x,g;‘.) + 0(1)> (1.43)

where o(1) — 0 on each compact subset of Q\ {&, ... €L}

In Chapter seven, we study the existence of critical points of the Trudinger-Moser trace
functional

Ea(u) = /em g (1.44)

constrained to functions
ue M:= {u € H'Y(Q) : ||uH2 = 1} (1.45)
in the super critical regime
o> .

We will get the following results.

Theorem 1.11. Let Q be a bounded domain in R?. Then there exists oy > 7, such that for
any a € (0, ap), there exists a function u, € M which locally mazimizes of E, on M.

Moreover, we will show the existence of critical points for F, constrained to M, for a €
(km,ay), for any k > 1 integer and for some a4 slightly to the right of k.

Theorem 1.12. Let Q be any bounded domain in R? with smooth boundary. Fiz a positive
integer k > 1. Then there exists oy, > km such that for o € (km, ), the functional E.(u)
restricted to M has at least two critical points ul, and u2. Furthermore, for anyi = 1,2 there
exist numbers m} , > 0 and points £, € IQ, for j=1,...,k such that

O{li}lr]gr m ., =m} € (0,00), (1.46)
€, with &+4& for j#1, as a—kn (1.47)
and
. a—kr , .
ul (z) = - ; [m} ,Gn(x, &) +0(1)], i=1,2, (1.48)

12



CHAPTER 1. INTRODUCTION

where o(1) — 0 uniformly on compact sets of Q\{&%,... &L}, as a — km. Moreover, for any
i1 =1,2, for any 6 > 0 small, for any j=1,...,k,

sup v’ (z) = +oo, as a—km. (1.49)
xeB(g;i,é)

1.3 Elliptic equations on Riemannian manifolds

Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3. In Chapter
seven, we are concerned with the following asymptotically critical elliptic problem

Aju+a(zu=uv?*"1°  u>0 in M, (1.50)

where A, = —div,(V) is the Laplace-Beltrami operator on M, a(z) is a C' function on M,
2% = % denotes the Sobolev critical exponent, € is a small real parameter such that € goes
to 0.

Recently, nonlinear elliptic equations on compact Riemannian manifold have been brought
much attention. Consider the following problem

eEAju+u=uf?u in M, (1.51)

where (M, g) is a compact, connected, Riemannian manifold of class C*° with Riemannian
metric g, dimM =n > 3, 2 < p < 2* and ¢ is a positive parameter. In [17], the authors
proved that the problem (1.51) has a mountain pass solution u. which exhibits a spike layer.
In particular, they proved that the maximum point of u. converges to a maximum point
of the scalar curvature Scal, as € goes to zero. Multiple solutions were obtained in [12] for
the problem (1.51), the authors showed that multiplicity of solutions to (1.51) depends on
the topological properties of the manifold M. More precisely, they showed that problem
(1.51) has at least cat(M) + 1 nontrivial solutions provided ¢ is small enough. Here cat(M)
denotes the Lusternik-Schnirelmann category of M. While for zero mass case, similar result
was obtained in [117]. And in [65] the author constructed an interesting example of two
manifolds having the same topology, for which the number of solutions to the problem (1.51)
is different.

In [87] the authors showed that for any stable critical point of the scalar curvature it is
possible to construct a single peak solution, whose peak approaches such a point as € goes
to zero. In [26] the authors proved that for any fixed positive integer k, problem (1.51) has
a k—peak solution, whose peaks collapse, as € goes to zero, to an isolated local minimum
point of the scalar curvature. Recently in [89] the authors proved that the existence of
positive or sign changing multi-peak solutions of (1.51), whose both positive and negative
peaks approach different stable critical points of the scalar curvature as € goes to zero.

13
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The asymptotically critical case on Riemannian manifold in [90] the authors proved problem
(1.50) exists blowing-up families of positive solutions provide the graph of a(z) is distinct at
some point from the graph of 4(71L—_721)Scalg.

If a = ﬁSC&Ig, problem (1.50) is the intensively studied Yamabe problem

n — 2 *
——Scal,ju=v*"1"° in M «u>0in M 1.52
4(77, _ 1) g9 ) ( )
is just the so called prescribed scalar curvature problem with ¢ = 0. The existence of
a conformal metric with constant scalar curvature on compact Riemannian manifolds was

studied by Yamabe [116], Trudinger [115], Aubin [8] and Schoen [108]. If u is a solution, then
dn=1) 1
—

Agu +

- is the scalar curvature of the conformal metric § = u»-2g. On the compact manifold
(M, g), the coercivity of the operator A, + a is a necessary condition for the existence of a
solution to problem (1.52). In [43] the author consider (1.13) with ¢ > 0, for any smooth,
compact Riemannian manifold of dimensional n > 3 and any smooth function a on M such
that Ay + a is coercive and a(§) < At(’;—__lQ)Scalg(g), then (1.50) exists a solution.

In order to state our main result, it is useful to recall some definitions and results. First, Let
us introduce the definition of C' stable critical set.

Definition 1.13. (/69]) Let f € CY(M,R), for any given integer k > 2, set & = (&1, &, , &),
let Cy,Co,--- ,Cyx C M be k mutually disjoint closed subsets of critical points of f, we say
k

that (Cy,Cy, - ,Cy) C MF is a C! stable critical set of function F(E) := > f(&), if for
j=1
any o > 0 there exists v > 0 such that if ® € Ct(MF*, R) with
max __ (|F(€) = @(&)| + [V, F(€) = V42(6)]) <,

dg(&;,C5)<0,1<j<k
then ® has at least one critical point & in M* with d, (¢;,C;) < o.
Next, we introduce the following equation which correspond to limiting equation to problem
(1.50).
AU =U*"" in R (1.53)

where A = —div(V) is the Laplace-Beltrami operator associated with the Euclidean metric.
It is known that [8, 115] the functions A@=/2U(\~12) satisfy equation (1.53), where

(n—2)/2
U(z) = U(J2)) = (M> | (154)

L+ [2[?

Let us define a smooth cut-off function y, satisfies

| it ze B(0,L);
xr(2):=4¢ €(0,1) if ze B(0,7)\B(0,5); (1.55)
0 if zeR"\B(0,r),

14
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and |V, (2)] < 2, |V?x,(2)] < %. For any point £ in M and for any positive real number

—

A, we define the function W) on M by

_ I x (expgl(x)) AU ()Flexpgl(a:)) if € By(&,r); 1
Waela) - { 0 otherwise. (1.56)

We assume that the operator A, + a is coercive, we can provide the Hilbert space H, ; (M)
with the inner product

(u,v), :/ ((Vu, V), + a(x)uv) dpg,
M
which induces the norm

Jul2 = /M (IVuf* + a@)e®) du,.

Let
n—1

(&) = a(§) - mscalg(ﬁ)- (1.57)

In Chapter eight, we construct a family of solutions of equation (1.50), whose peaks approach
different stable critical points of () with & small enough, which blow-up and concentrate
at some points in M, in the sense of the following definition.

Definition 1.14. For k > 2 be a positive integer, let u. be a family of solution of (1.50),
we say that u. blow-up and concentrates at point & = (&),-- &) € M if there exist
&= (&, ,&) e MF and (M\i(e), -+, M\(€)) € (RT)® with \j(g) > 0 such that

f§—>§?, Aj(e) >0 as e—=0 for j=1,2,--- k.

and
k

D BAUVER:

j=1

—0 as e—0.

Our main result is the following.

Theorem 1.15. Let (M, g) be a smooth compact Riemannian manifold of dimension n > 6,
let a(x) be a C* positive function on M such that the operator A, + a is coercive, and for
any given integer k > 2, set £ = (&9, &1), let £ be an isolated critical point of ¢(&;) with
deg(V 1, By( ?, 0),0) # 0 for some o >0 and j =1,--- ,k, we have

(i) If w(ﬁg) > 0 and ¢ is small enough, there exists a family of solutions of the subcritical
problem, which blow-up and concentrates at &Y.

(i1) If@b(ﬁ?) < 0 and € 1s small enough, there exists a family of solutions of the supercritical
problem, which blow-up and concentrates at V.
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In Chapter nine, Let (M, g) be a smooth, compact Riemannian manifold of dimension n > 7.
We consider the Paneitz-Branson type equation

AZu — divy (Adu) + au = ]u\zu’%gu, in M,

where A, = —div,V is the Laplace-Beltrami operator, A is a smooth symmetrical (2,0)-
tensor fields, a is a smooth function on M, 2% = % is the critical exponent for the Sobolev

embedding and ¢ is a small positive parameter.

In 1983 Paneitz [102] introduced a conformally fourth order operator defined on 4-dimensional
Riemannian manifolds. Branson [14] generalized the definition to n—dimensional Riemannian
manifolds.

We let (M, g) be a smooth compact Riemannian manifold of dimension n > 5. We also let
HZ(M) be the Sobolev space consisting of functions in L?(M) with two derivatives in L*(M).
We consider the geometric Paneitz equation

Plu = u|* 2w in M. (1.58)

Here 2¢ = % is the critical exponent for the Sobolev embedding, P is the Paneitz-Branson
operator which is given by

-4
Plu= Af]u — div, (Aydu) + nTqu (1.59)
where Ay = —div,V is the Laplace-Beltrami operator, @), is the Q—curvature of g, A, is the
smooth symmetrical (2,0)—tensor field

 (n-22+4 . 4
Ag_Q(n—l)(n—Q)Sgg n—Qch’ (1.60)

where Rc, and S, are respectively the Ricci curvature and the Scalar curvature of g.

The Paneitz operator is conformally invariant in the sense that if § = gzﬁﬁ g is conformal
to g then Plu = ¢—Zi41 P}(¢u) for any u € C*°(M). From the viewpoint of conformal
geometry equation (1.58) turns out to be the natural fourth order analogue of the second
order Yamabe problem. That is why we are led to study extensions to this operator of some

classical problems.

Using a terminology introduced by Hebey, we refer to a Paneitz-Branson type operator with
general coefficients as an operator of the form

Pyu = AZu — divy (Adu) + au (1.61)

where A € A5 (M) is a smooth symmetric (2, 0)—tensor field and a € C*°(M) and we refer
to Paneitz-Branson type operator with constant coefficients as an operator of the form

Pyu = Aiu + bAu + cu (1.62)
16
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where b and ¢ are real numbers.

The Paneitz-Branson operator (1.59) is as in (1.61) whatever (M, g) is. In particular, when
(M, g) is Einstein, i.e. Rey, = Ag for some A € R, the Paneitz-Branson operator (1.59) has

constant coefficients as in (1.62) with b = ";@2[54)\ and ¢ = %AZ.

Equation
Pyu = AZu + bAgu + cu = ]u\Qﬁ_Qu in M, (1.63)

when P, is a Paneitz-Branson type operator with constant coefficients as in (1.62), was widely
studied. Examples of compact manifolds including locally conformally flat manifold for which
equations (1.63) have non constant solutions are in [42, 51]. Compactness of problem (1.63)
was studied in [61, 62, 63, 64]. Recently, in [63] Hebey and Robert also studied the stability
of problem (1.63). They introduce the following definition of stability. Equation (1.63) is
said to be stable if for any sequences (b, ), and (cq)q of real numbers converging to b and ¢
and for any sequence (u, ), of solutions to

2 2t 2 :
Afta + ba Ayt + Colla = [ua|” “us in M,

bounded in H3(M), there holds that, up to a subsequence, u, — u in C*(M) where u is
a smooth solution of (1.63). In other words, problem (1.63) is stable if arbitrary bounded
sequences in H3 (M) of solutions of equations close to (1.63) do not blow up in one or more
points of the manifold. In particular, they prove that if (M, g) is locally conformally flat
and the Paneitz-Branson type operator is coercive then problem (1.63) is stable provided
b # %T'r’gAg ifn>9%o0orn="7and b < %TrgAg if n = 8. Here and in what follows, if A
denotes a smooth (2,0)—tensor field, we let TryA = g" A;; be the trace of A with respect to
g. It is easily seen that if A, is defined in (1.60) then

n*—-2n—4

Tr,A, = : 1.64
Tgfg 2(n—1) 7 ( )

As far as we know, a few results are known about problem
Pyu = Alu — divy (Adu) + au = lu|* "%y in M, (1.65)

when P, is a Paneitz-Branson type operator with general coefficients as in (1.61). In [50]
among other existence results, Esposito and Robert proved that problem (1.65) when n > 8
has a non constant solution provided miny, T'ry(A — A,y) < 0. In [108] Sandeep proved that
problem (1.65) is stable provided A — A, is either positive or negative definite. We would
like to point out that in the quoted results the quantity Tr,A plays a crucial role in studying
existence of solutions and stability of problems (1.63) and (1.65).

We will show how stability of the problem (1.65) actually depends on the trace of A,. In
particular, by building blowing-up solutions of the slightly subcritical problem (1.66), we
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will show that problem (1.65) is not stable if maxy; Tr, (A —A4,) > 0 and n > 8 or if
miny T'ry (A—Ay) >0and n > 7.

More precisely, we consider the following Paneitz-Branson type equation with slightly sub-
critical growth

Aﬁu —div, (44 + B)du) + au = |u|2ﬁ_2_‘5u, in M, (1.66)

where A, is given in (1.60), B € A% (M) is a smooth symmetric (2,0)—tensor field, a €
C*°(M) and ¢ is a small positive parameter.

Let Py p(u) := AZu — divy ((Ay + B)u) + au. We will assume that Py p is coercive, i.e. there
exists ¢ > 0 such that

/ (P, pu)udp, > c/ u?dp, for any u € Hy(M).
M M

Coercivity was studied in [61].

Given a C'—function ¢ on M, we say that a critical point &, ) of  is C!'—stable if there exists
an open neighborhood € of &, such that for any point £ € € there holds Vi (§) = 0 if and
only if £ = &, and such that the Brouwer degree

deg (V,,9,0) # 0.

If & is a strict local minimum point or a strict local maximum point of ¢ then &, is a
C!—stable critical point of . Moreover, if ¢ is a C>—function on M, then any non degenerate
critical point of ¢ is C!—stable.

Theorem 1.16. Assume

. n>8 and & is a C*—stable critical point of Tr,B with Tr,B(&) > 0,

. n>7,Tr,B is not constant and m]\/i[n Try,B > 0.

Then there exists g > 0 such that for any € € (0,e0) equation (1.66) admits a solution u.
such that the family (u.). is bounded in H3(M) and the u’s blow up at the point & if n > 8
or at a global minimum point of TryB if n =17, as € goes to zero.

We will use a very well known Lyapunov-schmidt reduction method to construct bubbling
solutions for the above problems, which was introduced in [9, 52] and already used in many
different contexts, see for instance [27, 28, 29, 36, 39, 40, 49, 46, 47, 48, 49] for Dirichlet
problem in R?, [19, 27, 41, 93] for Neumann problem in R?, and in [11, 25, 37, 38, 58, 91,
92] considered the multi-peak solutions involving the critical Sobolev exponent. In [34, 35]
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considered the super-critical case, and in [70, 88, 57, 59, 121, 122, 123] considered a peak or
multi-peak solutions to a singularly perturbed Neumann problem. In [87, 89, 90] considered
elliptic equations on Riemannian manifold, and so on. The main idea is to try to guess the
form of the solution (using the shape of the ”standard bubble”), then linearize the equation at
this approximate solution and use a Lyapunov-Schmidt reduction to arrive at a reduced finite
dimensional variational problem, whose critical points yield actual solutions of the equation.

Let us just mention that through out the thesis, the symbol C' denotes a generic positive
constant independent of the small parameters, it could be changed from one line to another.
The symbols O(t) (respectively o(t)) will denote quantities for which 2% stays bounded

It]
(respectively, 1(7? tends to zero) as the small parameter goes to zero. In particular, we will

often use the notation o(1) stands for a quantity which tends to zero as the small parameter
goes to zero.
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Chapter 2

Bubbling solutions for an exponential
nonlinearity in R?

2.1 Introduction

In this Chapter, we consider the following boundary value problem

Au+ P e =0, u>0  in O
(2.1)

u=>0 on 0f),

where ) is a bounded domain in R? with smooth boundary, A > 0 is a small parameter and
0 < p < 2. This problem is the Euler-Lagrange equation for the functional

1 )\ P
J¥(u) = —/ |Vu|? — —/e“ . u€ Hi(Q). (2.2)
2 Ja D Ja
If p =1, the problem (2.1) becomes

Au+Xe"=0, u>0 in Q;
(2.3)

u =20 on 0f2,

which can be called the Liouville equation after [78]. This problem is related to Berger’s
problem concerning the existence of metrics in a given Riemannian surface with prescribed
Gaussian curvatures. We refer the reader to the book of T. Aubin [7] for the description of
the links between this equation and possible geometric applications.

There are many results about the behavior and existence of solution to (2.3). Thanks to the
works of H. Brezis and F. Merle [15], Y. Y. Li and I. Shafrir [71], L. Ma and J. Wei [83],
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K. Nagasaki and T. Suzuki [95], the asymptotic behavior of solutions to problem (2.3) has
been well understood. More precisely, it is by now known that if u, is an unbounded family
of solutions to (2.1) for which X [, e** remains uniformly bounded, then there is an integer
k > 1, such that necessarily

lim )\/ e"r = 8k. (2.4)
Moreover, there are £k distinct points §;, j = 1,--- |k, in €, separated uniformly from each

other and from he boundary 0f2, such that, as A — 0, u, peaks to infinity in each one
of them, and remains bounded away from them, that is, the solutions uy to problem (2.3)

k
remain uniformly bounded on Q\ |J Bs(¢;) and

j=1

sup uy — oo, as A — 0,
Bs(&5)

for any § > 0. The location of the blow-up points &, - , & is such that, after passing to a
subsequence, converges to a critical point of the function

§17 7£k ZHQ 5]75] ZGQ(E’Hg])v (25)
i#]

where Gq(z,y) is the standard Green’s function of the problem

—A,Ga(x,y) = 8nd,(x), x € (26)
Go(z,y) =0, x € 09, '
and Hgq(-,-) its regular part defined as

Conversely, many authors constructed blow-up solutions to problem (2.3) with property (2.4).
In [10], S. Baraker and F. Pacard considered problem (2.3) in an open bounded subset 2 of
C, and they showed that given a non-degenerate critical point (i, ..., &) of the function ¢y

defined in (2.5), there is a sequence uy of solutions to (2.3), that converges to a function u*
in C2*(Q\{&,--- ,&}), where u* is the solution of

loc

k
—Au* = )" 8mlg,, in €;
j=1
u* =0 on 0f2.

P. Esposito, M. Grossi, A. Pistoia [46] generalized this result relaxing the assumption of non
degenerate critical point for ¢ to that of stable critical point for ¢. By using the notion
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of topologically non trivial critical value for oy, that we will recall later on, M. del Pino, M.
Kowalczyk, M. Musso [36] could establish the following general result: If the domain ) is
not simply connected, and given any integer k > 1, there exist k points &1, ...,& in ) and a
family of solutions uy to (2.3), satisfying (2.4) and bubbling at exactly those k points. The
shape of these solutions is given by

k
uy(x) = Z Go(z,&)+0o(1), as A—0 (2.8)

j=1
where o(1) — 0 as A — 0 uniformly in compact sets contained in Q\{&1, ..., & }. Furthermore
Jy(uy) = —16km + 8kmlog 8 — 8kmlog A — 4mpr(€) + o(1) (2.9)

where @y, is defined in (2.5) and o(1) — 0 as A — 0.

If p = 2, problem (2.1) becomes

(2.10)
u=2~0 on 0.

{Au+)\ue“2:0, u >0 in ;
This problem is the Euler-Lagrange equation for the functional J3 (see (2.2)) which corre-
sponds to the free energy associated to the critical Trudinger embedding (in the sense of
Orlicz spaces) [125, 103, 114]

HYQ) s ur—s e e LP(Q) Vp>1,

which is connected to the critical Trudinger-Moser inequality

C(Q) :sup{/ edmu? / u € Hy(Q), /|Vu|2 = 1} < 400,
Q Q

[94]. Observe that, in general, critical points of the above constrained variational prob-
lem satisfy, after a simple scaling, an equation of the form (2.10). The Trudinger-Moser
embedding is critical, involving loss of compactness in H{(f2) for the functionals J; which
translates into the presence of non-convergent Palais-Smale (PS) sequences. Let us consider
for instance a sequence A\, — Ao > 0, and a sequence u,, with Van (u,) — 0, J/%n(un) — C.
For the Trudinger-Moser functional J3, a classification of all PS sequences for Jy does not
seem possible after the results in [3]. Actually PS holds as long as ¢ < 27, see [1, 31]. On
the other hand, for solutions more is known. From the result in [44] (see also [2, 44, 100]),
we have the following fact:

Assume that u,, solves problem (2.10) for X = \,, with J} (u,) bounded and X\, — 0. Then,
passing to a subsequence, there is an integer k > 0 such that

J3 (un) = 2km + o(1). (2.11)
22



CHAPTER 2. BUBBLING SOLUTIONS FOR AN EXPONENTIAL
NONLINEARITY IN R?

When k£ = 1 a more precise answer is obtained in [2]: the solution w, has for large n only one
isolated maximum, which blows up around a point xy € 2 which is characterized as a critical
point of Robin’s function x +— Hq(x,z). When k > 1, such a description for the behavior of
u, is not known and it seems to be still an open problem.

It is natural to ask whether or not solutions satisfying (2.11) exist. From the result in [3],
it follows that there is a Ay > 0 such that a solution to (2.10) exists whenever 0 < A < Xy
(this is in fact true for a larger class of nonlinearities with critical exponential growth). By
construction this solution falls, as A\ — 0, into the bubbling category (2.11) with k& = 1.
Struwe in [112] built in the case of a domain with a sufficiently small hole a solution taking
advantage of the presence of topology. M. del Pino, M. Musso and B. Ruf in [39] established
a general result concerning existence and multiplicity of solutions of problem (2.10).

In order to state this result, let us introduce the following function of k distinct points
1,8, , & € Q and k positive numbers mq, mo, - - -, my,

k k k
vp2(&,m) = aZm? + Qng log m? + ZmEHQ(fj,fj) + ZmiijQ(&,ﬁj), (2.12)

=1 j=1 =1 i#]

where a > 0 is an absolute constant, and Gq(z,y) is the Green’s function defined in (2.6)
and Hg(-,-) its regular part. The authors in [39] established that, if g2 has a topologically
non trivial critical value, with corresponding critical point (&1, ..., &, my,...my) € Q¥ x RE
then there exists a solution uy of (2.10) with the shape

k
up(z) = VA ijGQ(x,fj) +o(1)|, as A—0, (2.13)
j=1
where o(1) — 0 as A — 0 uniformly on compact sets of Q\ {&1,...,&}. Furthermore,

J3(uy) = 2km + aX + 4w Apra(€,m) + Mo(1)

where « is an absolute constant, ¢y 5 is defined in (2.12) and o(1) — 0 as A — 0. In particular,
in the case 2 is not simply connected they constructed the solution w, of (2.10), with two
bubbling points, namely satisfying

2
up(z) = VA ijGQ(x,fj) +o(1)|, as A—0,
j=1

where (mq,ma, &1, &) is a critical point of ¢y defined in (2.12), and o(1) — 0 as A — 0
uniformly on compact sets of Q\ {&1,&}-
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The above result show a difference between the behavior of finite-energy solutions to problem
(2.3) (or problem (2.1) with p = 1) and those to problem (2.10) (or problem (2.1) with p = 2):
far away from the concentration points &1, . . ., &, solutions to (2.3) are at main order sums of
Green’s functions centered at &; (see (2.8)), while solutions to (2.10) are at main order sum
of Green’s functions centered at &; but with different positive weights \/ij whose values
depend on the location of the concentration points i, ..., & (see (2.13)). In other words:
To construct solutions to (2.10), one not only needs to choose carefully the concentration
points &1, ... .&, as for problem (2.3), but one has to carefully choose the correct weights
my,...,mg. This shows that, in some sense, problem (2.3) has a subcritical behavior while
problem (2.10) has a critical behavior.

This chapter is motivated to understand the solutions to problem (2.1) when p is between 1
and 2. In fact, we obtain existence results for (2.1) in the whole range 0 < p < 2, and we
find that in this range problem (2.1) has a subcritical behavior, in the sense described above.
Let us state our result.

Let us define
M= {(&, - ,&) € Q" ¢ dist(&,00) =6, |& &[>0 fori+#j}

for some 0 > 0. Let ¢ be a parameter, which depends on A, defined as

2(p—1)
2(p—2)

4 P
PA (—— loge) e~ r =1 (2.14)
p
Observe that, as A — 0, then ¢ — 0, and A =2 if p = 1.

Our result states as follows.

Theorem 2.1. Let 0 < p < 2 and k an integer with k > 1. If Q) is not simply connected, then
there exists \g > 0 so that, for any 0 < A < A\g problem (2.1) has a solution wy. Furthermore

A—0

2(2=p) p
lime™ » /e“k = 8km, (2.15)
Q

where € satisfies (2.14). Moreover, there exists an k—tuple & = (&}, , &) € M such that
as A — 0

and
_92 k
ur(z) =p z2Vier <Z G’Q(x,fj’-\) + 0(1)) (2.16)
j=1
where o(1) — 0, as X\ — 0, on each compact subset of QO\{&}, -+ ,&}. Furthermore
2(p=2) 8k 16k 4m
J(uy) =X » |——[-2+plog8 — loge — N 4+ O(|loge| ™!
o) o - = S er(€) + Ol loge| )

(2.17)
where O(1) uniformly bounded as A — 0.
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In [101], T. Ogawa and T. Suzuki investigated the asymptotic behaviour of the blow-up
solutions for problem (2.1) when 0 < p < 2 and Q = B(0,1). Every smooth positive solution
of this problem must be radially symmetric and decreasing in |x| by the result of Gidas-Ni-
Nirenberg [54], then w(0) = |lul|z~. Suppose uy is a solution satisfying ||u,||p~ — oo as
A — 0, then uy(z) — 0 locally uniformly on B\{0}, as A — 0. Thus, if we consider problem
(2.1) in the unit disk of R? suppose u is the solution of (2.1), then u blow-up at origin as
A—0.

We will prove Theorem 2.1 as consequence of a more general theorem, in a spirit similar
to the one used in [36]. To do so, we need to recall the notion of topologically non-trivial
critical level for . Let us consider an open set D compactly contained in the domain of the
functional . We recall that ¢y links in D at critical level C relative to B and By if B and
By are closed subsets of D with B connected and By C B such that the following conditions
hold: Let us set I' to be the class of the maps ® € C(B,D) with the property that there
exists a function ¥ € C([0, 1] x B, D) such that

v(0,)=1Idg, V(,)=®, V(t,)|p, =Idp, for Vte [0,1].
We assume

sup ¢ (§) < € := inf sup px(P(£)), (2.18)

§€Bo €l ¢eB

and for all £ € D such that ¢x(§) = C, there exists a vector 7 tangent to 9D at £ such that

Veor(§) - T # 0. (2.19)

Under these conditions a critical point ¢ € D with ¢ (€) = C exists, as a standard deformation
argument involving the negative gradient flow of ¢, shows. Condition (2.18) is a general way
of describing a change of topology in the level sets {¢r < ¢} in D taking place at ¢ = C, while
(2.19) prevents intersection of the level set C with the boundary. It is easy to check that the
above conditions hold if

inf < inf , > ,
ggpsok(f) £1€%D90k(§> or ilelgw(f) gseua% ©r(&)

namely the case of (possibly degenerate) local minimum or maximum points of . The level
C may be taken in these cases respectively as that of the minimum and the maximum of

in D. These hold also if ¢}, is C1—close to a function with a non-degenerate critical point in
D. We call C a non-trivial critical level of ¢y, in D.

Theorem 2.2. For 0 < p < 2, let k > 1, assume that @y, defined by (2.5) has a topologically
non trivial critical level C in D, then the problem (2.1) has a family solutions uy for A small
enough, such that

A—0

2(2—p) P
lime™ » /e“A = 8k, (2.20)
Q
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where € satisfies (2.14). Moreover, there exists an k—tuple & = (&, , &) € M such that
as A — 0

@k(gf\v T 75]?) — G,

and
1 -2 i
ur(z) =p 2 Ve (Z Galz, &) + 0(1)) (2.21)
j=1
where o(1) — 0 on each compact subset of QO\{&, -+, &)}, Furthermore

2(p—2) 8k 16k 4m
J¥(uy) = Xe » m[—Q—i—plogS]— log5—2_

where O(1) uniformly bounded as X — 0.

psok(@) +0O(]loge|™)
(2.22)

The proof of our result relies on a Lyapunov-Schmidt reduction procedure, introduced in
[9, 52] and used in many different contexts, see for instance [36, 39, 47, 48, 49, 46]. The key
step is to find the ansatz for the solution. Usually, the ansatz is built as a sum of terms,
which turns out to be solutions of the associate limit problem, which are properly scaled and
translated. For our problem, our approximate solution is built by using the following ”basic
cells”: the radially symmetric solutions of the following Liouville equation

Aw+e” =0 inR? /e“’<—|—oo,
RQ

which are given by

2 2

8
(1 + [z = €)?)?

where 1 is any positive number and ¢ any point in R? (see [21]). If we use a sum of the above
basic cells, properly scaled, and centered at several points of the domain as our approximate
solution, we get a very good approximation of a solution in a region far away from the points,
which unfortunately turns out to be not good enough close to these points. Thus we need to
improve the approximation, at least near the points, and we do this adding two other terms
in the expansion of the solution. This can be done in a very natural way, which has first
been used in [47] for studying the following problem

81t

(2 + [22)% 229

w,(z) = log w,(z — &) = log

Au+uP =0, u>0 in;
(2.24)

u=>0 on 0f),

where Q is a smooth bounded domain in R?, and p is a large exponent. Later on, this method
has been applied in other contexts, see [19, 48, 49, 93]. Observe that this method allows to
improve the approximation near the points, but it is not useful to improve the approximation
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far away from this points. Nevertheless, as already mentioned, the approximation we build
for this problem is sufficiently accurate in a regime far from the points. After the approx-
imate solution is build, we find an actual solution to (2.1) as a small perturbation of the
approximation.

This chapter is organized as follows: Section 2.2 is devoted to describing a first approximation
solution to problem (2.1) and estimating the error. Furthermore, problem (2.1) is written
as a fixed point problem, which involving a linear operator. In Section 2.3, we study the
invertibility of the linear problem. In Section 2.4, we study the nonlinear problem. In
Section 2.5, we study the variational reduction, we prove Theorems 2.1 and 2.2 in Section
2.6.

2.2 Preliminaries and ansatz for the solution

In this section we describe the approximate solution for problem (2.1) and then we estimate
the error of such approximation in appropriate norms.

Let us consider k distinct points &;,&, - -+ , & in €2, we choose a sufficiently small but fixed
number ¢ > 0 and assume that for j =1,2,---  k,
dist(&;,00Q) > 4, & — & >0 fori#j, (2.1)

Furthermore, we consider £k positive numbers p; such that
§<pj <ol forall j=1,...,k (2.2)

The parameters j; will be chosen properly later on. Define the function

Uy, () = log (122

Let us denote PU,, ¢ (x) the projection of U, ¢ into the space Hj(Q), in other words,
PU,, ¢;(x) is the unique solution of

APU, ¢ =AU, ¢, nQ .
PU,; ¢, =0, on OS).
Lemma 2.3. Assume (2.1) and (2.2). We have
PUﬂj,ﬁj (ZE) - U#jfj (l’) + HQ('L&) - log(&u?) + O(N?‘gz) (24)
in C*(Q) as e — 0, and
PU,, & (2) = Gala, &) + O(s2) 2.5)

in CL(Q\{&}) as e = 0, where Gq(-,-) and Ho(,-) are Green’s function and its the regular

part as defined in (2.6) and (2.7).
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Proof. Let z(x) = PUy, ¢, (%) — Uy, ¢, (x) 4 log(843), then z(x) satisfies
Az(z) =0 in €;
2(z) = 2log(pze* + |z — &%) on 0f).

On the other hand, we note that n(z) = Hq(z,§;) satisfies

An(x) =0 in Q;
n(z) =2loglz —&[*  on 0.

Then we get
A(z(z) —n(x)) =0 in Q;
z(z) —n(xr) = —2log % on 99.

Since |z — ;| > ¢ for x € 0L, then by the maximum principle we get
I =n) = Y —=n()] = 2.2
max [2() —n(-)| = max|z(-) — ()| = O(k;e”),
as € — 0, uniformly in . Then we obtain the C%-estimate in (2.4). Analogous computations

give the C''-closeness and hence the validity of (2.4). By (2.4) we deduce (2.5). O

We shall show later on that PU,, ¢ () is a good approximation for a solution to (2.1) far
from the points &;, but unfortunately it is not good enough for our construction close to the
points §;. This is the reason why we need to further adjust PU,, ¢ (x). To do this, we need
to introduce the following functions w) and wj.

Let wy,, be defined as (2.23). Define the function w} to be radial solution of

Aw§+ew“jw§:ew“jfi inR? for i=0,1, (2.6)
and
0 1 2
70 == (i, + g, (27)
1 _(,0 p— 2 Log9 1 4
o= (g ) S+ )
1 1
+2wujw? + §(wuj)3 + 510?(711“]-)2) . (2.8)

In fact, as shown in [47] (see also [20]), there exists radially symmetric solutions with the
properties that
i _ |?J| 1
wj(y) = Cjlog— +O(—=) as |y| = oo, (2.9)
1 Y]
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for some explicit constants C;;, which can be explicitly computed. In particular, when ¢ = 0,

the constant Cy; is given by

¥R

2
+o0 21 8[1,-_2 1 8”'_2
Co; = -8 t——— |log —— + = | log —L— dt
> /0 @Er1p | Barey T2 By
2
~+o00 t2 -1 8#-_2 1 8,[1-_2
= —4 1 d — | log —2L-— | | d(t?
/0 I R TET O PR SN (e ()
set r=t"+1

T 9 s 1 o2
= —4 p= log(8y1;7) — 2logr + 3 (log(81;%))
1

—2log(8y1; %) logr + 2(log )] dr-.

Since N N
Cr -2 -2 1
/1 = r , /1 3 ogr dr 5
and N
Cr—2 3
l Zdr ==,
[ 2o =
Hence

Co; = 4log8 — 8 — 8log 1. (2.10)

Let us define

0 _oofT=& 1 o (r=&
W, ¢ () = w; ( . ]> : W, ¢, () == w; (TJ) for z € Q.

1
14,857

Let Puwj, . and Pw,_ . denote the projections into Hy(2) of w), . and w respectively.

By (2.9), we have that

() = (3(59)

J

in CY(Q) as ¢ — 0, and

P (u01) = P (1w} () ) = ~Z6nle ) + O 2.12)

in CL(O\{¢}) ase — 0.
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We define
Uy(z) = —— zk: (PUMJ c@)+ Pl put @)+ (E)Q%pw},é.(z)) L (2.13)
Pt poar p ) oy e

From (2.5) and (2.12), one has, away from the points ;,

1100]‘ p—l 21013’ 2
ZGngj (1——% 0 —(—) %TJFO(s) . (2.14)

7”1 P p

Consider now the change of variables
-1 . 4
v(y) =py" uley) —py?,  with 47 = ——loge.
p

By (2.14), then problem (2.1) reduces to

Av+gv)=0, v>0 in Qg
(2.15)
v=—pyP on 0f),,
where Q. = ¢71Q), and
— U \p=1 9710+ 55)P 1]
g(v) = (1 + — )Pt 0t mp) =1, 2.16
) = (1+-5) (2.16)
Let us define the first approximation solution to (2.15) as
Va(y) = py" 'Ux(ey) — p", (2.17)

with Uy defined by (2.13). We write y = e~ 'z, & = ¢7'¢;. For [z —§;| < § with 0 sufficiently
small but fixed, by using (2.4), (2.5), (2.11), (2.12) and the fact that U, ¢ (ey) — py? =
w;(y — &), we have

p—11 p—1\* 1
Wa(y) = PU, ¢ (cy) + TV_PU}SJ g Ey) + (T) @Pwij,gj(w) -p

p—11 p—1\* 1
+Z( uirti (€Y) +T”Y_P O&(gy)+(_> P 1§1(5y)

i#] p tad
= U, (ey) + Haley, &) — log(8u3) + O(u3e?) — py”

p—11 =& Co;
+T$ [wg (y M,g ) - %Hﬂ(ﬁy@) + Coj log(pe) + O(Mﬁ)]
J

_ 2 ¢ C'
4 (]%) % [w} (yﬂ5 > — %Hg(éy,é}') + Cyjlog(pje) + O(Mjg)]

Cyp—11 Gy (p—1\" 1
4 p o 4 p

k
+3 Gal&, &) |1 +0(e?)

2p
oy "
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— )+ )+ (1%1) et (0) ~ o (52)
o el (%)2 7%] (Hn(fj,sj) , gGQ(&,@))
+ _C()jp; 1% + C; (%)2 %] (log(pj) +loge)
+(5(s|y—5’|) +0(e%), (2.18)

where
) ’ 0 ] ofY f; 1 ) 1 (Y 5}
wi(y) = w,, (y — &), wjy) = w; T o wi(y) = w; 1 :

We now choose the parameters j;: we assume they are defined by the relation

k
log(8u3) = (Hﬂ(fj@j)JFZGQ(&’@)) _p%lco”'

i#]

11 Chs k .
LY (HQ(gjafj) +Y " Ga(&, &) + 4log(uy) — (p — 1)—)
i#]

_ (P;l) 1 Gy (HQ@]-,@.) +) Gal&. &) + 410g(uj)) . (2.19)

2p e
74 i

Taking into account the explicit expression (2.10) of the constant Cy;, we observe that s,
bifurcates, as A goes to zero, from the value fi; defined by

k
1 s |Ha(&.6)+> G (si,g-)]
i e e P P p>[ IR g TSR

(2.20)

solution of equation

log(8y5) = (Ha(fjafj) +Y Galé, fj)) - p; 1001- (2.21)

i#]

Thus, p; is a perturbation of order 7%, of the value f;, namely

log(81:%) = {2(27”—_1) (1-1log8)

(rof2)). e

+2%p (HQ(SJ-, &)+ Y Galé, 5;'))

7]
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Then, by this choice of the parameters j1;, we deduce that, if [y — ;| < d/¢ with ¢ sufficiently
small but fixed, we can rewrite

L P o s (P L
) = ) + P )+ () el +6), (223)
with

0y) = Olely — &) + O(?).

We will look for solutions to (2.15) of the form
v="V,+ ¢7

where V) is defined as in (2.17), and ¢ represents a lower order correction. We aim at finding
a solution for ¢ small provided that the points {; are suitably chosen. For small ¢, we can
rewrite problem (2.15) as a nonlinear perturbation of its linearization, namely,

{L<¢> =—[Ex+N(9), @€ 220
¢ =0, x € 0f).,
where
L(¢) :== Ad + ¢'(Vi)¢, (2.25)
Ey = AVi+g(Va), (2.26)
N() :=g(Va+ ¢) — g(Va) — ¢' (Vi) o (2.27)
We recall that g(t) = (1 + I#)p_lew[(um%)p_”.

In order to solve the problem (2.24), first we have to study the invertibility properties of the
linear operator L. In order to do this, we introduce a weighted L°°-norm defined as

|2l := sup (Z(l +ly =N~ + 52) 7 (y)l (2.28)

yEQ: j=1

for any h € L>*(€.). With respect to this norm, the error term FE) given in (2.26) can be
estimated in the following way.

Lemma 2.4. Let § > 0 be a small but fired number and assume that the points &; satisfy
(2.1). There exists C' > 0, such that we have
C C

IEA+ < =5

__ v 2.29
¥ [logel? (2.29)

for all X small enough.
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Proof. Far away from the points §;, namely for |z — &| > 0, ie. [y —&] > g, for all
j=1,---k, from (2.5) and (2.12) we have that

AVy(y) = py? 12 AU (ey) = O(rP'e?).
On the other hand, in this region we have

41 1 1
PP PP |log |

where O(1) denotes a smooth function, uniformly bounded, as ¢ — 0, in the considered
region. Hence

p—1
py
4

Cﬁ if 1< p <2

o(1)

4
Oﬁe’wuogs‘p if 0<p<1.

4

Cﬁ if 1< p< 2,
4 o(1)

C—=2 telossP T if 0 <p< 1.

[loge[p—1

Thus if we are far away from the points &;, or equivalently for |y — &i| > g, the size of the
error, measured with respect to the || - ||.-norm, is relatively small. In other words, if we
denote by Louer the characteristic function of the set {y : [y — &}| > gj =1,...,k}, then in
this region we have

Cf—— it 1<p<2;
||E)\10uter||* <

Tp+#
logeP=t if 0 < p< 1.

Cf—— it 1<p<2;

2
C‘ ETP 16—27Tp|10g5\+0|10g€|1_p
log e|P~
\
( 2(2—p)
CeT . if 1<p<?2:
1 p—1 = )
[Tog<] (2.31)

2—p

C—=2_+ if 0<p<l.

\  [loge[p~t

it 0<p<1.

IN

Here we used that —2%”| loge| 4+ Clloge|'™ < 0 for 0 < p < 1 and ¢ small. Let us now fix
the index j in {1,--- , k}, for |y — | < g, we have

2

AVy(y) = —e“i® + T$Aw9(y) + (T) 72IDijl-(y) +0(e?). (2.32)

33



CHAPTER 2. BUBBLING SOLUTIONS FOR AN EXPONENTIAL
NONLINEARITY IN R?

On the other hand, for any R > 0 large but fixed, in the ball |y — &’ < R. := R|loge|*, with
a > 3, we can use Taylor expansion to first get
Vi o1 p—11 p—1,1 4 p—2 2

A+ pt = 1 2 B+ D))

Py p o’ p !

and
e'yp[(Hz}%’)p*” =e" |1+ (—_ )= [w]

p—1,1 1 0 1 0 242 1
+(T) %[wj + wjw; + §(wj + (w;)7)7] + E(logly\)

Thus we obtain

g(V)\> = (1 + ﬂ)p—levp[(hr;%\p)p,u
PP

w; p—1 1 o, (w;)?
= ej{l‘f'(T)%[wj‘f'T—f—w]

p—12.1 [, ;1
+ <T )W [wj + 2wjw; + i(w

L0 (10g|y3— §§-|)}‘
fyp

Thus, thanks to the fact that we have improved our original approximation with the terms
w) and wj, and the definition of *-norm, we get that

o (w
j+2

C C

5 = Tog<F" forany j=1,... k. (2.33)

1ExLB(¢) k)

* =

Here 1p(e r.) denotes the characteristic function of B(¢;, R.). Finally, in the remaining

region, namely where R, < [y — &| < 8 for any j = 1,...,k, we have from one hand
that |AVi(y)| < Ce®®, and also |g(Vi(y))| < Ce®s®) as consequence of (2.18). This fact,
together with (2.33) and (2.31) we obtain estimate (2.29). O

As above computation, we find that very close to the point &; in €2, we have

g (VA) — ¥, = 0 as\— 0, (2.34)
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and there exists some positive constant Dy such that
k
g(VA) < Do) e™. (2.35)
j=1
Moreover, we can get
lg" (V). < C. (2.36)
Proof of (2.34) and (2.35): We have
: p—11 Vi \p—2 #1004 227 1]
gVh) = ——(1+ P=%e
) p )
+(1+L)2(p 1) “/"[(1+ )P —1]
PP
= I, + I
Far away from the points §;, namely for [z — §;| >0, ie. |y —&| > g, forall j=1,--- Kk, a
consequence of (2.30) is that
v v
=——0(1 d I,=—5+—0(1
| log e|p—1 (1), and I | log g|2(>—1) (1)
Then we have
4
€p
'V louter = ————O(1 2.37
Vi) o = o OL) (2.37)
On the other hand, fix the index j in {1,---,k}, for |y — &| < R. with R. = R|loge|, for

any R > 0 large but fixed, we use Taylor expansion to get

p—2
p—11 1 p—11 o p—1 2 1
I = o 1wy + Sl + (- +0
p%’( pyp<<) p7p1<) » 72]3]() ()
e [ (@25 drud 0+ (252" w4000 ) 1
p—21|p—1 p-11 “1\? 1
- ~p —w;(y) + (—— | i)
p P p_2 p P D 4P
3
(75 e+ P S
Xew](y)epplylpw?(y)@(%)z,y%p }(y)ee(y)eé%#[ ()+pp pro(y)_’_( )27%1) ]( D)+0(y )]2’
and
2(p—1)
1 p—11 , p—1\*1
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s [ (i) 25 Hrud )+ (252)” Fpwkw)+6w) ) ) -1
2p—1) 1 p—1 1
- 2D L2 (1) Lt
3
p—1 1 2p—1) 1
+2(—— | —wiy) ()
p VP p P
i) Bt ) (B ) 5wl ) () 325 5 w3 )+ B3 Fruf )+ (25 ﬁ,wﬂywe(yﬂz_
By the definition of w) and wj, we get that
O(1) _ O(1)
L1pe Iylpe py — ™™ = 2.38
B(& RE) |10g5| b B(gijs) € |10g5| ( )
Finally, in the remaining region, namely where for any j = 1,..., k, we have R. < [y—¢}| < g,
we have
11, < ei® L] < Cewi®, (2.39)
| loge|

Then, from (2.38) and the definition of *—norm, we find that very close to the point &; in €2,
we have
o)

/V ’w]
”g( )\) H |10g€‘

which implies (2.34). Combing (2.37), (2.38) with (2.39) we obtain estimate (2.35).

Proof of (2.36): We have

g”(V)\) _ (p_ 1)(]3— Q)L(l + Vi )p 3 ’yp[(lJr 2 )P—1]
P’ S o
T
P Py
(14 Dy 0 )
pyP
= I+ 1+ 1.

By a similar computation as above: Far away from the points &;, namely for |x —§&;| > 6, i.e.
\y—£§| > g, forall j =1,---,k, we have

4 4 4
ep EP ep
= g0V o= om0 and L= momg 5 00)
Then
4
ep
g”(v)\)louter = W0<1) (2.40)
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where again O(1) denotes a function which is uniformly bounded, as ¢ — 0, in the considered

region. Let us now fix the index j in {1,---
for some R > 0 large but fixed, by Taylor expansion, we have

Jk}, for [y — &| < R with any R,

= R|loge¢]

p—3
_ -De-2) 1 ! P=1lopgys (221) 2
o= g |V ) )+ () Sl + 00
e [ (w025 o)+ (50 S wd 1400 ) 1
L == 1 [pt pott 1YL
P ¥ p=3" p p )
3
(55) s+ B
Xewj(y)e ;1 'ylpwg(y)e(p?%l)Q'y%p jl(y)eg(y)e%%“%p[wj(y)"rpplvlpw;)(y)—"_(p?%l)z’y%p 7( A )]27
2p—3
3p—1)1 1 p—11 4 p=1\" 1, p
Iy = D % 1+W w;(y) T% j<y)+ T %wj(y)_{—e(y)
XeVPKH-piP( i (y)+P= P ww (?J)+(p 1)275;) (y)+0(y)))p_1]
32p—3)1 |p—1 p-11 p—1 1
_ porll Ky —pwj(y)—i— _2pw?<y)
3
(55 s+ 2
Wi W) P 37 () (%)QTM ) 0(v) %*lwip[wj(y)“plvlpw?(y)Jr(%)Qv%”wjl'(y)w(y)r>
and
1 11 1\? L Y
B 1 ' p—11-4 p—-

1 [(14+ 525 (w5 )+ 22wl )+ (252 ) Spwl ) +o(y) ) ) 1]

_ 3p—1) 1 —1 L o
e ps(22) Luton
w3 (1) Lty 22U L,
3p 7 y P y
p ) P
2
o) B () (55 ) 5wl ) o) 3 25 7 [0 )+ 55 Sl )+ (55 ) S wl () +0(w)]
Therefore, we get
o) o)
IclB(§;7RE) = |10g8” IdlB(fl R.) = |10g8‘27 IelB(gg. y = O(l) (241)
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Finally, for R, < |y — &}| < & for any j, we have
C C
L] < —— L) < ———, |L|=0(1)+ Ce™. 2.42
LIS ez Ml S oo 1 = 0(1)+Ce (242)

From (2.40), (2.41) with (2.42), by the definition of *—norm, we obtain (2.36) holds.

2.3 The linearized problem

In this section, we prove the bounded invertibility of the operator L. We observe that the
operator L can be approximately regarded as a superposition of the linear operator

83

(12 +Jy — &J2)”

Li{6) = Mg+ €6 = Ad +

The key fact to develop a satisfactory solvability theory for the operator L is the nondegen-
eracy of w up to the natural invariances of the equation under translations and dilations,
which translates into the fact that

20 (Y) = Ouwp; (v),  2i5(y) = ywy,(y), i=1,2,

satisfy the function AZ + e¢*1Z = 0, see [10] for a proof. Define for ¢ = 0,1,2 and j =
17 27 Tty ka

Zij(y) =z (y—¢), i=0,1,2. (2.43)

Consider a large but fixed number Ry > 0 and a radial and smooth cut-off function n with
n(r)=1ifr < Ry and n(r) =01if r > Ry + 1. Write

ni(y) =n(ly—¢&l)- (2.44)

Given h € L*(f).), we consider the problem of finding a function ¢ such that for certain
scalars ¢;;, 1 = 1,2, j = 1,2,--- |k, it satisfies

L(¢) —h—l—zZ:lJZ Cii ZiiN; in Q.
¢ =0 on 9. (2.45)
Jo. 9Zijn; =0 fori=1,2, j=1,--- k.
Consider the norm
[6]lcc = sup [¢(y)]-
Y€,

The main result of this section is the following:
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Proposition 2.5. Let 6 > 0 be fixed. There exist positive numbers \g and C, such that for
any points &, j = 1,--- |k, in §, satisfying (2.1), p; is given by (2.22), and h € L>(S.),
there is a unique solution ¢ := Tx(h) to problem (2.45) for all A < X\g. Moreover,

1
[¢]lc <C (log g) 172 (2.46)

The proof will be split into a series of lemmas which we state and prove next.

. k
Lemma 2.6. The operator L satisfies the mazimum principle in Q. = Q. \ | B(&}, R) for
j=1

R large. Namely, if L(¢) < 0 in Q. and ¢ > 0 on 0Q., then ¢ > 0 in ..

Proof. Given a > 0, we consider the function

k
Z(y) = 2 (ay-gl), ye, (2.47)
j=1
where zo(r) = :z—j& is the radial solution in R? of
Azy + mzo = 0.

First, we observe that, if [y — &}| > R for R > 1, then Z(y) > 0. By the definition of z, we
have

5 8a(@’ly — g* — 1)
—AZ(y) = ) (1+a2\y—j€}l2)3

i=1

k 2
Y T
— 3 (1+a’ly — §*)?
]:1 J
k
4 8
> E = -
= 20, _ £/ |4
j:1 27 a ‘y €]|
provided R > Y2 On the other hand, in the same region, we have

k k
! w4 C
gd(VA)Z(x) <Dy > e JZ(ZU)SDOZ—| e
e = Y gj

for some constant C' > 0 and Dy satisfies (2.35). Hence if a is taken small and fixed, and
R > 0 is chosen sufficiently large depending on this a, then we have L(Z) < 0 in €2, The
function Z(y) is what we are looking for. O
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Let us fix such a number R > 0 which we may take large whenever it is needed. Define the
” inner norm ” of ¢ in the following way

[olli = sup  |(y)]-

yeU?le(f;,R)

)

Lemma 2.7. There exists a uniform constant C' > 0 such that if L(¢) = h in Q, ¢ =0 on
€Y., then

[9lloe < Cllllli + 1A]]]; (2.48)
for any h € L>(£2,).

Proof. We will establish this estimate with the use of suitable barriers. Let M be large, such
that Q. C B(&), %) for all j. Consider the solution ¢; of the following problem

“AY = e 287 R<ly-gl<
Yi(y) =0 for ly—&[=R, |y-¢&|=2%L.

We observe that by the direct computation we have that

Wby(r) = ! —%—52(7*—]%)_ {1_1_52(%_}3)} log &

R 5 log 2%

Therefore, this function is uniform bound independent of € as long as a < R < 2%

Define now the function

o(y) = 2[|0ll:Z(y) + |[All+ Z%(y),

where Z is the function defined in (2.47). First, observe that by the definition of Z, choosing
R large if necessary,

o(y) > 20|01l Z(y) > l|6ll: > |o(y)|  for |y—E&|=R, j=1,---k,

and, by the positivity of Z(y) and 1;(y),

¢(y) 2 0=0y) forye ..
Finally, by the definition of || - ||, we have that

h(y)l < (Z(l +Hly-gh7 + €2> 171l

j=1
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then
k

L(9) = 206liL(Z) + ML) b5) < IRl D (A + g (Va)ey)

j=1 j=1
k
= a0 (-

7j=1

£/|3 — 2¢* +9g (VA>w >

M»

IN

2kD
_ 2 4+ — 0 w]>

Il ( ,
2 £|3 R
k
>

< %W\( L+ly =&l )

< —|hy)| < |L(d) ()|,

provided R large enough. Hence, from Lemma 2.6, we obtain that

6(y)| < o(y)  for y € O,

and, since Z(y) < 1 we get

[9lloe < CTldlli + [IA]].].
O

Next we prove uniform a priori estimates for the problem (2.45) when ¢ satisfies additionally
orthogonality under dilations. Specifically, we consider the problem

L(¢) = h, in Q.
¢»=0 on 0f); (2.49)
Jo.miZijo =0  fori=0,1,2, j=1,---,Fk,

and prove the following estimate.

Lemma 2.8. Let § > 0 be fizred. There exist positive numbers Ao and C', such that for any
points &, j = 1,--- ,k, in Q, satisfying (2.1), p; is given by (2.22), and h € L>(£).), and
any solution ¢ to problem (2.49), one has

8]0 < C|R]]s (2.50)

Proof. We carry out the proof of lemma by a contradiction. If the result was false, then there

exist a sequence A, — 0, points {7 € €, j = 1,--- ,k in Q, satisfying (2.1), function h,, with
|hnll« — 0 and ¢, with ||¢n |0 = 1,

L(¢n) = hy, in Qan;

¢n =0 on agen; (251)

fQEan@']fbn:O foralli=0,1,2, j=1,--- k.
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Then from lemma 2.7, we see that ||¢,||; stays away from zero. Up to a subsequence, for one
of the indices, say j, we can assume that there exists R > 0 such that,

sup  |on(y)| > k>0 for all n.
ly—(&})'|<R

Let us set QAﬁn(z) = ¢u((&})" + 2). Elliptic estimate allow us to assume that b converges

uniformly over compact subsets of R? to a bounded, nonzero solution ngS of

82
Ap+ ——21—0=0.
PRAERE
This implies that (b is a linear combination of the functions z;;, ¢ = 0, 1, 2. But orthogonality

conditions over ¢, pass to the limit thanks to |énllse < 1. By the dominated conver-
gence theorem then yields that fRQ n(z zucb = 0 for ¢+ = 0,1,2, thus a contradiction with
liminf, o ||¢nll; > 0. O

Now we establish a priori estimates for the problem (2.49) with the orthogonality condition
st n;Z0j¢ = 0 dropped. We consider the problem
L(¢) = h in €
=0 on 0f),; (2.52)
fQEanZ-](b:O fori=1,2, j=1,--- )k,
Lemma 2.9. Let 6 > 0 be fizred. There exist positive numbers \g and C', such that for any

points & € Q, j =1,--- |k, satisfying (2.1), p; is given by (2.22), and h € L>(€.), and any
solution ¢ to problem (2.52), one has

uwmsco% )MM (2.53)

for all A < \.

Proof. The proof is already contained in [36] but we reproduce it here for sake of completeness.
Let R > Ry + 1 be a large and fixed number, and Z; be the solution of the problem

Adoj + —20 5 =0,
(n3+ly=¢;12)
Z0j(y) = 20(R) for ly — gl =R
Z0i(y) =0 for |y — &j| = 5.
By computation, this function is explicitly given by
Jrits
) = () | 1= 2=y g

f SZO S
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Next we consider the radial smooth cut-off functions x; and x» withe the following properties:
0<x1<1, xy=1in B(0,R), x1 =0in B(0,R+1)% and

) J\°
0<x2<1, xa=1inB(0,—), xx»=0inB{0,—],
4e 3€

and |x4(r)| < Ce, |xy(r)] < Ce®. Then we set
xii () =xally =&, x2i(y) = x2(ly — &),
and define the test function
Zoj = X15%0j + (1 — X15)X25%0-

Let ¢ be a solution to (2.52), we will modify ¢ so that the extra orthogonality conditions
with respect to Z; is satisfies. We set

k
¢=0¢+ Z djZo;
j=1

with the number d; is defined as

Jo. 1i%0i9

d; = —u0e B2UY
T Jo milZol?

Then

k
L(¢) =h+ > d;L(%;), (2.54)

J=1

and the orthogonality condition
/ n; Zoip = 0, foralli=0,1,2,
Qe

hold. Then from the previous lemma we have the following estimate

k
1Blloe < ClIRNL+ Y 1l Z(Zo)Il.]. (2.55)
j=1
Next, we show that
N C 1\’
LGl < g and gl < (10 2) 1l (2.56)
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Indeed, we have

L(Zo5) = 2Vx1;V(Zoj — 205) + Ax1(Zoj — Z05)
‘|‘2VX2]‘VZA’0]' + AXQj?i’oj + 0(84).

We consider the following four regions

Qo= {y : ly=¢&l <R} Q={y : R<|y—¢&|<R+1},
b b b
Qs ly : Rrlsly—gl<s b ={y: Z<l-§l<g}

First, we note that L(Z) = O(&?) for y € Q; U Q3. For y € Oy, we have

j‘r ds
R R s23.(s)
205 — Zoj = —20i(1)—5———,
f@ _ds
R szgj(s)

so that

C
Zoj — Zoi| < .
[Z0j = Zol < 21
Similarly, in this region, we have
C
20— Zyi| <
‘ 05 0]’ — logé
On the other hand, for y € 24, we have
C C
50;(r) < and 2. (r) < —.

~ log?t’ log 1

Therefore, from the definition of the *—norm, we get

C

log 7

I L(Z05)]« < (2.57)

where the number C' depends in principle of the chosen large constant R.

Next we show the other inequality of (2.56) holds. Testing equation (2.54) against Z, we
have

(&, L(za)) = (h, Z00) + di{L(Z00), Zan),
where (f,g) = an fg. This relation and (2.55) gives us that

di{L(Z), Zor) < ClRJL[L+ ILGa)l-] + C Y ld I L(Za) I (2.58)

j=1
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We want to measure the size of (L(Zy), Zo;). We decompose
<L ZOZ ZOZ / L Z()l Zoz +/ L(E()l)éol + 0(8) (259)
Qz Q4
Since
< - ~ s .~ 12 C
L(ZO[)ZO[ S C ’VXQ[HVZ[)[HZ[)[’ -+ C ’AXQZHZOZ‘ -+ O( ) S (1 N2 (260)
Q 0g -

Moreover, for y € €y, we have
/ L(Zy)Zo = Q/VXUV(ZOZ —»’:’oz)?ovL/AXu(ZOl — Zo) 200 + O(e)
Qo

/lelv(ZOZ — Zo1) 201 — /VXU(ZOZ — Z20) Vo + O(e)
1 o1 — Zoi| <

from the integration by parts. Now, we observe that in the considered region s, |2y

C : 5! 1 1
@7 Whlle |ZOZ‘ ~ " + }_21

Cy 1
R3 log

‘/VXH Zoi — Zoz)VZ()l

with (' is a constant to be chosen independent R. Moreover

R+1
! 2 !l »
XU(ZOl - Zoz) Zor dr

/VXUV(ZOI—??O[)%Z = 27T/
R
Apir 2o fé%] 0

2m /R-H y [1 -
B e e ST
- ‘10(;2; 0 (er))
where (s is a positive constant independent on €. Thus, choosing R large enough, we get
&

/ L(Zo1) 20 ~ o
Qo 0g <

Combining this and (2.59), (2.60) we get
(2.61)

o C. 1
(L(Z0), %) < ——21 |14 0 -
log < log <

From (2.57), (2.58) and (2.60) we have
1 2
) < (1og2 ) Il
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We thus from estimate (2.55) that

1
ol < (102 ..

]

Proof of Proposition 2.5 We first establish the validity of the a priori estimate (2.46).
The previous lemma yields

ol < € (10g)

Let us consider the cut-off function x»; defined in previous lemma. We multiply the first
equation of (2.45) by Z;;x2;, we find

W%+Z§]%1 (2.62)

i=1 j=1

(L(®), Zijxaj) = (hy Zijxz;) + Cz’j/ il Zis)?. (2.63)

Qe

We have
L(Zin2j) = AXQJ'Z/L']' + 2VZZ]VX2] -+ 50((1 —+ T)73),

with 7 = |y — &|. Since Axy; = O(€?), Vxg; = O(¢), and Zj; = O(r™1), VZ;; = O(r—?), we
get
L(ZinQj) = 0(63)50((1 + 7’)73).
Then we have
[(L(), Zijxaj)| = (¢, L(Zijx2;))| < Cel|¢]loo-
Combining this with (2.62) and (2.63) we find

|cij| < C

1
HhH*Jrelogng!sz!] : (2.64)

Then,
i < ClR]l..

Combining this with (2.62) we obtain the estimate (2.46) holds.

Next prove the solvability of problem (2.45). We consider the Hilbert space

H:{gbeHé(Qa) : / ¢Zin; =0 forizl,?,jzl,Z,---,k},
Qe

endowed with the usual inner product (¢,) = fﬂa V¢V, Problem (2.45), expressed in a
weak form, is equivalent to find ¢ € H such that

(9, ) = /Q (Wo — h)y de, for all ¢ € H,
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where W = ¢/(V)\). With the aid of Riesz’s representation theorem, this equation gets
rewritten in H in the operator form

(Id— K)$ = h, (2.65)

for certain h € H, where K is a compact operator in H. The homogeneous equation ¢ = K¢
in H, which is equivalent to (2.45) with A = 0, has only the trivial solution in view of the
a priori estimate (2.46). Now, Fredholm’s alternative guarantees unique solvability of (2.65)
for any h € H. This finishes the proof.

The result of Proposition 2.5 implies that the unique solution ¢ = Ty(h) of (2.45) defines a
continuous linear map form the Banach space C, of all functions h in L for which ||A||, < oo
into L*°, with norm bounded uniformly in A.

Lemma 2.10. The operator T\ is differentiable with respect to the variable &1, ..., & in €2
satisfying (2.1), one has the estimate

1\ 2
10y ITx(h) |l < C <log —) lh|ls forl=1,2, m=1,2,--- Kk, (2.66)
€
for a given positive C, independent of €, and for all € small enough.

Proof. Differentiating equation (2.45), formally Z := O y,¢ should satisfy

2 2 k
L(Z) = =00 (g (VA)E + D cimOiery, (MmZim) + > > dij Zign;
=1

i=1 j=1

with d;; = O y,ci5, and the orthogonality conditions now become

/ ZimMm 4 = —/ 3(5;”)1 (Zlmﬁm) ¢.
€ QE

We consider the constants b,,, defined as

e Qe

Define ,
=1

and

2 2
f==0g) (d(V)) ¢+ Z CimOg, ) (ZimTm) + Z bim L (1hm Zim)-
=1 =1
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We then have
N 2k
L(Z) = [+ 22> bimMmZim in Q,;
~ i=1j=1
Z=0 on 0f);
Jo. M ZimZ =0 fori =0,1,2.

Namely, Z = T \(f). Using the result of Proposition 2.5 we find that

1
171 < (108 ) 1l

hence,

1 2
10 1, Ta(h) |l < C <log g) k||, fori=1,2, m=1,2--- k

2.4 The nonlinear problem

In what follows we keep the notation introduced in the previous sections. We recall that our
goal is to solve problem (2.45). The strategy is to solve first the following problem

2k
L(¢) = _[E/\ + N(Qb)] + Zl Zlcijanij, in QE;
1=1)=
¢=0 on 0€); (2.67)
Jo. 15259 =0 foralli=1,2, j=1,2,--- k.

We have the following result.

Lemma 2.11. Under the assumptions of Proposition 2.5, there exist positive numbers C' and
o, such that problem (2.67) has a unique solution ¢ which satisfies

|oo S Lv
| logel?

9]

for all X < X\g. Moreover, if we consider the map & +— ¢ into the space C(€).), the derivative
Der¢ exists and defines a continuous function of £'. Besides, there is a constant C' > 0, such
that

C

Derpl|loo < :
I1Deoll < o

(2.68)
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Proof. In terms of the operator Ty defined in Proposition 2.5, problem (2.67) becomes

¢ =Ta(=(N(9) + Ex)) :== A(9). (2.69)
For a given number M > 0, let us consider the region
_ M
= Q) o < ——— 5.
Fuim{0 € 0@ ol < s )

From Proposition 2.5, we get

4@ < € (1052 ) IV + 1B

By the definition of N(¢) in (2.27), we can write
IN(¢)] < Clg"(Va + s0)|l6]* < Clg"(Va + so)ll9lI5
for some 0 < s < 1. Thus, using the fact that ||¢||.c — 0 as A — 0, and (2.36), we obtain

IN(9)]l. < Cllo|%
Thus

1
< C|1 2 :
4@l < Clioge] (CloIE + )

We then get that A(Fy,) C Fy for a sufficiently large but fixed M and all small A\. Moreover,
for any ¢y, @2 € Fur, one has

156 = Nl < € (maslolhe ) 161~ ool

In fact,
N(¢1) — N(d2) = g(Va+ 1) — g(Va + d2) — ¢'(Va) (61 — ¢2)

_ /0 (%gm T+t — @))) dt — ¢ (a)(n — )

1
= | @0+ 62461 = 00) — g (A i (01 = )
Thus, for a certain ¢t* € (0,1), and s € (0,1)
IN(61) = N(¢2)| < Clg'(Va+ @2+ t7(d1 = ¢2)) — ' (Va)lllé1 — ¢l

< Clg"(Va+ sga + (61 — 92)) ([ @1lloc + lId2]lo0) |01 — 20
Thanks to (2.36) and the fact that ||¢1]|co, ||@2]cc — 0 as A — 0, we conclude that

IN(¢1) = N(@2)ll« < Clig"(Va)ll«(|@rlloc + Id2llo) |61 — P2l
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Cllorlloo + l@2lloo)llPr = P2lloo-

Then we have
4(61) - An)l < CllogellN(én) - N(oo)l.
< Cltogel (ol ) 161 — ol

A

Thus the operator A has a small Lipschitz constant in Fj; for all small A, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map & = (&],---,§.) — ¢. Assume for
instance that the partial derivative J¢/),¢ exists for i = 1,2. Since ¢ =T} (=(N(¢) + E))),
formally that

Ae ¢ = (O, 1) (—(N(9) + En)) + T (—@&;»N(cb) + %»EA)) :

From Lemma 2.10, we have

18, Tx (= (N(9) + EX)) loo < Clloge*|N(¢) + Exll. <C|1Og€|

On the other hand,
e N(9) = [d(Va+6) =g (Va) =g (Va)lde), Va + 9, [g' (Vo) — €]
+g' Va4 ) = g (V)]0 0 + [g'(Va) — €*]0¢r), -
Then,

1
a,_iN¢*gc{¢§O Bloo + 101er. 0|00 ||| s + el ¢Oo},
10 N (@)l 9]l Toge ‘H oo + 107 Al |1 ,10g€||\ |

Since [|9¢,), Eall« < and by Proposition 2.5 we then have

B

|log a|3’

0y, @

foralli=1,2, 7 =1,---,k. Then, the regularity of the map £ + ¢ can be proved by stan-
dard arguments involving the implicit function theorem and the fixed point representation
(2.69). This concludes proof of the Lemma. O

2.5 Variational reduction

We have solved the nonlinear problem (2.67). In order to find a solution to the original
problem we need to find & such that

c;(§)=0 foralli=1,2, j=1,--- k. (2.70)
20
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This problem is variational: indeed it is equivalent to finding critical points of a function of
¢ =&’ Associated to (2.1), let us consider the energy functional J, given by

Ta(u) = %/Q|Vu|2 d — %/Qeu*’ dr,  ue HYQ), (2.71)
and the finite-dimensional restriction
B =5 ((Uh+6) (@.8) (2.72)
where
(4 8) o =1+ o (a0 E5) 273

with V) defined in (2.17), ¢ is the unique solution to problem (2.67) given by Lemma 2.11.
Critical points of F\ correspond to solutions of (2.70) for a small A, as the following result
states.

Lemma 2.12. Under the assumptions of Proposition 2.5, the functional F\(§) is of class
C*. Moreover, for all X > 0 sufficiently small, if D¢Fy(€) =0, then & satisfies (2.70).

Proof. A direct consequence of the results obtained in Lemma 2.11 and the definition of
function Uy, is the fact the map & — F)(£) is of class C'. Define

1 (14 v YP_
I(v) = —/ IVo|? dy —/ 1) gy (2.74)
2 Ja. Qe
Let us differentiate the function F\ (&) with the respect to £. Since
I ((Uy+é - (w z & 2.75
A(( A+¢>(%§)>—WA (A+¢)(g,g) , (2.75)

we can differentiate directly I, (VA(§) + ¢(§)) under the integral sign. Let m € {1,...,k}
and [ € 1,2. We have

8§'m,l FA (5)

1
= ms—lDﬁ (VA(E) + 6(€)) [Oe, 1, VA (€) + Oyey . 0(€)]

1 2 k

= m5122/ Ciini Zij [0, Va(€) + Dyer 0(6)]

Py i=1 j=1 7%
1 2k 2k
= ¢ [ZZ/ Cin; ZijOey,), Va(E) +ZZ/ Ciijma(s;n)zcb(fS)]
Py i=1 j=1 7% i=1 j=1 7%
By the expansion of V), we have

A Va
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k 2
p—11 p—1 1
= e, (Z (PUum,Em(gy)"’—p %Pwﬁm,gm(eyH (—) —Puw, ¢ (ey) | —p7”

p VP

= O (wm<y) T (y) + (1%1) %w;(y) +9(y)>

p—11 0

2
p—1 1
= ) Wm(y) + ———0e,), W, (y) + <—p ) T@amzwin(y) + Oe,,0(y)

Hence, for j7 # m, we have

/Q 152150, VA(§) = (- /B( anz'jZlm> (1+0()) = Ofe),
while for j = m and ¢ # [, by symmetry we get

/Q i Zij0 ey, Va(§)

p—11

1 1
= (=] w2y S ag ) ) (14 O
B(¢},R) p 7

) = O0(=)-

v VP
If now 7 = m and @ = [, we get

1
/ 15Zii0e,, VA(§) = (_/ ”lelem) (1+0(3).
B(&),.R) v

£

We thus conclude that

2 k
1
Z/ Cij1; 2150, Val€) = —sz/ T Zim Zim + O(=)-
1 =179 B(&},,R) v

(2

On the other hand, given (2.68), we have that

2 k
Y /Q ¢ijnj ZiOgr, ), H(€)

i=1 j=1

<Y el Sl < o(1) D ey
i

12
Thus, if DeF\(§) =0, for i,l =1,2,5=1,2,--- , k, we then have

c,m(/ i ZimZon) (1 +0(1)) = 0, m=1,....k, 1=1,2. (2.76)

This concludes the proof of the Lemma. O
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Next we give an asymptotic estimate of F) () defined in (2.72). We have the following result.

Lemma 2.13. Let 0 > 0 be fized. There exist positive numbers X\g and C, such that p; are
given by (2.17), the following expansion holds

2(2-p) 8km 16km
N le v F = -2+ plog8| — log e
4dm 1
~5erl€) + |10l ,(© (2.77)

uniformly for any points &;, j = 1,---  k in Q, satisfying (2.1), where

k

oe(€) = oS &) =D Ho(6,&) + Y Gal&. &) (2.78)
j=1 i#]
Furthermore
2(2-p) 47

A le 7 Vi) i) = - V(e ox(€) + | log | 101 (€). (2.79)

(2—p)p

In (2.77) and (2.79), the function 0y denotes a smooth function of the points &, which is
uniformly bounded, as A — 0, for points & satisfying (2.1).

Proof. We have
RO = H (00 +©)

_ %/QW <UA(§)+Q~5<§)) 2 dy — %/QQ(UA@H&(@);, - (280)

Using the change of variables (4.3), namely (U,\ + <;~5> (x,&) = v+ # (VA +9) (%, g))?
together with (2.74) and (2.75), we have that

3 (T +0(9)) = I (02(6)) = 555 [V + 6) = 1,03

Since by construction I§(Vy + ¢)[¢] = 0, we have

Iy (VA(©) +6(0)) = 1 (03€) = gy | DA+ 0121 = 1)

i |, [ B vene [ 03 - 504+ )] 0 - e

— P .
Since ||E)\||* S m, ||¢||oo S m, ||N(¢)||* S m and (236), we get that
(061 + 00) = D] < Sy (2.81)
. OIS SE D log 2P |
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Next we expand

B (UNE) = 5 / IV (U(©)  da % / O gy (2.82)

First we expand the term [, [VU,[>. By (2.23) we have
1
5 [ IV
Q
11 :
= S {Z /Q IVPU, P+ /ﬂ VPU, e VPU, ¢,
J

I#j

p—11
* _pZ/QVPUum (2)V P, ¢ ()

0 2 0 0
> [iput Y [ VPul P,

Jj=1 I#j

+
VR
i)
=
—_
~
no
QM|H
S
1

4 k
p—1 1 1 2 1 1
+ (T) A0 Z / |kuj,fj’ + Z Q pruzvfzvaﬂjéj : (283)

Let us estimate the first two terms. We observe that the remaining terms are O(
First, we note that PU,, ¢ satisfies

)
72(1’71)7@ :

—APU,, ¢, =%, inQ, PU,¢ =0 on o

Then we have

/Q‘VPUM@@)’Q = 52/€Uﬂj’§jPUMv§j(x)
2

Q

/Q 555 (U, () + Holw, &) — log(842) + O(122))

(0] F[ x A ‘
o (25 + o = ) g (203 + |z — &[?)? A K

86—2u;2 8_4/L~74
= | s | los oo+ Halw. ) + 0(u}e?)
/sz<1+|%|2>2 (1+ 2 )2 o

8 1
= [ e (o e+ a6+ .6 o)) + 01
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~ | armmrnrm t L o el e - Ha(6.6)
T o, PR SRR T g, (T [ap)z 8 TR TS
+/ ——j——H(£§%4b(a)/ % o)
TP D i A (R R
(2.84)
But
(/ S &40 (2.85)
o, (1T o2 | |
and
/‘ 5 g ! 167 + O(c) (2.86)
= — N . .
0y, (LT PR 0 (L o)
Moreover,
8
/QW (FSPBE (Ho(& + enyy, &) — Ha(&5, )
1
= ————0 (e%y|*) = O(e). 2.87
|, arpEEo e =00 (2.87)
Therefore from (2.84)-(2.87), we have
[ 19PU, (@) da
Q
= —167 + 81 Hq(¢;,&;) — 32mloge — 167 10g(8,u§)
1
+167 log(8) + O <%) : (2.88)

Now, we calculate that

Z/ VPUM,&VPUM@ dr = Z/ 52€Uul’5LPUM’€j
145 79 145 79

2

8 2,2 8,2
— ;/ €1 A (log e Hj — + Ha(z,&) — log(845) + O(H?€2))
j

o (2} + | =& 25 + v — &%)

8e%pf 1
- Z/a (207 + rw e (bg @+ e—gppe T s)t O<ﬂ?€2>)

1
- Z/Q 14+ | ’ (lOg (52N? T ’ffﬂlz + & — fj’2)2 + Hﬂ(gl +€,Ulza§j)> + (}L?EQ)

I#5 =7
- 2| GrEts) + o)
7 e
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= 81 G(&,&) + O(u2e?). (2.89)
I#j
Thus, from (2.83), (2.88), (2.89) and (2.22) we have
/|VU)\ |2 dx
2(p—1
4p7r 1
<ZHQ &5 &5) +ZGQ 57,,5]) (!10g€|>}‘ (2.90)
i#]
Finally, let us evaluate the second term in the energy
5/ GNP ) / (1A (@) g
P Ja P Ja
P
_ A / (L E) g
P JB(&.9)
A / (L E) g
p k
o\ _L:JIB(ﬁj,S)
= I+1I. (2.91)
First we observe that
IT = X0,(¢) (2.92)
with ©,(§) a function, uniformly bounded, as A — 0. On the other hand,
1y 7l P
— 1+p.yp(v )w) -1
I = p2ry2(=1) /B ' ¢ ' dy
j=1 Y B(&}0/¢)
k
L w; W)+ 252 Hud )+ (252) pwl ) +ow) 1
= Z f (%) 5 e O($))dy
7B b))
i 1
) e (1eoldy) a
2 [ ammr (1o
B(0,722)
1 _
with ©,(¢) a function, uniformly bounded, as A — 0. From (2.91)-(2.93) we get
A P 1 _
]—9 /Q G(UA) df[‘ = WSI{?W (]_ + |10g€| 1@)\(5)) s (294)
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Therefore, from (2.80), (2.81), (2.82), (2.90), (2.94) and (2.14) and by the choice of the
parameters f; in (2.22), and (2.14), we can write the whole asymptotic expansion of F(§),
namely (2.77) holds.

Let us now prove the validity of (2.79). Fix m € {1,...,k} and [ € {1,2}. Arguing as in the
proof of Lemma 2.12, we have

2k
ey Fr(§) = D ,yg(p e [ZZCU/ 1;Zij0¢;,), Va

=1 j=1

(1+0(; )). (2.95)

On the one hand, if we multiply equation in (2.67) against J(e ), Vi, we get

/Q Do+ gle)oents =3 e / 0 ZDi0 Vi

i=1 j=1

where ve = (Vi + ¢)(y,&) = (Vs + ¢)(£,%). On the other hand, we have that

5—1

pyPt

X
ey Un() = 3(54,1»%(2)

Putting together these information, we have that
8(§m)lF)\(§) = </ [A(UA + QE) + AUy + <5)1)—16(UA—4-¢~>)P] 8(§m)lU/\) (1+o0(1)).
Q

Furthermore, since ||¢||o < 7I,L_ngéHoo, by definition of Uy we have that

(U + ¢)(x) = Ux(x) (1 + O(%)) in Q.

Hence, by means of integrations by parts, and the boundary conditions satisfied by Uy, we
get that

ey F(€) = (/Q AUy + AU e O, )(1+0(7 ),

where O(1) here denotes a smooth function of the points &, which is uniformly bounded as
A — 0. We thus conclude that

e IN(E) = (/Q[ VU\Vie,),Us + AU, UAD (1+0(%))

= =g AUN(1 + O<7p))

Computations analogous to the ones we performed to get expansion (2.77) give us the validity
of (2.79). This concludes the proof of the Lemma. O
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2.6 Proof of the main results

In this section, we will prove the main result.

Proof of Theorem 2.2: From Lemma 2.12, the function

UA(E) +9(€) =

x
0t D)
1 (7 ()
where V), defined by (2.17) and ¢(¢) is the unique solution of problem (2.67), is a solution of
problem (2.1) if we adjust & so that it is a critical point of F)\(§) defined by (2.72). This is
equivalent to finding a critical point of

2(2=p)

Ex(€) = AX"'e v F\(€)+ B+ Cloge,

for suitable constants A, B and C. On the other hand, from Lemmas 2.13, for £ € M, we
have that,

F\(€) = ¢x(€) + O(|log e 7)O,(¢),
where @y is given by (2.5), and ©,(&) is uniformly bounded in consider region as A — 0.

Let us observe that if M > C, then assumptions (2.18), (2.19) still hold for the function
min{ M, px (&)} as well as for min{ M, px (&) +O(|loge|1)O(£)}. Tt follows that the function
min{ M, F'(€)} satisfies for all X small assumptions (2.18),(2.19) in D and therefore has a
critical value C\, < M which is close to the value C in this region. If £, € D is a critical point
at this level for F\(€) 4 3, then since

F,\(EA) <Ci< M

we have that there exists a § > 0 such that [§y; — &y > 6, dist(§y;,08) > 0. This
implies C'-closeness of Fj (&) and ¢,(€) at this level, hence Vi(€y) — 0. The function
uy = U(&\) + ¢(&)) is therefore a solution as predicted by the theorem. ]

Expansion (2.20) follows from (2.14) and (2.94), while (2.16) holds as a direct consequence
of the construction of Uy. Expansion (2.17) is consequence of (2.77)

Proof of Theorem 2.1: According to the result of Theorem 2.2, the proof of Theorem 2.2
reduces to show that, for any £ > 1 the function ¢, has a non trivial critical values in some
open set D, compactly contained in QF. This fact has already been established in [36] for the
function (—¢y) in the context of construction of solutions to the Liouville problem

Au+¢e?e"=0, in Q, wu=0, on 09

for a not simply connected domain € in R?. For completeness, we recall here the principal
ingredients employed in the proof of the existence of a non trivial critical value for (—py)
and we refer the reader to [36] for a complete proof of each step.
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Let D be given by
D = {zc QF : dist(z,00") > §}

for some positive and small 0 to be chosen. Let £2; be a bounded non empty component of
R?\ Q and let v be a closed, smooth Jordan curve contained in Q which encloses Q;. Let S
be the image of v, By = ) and B = S*. Define

C = inf sup(—py) (P(2)) (2.96)

®el’ ,cp

where
['={®(z) =¥(1,2) : ¥:[0,1] x B — D continuous and ¥(0,z) = z}.

Observe that, since » ; Hq(&;,&;) is bounded in D and 3, Ga(&;, §;) is bounded below, the
function (—¢y) is bounded above in D.

With an argument based on degree theory, in Lemma 7.1 in [36], it is proven that:
There exists K > 0, independent of & in the definition of D, such that C > —K.
This fact ensures the validity of (2.18).

A delicate analysis of the behavior of H and G contained in Lemma 7.2 and Lemma 7.3 in
[36] is the key step to show the validity of the following result

Given K > 0, there exists § > 0 such that, if (&1,...,&) € OD, and |pp(&, ..., &) < K,
then there exists a vector T, tangent to 0D, such that Vpg(&y, ..., &) -7 #0.

This fact is proved in Lemma 7.4 in [36] and it shows the validity of (2.19). Having established
(2.18) and (2.19), we conclude that ¢; has a non trivial critical value in D, which gives the
proof of Theorem 2.1.
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Chapter 3

Bubbling solutions for Liouville
equation in unbounded domain

3.1 Introduction

Let us consider the following boundary value problem

Au+e?e* =0, in
u =0, on 0f),

(3.1)

where Q is an open, connected and unbounded domain in R?, and € > 0 is a small parameter.

Let G(z;y) be the Green’s function for the negative Laplacian with Dirichlet boundary

condition in €2, namely

—A,G(z;y) = 8md, (), =€
G(z;y) =0, x € 092,

and H(x;y) its regular part, given by

H(z;y) = G(z;y) — 4log P

For every x € 2, the leading term of the regular part of the Green’s function
R(z) = H(x;x)

is called the Robin function of €2 at the point x.

60
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Define the function
k

P 6) = Y H(E6) + ) G6.&),

j=1 i

In this chapter, we consider problem (3.1) on unbounded domain, which is open, connected
in R?, we define it as follows. For x € R? we write x = (z1,72). Let p : R — [1,400) be a
smooth function, satisfying

(1) ¢(0) =1, z1¢'(z1) > 0 for xy # 0;
(2) p(x1) = +o00 as 1 — £oo, and

(3) ¢'(z1) = a>0as x; — oo, and ¢'(x1) = b < 0 as 1 — —oc.
Define the domain(see figure 1):

Q={z=(21,22) : |22 <op(x1)} (3.4)

|

Figure 1: Q = {z = (x1,22) : |z2| < p(z1)}

We observe that §2 is symmetric with respect to line zo = 0, and has two open directions.
Moreover, the domain is not necessary symmetric with respect to x; = 0. We would like to
construct bubbling solutions to problem (3.1) in domain {2, the location of blow-up points
on the symmetric line of 2.

Let 6 > 0 small but fixed. Let k£ > 1 be an integer. Given k different points on the symmetry
line of €2, we write these points as

& =1(t,0), j=1,...,k, (3.5)
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with t; <ty < ... < 1y, satisfies

ti+1—ti>5, 221,2,,]{5—1 (36)

Ore results sates as follows.

Theorem 3.1. Let Q be an open, connected and unbounded domain of R? defined by (3.4),
let k > 1 be an integer. For e > 0 small enough, problem (3.1) has at least one solution u.,
which blow-up at k points &, ..., & defined as (3.5) satisfies (3.6). Moreover,

k

us(w) = Y G:€) + (1) (3.7)

j=1

where o(1) — 0, as ¢ — 0, on each compact subset of QO\{&5,.... &Y, and G(-;-) is the
Green’s function given in (3.2).

Remark 3.2. Let R > 0 be a large number, if we scaling the domain €2, set Qp = %, then
domain Qr approximates two sectors in plane. In fact, we can construct bubbling solutions
to (3.1) in any open, connected and unbounded domain, which has multiplicity ends. For
instance, in (see Yellow area in figure 2), which has four ends and is symmetric with
respect to axis. By the same proof of Theorem 3.1, we can obtain that there exists a solution
to (3.1)in Q, that blows-up at k peaks for any k, the location of bubbling points on the
symmetry lines x1 = 0 and x5 = 0.

!
i

I

Figure 2: Q
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This chapter is organized as follows. In Section 3.2, we give the behavior of Green function
G(z;y) of domain €. In Section 3.3, we describe a first approximation solution to problem
(3.1) and estimating the error. We give the proof of the main result in Section 3.4. Section
3.5 is devoted to give the asymptotic expansion of the reduced energy.

3.2 The asymptotic behavior of the Green function of
Q2

In this section. we are devoted to study the behavior of the Green function G(z;y) of Q. In
order to do this, we first consider the Green function in a sector. For z € R?, we write it in
the polar coordinate as z = (r,0) with r = |z|. Let a > 0, define the sector in R? as

Dy={(r0)eR* : 0<r<+oo,—a<0<a}. (3.8)

Let Gp, be the Green function in the sector D, with Dirichlet boundary condition, that is

—8yGp, () = 8m0,(y), Y € Da; 59)
Gp,(x;y) =0, y € 0D,,. '
We write it as )
Gp,(2;3y) = Hp,(2;y) +4log 7,
(519) = Ho,(asy) + 4105 ——
where Hp,_(z;y) denotes its regular part. Let Rp, be the Robin function in D,
Lemma 3.3. Let z = (r,0),y = (t,n) € D,, we have
(a)
& + 2r2atia cos BTy 4t
GDa<x;y) =2In Tﬂ TL T (Tr [02—&77}) ™ -
ro — 2r2at2a cos (7T [%]) + tw
(b) For point x on the symmetry line of D, i.e. x = (§,0), we have
Rp, (1) = 41n (gyﬂ) . (3.10)
T

Proof. (a) We set g = (t, —1 — 2a). The conformal map of D, into the unit disk is

T30 — y2a
w(x, y) I _

€T2a — y2a

We note that: (i) Since z2= is analytic, and the function of analytic function is analytic,
so w(zx,y) is a analytic function of z;
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(i) w(z,z) = 0 and w(z,y) # 0 for x # y, and w(x,y) =1 for y € ID,;

(iii) 2%(x,y) everywhere in D,.
Hence by the method of conformal mapping,

—41n|w(z;y)|
is the Green function of D,. That is
w27 — goa)| w25 — g |
GDa(l',y) = 411’1#22111#
|z2a — y2a w20 — yaa|?

ra + 2r3atia cos (7r [9;_&77}) +ta

U E 2 EtE cos (n [51]) + 15

We have that
(i) Gp,(;y) = Gp,(y; 7),
(ii) GDa(x;y)|y€aDa =0, and
(iii) Gp, (x;y) — 0 as |z — y| — 400 satisfies £ — +oo0.

(b) For z,y on the symmetry line of D,, we write z = (r,0),y = (¢,0), assume that r > ¢,
from (a) we have

1+2(4)ea + (L)a ra +ta
G ,0); (¢,0)) =21 re " =4ln— _.
Dqy ((T ) ( )) n1—2<£)5—|—($)5 n’l“a—ta
We recall that 1
Gp.(z;y) = Hp,(x;y) + 4log H7 x,y € D,.
Thus
Hp, ((r,0):(1,0)) = G, ((,0);(1,0)) — 4log ——
o +ta
= 4ln(rﬂ+ W(r—t)).
T o —ta
Therefore

Rp.(x) = Hp, ((r,0):(r,0)) = lim Hp, ((r,0); (£,0))

e—0
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For the Green function G(z;y) in €2, we have the following result.

Lemma 3.4. For z = (x1,x2),y = (y1,y2) € ), one has
G(z;y) ~ Gp, (z;y)  for z1,51 > 0, (3.11)
and
G(z;y) ~Gp, .., (x3y)  for x50 <0, (3.12)

where Gp,(x;y) is the Green function of the sector D, defined as (3.8) with o = arctan(a) €
(0,%), and
Dyor—p = {(7’,0) eER? . p<h<2m— g}

with o = arctan(b) € (5, ).

Proof. We may assume that x1,y; > 0. Given R > 0 large, making the scaling of domain, set
Qr = %. By the definition of €2, according to property (3) of ¢, ¢'(z1) — a > 0 as z; — +o0.
Then domain Q2 approaches to a sector D, if R goes to infinity, with o = arctan(a) € (0, 7).

Thus, & = § = (7,0) € Dy C Qp, and the ray {(7,0) : 7 > 0} is the symmetry line of D,.

Let us denote Gg(Z;9) and Gp, (#; §) are Green function in Qg and D, with Dirichlet bound-
ary condition. We note that

G(x;y) = G(RZ; Ry) = Gr(T:9) (3.13)

We observe that the function

(7.p) = 7% cos (5-p)
vr = T2 COS | —
3 P 20/)

is harmonic in sector D, and satisfies Dirichlet boundary condition. By Phragmen-Lindelof
principle [104], we have that Gp,(Z;9) > 0 in D,(Z;y). For rq > 0, we define

my = TO—% inf GR<x7y) - GDc,(xvy)

F=ro oS (%p) ’
and
= Gp.(3,§) — Gr(, 7§
my = 14 *7 sup 2. (%,9) — R(:)s,y)'
F=rg CoS (%p)
Set

Then we have
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Then by the maximum principle we get
(@) >0 for € D,N{zT=(70):7<rp}.

From (3.13), we then obtain, for z,y € Q,

G(z;y) > Gp,(x;y) — my (}%) *7 cos (%p) (3.14)

with p € (—o,0). On the other hand, set

(@) = Gp, (#;7) — Gr(T:; ) — mav(7, p).

By the same way, we have

Then by the maximum principle we get

(@) <0 for € D,N{zT=(70):7<rp}.
From (3.13), we also obtain, for z,y € Q,

X ™

G(z;y) < Gp,(r;y) — may (E> & cos <%p) (3.15)

with p € (—0,0). From (3.14) and (3.15), letting R — 400, we obtain that, for z,y € D, C
Q

Y

G(x;y) ~ Gp, (1Y)
that is (3.11) holds.

On the other hand, if 1,7, < 0. Since ¢'(z1) — b < 0 as 3 — —oo. We have that, if
R — +00, Qr approaches to a sector

Dyor—p={(r,0) eR* : 0<0 <21 — 0}

with ¢ = arctan(b) € (5, 7). Then (3.12) follows from the same argument. O

It is consequence of above Lemma 3.4 and (3.10), we have

Corollary 3.5. For points on the symmetry line of €, then we have the asymptotic behavior
of Robin function R(x) for z = (£,0),

R(z) ~4In <%|§|> ,  with some o > 0. (3.16)
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3.3 The first approximation solution

In this Section, we build the first approximation solution and to estimate its error. Let us
introduce the radially symmetric solutions of the following limit equation

Aw+e” =0 inR? /ew<—|—oo,
RQ

which are given by the one parameter family of functions

2

w,(z) = log ( S (3.17)

EEERE

Let 6 > 0 small but fixed, and & > 1 be an integer. Let & = (&1, ..., &) given by (3.5) satisfies
(3.6). Moreover, consider k positive numbers f; such that

§<p; <8t forallj=1,... k. (3.18)

The parameters j; will be chosen properly later on. Define the function

(1) = log gt
uj(x) =
’ (1522 + | — &1?)?
¢ 1
= wy, (%&) + 4log - log(SM?). (3.19)

Given a radial smooth cut-off function ns : R + [0,1] such that n;(z) = 1 for |z| < 2,
0 <ms(z) <1for $ < |z| <4, and ns(z) = 0 for |z] > §. Set

Uj(x) = (uj(x) + H(x, &) ns(x — &) + (1 = ms(x = §))G (2, &)

We now define the first ansatz is given by

Uz) = Z U;(z). (3.20)

Jj=1

Consider now the change of variables

v(y) = u(ey) — 4log é

If u is a solutions of problem (3.1), then v satisfies the following problen

Av+e’'=0, in ()
(3.21)

v = —4log %, on 0f).,
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where €, = ¢71Q. We also write £ = e71¢; and define the first approximation solutions to
(3.21) as

V(y) =Ul(ey) — 4log é (3.22)

We will look for solutions to (3.21) of the form
v="V 4+,

where V' is defined as in (3.22), and ¢ represents a lower order correction. We aim at finding
a solution for ¢ small provided that the points §; are suitably chosen. For small ¢, we can
rewrite problem (3.21) as a nonlinear perturbation of its linearization, namely,

Ap+e"Wp=—[E+N(p), €
{¢ NG et -
where
E:=AV(y) +e"®, (3.24)
N(p) :=e"T¢ — VW) _ VW4, (3.25)
We aim to choose suitable j;, j =1, ...,k such that the error term is small.

In fact, we observe that eV ® = g%eV®@) with = ey. If § > 0 small but fixed, for |z —§&;| > g,
that is |y — &f| > 2 we have

1
uj(z) + H(z,§) = log (122 + |z — & 2)?

= G(z,&) + O(u32~62).
Then we have that Uj(x) = G(z,&;) + O(uje®). Hence, for all j =1,... k,

+ H(*’Lf])

k
> G(z,85)+0(u3e?) )
e’ W) = 2V = o= ’ = 0(54) if |y — §§| = 2’ (3:26)

Moreover, AV (y) = e2AU(z) and then we obtain

5
AV(y) =0 if ly—¢&l > % (3.27)
On the other hand, fix j € {1,... k}, for |y — & < £, we have Uj(z) = u;(x) + H(z,&;).
We write y = & + 2, then

k
V) — AU 254651[“]'(4””1{(%5]')]
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k
L H(@&)+ Y (o) H @)
— €4eu1 (x)e 2]

) OB 3 i) +H (565
_ ewuj 2 e i#]

k
w ()~ 10BBUDFH(E5,6)+OEly =6+ 3 [ui (@) + H(w,6:)]
= e Hij e i#j .

since
k
S i) + H(z, &)
i#j
é 1
> o (B 116 — & e TG H RS
k
= Z [G(&5,&) + Ofelz])]

i#]

If we choose p; satisfies

k
log(813) = R(&) + > G(&,6). (3.28)
i#£j
Then we have
0
Vv wy, . (2 ! : /
' = e < Olely = gl) ifly— &l < o (3:29)

And, we have

b
AV (y) = e if < —
Viy)=e if |y — &l < o

Therefore
k

1
E C —_—. 3.30
|E(y)| < 5;1_‘_|y_5;‘3 ( )

3.4 The Existence result

Let us define
20j(y) = Ouwp; (y),  2i5(y) = Fywy (y), 1=1,2,
It is known [10] that the solutions of AZ + €“iZ = 0 are given by 2y;, 215, 29;. Define for
i=0,1,2and j=1,2,--- k,
Zij(y) = zi; (y— &), i=0,1,2. (3.31)
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Consider a large but fixed number Ry > 0 and a radial and smooth cut-off function y with
x(r)=1ifr < Ry and x(r) =0 if r > Ry + 1. Write

Xi() =x (ly = &l)- (3.32)
Given h of class C%(€).), we consider the linear problem of finding a function ¢ and scalars

cij, ©=1,2, j = 1,...,k such that

2k
AV(y)+e"Wo = —[E+ N(9)] + > > ¢ijZix; in Qe
i=14=1
=0 on 0€); (3.33)
fQE¢Zinj:0 fOTiZI,Q,jzl,"',k.
Counsider the norms
A —1
[9lloc = sup @(y)|, [|A]l« = sup (Z(l +ly—¢&l)~? +€2> |h(y)]-

yeQ. yeQe \ ;5

By the same argument in [36], we have the following result.

Proposition 3.6. There exist positive constant ¢y and C, such that, for &, j = 1,...,k
given by (3.5), then there is a unique solution ¢ to problem (3.33) for all e < 9. Moreover

|¢llee < Ceflogel.
Furthermore, the map & v+ ¢ € HY(Q.) is C', and
D]l < Cellogel”.
After problem (3.33) has been solved, we find a solution to problem (3.23), if we can find a
point ¢ = g = (&1,...,&,) such that coefficients ¢;;(£') in (3.33) satisty
c;(§)=0 foralli=1,2, j=1,--- k. (3.34)

We now introduce the finite dimensional restriction Z.(&), given by

L) = J ((U+9) (@.9) (3.35)

where J is the energy function of (3.1), that is
AR
§

- x
(U+d) @ =(+9) (.2
with V' defined in (3.22), ¢ is the unique solution to problem (3.33) given by Proposition 3.6.

and
) (3.36)

The next result, whose proof is postponed until Section 3.5.
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Proposition 3.7. (i) The functional Z.() is of class C*. Moreover, for all € > 0 sufficiently
small, if D¢Z.(€) = 0, then & satisfies (3.34).

(73) Let 6 > 0 small but fized, then there exist positive numbers €y and C', such that for any
points &, j =1,...,k given by (3.5), p; are given by (3.28), the following expansion holds

Z.(§) = 8km(log8 —2) — 16kmloge + 41 d(€)
+61og 00(£) + 6T (€) +e0(€) + O(e?)[9]. (3.37)

where Q)| denotes the measure of ), and

k
E) =~ | DR(E) + DG 8)| - (3.38)

i#j

and ©(&) is a smooth function in the consider region, and Y (&) is a smooth function so that

IT(E)] < CL(8).

Proof of Theorem 3.1: According to Proposition 3.7, we have a solution to (3.1) if we
find a critical point £ of Z.(&), it is equivalent to finding a critical point of the function ®(¢),
given points §;, j = 1,...,k as (3.5), thus it is suffice to find a critical point of ®(¢), which
defined by

k
B(E) = —4m | Y R(E) + Y G.)
j=1 i)
By the properties of Green function, we know that if § — 0, then points §;, 7 = 1,...,k
given by (3.5) satisfies (3.6), we have

d(&) > —o0 as d — 0.

On the other hand, we note that points §; (given by (3.5))on the symmetric line z = 0, from
Corollary 3.5, we have

O(§) - —oo0  for some [t;| = 400, i =1,2,3.

Thus ®(£) has a maximum point, denote it by £*, that is, there exists critical points £* =

(&1, &) of (8).

Moreover, while (3.7) holds as a direct consequence of the construction of U.

3.5 Expansion of energy

Proof of Proposition 3.7: (i) The proof is the standard way, see [36].
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(ii) According to the same proof of Lemma 5.2 in [36], we have
Z.(§) = J(U) + 6-(5), (3.39)

where [0.(£)| + |VO:(£)| — 0 uniformly on points given by (3.5). We now give the expansion
of energy J(U), we have

1
J(U) = -/ VU —52/ U [T (3.40)
2 Q Q
We first claim

I =8km(log8 — 1) — 16kmloge + 4n®(&) + 0 log 0O(&) + 6T (€), (3.41)

where ®(£) given by (3.38), ©(¢) is a smooth function in the consider region, and Y(§) is a
smooth function so that |Y(&)| < CP(E).

Proof of (3.41): We can write it as

k
1 1
I = -E:/ \ku—/ VUP
27 /856 2 Jous By (6

i I + 12> (3.42)

b= /Busj)WUPZ/Ba(sj) v <é Ul(x))
= Z/é VU ()] +Z/ 2)VU,(x)

B (&)
5 J

_ VU, () + / VU
‘/Bg(éj Z B§ fj
Z Bs (&) ! Z B (&)

i#£j i#l#]
= Ij1+lj2+lj3+lj4. (343)

N | —

where

2

Estimate I;;: We observe that U;(z) = w;(x) + H(x,&;) for z € B (&;), and integrating by
parts, using —AH(z,&;) =0 in Q, we have

I — /B o VU, () = / g(gj)|v<uj<x>+ﬂ<x,§j>>r
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- [ vu@reef
By (&)
OH (x, ;)

= ]VU<(x)]2+2/ uj(x) d
/Bg(ﬁj) ! 33%(61') ’ v
OH (x,&;

] ngs)
3Bg(§j) v

1 OH ;
- / |vuj(g;)|2+2/ log —5—5——5—— gf,f])
B; (&) OB (&) (Njg + ’§| ) v

8H(x,fj)
H NS
+ /aBg(gj) (@, 8)

_ /B 5 Vi () + 6log 60(€) + 5T (€). (3.44)

V() VH(x, &) + / VH(z &)
(&) B (&5)

é
2

where now, and the rest of the proof, v will denote the out normal vector of 2, O() is a
smooth function in the consider region, and Y (&) is a smooth function so that |Y(&)| < CP(E).
Moreover

/ |Vuj($)|2 = 16/ 2 2‘55—53"2 2 de
Bg(&j) B%(éj) ('“j8 + | — £]| )

_ 16/ B U/
B, (&) (L+1[yl*)?

J

16 | —2log(e) — 1+ logl(ue)? + (L)) 4 (S
— 167 [ 2log(pye) — 1+ log(use)” + ()] + (o) 1 (57
= 167 [—log(8y5) — 2log(e) + log 8 — 1
2 0.2 (1je)”
+log[(p;¢)” + (5) ]+ m (3.45)

Estimate I;5: We note that for § > 0 arbitrarily small, and £ = (&,--- , &) given as (3.5),
then we have U)(z) = G(z,&) for x € By (&) with § > 0 small.

L, - Z/m VU(2)? _Z/é VG(x, &)

B 0G(x,&)
E g/‘”g(@) Gloa) =5,
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= 5T(€) (3.46)
where T denotes a smooth function of € so that |T(£)] < CP(€).

Estimate Ij3: since 0 is arbitrarily small, in By (&) we have Uj(z) = uj(x) + H(z,§;), and
Ui(x) = G(x,&) for i # j, integrating by parts, we have

=X PG =Y [ V6T + )

i#] i#] 6(53
- log ————— + H(x,&)| ——=
; /‘933(&) (122 + |3]2)2 2
= 0logdO(¢), (3.47)

where © denotes again a smooth function of &.

Estimate I;,: Using again 0 is arbitrarily small and by a Taylor expansion, if ¢ # [ # j, on
Bg(fj) we have U;(z) = G(x,&;) and Uj(x) = G(x,&), then

Iy = Z/Bg(gj)VU z)VU(z Z/B Gz, &)VG(x, &)

i#£l#] oy 5 &)
G(z,&)
- &
l#%l:#j /833 (&) Gl ) ov
) .

where T denotes again a smooth function of £ so that |T(&)| < CP(E).

Thus, from (3.43) to (3.48), we obtain
I; = —16mlog(8u5) — 32kmloge + 16km(log8 — 1)
+01og 0O(&) + 6T (§) (3.49)

with ®(&) given by (3.38), ©(§) is a smooth function in the consider region, and Y () is a
smooth function so that |Y(&)| < CP(¢).

Next we estimate I5.
L, = / |VU* + / |VU? := Iyp + I1p. (3.50)
Q\Uk_, B5(¢5) uk_, (Bs (fj)\Bg (&)
We first estimate the first term of above. Since 9§ is arbitrarily small, and points ; given by

(3.5). We have that on Q\ U¥_, Bs(&;), U(z) = zk: G(z,&). Then

Ia Z / VU ? + Z / VU, VU,

“lovui, By ) ot B, ()
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:Z / |VG$§1|2+Z / G(2,&)VG(2,§)

I= 1Q\u B(;(gj) i Q\UF_, Bs(&5)
_ / IVG(z, )| +Z / IVG(x,&)
Q\u§ 1Bs(&5) #i Q\UF_, B5(¢5)

+Z / G(x, &)V G (x, &)

Lo\ Bs(e))

k k k
=S / Vel +Y Y [ VG )

jle\Ba(fj) I=1 T 0\ By (&)
k
iy | vewavewe)+ Y [ vewe)vome)
I Q\Bs(g)) FEIo\Bs(¢))
- 12a+12b+[20+12d- (351)

Using the fact —AG(x,¢;) = 8md¢,(v) in Q and G(x,¢;) = 0 for  on the boundary of €,
integrating by parts, we have

k
o= Y | vewg)

=lo\B; (&)
k k

= Z / G(x, fj Gl fj Z G(z,&)AG(x, &)
I=La@\Bs(¢))) I=ta\B; (&)
k k

- Z / (l‘ gj) 33 fj Z / $ 5] 55; )
I=1o@\Bs(g))) =lo\Bs(¢;

k 0G(x,&;)
-3 | g™
T=28(0\Bs (€5))

k
— Z / Gz, @)M (3.52)

— ov
=085 (€5)

We observe that on 0Bs(¢;), we have G(x,&;) = —4logd + H(x,&;) and % =3+
VH(z,&;) - v, and by a Taylor expansion, we have

| g

0Bs5(&5)
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— / [—4logd + H(z,&;)] [%—FVH(%@‘)'V

0Bs(&5)
= [ om0+ R + Hl6) - H(E.6)
0Bs(&5)
4
X |:g + VH(ZL’,g]) . I/:|
= 8mR(&) — 327 logg + dlog 6O(&) + 0O(&). (3.53)

And

b= 3y | vewar

I=V 2T 0\ By (¢))
k

> / Gla, &) 20 (x &) _ 51(e). (3.54)
o (&)
On the other hand,

k

Le = ) / VG(z,&)VG(x,&))

73 0\Bs (¢))
k a 4 k
Y [ ewefe s [ cmencie
75 9\ Bs (€5)) #I0\Bs (&)
i G(xagj)
- > [ cwe™y
71 0B5(¢;)
b 4
= > [ [66.6)+ 00 + VH.g) 4
71 0B5(¢;)
k
= 87y G(&.&) +0T(6). (3.55)
i#£]
Moreover,
k
Ly = Z G(x,§)VG(7,§)
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b 0G(z, &)
= > Gz, &) —=>
iaél;éjaBL) Ov

— 5T(S).

(3.56)

We observe that on Bg(ﬁj)\Bg (&), we have U;(z) = G(z,&;) + O(uje?) and Uy(x) = G(x,§)

for [ # j. Then we have

L = / IVU|? = /

Ui (Bs(€)\Bj (&) U= (Bs(€)\Bj (§;)

_ / VUIP+ > / VU, 2

VS (Bs(€)\By (6)) T (Bs(E)\B (€))

=Y [ Ve ouP

Jj=1

Y[ vewer

=U T By(e)\By (€))
= 0Y(¢).
Thus, from (3.50) to (3.57), we obtain

k k
I, = 8r [ZR%HZG(&»&) +8log 6O(€) + 6T(€)

i#]
Therefore (3.41) follows from (3.49), (3.58) and the choice of y; in (3.28).

Finally, let is estimate the second term /7 in the energy.

k
I = 52/6U:Ze€2 / eV 4 &2 / eV
Q -
j=1

Bs (&) Q\Uj_1Bg (&)
where
g2 eV = & erJr’;j "
B (&) By (&)
_ s (x)eH(z,gj)Jr;jj Ui
B (&)

77

(%)

2

(3.57)

(3.58)

(3.59)



CHAPTER 3. BUBBLING SOLUTIONS FOR LIOUVILLE EQUATION IN
UNBOUNDED DOMAIN

) / 1 H(z,&)+ 3> Us
= £ e i#]
(n3e? + |z = &)

B (&)
8uze’ —log(8u2)+H(z.6;)+ ¥ Ui
- / 2_2 22 € i
(1ie* + |z = &%)
Bg (&)
/ 8uie’ —log(8u2)+R(&)+ 3. Gl +0(l=51)
= & b
(nje® + |z = &)
Bs (&)
= 81 +0.(§) (3.60)
Moreover,
g / eV =¢? / M = 0(%)]Q. (3.61)
Q\Uk_, B (&) Q\UleB% (&)
Thus
IT = 8km+ 0(?)|Q] +£0(¢). (3.62)

Therefore, (3.37) follows (3.39), (3.40), (3.41) and (3.62). This completes the proof.
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Chapter 4

Mixed interior and boundary bubbling
solutions for Neumann problem in R?

4.1 Introduction

Consider the following boundary value problem

—Au+u=Pte u>0, inQ;
(4.1)

% =0, on 0,
where € is a bounded domain in R? with smooth boundary, A > 0 is a small parameter,
0 < p < 2, and v denotes the outer normal vector to 92. This problem is the Euler-Lagrange
equation for the functional

() = %/Q(|Vu|2 ?) — %/ﬂe e H'(). (4.2)

If p = 1, Senba-Suzuki, in [109, 110], have analyzed the asymptotic behavior of solutions to
problem (4.1). If uy is a family of solutions to problem (4.1) when p = 1, then there exist
non-negative integers k,[ > 1, such that

lim A / ¢ — A (2k 4 1). (4.3)
Q

A—0

!The main result of this chapter was published in Journal of Differential Equations, Volume 253, Issue 2,
15 July 2012, 727-763.
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Let m =k + 1. Up to subsequences, there exist points §;, 7 =1,...,m with {; € Q for j <k
and & € 0N2 for k < j < m, for which

k m
ux(z) = Z87rG(x,§j) + Z AnG(z,§&5), as A —0, (4.4)
j=1

j=k+1

uniformly on compact subset of Q\{&1,...,&,}. Moreover, the m—tuple (&1, ...,&,) can be
characterized as critical point of a functional defined on QF x (9Q)!, given by

em(&) = om(&r, .- &) = ZC?H(@’@) +)acG6,§)), (4.5)

=1 1]

where
c;=8m for j=1,...,k, and c¢;j=4r for j=k+1,...,m,

and G(x,y) is the Green’s function of the problem

—A,G(z,y) + G(z,y) = 6,(z), in €
0 (z) (4.6)
ng’y = 0, on 897
and H (-,-) its regular part, namely,
G(z,y) + 5 loglz —yl,  ifye®;
H(z,y) = : . (4.7)
G(z,y) + +log |z —yl, if y € 0.

Conversely, del Pino-Wei, in [41], constructed bubbling solutions wuy to problem (4.1) when
p = 1 with the above properties (4.3) and (4.4). Moreover, the location of the bubbling
points corresponds to critical points of the function ¢,, defined by (4.5). Furthermore, they
obtained the following expansion of the energy functional

Ji(uy) = —47(2k +1)(2 — log 8) — 87(2k + 1) loge — %cpm(f) +o(1),

where o(1) — 0 as A — 0.

This chapter is devoted to construct solutions to problem (4.1) with bubbling profiles at
points inside €2 and on the boundary of 2 when p is between 0 and 2. In particular, we
recover the result in [41] when p = 1.

Let € be a parameter, which depends on A, defined as

2(p—1)

4 p p—
DA (—— log 5) ST =1 (4.8)
p

Observe that, as A — 0, then ¢ — 0, and A = &2 if p = 1. Our result states as follows.
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Theorem 4.1. Let 0 < p < 2, and k,l,m > 1 be integers with m = k+1. There exists \g > 0
so that, for any 0 < A < Ao, problem (4.1) has a solution uy, with the following properties:

(1) ux has m local maximum points £, j = 1,...,m such that £ € Q for 1 < j <k, and
§ € 09 for k+1<j < m. Furthermore

]“ m *7 et . = i my

S om (&30 &) = im0

where o, is defined by (4.5). In particular
(2) One has
. . k m
ur(z) =p2vVAer [Z 8nG (7, &5) + Z AnG (7, &) +o(1) (4.9)
j=1 j=k+1

where € satisfies (4.8), and o(1) — 0, as A\ — 0, on each compact subset of Q\{&5, ..., &5,
and G(-,-) is the Green’s function given in (4.6).

(3) Moreover

T / e = dr(2k + 1), (4.10)
Furthermore
2(p—2) 2—plog8 87 1 _
Juy) =X e 7 |—4nk +1)——— — — 2k + 1) loge — ———,,(£*) + O(|log e 1}
2(w) (k4128 = Lk 1) loge — z—son(€) + Of|loge| )

(4.11)
where O(1) uniformly bounded as A — 0.

This chapter is organized as follows. In Section 4.2, describing a first approximation solution
to problem (4.1) and estimating the error. We describe the proof of the main result in Section
4.3. Section 4.4 is devoted to perform the finite dimensional reduction. Section 4.5 contains
the asymptotic expansion of the reduced energy.

4.2 Preliminaries and ansatz for the solution
In this section we describe the approximate solution for problem (4.1) and then we estimate
the error of such approximation in appropriate norms.
let us introduce the following limit problem
Aw+e” =0 inR? /2 e’ dr < 400. (4.12)
81 :



CHAPTER 4. MIXED INTERIOR AND BOUNDARY BUBBLING SOLUTIONS
FOR NEUMANN PROBLEM IN R?

It is well known that the solutions to (4.12) can be all written in the following form

2

w,(z) = log ( S and  w,¢(2) == w,(z — &) (4.13)

R
where p is any positive number and ¢ any point in R? (see [21]).
We choose a sufficiently small but fixed number 6 > 0 and define
i=1,...,

M = {§ = (&,...,Em) € QF x (0Q) mink dist(&;, 092) > 9, n;ln & — &5 > 5} (4.14)

Let us consider m distinct points (&1, ...,&,) € Mg, with &, ..., & in Q and &1, ...,&, on
0. Moreover we consider m positive numbers p; such that

§<p; <8, forall j=1,....,m. (4.15)
We define the function
(r) =1 il
u;(z) = log ,
’ (136 + |z — &?)?

and a correction term defined as the solution of

8_1/] = —a—yj, on aQ
Lemma 4.2. For any 0 < a <1, = (&,...,&n) € M, then we have
Hj(x) = ¢;H (w,§;) — log(8u3) + O(e”), (4.17)

uniformly in Q as e — 0, where H(-,-) is the reqular part of Green’s function defined in (4.7).

Proof. First, on the boundary, we have

OH, _ 0w _ (&) vlw)
v v pre? + o — &
Thus,
. OH;  (z—§&)-v(z) |
ll_I)% 5 =4 ToEpE Ve 0Q\{¢;}.

On the other hand, the regular part of Green’s function H(x,y) satisfies

OH (z,y) _ 4 (z—y)-v(z) on 99 (418)
vz ¢ fe—yP? :

{—AIH(S&y) +H(z,y) = —Flog ity in @
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Set z(z) = Hj(x) — ¢;H(x,&;) + log(843), then we get

9z(z) _ OH;(z) (x=&;)-v(z)
= -4 Fara on 0N).

A direct computation shows that, there is a positive constant C' such that

OH. _£).
ov |z — &l La(89)
and
1 L 1 L <C fi l<g<?2
og —— — log < (e, or any q )
e B - PP
Then by elliptic regularity theory, we obtain
< (2% A < Cela
Hze”wl+s,q(g) < B + | Zg||Lq(Q) < Ce (4.20)
VllLaon)

for any 0 < s < é. By the Morrey embedding we obtain

l2ellos () < Ce'/e

for any 0 < 8 < 5 + é. Then we obtain that (4.17) holds with o = %. O

We now define the first ansatz is given by

with some number 7, to be fixed later on. We want to show that U(z) is a good approximation
for a solution to (4.1) far from the points &;, but unfortunately it is not good enough for our
construction close to the points §;. Thus we need to further adjust this ansatz. In order to
do this, we set

8
w3+ ly = &P

Wy, (y) = wy,; (y — &) = log (
Define the function w;; to be the radial solution of
Aw;j + e iw; = e f' inR?  for i=0,1, (4.21)

where

fr=- (ww + %(wﬂj)2> ,
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Mr

2

1
fl = — (211)“].100]' + = |:UJOj + 9

D — 2 2 (wuj)3
+wo; + m(wuj) + T) :

In fact, as shown in [47] (see also [20]), there exists radially symmetric solutions with the
properties that

ly — &}l 1
+O0(+——=7) as|y—§&| — oo, 4.22
” (|y—§j|) ly =&l (4.22)

w;;(y) = Cj;log

for some explicit constants C;;, which can be explicitly computed. In particular, when ¢ = 0,
the constant Cy; is given by

2
+oo t2_1 8/,1/'72 1 8/,L»72
Cop = 8 t—-—" llog—29 4~ (1og—4__ | | at
g / @1y | Barer 2\ Barep
2
+oo t2—1 8,&-72 1 8,&-72
= —4 1 J — | log —L— d(t?
/O (t2+1)3 0g (1+t2)2 + 2 0g (1+t2)2 ( )

oo 9 72 1 o2
= —4 = log(8p;%) — 2logr + 5 (log(8uj )
1

—2log(8p; %) log 4 2(log 1)?] dr-.

Since N
-2
/ ! -— dr =0,
1 r
T 9 1
/1 3 logrdr:§,
and .
Cr—2 9 3
/1 = (logr) dr:i
Hence

Coj = 4log8 — 8 — 8log ;. (4.23)

Let H;;, for ¢ = 0,1, be a new correction defined as the solution of

6;/” = —Bgf , on Of. .
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Lemma 4.3. For any 0 < a < 1, fori =0,1, one has

Choc; .
H;j(x) = —%H(x,@) + Cjjlog(p) + Cijloge + O(?) (4.25)

uniformly in Q as € — 0, where H is the reqular part of Green’s function defined in (4.7).

Proof. The proof is the same as Lemma 4.2. First we note that, on the boundary, we have

i 2 _ ¢ (8=6) (@

o FErE
Define Z(z) = H;;(x) + %H(x,ﬁj) — Cyjlog(p;e), by using (4.18), then we can get

828(5) 8H” +4C’U—(x & V(x), on 0f).

|z —¢&;[?

From (4.22), we can get

‘ 1
’ - 53’
for some constant C' > 0, and

Han o @ =§) v(z)
G |z —&[?

Then by the same procedure as proof of Lemma 4.2, we obtain that (4.25) holds. O

< (Ce, forany 1<q<2,

La(Q)

Cijlog —— — wy;

< Qe Wg>1,
L2(09)

Now we define the first approximation solution to (4.1) as

m

Uaa) = o D [uso) 4 Byl + P o) + gl

1
PP = P

p

+ (19;1) % (w1;(x) + Hlj(l’))] : (4.26)

From Lemma 4.2 and Lemma 4.3, one has, away from the points &;,

0@ = Y a6t [1 SR (P2) S o)

1 2
Py p 4

(4.27)

Consider now the change of variables

4
v(y) =y tuley) —py?,  with 4P = ——loge.
p
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By the choice of ¢ in (4.8), then problem (4.1) reduces to

—Av +e%v = f(v) —pyPe?, v >0, in Q;
fw) —py (4.28)
% =0, on 0.,
where Q. = ¢71Q), and
_ Y \p=1,77 10+ 55071
flv) =1+ —)p L5 : 4.29
) = 1+ -2) (4.20)
Let us define the first approximation solution to (4.28) as
Va(y) = "~ Ua(ey) — ", (4.30)

with Uy defined by (4.26).

We write y = e 'z, £ = e71¢;. For |z — ¢&;| < & with ¢ sufficiently small but fixed, by using
Lemma 4.2, Lemma 4.3 and (4.27), and the fact that u;(ey) — p7? = wy, (y — &), we have

B = o) + (o) + o () + (o)

(B0 S (e + ) -

5 [ul@y) + Hiley) + B2 (waley) + Haley))
v b 7

N (1’;1) : % (wn(ey) + H11(53/))]

b
= wy,(y— &) + ¢;H(ey, &) — log(8u3) + O(e)
p— 11 COjCj «
+T% woy (ey) — TH(L §j) + Cojlog(p;) + Cojloge + O(e”)
—-1\* 1 Cyj¢;
+ <p—p ) ~n [unj (ey) — ITJCJH(xagj) + Cyjlog(py) + Ciyloge + O(Sa)}
m Cop—11 Oy (p-1\"1
N I [t L (S
+§ C] G(gh&]) 4 P ,yp 4 ( P ) ,YQp
j
_ p—11 p—1)" 1 ' o
= w;(y) + T¥w0j (y) + (T) %wlj (y) + O(ely — §]|) +0(e”)
p—1
— log(SN?) + ch(fj,fj) + Z ClG<€l7€j> - 4 COJ
I#j
—11 |Ch; p—1)Cy
_pT$ % (ch(fj,fj) + ZCZG(&vé‘j) - 4108;/1/]) + ( 4) s
I#j
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—1\* 1 |Cy;
_ <p_> — % GH(E,&) + ) aG(§.&) — 4logp, | | (4.31)
p v 1]
where
wj(?/) = Wy, (y— 5;’); w0j(y) = w0j(y - §j)a wlj(y) = wlj(?/ - §j)-
We now choose the parameters p1;: we assume they are defined by the relation
—1
log(83) = ¢ H(&,8)+ Y aG(é,é) - P 1 Cu
1]
p—11 |Cy, (p—1)Cy
R TJ (ch(éj,fj) + ;CZG(&,@) — 410%#1) + TJ
2
p—1 1 |y
- (T) e f (CjH(§j>fj) +Y aG(&, ) - 410%#;‘)] - (4.32)
1]

Taking into account the explicit expression (4.23) of the constant Cp;, we observe that p;
bifurcates, as A goes to zero, from the value

__»p  p-1 2(21;;)|:ch(£‘7"§3)+2‘ClG(glvgj):|
fi; =8 2Cpezre 17

(4.33)
solution of equation

p—1
4

log(8413) = ¢; H (&,&) + Y aiG(&, &) —
#i

Co;. (4.34)

Thus, p1; is a perturbation of order ,yip of the value fi;, namely

log(S/@) — [2(]9 - 1) (1 — log 8) + 2%]9 (CjH(fj, é}) + ZCZG(&,SJ')>]

2-p 1%

<(1+0(5)): (135)

Then, by this choice of the parameters j1;, we deduce that, if [y —&;| < d/¢ with ¢ sufficiently
small but fixed, we can rewrite

B p—1\* 1
) = ) + P Sy )+ (P20) s )+ 600) (1.36)

with
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In the rest of this chapter, we will look for solutions for problem (4.28) in the form v = V) +¢,
where ¢ will represent a lower order correction. For small ¢, we can rewrite problem (4.28)
as a nonlinear perturbation of its linearization, namely,

L(¢) = E\ + N(¢), x € Q,;
Ef¢) x+ N(9) (437)
a—f =0, x € 0.,
where
L(¢) == —A¢+e*p—Wo, with W = f'(\), (4.38)
B\ = AVy + f(Va) — €2V + 4e’loge, (4.39)
and
N(¢) = f(Va+ o) = f(Va) = ['(Va)o. (4.40)
For any h € L>(€2.), let us define a weighted L*>-norm defined as
m -1
1Al = sup (2{:(1-%|y-—€§D2”-F52> |7 (y)] (4.41)
Yyciie =1

where we fix 0 < ¢ < 1. With respect to this norm, the error term E) given in (4.39) can be
estimated in the following way.

Lemma 4.4. Let 6 > 0 be a small but fired number and assume that the points & =
(&1,...,&m) € Ms. There exists C' > 0, such that we have

C C
1B« € = = 5——3 (4.42)
7 |logel
for all X small enough.
Proof. First we observe that
— 2V + 4e?loge = O(£%). (4.43)
Far away from the points §;, namely for |z — &;| > 9, i.e. [y —&i| > g, forall j =1,...,m,
from (4.27) we have that
AVA(y) = ;"1 AU (ey) = O(y' <),
On the other hand, in this region we have
41 1 1
PP pyP |log ]
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where O(1) denotes a smooth function, uniformly bounded, as ¢ — 0, in the considered
region. Hence

—1
_ V" e By
f(VA) 1 —f‘ e pYy

C—= if 1<p<2;

Ot TogelP if 0 <p< 1.

C—=2 if 1<p<2;
4 o(1)

f__elloecP T if (0 < p < 1.

[loge|P—

Thus if we are far away from the points £;, or equivalently for |y — &| > g, the size of the
error, measured with respect to the || - |[.-norm, is relatively small. In other words, if we
denote by louter the characteristic function of the set {y : |y —&| > g, j=1,...,m}, then
in this region we have

( 2(2—p)

Cf—L if 1<p<2;

MogerT
HE)\louterH* S 2-p 2—p c
e P loge P +—=>— .

\CWG [ogel if 0<p<l.
( 2(2—p)

e P 3 .
CW if 1< p < 2;
= < oy

5 _2-py) Cl1 1-p .
Cﬁe p |logel+Clloge] if 0< p<l1.
\

( 2(2—p)
Ct—2— if 1<p< 2;
< log <™ =7 (4.45)

2—p

C—=2 . if 0<p<l.

\ ~ [loge[p~t

Here we used that —2%’| loge| 4+ Clloge|'™ < 0 for 0 < p < 1 and ¢ small. Let us now fix

the index j in {1,...,m}, for |y — &| < g, we have
" p—11 p—1\7 1
AV () = =m0+ Ed S nuy )+ (P20 Sdu) 40, (a0

On the other hand, for any R > 0 large but fixed, in the ball |y — &’ < R. := R|loge|*, with
a > 3, we can use Taylor expansion to first get

VA 1 p—11 p—1,1 p—2 9
1+ —=) = l4+——w;+ (— )" —|wo; + ——=(w;
( p’)/p) p AP J ( D ),ygp[ 0j 2(]?—1)( ])]

p—1.,1
+( » )’ = (log |y — &)
—-1.1 (w;)?
p Ay ] = P— 22 J
P+ 27 =1 =y () S+
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p_1)2 1

1 /
+( D %(wlj+ij0j)+ﬁ<log‘y_£j‘)a

and

P(1+4-2 )P —1 w; p—1.1 (w;)?
AP0 _ o, {1”7)% [w0j+ 2

p—1.,1 1 1

+(T)2% [w1j+ij0j+§( 0j+(wj)2>2] +W(1Og|y—§}|) :

Thus we obtain

F(V3) = (14 21705371

PP
— W {1 + (%)% {woj + (ij)z +wj}
—i—(p%l)Q% wij + 2wjwg; + % (wOj + (IUQ]-)?)Q
+wo; + 259—_21) (w;)? + @1

Lo (1Og|y3— §}|) }
f}/P

Thus, thanks to the fact that we have improved our original approximation with the terms
wp; and wy;, and the definition of *-norm, we get that

C C

W:W’ forany j=1,...,m. (4.47)

I1ExLBe, Rl <

Here 1 B(¢,R:) denotes the characteristic function of B(&;, R.). Finally, in the remaining

region, namely where R. < |y — &i| < g, for any j = 1,...,m, we have from one hand

that |AV)(y)| < Ce® ¥ and also |f(Vi(y))] < Ce®® as consequence of (4.31). This fact,
together with (4.47) and (4.45), (4.43) we obtain estimate (4.42). O

As the proof of (2.34), (2.35) and (2.36), we have that very close to the point ¢; in 2,

I/ (Vy) =€, =0 as A —0, (4.48)
and there exists some positive constant Dy such that
f'(Va) < Dy i e, (4.49)
j=1
Moreover, we can get
ILF (Vs < C. (4.50)
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4.3 The existence result

The operator L defined in (4.38) can be seen as a superposition of linear operators,

8

L.(¢p)=—A¢— KESERE

o

namely, equation —Aw—e" = 0 linearized around the radial solution w(y) = log @ +\ T The
key face to develop a satisfactory solvability theory for the operator L is the nondegeneracy
of w up to the natural invariances of the equation under translations and dilations. In fact,
the functions

ZOj(:U) - aﬂjwﬂj (y)a Zz'j<y> - ayiw,u]- <y>7 L= 17 27
satisfy the function AZ + €**i Z = 0, where w,,, defined by (4.13), see [10] for a proof.

Let us consider a large but fixed number Ry > 0 and a radial and smooth cut-off function 7
with n(r) =1ifr < Ryand n(r) =0ifr > Ry + 1,0 <n < 1.

The interior bubble case: for j =1,...,k, we define

The boundary bubble case: for j = k+1,...,m, we first strengthen the boundary. Namely, at
the boundary point §; € Jf2, without loss of generality, we assume that {; = 0 and the unit
outward normal at &; is —e; = (0, —1). Let G(x1) be the defining function for the boundary

0 in a neighbourhood B,(¢;) of &;, that is, QN B,(&;) = {(x1,22) | 22 > G(21), (x1,22) €
B,(&;)}. Then, let F; : B,(&;) N Q — R? be defined by

M—G()G'( D, Fa=—Gn). (4.52)

F, = (Fj., F; ith 7| =
j ( 7,15 ],2); Wil 7,1 xl_’_ |G’([L’1)|2

Then we set F5(y) = 1Fj(ey), and define

Ug(y) :77(|Fg€(y)|) ) sz(y) = i (Fy€<y)) ) i:O,l, j :k+17"'7m‘ (45?))

It is important to observe that I} preserves the Neumann boundary condition and

82 ¥
AZ; + i Z:o(—,). 4.54
v wET g = O\ g o

Define the norm

6]l = sup [B(y)].

yEQe
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Consider the problem of finding a function ¢ such that for certain scalars c;;, it satisfies

m Jj
—A¢+ 20 —Wo=[Ex+N(@)|+ > > cijZiymj, in Qe

j=1i=1
g—f =0, on 0f),; (4.55)
fQE¢Zijnj:Oa forizl,Jj, j:]_,...,m,

where J; =2if j=1,...,kand J; =1if j=k+1,...,m.

Equation (4.55) is solved in the following Proposition, whose proof is postponed to Section
4.4.

Proposition 4.5. Let § > 0 be fixed. There exist positive numbers \g and C, such that for
any points &, j =1,...,m, in M, p; is given by (4.35), then problem (4.55) has a unique
solution ¢ which satisfies

C
P —
||¢||OO — |10g€|27

for all X < X\g. Moreover, if we consider the map & +— ¢ into the space C(€.), the derivative

Dei¢ exists and defines a continuous function of {'. Besides, there is a constant C' > 0, such
that

C
Dedlloo < : 4.56
IDeoe < o (4.56)
In order to find a solution to the original problem we need to find & such that
cij(€)=0 foralli=1,J;, j=1,...,m. (4.57)

This problem is indeed variational: it is equivalent to finding critical points of a function of
& =&, Associated to (4.1), let us consider the energy functional Jy given by

1 v
JY(u) = 3 /Q(|Vu|2 +u?) do — %/Qe“ dx, (4.58)

and the finite-dimensional restriction
B©) =T ((h+9) (.9) (4.50)

where

)
g €

(+8) o =1+ = (a0 E)

with V) defined in (4.30), ¢ is the unique solution to problem (4.55) given by Proposition
4.5.

The next result, whose proof is postponed until Section 4.5.
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Proposition 4.6. (i) The functional F)(§) is of class C*. Moreover, for all X > 0 sufficiently
small, if DeF\(§) = 0, then & satisfies (4.57).

(17) Let 0 > 0 be fized. There exist positive numbers Ao and C, such that for any points ;,
jg=1,...,m in Ms, p; are given by (4.35), the following expansion holds

2(2—p —nl
AT R = 42k + z)ﬁ - 8?”(21@ +1)loge
—2(2_p)<pm(€)+0(|loge|‘1), (4.60)
where
Pm(€) = om(rs - &m) = Y GH(E,6) + Y aciG(6,)). (4.61)
j=1 I#j

Proof of Theorem 4.1: First, from the same argument as Lemma 6.1 in [41], we have that

i . 4.62
gn/\}(r;gom(ﬁ) — 400, asd—0 (4.62)

We state it here for completeness. Let £ = (&1,...,&n) € OM,;. There are two possibilities:
either there exists jo < k such that d(&;,,0Q) = 6, or exists ig # jo, & — &jo| = 6.

In the first case, a consequence of the properties of the Green’s function is that for all £ € 2

1

H >C——F=. 4.63
(€6 > Cqam (4.63)
In the second case, we may assume that there exists a fixed constant C' such that d(&;, 0€2) >
C,1=1,...,k, as otherwise it follows into the first case. But then it is easy to see that
1
G(&: &) = C : (4.64)
’ & — &l

Then by (4.63) and (4.64) we obtain (4.62).

From (7) of Proposition 4.6, the function

(+0) o =1+ s (a0 E5)

where V), defined by (4.30) and ¢(¢) is the unique solution of problem (4.55), is a solution of
problem (4.1) if we adjust £ so that it is a critical point of F)\(§) defined by (4.59). This is
equivalent to finding a critical point of

2(2—p)

Fy(€) :=aXte 7 F\(€) + b+ cloge,
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for suitable constants a, b and ¢. On the other hand, from (ii) of Proposition 4.6, for £ € Ms,
we have that,

FA(€) = pu(€) + O(|log e 7)©,(6),
where ¢, is given by (4.61), and ©,() is uniformly bounded in consider region as A — 0.

From (4.62), the function ¢,, is C*', bounded from below in Mj, we have that, for § is
arbitrarily small, ¢,, has an absolute minimum in M,;. This implies that F) also has an
absolute minimum (&5, ...,&") € M, such that

li ) =mi .
)\g% Spm (61 9 ’ gm) H,/\l/gl Som

Moreover, while (4.9) holds as a direct consequence of the construction of Uy, and (3) of
Theorem holds from (ii) of Proposition 4.6.

Remark 4.7. Using Ljusternik-Schnirelmann theory, one can get a second, distinct solution
satisfying Theorem 4.1. The proof is similar to [27].

4.4 The finite dimensional reduction

This section is devoted to the proof of Proposition 4.5. Given h € L*(f.), we first consider
the problem of finding a function ¢ such that for certain scalars c¢;;, it satisfies

m Jj
—Aqb -+ 82925 — qu =h —+ Z CijZijnj, n Qg;

j=14=1
% =0, on 0f); (4.65)
fQE¢Zijnj:07 forizl,Jj, jzl,,m

First we show that the following result:

Proposition 4.8. Let 6 > 0 be fixed. There exist positive numbers \g and C, such that for
any points §;, j =1,...,m, in My, p; is given by (4.35), and h € L>().), there is a unique
solution ¢ := Ty(h) to problem (4.65) for all A < X\o. Moreover,

1
folle < € (1082 ) 1. (4.60)

The proof will be spit into a series of lemmas which we state and prove next.

Lemma 4.9. There exist constants Ry > 0, C' > 0 such that for A > 0 small enough and for
any points & € Q, j=1,...,m, in Ms, set Q. =\ U B( %, R1), we have
j=1

v Q.= [1,00)
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smooth and positive verifying

m 1 ‘
L) := —At + &% — W > Z g +e?  in €,
i=1 J

with 5
—wZO on 99, Y >0 in Q..

v
Moreover v is bounded uniformly,

1<y <C in (..

Proof. We take

1
yi(r)=1-— s where r = |y — &j]. (4.67)

A direct computation shows that, we have

1
—Aty; = Uzm'
If & € Q., then we have
aqﬁlj _ 140
5 O(e" ™).

If & € Q. and |y — &} > Ry, we have

OYn _ J(y - 5;) v
ov r2to

We write the boundary 9€). near point £} as the graph {(y1,v2) : y2 = G<(y1)} with G.(y1) =
LG (ey1) and G a smooth function such that G(0) = 0 and G'(0) = 0. Fix § > 0 small. Then
for Ry < r < §/e we have that r is comparable with y;, G.(y1) = O(er) and G.(y;) = O(er?).
Then and G’(0) = 0. Then

Oy o 1 /
= G () + Ge

o 1

_ 2
- 7,2—&-0 0(52) T+ 1O<€T )

)
- 0(5), VYR <r<?2
re €
Hence, we obtain that
% =o(g), on 0f..
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Next, let us define
Y=Y i+ C,
j=1

where 1 is the solution of the following problem

0o

m =& on 0f)..

—Atho + o =€* in Q;
It is directly checked that %2/} satisfies the required condition. O
Lemma 4.10. The operator L satisfies the maximum principle in Q. for R > Ry large but

independent of A, with Ry in Lemma 4.9. Namely, if L(¢) > 0 in Q. and ¢ > 0 on 0., then
¢ >0 1in ..

Proof. Given a > 0, we consider the function

=> z(ay-¢l), ye, (4.68)
7j=1
where zo(r) = :z;} is the radial solution in R? of
A ————27=0.
F T

First, we observe that, if [y — &| > R for R > L, then Z(y) > 0. By the definition of z, we
have

(8a® +&*)(a’ly — &P = 1)
(It a?ly =Py

L

—AZ(y) + £ Z(y)

<
I

| 8a? + 2
> _
- ;3<1+a2|y—s<|2>2
"1 8a? "4
> — _—
> Y STl g 2 L m Ay aF

1 j=1

<.
Il

provided R > ‘/75 On the other hand, from (4.48), in the same region, we have

m m C
F(VZ(y) <Dy e Zy) <> I
Jj=1 j=1 J

Hence if a is taken small and fixed, and R > 0 is chosen sufficiently large depending on this
a, then we have L(Z) > 0 in .. Thus the function Z(y) is what we are looking for. O
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Let us fix such a number R > 0 which we may take large whenever it is needed. Define the
following inner norm of ¢ in the following way

ol = sup  |o(y)l.

yeUr, B(€.R)

Lemma 4.11. There exists a uniform constant C' > 0 such that if L(¢) = h in Q, ¢ =0 on
0., then

[8ll0 < Clli@lli + N1A]l4], (4.69)
for any h € L*>(£2,).

Proof. Define now the function

o(y) = 2[lolliZ(y) + A4 (y),

where Z is the function defined in (4.68), and the function 1 satisfying the properties of
lemma 4.9. First, observe that by the definition of Z, choosing R large if necessary,

o(y) = 20 Z(y) = ¢l = |o(y)]  for |y =&l =R,
and, by the positivity of Z(y) and ¥(y),

Ply) 2 0=0¢(y) fory e M.
Finally, by the definition of || - || we have that
h(y)] < (Z(l +Hly=&h 7+ 52) 172l
j=1

we then have

L(¢) = 2/¢[l:iL(Z) + ||h]lL(¥)

> |l <Z(1 +Hly - &)+ €2>

J=1

> |h(y)| > L(o)(y),

provided R large enough. Hence, from Lemma 4.10, we obtain that

6(y)| < o(y)  for y € O,

and, since Z(y) < 1 and from lemma 4.9 we get

[@lloe < CTldlli + [IA]]+].
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Next we prove uniform a priori estimates for the problem (4.65) when ¢ satisfies additionally
orthogonality under dilations. Specifically, we consider the problem

L(¢) = h, in €Q,;
% —, on O€),; (4.70)

fQEQSZijnj:O? fori=0,...,J; j=1,...,m,
and prove the following estimate.

Lemma 4.12. Let 6 > 0 be fized. There exist positive numbers \g and C, such that for any
points £, j =1,...,m, in Ms, p; is given by (4.35), and h € L>(S).), and any solution ¢
to problem (4.70), one has

[¢lloe < ClA]- (4.71)

Proof. We carry out the proof of lemma by a contradiction. If the result was false, then there

exist a sequence A, — 0, points £, j = 1,...,m in M, function h,, with ||A,[|. — 0 and ¢,
with ||¢n e = 1,

L(¢n) = hna in Qen;

%n =, on 8., ; (4.72)

fﬂg OnZijn; = 0, foralli=0,...,J;, j=1,...,m.
Then from lemma 4.11, we see that ||¢,||; stays away from zero. Up to a subsequence, for

one of the indices, say j, we can assume that there exists R > 0 such that,

sup  |on(y)| > k>0 for all n.
ly—(€})'|<R

Let us set ¢, (z) = ¢n((§]) + 2). Elliptic estimate allow us to assume that én converges

uniformly over compact subsets of R? to a bounded, nonzero solution $ of

82
Abp+ 1 45—
ERED:
This implies that ¢ is a linear combination of the functions zij, © = 0,...,J;. But or-
thogonality conditions over ¢, pass to the limit thanks to |[¢[|c < 1. By the dominated
convergence theorem then yields that [, 7(|z])z;j¢ = 0for i =0,...,J;, thus a contradiction
with iminf, . ||¢n|l; > 0. n

Now we establish a priori estimates for the problem (4.70) with the orthogonality condition
st n;Zo;¢® = 0 dropped. We consider the problem

L(¢) = h, in Q;
% =, on 9. (4.73)

fQET/jZZ]gb:O’ fOfi:l’Jj7 j:l)n"m’
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Lemma 4.13. Let 6 > 0 be fized. There exist positive numbers \g and C, such that for any
points £, j =1,...,m, in Ms, p; is given by (4.35), and h € L>(S).), and any solution ¢
to problem (4.73), one has

1
Jolle < € (105 ) Al (4.74)

for all X < Ag.

Proof. Let ¢ satisfies (4.73). We modify ¢ to 6, such that ¢ satisfies all orthogonality
condition. For this, let us set R > Ry + 1 large and fixed. Set

1
4 (%log$ + H(ﬁjafj)) |

aoj =

Define

A 1
Zoj(y) = Zoj(y) — M_ + ag;G(&j, €y).
)

We note that the function Zoj satisfies the Neumann boundary condition. Let x be a radial
smooth cut-off function on R? so that 0 < x <1, |[Vyx| < C'inR?* xy =1in Bg(0) and x =0
in R*\ Bg,1(0). Set

Xj() =x(ly=&l) forj=1,....k x(y) =x(F(y) forj=k+1,....,m. (4.75)

Now, we define

A~

Zoj = X3 Zoj + (1 = x3) Zos-
Given ¢ satisfying (4.73), we set

5 -y Jo. 1209
O=0¢+ d;Zy;, where d, = 28 VT

J'Zl o ’ fﬁg Zgjﬁj
Therefore, our result is a direct consequence of the following claim.
Claim:

|d;| < Cllogell[h]l, V¥V j=1,...,m. (4.76)

First, using the notation L = —A + 2] — W, we observe that q; satisfies

L) =h+ S dL(Zy),  in O
~(¢) J; J ( 0]) <4'77>
% =0, on 0f),,
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Thus by Lemma 4.12, we have

19le=) < C D IdIIL(Zoy)]e + Cllh]l.. (4.78)

j=1

Multiplying the first equation in (4.77) by Zos, for s = 1,...,m, integrating by parts and
using the second equation in (4.77), we find

> [ Mz < Cll. (1+ZHL<Z@>H*>
j=1 € Jj=1

+O Y ldllIL(Zoy)I2. (4.79)

j=1
Next we estimate the size of || L(Zo;)||.. From (4.54), we have
L(Zy;) = €YiZy; —WZy; +O(e(1+ |y — &1)?)
(1
= e (- ayGl&e) ) + O+ Iy = )
j

Thus, we have

. C
1—x)L(Zp) ||« < ————,

10 = )L 2 < 7

where C' is a constant, which depends on the chosen large constant R. Hence
L(Zoj) = xiL(Zoj) + (1= x3) L(Zoy) + 2VX;V (Zoj — (Z2)oy) + AX(Zos — Zog)
= O(™) + (1 - xj)e™ <u% - GOjG(ﬁjag?/)>
2V X,V (Zo; — (Z)05) + Ax;(Zoj — Zog)- (4.80)
Since, for r = [y — 7| € (R, R + 1), we have

A

1
Zoj — Zoj = ao;G(§j,ey) — —

127
4 1 1
= ap; —log—+H§-,5y>——.
% (Cj ely — &l (&:e0) 14
Therefore, for r = |y — &j| € (R, R+ 1), we have
N C 1 e
Zoi— 2y = —log—+0 | ——— 4.81
0% = 75+ (g 481)
and
R C 1 e
Zoi — Zoi) = ———" = _° ). 4.82
V=) = e O (egm) 482)
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From (4.80), (4.81) and (4.82) we obtain

C
"7 log(1/e)
Now we estimate the left term of (4.79). From (4.80), we see that for j # s,

/ﬂs L(Zoj))Z0s = O(%) + /ﬂe O (@(vaﬂ + |AXj|)) Zos

- o((m))

/ L(ZOS)ZOS :]1+IQ+O(5)7
QE

1Z(Zoj)Il < (4.83)

Moreover, for j = s, we have

where

I, = O(e*™) + (1 — x,)e (i - GOSG(@,SZ/))

Qe s

and
Il - / [QVXSV(ZOS - ZOS) + AXS(ZOS - ZOs)i| Z[)s
Qe

= VXSV<ZOS - ZOS>ZOS - VXS(ZOS - ZOS)VZOS + O<5>

Qe Qe

We observe that in the consider region, r € (R, R+ 1) with r = [y — &}, [ Zos — Zos| <
while [VZ(,| < 45 + Thus

_C
og(1/2)
(173
D 1

R3log(1/e)’

VXSV(ZOS - ZOS>ZOS

Qe

where D may be chosen independent on R. Now we have

. . E 1
Vxs(Zos — Z0s)VZpg = ———— 1+ 0 | =
o, X os = Z0s)V 20w = =15 [ (R)]

where £/ may be chosen independent on €. Thus we choose R large enough, we then have
I ~ Therefore, we have

|, H = {1 o (fl%)] ’

B
~ log(1/e)”
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and

NS 1 1
L(Zyj)Zps =0 | =———— for j # s.
, Hw =0 () e
Thus, we obtain that (4.76) holds. This finishes the proof of Lemma. O

Proof of Proposition 4.8 We first establish the validity of the a priori estimate (4.66).
The previous lemma yields

J.
1 e
folle < € (1082 ) {10+ 30D el | (4.54)

i=1 j=1

Let x; be a smooth cut-off function defined as (4.75). We multiply the first equation of (4.65)
by Z;jx;, we find

(D), Zipxs) = (b Zuxy) + ¢ / G Zil? (4.85)
We have

_L<Z’LJXJ> = AXJZU -+ 2VZZ]VX] + EO((l -+ T')ig),

with 7 = |y — &]. Since Ay; = O(e?), Vx; = O(¢), and Z;; = O(r™"), VZ; = O(r™?), we
get
—L(Zijx;) = O(e*)O((1 +1)7%).

Then we have
[(L(9), Zijxi)| = [{&, L(Zijx;))| < Cel|¢ll.
Combining this with (4.84) and (4.85) we find

1
ol = (10g ) 3 |cab|] .

a,b

il < C

Then, |¢;;| < C||h||s. Combining this with (4.84) we obtain the estimate (4.66) holds.

Next prove the solvability of problem (4.65). To this purpose we consider the space

H:{gbeHl(Qe) : ¢Zym; =0 fori=1,J;, j:1,2,...,m},
Qe

endowed with the usual inner product (¢, 1) = fQE(ngSV@/J—I—Sngz/)). Problem (4.65), expressed
in a weak form, is equivalent to find ¢ € H such that

(p,9) = /Q (Wo+ h)y de,  for all ¢ € H,
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With the aid of Riesz’s representation theorem, this equation gets rewritten in H in the
operator form

(Id—K)p = h, (4.86)

for certain i € H, where K is a compact operator in H. The homogeneous equation ¢ = K¢
in H, which is equivalent to (4.65) with A = 0, has only the trivial solution in view of the
a priori estimate (4.66). Now, Fredholm’s alternative guarantees unique solvability of (4.86)
for any h € H. This finishes the proof.

The result of Proposition 4.8 implies that the unique solution ¢ = Ty(h) of (4.65) defines a
continuous linear map form the Banach space C, of all functions h in L* for which ||A|]. < oo
into L*°, with norm bounded uniformly in A.

Lemma 4.14. The operator Ty is differentiable with respect to the variable &, in Q with
& € Mg, one has the estimate

1\ 2
101y, Ta(h)]|so < C <log g> |hlls forb=1,J;, a=1,2,...,m. (4.87)

Proof. Differentiating equation (4.65), formally Z := Oy, ¢ should satisfy

Jj Ji m
L(Z) = =0en,Wo + > ciaDier), aZia) + Y Y disZugn;
=1

i=1 j=1

with d;; = Oer),cij, and the orthogonality conditions now become

/ Zin; Z = —/ Neryy (Zign;) ¢-
. Q.

We consider the constants b;, defined as

bia/ naZiQ(z :/ a({{l)b (Ziana) ¢
Qe Qe

Jj
Z =7+ ZbianaZiau

=1

Define

and
Jj Jj

9= =0, W+ ciadiey, (Ziatka) + D bial(m2aZia).
=1 =1

We then have

- Ji m
L(Z> =g + Z Z bianaZiaa in Qs;
~ i=1j=1
Z =0, on 0f),;
fQEZm'f]aZ:O, fori=0,...,J;, a=1,...,m.
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Furthermore, Z = Ty(g). Using the result of Proposition 4.8 we find that

loll. <c<1og )Hhu*,

hence,

1\ 2
10, Ta(h)]|so < C <log E) |kl forb=1,J;, a=1,2,...,m.

Next, we will prove Proposition 4.5.

Proof of Proposition 4.5 In terms of the operator T) defined in Proposition 4.5, problem
(4.55) becomes

¢ =Th(N(9) + Ex) := A(9). (4.88)

For a given number M > 0 let us consider the region

M
Fur e {cb ol < }

| loge[?

From Proposition 4.8, we get
[A(@)]lee < Cllogel [N ()]s + [[EAll] -

From Lemma 4.4, we have ||Ey|. < @ And, by the definition of N(¢) in (4.40), and
from (4.50) then we have

IN(¢)]l« < Cllo|%
Thus

1
< C|1 2 :
4@l < Clioge] (CloIE + s

We then get that A(Fy;) C Fy for a sufficiently large but fixed M and all small A. Moreover,
for any ¢1, @2 € Fu, one has

INGon) = N@a)l. < € (g0 ) lox = énl

In fact,
N(¢1) — N(¢2) = f(Va+ b1) — f(Va+ ¢2) — [/ (Va)(¢1 — ¢2)

= [ (S0h 6 tlon = 0)) e - 0061 — )
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1
= [ 0ht 61061 60) = FOR) i (01 ).
Thus, for a certain t* € (0,1), and s € (0,1)
IN(61) = N(¢2)] < CLf'(Va+ 2+ 17(d1 — 62) = [(Va)lllé1 — d2ll

< CIf"(Va+ 52 + 17(01 — 02))|([191]l00 + [[d2]lo0) | @1 — D2 /oc-
Thanks to (4.50) and the fact that |[¢1[/o, [|¢2]|cc — 0 as A — 0, we conclude that

IN(¢1) = N(@2)lls - < CIS"(Vall(l@1lloo + [@2lloc) 01 — @2lloc
< Cllonlloo + ll@2llc)llor = P2lloo-

Then we have

JAG) = A2l < CllogellN(6r) = N(6)ll.
< Cllogel (ol ) 161~ ol

Thus the operator A has a small Lipschitz constant in Fj; for all small A\, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map £ = (&1,...,&,,) — ¢. Assume for
instance that the partial derivative O, ¢ exists for i = 1,.J;. Since ¢ = T, (N(¢) + E»),
formally that

Ae, @ = (O, Tx) (N (9) + Ex) + T (%»N (¢) + %nEA) :

From Lemma 4.14, we have

19 Tx (N (9) + EN) loo < Cllogel*|N(¢) + x|« SC@-

On the other hand,
ey N(@) = [F'(Va+0) = F'(Va) = (Va)@lde, Va + Oy, [ (VA) — 1o
+HVa+¢) = (Va0 ¢ + [f'(Va) — €10, 0-
Then,

0 N (@) < C {||¢||§o o

Since [|9¢,), Ell« <

T 16lloc + |0¢r), ¢

1cg;).

1
e | log ¢|

and by Proposition 4.8 we then have

|oo S La
| log |

\10g€|3’

19cgg).¢

foralle=1,J;, 7 =1,...,m. Then, the regularity of the map £ — ¢ can be proved by stan-
dard arguments involving the implicit function theorem and the fixed point representation
(4.88). This concludes proof of Proposition 4.5.

105



CHAPTER 4. MIXED INTERIOR AND BOUNDARY BUBBLING SOLUTIONS
FOR NEUMANN PROBLEM IN R?

4.5 Variational reduction

In this Section, we prove Proposition 4.6.

Proof of (i) of Proposition 4.6 A direct consequence of the results obtained in Proposition
4.5 and the definition of function Uy is the fact the map & — F)\(&) is of class CL.

Define
1 Pl(14—2 )P—
I(v) = 5/ (V]? 4+ e*0*) dy —/ 1O gy (4.89)
Qe Qe
Let us differentiate the function F) (&) with the respect to £. Since
~ 1 x &
I <<UA + ¢> (%f)) = ]mh ((VA +0) (2, g)) : (4.90)

we can differentiate directly I (VA(§) + ¢(€)) under the integral sign, for a € {1,...,m} and
b e {1, J;}, so that
a(ga)bFA(g)
1 _
= ?méf 1DIA (VA(f) + (b(f)) [a(%)bvx(f) + 8(5&)b¢(§>]

1 Js

= p—%z@,w*ZZ / cii Zig [0e), Va(€) + Dy, @ (€)]

i=1 j=1 "%
1 J]' m Jj m
= We‘l ZZ/ Cijanija(fé)bVA(é)_’_ZZ/Q ciiOeny, (03 Z:5) 9(9) |

i=1 j=1 7 i—1 =1
since st n;Zi;6(€) = 0. By the expansion of Vy, we have

p—11
AeyVa = ey, waly) + T%&g)bwm(y)

2
p—1 1
+ (—p ) ﬁa@wbwlm(y) + 0, 0(y)

2
p—11 p—1 1
- _Zba + e szz(y) + < ) e wla(y) +a : Q(y)
p ,71) (Ea)b p ,sz (&-m)l (Ea)b
Moreover,

/Q cijen), (N5 2i5) 9(&) = 0(1)/ ciiniZijOe,), (Vi)

Then, if DeF)\(§) =0, for i,b=1,J;; j,a=1,...,m, we then have
Jj

Z Cij / anij(Zba + 0(1)) =0. (491)
i=1 j=1 Qe
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This is a strictly diagonal dominant system. It implies that ¢;; =0fori=1,J;;7=1,...,m.
This concludes the proof of (i) of Proposition 4.6.

Proof of (ii) of Proposition 4.6 We have
NGEEN A CAGEG)

= %/Q {’V (U,\ + é) >+ (U)\ + 03)2} - %/Qe(U*H;)p.
From (4.90) we have that

: 1
R (U6 +8(0)) = B (UAE) = gy (VA + 0) = (V).
Since by construction I{(Vy + ¢)[¢] = 0, we have

T (UN) +8(8)) = I8 (U(€))

= m/o D*I\(Vy + t¢)¢*(1 — t) dt
— o || [ @@ [ o -] a-oa

Since ||Ey]. < @, |olloo < ﬁ, IN ()|« < ﬁ and (4.50), we get that

P 7 D C
R (02O +8(0) = KOO < o (1.92)
Next we expand
RO =5 [ [V OO F + U] == [ oo, (4.93)

Now we write
Uj(z) = wu;(x) + Hj(x), Uy :=woj(x) + Hoj(z), Uy = wi(x) + Hyj(w).

By (4.26),
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1 1 &
= D {§Z/Q(IVUJ'|2+UJ-2)+Z/Q(VUZVUJ-+UZUJ-)

p—11 p—1\* 1 &
+——Z/ (VU;V Uy, + U;U;) + (—) WZ/Q(VUJVUU+Ulej)

p P p

2
p—1 1 |1
+( p ) ~2 [22/ |VU0]|2+UOJ +Z/ VUOlVU0]+UolU0])

2p
7 I#j

3
p—1 1
+ (—p ) —/ng E_ /Q(VUOjVUlj + Up;Usj)

p—1
+( p ) 4p[ Z/ |VU1]‘2+U1] +Z/ VUllVU1]+U11U1])

I#j

} . (4.94)

Let us estimate the first two terms. We observe that the remaining terms are O(Q(p—l)w)
First, we note that U; satisfies

—AU; + U; = &%, in , %UV =0 on 0.

Then we have
L0903 @P + Uy@)?) da
= ¢ /Qe“jUj(x) =¢ /Qe“j(uj(x) + Hj(x))

2

82 81t
— &2 J 1 ! H(z,&5) —log(8u3) + O(e”
) /Q (e2ud + |z = &) (Og (e2ud + |z = &) el &) = loa®i;) + O ))

8113 1
= 52/ I (lo +ciH(z,&)+ O 5“)
o @t g p gy Fotns) O

8 1 N
- /Qw ( )2 (log (1+ [y]?)? + ¢ H(& + epsy, &) — 410%(5,%)) +O(e)

1+ Jy[?
N /Q%_ (1+ |y|?)? log (1+ |y[?)? T /ij (1+ [y]2)? (H(& +epy, &) — H(E,E5))
8 8
+Cj/g TR e - 410%(%-)/9 AT O (4.95)
But
8
s = 6T O 4,
Lwa+wn = ¢ +0), (4.96)
8 1
1 _ o o). |
qu+wm2%u+@mz 2¢;+ O(") (4.97)
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Moreover, for 0 < a < 1,

8
/ﬂgM W( (& +eny, &) — H(E, &)

:/Q (;220(6“|y|°‘)20(50‘). (4.98)

oy, (L 1Y1%)
Therefore from (4.95)-(4.98), we have

/Q (VU (@) + Uj()?) da

= —2¢;+ G H(&, &) — 4cjloge — 4cjlog pu; + O(e)
= —2¢;+ GH(&, &) —4cjloge — 2¢;log(87) 4 2¢; 1og(8) + O (). (4.99)

Now, we calculate that

Z/ (VUNU; + UU;) dx

I#j

= €2Z/€UZUJ':€2Z/€UZ(UJ‘+HJ') dx
T JQ . JQ
2

. 8'“] ) N 2 o
- 9% [ e (s g o) oty +0)

8 1 N
- <35 s e (o g+ 909+ 0)
1 (6
- 3.0 +|y\ 7 (% G 75 g o)) 0L
_ Z /Q

= chj (&,&) + O(). (4.100)
I#3

1+ | | G(§la§j) + O(ga)

Thus, from (4.94), (4.99) and (4.100) we have

3 (V0@ + V@) da
_ b {_47r(2k + z)%u —log8) — 8m(2k + 1) log ¢

p2,-)/2(p—1)
Z [C 5775] + ZCZC] 5[76])

J=1 I#j

+O(|loge|~ 1)} . (4.101)
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Finally, let us evaluate the second term in the energy

i/ O gy — i/e P14 0A0D) g
D Ja pJa

k

_ A / (00 gy
p (€5,9)

j=1
LA / 7 (14550 4y
b

k -

Q\ _L:JIB@M)
= I+ 11 (4.102)

First we observe that

IT = X0,(¢) (4.103)

with ©,() a function, uniformly bounded, as A — 0. On the other hand,

P
I = / L) 1] g,
p72(p DZ B(¢ a/a
= w; )+ 52 Lo )+ (252 Ty wn (1) +0() 1
o M B
= e d/0)
1 - 8 1
ey [ e (1060) @
= B(o,%s)
1 J—
= p—272<p_1)47f(2k+l) (1+[loge|™'Ox(¢)) (4.104)

with ©,(§) a function, uniformly bounded, as A — 0. From (4.102)-(4.104) we get

A 1 _

Thus from (4.92), (4.93), (4.101) and (4.105), we obtain that

2 —plog8

> ) —8m(2k +1)loge

Fo(§) = ——— {—47r(2k +1)

j2 f]:fj +ZCZC] fl,fj)+0(|loge\ 1)}

Jj=1 I#5
which implies (4.60) by (4.8). This concludes the proof of Proposition 4.6.
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Chapter 5

Bubbling solutions for elliptic
equation with exponential Neumann
data in R?

5.1 Introduction
Consider the following boundary value problem

—Au+u=0 in ;
(5.1)

g—:j = \uP~te?” on 02,
where (2 is a bounded domain in R? with smooth boundary, v is the outer normal vector of
02, A > 0 is a small parameter and 0 < p < 2.

In [27], Dévila-del Pino-Musso have analyzed the asymptotic behavior of solution to problem
(5.1) when p = 1. Namely, they considered the following problem

(5.2)

Qu — \eu on 0f).

{—Au+u:0 in ;
ov

Suppose that u, is a family solution of (5.2), with the property A [, e“* bounded, then there

!The main result of this chapter was worked with Monica Musso, to appear in Annali Scuola Normale
Superiore di Pisa, DOI Number: 10.2422/2036-2145.201204—007.
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is an integer k£ > 1, up to subsequences, such that

lim )\/ e = 2km. (5.3)
)

A—0

Moreover, there are k distinct points §;, 7 = 1,...,k, on the boundary of 2, such that \e"*
approaches the sum of £ Dirac masses at these points ;. The location of points can be
characterized as critical points of a functional of k£ points of the boundary given by

er(&y - &) = — [Z H(E,6)+ > G&.4)] (5.4)

1]

where G(z,y) is Green’s function of the problem

—A.G(2,y) + Gz, y) =0 z €
0G (z,y) (55)
“ov. = 271'52/(37) WS 39,
and H its regular part
1

z =yl
The authors in [27] also described the existence of solution with above properties. More
precisely, if 0€2 has more than one component, they showed that the function ¢y has topo-
logically nontrivial critical point (&, ..., &), then there is a family solution to problem (5.2)
with peaks at these points.

In this chapter, we will consider the existence of solution to (5.1) when 0 < p < 2. This
problem is the Euler-Lagrange equation for the functional Jy : H'(Q) — R defined as

1 A r
J,\(u):§/§2(|VU|2+u2) —1—?/696“.

By Young’s and Hodler inequalities, we know that J, corresponds to the critical Trudinger-
Moser trace embedding

HY Q) s u— e e L'(0Q) Vr>1,

which is connected to the following critical Trudinger-Moser trace inequalities

Sy 1= sup {/BQ e o ue H (N0}, |ulm <1, /mu = o} < 0 (5.7)

for any o < 7, see [6]. By multiplying a suitable test function, we can find that smallness
of A is necessary for the existence of a solution. From (5.7), there is a minimizer solution
near zero. On the other hand, there is a second solution exists for (5.1) by Mountain Pass
Theorem.

In this chapter, we will establish the existence of solution to (5.1) by Lyapunov-Schmidt
reduction procedure. In order to state our result, let us first introduce the following definition.
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Definition 5.1. We say that & is a C°-stable critical point of p : M — R if for any sequence
of function p,, : M — R such that v, — @ uniformly on compact sets of M, ¢, has a critical

point " such that ¢, (") — ¢(&).

In particular, if € is a strict local minimum or mazimum point of @, then & is C°-stable
critical point.

Let € be a parameter, which depends on A, satisfies,

2(p—1)
p—2

2 P
PA (——loga) er =1. (5.8)
p
Observe that, as A — 0, then ¢ - 0, and e = A if p = 1.

Our result states as follows.

Theorem 5.2. For 0 < p < 2, let k > 1, assume that @, defined by (5.4) has a C°-stable
critical point & = (&,...,&) € (0Q)F with

|€l*_£;|>57 fOTl?'éj,

for some small but fired number 6 > 0. Then the problem (5.1) has a family solutions uy for
A small enough, such that

lim 52pp/ e = 2k, (5.9)
oN

A—0

where € satisfies (5.8). Moreover, for A — 0

and
1 -2 i
uy(x) =p 2VAez [Z G(x, &) +o(1) (5.10)
j=1
where o(1) — 0 on each compact subset of QO\{&5, ..., & }. Furthermore
p=2 | 2km  2km 1 T
J =Xe 7 |-—+ —log— O(|loge| ™" 5.11
) =27 |2 B g Ly T oltogel )| (51

where O(1) uniformly bounded as A — 0.

The proof of our result relies on a very well known Lyapunov-Schmidt reduction procedure,
introduced in [9, 52] and used in many different contexts, see for instance [19, 27, 29, 36, 39,
46, 47, 48, 49, 93].  We use Lyapunov-Schmidt reduction method to reduce the problem
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to a finite dimensional one, with some reduced energy. Then, the solutions in Theorem turn
out to be generated by critical points of the reduced energy functionals. The key step is to
find the ansatz for the solution. Usually, the ansatz is built as a sum of terms, which turns
out to be solutions of the associate limit problem, which are properly scaled and translated.
For our problem, let us introduce the following limit problem

Av =20 in R%;
% =e’ on ORZ; (5.12)
faRi e¥ < 0o0.

A family solutions to (5.12) is given by

2p
e 0] =l 22) =108 o G o1
where ¢t € R and g > 0 are parameters. Set
2
wy () := wou(x) = log — K (5.14)

xi+ (x2 + N)T

If we use above solution, properly scaled, and centered at several points on the boundary of
domain as our approximate solution, we get a very good approximation of a solution in a
region far away from the points, which unfortunately turns out to be not good enough close
to these points. Thus we need to improve the approximation, at least near the points, and
we do this adding two other terms in the expansion of the solution. This can be done in a
very natural way, which has first been used, for instance, in [47] for studying the following
problem

(5.15)

Au+uP =0, u>0 in;
u=>0 on 0f),

where Q is a smooth bounded domain in R?, and p is a large exponent. Later on, this method
has been applied in other contexts, see [19, 48, 49, 93]. In particular, H. Castro in [19] used
this method to study the following Neumann problem

(5.16)

% = uP on 0,
14

{—Au+u=& u>0 in
where € is a bounded domain in R? with smooth boundary 952, v is the outer normal vector
to 0 and p is a large exponent. They showed that, if p > 1 is a large parameter, for any
integer £ > 1, there exists at least two families of solution w,, which developing exactly k

peaks §; € 0€2, and in the sense that pub — 2er Zle d¢; as p — +o0.

This chapter is organized as follows: Section 5.2 is devoted to describing a first approximation
solution to problem (5.1) and estimating the error. Furthermore, problem (5.1) is written
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as a fixed point problem, which involving a linear operator. In Section 5.3, we study the
invertibility of the linear problem. In Section 5.4, we study the nonlinear problem. In
Section 5.5, we study the variational reduction, we prove the main Theorem 5.2 in Section
5.6. We will give some estimates in Section 5.7.

5.2 Preliminaries and ansatz for the solution

For any parameter € > 0, we can produce a solution to

Au=0 in R%;
(5.1)

ou __ . u 2
5 = €€ on ORZ,

by taking
24
i+ (2 +ep)?

where w,, defined by (5.14). Based on this, we choose a sufficiently small but fixed number
0 > 0 and assume that for any points §;, j = 1,...,k, on 0f2, satisfying

& —&| > 6, forl#j. (5.2)

Furthermore, we consider £ positive numbers p; such that

u(z) = w,(x/e) — 2loge = log .

§<p; <ol forall j=1,...,k (5.3)

We define

241,
|z — & —epv(§5)1*

(o) =, (4, (729 - 210pe

where 4; : RT — R? a rotation map, satisfies

Avo(§) = vez (0),

without lost of generality, in the follows, we will denote that A; = I.

u;j(x) = log

We note that

We define the first ansatz is given by

Ulx)

T opypis
115
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with some number v, to be fixed later on, where H? is a correction term defined as the
solution of

—AH: + HS = —u; in €
He o (5.4)
5 = el — =2 on 0f),
Lemma 5.3. Assume (5.2) and (5.3), for any 0 < o < 1, one has
Hj(x) = H(x,&;) —log(2u;) + O(e") (5:5)

uniformly in Q, where H is the regular part of Green’s function defined (5.5).

Proof. On the boundary, we have

o ou W(E) - v(a) (&) v(a)
I R Tt R A
Thus,
OH; (x — &) v(z)
i 5, =2 \xifj\Q B

Let z.(z) = Hj(x) +log(2p;) — H(w,&;), then from the definition of H(z,§;) and H5, we have

{—A%“e log mgp ~ 18 gy I &
9z, _ 9Hj (z—=&;)v(z)
E—T;—QW on 39,

First, we claim that there is a positive constant C' such that

H OH;  (z—¢&) v(z)

< CeYi, Vg>1, 5.6
|z — & (56)

La(69)

In fact,

G-&) v L (@—&) )
& GE & e & Jr-&P
(2= &) Vo) 2~ &) - v(w) — 2]

|z =&z — & — epv (&)

+ 2ep4

Now, we observe that

1=v() v@)] <Cle =gl [(@-&) v@) <Cla =g, Vaeo
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Hence,
OH; (x—g)m(:c)‘ el2(x = &) - v(&) — ey
. 2 j <Ce+C . J 2, 5.7
e & &) >0
For p > 0 small, we have
OH: (z—¢&) vla)
. J < — &> . :
‘ 5 2 PRy <Ce  for V|z—¢&|>p, xe€d (5.8)

Now let ¢ > 1, we have

q

el2(x — &) - v(§;) — epyl g

|z — & — epv(§5)]?

2y - v(0) — gy |*

V)
y— 0y |

/Bp(fj)maﬂ

= Ca/
BP/E (0)NO2e

ple 1
< Ce/ ds < Ce. (5.9)
o (1+s)1

Combining (5.7) with (5.8) and (5.9) we conclude that (5.6) holds.

Next, we show that
1 1

log ——— — log
|z — &2 |z — & — epv(§5)]?

In fact, for ¢ > 1, we write

<(Ce, forany 1<qg<2. (5.10)
L9()

q

1
|z — & — v (§)1? | oo

B1oep; (£5)NS2 Q\B1oey; (§5)

Next we estimate I; and I,. For I, we observe that

/Blosﬂj ({j)ﬂﬂ

and the same bound is true for the integral of | log WP in Bioey, (§5) N Q. Hence,
J J

—Ep v

—— —log

q

q Ce 1
log dr < C’/ |log r|%rdr < Ce? (log g) :
0

|z — &2

we have
1 q
1| < C&? (log g) : (5.12)
For Iy, if |x — &;| > 10epu;, we have

1
o = &l < o = & — tepu(&)] + nye < o = & — tepv(§)l + 51w = &l
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for any ¢ € [0, 1], then we have |z —¢;| < Clz —§; —tep;v(§;)]. Using this fact, we can obtain

1 1 I !
og ——— — log
|z — &2 |z — & — epv(§5)|?
Ce < Ce
o<t<1 |T — & — 5ﬂj’/(fj)| A §J|

Thus for 1 < ¢ < 2,

D
|| < qu/ rldr < Ce, (5.13)
1

Oaﬂj

where D is the diameter of 2. Thus, combining (5.11) with (5.12) and (5.13) we obtain that
(5.10) holds.

Therefore by elliptic regularity theory, we obtain

0z,
ov

+ | Azl pagy | < CeYa (5.14)
LI(0R)

| 2e|[witea() < ('

for any 0 < s < é. By the Morrey embedding we obtain

l2ellos () < Ce'/e

for any 0 < 8 < % + é. This proves the Lemma with a = é. O

We shall show later on that U(z) is a good approximation for a solution to (5.1) far from the
points §;, but unfortunately it is not good enough for our construction close to the points ;.
This is the reason why we need to further adjust this ansatz. In order to do this, let us first
introduce the following result, whose proof is given in [27].

Proposition 5.4. Any bounded solution of the following problem

Ap =0 in RE; (5.15)
%—e“’k@zo on OR%, .
18 a linear combination of
1 1 To + U
2ou(x) = ——(x-Vw,(r)+1)=——2 , 5.16
0u( ) [ ( u( ) ) L x% 4+ (x2 + ,U)2 ( )
and
ow, )
=—£2_—_9 ) 5.17
#() Oy 22 + (29 + )2 (5.17)
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Now, let us consider the following problem

Ap=0 in R%;
) " (5.18)
a—f —evrp=e“rg  on ORZ,
with w,, defined in (5.14). In [19] it is showed that
Proposition 5.5. Let g be a C'(OR2) function such that, for p1 >0, k > 0, satisfies
g(x) = O(log®(1 + |z])) as |z| — oo, (5.19)
and
/ e gz, =0 = / ergzyy,. (5.20)
IR IR
Then (5.18) has a solution ¢ € C*(R2). Moreover, for any 0 < o < 1, and |z| — oo,
6| < O VO] < Cprr, [V90()] < Oy (5.21)
x — x x —_— :
=R = e = e
where C'is a positive constant, which depends on |\g||Lr(arz), for some p = p(a) > 1.
Let us define ¢y; the solution of the problem
A¢1' =0 in RQ s
¢ ’ . (5.22)
SH — Mgy =e"ig;  on OR%,
24
where wy,, (y) = log yf+(y2+#3)2 and

g1 = alj(wﬂj - 1) + Wy, + §<wug‘)2
with «ay; is a constant to be fixed, which depend on ;. Let us observe that the function g;
satisfies (5.19) by the definition. We now choose «;; such that the orthogonality condition

(5.20) hold. First we observe that g is a symmetric function for any choice of ay;, hence

/ i e gr1z1y; = 0.
AR
2

Next, we choose parameter «;; such that the other orthogonality condition satisfies. Since

Wy
/ 2 ¢ #ngzoﬂj
OR
T

1 . 1
= - et (O‘lj(wuj -1+ Wy, + §(wua‘)2) (y -V, (y) + 1)
Hj Jor%
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1 0 ow,,
- ——0413/ (ew“a (¥1,0) (wy, (y1,0) — 1) —8 2 (y1, 0)yy 4 € v1:0) (wp, (y1,0) — 1)) dy,

ow,,.
__/ ( gy, (yl’o)—(‘)yjj (11, 0)y1 + €O, (yl,())) dyr
(w,,, 2 ow,,. Wy;)”
—— / e 1.0 (W) (1,0) (31, 0)yy + € o ) (1,0) ) dys
2 oy 2

_ = |:a1]/ wHy (y1,0) dy _,_/ ewuj (y170)ww (y170)dy1:| .

Mg o0 00

Thus we need to choose a;; such that

Oélj/ e W10 dy, +/ ew”j(yl’o)ww (y1,0)dy: = 0.

o0 o0

wye. (y1,0) . Mg o / _
evn 0 gy — [ g — o
/oo . /oo T A N RN

/ ewuj(yl,o)wuj(ybo)dyl

e}

= 1 og dyl
/oo yi+ iyt + I

Since

and

= 2/_(><> o [log 2 +1log(2u; ') | dt = —2mlog(2u;).

Here we use the following fact (See the proof in the Appendix)

<1 1
/_OO oS log oo 1dt = —2mlog 2. (5.23)

Therefore, we choose o, satisfies
ay; = log(2;). (5.24)
Then we get the existence of ¢; by Proposition 5.5. With this function, we define
wi;(y) = é15(y) + arjwy, (y).

We observe that w,; satisfies

_ . 2.
{Awlj =0 m R+,
811)1]' Wy ; Wy 1 2 2
G —eMriwy; = e (wuj + 5(wy,) ) on OR?.
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Next, we consider ¢;, a solution of

Ay =0 in R?;
o ' (5.25)
Sk — e gy = €M gy on ORZ,
where
p—2 1
g2 = agj(wy, —1) +wy;+ m(wﬂj)2 + §(w1j)2
+§(wuj) +wy,wyj + 5(“’#3‘) + iwlj(wlﬁ)

with some parameter a,; such that the orthogonality condition (5.20) satisfies as above, and
we note that g, satisfies (5.19) by the definition. Then we have the existence of function ¢s;
by Proposition 5.5.

For & € 02, let 6 > 0 be a fixed small radius, depending only in the geometry of €2, such
that

F;: B;(0)N (2 —¢&) > MNRZ, (5.26)
is a C? diffeomorphism, and M an open neighborhood of the origin such that

Fj (Bs(0) N (0Q —¢;)) € M NIRZ,
We can select F; so that it preserves area. For i = 1,2, define

) = o (BEZED) 1, (£

€ £
= qu](y) + Oéijwj(y)a

where 9
~ Hj
Byly) 1=y, (v = §) = low . —— e,
J J

with & = &;/e and where we will write v for the exterior normal unit vector to 9 and 9)..
Then, let us define the first approximation solution to (5.1) is

(5.27)
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where H;j, i = 1,2, is a new correction term, that is, which is the solution of

—AH;, + Hf; = —auyi(a/e) in &

85} = Qj (66“]’ — %) on 0f. (5.28)
By the same arguments as Lemma 5.3, we have the following result.
Lemma 5.6. For any 0 < a < 1, foriv=1,2, one has
Hij(v) = ajjH (7,&5) — aijlog(2p5) — 20 loge + O(e”) (5.29)

uniformly in Q, where H is the regular part of Green’s function defined (5.5).

Proof. The proof follows from the same arguments as those to prove Lemma 5.3. First, on
the boundary, we have

OH; |, (@—§) v(z)
(ZL‘) = 2aij’{]§—]—€j’2’

The regular part of Green’s function satisfies

lim
e—0 61/

Va#E

lz—¢;[?
OH(x&;) _ o (@=§;)-v(z) on Of.

Ovg lz—¢&;]2

{—AxH(a:,ﬁj) + H(z,¢) = —log —+—= in

Set Z. = H;(x) 4 ayjlog(2p;e®) — ayH (2, &), we have

—AZ 4z = —AH; + H; + ag;log(2pe®) — o [-AH (2, &) + H(x, )]
= —Qw; + a4 log(2uj€2) — Oy [_AH(% 5]) + H(xv 5])]
1 1
= ay; |log—— —1lo ,  in Q.
! [ Sle— &P g|$—§j—€MjV(§j)|2}

On the other hand, on the boundary, we have

0 _ [5115 S u(x)} |

ov o |z — &2

From (5.6) and (5.14), by the same procedure as proof of Lemma 5.3, we obtain that (5.29)
holds. O

Consider now the change of variables

2
v(y) = py* tuley) —py?,  with 77 = —Zloge.
p
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Then under the choice of € in (5.8), problem (5.1) reduces to

—Av + %0 = 2e?loge in Q.;
5 (5.30)
= f(v) on 0f),,
where Q. = ¢71Q), and
_ U p—1 AP[(14+-%5)P—1]
fv_1+_p1€'v[( P .
@) =0+ 2)
Let us define the first approximation solution to (5.30) as
Va(y) = py"" U (ey) — 77, (5.31)

with U, defined by (5.27). We write y = ¢~ 'z, = e~1¢;. For |z —¢;| < & with § sufficiently
small but fixed, by Lemma 5.3 and 5.6, and the fact u;(cy) — py? = @;(y), we have

Va(y)
= e + B (o) + 2 (gl + o) + (20 (o) + (o) -
> (wxsy) H7(e) + P (e + Haten) + (P22) 5 (e + H;l<ey>>>
I#]

i 11 —1\* 1 _ , o
= wj(y)+pT%wu(€y)+ (297) @wza‘(sy)+0(8!y—€j!)+0(€ )

k
p—11 <p—1)2 1
—log(2u;) + |1+ ay; —to (— ) | [HE. &)+ D G&.¢
g( /M) 15 D AP 2j D 2 <€J é}) - (& §J>
p—11 p—1\> 1
—[alj p $+Oé2j (T) %] (log(Q,uj)—i-Qlogg) (532)

We now choose the parameters j;: we assume they are defined by the relation

k
log(2p;) = (H(Sj,ﬁj) + ZQ&@)) +(p— Doy

1]

k
TR A S (H(fj, &)+ 3 Glan &) — log2u;) + (b - 1)%)
p 7 127

vy (20 5 <H(fj,5j> +300(6.8) - log(2uj)> S 6w

2p
7 ]

Taking into account the explicit expression (5.24) of the constant «y;, we observe that s,
bifurcates, as A goes to zero, from the value

k
. H j1S7 G SJ
. 1 2—p |: (§J §J)+l§j (gl gj):| (534)
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solution of equation
k
log(2p;) = (H(fj, )+ G(fhfj)) + (p = Doy (5.35)
I#]
Thus, p1; is a perturbation of order ,yip of the value fi;, namely
1 : 1
log(2) = 57— (H(@-,@) S G(@@-)) (1+0(5)) (5.36)
I#]

Then, by this choice of the parameters j1;, we deduce that, if [y —&;| < d/¢ with ¢ sufficiently
small but fixed, we can rewrite

P ek 5 SRR 6 et A RIS I
Vi) = ) + e + (P ) ) + ) (5.37)

with
0(y) = O(ely — &) + O().
We will look for solutions to (5.30) of the form
v=V+ ¢7

where V), is defined as in (5.31), and ¢ represents a lower order correction. We aim at finding
a solution for ¢ small provided that the points ¢; is suitably chosen. For small ¢, we can
rewrite problem (5.30) as a nonlinear perturbation of its linearization, namely,

{—A¢+52¢—0 z e Q.
(5.38)
L(¢) = Ex+ N(¢) =z €0,
where
_99 .
L) := 5~ = F(VN)9, (5.39)
By = f(3) - 22, (5.40)
N(¢) = f(Va+9¢) — f(V2) — f (V)¢ (5.41)
We recall that f(t) = (14 -5 )p—Le? (51,

P
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In order to solve the problem (5.38), first we have to study the invertibility properties of the
linear operator L. In order to do this, we introduce a weighted L*°-norm defined as

» ~1
17]]00. == sup (Z(l +ly—&HT 7+ 6) h(y)] (5.42)

y€Qe =1

for any h € L>*(0f).), where we fix 0 < ¢ < 1 will be made later on. With respect to this
norm, the error term E) given in (5.40) can be estimated in the following way.

Lemma 5.7. Let 6 > 0 be a small but fivred number, assume (5.2) and (5.3). Then there
exists C' > 0 such that

C C

¥~ Jlogef?

[ Exl«00. < (5.43)

for X\ small enough.

Proof. Far away from the points §;, namely for |z — &| > 0, ie. [y — ] > g, for all
j=1,... k, we have that

aV)\ . p—1 8U)\<€y) . p—1
al/ - p’-}/ € ay - O(’y € )
On the other hand, in this region we have
2loge +0(1)  O(1)

v
\(Y) — 14+ _
PP fald |log ¢|

1+

where O(1) denotes a smooth function, uniformly bounded, as ¢ — 0, in the considered
region. Hence

p—1
e R
—£P if 1<p<2
2 p_OQ1)
C&__le’Y [og e[P if 0<p<1.
—£2_ if 1<p<2
2 o(1)

O —eloeP™ T if 0 <p < 1.

Hence if we are far away from the points §;, or equivalently for |y — &7| > g, the size of the
error, measured with respect to the || - ||, a0.-norm, is relatively small. Namely, if we denote
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by louter the characteristic function of the set {y : [y —&}| > g, j=1,...,k}, then in this
region we have

2-p

( 2-p
C—~-t—= if 1<p<2;

Tog P~ 1

IN

”E’)\louterH>c<,c'9QS 2-p %j c
\ C%ebgE " TP T if 0<p< 1.
( 2—p
Crisi= if 1<p<2;
P

3 _2-py) 1 1-p .
Crit—re 2 |log el +Cloge| if 0<p<1.

( 2—p

C=t . if 1<p<2;

Tog el 1

IA

oy (5.44)

C—== -+ if 0<p<l.

\ [logelp—1

Here we used that —22;;’| loge| + Clloge|'™ < 0 for 0 < p < 1 and ¢ small. Let us now fix
the index j in {1,...,k}, for |y — &| < g, we have

oV ei)j(y) n p— liﬁwlj(x) n <p_ 1)2 L@UNJQJ((L') —|—O(62)

v p P  Ov D v Jv
o  P—11 (001(y) o,
e 5 () +T$ < éjy + aqje?
) -
p—1 1 02 (y) D; 2
+( D ) 721’( ov aze + O,

On the other hand, for any R > 0 large but fixed, in the ball [y —&’| < R. := R|loge|®, with
a > 3, we can use Taylor expansion to obtain

fV)

B (R e 0 Y e AR G
= (1+mp< i(y) + PRET u(y)+< 5 ) - 2y(y)+9(y)>)

" [ (5 25 s e+ (250)” S s i) +0()) ) 1]
2 3
p—11 _ p—1 1 . p—1 1 . p—11

= (1 + T%wj(y) + <—> %’wu(&y) G @wzj(fy) +———0(y)

o W) Bt i (ew) (B50) S0 (o) Lo(y) 3 55 i [ W) S )+ (551 ) S (cw)+0(w)]”

2
_ () p—ll{m-~ @y |~ Lo\ p—1 1
= "W 4 —— — de%wy(ey) + eV w4+ = (0)? | p+ | —— ) —
P ,yp J J 2 J P

p—2

0.)2 1@.2
m(wj)+ (w01;)" +

2

ool —

X {ij’(zlgj (Ey) + €u~}j |:QIJ1]' +
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p—11 4 10—121%_~ N p—1\" 1 by
MR G T L5+ i Ey)] 0y) + | — = W{e Wa(ey)
1. o 1, . o 1. N
@(wj)ﬁ + Wi (ey) + Q(wlj)Q(fy) + 2125 (ey) + 5“’19'(89)(%)3

512 () + 5 05)°+ (0 e) + s (o) i)+ 355"

- _ 1. . 1, . 1. -
+(ey)wa; (ey) + gwlj(€y)(wj)4 + 7 (@yin;(ey))” + §w2j(€y)(wj)2] } +0 ( 3
Thus, thanks to the fact that we have improved our original approximation with the terms
wWy;(ey) and Wy (ey), and the definition of *-norm, we get that

C C

Exlpe polleog. < — = .
1Batog roll-on- = 55 = Tiogep

(5.45)

Here 1 B(¢),Re) denotes the characteristic function of B({}, R.). Finally, in the remaining

region, namely where R, < |y — &| < g, for any j = 1,...,k, we have from one hand that
‘avaLV(y)’ < Ce®W  and also |f(Vi(y))| < Ce®® as consequence of (5.32). This fact, together
with (5.44) and (5.45) we obtain estimate (5.43). O

As the proof of (2.34), (2.35) and (2.36), we have the following two Lemmas.

Lemma 5.8. For very close to the point & on OS2, we have
f'(V) ~e®  as A —0, (5.46)

and there exists some positive constant Dy such that

k
F(VA) <Dy e™. (5.47)
j=1
Lemma 5.9. We have
1F (Va) e, < C (5.48)

for some positive constant.

5.3 The linearized problem

In this section, we prove the bounded invertibility of the operator L. First of all, we will
solve the following linear problem. Given h € C'(0€2.), find a function ¢ such that

—A¢p+e*p=0 in €
k
L(¢p) =h+ > ¢ix;Zy;  on 0€; (5.49)
j=1
Jo. XiZ10 =0 for j=1,... F,
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for certain scalars c;, where operator L defined as (5.39), and Zy;, x; are defined as follows:
Define

1
Fi(0) = Fy(ey), (5.50)
with F} is given by (5.26). Set
Zij(y) = z5(F; (y), i=0,1, j=1,...,k

with zp; and z;; defined as (5.16) and (5.17).

Next, let us consider a large but fixed number Ry > 0 and a nonnegative radial and smooth
cut-off function x with x(r) =1if r < Ry and x(r) =0if r > Ry + 1, 0 < x < 1. Then set

Xi () = x([F5 (W)])-
Equation (5.49) is solved in the following Proposition.

Proposition 5.10. Let 6 > 0 be a small but fixzed number, assume (5.2) and (5.3), and p;
is given by (5.36). Then there exist positive numbers Ao and C, such that problem (5.49) has
a unique solution ¢ = Tx(h) which satisfies

1
ol < € (tog 2 ) Il an. (550

for all X < \g.

We carry the proof out in the following steps.
Step 1: Constructing a suitable barrier.

Lemma 5.11. There exist positive constants Ry and C, independent of A\, such that if \
small enough, there exists 1 : .\ Ule Bg,(§;) = R, smooth and positive, satisfies

(

k
—Ap+e2p > |y—£}|2+a +&? in Q:\ U§:1 BRl(éu});
j=17"

_k
NOLEDY e e on 00\ UE_; B, (£));
]:
(v =1 on Q. N (UX_ 0B, (£))).

Moreover, we have a uniform bound

0<¢<C inQ\U, Bg (&)
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Proof. Let n; € C§°(R?) be such that 0 < n; < 1,7, = 1 in Q. N Bsje(&5), m; = 0 in
Q\Bs=(&5), |Vn;| < Cein Q, |Any| < Ce® in Q. Let ¢o(y) = Y (ey), where 1) is the solution

to
{—A@/;—I—@/lel in €

g—i’zl on 0f),

so that

—Apg+e*Pp=e* inQ., and % =¢ on 0f)..
v

In particular, v is uniformly bounded in §2.. Take the function

k
(y=§&) v (f’)
V= ;m [ e + Co,
where 1 = |y — & — p;v(&))|. It is directly checked that i satisfies the required condition. [

Step 2: Transferring a linear equation. We study first the linear equation

{ —~A¢+e2¢p = hy in Q,;
0

5.52
% _f(Va)p=nh on 99, (5:52)

where hq, h are in suitable weight spaces: we consider for h the norm defined in (5.42) and
for hl

k -1
|71 [|sx0. := sup (Z +ly =&~ 62> |ha(y)]- (5.53)

yEQe -1

For the solution of (5.52) under some orthogonality conditions, we have an a priori estimate.

Lemma 5.12. There are Ry > 0 and \g > 0 such that for 0 < A\ < X\g and any solution of
(5.52) with the orthogonality conditions

/ XiZij¢=0 Vi=0,1;, j=1,...,k, (5.54)
we have

@Ml 0) < C ([[Bllvon. + [1hall+g.) (5.55)

where C' is independent of .
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Proof. We take Ry = 2Ry, with R; being the constant of Lemma 5.11. Thanks to the barrier
¢ of that Lemma we deduce the following maximum principle holds in Q.\ U¥_, Bg, (¢)): if
¢ € H'(Q\ Ul_, Bg,())) satisfies

—Ap+e2>0 in .\ U?:1 Bp, (5})7
- F(Ve=0  on 90\ Uiy Br,(&);
6> 0 on Q. N (U¥_,0Bg, (&),

then ¢ > 0 in Q.\ U¥_, B, (&).

Let hy, h be bounded and ¢ a solution to (5.52) satisfying (5.54). Define the inner norm of

¢ as
1oll: = sup 91,

Q-N(Uk_, Br, (&)))

and set

¢ = Crto (|6]li + 7l o0, + 17n]lee0.)
with C} a constant independent of A, and ¢ is the function given in Lemma 5.11. By the
above maximum principle we deduce that ¢ < ¢ and —¢ < ¢ in Q.\ U§:1 Bg, (§}). Since v
is uniformly bounded, then we have

10l (@) < C (Il + 1Pl 00. + 1h1llwo.) (5.56)
for some constant C' independent of ¢ and .

We prove the Lemma by contradiction. Assume that there exist a sequence A, — 0, and
points &7, ..., &7 on 0N satisfies (5.2) and functions ¢,, f, and h, with |[¢,| e, ) = 1,
P |l 0., = 0, ||h]|c00., — 0, such that for each n, ¢, solves (5.52) satisfying (5.54). By
(5.56) we see that ||¢,||; stays away from zero. For of the indices, say j, we can assume that
SUPp, (¢)) 6| > ¢ > 0 for all n. Consider ¢,, = ¢, (z — §:), and let us translate and rotate

€., such that €. approaches the upper half-plane and &; = 0. Then by elliptic estimate ¢En

converges uniformly on compact sets to a nontrivial solution gg of (5.15). By Proposition 5.4

¢ is a linear combination of zy; and z;;. On the other hand, we can take the limit in the

orthogonality relation (5.54), we find that ng X¢zij = 0 for ¢« = 0,1. This contradicts the
+

fact that ¢ % 0. O

Step 3: Establishing an a priori estimate. In what follows, we will establish an a priori
estimate for solution to (5.52) with the orthogonality condition st X;jZ1;¢ = 0 only.

Lemma 5.13. For A small enough, if ¢ is a solution of (5.52) and satisfies

/ Xjlegb:O \V/j = 1,...,]{?, (557)

€
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then there holds
0] 0.y < Clloge| ([hllwo0. + [hllg.) (5.58)
where C' is independent of A.

Proof. Let ¢ satisfies (5.52) and (5.57). In order to use Lemma 5.12, we will modify ¢ to ¢
so that satisfy all orthogonality with respect to Z;; for i = 0,1. Let R > Ry + 1 be large but
fixed, 6 > 0 be small and fixed. Set

Zo;(y) = ¥ Z0;(y),

where
00 =R, ) = TA LT

with F7 is the change of variables defined in (5.50). We observes that h is just the solution
to

Ah =0 in Bs/.(0)\Br(0);
h=1 2| = R;

Let 715, 7a; be radial smooth cut-off functions on R? such that

0<m; <1, |V, <C in R?,
;=1 in Br(0), 7, =0 in R*\Bg.1(0),

and

0 S 772j S 1, |Vﬁ2J| S 08/5, |V2772j| S 082/62 n RQ,
2j =1 in Bs(0), 7z =0 in RQ\B%(O).

Now, we write

i) =M (F5 (), 2 (y) = 125 (F; (v))- (5.59)

Define ) )
Zoj = mjZoj + (1 = 1m15)10j Zoj-
Given ¢ satisfying (5.52) and (5.57), we set

i [ X320
A § 7 X] 0]¢
= ’ Jo, 23

Therefore, our result is a direct consequence of the following claim.
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Claim:

|d;| < Clloge| ([[hllvon. + [Mllwg) Vi=1,....k (5.60)

First, using the notation L=-A+¢e] , we observe that ¢ satisfies

Z(&) =hy + i de(ZOj) in §;
7= (5.61)
— f(V)é=h+ 2 d; (%2 = W) Zo;) om0,

Thus by Lemma 5.12, we have

i i
~ a7 N .
I6ll=y < O ldyl aVOJ — ['(Va) 2y, + 1 L(Zoj) [«
Jj=1 *,00
+C|R[lv 00 + Cll71 .- (5.62)

Multiplying the first equation in (5.61) by Zy, integrating by parts and using the second
equation in (5.61), we find

dl [/ E(ZOZ)ZOZ + /a\Q ZOI (aaZVOl _ f,(V)\)ZOZ>
_ ~ ot 8201 —~—~ o~
= — /396 hZy — /E hy Zoy + /895 ¢ <W —f (V,\)Zol> + o oL(Zy).  (5.63)

Thus by (5.62), we deduced that

/ Z(ZOZ)ZOZ + /BQ Zoz (% - f (VA)ZOZ>

o7
a—‘” — F'(Va) Zon

dy

IN

Cllhll«00. + Cllhllss0. + @] L@,

*,0Q¢
F10l] o o) [1 L(Zoo) [,

dZa

= — () Zu

Z Z Kk
- 1L (Za)lov

*,0Q¢

IN

C (|nl+00. + |A1]ls0.) | 1+

azoj

— F'(VA) Zy, + | Z(Zoj)||ex0. | - (5.64)

CZ

*,00
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To achieve the claim by proving the following estimates: for some constant C' > 0 independent
of A,

o (02, ¢
L(Zy;)Z0; Zoi | =2 — f'(V\)Z, 5.65
/E (Zo) 0a+/mg UJ<8V f'(Va) 0J>—‘10g€’ (5.65)
~ = C
(70l < ———. 5.66
H ( OJ)H Qe = ’10g€’ ( )
0Zo; . C
— Z < . .
H v J'(Va)Zo; ~ |loge] (5.67)
*,000
In [27] it is showed that estimates (5.65), (5.66) and (5.67) hold. O

Step 4: In proving the solvability of (5.49), we may first solve the following problem: for
given h € L*>*(Q.) and find ¢ € L>(2.) and di, ..., d; € R, such that
—A(b +e%¢ = Z dix;Zuj in Q,;
AT on 99 (5.68)
fQEXJ21]¢:O for jzl,...,k,
First we prove that for any ¢, di, ..., dj solution to (5.68) the bound
[0l Loe(0.) < Cllogel||A]l+ 00, (5.69)
holds. In fact, by Lemma 5.13, we have
k
]| o<y < Clloge] (HhH*,ms +> \de) (5.70)
j=1
and therefore it is enough to prove that |d;| < C||h||.s0. -

Let 19 be the cut-off function defined in (5.59), and multiply (5.68) by 79, Zy;. Integrating
by parts we get

0 oz
dl/ xiZy = —/ h772l21l+/ ¢ﬂzu+ VAT ( all _f/(V/\)le)
. 9. 9. ov v

00

/ O(—=A(nuZu) + ¥ nuly). (5.71)
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Since, Zy; = O(17) and Vi = O(e), we have

/ (,b%zu
o0, v

On the other hand, we can estimate that

1
< Celog —.
5

074, € e 0

147 147
J..
Moreover, we implies that

1
/ |_ (nuZu) +¢ 77le11| = (E log —) .
00 £

Thus from (5.71)-(5.73), we conclude that

and which implies that

02y

5 ' (Va)Zu

= 0(e").

0 / i Z% < Cllhlluon. + Cellll ).
Qe

Combing (5.70) and (5.74) we have

k
o 1
@ < C (nhn*ms +C=log 5> |dj|> .

j=1
This implies that

|di| < C[R]]+00.
which proves (5.69).

Now consider the Hilbert space

:{gzﬁeHl(QE) : / X;Z16 =0 ijl,...,k},
Qe

(5.72)

(5.73)

(5.74)

(5.75)

endowed the norm [|¢[|3: = [, [V@[* +£2¢®. Problem (5.68), expressed in a weak form, is

equivalent to find ¢ € H such that

/ VoV + g — THUNTES hy,  for all ¥ € H,

00 00
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With the aid of Fredholm’s alternative guarantees unique solvability of (5.68), which is guar-
antees by (5.69).

Step 5: In order to solve (5.49), let Y; € L>(€).), d;; € R be the solution of (5.68) with
h = XiZ1i7 that is

k
—AY; + &%, = Y dix; Zy; in
j=1

G — F'(VWYi = xiZu on 0€); (5.76)
fQEXjZIjYz‘ZO for j=1,... k,

From Step 4, there is a unique solution Y; € L>(.) of (5.76), and
[YillL(.) < Clloge|,  |dy| < C (5.77)
for some constant C' independent on .

Multiplying (5.76) by 12;Z1;, and integrates by parts, we have

AT Mo
by [ zyvos [ iz = [ (- oz myie [ G2y,
c GioR GieR v . oV

where 0;; is Kronecker’s delta. From (5.72), (5.73) and (5.75) we obtain

1
dz‘j/ XiZij +6z’j/ XjZi; =0 (5a log —)
Q. o9 <

1
dij = Aél] + @] (Ea log g) (578)

Then we get

with A > 0 is independent of €. Hence the matrix D with entries d;; in invertible for small ¢
and ||[D7!|] < C uniformly in . Then, given h € L>*(99.) we find ¢y, di, ..., d}, the solution
to (5.76) and define

k
¢=o1+ Y Y,
=1

where ¢; satisfies
k

Y edy=—d;, Vji=1,...k

i=1

Then ¢ satisfies (5.49) and we have

k
1
I19llz=(0) < lidrll=(q.) +log - > e
i=1
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k
1 1
< Clog E||h||*,aQE + log z Z ||

i=1
1
< Clog ||«
by (5.75). This finishes the proof of Proposition 5.10.

Remark 5.14. A slight modification of the proof above also shows that for any h € L*>(0€).)
and hy € L*®(S).), the equation

—~A¢p+e%p = hy in (;

L(¢) =h+ f:leXjle on 08;

st X;Z1;9 :]_O for 7=1,...,k,
has a unique solution ¢, cy,...,cr and that satisfy

1
9]l 0.y < Clog — ([|Allon. + [Ihfl.)
lej] < C (Al 0. + 1hillwo.) s Vi=1,....k

holds for C' independent of \.

The result of Proposition 5.10 implies that the unique solution ¢ = T)(h) of (5.49) defines a
continuous linear map form the Banach space C, of all functions h in L* for which ||A|]. < oo
into L*°, with norm bounded uniformly in A.

Lemma 5.15. The operator Ty, is differentiable with respect to the variable &1, . .., &, on OS2
satisfying 5.2, one has the estimate

1 2
||8€2T,\(h)||Loo(QE)SC(logg> Ihlleon. for 1=1,... k, (5.79)

for a given positive C, independent of A, and for all A small enough.

Proof. Differentiating equation (5.49), formally Z := dg¢ should satisfy in €. the equation
—AZ+£2Z=0 inQ,.,
and on the boundary 0.

!
L(Z) = =0g(f'(Va))¢ + c10g (xiZu) + Z d;Z1jx;

j=1
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with d; = Ogc;, and the orthogonality conditions now become

/ ZuxiZ = —/ e (Zuxi) ¢-
Q. Q.

We consider the constants b; defined as

bl/ Xl‘ZU—/ ag’ leXl for [=1,...,k.

Define ~
7 =7 + lelZU~

We then have
—ANZ+e*Z=ua in Q.
L(Z) =b+ Zd ZyjX; on 0€);
fﬂs XJleZ () for j=1,....,k,

where
a=b(—A(iZu) + *xZu),

b= —0g (f'(Vx) ¢ + cdg (Zuxi) + L(xiZu),

and we have ] ]
lallien. < OlOgthH*,aﬂe, [16]|4,00. < C'log g||h||*,as25-

Hence, using the result of Proposition 5.10 we obtain that

1 2
104 T30 =0 < C (108 L) Willon, for 01,k

5.4 The nonlinear problem

Let us now introduce the following auxiliary nonlinear problem

—Ap+e*p=0 in Q.
k
L(¢) = E)\ + N(¢) -+ Z Cijle on 895, (580)
j=1
Jo. XiZ1;6 =0 for j=1,...k,
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Proposition 5.16. Under the condition of Proposition 5.10, there exist positive numbers Ao
and C', such that problem (5.80) has a unique solution ¢ which satisfies

C
0 < — 5.81
I6lii0) < 1o (581)

for all X < \g. Moreover, if we consider the map £ + ¢ into the space C(S2.), the derivative
D¢r¢ exists and defines a continuous function of {'. Besides, there is a constant C' > 0, such

that

C

D/ o0 < .
H &QSHL (2e) = Hogd

(5.82)

Proof. In terms of the operator T\ defined in Proposition 5.10, problem (5.80) becomes
¢ =T\ (N(¢) + E)) = A(¢). (5.83)

For a given number M > 0, let us consider the region

_ M
= Q . oo < .
Fu {¢ € C( 8) H(bHL Q) = |10g€|2}

From Proposition 5.10, we get
1
4@ =0 < € (108 ) IN@)on. + Il on.]

From (5.43) and (5.48), by the definition of N(¢) in (5.41), we have

1
JA@) ey < Clloge] (CchHioo(mﬁW).

We then get that A(Fys) C Fy for a sufficiently large but fixed M and all small A\. Moreover,
for any ¢y, @2 € Fur, one has

IN(61) = N(62)logn. < C (m ||¢z-|rme>) 61— éallz=(a.)

In fact,

N(¢1) = N(¢2) = f(Va+ 1) = f(Va+ ¢2) = f/(Va) (1 — ¢2)

_ /01 <%f(VA + Gy + (g — ¢2)) dt — f'(VA)(é1 — 62)

1
= [ Ak 61061 - 6n) = FOR) i (01 ).
Thus, for a certain t* € (0,1), and s € (0,1)

[N(¢1) = N(¢2)| < CLf'(Va+ d2 + (1 — 62) — [/ (VA)lllé1 — dallLear)
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< CIf"(Va+ sé2 + 17 (01 — ¢2))| (161]| =) + D2l (0) 161 — P2l (-
Thanks to (5.48) and the fact that ||¢1||r=(q.), |2 L) — 0 as A = 0, we conclude that

[N (¢1) — N(¢2)|l+00.
CI " (V)llwon. (101l + o2l L)) o1 — @2/l
Cll o1l + P2l @) lé1 — P2llLos(an)-

IA A

Then we have

[ A(d1) — A(d2)|| L= ()
< Cllogel||[N(¢1) — N(é2)]l+00.

< Cllogel (magllalimnn ) lon — dalimon

Thus the operator A has a small Lipschitz constant in Fj; for all small A\, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map ¢ = (&],...,§,) — ¢. Assume for
instance that the partial derivative 9y ¢ exists, for [ = 1,... k. Since ¢ = Ty (N(¢) + E),
formally that

Ogyp = (g Th) (N(6) + Ex) + Th (0N (¢) + 0 ) -

From (5.79), we have

C

10T (N (9) + Eb) lL=(e.) < Cllogef’[|N(9) + Elxo0. < |loge|

On the other hand,

0, N(¢) = ['(Va+0) = F'(Va) = [ (Va)elOgVa + g [f'(Va) — €]
H(Va+0) = f'(Va)]0go + [ (Va) — €] 0g .

Then,
10 N (&) .00
1 1

< ¢ {ucbn%mmg) + e lollim + 10l eollolim, + @H@MHW(QE)} .

Since |0 Ex|[«.00. < “Og%P, and by Proposition 5.10 we then have

C
|log |

10¢ 9l Lo 02y <

for all [ = 1,...,k. Then, the regularity of the map ¢ — ¢ can be proved by standard
arguments involving the implicit function theorem and the fixed point representation (5.83).
This concludes proof of the Proposition. n
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5.5 Variational reduction

After problem (5.80) has been solved, in order to find a solution to the original problem we
need to find & such that

¢j(€)=0 forall j=1,... k. (5.84)

This problem is indeed variational: it is equivalent to finding critical points of a function of
¢ =€, Associated to (5.1), let us introduce the energy functional Jy : H'(2) — R given by

Ta(u) = %/Q(|Vu]2 +u?) — %/@Q o (5.85)

and the finite-dimensional restriction
NGEFNCAGERG)E (5.86)

where ¢ = é(ﬁ) = qg(x,é’) is the function defined in € from the relation é(:c,f) = (2, %),
with ¢ is the unique solution to problem (5.80) given by Proposition 5.10.

Lemma 5.17. The functional F\(£) is of class C*. Moreover, for all X > 0 sufficiently small,
if DeF)\(§) = 0, then & satisfies (5.84).

Proof. A direct consequence of the results obtained in Proposition 5.16 and the definition of
function Uy, is the fact the map & — F)(€) is of class C'. Define

1 P v _\p_
I(v) = —/ (IVv]* + *v?) —/ S
2 Jo. 90.
Let us differentiate the function F)\(§) with the respect to £. Since
K {(03+8) 0.9) = b (500 (55 (5:87)
Y p ,y ( 5 )

we can differentiate directly I (Vi(§) + ¢(§)) under the integral sign, so that

1
p272(p—1)

- s ,12 / eixiZ1; [OVA(E) + D0 (€)]

k
= e n° [Z/ ¢iX;jZ1;05 VA(E) + ;/mgcjagg (XquW(f)],

g, A (€) e DIy (VA(6) + ¢(€)) [0 Va(€) + O (6)]

B
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since er X;jZ1;¢ = 0. By the expansion of V), we have

- p—11 p—1
IV = Og (wz(y) + T’Y_wll( y) + (T

N 11 p—1\2
= 8€llwl(y) + Tv—aqwu(&?y) + ( >

w|H

— SOy (ey) + 9g0(y)
1 ~1\*1 . _
= —le + Z)T—ﬁglwll(ey) + (pT %agl/w%(éy) + 8529(y)

Y

Moreover,

/ ;0 (XjZ15) 9(§) 20(1)/ ¢ X3 41;0g V-
00

Qe

Then, if DeF)\(§) =0, for j =1,2,..., k, we then have

Z /aQ X;jZ1;(Zu +o(1)) = 0. (5.88)

This is a strictly diagonal dominant system. It implies that ¢; = 0 for j = 1,..., k. This
concludes the proof of the Lemma. O

Next, we will write the expansion of Jy as A goes to zero.

Lemma 5.18. Let 0 > 0 be fized. There exist positive numbers \g and C, such that p; are
given by (5.306), the following expansion holds

2-p 2km 2km 1 s N
Nler Fy(E) = T +——log—+3 _p@k(f) +O(|loge[™) (5.89)

uniformly for any points &, j =1,...,k on 082, where

Pk (f) ka(gla-'-y [ZH 5]76] +ZG glvgj ] . (590>

I#j

Proof. We have

S~

F\(§) =

(13 +09))
[ ¥ @so)es (ma)] -2 [ oy

N —

From (5.87) we have that

3y (T2 + 9(9)) = I WA(6)) = 555 [V + ) = LA
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Since by construction I§(Vy + ¢)[¢] = 0, we have

I (U)\<£> + 05(5)) = I (Ux(8) = % /01 D*I,(Vy + td)*(1 — t) dt

b~y
~ i [ B Nenes [ 00 - fa | a -

Since || Ey||+.00. < ﬁ ¢l (0. < ﬁ IN(9)]|x.00. < ﬁ and (5.48), we get that

C

P (5.91)

PN CAGERG) EPACAGIE

Next we expand

WOE) =5 [ [V O+ U] =2 [ etr (5.92)

p

Now we write

F p—11 p—1\? 1
m” D < TﬁUlj(ﬂﬂ) + <T) @Uzj(ﬂf)>

Jj=1
Then we have

1

: / IV (WA €) P + U (€]

_ pl) Z/ (IVU; >+ U?) +Z/ VUVU; + UU,)

I#5

~-11 1\* 1
Z/ (VU; VU + U;Uyy) + (T) o Z/(VUJVUQJ- +U;Us))
j=1"¢

p7p

2 k
- 1|1
+ (pT) — [5 g /(|VU1j|2+U12j)+ E /(VUllVU1j+U1zU1j)
=179 1£j

2P

3
p—1 1
+(557) 35 v o

i=1

“1\'1 [1 &
_1_(1)7) S [52/ |VU2]|2—I—U2J -I—Z/ (VU3 VU, + UyUsyy)
=179

4
7 I#5

}. (5.93)
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Let us estimate the first two terms. We observe that the remaining terms are O(Q@—W)

We have
/WW#+W)=t/WwVﬁ/@+/W%V+/WW
0 Q 0 0 0

Q Q

Multiplying (5.4) by H5, it yields

/WVWF+/UﬁV
Q Q

o
Q

o0 81/
€ u € 8”] €
Q o0 o0
Multiplying (5.4) by u; again, we find
2 € _ € Uuj au]
u; + | Hju; = — | Vuy;VH; +e | eYu; — 5
Q Q Q o0 o0
Then we get
Lavuie <)

; ou
= / ]Vu]|2 / ﬂuj + / VU]VHJE — a ]]‘.’6 —|—6/ e”j(uj + HJE)
v Q an oV o0
= / 7 (uy +H8)
o0

241, 1 .
- 1 H(z,&)+ 0 :
6/@9 |z — & —epv(&)]? ( P S (:8) + O ))
53

Taking the changing variables y = , we have
Javusp 03
Q
/ 2 O L LH(E ey, &) — 21og( O+owwmm
= 0g ey, &) — 2log (e e?)(5.
000, [y = V(O 7 [y = v(0)? o ’

Since

1
Amwmtaap=w+0@y

! = 1 dt + O(e*
/39% y=vOP *ly=vO)P /oo T %8 yp @ OE)
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= —2mlog(2) + O(e”).

and

2
/8Q o & ey &) — H(G )

2 (6% « _ (6%
_ /a o, =@ PO = 0E)

Then we obtain
L
33 (VU + U

= —2lmlog2+7rz (&:&5) — 2log(epy)] + O()

7=1
k

= —2kmloge+m Z (&;,€;) — 21og(2u,)] + O(e?).

7j=1

On the other hand, we have

Z/ VU,VU; + UU;)

I#5

> / VuVu; + 2 / Vu,VH + / VH;VH;
1£j Q Q Q

+/uluj—|—2/ulH;+/HfH;.
Q Q Q

Multiplying (5.4) by H;, it yields

/VHEVH, /HEHI - /uJHl —|—5/ e HF — / 0 pre.
0N 0N

Multiplying (5.4) by uf again, we have

0
/ VusVu§ + / Heuf = — /Q VH:Vu + ¢ /8 i | 5

By (5.97)-(5.99) we find that

Z/ (VUVU; + U,U;)
= Y / VuVu; + 2 / Vu,VH; + / VH;VH;

I#j
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Q Q Q

= 7Y G(&.&)+0(). (5.100)
I#5

Therefore, by (5.93), (5.96) and (5.100), using the choice of y; in (5.36) we get

3 | 19 @) P+ ey

1
p2y2(—1)

k k
—2kmloge — ﬁﬂ <Z H(,65) + Z G(&, @)) + O(]log 6\_1()%.101)
j=1

I#]

Finally, let use estimate the second term in (5.92). We have

é/ U — i/ (@)
P Joa P Joa

k

— iZ/ e’yp(1+mpv>‘( ))
D = JoanB(g;.5)

1=

S e

b Kk
o0\ jL:Jl B(&;,0)
= L+ L. (5.102)
First we observe that
= X0, () (5.103)

with ©,(§) a function, uniformly bounded, as A — 0. On the other hand,

k

1 P _
11 = —— / e’y [(1+p’ypv>‘( )> 1]
pPye=h ]z: 0Q.NB(E}.3/¢)
Ll%mlj +(=t 2%@21' +6 1
_ Z / S ) +(552)” iz (v) <y>}<1+0<%))
= a.np (€ 5/e)
i 1
= g i (1+06)
= ly—v(0))2 ol
L 90.0B(0 )
1 _
with ©,(¢) a function, uniformly bounded, as A — 0. From (5.102)-(5.104) we get
)\ UP 1 -1
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By (5.8), (5.91), (5.92), (5.101) and (5.105), we can write the whole asymptotic expansion of
F)\(§), namely (5.89) holds. O

5.6 Proof of The main Theorem

Proof of Theorem 5.2: From Lemma 5.17, the function

UME) +8(8) = —= (1" + B+ 9)(D))

pyP!

where V), defined by (5.31) and ¢(§) is the unique solution of problem (5.80), is a solution of
problem (5.1) if we adjust & so that it is a critical point of F)\(§) defined by (5.86). This is
equivalent to finding a critical point of

F\(€) i= AN 17 Fy(€) + B + Cloge,

for suitable constants A, B and C. On the other hand, from Lemmas 5.18, for & =
(&1,...,&k) € 09 satisfies (5.2), we have that,

FA(€) = @r(&) + O] loge| )01 (8),

where @y is given by (5.4), and ©,(&) is uniformly bounded in consider region as A — 0.

By the assumptions ¢y has a C%- stable critical point (&7, ..., &;), by Definition 5.1 we deduce
that if A is small enough, there exists a critical point ™ of F) (&) such that F)\(£)(£") — @r(£¥).
Moreover,, up to subsequence, " — £ as A goes to zero, with ¢ (&) = ¢r(£*) and Vpr(£*) =
0.

Expansion (5.9) follows from (5.8) and (5.105), while (5.10) holds as a direct consequence of
the construction of Uy. Expansion (5.11) is consequence of (5.89).

Remark 5.19. Using Ljusternik-Schnirelmann theory, one can get a second, distinct solution
satisfying Theorem 5.2. The proof is similar to [27].

5.7 Appendix

Proof of (5.23): Since (arctant)’ = 4, by integration parts, we have

< 1 1 o 1
1 dt = 1 d tant
/0 P18 /0 85 (arctant)

+o0 /+oo 2t arctan t
0 1+¢2

1
_ tantl —‘
{arc an og1+t2] ;
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Set t = tanz, we have 1 + t2 = sec? t, dt = sec? tdx, then we have

/+°° 2t arctant
0 1+1¢2

jus

— —2/02 zd(log(cos x))

dt = 2/2 z tan xdx
0

"y 2/2 log(cos ) dx
0

= [—2xlog(cos x)]

™

+ 2/2 log(cosz) dx
0

“+oo

= [—2arctantlog[cos(arctant)]| ’
0

+oo

= [~ arctantlog[cos®(arctant)]] ‘ + 2/2 log(cos z) dx.
0

0

Since
1 1 1

sec?z  1+tanlz 1+

cos?(arctant) = cos’ x =

On the other hand, we note that

/2 log(cosx) dx = /2 log(sinz) dx.

0 0

Then we have

™

2/2 log(cosz) dx
0
3 3
= / log(cos x) dm—i—/ log(sinx) dx

0 0

_ /Oglog (%) dx:%/oﬂlog (Sméx)> dz

1 s
= 5/ log(sin x)dx — glogQ

g(sin z)dx — glogZ

= / g(cos x)d :E—zlogQ.
0 2

Hence we get

/OO ! dt 2/00 ! 1 ! dt
= 0
ﬁ+1 ﬁ+1 0 241 gﬁ+1

= 4 log coS ) = —27mlog 2.
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Chapter 6

New solutions for critical Neumann
problems R?

6.1 Introduction

Let Q be a bounded domain in R? with smooth boundary and A > 0. This chapter is
concerned with the existence of positive solutions to the boundary value problem

—Au+u=0 in{2; u>0 in
(6.1)

2
—g“ = \ue® on 0,
174

where v denotes the outer unitary normal vector of 0€). Elliptic equations with nonlinear
Neumann boundary condition of exponential type arise in conformal geometry (prescribing
Gaussian curvature of the domain and curvature of the boundary), see for instance [22, 23, 76]
and references therein, and in corrosion modelling, see [16, 66, 84].

Problem (6.1) is the Euler-Lagrange equation for the functional

Ja(u) = %/Q [[Vul* +u?] — %/BQ e, ue HY(Q). (6.2)

For functions u € H'(Q), the maximal growth of integrability on the boundary is of expo-
nential type, due to the Trudinger trace embedding (in the sense of Orlicz spaces) [103, 114]

HYQ) 3 ur—s ¥ € LP(09) Vp>1.

This optimal embedding is related to the critical Trudinger-Moser trace inequality

CH(Q) =sup{ | ™ /ue H(Q), /[|Vu|2 +u? =1} < +oo,
20 Q
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[74]. Tt has been proven [124] that for any bounded domain €2 in R?, with smooth boundary,
the supremum C7(f2) is attained by a function v € H'(Q) with [,[|[Vu[? +u*] = 1. Further-
more, for any o € (0,7), the supremum C,(2) is finite and it is attained, while C,(2) = 0o
as soon as o > m. See also [24, 72, 73, 75] for generalizations. Observe that critical points of
the above constrained variational problem satisfy, after a simple scaling, an equation of the
form (6.1).

The Trudinger-Moser trace embedding is critical, involving loss of compactness analogous to
that related to the Trudinger-Moser embedding for functions u with zero boundary value,

HYQ) 3 ur—s e e LP(Q) Vp>1

for which the analogous problem to (6.1) is

Au+ \ue” =0 in Q;
(6.3)

u=20 on 0f),

whose energy functional is given by Iy : H}(Q) - R

Li(u) = %/Q|Vu|2—%/ge“2. (6.4)

Even though I, satisfies the compactness PS-condition for energy levels less that 27 [1], loss
of compactness in Hg () is described by the presence of families of blowing up solutions for
Problem (6.3). It has been proven in [44] that if u, solves problem (6.3) for A = \,, with
I, (u,) bounded and A, — 0, then, passing to a subsequence, there is an integer k£ > 0 such
that

I, (u,) = 2km +o(1) . (6.5)

[2, 44]. This quantization property is not known for general Palais-Smale sequences associated
to I [3]. When k = 1 a more precise description of the blowing up behavior of these families
of solutions is known [2]. On the other hand, concerning existence of solutions to (6.3), a
first observation is that the functional I, has the mountain pass structure. In [1, 6] it is
shown that there exists A\g > 0 such that for 0 < A < A\g the mountain pass level is below 27
where PS-condition holds. Thus a solution to (6.3) exists. As A — 0, the family of mountain
pass solutions satisfies (6.5) with & = 1. In [112] it is proven that if Q has a sufficiently
small hole, a solution to (6.3), satisfying (6.5), exists. Further results were obtained in [39]:
if €2 has a hole of any size, namely () is not simply connected, then a solution satisfying
property (6.5) with & = 2 exists. This solution happens to blow up exactly at 2 points
in Q. General conditions for the existence of solutions of problem (6.3) for small A, which
satisfy the bubbling condition (6.5), for any k& > 1, are provided in [39], together with the
precise characterization of their blow up profile. In fact, blowing up solutions satisfying (6.5)
happens to blow up at exactly k points which are located in the interior of 2. See also
[5, 32, 40] for related results.
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In this chapter, we are concerned with the construction of solutions to (6.1), in the same
spirit as the result described above in [39]. Assume (2 is any bounded domain with smooth
boundary. For any integer k we find existence of a pair of solutions wu, to problem (6.1) for
small A\, whose energy satisfy the bubbling condition

Ta(uy) = k:g +o(l) as A— 0. (6.6)
Furthermore, we give a precise description of their bubbling behavior.

To state our result, let us introduce the following function ¢y, : (9Q)*x (RT)F — R, (€, m) =
Sok(gla s 7£k’7 my, ... 7mk) defined by

k k
pe(&m) = 2(og2—1)Y m;+2> m]log(m))
j=1 j=1

k
=D miH &) = ) mimG(&. &), (6.7)
j=1 i#j

where G is the Green function for the Neumann problem

—A.G(2,y) + Gz, y) =0 z €
9G(zy) (6.8)
B = 21y () x € 09,
and H its regular part defined as
1
H(x,y) = G(x,y) — 2log . 6.9
(3.) = Glr.y) ~ 2Nog [ (69)

Theorem 6.1. Let Q be a bounded domain in R? with smooth boundary and let k > 1 be an
integer. Then, for all small X\ > 0 there exists a pair solution u3, u3 of problem (6.1) such

that
A k

5/0 [V [* + (ud)?] - 5/@9 e = o™ +ol) =12

where o(1) — 0 as A — 0. Moreover, for any i = 1,2, passing to a subsequence, there exists
(€mb) = (€,...,& mt ... mb) € (0Q)F x (RT)E, with &' # €2, such that Vi, (£,m?) =0

and

ur(z) = VA (Zm;lc(x,g;) + 0(1)> (6.10)

where o(1) — 0 on each compact subset of Q\ {&, ... €L}

These solutions blow up at points located near &, ...,& € 0f2, while far away from these

points the solutions looks like a combination of Green function with positive weights mq, ....,
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my. These points and parameters (£, ..., &, m1, ..., mg) correspond to two distinct critical
points of .

We can actually show a stronger version of this result. If 9€2 has more than one component,
then pairs of families of solutions blowing up at k points on each component happen to
exist. In reality, associated to each topologically nontrivial critical point situation associated
to ¢y (for instance local maxima or saddle points possibly degenerate), a solution with
concentration peaks at a corresponding critical point exists. We will not elaborate more on
this point, and we refer the interested reader to [27].

It is important to remark the interesting analogy between these results and those known for
other problems with exponential non linearity on the boundary, as

—Aut+u=0 in 2

6.11
@ = Ae" on 0f), ( )
ov
and
—Aut+u=0 in
6.12
O _ \sinhu on 99, (6.12)
ov

[16, 27, 29, 66, 84, 85]. See also [19, 37] for related problems.

We will just describe the analogy between our Problem (6.1) and the problem of finding
positive solutions to (6.11). Similar analogy exists with the problem of finding sign changing
solutions to (6.12). But in this case we refer the reader to the results in [16, 29, 66, 84].

In [27], construction of solutions to (6.11) with X [, e** bounded is carried out: for any
integer £ > 1, there are at least two distinct families of solutions u, which approaches the
sum of k£ Dirac masses at the boundary. The location of these possible points of concentration
may be further characterized as critical points of the functional of k points &1, ..., & of the
boundary defined as

k
V(&0 &) = — | D HG. &)+ G&,&)]
=1 i#]
where G and H are defined in (6.8) and (6.9) respectively. Observe that the function Wy
only depends on points on the boundary 02 and it does not depend on positive parameters
my, ... my, unlike function ¢, which is defined in (6.7) and which determines the bubbling

behavior of solutions to (6.1). Furthermore, far from &, . . . &, the solutions to Problem (6.11)
found in [27] look like

k
uy(xz) = ZG(m,gj) + o(l) as A—0.

=1
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Thus, also the solutions to Problem (6.11) found in [27] are combinations of Green function,
far from the concentration points, but unlike the solutions obtained in Theorem 6.1 for
Problem (6.1), the weights in from of the Green functions are always equal to 1. Thus, to
construct solutions to Problem (6.1), not only we have to find the location of the bubbling
points &1, ...,& on the boundary, but also the weights mq,...,m; in front of the Green
functions in (6.10).

The solutions predicted in Theorem 6.1 are constructed as a small additive perturbation of
an appropriate initial approximation. A linearization procedure leads to a finite dimensional
reduction, where the reduced problem corresponds to that of adjusting variationally the
location of the concentration points &;,...,& and of the weights mq,...,mg. A precise
description of the approximation and a detailed outline of the proof and of the organization
of this chapter are given in Section 6.2.

6.2 A first approximation and outline of the argument

It is useful for our purpose to consider the change of variables u = v/A@ so that problem (6.1)
gets rewritten as

—Au+u=0 in{2;, u>0 in Q;
(6.13)

=~ ~ ~2
% = \ue on 0f).

The first part of this section is devoted to construct a good approximation for a solution to
Problem (6.13) and to estimate its error. To do so, let us introduce the following problem in
the entire plane

(6.14)

{AU:O in R%;
&

ov v 2 v
= on ORZ; < o0.
e n i faRi e
The positive solutions to Problem (6.14) are the basic elements for our construction. So, let

us recall that all positive solutions to (6.14) are given by

2
r1 — )2+ (22 + p)?’

Wy, (z) = wy (21, 22) = log ( (6.15)

where ¢ is any real number and p > 0 is any strictly positive number (see [76, 99, 126]). Set

2
w, () = wo,.(x) = log ———- (6.16)

T+ (w2 +p)*

We next describe an approximate solution to (6.13) whose shape is given by the sum of
functions w,, centered at points on the boundary of {2 and properly scaled. Let k be an
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integer, &1,...,& be points on the boundary of €2 and my, ..., m; positive numbers. We
assume there exists a positive, small number § such that

1
We thus define the functions
1
uj(z) = log , forany j=1,... k
’ v =& — gimv ()17
and
) k
Ux) =Y myuj(x) + H(2)], (6.18)
j=1
where H; is the unique solution to the problem
—AHj+Hj:—Uj in Q,
o = 26]'#]'6 7 — s on OS2

In the above definitions, p; and ¢; are positive numbers. These numbers j; and €; will be
defined later on in terms of A, §; and m; in order to ensure that U is a function very close to
a solution for Problem (6.13). Let us just mention that, a posteriori, the parameters ¢; will
tend to zero, as A — 0, namely

}\13%8]- =0, forany j=1,...k, (6.20)

while the numbers f1; will remain bounded from above and strictly positive, as A — 0. Taking
this into account, we easily see that the shape of the function U change depending whether
you evaluate it far from the fixed points §; or in a region very close to one of the points &;.
Let us then describe carefully the shape of U in these two regions. For this purpose, we need
the following

Lemma 6.2. Assume (6.17) and (6.20). For any 0 < o < 1, one has
Hj(x) = H(x,&;) +50(1), as A—0 (6.21)

where O(1) denotes a function in Q which is uniformly bounded as X\ — 0, and H is the
reqular part of Green’s function defined in (6.8).

Proof. The proof has been done by del Pino- Dédvila-Musso in [27], see also the proof of
Lemma 5.3. O
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A direct consequence of Lemma 6.2 is that, for a given 0 > 0 small and fixed, in the region
|z —&| > 6 forall j =1,...,k, the function U looks like

k
Ux)=> m;[G(z,§)+0(e9)], as A= 0. (6.22)

=1

Here and in what follows, with O(e§) we denote a general function in © of the form £$0(x)
where ©(x) is uniformly bounded in © as A — 0.

Let us now examine U in a neighborhood of a given §j. Assume |z — §;| < 0 and set y = =,
J

= g—j Explicit computations give that

U(z) = mylus(a) + Hy(@)] + ) m [ui(x) + Hi(x)]

i#]

- 2445 _ | | a
- {log |z — & — gjmv(&)]? loa(2p) + H{w &)+ OLs; )}
1 (0%
o s g )+ 0|
- 215 1 | s e a
— i flog e ,(5,.)|2+210g€j lg(2) + H(&5.6) + Oll ~ &)+ 0(=)
+Zmz |:10g 6 |2 +H(€]a€z):|
i#j J
1 1
0|1 —log ———— + O(|z — &) + O(&?
e o8 s =g + 0l 6+ 0D
_ 2”] 1 a:|
— 21og — — log(2u;) + H(&;, &) + O(|x — &) + O(&°
my 108 g+ 2108 L~ log(2u) + HiE, &) + Ol ~ &) + O()
1 1 .
as A — 0. We set ¢ 5
LT —gj Hj
wj(z) = wﬂj(—gj ) = log |y—§§- — ij(fé‘)P,

and
k
Bj = —log(2u;) + H(;,&5) + melmiG(fj@), 0(x) = O(lzr — &) + 20(5?)-
i#] i=1
We thus write the above expansion in the following compact form: for |z —§&;| < 4,

U(z) = m; (wj(z) + log 6;2 +B;+0(x)), as A —0. (6.23)
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Formulas (6.22) and (6.23) give a precise description of the function U.

The solution to (6.13) we are looking for has the form
i=U+ ¢, (6.24)

where U is defined as in (6.18), and ¢ represents a lower order correction. In fact, we aim
at finding a solution @ for a function ¢ small in some proper sense provided that the points
&, and the parameters m; are suitably chosen. Assuming for the moment that ¢ is small, we
rewrite problem (6.13) as follows

{ —Ap+¢p=0 in €);
(6.25)
L(¢)=E+N(¢)  on 0,
where
_ 00 NS i
L(¢) == 5 L;gj le ] o, (6.26)
- U
E = f(U)—- = (6.27)
and

N(¢) == f(U+¢)— f(U)— f(U)¢+

k
oy =3 sj—lewf‘] ¢. (6.28)
j=1
Here and in what follows f denotes the nonlinearity

f(@) = Aae ™.

It is not hard to believe that having a good approximation U to a solution of Problem (6.13)
is reflected into the fact that the function FE is small, in some sense to be made precise. It is
in this context that we will choose p; and €; in such a way that the error of approximation
E for U is small around each point §; under some appropriate norm.

Let us be more precise. The error E is clearly defined by (6.27). Assume 6 > 0 is a small
but fixed positive number and x € 92 with |z — ;| < J. In this region, we have that

FO) = X[m; (w;(z) +loge® + B; + 0(x))] (ws (@) +log < 46, +6() )|

= <>\mj(10gé + B;) + Am(w; + O(U))

xm3 (log 5 +5;)? 2Am3 (log & +5;)w; 2xm? (log 25 +5;)6(z)
J J [ J

. A3 (w;+(2))?

Xe
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= /\mj(logé +55) (1 + (logé +B;) " Hw; + 0(1))>

y exmf.(log %+,3j)2€2>\m?(10g %wj)wj 62Am§(1og E%jwj)e(x)eAm?(wﬁe(z))z
as A — 0. We thus choose ¢; to be defined as
9 1
2Am; | log = +5;) =1 (6.29)
J

It is immediate to see that, with this definition, (6.20) holds true. Thanks to (6.29), one has

1 lo L+ .
20083 H55) u; (a) hm(w; +0(x)?

F(O) = ﬁ (14 2xm?(w; + O(1))) ¢ c

1 2,,2
= 2—5]-_1653'/2 (14 2xm3(w; + O(1))) 1" @AM (1 4 O(\)wy).
m;

On the other hand, in the same region, we have

ouU o

k
5 = By [m; (w;(z) + log 8;2 + B; +6(2))] = m]-g;le”“”f + ;O(&?), as A\ — 0.
J_

Thus, in order to match at main order the two terms %—(l{ and f(U) in a region near the point

&j, we fix the parameter ; such that the number §; satisfies
e’/? = 2m3. (6.30)

This condition defines the parameter p; as follows

log(2p;) = —2log(2m?) + H(&;,&;) + Zmimf@(&fj)- (6.31)
i#j

With these choices of ;1; we get

FO) = my (1+2xm3(w; + 0(1))) g7 e e ™™ (1 + 0(0(x))) (1 + O(Nw;)
= my (14 2xm3(w; + O(1))) 6}161”7'6’\’”?1“]2‘(1 + O(A\wjy)).
As a conclusion, the election we made of p; and of €; gives that in the region |z — ;| < 9,
the error of approximation can be described as follows
E =m; {(1 + 2xm3 (w; + O(1))) e (1 4+ O(wy)) — 1} ;e (6.32)
Let us mention now that a direct computation shows that E(z) ~ Ae;'e®/®) in the region
|z —&;| = O(X); while, in the region |z —¢;| > ¢ for all j, we have that |E(z)| < CA, for some
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positive constant C. We thus conclude that the error of approximation satisfies the global
bound
|E| < CXp(x),

where
ij XB(S §7 ) + 1

Here x ;) is the characteristic functlon on Bs(&;) (09 and
1 miw? 1wy
pi(z) = Don? {(1 + 2)\m§(w]~ +0(1))) e (1 + O(\wy)) — 1} & Lews
j

From now on, let us write

pi(z) = ey { (1 + %(wj + 1)) <1 + 71j (1+ |w]|)) T? — 1} e; e, (6.33)

where ; = log 5]72. We define the L*°—weight norm
1Al = sup p(z)"A()]. (6.34)
€N

We thus have the validity of the following key estimate for the error term F
1 E||.00 < CA. (6.35)

We conclude this section explaining the strategy to solve Problem (6.25), which guarantees
the existence of a solution to Problem (6.13) of the form (6.18). In fact, we will solve Problem
(6.25) into two steps. The first step consists in solving Problem (6.25) in a projected space.
Let us be more precise.

Define in R = {(z1,22) : 22 > 0}
2

It has been shown in [27] that these functions are all the bounded solutions to the linearized
equation around w,,; (6.16) associated to Problem (6.14), that is they solve

oY
33@2

205 (21, x2) = L T2 1y
07 1,42) — — — )
! I 21+ (z2 4 p15)?

le($1>$2) = -

Ay =0 in R%, = ey on ORZ. (6.36)

For ¢ € 09, we define F; : Bs(§;) — M to be a diffeomorphism, where M is an open
neighborhood of the origin in R such that F;(Q N Bs(&;)) = RE N M, F;(0Q N Bs(&;)) =
(9R2+ N M. We can select Fj so that it preserves area. Define
Zij(x) = 25 (¢, 'Fi(x)), i=0,1, j=1,... k. (6.37)
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Next, let us consider a large but fixed number Ry > 0 and a nonnegative radial and smooth
cut-off function x with x(r) =1if r < Ry and x(r) =0if r > Ry + 1, 0 < x < 1. Then set

x;i(z) = 5;1X (5;1}7’](95)) ) (6.38)

The problem we first solve is to find a function ¢ and numbers c¢;; such that

—Ap+¢=0 in Q;
k
L) =E+N(¢)+ X Y ciiZiyx; on 0 (6.39)
i=0,1 j=1
Ja #Zijx; =0 fori=0,1, j=1,--- k.

Counsider the norm

6]l = sup [¢(x)].
e
We prove the following
Proposition 6.3. Let 6 > 0 be a small but fized number. Assume the points &1, ..., & € OS2

and the parameters my, ..., my satisfy

1
& =&l =6, Vi#], 5<mj<5-
Then there exist positive numbers \g and C, such that, for any 0 < A\ < X\g, Problem (6.39)
has a unique solution ¢, c;; which satisfies

(6.40)

[dlloo < CA,  |ei] < CX

for all X < Xg. Moreover, if we consider the map (§,m) — ¢ into the space C(S2), the
derivative De¢ and D, ¢ exists and defines a continuous function of (§,m). Besides, there
15 a constant C > 0, such that

HD£SZ¢||OO < C>\7 ||Dms(/5

loo < CA (6.41)
for all s, 1.

The proof of this result is contained in Section 6.3.
At this stage of our argument, we have solved the nonlinear problem (6.39). In order to find
a solution to the original problem we need to find ¢& and m such that

cij(§,m)=0 forali=0,1, j=1,--- k. (6.42)

This problem is indeed variational: it is equivalent to finding critical points of a function of
¢ and m. Associated to (6.1), let us consider the energy functional J, given by

Ja(u) = %/ﬂqw? +u?) - %/{m e e HY(Q), (6.43)
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and the finite-dimensional restriction
T&m) = (VA (T(&m) + (e m)). (6.44)

where ¢ is the unique solution to problem (6.39) given by Proposition 6.3. Critical points of
T, correspond to solutions of (6.42) for a small A, as the following result states.

Proposition 6.4. Under the assumptions of Proposition 6.3, the functional Z)(,m) is of
class C*. Moreover, for all X > 0 sufficiently small, if D¢, Z(§,m) = 0, then (£, m) satisfies

(6.42).

The proof of the above Proposition, together with the expansion of the functional I,(&, m)
is given in Section 6.4. Section 6.5 is devoted to conclude the proof of Theorem 6.1. The
final Appendix, Section 6.6, contains the proofs of some estimates we have used through the

paper.

6.3 Proof of Proposition 6.3

The proof of Proposition 6.3 is based on a fixed point argument and the invertibility property
of the following linear Problem: Given h € L>(0€2), find a function ¢ and constants c;; such
that

—Ap+9=0 in Q;
k
L(¢) =h+ z Z Cinsz‘j on 0f); (645)
=01 j=1
fQXJZZ]¢:O for i:(),l, ]:1,,]{5

We shall prove the validity of the following

Proposition 6.5. Let § > 0 be a small but fixed number and assume we have &y, . .., & € 082
and myq, ..., m; with

1

Then there exist positive numbers Ao and C' such that, for any 0 < A < Xy and any h €
L>(09), there is a unique solution ¢ = Ty(h), and ¢;; € R to (6.45). Moreover,

[6lle < CliAll+.00- (6.47)
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The proof of this result is based on the a-priori estimate for solutions to the following problem

—Ap+o=f in Q;

k
L(p) =h+ > > cijx;jZi on 0f); (6.48)

i=0,1 j=1

JoxiZij¢ =0 for i =0,1,j=1,...,k.
Define
k - -1
e

f wk,Q -— SUP J +1 f T 6.49
[ fllsx0 2€Q ]z_; (1+ |z =& —ejuv(&G)])*e |f(2)] ( )

where 0 < 0 < 1.

Lemma 6.6. Under the assumptions of Proposition 6.5, if ¢ is a solutions of (6.48) for some
h € L*(0R2) and for some f € L>(Q) with ||h]|+a0, || fllwo < 00 and ¢;; € R, then

[6lle < C IRl 00 + [[fll<al - (6.50)

Proof. We will carry out the proof of the a priori estimate (6.50) by contradiction. We assume
then the existence of sequences A, — 0, points £ € 92 and numbers m7, p which satisfy
relations (6.46) and (6.31), functions hy, f, with ||k, |l«oa, || follso = 0, ¢n wWith ||n]le = 1,

constants ¢;; ,,

—A¢y + Op = fu, in €, (6.51)
2 k
L(¢n) = hn + Z Z Cij,nZinja on 89, (652)
=0 j=1
/ ZZ]X]¢7L = 0, for all i, j (653)
Q

We will prove that in reality under the above assumption we must have that ¢, — 0 uniformly
in €2, which is a contradiction that concludes the result of the Lemma.

Passing to a subsequence we may assume that the points £ approach limiting, distinct points
& in 0Q). We claim that ¢, — 0 in C'! local sense on compacts of Q\{&, ..., & ). Indeed, let
us observe that f,, — 0 locally uniformly in €2, away from the points ;. Away from the &}’s
we have then —A¢,, + ¢, — 0 uniformly on compact subsets on Q\ {&5,...,&}. Since ¢,
is bounded it follows also that passing to a further subsequence, ¢, approaches in C! local
sense on compacts of Q\ {&5,..., &} a limit ¢* which is bounded and satisfies —A¢* +¢* = 0
in Q\ {5, ..., &} Furthermore, observe that far from {5, ..., &5}, h, — 0 locally uniformly
on IN\ {&,..., &} and so we also have aéiy” — 0on 00\ {&,...,&}. Hence ¢* extends
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smoothly to a function which satisfies —A¢* 4+ ¢* = 0 in €2, and % = 0 on 0¥2. We conclude
that ¢* = 0, and the claim follows.

For notational convenience, we shall omit the explicit dependence on n in the rest of the
proof. We shall next show that

|cij| < Cl|lloe + Al 00 + [ fll+0)- (6.54)

Multiplying the first equation of (6.48) by Z;; and integrating over B(¢;,0), we find

0
>y / XjleZz‘j = —/ hZij+/ L(Zij) — 8_¢Zl
0Q N B(&;,0 0NN B(&;,9) 0NN B(&;,9) QM 9B(&;,9) 14

1=0,1
—1—/ (—AZjj+ Zij)p — fZi; (6.55)
QM B(&;,9) QN B(&;,9)

Having in mind that ¢,, — 0 in C" sense in Q () 90B(&;, ), we have that fﬂnaB
as A — 0. Furthermore, a direct computation shows that

9,
(&.0) awZii = 0

/ XjleZij = Mldh -+ 0(1), as A—0 (656)
90N B(&;,0)

where M; is some universal constant and 6; = 1if ¢ = [, and = 0 if ¢ # [. On the other hand,
we have that

k
/ ~D_ete)Zi | ¢ +/ (=AZij+ Zij)¢ < Clloll (6.57)
0N B(&;,9) QN B(&;,9)

7=1
/ iz,
Q

In fact, estimate (6.58) is a direct consequence of the definition of the || - ||..o-norm. Let us
prove the validity of (6.57). Recall that in Q (0 B(&;,0), we have that Z;(z) = z;(e; ' Fj(x)),
where F}; is chosen to preserve area (see (6.37)). Performing the change of variables y =
e; ' Fj(x), we get that

and

< Cfllses (6.58)

QN B(E;.9) RINB(O,2)

where ¢(y) = ¢(F; ' (e;y)) and L is a second order differential operator defined as follows

5
L=-A+0()V+0()V, in RY[)B(0,—). (6.60)

€j
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Hence

< Of[l]e-

/ (—AZi + Zij)o

On the other hand, we observe that, after a possible rotation, we can assume that VF;(¢;) =
I. Hence, using again the change of variables y = eej_le(x)7 we get

/‘ uzm¢:<r+dw>/ (Blzy) — Web()d  (6.61)
6QﬂB(§j,6)

oR% N B0, 2)

where W (y) = e;W(F; ! (ejy)) with W(z) = Z§:1 e;'e"s, and b(y) is a positive function,

coming from the change of variables, which is uniformly positive and bounded as A — 0.
Furthermore B is a differential operator of order one on dR3. In fact, we have that

J

€j

s,
B=——+0(gly)V on OR%L ﬂB(O,

o ) (6.62)

On the other hand, since

W(r) =¢e;! 2058, 1+ Z ££;0(1)
Tolr =& — v (&))? o

we get

W(y) = 21 —1—2(1_’8_—% on 8Riﬂ8(0,—), (6.63)

Yt 4 £

for some 0 < a < 1. Thus we can conclude that

/ L(Zij)¢
QN B(&;,9)

This shows the validity of (6.57).

< O[]l

We shall now estimate the term [, hZ;;. Using the definition of the ||- ||, so-norm, we observe
that

/ hZZ]
o0N

— [ o hlot) 2 < tllon | o2,

o0

k
- ||h||*,8(2/ (Z plXBa(éz)(:E) + 1) Zij
o\ 1=
i 2
1 1 wj
CHhH*,@QZ / ’)/l{(l+ w; + ) <1+M> 62’$l _1}€l—lewl

—1 m m
90NBs (&)

IN
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Ol [ 2 (6.64)

0Q\Ujy Bs(&)

Since Z;; are uniformly bounded, as A — 0, in 0 \ Ule Bs(&;), we just need to estimate

w2
_J
I <1 + w’—“) <1 + M) e’ — 1} ej_le“’j. Recall that the functions w; are de-

20N Bs(&;) i Vi
fined as 9
Hj
w;(x) = log ;
! ly — & — v (§5)
with y = e%-’ § = g—j, and v, = —2loge;. We decompose dQ2 N B;(¢;) into the union of

QN Bs (&) and 9Q N (B(;(fj)\Bg (fj)>. We write

2
41 1+ |wi]\ =
Y { (1 + —w]; ) (1 + —Z‘Aw]‘) e — 1} e7les
20N Bs (¢;) ’ ’

2
| 1 . vy
_ ) (Hu) (1+M>eij_1 e
Vi i

o0NB 5 (&)
7

2
i+ 1 1 j L
4 / v (1 4 u) (1 4 M) e — 1 gj*lewj
Vi Vs

o0 <Bg<s,~>\33<sj>>
4L (6.65)

Using the change of variables €;y = x — §;, we have

)
0; + 1 1+ ||\ = ;
L= / Wj{<1+u)(l+ﬂ>eé_1}ewj
Vi i

and . , ) .
Ly = / ’yj{<1 u) (1+ +|U)j|>e%—1}e“’J
;i Vi
695]0<B6(0)\B 5 (0))
€5 3¢5
where . = f’ and
J
20,
w; = log J
! ly — pv(0)[?
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First we estimate L;:

0.+ 1 1 P i _
b [ {(emt) e L
Vi i

IN

Q
—

Q]

&VSI

|

Q
—
=3
E |~
e

00:.NB (0) 0N.NB (0)
W oW
M 1
pj— =2 r

e

On the other hand, using the fact that w; = —2logr + O(1) with r = |y — p;v7(0)|, the term
L+ can be estimated as follows

G+ 1 1+ o]\
L, = / Y; <1+—ijr )<1+—+|w3|>e2 -1
Y i

8, N <B<s (0O\B_s_(0)
sj

Vi€

w2 —
C / Vi o7 i,

e ﬂ( s (O\B_5_ (0)>
J

RPET;

IN

(10g7
< C/ —elesil(y; — 2logr)dr

REAY]

loge— 2 log%
< C/ T etelsel (v, —t)dt<C/ " ey —t)dt < C
1 I

5 5
8 e 8 vje;

for some positive . Therefore we get

’ / hZ;;
o0

Thus, from (6.55)-(6.66) we find the validity of (6.54).

< O]l 00- (6.66)

We now conclude our argument by contradiction to prove (6.50). From (6.54), we have that
Cijn 1s bounded, thus we may assume that ¢;;,, — ¢;; as n — oo.

Let us fix R > 0 large sufficiently but fixed. By the maximum principe and the Hopf Lemma
we find that,

_max |on] = _ max |-
Q\ Uj:l BRaj (gj,n) Q\ Uj:l 8Bst (gj,n)
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Thus, from ||¢y, |l = 1, we can find that there is some fixed jo € {1,2,--- ,k} such that
max |on| = 1. (6.67)

Qﬂ 8BR5j0 (Sj(),n)

Q—¢; .
Set Q.. = M, and consider
J0 €jo,mn

~ ~

(bn(z) = ¢n($j0,n + 5j0,nz)7 hn(z) = hn(gjo,n + 8J‘o,n'z)ﬂ fn(z) = fn(fjom + gjo,nz)a

Zj(2) = Zij(&jom + €jom?)
Then R R
—A¢n(2) + 5 bn(2) =€} fu(z) InQ, ,

~ k k

a¢n — w4 i 7 7

oy o [Z €5 1€ | pn = €john + Z Zﬁjocij,anZw‘ on ;.
j=1

i=0,1 j=1

Then by elliptic estimate gEn (up to subsequence) converges uniformly on compact sets to a
nontrivial solution ¢ # 0 of the problem

A¢ =0, in RY;
o~ wrim® =0 ondR}.

By the nondegeneracy result ([27]), we conclude that ¢ is a linear combination of z,; and
z1;. On the other hand, we can take the limit in the orthogonality relation and we find that

/. oR? ng@zij = 0 for ¢ = 0,1. This contradicts the fact that (;B # 0. This ends the proof of the
+
Lemma. 0

Proof of Proposition 6.5 In proving the solvability of (6.45), we may first solve the fol-
lowing problem: for given h € L*°(0f2), with |||, sq bounded, find ¢ € L>(2) and d;; € R,
1=0,15=1,...,k such that

k
~Ap+d= 3 > diyXx;iZi in §;

i=0,1 j=1
% - [i ej_lewj]qb =h on 0%); (6.68)
fQXjZJZ;:O for 1=0,1, 5=1,...,k.
First we prove that for any ¢, d;; solution to (6.68) the bound
6]l < ClBl00 (6.69)

holds. In fact, by Lemma 6.6, we have

k
]l < C (||h||*,an +) Zgj|dij|> (6.70)

i=0,1 j=1
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and therefore it is enough to prove that ¢;|d;;| < C||h]|+00.

Fix an integer j. To show that €;|d;;| < C||h||+.00, we shall multiply equation (6.68) against a
test function, properly chosen. Let us observe that, the proper test function depends whether
we are considering the case i = 0 or i = 1. We start with ¢ = 0. We define 2y;(y) = h(y)z0;(y),

log(2)—log |y|
where h(y) = g,;—loggy In fact, we recognize that Ah = 0 in B(0, £ ) \ B(0O,R), h=1on
dB(0,R) and h =0 on 0B(0,2).

log 5

Let n; and 7, be two smooth cut-off functions defined in R? as

m=1 in B(O,R), =0 in R*\ B(0,R+1)

so that
0<7]1<1, |V771|<C'
and
=1 in B(0 i) =0 in R?\ B(0 i)
= ’ 4€j ’ o ’ 3€j
so that

0<m<L [Vl <O [Voml < O3

We assume that R > Ry (see (6.38)) and we define

Zoy(@) = mi(e; Fy(@)) Zag(a) + (1= mi (&5 By (@) ma (5 Fy(@) 20, (& Fy(@) . (6.71)
for z € B(&;,0) €2
We multiply equation (6.68) against ZQ]‘ and we integrate by parts. We get

> da]/ wi 20; :/Q(—AZWJFZOJ-)M/E)Q hZO,j+LQL(ZOj)¢

a=0,1

Observe first that, assuming R > Ry, we have

daj/ XjZajZOj = daj / XjZajZOj = 8jM0(5@0daj(1 + 0(1)>, as A — 0. (672)
Q Q
Furthermore we have that
‘/ hZy;| < C||h]|+.00- (6.73)
o0
We claim that o
~AZ 7 s 6.74
H 0]+ 0]” Q— ‘108;53’ ( )
C
IL(Zo;) || 4. (6.75)
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The proof of estimates (6.74) and (6.75) is postponed to the Appendix, Section 6.6. Assuming
for the moment the validity of (6.74) and (6.75), from estimates (6.72)—(6.75) we conclude
that

le5do;| < C ([[h]l«00 + [log el |¢llo) - (6.76)

We shall now obtain an estimate similar to (6.76) for €;d;;. To do so, we use another test
function. Indeed we multiply equation (6.68) against 7,23, and we integrate by parts. We
get

>, day/Xg ZajN221; —/Q(—A(nzle)anzZu)qb—/m hipZy,

a=0,1

0
+/69 L(Z1j)772¢5+/ Z1; 8712¢

Observe first that, assuming R > Ry, we have

o /Q XjZajN2215 = daj /Q XiZajZ1j = Midaigjdi;(1+0(1)), as A =0,

and | [, hnaZ1;| < C|h|s00. Using the change of variables y = e; ' Fj(x), we get that

o O -
/Z“an;d) Z”%¢

895].

where ()., = g and ¢(y) = ¢(Fj_1(5j_1y)). But z); = O(57) and Ve = O(g;) so
| oo Z1;22¢| < Cej|loge;|. Using again the change of variables y = e; ' Fj(z), and pro-
ceeding smularly to (6.61), (6.62) and (6.63), one gets
8Zij ~ ~
L Zsmo = (1 +0(1)) [ [Z0 12y g
o0 0Q., OV

where ¢(y) = ¢(F; ' (g5y)) and b(y) is a positive function, coming from the change of variables,
Wthh is uniformly positive and bounded as A — 0. Observe that Z” Wz” = O(

O1

1+7")
) for y € Q. and |y| < de; ", and this implies that

AQEj

for some 0 < a < 1. Thus we can conclude that

/ L(Z;;) 29
09

Consider once again the change of variables y = ¢; ' Fj(z). Arguing as in (6.59) and (6.60)
we get that

1+r2
aZZ'j

o W

(07
< Caj

< Cef||9l]oo-

/Q (CA(Zy) + mZi)6 = (1+ o(1)) / (= A(nzy) + 2mzy) b
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where ¢(y) = O(F; ' (g5y)). We thus compute in y € Q,, with |y| < de; ",

2

A(npz15) = A 215 + 2V Vi + np Azyy = O( _|_ ) + 0(1 T

) + N2z
On the other hand, in this region we have —Az;; + 321 = O(17%z) + O( ) Thus
/ | = A(n22i5) + €5m2255] < Cejlloge]

Summarizing all the above information, we get
lejdij| < C ([[hllo0 + &5l ¢ll) (6.77)
Estimates (6.76), (6.77) combined with (6.70) yields
lejdis| < Cllhllxo0-

which gives the validity of (6.69). Now consider the Hilbert space
— {¢eH1(Q) : /ijijqa:o Vi=0,1, jzl,...,k},
Q

endowed the norm ||¢[|3 = [,(|V®|* + ¢#*). Problem (6.68), expressed in a weak form, is
equivalent to find ¢ € H such that

/(v¢v¢+¢w /Zelwup h,  for all v € H,

o0

With the aid of Fredholm’s alternative guarantees unique solvability of (6.68), which is guar-
antees by (6.69).

In order to solve (6.45), let Y;, € L>(£2,), dﬁj € R be the solution of (6.68) with h = xsZs,
that is

_AYls + ls — Z Z dszj i n Q;

i=0,1 j=
R SER RS S 07
fQXJZleszo for [ =0,1, s=1,... k,
Then there is a unique solution Y, € L>() of (6.78), and
Wil <C, ejlds < C (6.79)

for some constant C' independent on .
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Multiplying (6.78) by Z;;, and integrates by parts, we have

k
Z/ dij,lsz(Zij)2 = / XlesZij + / (_AZij + Zij) Yis

i=0,1 j=1
07 k
+/ 0y e te ) Zy | Vi
dB(&;,0) ( v ]Zl ’ ’

= 5il5js/ Xj(Zi;)* + o(1)
9B(&;,9)

where 6y, 0;5 are Kronecker’s delta. Then we get
dojos = adjs +0(1), dyj1s = bdjs + o(1) (6.80)

with a,b > 0 are independent of ¢;. Hence the matrix D (or Dy) with entries do; s (0r dij15)
in invertible for small ¢; and || D; || < C(i = 1,2) uniformly in ;.

Now, given h € L*(0%2) we find ¢y, d;;, solution to (6.68). Define constants ¢;; as

The above linear system is almost diagonal, since arguing as before one can show that dﬁj =
€;1Mi(5j85il(l +0(1)), as A — 0, where M; is a positive universal constant. Then define

k
®=¢1+ Z ZCleis,

1=0,1 s=1
A direct computation shows that ¢ satisfies (6.45) and furthermore
k k
16l < Nnlloo+ Y- D e < Cllbllepa+ Y Y &5ldil < Cllbll. 0
1=0,1 s=1 i=0,1 j=1
by (6.69). This finishes the proof of Proposition 6.5.

Remark 6.7. A slight modification of the proof above also shows that for any h € L*(0N)
and f € L>(Q), with ||h||.o0, || fllwa < 0o, the equation

—Ap+¢=f in €
k
L) =h+ > > cijx;Zij — on 0%
i=0,1 j=1
fQXJZZ]¢:O for i:O,l, jzl,...,l{f7

169



CHAPTER 6. NEW SOLUTIONS FOR CRITICAL NEUMANN PROBLEMS R?

has a unique solution ¢, c;;, 1 =10,1, 7 =1,... k and that satisfy

[@llee < C (1All+00 + [ fllea)

lcij] < C([[hllvon + [ fllg), YVi=0,1, j=1,...k
holds for C' independent of \.

The result of Proposition 6.5 implies that the unique solution ¢ = Ty(h) of (6.45) defines
a continuous linear map form the Banach space C, of all functions h in L>(09) for which
|h]|+.00 < oo into L, with norm bounded uniformly in A.

Lemma 6.8. The operator T is differentiable with respect to the variable &, ..., &, on OS2
satisfying 6.46, and mq, ..., mg, one has the estimate

DTN (h) oo < Clibllvoe,  [[1DmTa(h)]leo < CllA]l00- (6.81)
for a given positive C, independent of \, and for all X\ small enough.
Proof. Differentiating equation (6.45), formally Z := O¢ ¢, for all s, [, should satisfy in €2 the

equation

—AZ+Z=0 in{),
and on the boundary 0f2

k k
L(Z) = =0, (Z 5}1€wj> ¢+ Z Zcijafsl (X Zij) + Z
=1 ‘

i=0,1 j=1 i=0,1 j

k
dij ZiiX;
=1

with d;; = O¢,,c;;, and the orthogonality conditions now become

Q

/ ZisXsZ = _/ aﬁsl (ZisXs) ¢
Q Q

We consider the constants ag,, a =0,1, b=1,...,k, defined as

Oéab/Xg‘Zab‘2 _/agsl (ZabXb) ¢, for a:O,l, b= 1,...,k.
Q Q

Define

k
Z7=7+ Z Z&abXbZab-

a=0,1 b=1
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We then have

~ANZ+Z=f in €
~ k
L(Z) = hl —f- Z dijZinj on 89,
_i=01=1
fQX]ZZJZ:O for 7::0,1, j:]_,...,k?,
where i
fi= Z Z Aab(—AXoZab) + X6 Zab),
a=0,1 b=1
k k k
— (z ) ot S et (Z) - Y S w0 )
j=1 i=0,1 j=1 a=0,1 b=1

Hence, using the result of Proposition 6.5 we have that

1Z]lce < C (Il + [ fillwg) -

By the definition of agp, we get |aep| < C||@||oo. Since [[@]loc < Cllh||x 00, |cij| < C||h«00 we
obtain that

1Z]lss < ClIR] 0.

Hence we get

[0, Ta(R)]|oo < C[A]lo0  forall s,l.

Analogous computation holds true if we differentiate with respect to m;. O]

We are now in the position to prove Proposition 6.3.

Proof of Proposition 6.3. In terms of the operator T) defined in Proposition 6.5, problem
(6.39) becomes

¢ =Th(E+ N(9)) := A¢). (6.82)
For a given number v > 0, let us consider the region
Fri={6€C) ¢ l|g]e <M}
From Proposition 6.5, we get
[A(®)]loc < CIE]00 + [IN(8)]+00] -

We claim that
2

fO) =3 ete

j=1

<O (6.83)
*,00)
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and

/o) <c (6.84)

*,00

We postpone the proofs of (6.83) and (6.84) to the Appendix, Section 6.6. From (6.35),
(6.83) and (6.84), from the definition of N(¢) in (6.28), it follows that

[A@) e < C(A+[10l1% + Mdllo) -

We then get that A(F,) C F, for a sufficiently large but fixed v and all small A\. Moreover,
for any ¢4, ¢ € F, one has

I¥(6n) = N o)llon < | (g o) +3] - e
In fact, since
N(é) = N(6)
= f(U+¢1) = f(U+ ) = f(U) (1~

Zg 1 wj] — ¢2)
25_1 wj] — ¢2)
Zg 1 w]] — $2)

- /Ol(cif(U+¢2+t(¢1 ¢2)))dt_f( )(p1 —

= /01<f'(0+¢2+t(¢1—¢2))_f( )) (o1 —

Thus, for a certain t* € (0,1), and s € (0,1)
IN(¢1) — N(¢2)|
k
(U + s+ 1"(1 — ) — ['(U) ( -y ! wj)] lf1 = 2l

1

< C

=
< cﬂﬂ@ﬁwwrw%@ 62))| (191l + 192]100)

EZ{*%]H@—¢mw

Thanks to (6.83), (6.84) and the fact that ||¢1]|e, [|¢2]|cc — 0 as A — 0, we conclude that
IN(¢1) = N(2)llvoa < Cllldrllo + I@2lloc + Al lo1 — d2lco-

Then we have

umwwwwmmsmwwn=M@mmgchgy@m+ﬂn@—@m.
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Thus the operator A has a small Lipschitz constant in F, for all small A, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map (£, m) = (&1, ..., &, my, ..., my) — .
Assume for instance that the partial derivative J¢ ¢ exists, for s =1,...,k, [ = 1,2. Since
¢ =T\ (N(¢) + E), formally we have that

U@ = (O, 12) (N(9) + E) + T» (0, N(¢) + O, E)
From (6.81), we have
106, Tx (N(¢) + E) o < C|IN(@) + Ells o0 < OX.

On the other hand,

O, N(@) = [['(U+9¢) = f(U) = (0))0,U + 0, (aZ” Ze—l 1] )

U+ ¢) = f1(U)]0e, ¢ + ( Zﬁ tetn] ) e, &-

Then,
106, N (9) o0 < C{lI¢l% + Allglloc + Dl IO, Plloc + AllOg, Pl } -
Since ||0¢,, E||«00 < A, Proposition 6.5 guarantees that
106, 8lloc < CA

for all s,l. Analogous computation holds true if we differentiate with respect to m;. Then,
the regularity of the map (£, m) — ¢ can be proved by standard arguments involving the
implicit function theorem and the fixed point representation (6.82). This concludes proof of
the Proposition. O

6.4 Variation Reduction

Up to now we have solved the nonlinear problem (6.39). In order to find a solution to the
original problem we need to find £ and m such that

cij(§,m)=0 foralli=0,1, j=1,--- k. (6.85)
We recall the following definitions: the energy functional associated to Problem (6.1) is

1 A 2
Ja(u) = §/§2(|Vu|2 +u?) — 5/69 e, ue H(Q), (6.86)
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and the finite-dimensional restriction
T&m) = (VA (T(&m) + (e m)). (6.87)

where ¢ is the unique solution to problem (6.39) given by Proposition 6.3. Critical points of
T, correspond to solutions of (6.85) for a small A, as the result of Proposition (6.4) states.
We give the proof of this result.

Proof of Proposition 6.4 A direct consequence of the results obtained in Proposition 6.3
and the definition of function U is the fact the map (&, m) — Z\(&, m) is of class C.

From Proposition 6.3, we have

De mZx(€,m)
= D (VA(U(&m) + 6(6,m)) ) |VADen0(€,m) + VADend(€ )|

= Dewd (VA (U(&m) +6(6m)) ) [VADemU(€m)] (1+0(1)).

(6.88)
We can rewrite
~ . r — él 1
I ] e R
with
& 5
u(y) =w, (W) + > (Oey+&— &) +0()  for |yl < =
j=1
Since U + ¢ is the solution of (6.39), then v; satisfies
—Av 4t (v +L =0, in Q
1 l l 2)\m12 - Y l
and
0
a—l;l — (1 + 22 mPuv)e e it
k
F - F _ £
_ ml_lgl Z Zcijgj_lx ( J(ffly —j;gl gj)) ZZ] ( ](gly —j;fl 5])) : Ol 891
i=0,1 j=1 J j
where Q; = 2=5. For any [, we define

&l

1’ 2,
|Vu|? + &7 (vl + —) - / eVt
2)\ml2 o0,
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We note that
In(&,m) = AmiLi(vy).

We compute the differential D,, Z,(&,m), s =1,--- , k, thus we have

DmsI/\<§7 m)
= )\mlszsll(vl) = )\mlzDIl(vl)[Dmsvl]

k
e 33 (/m . (Fj(azy +& - &-)) . (Fj(szy +& - @-)) Dy r(y) dy) -

i=0,1 j=1 K €

Now, fix 7 and j, we compute the coefficient in front of ¢;;, we choose | = j and obtain

/ 1y (Fj(ezy +& — ifj)) . (Fj(szy +& — ﬁj)) Dy uily) dy
o0,

€j €5

= / _&'X ()2 (y) D, [wuj@) +2_ (O0(esl) +O<s?>)] dy

j=1

omg

= o [ vl o),

Thus we concludes that for any s =1,2,---  k, we have

| ) dueos(1+ 01

— Jm

k
0
Dms-,z:)\<§7m) = >\ml€l § at
j=1

Similarly, we get that for all s,

D§SII>\ (57 m)

k
Ol
= Amye j/ 22.d0-+/228dcs
zz[; (8551 - 0;(Y) y) 0j (aRi 1s(W)dy | &1

Thus, we can conclude that D ,,, 75 (&, m) = 0, is equivalent to the following system

[k%

om €0j
j=1 y

(14 o0(1)).

(1+0(1)=0, s=12---k (6.89)

(14+0(1)) =0, foralls, (6.90)

k
O
A ]Zl ﬁCOj + Cis

for some fixed constant A, with o(1) small in the sense of the L> norm as A — 0. The
conclusion of the Lemma follows if we show that the matrix % of dimension k X k is
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invertible in the range of the points {; and parameters m; we are considering. Indeed, this
fact implies unique solvability of (6.89). Inserting this in (6.90) we get unique solvability of
(6.90).

Consider the definition of the y;, in terms of m/s and points §; given in (6.46). These relations
correspond to the gradient D,,F'(m, ) of the function F(m,¢) defined as follows

k

F(m,&) = % > m? [~2log (2m3) —log(2u;) + 2+ H(&;,&)] + Y mim;G(&,&;).

j=1 ij

We set s; = m?, then the above function can be written as follows

k
= 13 s [2los(2s) — log(2u) + 2+ HE, )] + 3 Gl& &) /555
j=1 i#£]

[\

This function is strictly convex function of the parameters s;, for parameters s; uniformly
bounded and uniformly bounded away from 0 and for points §; in  uniformly far away from
each other and from the boundary. For this reason, the matrix (%) is invertible in the
range of parameters and points we are considering. Thus, by the implicit function theorem,
relation (6.31) defines a diffeomorphism between j; and m;. This fact gives the invertibility

of (8“ ). This concludes the proof of Lemma.

In order to solve for critical points of the functional Z,, a key step is its expected closeness
to the functional J,(v/AU). This fact is contained in the following

Lemma 6.9. The following expansion holds

IA(&m) = J)\(\/X[j) + 19>\(§7m>7

where

|Q9)\<€7m)| + |Vﬁk(€7m)| = O()\g)v
uniformly on points &1, . .., & and parameters mq, . .., my satisfying the constraints in Propo-
sition 6.5.

Proof. Taking into account D.Jx(v AU + ®))|[¢] = 0, a Taylor expansion gives
IVNT +6)) = H(VAD)
_ A/ D20, (VAW +16)) [6(1 — 1) dr (6.91)
— [ ([ @+ Eo+ [ 110~ 1@+ 006 ) a0 an

Since [|@]loc < CA, we have

IV + ) = (VD) = 05(&,m) = O(X°).
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Let us differentiate with respect to . We use the representation (6.91) and differentiate
directly under the integral sign, we get that, for all 7,

Oe, [ (VAT + 0)) = (VD)
1
ZA/E< @Am%®+@@+/m%Mf@WﬂNU+WWﬂ)G—Uﬁ
0 o9 o9
Since [|0g,,¢[lcc < CA and the computations in the proof of Lemma 6.3 we get
Ve [N(VAU + ¢)) = A(VAD)] = 0, 05(,m) = O(N?).
And, in the same argument, we get
O, [NV + ¢)) = JA(VAD)] = O(N?).

The continuity in € and m of all these expressions is inherited from that of ¢ and its derivatives
in £ and m in the L*> norm. This concludes the proof. m

We end this section with the asymptotic estimate of Jy(U), where

|z — & — gjpv (&)l

Uz) = VAU (z) = \/XZmJ {log ! 5+ Hj(z)

and J), is the energy functional associated to (6.1), whose definition is as follows

1 A 2
Ta(u) = 5/Q(|Vu|2 +u?) — 5/@9 e

We have the following result.
Lemma 6.10. Let p1; be given by (6.31). Then

kx _ |09

HU) =5 9

A+ moR(E,m)N + N2O5(€,m), (6.92)

with |0$2| denotes the measure of domain OS2, and ©,(&, m) is a function, uniformly bounded
with its derivatives, as A — 0, for points £ and parameters m satisfying (6.46). Furthermore

the function o(§,m) = r(&1, ..., &, ma, ..., my) is defined by

k k
er(§,m) = 2(log2—1) Zm? +2 me log(mi)
P =1

k
— Z m?H(éj, fy) - Z mszG<§Zv 5])
j=1 i#£]
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Proof. Let us set
k
=Y "Uj(x), with Uj(z) = Vam[u;(z) + H;(z)]

where

1
|z — & — eipv(&)]?

() L

uj(x) = log

and H; defined in (6.19). Then

k
[ DoV,
Q|54

k
1 A >
= § —/(lVUj|2+U2 § /VUVU + UU;) — /eU
j:12 Q oQ

z#]
= L1+ 1+ Is.

First, we write

/(|VUJ~|2+UJZ) = am} U |vUj|2+/u§+/|VHj|2+/(Hj)2
Q Q Q Q Q

Q Q

Multiplying (6.19) by Hj, it yields

0H;
/\VHJ'\2+/(HJ‘)2 = —/UjHj+ —H,
9 Q Q 0 dv
0
= —/UjHj+2€ij/ e“jHj UJH
Q o0 aq OV

Multiplying (7.31) by u; again, we find

0
/u;‘l’/HjUj = —/VujVHj+25j,uj/ e — / au]u
Q Q Q o) oq oV

Then we get

[avuie <)

(6.93)

(6.94)

ou
= am} U V| — / %u] /vujVHj— —LH, +2€]u3/ e“j(uj—i—Hj)}
Q o0 OV a0

= 2)\mj5j,uj/ e (u; + Hj)
o9
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Ejlbj 1
= 2 m? L (1og +H(z,&)+ O 5‘*).
P Joo lw =& — v (&) |z — & —env(&5)]? (7:45) +O()
Taking the change of variables y = i]_jj , we have
| avu v
= 2xm} _/ ! 5 (log ! 5+ H (& + 55y, &) — 210g(uj5j)) + O(e%)
sa, = v 0P = 0(0)]

1 1
= 2am? / (log + H(;,&5) — 2log(e;) — 2log(2u; +210g2)
oo, v @F By = T8 1)~ 2log(Z)

1 o
+2)\m? [/895]%]- m (H(&5 + g5y, &) — H(E,&5)) + 0(5]’)

We have

/a B =+ O(g).

SRETOL:

1 1 < 1 1
lo = lo dt + O(e¥
LA%MW—wa SyoeE | TrEeTeE 06

= —2rlog(2) + O(<9).

and

1
/aﬂsjuj m (H(& + ey, &) — H(&: &)

1
B oyl = 0.
/aggw ly — v(0)]? (€7 1y[*) = O(e5)

Using the definition of €;, we thus conclude that
Javup o
Q

= 2xm [—2mlog 2+ w(H(;, &) — 2log(e;) — 21og(2p;) + 2log 2) + O(e))]
= 7w+ 2 m; [rH(&;,&) — 2mlog(2m?) — 2mlog(24;) + O(£9)]

Therefore

L =

N —

k
Z/mmﬂu@
j=179
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= ; + Z: Am3 [wH (&5, &) — 2mlog(2m?) — 2mlog(2u;) + O(e5)] . (6.95)

On the other hand, we have

Z/ (VUVU; + U;U;)

7]

= ) dmm, [/ Vu; Vu, + /VUZVH —i—/VuJVH +/VH VH,

i#]

Q Q Q Q

Multiplying (6.19) by H; and integrating we find

/VHJVHZ‘F/HJHZ = —/UJHZ +25juj/ €ujHl' au]H
Q Q Q a0 a0 OV
Hence
> / (VU;VU; + U;U;)
i#£]
= > dmimy { / Vu; Vu, + / Vu,VH; + / Vu;VH,
i#£]
Uj auﬂ
+ Ui U + UiHj + 28jﬂj e H; — —H; (696)
Q Q Gig) oa OV
Multiplying (6.19) by w; again and integrating we find
uj au]
VH Vu; + ujui =— | Hju;+ 2¢p; e“u; — — ;. (6.97)
Q i) a0 OV
By (6.96)—(6.97) we find that
> / (VUVU; + U;U;)
7]
Ou,
= ) dmm, vulvuj L, + VUJVH —
oy 0 81/ o0 OV

+2€j,uj / et (Ul + HZ):| .
o0

Then

= —Z/ (VUVU; + U;U;) Z)\mzmjaju]/ e (u; + H;)

i#] i#]
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Eily 1
— \ i
; mm] /‘99 v =& — v ()7 ( Sl — & — epv(§)P i (x))
set x_fj =y
Eilj
1 1
B A 1 il j
zglmWLLmﬂJy—m>|<°%x—@ e &P (5“y+50
_ Z/\ﬂm,mj [ (&,&)+ 0 (5 log— £2log )+O(5 +e )]
i#]j

Finally, let us evaluate the third term in the energy

k
by DY
) va) 4 2
22 / ety

= 9anB(E;,0,/5)

/ LU2@)

o2\ U B(e;dv2)
U

= [+11.
Since
/ @)
IQNB(E;,0,/55)
- / V@) 4 / V@) = Iy + I,
O0NB(E;,0¢;|loge;l) 00N(B(&5,0/)\B(&;,0¢;|loge;l))
where
Iy = U2 (@)
OONB(E;,0¢5|loge;|)
_ 6[\/X7ﬂ,j(7210g5j+ﬁj+wj+0(x))]2
ONNB(;,0¢;|loge;l)
= olet s (@) Am2w3+2u,0(@)+62 (z)]
00NB(&;,0¢;|loggj)
2115
. 2 _—1 J
- iy I
ONNB(&;,0¢|logej]) ’
2
’ N ly —v(0)[?
EJHEJ nB(0, \ C:is \)
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= drm? (1+ X0,(m,f)), (6.100)
with ©,(m, ) a function, uniformly bounded with its derivatives, as A — 0.

-4
de ;
J 2

1 loggr
lIg] < C —e 5 rdr
r
d|log e,
set t=logr
R2+7732 R2+
—2t+ 4t2
= C / e dt<C / e tdt = O(N). (6.101)
Ri+log~} Ri+log~}
Moreover, we have
=2 160 + ZV@A (m, &), (6.102)
5 > .

with [0€| denotes the measure of domain JS2, and ©,(m, ) is a function, uniformly bounded
with its derivatives, as A — 0. Then from (6.99)-(6.102), we get

k
Iy = —=2\m Y m} (1+ A0x(m, <)) . (6.103)
j=1
Hence from (6.95), (6.98) and (6.103) we obtain

k

k k
HhU) = =« Zm?H(fj,ﬁj) + Zmiij(&,ﬁj) — ZZm? — QZm]2 log(2m?) A
=1 =1

j=1 17
kr |09 .
+7 — T)\ — 271')\277%2 log(Zlu’J> + 0()‘)

j=1

By the choice of p; in (6.31), we get that the function ©(£,m) in the expansion (6.92) is
uniformly bounded, as A — 0, for points ¢ and parameters m satisfying (6.46). In order to
prove that also the derivatives, in £ and in m, of this function ©(§, m) are uniformly bounded,
as A — 0, in the same region, one argues similarly as for the C° expansion of Jy(U). We
leave the details to the reader. Thus the proof of Lemma is complete. n

6.5 Proof of Theorem 6.1

In this section, we will prove the main result.
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Proof of Theorem 6.1 Let D be the open set such that
Dc{(&m)e (0N xR : &#&, Vi#4)}

From Lemma 6.4, the function

un(z) = VA (0(,m) + 6(6,m))

where U(¢,m) defined by (6.18) and ¢ is the unique solution to problem (6.39) given by
Proposition 6.3, is a solution of problem (6.1) if we adjust (£, m) so that it is a critical point
of Z, (&, m) defined by (6.44). This is equivalent to finding a critical point of

Be,m) = =5 [Bem) - 5+ 1.

On the other hand, from Lemmas 6.9 and 6.10, for (£, m) € D satisfies (6.17), we have that,

Za(&:m) = i(&,m) + 0(1)Ox(m, €), (6.104)

where O,(m, ) and VO, (m, &) are uniformly bounded in consider region as A — 0. Thus
we need to find a critical point of

H(,&) = Y mim;G (&, &)
i#]

or(§,m) =2(log2 — 1) Zm —|—22m log(m

IIM»

We make the change of variables s; = m?, and set b = 2(log2 —1). And we next find critical
point of

k k
pr(65) = b s;+2)  s;log(s))
j=1 j=1

- ZSjH(fjvfj)+Z\/T3jG(€i,§j)] , (6.105)

=1 i

which is well defined on D. For j € {1,2,...,k}, we have

Sz

881-9014(575) :b+2+210g(3j) (£J7§] gzagj )

Z#J

%t - 2+ 1% [T loieg)
sjsﬁOk 55 4 - 57 5 1875/

J

and
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I~ 1
9 . o(&,8) = 1 ; \/s—i_st(&’&)'

We have that ¢ (&, s) is strictly convex as a function s, and it is bounded below. Hence it
has a unique minimum point, which we denote by § = (51, ..., k), each component of 5 is a
function of points &1, ..., &, namely

S5 =351, &)
satisfies
1< /5
b+2+2log(s) — H(&;,6) — 5 )1/ G(€:6) =0, (6.106)
i#j J
We have
(1) 5, is a C! function with respect to & defined in (9Q)*;
(2) There is a positive constant ¢y, such that 5; > ¢ for each j =1,..., k;
(3) 5, = o0 as & — &;| — 0 for some i # j.

In fact, (1) directly holds by the implicit function theorem. Moreover, since G(&;,€;) is
positive and H (;,§;) is bounded, from (6.106) we have

Then we get (2) holds. Furthermore, for some i # j we have G(§;, ;) = +o00 as [§; —&;| — 0,
so (3) holds by (6.106).

A direct computation shows that
k
O(8) == or(&,5) = 2> 55(¢)
j=1

for § € O ={(&1,. ., &) € (DD : & # & if i # 5}

Given one component Cy of 9. Let A : S' — Cy be a continuous bijective function the
parametrizes Cy. Set

Qe ={(&,....&) €Cl - |&—¢&| >0 fori#j}.

Next, we find critical point of ®,. The function ®; is C!, bounded from above in Q. and
from (3) we have

Pr(&) = P&, ... &) = —o0 as & —&| — 0 for some ¢ # j.
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Hence, since 9 is arbitrarily small, ®; has an absolute maximum M in Q.

On the other hand, Using Ljusternik-Schnirelmann theory as the proof in [27], we get that Dy,
has at least two distinct points in Q. Let cat(Qk) be the Ljusternik-Schnirelmann category of
Qk relative to Qk, which is the minimum number of closed and contractible in Qk sets whose
union covers ;. We will estimate the number of critical points for ®;, below by cat(€y).

Claim: cat(€,) > 1.

Indeed, by contradiction, suppose that cat(Qk) — 1. This means that €, is contractible in
itself, namely there exist a point €% € Q. and a continuous function T' : [0,1] x Qe — Q.
such that, for all £ € Q,

F(Ouf) = 57 F(]-a 5) = 50‘
Define f : S — Q to be the continuous function given by
= <& ikl &
7€) = (M@ A8, A7)
Let n: [0,1] x S* — S* be the well defined continuous map given by

n(t,€) = A" om o I(t, f(£)),

where 7, is the projection on the first component. The function 7 is a contraction of St to
a point and this gives a contradiction, then claim follows.

Therefore we have that cat(Qk) > 2 for any k > 1. Define

¢ =sup inf ¢
CGPEEC k(f)

where

Z={CcQ : C closed and cat(C) > 2}.

Then by Ljusternik-Schnirelmann theory we obtain that c is a critical level.

If ¢ # M, we conclude that @, has at least two distinct critical points in Q. If ¢ = M,
there is at least one set C' such that cat(C) > 2, where the function ®;, reaches its absolute
maximum. In this case we conclude that there are infinitely many critical points for &, in
Qy.

Thus we obtain that the function @, has at least two distinct critical points in €, denote
by £',€%. Hence (¢',5(¢")) and (£%,5(€%)) are two distinct critical points for the function

(€, s). From (6.104) we then have that Z, (£, m) has at least two critical points. This ends
the proof of Theorem.
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6.6 Appendix

Proof of (6.74). We shall prove

~ ~ C
|| - AZO + ZO‘H**,Q S
J J |log ;|

where Zoj is defined in (6.71). Performe the change of variables y = 5]_1F](x) and denote
ZOj(y) = Zoj(F}_l(Ejy)). Then —AZOJ‘ + ZOj = (,Cgoj + 5§20j)7 where L is defined in (660)
We shall show that

C m

s 0
E+Y (L+ly—-gh™ ], ye—.

| (L3205 + €5205)| <
€j

| log ] =

This fact implies (6.74).

Let us first consider the region where |y| < R. In this region, Zy; = 2q;. Since Azy; = 0 and
since (6.60) holds, we have that

(LZo; +€j205) = O(gy) for |yl < R. (6.107)

In the region R+ 1 < |y| < %, we have Zy; = hzyj. Therefore, in this region,
J

- C 0
|AZoj|22’VhVZOj‘ SW R+1<7“<4—8, T:‘y’

J

For the other terms we find

|V220j| S |v2h|20j + 2|VhVZOJ| + h|v220j|

1 1 1 1)
=0 + 0 +O0(—= R+l<r<—
(r210ggj) (r3loggj) (7“3) " 4e;
SO
O,y V250 = O(— ) + Oy R4l<r< -2
J (W] Tlogg] Tz 45J
Also
Vo] < [Vhlzy + bV = O(——) 1 O(%)  Rel<r<l
2y 20 z0i| = - r< — .
o= 07 07 rlog gj r2 4e;
Hence
(L2054 220,) = O ) + O ) + O(D) + 23, R 1<r< - (6108
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In the region 4% <r< 3% the definition of Zy; is Zo; = m2hzp;. We will estimate each term of

2
(6.60) using the facts that Vi, = O(%), \V2772| = O(3) and that in the considered region

h = O( ) which implies also Zy; = O( o 8 ). We obtain
Ang = A772h2[)j + QVUQV(hZQJ) + UQA(hZ()j)
= AT}QhZQj + 2Vn2Vh20j + 2Vn2Vz0jh + 2772v}LVZOj
g2 €5 €5 1
=0(—L+)+0(—L+-)+0 . + O(————+
((52 log gj) <7"(5 log gj) (7“2(510,5.); gj) (7"3 log §j>
22
_ j L e L
(62 log g]) 4e; " 3¢,
Next

) )
\V& Zo; = Vmehzo; + 2V V (hzos) + 12V (hzo;) = <r <.

: ) )
and by the above computations, for i < <3

V3% = 0(521 ) )+n2(v hzo; + 2VhV zp; + hV?2;) = 0(52 12; g]).
Similarly, for = <r < E
Vo = Visha, + 12V hz; + 12hVzg; = O(ﬁ;g)
€j
This shows that
(Lz0; + €5705) = O(#Z;Sj) 4% <r< % (6.109)

Thus we only need to estimate the size of LZ; + 6?20]» in the region R < r < R+ 1. In this
region we have Zy; = 11 20; + (1 — 11;)hzo; and hence
Ag[)j = An1<1 — h)ZOj — 2V771Vh20j + 2V771V20](1 — h) + 7’]1A20j
+ (1 = m)A(hzo)

1
- O(IOg J )+ +mAzg; + (1 — 1) A(hzoj) R<r<R+1.
e

First we recall that Azp; = 0 and, for R<r < R+ 1,
A(hZOJ) = 2VhVZOJ + O(Z‘Ij) = 0(1—5) -+ O(€j).
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Thus

Eéoj+s§20j:0(logé) R<r<R+1. (6.110)

This bound and (6.107), (6.108) and (6.109) imply (6.74).

Proof of (6.75). We shall prove

C

L(Zn v < ———
|| ( OJ)H 7dQ_|lOg€j|

We perform the change of variables y = 5;1F](x) We already observed that we can assume

that VF};(&;) = 1. Hence,
L(Zoj) = (1+ 0(1)) | B(ao)) — W2,

where Zp; = Zoj(Fj_l(sjy)) and W (y) = W(Fj_l(ejy)). B is the differential operator of order

one on JR?, defined in (6.62) and W is described in (6.63). Thus in the region y € 0 (?),

with |y| < R, we get J
B(%;) — WZo; = O(e;) (6.111)

Next, in the region R < |z| < R+ 1 we have

VZo; = V(m(1 — h)zo; + hzoy)
= V(1 — h)zg; — mVhzo; +m(1 — h)Vzo; + Vhzg; + hV 2

= O(

1
1 5 ) + 771(1 — h)VZoj + hVZOj.
og gj

Since h is radial this implies

0zp; Re;
B(%;) = —h—2 4+ O(——+) + O(— R<|yl<R+1,y € 0R2.
(Z05) 0o (Rg log gj) (log gj) | Y +
Using (6.63) we see that
~ T 1 REJ' 9
B(Zoj)—WZOj:O(—6)+O( 5 ) R < |y| <R—|—1,y€8R+. (6112)
R2loggj loggj

Using the fact that h has zero normal derivative on R we deduce

~ 0z
B(hZOJ’) = — % + O(e’fj’f’)(VhZoj + hVZoj) (6113)
020 €5 €5 )
- _}h 7 J -J 1 —_
8:B2+O(loggj)+o(r) R+ <T<5j
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On the other hand, using (6.63) we have in R+ 1 <r < 2

~ ~ £ 6.0[
B(Zo;) — WZp; = O(—-) + O(—) (6.114)
log o r
for some 0 < a < 1. Finally we consider % <r< %. Here we have Zy; = n2hzp; and

h,z; = O(log%_), Vi, = O(%). Using these facts, estimate (6.113) and that 7, has zero
normal derivative we find

B(Zy;) = B(n2)hz; + n2B(hzo;)

_ J il 7 <J o o
- (510g§)+O<T2)+O(log§,)+0(r) 4]<7‘<3]
€j
From (6.63) we have
5 0
W:O(g—J) — <r<—
r de; E;
Thus we conclude that for y € 052, %j <r< %
B(Zo5) — WZo; = . — ! 1, 11
() = Wiy = O(2) + 01 + 0 2 + 03 (6.115

Estimates (6.111), (6.112), (6.114) and (6.115) give the validity of (6.75).

Proof of (6.83). We shall prove

FO) = AV 4 2020%N0 = I, + I,

< CA.
*,08)

k
f/((j—) _ Zgjlewj

Indeed, we have

For z € 0Q), far away from the points {;, namely for [z — ;| > 9, i.e. |y — & > 6%, for all
j=1,2,...,k, a consequence of (6.22) is that

I, = 2\O(1), I, = \?0(1).

Then we have

' (U)1louer = AO(1), (6.116)
where loyter is the characteristic function of the set {y : |y—&j| > E%, j=1,...,k}. Moreover,
for |z — &;| > 0, we have

k k k R
D et e lower = 0(1) > g5 =0(1)) 2mie " =\0O(1). (6.117)
j=1 j=1 j=1
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On the other hand, fix the index j in {1,2,...,k}, for |z — ;| < 9, from (6.23), (6.29) and
(6.30) we have

[a _ )\ez\m§(wj(x)+loga;2+,8j+9(x))2

Am?(log 5%-1—5]')2 2>\m?(10g s%.—’—ﬁj)wj 2)\m§ (log 5i2_+ﬁj)9(z)

= e J e J e J

3(log +8;)
J

eAm? (wj+0(z))?

— e o3 (@) A2 (w;+0(2))?

AeP e e /DA (1 4 O(N)wy)
= 2xmie ’\m wj (14 O(\wjy))e; ' e™

and

— 2
I = 20 (@) +loge;? + B + B(x))* (o) iy 00)

1 1 2
= W(log 1 + 6 (1 g +8) u + 0<1>>)
J .7
Am (log 2+/BJ)2 2>\m (log 2+/BJ)wJ 2)‘m (log 2""5]) (x)
Xe i e e e
1 2 2(0g 2+f31)

— 2— (14 2xm3(w; +O(1))) e

Am? (wj+0(x))?

eWi ee(x) e)\m? (wj+0(x))?

_ 21 (1+ 22m2(w; + O(1)))? e#/2: 1% PO A3 (1 4 O(A)uy;)

1 2,2
= (14 2xm?(w; + O(1))) A (1 4 O(Aw;))e; e
J

Then we find
k
Lliwer =AY _pi(@)O(1),  Dyliner — 3 &5 '™ = XY pi(2)O(1). (6.118)
: = -

where ljer 18 the characteristic function of the set Ug?:l{y Dy — 5§| < %} Then from
(6.116), (6.117), (6.118) and the definition of x—norm, we obtain estimate (6.83).

Proof of (6.84). We shall prove

<.

*,002

F(0)

F1(O) = 6)20N” 4 ANT3N” = I, + 1.

Indeed, we have

For x € 0), far away from the points ;, namely for |z — §;| > d, ie. |y —&| > g, for all
j=1,2,...,k, a consequence of (6.22) is that
I. = \*0(1), I = NO(1).
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Then we have B
f//(U>1outer == )\20<1) (6119)

On the other hand, fix the index j in {1,2,...,k}, for |z — ;| < 9, from (6.23), (6.29) and
(6.30) we have

I = 6) (w;(z) +loge;* + B; + 0(x)) e 3 (w3 (@) Hlog ey * +4;+0(x))

= 6)\2(log§ + 5;) (1 + (logé + 8;) " Hw; + O(D))

Am? (log S%‘i’ﬁj)Q 2xm? (log S%JFBJ')UJJ‘ 2am? (log 6—12_+Bj)9(m)
Xe 7 (& 7 (& J

log £ .
= B 2wy + 0(1))) T e ) i 00002
m

J

= jj\ (1 +2)\m (w; +O(1 ))) eﬁjﬂg;lew]’ee( z) Amjw; i(1+0MNwy)

J

= 6 (142 m(w; +O(1 )))em (1+O()\wj)) e
- 6)\{(1+2)\m (w; + O(1))) ™5 (1 + O(Mw;)) — 1} et 4 GAe; !

eAm? (w;j+6(x))?

1
= 1202 s { (1 2m2(w; + O(1))) 5% (1+ O0wry) — 1} 5l + 62e; !
2 mj \_,_/
h — “ =Xp;(2)0(1)

= Api(2)0(1),
and
_ 3 -2 3 )\mz(w~(x)+10g5-72+/6"+9(x)>2
I = 4N (wj(z) +loge;® + B; + 0(x))” e\ i TP

1 1 ’
J J
y e}\m? (log %+5j)2€2>\m? (log %-ﬁ-,@j)wj 62)\m]2-(10g :1]2+5j)9($) e}\m? ('LU]' +6'(:E))2
3 %(log E%‘f’ﬁj)
J

1
= — (1 + 2)\m§(wj + 0(1))) e 0 x)e)\m?(wj-}-@(x))Q
m>
J

Wi e

1
= — (1+2xmf(w; + O(1 )))3eﬂj/28;16wj60( DA (1 + O(N)w ;)

2m$
1
= (14 2xm(w; +O(1))) e mit(] 4 O(Aw;))e; e
j
2)\ 1 )\m w — w 1 -1 _w;
=t g { (1 2Amiy + O(1) ¥ 55(1 5 O0wy) = 1} e + e
:p:-,(:r:) :Pj(;f)o(l)
= p;j(z)O(1)
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Thus we obtain .

F'(0) Liner = O(1) Y _ (). (6.120)

j=1
Then from (6.119), (6.120) and the definition of *x—norm, we obtain estimate (6.84).
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Chapter 7

Critical points of the Trudinger-Moser
trace funcational

7.1 Introduction

Let © be a bounded domain in R? with smooth boundary, and let H'(2) be the Sobolev
space, equipped with the norm

full = ([ (9 + e

Let a be a positive number, the Trudinger-Moser trace inequality states that

) <(C<+4o00, if a<ln
Co(Q2) = sup / eIl _ (7.1)
weHY(Q), |lull<1 /o0 = 400, if a>n

6, 22, 23, 74, 114]. For (7.1) there is a loss of compactness at the limiting exponent o = 7.
Despite of that, it has been proven in [124] that the supremum C(£2) is attained by a function
u e H'(Q) with [,,[|Vul*+u?] = 1, for any bounded domain 2 in R?, with smooth boundary.
Also, for any a € (0, ), the supremum C, () is finite and it is attained. But the exponent
a = 7 is critical in the sense that for any o > m, C,(2) = oo. See also [24, 72, 73] for
generalizations.

The aim of this chapter is to study the existence of critical points of the Trudinger-Moser
trace functional

Ea(u) = / o, (7.2)
a0
constrained to functions
ueM={ueH(Q) : ||u>=1} (7.3)
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in the super critical regime
a>T.

In view of the results described above, we will be interested in critical points other than global
supremum. As far as we know, no results are known in the literature concerning existence of
critical points for the Trudinger-Moser trace constrained problem in the super critical regime.
Nevertheless, much more is known for the corresponding Trudinger-Moser functional.

Let us recall that the Trudinger-Moser inequality in dimension 2 states that

) <C <400, if p<4dm
sup /e““' dx ' (7.4)
weHL(Q), || Vull2<1 J = 400, if p>4m.

Here again 2 is a bounded domain of R?, with smooth boundary. For problem (7.4) there is a
loss of compactness at the limiting exponent p = 47 [79]. Despite of this loss of compactness,
the supremum

2
sup /e“'“' dx
w€H(Q), ||Vul2<1 J/Q

is attained for any bounded domain  C R?. This was proven first in the seminal work [18]
for the ball Q@ = B;(0) (see also an alternative proof in [30]). In [111] the result was proven for
domains €2 which are small perturbation of the ball. The general result in dimension 2 was
proven by Flucher in [53], and Lin [80] extended it for the corresponding Trudinger-Moser
inequality for general domain of RV, with NV > 2.

Concerning the super critical regime for the Trudinger-Moser functional, namely
I,(u) = / el dr we HY(Q), |[Vul? =1, with p > 4, (7.5)
Q

some results are known. In the works [111] and [68] it has been proven that a local maxima
and saddle point solutions in the supercritical regime p € (4, o) for the functional (7.5) do
exist, for some po > 4.

Our first result is an extension of the existence of a local maxima for the Trudinger-Moser
trace functional in the super critical regime o € (7, ). Namely, a local maximizer for
Problem (7.2)-(7.3) exists when the value of « is slightly to the right of .

Theorem 7.1. Let Q2 be a bounded domain in R%. Then there exists oy > m, such that for
any o € (0, ap), there exists a function u, € M which locally mazimizes of E, on M.

This result is proved in Section 7.2.

Much more is known for Problem (7.5) and p > 4mw. Recently in [40] (see also [39]), the
authors obtained several results concerning critical points for Problem (7.5) also in a wery
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super critical regime. They found general conditions on the domain €2 under which there is
a critical point for I,(u) with [, [Vul?dz = 1 when p € (47k, pui,), for any integer k > 1 and
for some uy slightly bigger than 4 7 k. In particular, for any bounded domain €2, they found
a critical point for I,(u) with [, |Vu|?dz = 1 when p € (47, p11), for some py > 4m. The
L*°-norm of this solution converges to oo as u — 47 and its mass is concentrated, in some
proper sense, as j — 47, around a point in the interior of 2. On the other hand, if {2 has
a hole, namely it is not simply connected, they proved the existence of a critical point for
I,(u) with [, [Vu[*dz = 1 also in the super critical range p € (87, u2), for some py > 8.
Again in this case, the L*°-norm of these solutions converges to oo as g — 8, but now its
mass concentrates, as u — 8w, around two distinct points inside 2. Furthermore, if 2 is an
annulus, taking advantage of the symmetry, a critical point for I,(u) with [, |Vu|*dz = 1
and p € (47k, py) does exist. In this latter case, the L>-norm of the solution converges to
oo as pu — 4wk and its mass concentrates, as y — 4wk, around k points distributed along
the vertices of a proper regular polygon with £ sides lying inside (2.

The second result of this chapter establishes the counterpart of the above situation for the
Trudinger-Moser trace functional in the super critical regime: we will show the existence of
critical points for F, constrained to M, for o € (km, ), for any k > 1 integer and for some
ay slightly to the right of k7 . We next describe our result.

Let G(z,y) be the Green’s function of the problem

—-A G(x y)+G(z,y) =0 x €
0G(ay) (7.6)
B = 21y () x € 09,
and H its regular part defined as

|z —y|

Our second result reads as follows.

Theorem 7.2. Let Q be any bounded domain in R? with smooth boundary. Fiz a positive
integer k > 1. Then there exists ay, > km such that for o € (km,ay), the functional E,(u)
restricted to M has at least two critical points ul, and u?. Furthermore, for anyi = 1,2 there
exist numbers m} , > 0 and points £, € IQ, for j=1,...,k such that

lim m}, =m} e (0,00), (7.8)
a—kr ¢
Eo =6 €090, with &F#& for j#1, as a—kn (7.9)

and

,/O‘_IWZ [m} Gz, &) +o(1)], i=1,2, (7.10)
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where o(1) — 0 uniformly on compact sets of Q\{&%,... &L}, as a — km. Moreover, for any
i1 =1,2, for any 6 > 0 small, for any j=1,...,k,

sup v’ (z) = +oo, as a—km. (7.11)

z€B(},0)

There are two important differences between the result stated in Theorem 7.2 and the corre-
sponding result obtained in [40] for the Trudinger-Moser functional (7.5). A first difference
is that for Problem (7.2)-(7.3) existence of critical points in the range o € (km, ay,) is guar-
anteed in any bounded domain 2 with smooth boundary, at any integer level k. No further
hypothesis on € is needed, unlike the Trudinger-Moser case (7.5). The second difference is
that, we do find two families of critical points for Problem (7.2)-(7.3) when a € (km, ay),
and not only one as in the Trudinger-Moser case (7.5).

7.2 The local maximizer: proof of Theorem 7.1

We set
E(u) = / e, (7.12)
o0

and
M,={ue H(Q) : |Jul*=a}. (7.13)

We note that by the obvious scaling property, finding critical points of E, on M (see (7.2)
and (7.3)) is equivalent to finding critical points of E on M, (see (7.12) and (7.13)). In this
section, we study the local maximizer for the functional E constrained on the set M, with «
in the right neighborhood of 7.

We start with the following Lion’s type Lemma. The proof is quite standard, but we repro-
duce it here for completeness.

Lemma 7.3. Let u,, be a sequence of functions in H'(Q) with ||u,,| = 1. Suppose that
Uy, — ug weakly in HY(Q). Then either ug = 0, or there exists a > w such that the family
evn is uniformly bounded in L*(0SY), and thus we have

2 2
/ ertm — e™0  as m — oo.
o0 o0

Proof. Since ||u,,|| =1 and w,, — uy weakly in H'(Q), we have

/(VumVuo + umug) — /(|Vu0|2 +ul) as m — oo.
Q Q
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Thus we find that

lim ||um—u0||2 = lim {/HV(um —uo)|2+ (U, —uo)Q]}
m—0o0 Q

m—ro0

= 11_1}1 {HumH2 - 2/(VumVu0 + U ug) + Hu0H2}
m—00 0

= 1 Jluo|*.
Assume ug # 0. Take p € (1, m), and choose ¢; and ¢o such that 1 < pgq; < m
and q% + qiz = 1. By Holder inequality we have
/ eﬂpuzn _ / €7rp(um—uo—i-uo)2 — / 67Tp[(um—u0)2+2(um—u0)u0+ug]
o0 o0 o0
_ / ewp[(um—uo)2+2umu0—ug] < / eﬂp[(um—u0)2+2umu0]
o9 -~ Joo
N N
= / e“l’(“m—UO)ZeQ’rl’“muO < </ eﬁpq1(um—u0)2> " (/ 62”1"12Umu0) " .
o0 o0 o0
We now recall that
m=supi b : sup / " do < 00 . (7.14)
ueH(Q),[Jul|<1 /o0

see for instance [6, 22, 23, 74]. Hence, given the choice of p and ¢;, we get that there exists
a constant C', independent of m, such that

/ e™Pa1 (Um—u0)® v
o0

On the other hand, Young’s inequality implies that 2|u,ug| < e?u?, + Suf, with € > 0 small.
Then from (7.14), we have

/ 627TpQQumu0 < / ewpq2[52u%+s%ug} _ / ewpqggngneﬂ'pqga%u% <C
oN o0 0N

by choosing € so that pg.e? < 1. Here again C is a constant, independent of m. Thus, we
have that there exists & = pm > 7 such that the family e“= is uniformly bounded in L*(9).

We shall now show that

2 2
/ eim — €™ as m — oo. (7.15)
o0N o0

Indeed, let [ be a positive number and p > 1. We have

/ i, / o, / o,
o9 00N um|<1} 09N jum |>1}
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— 2(p—1)
[7» o0

From the above relation, we conclude that

Tu2 2 C
/ e m S |8Q|e + -0
o0 l

p

D

p—1
()" =
o0 I~

hSAl

Hence dominated convergence Theorem implies (7.15).

Suppose now that e'n is not bounded in L*(09) for any o > 7. Using Stokes theorem, for
a > m we have

/ ndy = /dw( o) :L‘<C/ |Vt | [0 €
o0

(/ [Vt dx) (/Q ,um|qdm)q </965u3”d:c>§

where ¢ > 1 satisfies % + % + % = 1 with g > 27. Then we get that fQ ePumdz is unbounded
for all g > 2.

IN

Observe now that we can assume that fQ updr = 0, since otherwise we set u,, = u,, —
ﬁ Jo Umdzx and obtain [, up,dz = 0. We can also assume that [, [Vu,,|[* = 1. Furthermore,

by Poincaré inequality, (u,,) is bounded in H'(Q2), and also (|u,,|) is bounded in H'().
Hence there exists u € H'(Q) such that |u,,| — ug weakly in H*(2). We claim that

lim/|V HPde=1 V>0 (7.16)

m—00

By contradiction, assume there exists 7 > 0 such that lim,, o [, |V (tm —n)T]?dz # 1.
Define v = inf [ [V(uy — n)*?de < 1 and choose a sufficiently small ¢ > 0 such that

o = % > 2m. Let us recall that

2m =supy 0 : sup /60“2dx<oo , (7.17)
weHY(Q), [, IVul2<1, [ u=0 JQ

(see [6, 22, 23, 124]). From (7.17), there exists a positive constant C' such that

(lwml=m* =7 Jo(uml-m*
VATe

2
/ o[l =n) "=y Junl=)* ] g / ¢ ] de < C,
Q Q

where we use the fact that |, |V(“ |2dx < L

W—i—s
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Define d,,, = ﬁ Jo(lttm] = m)*. Choosing &’ > 0 small such that & := ﬁ;, > 27, and by the
Young’s inequality,

U?n < (4 dw)? + 20+ do) [(Juml =) = dun] + [(Jtm| = )" = d]?
1
< (L) (uml =m)" = d]* + (5 + 10+ du)*.
Thus, since there d,,, = O(1) as m — oo,

/ef“‘?ndx = / ety < Cl/e“’[wmlm*é Jallunl=n"T g0 < 0,
Q Q Q

for some positive constants C; and C5. This is a contradiction, thus (7.16) holds.

Set vy, = min{|u,,|,n}, then v,, is bounded in H*(2) and, up to subsequence, we have that
Um — v. Observe now that |u,| = v, + (Jun| —n)T, and

1:/|Vum]22/\V!umszx:/\va\zdx—l—/]V(!uml—n)ﬂQdm.
0 0 Q 0

Therefore (7.16) implies that that [, [Vun,|*dz — 0 as m — oo, so v is constant. On the

other hand,
lim / |Vun,|?dr = lim / V|t ||?dx = 0.
This implies that [{z : |u,,| > n}| — 0 as m — co. By Fatou Lemma,
{x :up > n} < liminf [{z: |u,| > n} =0,
m—r0o0

then [{z : up > n}| =0 for any n > 0. Hence we get ug = 0. O

We denote := sup F(u) = sup E(u). A direct consequence of the previous Lemma is the
uEMr ueM

following

Proposition 7.4. Let u,, be a bounded sequence in H*(Q)) with ||uy,| = 1. Suppose that
Uy — ug weakly in HY(Q). Suppose Er(uy) — B with 8 > |0Q|. Then there exists a >
such that the family e*m is uniformly bounded in L*(9Q). In particular E,(un) — Ex(ug)
and ug # 0.

Proof. Suppose e“m is unbounded in L¥(09) for all @ > 7, and assume the supremum of F,
on M is not attained. Then by Lemma 7.3, we have that uy = 0, which is impossible because

E (upy) — 5> 09 ]
Let K, be the set defined by
K,={ueM : E.(u) =p}.
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Lemma 7.5. The set K, 1s compact.

Proof. Let {u,,} C K, be such that u,, — ug weakly in H*(€2), then by Proposition 7.4,
Eﬂ(“m) — EW(U(]).

Moreover, ||ug|| < ||um|| = 1, then

al ) < sup E.(v) = .

||U0|| veM

E (ug) < Er(

Then we get Er(ug) = B3, and |lug|| = 1, hence u,, — ug strongly in H'(Q), hence K, is
compact. ]

The property of K, of being compact implies that the family of norm-neighborhoods
N.={uveM|Ive K;:|u—v||<e}
constitutes a basic neighborhood for K in M.

Lemma 7.6. For sufficiently small € > 0, one has

sup E. < 8 =supkFE,. (7.18)
Ne

NQE\NE

Proof. We argue by contradiction. We suppose that there is a sequence u,, € Na.\ N, such
that E,(u,,) — 8. Then we have u,, € H'(Q) with ||u,,||* = 1. Up to subsequence, we can
assume that wu, — uy weakly in H'(Q). By the definition of Ny, there is z,, € K, such that
|zm — uml|| < 2e. By the compactness of K, we have that z,, — z strongly, with z € K,

and z satisfies

—Az+4+2=0 1in Q, %:&2 on 0.
o [, 2%

By the maximum principle, we have z € L>(Q).

By the lower-semi continuity, we have ||z — ug|| < 2¢. Then

Ug
LN
== Tt

Thus pr € Ny, and so Ex (uo) < E, (” ) < B. If Er(ug) = B then [|up|| = 1, and u,,, — uy.
On the other hand, our assumption 1mphes that uy € N., thus ugy does not belong to K, and
up can not be relatively maximal. Thus we necessarily get E,(ug) < 5.

Iz = woll + [luo = ==l = [lz = woll + 1 = JJuo|| < 4e.

Set Wy, = Uy, — Zm + 2, 80 we have w,, — ug weakly in H'(€). Since

grlwnl? — grlum—sntal? o 2nlum—sml? 2nlsl? _ 2l —zm 2RI ool o Sret(pmImn)® omap

um —zm|| wum —zm || é

=e
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Choosing ¢ small such that 162 < 1, then from (7.14) we have that e™»I" is uniformly
bounded in L*(02), as m — oco. Thus lim FE,(w,,) = E(ug). On the other hand, we have

m—
Wy, — Uy, — 0 strongly in H*(Q2). By uniform local continuity of E,, and compactness of K,
we obtain that E.(w,,) — Ex(u,,) — 0, and E,(uy) = 8. This is a contradiction. O

Lemma 7.7. There exists o > m, € > 0 such that for all a € |7, "), then we have
(1)

sup FE, < sup E,. (7.19)
N2E\NE NE

(i1) Bo = sup E,, is achieved in N..
Ne
(111) Ko = {u € N. | E,(u) = Ba} is compact.

Proof. (i) Since K is compact, there is a neighborhood N of K such that, for any ¢ > 0
there exists 6’ > 0 such that for all | — 7| < § then E,(u) — Ex(u)| < ¢, for all u € N.
Choose € > 0 such that (7.18) holds and N. C N, then (7.19) will be valid for all a in a
small neighborhood of 7.

(ii) For such «, and let u,, € N. be a maximizing sequence of E,, that is, E,(u,,) = 8. and
let v, € K, satisfy ||u, — vn]| < e.We may assume that v,, — v strongly in H'(Q) with
v € L™, and u,, — u weakly in H'(Q). Set w,, = U, — v,y + v, as the proof of Lemma 7.6,
we obtain that for € > 0 small, « in a neighborhood of m we have that

E.(wy,) = Eq(u), Eo(um) — Eo(wy,) — 0 as m — oo.

Then E,(u) = B,. Moreover, by the lower-semi continuity, we have ||[v — u|| < e. Then

lo -

We get that m € Ny, and E,, (” ”) < B,. Furthermore, since ||u|| < 1, we can get E, (”u”) <
E,(u) and |lu|| = 1. It implies that v € M, that is u € N, and f, is attained. Moreover,

U, — u strongly in H(Q).

‘H—||U—UH+1—HUH<2€

(iii) As the proof of (i), if u,, € K,, we may assume that u,, — u weakly in H'(Q), we then
get u € K,, that is K, is compact. O

Proof of Theorem 7.1: From (7.14), we have that sup F is achieved for o < m. Moreover,
Ma

since sup E(u) > [09], from Lemma 7.7 we have that for a sufficiently close to 7, then E
ueMy
has relative maximizers on M.
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7.3 The proof of Theorem 7.2

In this section, we consider critical points of functional E(u) constrained on the set M,, (which
is equivalent to consider critical points of F,(u) constrained on the set M with o = km(1+p),
where p > 0 small). We observe that this problem is equivalent to finding solutions of the
following problem

—Au+u=0 in ; (7.20)
g—;‘ = \ue?’ on 0f), '
where
Ao kA (7.21)

J: o0 u?et” faQ u?et”

In this section we shall prove the existence of solutions to Problem (7.20)-(7.21) with the
properties described in Theorem 7.2. In fact, we will construct a solution to (7.20)-(7.21) of

the form
u="U+ ¢, (7.22)

where U is the principal part while ¢ represents a lower order correction. In what follows
we shall first describe explicitly the function U(z). The definition of this function depends
on several parameters: some points £ on the boundary of {2 and some positive numbers m.
Next we find the correction ¢ so that U + ¢ solves our Problem in a certain projected sense
(see Proposition 7.8). Finally we select proper points £ and numbers m in the definition of
U to get an exact solution to Problem (7.20)-(7.21).

To define the function U, first we introduce the following limit problem
Aw =0 in R%;
g,=¢"  on OR%; (7.23)

faRi ev < o0o.

A family solutions to (7.23) is given by

2
wy (7)) = wy (71, 22) = log =12+ (m ) (7.24)

where ¢t € R and g > 0 are parameters. See [76, 99, 126]. Set

24

. 7.25
T (e L P (7.25)

w,(x) == wp ,(r) = log
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Let &, ...,& be k distinct points on the boundary and my,..., my; be k positive numbers.
We assume there exists a sufficiently small but fixed number ¢ > 0 such that

1
& — &) >0 fori# j, d<m; < 5 (7.26)

For notational convenience through out the paper we will use the notation

(&m) = (&, &yma, .o my).

For any j =1,...,k, we define ¢; to be the positive numbers given by the relation
1
2Am; <log 512 1og(2m§)> =1 (7.27)
J
Since the parameters m; satisfy assumption (7.26), it follows that limy_,oe; = 0. Define
moreover ji; to be the positive constants given by

log(2y1;) = —2log(2m3) + H(&;. &) + Y mam; ' G(&.&). (7.28)
i#]
Using once more assumption (7.26), we get that there exists two positive constants ¢ and C,

such that ¢ < p; < C, as A — 0.

We define the function U in (7.22) to be given by
=V Zm] wj(z) + Hy(x)] (7.29)

where
1

v — & — v (&5)]?

v(&;) denoting the unitary outer normal to 0€2 at the point ;, and where H; is a correction
term given as the solution of

{—AH‘—FH‘:—U]' in €

uj(x) = log (7.30)

- o, (7.31)

5. = 2ejpuzet — 52 on 0.

The maximum principle allows a precise asymptotic description of the functions H;, namely
we have that

Hj(r) = H(x,&) +0() for 0 <o <1 (7.32)

uniformly in €2, as A — 0. Recall that H is the regular part of the Green’s function, as
defined in (7.6). Therefore, the function U can be described as follows

\/_Zm] (z,&) + O(e])] (7.33)
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uniformly on compact sets of Q\ {£1,...,&}, as A — 0. On the other hand, if we consider
a region close to &;, for some j fixed, say for |z — ;| < d, with sufficiently small but fixed 0,
we can rewrite

Ulx) = \/ij (wj(x) + log 6}2 + 5 + 9(95)) , (7.34)
where 5 ¢
T8 Hj T Si
wji(x) = wy, = log ; ~, y=—, &=, 7.35
]( ) 12 ( Ej ) |y o fj o ij(é-j”g 5]’ 7 5]’ ( )
and
k
B = —log(2p)) + H(&;. &) + ) my'miG(§;.&),  0(x) = Oz = &) + D O(e5).
i#j i=1
Define on the boundary 9 the error of approximation
ou
R:=f(U) - B (7.36)

Here and in what follows f denotes the nonlinearity
f(a) = Aae™ .

The choice we made of ; in (7.28) and of ¢; in (7.27) gives that in the region |z — &;| < 0,
the error of approximation can be described as follows

R =myV/x { (1 + 23m2(w; + O(1))) M5 (1 4+ O(Auwy)) — 1} elem, (7.37)
where w; is defined in (7.35). Indeed, for x € Q2 with |z — ;| < ¢, we have that
1 _ 2
/\7§f(U) Y [mj (wj(x) + log 8;2 + Bj + 9(1_))] ek[mj(wj(x)—&-logaj 2+,3j+9(x))]

— <)‘mj(10ggi§ +5;) + Amy(w; + 0(1))>

Am3 (log 5—12_4-[3]')2 2xm? (log 5—12_+Bj)wj 2xm’? (log s%“rﬁj)@(&?)
J j e J

e : eAm?(wj—i-O(:r:))Q

Xe
— mylog 5+ ) 1+ (og % + ) s +0(1))

y ekm?(log :ljz_+ﬁj)262>\m?(log E—ljzwj)wj eumg (log éwj)a(z)e A2 (10,+0(2))?
1 3 (log 55 +8;)

= 5 (142 m2(w; + O(1))) e* 7 emiel@Amites+0@)?
m;

1
= 2—€j_1€ﬂj/2 (14 2xm? (w; + O(1))) e ?@ AT (1 4 O(N)w;)
my;
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thanks to the definition of ¢; in (7.27). On the other hand, in the same region, we have

LU D . S
Ao @[mj(wj(fﬁ)+10g5j2+5j+9(ff))}:mjgjle“FZO@f)v as A —0.

The definition of 4, in (7.28) allows to match at main order the two terms 90 and f (U) in

v
the region under consideration, since we , we easily get that
ATEFO) = my (14 20m2(w; + O(1))) e7 e M™% (1 4+ O(wy)).

These facts imply the validity of expansion (7.37). Let us now observe that a direct com-
putation shows that R(z) ~ /\25 Tewi(®) in the region |z — &;| = O(\); while, in the region
|z —&;| > § for all j, we have that |R(z)| < C\3, for some positive constant C. We thus
conclude that the error of approximation satisfies the global bound

Rl < CA2p(x),

where

ij T)XBs(e;) (T) + 1.

Here x ;) is the characteristic function on Bs(&;) ()92 and

pi(x) = {(1 + 2xm? (w; + O(1))) NI (1 + O(A\w;)) — 1} g;tet

2/\m§ J

From now on, let us write

w2
1 1 it
pi(@) = cv; (1 + —(w; + 1)> <1 +—(1+ ]w]])) i —1pete™, (7.38)
Vi i
where v; = log 5]-_2. We define the L*°—weight norm

I1hllx.00 = sup p(z)~|A(z)]. (7.39)

€N

We thus have the validity of the following key estimate for the error term R

B[00 < CA2. (7.40)
Up to this point, we have defined a function U, whose expression depends of &, ..., & points
on 0f), and depends of myq,...,my positive numbers. These points and numbers satisfy the

bounds (7.26). We next describe the problem that the function ¢ in (7.22) solves.
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Define in R = {(z1,22) : 22 > 0} the functions

205 (71, 2) = — — 5 L2 ¥ 1y 39 21j(x1, ) = —
pi o wf+ (T2 + )

2 T
x} 4 (w2 + )2

It has been shown in [27] that these functions are all the bounded solutions to the linearized
equation around w,,; (7.25) associated to Problem (7.23), that is they are the only bounded
solutions to

o

AY=0 in R%, —a—wze%w on ORZ. (7.41)

For & € 09Q, we define F; : B;(§;) — O to be a diffeomorphism, where O is an open
neighborhood of the origin in R? such that F;(Q N Bs(&;)) = RL N O, F;(0 N Bs(&;)) =
OR% N O. We can select F} so that it preserves area. Define

Zij(x) = 25 (¢ 'Fy(x)), i=0,1, j=1,... k. (7.42)

Next, let us consider a large but fixed number Ry > 0 and a nonnegative radial and smooth
cut-off function x with x(r) =1if r < Ry and x(r) =0if r > Ry + 1, 0 < x < 1. Then set

xi(z) = 5;1X (5;1F](a:)) ) (7.43)

The problem we solve is the following: given &, ...,& and myq, ..., m; satisfying the bounds
(7.26), find a function ¢ and numbers ¢;; such that

—A(U+¢)+(U+¢)=0 in Q;
k
8(%3‘@ — )\(U + ¢)€(U+¢)2 —+ \/X Z Z CinjZ'ij on 89, (744>
i=0,1 j=1

fQX]ZZ]gb:O for i:O,l, jzl,,k

Consider the norm

16]loc = sup [¢(x)].
€N

We have the following result.

Proposition 7.8. Let 6 > 0 be a small but fized number and assume points the &1,...,& €
0 and the numbers my, ..., my satisfy (7.26). Furthermore we assume that £; and p; are
given by (7.27) and (7.28). Then there exist positive numbers \g and C, such that for any
0 < A < Ao, there is a unique solution ¢ = ¢(\,&,m), ¢;; = ci;(N,§,m) to (7.44). Moreover,

Ille < CAZ,  ey| < O, (7.45)
Furthermore, function ¢ and constant ¢;; are C* with respect to (§,m), and we have
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We will sketch the proof in Section 7.4.

Assuming for the moment the validity of the statement in the above Proposition, we observe
that U + ¢ is an exact solution to Problem (7.20), if there exists a proper choice of A, of the
points §; and the parameters m;, such that

km(1+ p)

A Tl + 02057

and ¢;; =0, foralli,y, (7.47)
or equivalently

/ [IV(U + ) + (U+¢)*|de =kn(1+p) and ¢; =0, foralli,j. (7.48)
Q

In order to solve (7.48), we are in the need of understanding the asymptotic expansion, as
A= 0, of [([IV(U+)|]*+ (U+ ¢)*|de in terms of the localization of the points & and
the values of the parameters m. Next Proposition contains this result, together with the
asymptotic expansion of [, eU+9) as XA — 0, again in terms of in terms of & and m.

Proposition 7.9. Under the conditions of Proposition 7.8, Assume that €; and p; are given
by (7.27) and (7.28). Furthermore, we assume that X is a free parameter. Then, as A — 0,
we have

/Q [IV(U + ¢))* + (U + ¢)*] do = kr {1 + A fi(€,m) + X*O,(§,m) } (7.49)
where
fr(&,m) = % [2]21771 log( 2m ; H(&5,&5) ;miij(fi,fj)] . (7.50)

Moreover, as X\ — 0,

k k
/aQ eVHO = (00 + 47 Y " m?+ A1) m? {5+ /8Q Gz(m,gj)] +220,(6,m),  (7.51)
j=1 j=1

where ¢ is a positive constant. In (7.50) and (7.51) the function ©,(&, m)(x) denotes a
generic smooth function, uniformly bounded together with its deriwvatives, as X — 0, for
(&, m) satisfying (7.26). In (7.50) and (7.51), G is the Green function defined in (7.6) and
H 1its reqular part, as defined in (7.7).

Next Proposition will suggest how to solve Problem in (7.48).
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Proposition 7.10. Under the conditions of Proposition 7.8, let R be the set of points (£, m)
satisfy (7.26). then there exist pg > 0 and a subregion R’ of R such that for all 0 < p < pyg
and for all (£, m) € R', there exists a function A\ = X, &, m) such that

/ V(U + ) + (U+¢)?|de=kn(1+p) for all p>0, p— 0. (7.52)
0

Moreover, X is a smooth function of the free parameter p, of the points &1, ..., & and of the
parameters my, ..., my. Furthermore, A\ — 0 as p — 0 for points &y, ..., & and parameters
ma, ..., my belonging to R'. With this definition of X\, we have that the function ¢ and the
constants c;; are C* with respect to (£, m). We finally have that

De EU+¢)=0 = ¢;=0 foralli,j. (7.53)
See (7.12) for the definition of E.

The proofs of Proposition 7.9 and of Proposition 7.10 are postponed to Section 7.5.

Given the choice of A defined through formula (7.52), for all g > 0 small, Proposition 7.10
gives that U + ¢ is a solution to problem (7.20)-(7.21) if we can find (£, m) to be a critical
point of the function

I(e,m) == E(U + ). (7.54)

We have now all the elements to give the
Proof of Theorem 7.2: Let D be the open set such that

Let U(z) be defined as in (7.29), and ¢(z) be the solution of problem (7.44), whose existence
and properties are stated in Proposition 7.8. Proposition 7.10 gives that

u(z) = U(z) + ¢()
is a solution to problem (7.20)-(7.21) if we can find (£, m) to be a critical point of the function
Z(&,m):=EU + ¢).
From (7.52) and (7.49), we have
Afi(€,m) + NO5(E,m) = (7.55)

where
k k
2 Z m? log(2m§) - Z m?H(gj, &) — Zmiij&‘, &)

=1 j=1 i

fk(§7 m) =

o



CHAPTER 7. CRITICAL POINTS OF THE TRUDINGER-MOSER TRACE
FUNCATIONAL

In (7.55), ©,(&, m)(z) denotes a smooth function, uniformly bounded together with its deriva-
tives, as A — 0, for (¢,m) satisfying (7.26). Make the change of variables s; = m3. So we
write, with abuse of notation,

k k
-2 Z s;log(2s;) — Z s;H (&, &) — Z V5i5;GEi, &)
j=1 J=1 i#j

Fix £. Observe that the function s — fi(&, s) has a unique zero, namely there exists a unique
51(8), ..., 5(£)) € RE satisfying fx(£,5) = 0. We have the following properties:

(

(i) 5; is a C function with respect to & defined in (0Q)*;
)
1

(i13) 5; = 400 as [ — &j| — 0 for some i # j;
(iv) Define
T ={(&s) € (0 xRE : sysy...s, #0, fi(€,s) > 0}
Then (&, (1 +r)s) € M forr > 0 small.
Proof of (i). Since f(€,5) = 0, and for j fixed,

H(E;,&5) = Z 5i/5;G( 5@751)] }

2
O, (€. 5)| _. E{Qlog(253)+2—
Z#J

Then
vsfk(ga §) "5 = as1fk(€7 §)§1 + ...+ askfk(ga g)gk = % Zgj >0 (756)

Thus we get Vi fi(&, s) ‘825 # 0. The implicit function theorem implies the validity of (i).

Proof of (ii). According to the definition of 5, we know that

k
2 [5;
E Zgj 210g(253) 5]75] Gg@af]
1753

It yields that

_ [S;
210g(28j) fy,éj Ggmé]
zsﬁj
So
3 1 HE ¢
. > — 2
S; 26
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Then we get (ii).

Proof of (iii). Since G(§;,&;) — +oo if | — ;| — 0, for some i # j, if we suppose that §
is bounded, for some [, then the relation f(£,5) = 0 would provide a contradiction. This
proves (iii).

Proof of (iv). For r > 0 small, by the Taylor expansion, from (7.56) we have

fk<§7 (1 + 7’)5) = fk(£7 5) + [aslfk(£7 §>§1 +.+ askfk(£7 E)Ek] T+ 0<T)
4 SN
= ET Z S; + 0(7“) > 0. (7'57>

J=1

Making the change of variable, define s = (14r)3 with r > 0 small, we have (£, (1+7)3) € M+,

Thanks to the above properties, we conclude that relation (7.55) defines A as a function of
the free parameter p and (&, s). More precisely,

2
\ 1t ft

— — _

fk(g,(l—f—T)S) fk(§7(1+r)8>
where ©,(&,s) is a smooth function, uniformly bounded together with its derivatives, as
A — 0.

3@)\(5, 8) (758)

Taking (7.58) into (7.51), we get that
Z(€, (L +7)s)

1
" (fk@, (1+7)5)

k
= 09 +4(1+ )7 Y 5+ p— + u0,(&, ), (7.59)

where ©,(¢,s) is a smooth function, uniformly bounded together with its derivatives, as
w— 0.

We claim that, given 6 > 0, for all ; > 0 small enough, the function

k
k k Z:lgj [E+ [0 G*(2,65)]
0u(&,5,1) =100 + 47TZ§j + 4r7rZ§j +u=
j=1 j=1

ESIIS

k
Ty 5
j=1
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has a critical point in the region |§ — &| > 0 for i # j, & € 9Q, and 6/ < r < 6~ '\ /1,
k

with value [0 + 47 Y~ 5; + O(\/1t), as ¢ — 0, in the region considered. By construction,
j=1

the critical point situation is stable under proper small C' perturbation of ¢,: to be more
precise, any function v such that [|¢) — ¢, |lec + ||V — V@, llec < Cp in the region considered,
also has a critical point. This fact will conclude the proof of Theorem 7.2.

Observe that the function
k

k k Z:lgj [6+fag GQ(‘%fjﬂ
r— pu(€,5,1) =09 + 47TZ§]~ + 47“71'25]‘ + pu=

j=1 j=1

Bl

k
Ty 5
=1

has a critical point 7 given by

which is a non-degenerate mimimum, since

ésj 6+ [o0 GP(2,€))]

837.@‘“(5, g’ 7») = /’l’ k
225
=1

Inserting the value of 7 in ,, in the new variables & € (902)%, we get

(¢) = Z(& (1+7)s)
- \aQy+4wZ§j+2\/E > s [5+/8QG2(x,§j)}¢ﬁ+u@u(g,s)

k
= |8§2|+47r25j+0(\/ﬁ) as u— 0

J=1

for £ € Q= {(&1,..., &) € (0QF : & #& if i # j}.

Next we show that functional ®(&) has at least two critical points. Let Cy be a component
of 0. Let A : S* — Cy be a continuous bijective function that parametrizes Cy. Set

Q= {(&1,..., &) €CE + |& —&| > 6 fori # j}.
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The function ® is C'', bounded from below in €, and from (iii) we have

Q&) =D(&,...,&) = +oo as [§ —&)| — 0 for some ¢ # j.

Hence, since 9 is arbitrarily small, ® has an absolute minimum c¢,, in €.

On the other hand, using the Ljusternik-Schnirelmann theory, we get that ® has at least two
distinct points in Q. Let cat(Qk) be the Ljusternik-Schnirelmann category of Q relative to
Qk, which is the minimum number of closed and contractible sets in €, whose union covers
Q). We will estimate the number of critical points for ® by cat ().

Claim: cat(Qy) > 1

Indeed, by contradiction, suppose that cat(Qk) — 1. This means that € is contractible in
itself, namely there exist a point €% € Q. and a continuous function I' : [0,1] x Q, — Qk,
such that, for all £ € Q,

F(va) = §7 F(]-a g) = 60-
Define f : ST — Q4 to be the continuous function given by
~ = s mikE—l &
7€) = (MO A, . A(F)).
Let n: [0,1] x S' — S! be the well defined continuous map given by

n(t,§) = A" om o T(t, f(£)),

where 7, is the projection on the first component. The function 7 is a contraction of S! to
a point and this gives a contradiction, then claim follows.

Therefore we have that cat(€;) > 2 for any k > 1. Define

¢ = sup mf d(¢)

CeseC

where

Z={C cQ : C closed and cat(C) > 2}.

Then by Ljusternik-Schnirelmann theory we obtain that c is a critical level.

If ¢ # ¢, we conclude that ® has at least two distinct critical points in Q. If ¢ = ¢, there is
at least one set C' such that cat(C') > 2, where the function ® reaches its absolute minimum.
In this case we conclude that there are infinitely many critical points for ® in 2.

Thus we obtain that the function ® has at least two distinct critical points in €, denoted
say by &', €2 Hence, for u sufficiently small, the function Z(&,s) has two distinct points
(&h,s)) and (£2,57%) close respectively to (€', (1+7(£'))s(£)) and to (€2, (1 +7(€%))5(£2)).
This implies the existence of a solution to our Problem of the form U + ¢. Finally, let us
remark that (7.10) holds as a direct consequence of the construction of U and of the fact
that ¢ is a smaller perturbation. This ends the proof of the Theorem.
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7.4 Proof of Proposition 7.8

The proof of Proposition 7.8 is based on a fixed point argument and the invertibility property
of the following linear Problem: Given h € L>(0€2), find a function ¢ and constants c;; such
that

—Ap+¢=0 in Q;
k
L(g) =h+ X2 > cijXiZij on 052, (7.60)
i=0,1 j=1
fQXJZZ]¢:O for 7::0,17 j:].,,k?

In chapter six, we have proven the following result, see Proposition 6.3 and Lemma 6.8.

Proposition 7.11. Let 6 > 0 be a small but fized number and assume we have &y, ..., & € OS2
and my, ..., my with

1

Then there exist positive numbers Ao and C' such that, for any 0 < A < Xy and any h €
L>(09), there is a unique solution ¢ = Ty(h), and ¢;; € R to (7.60). Moreover,

[¢lloo < ClR][+00- (7.62)

Moreover, the operator T, is differentiable with respect to the variable &y, ..., & on 0S), and
my,...,my, one has the estimate

I1DTA(R)][oo < Clibllvoe,  [1DmTa()lo < Cllh]l00- (7.63)

for a given positive C, independent of \, and for all X\ small enough.

We are now in the position to prove Proposition 7.8.

Proof of Proposition 7.8 In terms of the operator T defined in Proposition 7.11, problem
(7.44) becomes

¢ =T\ (R+ N(¢)) := A(9), (7.64)
where R is defined in (7.36). For a given number v > 0, let us consider the region
= 3
Fri={0€ @) : llglle <t}
From Proposition 7.11, we get

[A(@)]lee < Cll[Rllx00 + [IN(6)[+00] -
213



CHAPTER 7. CRITICAL POINTS OF THE TRUDINGER-MOSER TRACE
FUNCATIONAL

An involved but direct computation shows that, see the proof of (6.83) and (6.84),

E 671 w;

< COAz. (7.65)

*,08)

and

() <C. (7.66)

*,000

From (7.40), (7.65) and (7.66), from the definition of N(¢) in (7.64), namely

Z 7! wJ] (7.67)

N(¢) = f(U +¢) — f(U) — f'(U)

it follows that
JA@) e < € (A3 +I8l1% + Alll )

We then get that A(F,) C F, for a sufficiently large but fixed v and all small \. Moreover,
for any ¢1, ¢ € F,, one has

IN(o1) = N@)lloon < € | (magloile ) +4] 161~ Gl
In fact, using directly (7.67),
N(61) = N(¢x)
= f(U+é1) = F(U+¢2) = f(U) (1 —

25 1 wj] — ¢2)
Zs‘l ] ~ )
25 lew]] (91 — ¢2)

— /Ol(if(U—I—qzﬁg—i-t(% qbg)))dt—f( ) (o1 —

_ /01<f’(0+¢2+t(¢1—¢2))—f( )) dt (61 -

Thus, for a certain ¢t* € (0,1), and s € (0,1)
[N (1) = N(¢o)]
k
C /(U + s+ (¢ — ¢2)) — f'(U) ( Z% e’ )] [¢1 — d2lloo

< C[If"(0 + 562+ (61— 62)] (I91l1(0) + 1 021lo)
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K
=Y et ]| o1 — éalloo-
j=1

Thanks to (7.65), (7.66) and the fact that ||¢1]/eo, ||®2]lcc — 0 as A — 0, we conclude that

IN(91) = N(@2)lxo0 < Cllldrllec + [IP2llc + Al lf1 = ¢2lco-

Then we have
|A(61) ~ A(@2)lse < CIIN(é1) = N(@2)]l-00 < C [mx [6illo0 + A] 61 — dollec.

Thus the operator A has a small Lipschitz constant in F, for all small A, and therefore a
unique fixed point of A exists in this region.

We shall next analyze the differentiability of the map (£, m) = (&1, ..., &, my, ..., my) — ¢.
Assume for instance that the partial derivative J¢ ¢ exists, for s =1,...,k, [ = 1,2. Since
¢ =Ty (N(¢) + R), formally we have that

Oe, @ = (0, 1) (N(9) + R) + T (0¢, N(¢) + 9¢,, R) -
From (7.63), we have
10e,Ts (N(8) + R) o < C|IN(¢) + Rlugo < CAZ.

On the other hand,

0N (@) = [f(U+0)~fU)~f(0)0,U + 0, (az” Z e5'e] )

(U +¢) = f/(U)]0e, 6 + ( Ze tei] ) Og,1 -

Then,
106, N (9)ll+.00 < C {1915 + M Sl + [0lloc/0e,dlloc + M|, oo } -

Since ||0e,, R||s.00 < A%, Proposition 7.11 guarantees that
3
10, Olloc < CA2

for all s,l. Analogous computation holds true if we differentiate with respect to m;. Then,
the regularity of the map (£, m) — ¢ can be proved by standard arguments involving the
implicit function theorem and the fixed point representation (7.64). This concludes proof of
the Proposition.
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7.5 Proofs of Proposition 7.9 and of Proposition 7.10

7.5.1 Proof of Proposition 7.9

Let us write

U(z) = ZUJ‘(Jf)a with Uj(x) = Vamj[u;(z) + H;()]

where u; and H; are given by (7.30) and (7.31). We observe that U; satisfies

—AUj(x) + U;(z) =0 in €
_8lgy(z) = Qﬁmjgj,uje“j(m) on 0.

We have

(IV(U+ )" + (U +¢)*]

S—S—

Q

For 1,, we have

k
I, = Z/Q (|v(]j|2 + Uf) + Z/Q (VUNU; + UUj) =141 + ILoo.
j=1 i#£]

Multiplying (7.68) by U; and integrating on €2, by (7.32) we find

k

k
I, = ZZﬁmjsjuj/a @y, (2) :ZZAmisjuj/a e (uj; + Hj)
Q , Q
j=1

j=1

1

(VU +U?) + / [2(VUV+U®) + (|V|* + ¢°)] := I, + I,

(7.68)

(7.69)

(7.70)

k
= 2Am>2 Ejl; (1 H(.£) + O )
; " /39 @& — eGP\ Tl — & — eur(E)]? +H(w, &)+ 0(5)

k ) )
_ 2 o N ,
— ;%mj/a y— ()] {log oy — (0) + H(¢5,€5) 210g(5]1u])_|-0(5])}

Qe s
E]}L]

where (2 2;5] Using the following facts
I

Eikg

1
[
o

SRETIOL

1 1
log = —2mlog2+ O(e9),
fo oo S = )
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and the definition of ¢; given in (7.27), we obtain

k
I,, = Z 2)\mj2» [—27r log2 + mH (&, &) — 2mlog(e ) + O(E‘J’)}

= k:7r+27r)\2m H(&;,&5) — 2log(2m?) — 2log(2u;) + O(e9)] . (7.71)

7=1

Multiplying (7.68) by U; and integrating on 2, we find

he = 2 /m 2V Am e e U () = 27y Amimyep; /Q e (u; + H;)

i#] i 0
1 1
= 2 )\mim~/ —{log —l—HiE'/vb'y—l—é-}
; ’ 0% 1 ly —v(0)[? ’5;’ — & T Ejpy — eiptiv (&) 2 ( 7 J>
1 1
= 271')\2771 m; { (&,&)+ 0O (5, log — +¢;log — ) + O(ef + aj)} . (7.72)
i#£] Ei €

Thus from (7.70), (7.71), (7.72) and the definition of p; given in (7.28) we get

/(\VU|2+U2)—k7r{1+>\fk &,m Zsjlog @A(g, )} (7.73)

where fi is the function defined in (7.50) and ©,(&,m) is a smooth function, uniformly
bounded as A — 0, in the region for (£, m) satisfying (7.26). This is a estimate in the
C%—sense. For C'—closeness, the derivatives in ¢ and in m, by the same argument of
C°—estimate, we have

Dg (/Q (|VUY|2 + UQ)) = kj?T/\Df (fk(f,m)) + ;8]' 10g 59)\(577”)7 (774)

J

k
2 2 1
D, </Q (\VUP+U )) = knAD,, (fi(€,m)) + ;ej log g—j@A(ﬁ,m), (7.75)

where ©(&,m) is uniformly bounded, as A — 0, in the region for (£, m) satisfying (7.26).
From the choice of ¢; in (7.27), we note that ¢; loggij = o(\?).

On the other hand, for I, given in (7.69). We have

I, <2

JACCRT ¢>¢]‘

Multiplying (7.44) by ¢ and integrating on 2, we find

/ V(U +@)Vé + (U + d)d] = A / (U + §)eV+oP g,
Q o0
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By (7.45) we have ||¢| < CA? for some fixed constant C' independent of A, and using a
Taylor expansion, we find
/ UeV*
G)
Since, for some § > 0 small, we write

/\/ <U+¢)6(U+¢)2gz5§ >\||¢||oo‘/ (U+¢)€(U+¢)2’ <O

N N
fue = Z [ v [ vt
o0

N

+ O\

8QmB d k
(&:0vE7) o0\ U B(&0y5)
i
where
UeV’ = / UeV? + / UeV?
IONB(;,0,/55) 00NB(E;,0¢;|loge;) O0N(B(&5,6/E)\B(&;,0¢;|loge;l))

= Ic,l + ]c,2-

From (7.27) and (7.34), for 2 close to point &;, we have U = v/ Am; (wj + 2/\m2 +O(1 )) and
eV” = 2m§5j_16“’f(1 + O())), where w; is defined in (7.35). Hence,
1
3.1 w
]c,l = 2\/ij8j / <U)j + m + O(l)> (& (1 + O()\))

J
O0QNB(&;,0¢;]log g5])

27" 1 2
= 2Vom? / log : + +0Q1) | —— (1 +0N)).
o y—vOF " 232 y— (O
2= (o, 215
Moreover,
_1
de, 2
1 logir
Io] < CVA —e 5 rdr
r
0] logej|
R2+1i ) R2+1i
ot At
= CVA / e idt <OV etdt = O(A2).
RH»IOg'yJZ R1+logfyj2.

k
For 4, since in the region 9Q\ |J B(;, 6,/€;), the function U(x) satisfies U (x) = \/X[Ele m;G(z, &)+
j=1

o(1)], with o(1) — 0 as A — 0, we then have

I, = Uel®

/89\ .61 B(fj,(g1 /aj)
j=
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_ fzmj/ (5.€,) 1+>\<ij xm) (1+0(1))

- mej/ (.€)(1 + o(1).

Thanks to above facts, we obtain
= X’0,(m, &) (7.76)

with ©,(m,§) is a function, uniformly bounded, in the region for (£, m) satisfying (7.26), as
A — 0. Therefore, from (7.69), (7.73) and (7.76) we obtain that estimate (7.49) holds in the

CY sense.

Next let us show the C'—closeness in estimate (7.49). From (7.44) and (7.46) we have
De([(VU+ 0P+ W+67)) = 2 [ [V + VU +09) + U+ (@ + 0c0)

B o(U + ¢) B ou

_ /m S r D0 + o) =2 /aQ O + N0, (@)

where ©,(m,¢) is a function, uniformly bounded, in the region for (£, m) satisfying (7.26),
as A — 0, here we use the facts ||0¢¢]|c0 < CAz and faQ < CV/A. On the other hand, we
note that —AU + U = 0 in €2, hence

D: (/Q (|VU|2+U2)) = 2/9[VUva§U+Ua§U]:

From (7.74), (7.77) and (7.78), we obtain the C'—closeness in estimate (7.49)

ou

—0U. 778
o v (7.78)

Dy </Q (IV(U+ ) + (U + ¢)2)> = kmADe (fr(€,m)) + X2Ox(€,m), (7.79)

and by the same argument, we have

Do ([ (VW + 9P + U+ 7)) = krAD (le ) + ¥Or(ecm), (730

where ©,(m, §) is a function, uniformly bounded, in the region for (£, m) satisfying (7.26),
as A — 0.

Finally, let us evaluate [, eV +¢)* . By a Taylor expansion, we find

/ U+’ — / eV’ + 220, (m, §). (7.81)
o0 o0
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We write

k
/ Z / V7@ 4 / FERQREY Sy 9% (7.82)
J=1 dQNB(€;,6,/%5)

02\ U B(;6v2)
U

/ eUQ(I) = / €U2(m) + / 6U2(a:) =Iey + Leo.

90NB(&;,6,/5) 9QNB(&;,0¢;]loge;]) ION(B(&5,0/5)\B(&;,0¢]log ;1))

Since

From (7.27), (7.28), (7.34) and definition of 3;, we have

B,
I, = / U2 (@) 5;167] / i (@) A3 (w3 +2w;60(2)+0° ()]
9QNB(&;,0¢;]loge;]) OQNB(&;,0e|loge;|)
2
= 2m? ——(1+0) =4 1+0(\ 7.83
m] aﬂ—gij(075\1ogsj|) ’Z/—I/(O)P( + ( )) Wm ( + ( )) ( )
EjHg Mg

with ©,(m, ) a function, uniformly bounded, in the region for (§,m) satisfying (7.26), as
A — 0. Moreover,

2 2
Rt a2 s
|I.2] < C’/ —e T ordr=C e dt<C e tdt = O(N). (7.84)
0] logej| 72 R1+log'yjz. R1+log732

Furthermore, we have

k
=/ = 142 MG, 6) | (1+ o(1))
O\ VU B(&;,6,/25) 8ﬂ\jL:JlB(§j,6ﬁ) j=1
= |6Q|+>\Zm/ G*(x,&;) + X20x(m, &) (7.85)

with |0Q] denotes the measure of domain 0€2, and ©,(m, ¢) is a function, uniformly bounded,
in the region for (¢, m) satisfying (7.26), as A — 0. Then from (7.81)-(7.85) we get that
estimate (7.51) hold true in C°—sense.

On the other hand, by a Taylor expansion and the facts [|¢]|cc < CAZ and Joq U < CV\, we
have

Dy (/ e(U+¢)2) = 2/ eUQUagU—I— N0y (m, &) = D (/ eUQ) + 220, (m, §),
o9 o9 o9
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and

U+¢)? | _ U? 2
Dm(/me >_Dm</me)+x@x<m,£>

with ©,(m,§) is a function, uniformly bounded, in the region for (£, m) satisfying (7.26), as
A — 0. Then we obtain that the C'—closeness in (7.51) by the same way as in the proof of
C'—closeness in (7.49).

7.5.2 Proof of Proposition 7.10

Define the set
R ={(&,m) € R: fy(&,m) # 0},

From Proposition 7.9, replacing expansion (7.49) into (7.52), we see that (7.52) gives
Afe(&,m) + XN205(6,m) = pu. (7.86)

In R, (7.86) defines A as a function of u,& and m, which is smooth in (£, m) in the region
R’. Furthermore, as u — 0,

2

o [
A e T REm o™

with ©,(m, &) is a function, uniformly bounded with its derivatives, as y — 0.

Assume now (7.52), we shall prove (7.53). Let us denote 0 by the partial derivative with
respect to m; for any j = 1,..., k, or the partial derivative with respect to §;; for j =1,..., k.
By a direct computation we have

s+ aow o) = 30 ( [(V0+aP+ o) -F0 ([ aror),

From (7.52) we have that 0 ([,(|V(U + ¢)|* + (U + ¢)?)) = 0. Thus 9 (faQ e(U+¢)2> =0 if
and only if J'(U + ¢) [0(U + ¢)] = 0. Let us now rewrite

L
VA

for some [ =1,... k, with

(U+¢)(&m)(x) = muy (x_ﬁl)Jr 1

u(y) =w, )+ (O(ay+&—&|)+0(e))  for |yl < 2

k
Jj=

1
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Since U + ¢ is the solution of (7.44), then v; satisfies
—Av, + €7 (vl + ﬁ) =0 in €;

%vl _ (1 —|—2)\m Ul) vy )\mlvl _ ml—lgl Z Z CUE X <M> Zij (%@) on GQl’
1=0,1 j=

R-¢
B

where () = . For any [, we define

1 1 \?
Il(Ul) = 5/Q \Vvl\2+5l2( 2)\m2) ] _/BQ evleAm?vzz
1 l 1

We observe that
J(U + ¢) [0(U + ¢)] = Ami 1 (v)[0vi].

and

Amlzll' (Ul) [81][]

F _ £ F _ ¢
— e Z Z (/ gj—lx( ey + & fg)) - ( ilay +& SJ)) o, dy) -
i=0,1 j=1 /% < <
Now, fix i and j, we compute the coefficient in front of ¢;;, we choose | = j, dv; = D, vi(y),
and obtain
_ Fi(ery+& — & Fi(ey +& —&;
/ el ( iey + & 5;)) - ( ey + & 53)) Do unly) dy
o, €j €j
k
= / e7'X () 2ij (y) Do, [wuj +) - (O(esyl) + O(e ))] dy
o =
Ol
o [ ) dyl1+ o),
om OR%
Thus we concludes that for any s =1,2,---  k, we have

J(U +0) 0. (U + 9)] = Amlslz o | o) duc(1-+o(1)

Similarly, we get that for all s,

J (U + ¢) [06, (U + )]

Z (ggsjl /aRi Zgj(y)dy) Coj + </6Ri Zi(y)dy) Cis

Jj=1

= )\mlel (1 + O<1))

222



CHAPTER 7. CRITICAL POINTS OF THE TRUDINGER-MOSER TRACE
FUNCATIONAL

Thus, we can conclude that J'(U + ¢) [0(U + ¢)] = 0, that is D, E(U + ¢) = 0 then we
have the following system

k
[ gu] (I+0(1) =0, s=12---k (7.87)

(14+0(1)) =0, foralls, (7.88)

k
O
A ]Zl @C()j + Cis

for some fixed constant A, with o(1) small in the sense of the L™ norm as A — 0. Then
(7.53) follows if we show that the matrix gﬂ of dimension k x k is invertible in the region
for (£, m) satisfying (7.26). Indeed, this fact implies unique solvability of (8.99). Inserting
this in (8.100) we get unique solvability of (8.100).

Consider the definition of the s, in terms of m/s and points §; given in (7.26). These relations
correspond to the gradient D, F'(m, &) of the function F'(m, &) defined as follows

k

F(m,§&) = % Zm? [—210g (2mj) log(2p;) + 2+ H( fj,fj Zmzmj (&, &5)-

J=1 ]

We set s; = mjz-, then the above function can be written as follows

k
F(s,§) = % > i [=2log(2s;) — log(2p) + 2+ H(&, 6] + Y /55, G(6, )
j=1 i#£]

This function is strictly convex function of the parameters s;, for parameters s; uniformly

bounded and uniformly bounded away from 0 and for points §; in € uniformly far away from

each other and from the boundary. For this reason, the matrix ( 8(2_25; -) is invertible in the
i05j

range of parameters and points we are considering. Thus, by the implicit function theorem,
relation (7.28) defines a diffeomorphism between j; and m;. This fact gives the invertibility

of (a“ ). Thus we finish the proof of Proposition 7.10.
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Chapter 8

Multipeak solutions for
asymptotically critical elliptic
equations on Riemannian manifold

8.1 Introduction

Let (M, g) be a smooth compact Riemannian manifold of dimension n > 3, where g denotes
the metric tensor. We are interested in the following asymptotically critical elliptic equation

Aju+a(zu=uv*"1°  u>0 in M, (8.1)

where A, = —div,(V) is the Laplace-Beltrami operator on M, a(z) is a C' function on M,
2% = % denotes the Sobolev critical exponent, € is a small real parameter such that e — 0.
The equation with € > 0 is subcritical, and the equation with € < 0 is supercritical.

Recently, nonlinear elliptic equations on compact Riemannian manifold have been brought
much attention. Consider the following problem

eEAju+u=|uf?u in M, (8.2)

where (M, g) is a compact, connected, Riemannian manifold of class C* with Riemannian
metric g, dimM =n > 3, 2 < p < 2" and ¢ is a positive parameter. In [10], the authors
proved that the problem (8.2) has a mountain pass solution u. which exhibits a spike layer.

!The main result of this chapter was published in Nonlinear Analysis: Theory, Methods and Applica-
tions,74(3)(2011), 859-881.
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In particular, they proved that the maximum point of u. converges to a maximum point
of the scalar curvature Scal, as € goes to zero. Multiple solutions were obtained in [12] for
the problem (8.2), the authors showed that multiplicity of solutions to (8.2) depends on the
topological properties of the manifold M. More precisely, they showed that problem (8.2) has
at least cat(M)+ 1 nontrivial solutions provided ¢ is small enough. Here cat(M) denotes the
Lusternik-Schnirelmann category of M. While for zero mass case, similar result was obtained
in [117]. And in [65] the author constructed an interesting example of two manifolds having
the same topology, for which the number of solutions to the problem (8.2) is different.

In [87] the authors showed that for any stable critical point of the scalar curvature it is
possible to construct a single peak solution, whose peak approaches such a point as € goes
to zero. In [26] the authors proved that for any fixed positive integer k, problem (8.2) has a
k—peak solution, whose peaks collapse, as € goes to zero, to an isolated local minimum point
of the scalar curvature. Recently in [89] the authors proved that the existence of positive or
sign changing multi-peak solutions of (8.2), whose both positive and negative peaks approach
different stable critical points of the scalar curvature as € goes to zero.

The asymptotically critical case on Riemannian manifold in [90] the authors proved problem
(8.1) exists blowing-up families of positive solutions provide the graph of a(z) is distinct at
some point from the graph of 4&—__21)Scalg.

Ifa = %Scalg, problem (8.9) is the intensively studied Yamabe problem
n — 2 2*_1_5 . .
Agu + mScalgu =u in M «>0 in M, (8.3)

is just the so called prescribed scalar curvature problem with ¢ = 0. The existence of
a conformal metric with constant scalar curvature on compact Riemannian manifolds was
studied by Yamabe [116], Trudinger [115], Aubin [8] and Schoen [108]. If u is a solution, then
% is the scalar curvature of the conformal metric g = wie g. On the compact manifold
(M, g), the coercivity of the operator A, + a is a necessary condition for the existence of
a solution to problem (8.3). In [43] the author consider (8.1) with £ > 0, for any smooth,
compact Riemannian manifold of dimensional n > 3 and any smooth function a on M such

that Ay + a is coercive and a(§) < 4(’;—’_12)8(:&19(5), then (8.1) exists a solution.

In order to state our main result, it is useful to recall some definitions and results. First, Let
us introduce the definition of C' stable critical set.

Definition 8.1. ([69]) Let f € CY(M,R), for any given integer k > 2, set & = (&1,&y,-++ , &),
let C1,Cy,--- ,Cy C M be k mutually disjoint closed subsets of critical points of f, we say
k

that (Cy,Ca,--- ,Cy) C M* is a C! stable critical set of function F(€) = Y f(&), if for
i=1
any o > 0 there exists v > 0 such that if ® € CLY(M* R) with

max __ ([F(€) — (&) + [V F(€) — V42(8)]) <,

dg(f],C])SO’,lS]Sk
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then ® has at least one critical point € in M* with d, (&;,C;) < o.

Remark 8.2. ([69]) (Cy,Cq, -+ ,Cy) C M* is a C* stable critical set of function F if one
of the following condition is satisfied:

(i) Each C; is a strict local minimum set of f.

(11) Each C; is a strict local maximum set of f.

(iii) Each C; = ({€9}) is an isolated critical point of f with deg (V,f, By(£),0),0) # 0
for some o > 0, where deg denotes the Brouwer degree.

Next, we introduce the following equation which correspond to limiting equation to problem
(8.1).

AU =U*"" in R (8.4)

where A = —div(V) is the Laplace-Beltrami operator associated with the Euclidean metric.
It is known that [8, 115] the functions A®~/2U(\~!2) satisfy equation (8.4), where

(n—2)/2
U(z) = U(J2]) = (M> | (8.5)

1+ 2|2

Let us define a smooth cut-off function y, satisfies

1 if ze B(0,%);
xr(z) =4 €(0,1) if zeB(0,7)\B(0,5): (8.6)
0 if zeR™\B(0,r),

and |V, (2)] < 2, |V?x,(2)] < %. For any point £ in M and for any positive real number
A, we define the function W) on M by

. Xr (exp_l(gp)) /\Q_TnU (A*lexp—l(x)) i re Bg(§7 7“);
el { 0 5 ‘ otherwise. (8.7)

We assume in this chapter that the operator A, + a is coercive, we can provide the Hilbert
space H, gl (M) with the inner product

(u,v), :/ ((Vu, V), + a(x)uv) dpg,
M
which induces the norm

Jull= [ (Vg + ate)e?) du
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Let

(&) = al(§) — ———Scaly(§). (8.8)

In this chapter we construct a family of solutions of equation (8.1), whose peaks approach
different stable critical points of ¢(&) with & small enough, which blow-up and concentrate
at some points in M, in the sense of the following definition.

Definition 8.3. For k > 2 be a positive integer, let u. be a family of solution of (8.1),
we say that u. blow-up and concentrates at point £ = (£9,--- &%) € MP¥ if there exist

&= (&, &) € MFand (Mi(e), -+, () € (RY)® with Aj(e) > 0 such that
5§—>§?, Ni(e) >0 as e—0 for j=1,2,--- k.
and

—0 as e—0.

k
us = Y Wi 0
j=1

a

Our main result is the following.

Theorem 8.4. Let (M, g) be a smooth compact Riemannian manifold of dimension n > 6,
let a(z) be a C' positive function on M such that the operator A, + a is coercive, and for
any given integer k > 2, set €0 = (&9, £Y), let 5? be an isolated critical point of p(&;) with
deg(V i, By( ?,Q),O) # 0 for some o >0 and j=1,--- , k, we have

(i) If 9(£)) > 0 and € is small enough, there exists a family of solutions of the subcritical
problem, which blow-up and concentrates at V.

(i) If gp(f?) < 0 and € is small enough, there exists a family of solutions of the supercritical
problem, which blow-up and concentrates at £°.

When M is a flat domain of R", problems like (8.1) have been widely investigated. In the
bounded domain, with the Neumann boundary condition, the following problem

~Au+pu=u"" u>0 in Q % =0 on 09, (8.9)

arises in several branches of the applied sciences. For example, it can be viewed as a steady-
state equation for the shadow system of the Gierer-Meinhardt system in biological pattern
formation [96] or of parabolic equations in chemotaxis, such as Keller-Segel model [81]. When
q is subcritical, that is ¢ < Z—f;, Lin, Ni, and Takagi in [81] proved that the only solution, for
small p, is the constant one, whereas nonconstant solutions appear for large u, the solution
blow up at one or several points as u goes to infinity. In [97, 98], the authors proved that the
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least energy solution blows up at a boundary point which maximizes the mean curvature of
the boundary. Higher energy solutions exist which blow up at one or several points, located
on the boundary [57, 59], and in the interior of the domain [56]. In the critical case, as in the
subcritical case the least energy solution blows up, as p goes to infinity, at a unique point
which maximizes the mean curvature of the boundary [98]. The higher energy solutions have
also been exhibited, blow up at one [118] or several points [119, 120]. In the asymptotically
critical case, in [105, 106], the authors considered the problem (8.9) for fixed u, when the
exponent ¢ is close to the critical one, i.e. ¢ = % + ¢ and ¢ is a small nonzero number,
they proved that a single interior or boundary peak solution exist for finite u, provided that
q is close enough to the critical exponent. In super-critical case, del Pino-Musso-Pistoia
in [38] proved that the existence of solutions with blow-up points located on the boundary
and determined by the mean curvature of 0€, see also [34, 35, 37]. In the unbounded
case, Micheletti-Pistoia in [86] constructed a family of positive solutions for both the slightly
subcritical and slightly supercritical equation

~Au+V(z)u=n(n—2)(u")* 1= in R

with e is small, the solutions blow-up and concentrate at a single point as € goes to 0 under
certain conditions on the potential V.

This chapter is organized as follows. In Section 2, we introduce some framework and pre-
liminary results. The proof of the main result is given in Section 3. Section 4 is devoted to
perform the finite dimensional reduction. Section 5 contains the asymptotic expansion of the
reduced energy. Some technical estimates are given in Section 6.

8.2 The framework and preliminary results

Let M be a compact Riemannian manifold of class C*. On the tangent bundle of M it is
defined the exponential map exp : T’M — M which has the following properties:

(1) exp is of class C*;

(ii) there exists a constant > 0 such that expg}B(Om) : B(0,7) — By(&,r) is a diffeomorphism
for all £ € M.

where B(0,r) denotes the ball in R” centered at 0 with radius r and B, (&, r) denotes the ball
in M centered at £ with radius r with respect to the distance induced by the metric g.

Fix such an r in this paper with r < i,/2, where i, denotes the injectivity radius of (M, g).
Let € be the atlas on M whose charts are given by the exponential map and P = {t¢, }oee
be a partition of unity subordinate to the atlas €. For u € Hg1 (M), we have

/ Vol duy =3 [ @)V ul? du,,
M wee YW
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where dug, = +/det g dz denotes the volume form on M associated to the metric g. Moreover,
if  has support inside one chart w = B,(, ), then

" Ou(exp.(z)) Ou(exp,(z 1
[ vt dny = [ (O)(ngb@ CRe)) e )))|gg<z>|zdz, (810

a,b=1

where ge denotes the Riemannian metric reading in B(0, ) through the normal coordinates
defined by the exponential map exp; at £. We denote |g¢(z)| := det(ge(2)) and (g¢°)(2) is
the inverse matrix of g¢(z). In particular, it holds

9¢%(0) = ba, 9¢(0) = Id, (8.11)
where 04, is the Kronecker symbol and

aggb
0z,

(0)=0 for any a,b,c. (8.12)

Since M is compact, there are two strictly positive constants C' and C such that
vEEM, VueTM, Ol < ge(v,0) <Clof?.

Hence, we have )
VEEM, C"<lg|<Cm

Let L? be the Banach space L?(M) with the norm

1/q
il = ([ 1ot )
M

It is clear that the embedding i : HJ(M) < L* (M) is a continuous map. We let i* :
LA/ (M) — H}(M) be the adjoint operator of the embedding 7, the embedding i* is a
continuous map such that for any w in L*/"*2 (M), the function u = i*(w) in H}(M) is

the unique solution of the equation Aju+au = w in M. By the continuity of the embedding
H}(M) into L* (M), we have

7" (W) la < Clwlan(nr2) (8.13)
for some positive constant C' independent of w.

In order to study the supercritical, by the standard elliptic estimates (see [55]), given a real
number s > 2n/(n — 2), that is ns/(n + 2s) > 2n/(n + 2), for any w in L*/("+25)( M), the
function i*(w) belongs to L*(M) and satisfies

|Z*(w)‘s < O‘wlns/(n+2$) (814)
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for some positive constant C' independent of w. For ¢ small, we set

{2*—%5 if e<0;
S. 1=

2" if >0,

and set H. = Hj(M) N L% (M) be the Banach space provided with the norm

[ullas. = llulla + [u

Sg

If £ > 0, the subcritical case, the space H. is the Sobolev space H, (M), and the norm || -|[q,s.

is equivalent to the norm || - ||,. And we can compute that there holds
nse | 55— if <0;
n+2s. { n241:2 it >0, (8.15)
and by (8.13) (or (8.14) in the supercritical case), we can write problem (8.1) as
u=i(f(w), uweH., (8.16)
where f.(u) = v¥ 77 and u; = max{u, 0}.
It is known that [13] every solution of the linear equation
* 2%—2 1,2 mn
Av=(2"-1)U" v, veDy (R") (8.17)
is a linear combination of the functions
d (/\(27n)/2U(>\71Z)> 1 no2 n+2 |Z|2 -1
Vi(z) = ‘ e (D b i e B 8.18
O(Z) dA =1 2” 4 (n ) * (1 + |Z|2)n/2 ( )
and
oU n-2 nt2 Zi .
Vi(z) = —OZi(z) =nit(n—2)1 A1 for 1=1,2,--- ,n. (8.19)
Let us define on M the functions
-1 2—n 1 -1 .
; A2V (M lexp, H(x)) if @ € By(&,r);
Zi (o) = X (expg (@) A, ¢ o(&7); 8.20
a() { 0 otherwise, (8:20)

fori =0,1,2,---,n. Weset A.(d) = (A, A.--+, \) € (RT)F, d = (di,dy, -+ ,di) € (RT)*
with )

)‘j Y/ |€|dj7 n < dj < 57 (821>
for fixed small > 0, and we denote & = (£1,&, -+, &) € M. For p > 0, we define

0,, = {(Ae(c?),f) e RV x M* © dy(&,6)>p>2r forj, =12k, j# z}(szz)
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KAE(J),g:Span{Zg\j,fj : i:071727”' » TV ]: 1727”' 7k}7

KJ‘Ed_E:{gbeHa: <¢’Z§\j,§j>a:0’ Vl:0,1,2’7n, j:172,7k3}

We will look for a solution to (8.16), or equivalently to (8.1), of the form

ue =Vy g+ beqe with Vi ge=> Wi (8.23)
j=1

for (A.(d), &) € O,,, where the rest term ¢. g belongs to the space K DF and the functions

Wy, ¢; are defined in (8.7) with 7 < p/2, so that W), ¢, and W), ¢ have disjoint supports if
J#L

Let Iy gz He = Ky (g and HA @E " He — Ki @DE be the orthogonal projections. In
order to solve problem (8.16) we will solve the system
0 e {Vaae+ o1 [f- (Ve +0)]} =0 (8.24)
Ha e {VA ET o1 [f (VAE g+¢>]} 0. (8.25)

8.3 The existence result

We first give the result whose proof is postponed until Section 4 to solve equation (8.24).

Proposition 8.5. If n > 6, for any n,p > 0, (A(d), &) € O,,, if € is small enough,
there exists a unique (bsd& = ¢(e,d, &) which solves equation (8.24), which is continuously

differential with respect to € and d, moreover,

In|e| | if n=6 and ¢ > 0;
s < ,
||¢e,d,£|| Se = { le| |In|e]| | otherwise,

2/3

(8.26)

where C' is a positive constant.

We introduce the functional J. : H; (M) — R defined by

1 1 1 .
5 [ Vol duy 5 [ el g - [0 g,
2 2 > —¢ J\
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It is well known that any critical point of J. is solution to problem (8.1). We also define the
functional J, : (RT)* x M* — R by

J.(d,€) = (VA (@ET - d§> (8.27)
where V) 5z is as (8.23) and ¢, 7z is given by Proposition 8.5.

The next result, whose proof is postponed until Section 5, allows to solve equation (8.25), by
reducing the problem to a finite dimensional one. We denote K, the sharp constant for the
embedding of DV?(R™) into L?" (R"), that is, K,, = , /W with w,, is the volume of the

unite n—sphere.

Proposition 8.6. (i) For ¢ small, if (d,€) is a critical point of the functional J., then
Vi@t P.ag is a solution of (8.16), or equivalently of problem (8.1).

(i) If n > 6, for (A(d),&) € O,,, there holds

k k 1 -
JE(VAE(J),E) = EKgn — EK;nOén&’f + ﬁKn_n\Ijk(d, f) + O(E), (828)

as € — 0, Ct—uniformly with respect to & in M* and to d in compact subsets of (RT)%, where

% 4(n-2)/ _
ap = 273 (n — 2)22n /+ i : Pn(ltt) g™ 4n2)2 (1 — nlny/n(n— 2))(&29)
0

W, 1+1¢)n

k
\Ilk(Ja g) = Z [—cieIn (|e]d;) + cadj|e|(&5)] (8.30)
j=1
with ¢; = ("_82)2, Co = (712_(273—(_71114)-

(iii) If n > 6, for (A.(d),€) € O, ,, there holds

Jo(d,€) = (Vi@ g + Pear) = Je(Viiiaye) + ole)

as € — 0, Ct uniformly with respect to & € M* and to d in compact subsets of (RT)*.

Proof of Theorem 8.4:
(i) We first prove part (i) of Theorem 8.4.

We define the functional .J : (RT)* x M* — R by

k

J(d,§) = fd;&), with  f(d;,&) = —ciInd; + cadjip(&;). (8.31)

J=1
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Since £ be an isolated critical point of ¢(&;) with p(&)) > 0 for e > 0, and set dj = ety we
have dj > 0 and (dj,£7) is an isolated critical point of f(dj,§;). Since deg(Vyp, By(&7, 0),0) #
0 for some p > 0, then deg(V,f, B,( ?, 0),0) # 0, by the continuity of the Brouwer degree
via homotopy considering the function H : [0, 1] x (R*)F x M* — R¥*("*+1) defined by

8J(d.€) (aﬂdl,sl(yl))) o <af<d1,sl<y1>)>
ad; oyl oy,
_ _ ly=0 ly=0
H(TJ da 5) = T . . . .
8J(d.€) <8f(dk,sk(yk))> o (af(dk,fk(yk))>
ody, oyr oyk
1 |y:0 |y:0
O, 1 (e} 1
dy — d° (3(@85;%@ >>> (aw;;}fy >>)
|y:0 ‘yZO
+(1—17) : : .. :
o k 0(po k
dy — d° (8(w8§;k(y ))) (d(«pasgéy )))
1 |y:0 ‘y:O

We get that (d°,£°) is an isolated critical point of J(d, &), where d® = (d9,dY,--- ,d?), €0 =
(f?aég? 752)7 such that 5
deg(vg‘]7 Bg( ;‘)7 Q)7 O) 7é Oa

thus by Remark 8.2, we have that (d°,€°) is a C' stable critical set of J(d,£). By Propo-
sition 3.2, we have H@g (%je — j)‘ + )85- (%js — j)‘ -0 for 57=1,2,--- ,k,] ase — 0,
uniformly with respect to ¢ in M* and to d in compact subsets of (R*)*. By the proper-
ties of the Brouwer degree, it follows that there exists a family of critical points (d¢,&¢) of
J. converging to (d°,&%) as € — 0. Then, from Proposition 8.6, we get that the function
u: = V) (@) & + e e & 15 a solution of equation (8.16), and it is a solution of problem (8.1)
for € small enough. Moreover, by Definition 8.3, We get that the u’s blow up at £° as ¢ — 0.

(ii) For supercritical case when ¢ < 0, we introduce the function f on R* x M by f(d;,&;) =
—c1Ind; — cadjp(€;) replace in (8.31), and then we proceed in a similar way as in proof of

part (i).

8.4 The finite dimensional reduction

This section is devoted to the proof of Proposition 8.5. Let us introduce the linear operator

. i i
L gg:H:-N KAE(J),E — KAE(J),E defined by

L&J’g(gb) = Ht@z {¢ —* [fé(VAE(g)yg)Qs} } .

This operator is well defined by using (8.13) and (8.14). Therefore equation (8.24) is equiv-
alent to

L.ge(¢) = N_ge(0) + R_z¢ (8.32)
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where
N.ag@) =105 g o {0 [ Vhwe + ) = £0h@d — LVa@eo] . (839)

and

R ¢ = HXE(J),E {Z* (fe(VAE(J),E)> - VAE(J),E} . (8.34)

As a first step, we want to study the invertibility of L_;

&
Lemma 8.7. If n > 6 and for any n,p > 0, for any (A.(d),€) € O,,, and for any ¢ €
H.N K+ -, if e is small enough, there holds

Af(d)vg
I adg( Mas. > CllDllas. (8.35)

where C' is a positive constant.

Proof. We argue by contradiction. Assume there exist 7,p > 0 and a sequences £, — 0,
(Aeo(da), €4) € Oy, with &, = (&10,820, 7+ 1&ka) € M*, and a sequences of functions
Oa € H. ﬂKi EAY: such that

Ao (fa) = Ya, |’¢04H(1755a =1 and Hwa”a,ssa — 0. (8.36)

For any «, for notation’s convenience we will write A, = A._(d,). From (8.36) we get there
exists Go € He, N K ¢ such that

Qba — i fala(vAa,Ea)(ba = wa + Ca- (837)

Step 1, we claim that
HC&Ha,sEa -0 as o — oo. (838)
Let ¢, = >, > )\gZﬁ\ja@_a. For any h = 0,1,--- ,n and [ = 1,--- ,k, we multiply

=0, n j=1, k

(8.37) by Zillouéla’ and taking into account that ¢, Y, € K{t £ we get

> X (A As), == ([ 00 A, 699
=0, n j=1,-

Since dy(&ja,&a) > p > 2r, from the definition of x,, and by properties of the exponential
map, we get, <Z/\]a Lo Zf\‘la7§la> = 0 if jo, # lo. Therefore, by changing of variable z =

expfja(/\jaz), for i,h =0,1,--- ,n and for any «, we have

7 h
<Z)\]a fja Z)‘lavéla>a
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- / <VZ;JD¢ 5]04 vzillouéla> d'ug +/ a<x>Z§\ja7§j0¢Z’}\Lla7€la d’ug

- 5j°‘la {/ <VZ)‘Ja gﬂa VZ/i\Llav§la> d’ug +/ ( )Z)‘]a gﬂazi\lloufla d’ug}
M 9 M

= s [ (ulewgh @)V eg! (@)
Bg(fjaﬂ")
xV, <Xr(expgji (x))Vh()\j_;expgji(x)D dyg

+0juta e / a(z)x; (expg,, (2))Vi(Aj  expg,, (2))Va(Aj expg,, (2)) dug

Bg(&jasr)
1 8‘/( ) 8Xr(/\‘az)
= 6jala)\?a / Z ggja ]az |: 82 X’I‘()\]CXZ> + 8—2]‘/2(2)
ab=1 Aja a a
B(0,r/Aja)
1 0Vi(2) Oxr(Nja2) 1
— r(Nia iR acs (Njaz)|? d
L T ) + 20 g o s
+0j.1 a)\?a / a (expgja()\jaz)> Xr(Xja2)Vi(2) Vi (2 |g53a )\]az)|2 dz
B(0,r/Aja)
= I+ L. (8.40)
By the Taylor’s expansion, from (8.12), we have
62 (Aga) = Bap + OO, |212) = by + Ollealdsal 1) (8.41)
’géja(AjaZ)’§ =1+ O(A?Q\Z\Z) =1+ O(\ea]dja]z|2). (8.42)
Moreover, for i,h =1,2,--- ,n
n—=2 ZZZ
V;VhdZ = 7’L2(7’L—2)+ / mdz
B(0,7/Xja)—B(0,r/2Xja) B(0,7/Xja)—B(0,r/2Xja)
/Xja
< C’/ " dt = O(1). (8.43)
r/2Xja
and by the similar way we have
aV;
Vi, dz =
/ 9,z = O(1),
B(0,7/Xja)—B(0,7/2)\ja)
VoVi dz = O(1), (8.44)

B(0,r/Xja)—B(0,7/2Xja)
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oV
/ 5 Vi dz = 0(1)

B(0,r/Xja)—B(0,r/2X;q)

From (8.41)-(8.44), by the property of function x,, we have

I = 65.0.0m||Villpre@ny, as a— oo. (8.45)
Moreover,
I, = \€a|dza/ a (expgja()\jaz)) 2 (Niaz)ViVi |g5ja()\jaz)‘% dz — 0, (8.46)
as a — o00. Thus, by (8.40), (8.45) and (8.46), we get
<Zf\ja,§jaa Zﬁza,éza>a = 0ju10in||VillDr2@ny + 0(1), as a — oco. (8.47)

Now, set

& (2) == /\1(2_2)/2% (expe,, (Ma2)) it 2 € B(0,7/N\a);
¢ 0 otherwise.

By (8.36) and by an change of variable, we get that the sequence {¢a}a is bounded in

DY2(R"). Passing if necessary to a subsequence, we may assume that {bata converges
weakly to a function ¢ in DV(R"), and thus in L?" (R") by the continuity of the embedding
of DY3(R™) into L*" (R™).

Since, for any «, the function ¢, € K ltaia’ by the same change of variable for x = expg, (Aia2),
we have

0 = (Zgted,= [ (T 0O Ta)  di,

+)‘12a/ a (expgla<>\laz)) X'r(/\laz>vh§ga dﬂgay (848)
Rn

where g,(z) = expf, g(ANiaz) With dug, = |g§la(/\laz)]% dz. Then, passing the limit in (8.48),
we get

/ (VVi, Vo) dz = 0.

Since the function V}, is a solution of equation (8.17), it yields that

/ (VVi, Vo) dz = (2° — 1) / U¥ "2V, dz = 0. (8.49)

n

Moreover,

/ féa (VAayga )Zillavgla qbad/lg
M
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= [ R0 e lenng DA O e ()

k
= A, / 1L (Zxrulaz)éi"mmz)) Xr(Nia2)Vi(2) da(2) i,
Jj=1

B(0,r/A1a)

(n—2)eq 9 el ~
= (2 -1-e), * / OerNa2)U(2))" 775 X (Aia2) Va(2) da(2) g, (8.50)
B(O)T/)‘la)

Since there holds

(n=2)eq (n-2)ca

Ao 2 =(ealdia) & —1, as a— . (8.51)

(e}

And the sequence {¢, ta converges weakly to ¢ in DV2(R™), then taking the limit into (8.50)
yields

/M f Va2 )23 e b dppg — (25 = 1) / U(2)? 72V (2)¢(2) dz = 0, (8.52)

n

as a — 00, because (8.49) holds.

It follows from (8.39), (8.47) and (8.52) that for any ¢ = 0,1,--- ,nand forany j =1,2,--- , k,
there holds \Y — 0 as o — oo, therefore our claim (8.38) is proved.

Step 2: We prove that

lim inf/ fl (Vo g Jul dpg — ¢ > 0. (8.53)
a—00 M ®Sa
where
Uq = ¢a - wa - Ca; Wlth “uaHa,sEa — 1. (854)

Let us write equation (8.37) as

Agua + a(z)ua = f7, (Vi 2 Jua + f2,(Vy, 2 ) (o + Ca), (8.55)
We first prove that

lini}inf |talle = ¢ > 0. (8.56)

In fact, by (8.55) we deduce

o = {1, (Va2 )t + (Va2 ) (e + G | (8.57)
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and by (8.14), (8.36), (8.38) and (8.54), from (i) and (ii) in Lemma 8.15, use the Holder

inequality, we get

[uals., < C féa(VAa,Ea)ua noen, T féa(VAa,Ea)(wa‘FCa) nseq ]
L n+2seq n+2seq
< O WVaiz )| s, Nualoe + |FL (Vi g )], [¥a + Gal,,
i T (n—6)sey 3
< C féa(VAa,EQ) 2nse, Ualye +C a/a<VAaEa> n
T (n—6)sey 3
< Olfe(Vang )| e, ualo +0(1)

2n—(n—=6)seq

< Cllualla +o(1),

as a — 00. Then, if |Jus|la — 0, by (8.58) we deduce that also |uq|s.,
impossible because of (8.54). This gives the validity of (8.56).

We multiply (8.55) by u, we deduce that

”uaH2 / f af U dpig + / fea Vi £, ) (Yo + Ca)tia dig.

By Hélder inequality, from (8.36), (8.38) and (i) of Lemma 8.15, we have

<

' /M F Ve ) W+ Cua diy| < |12z,
< C||¢oa"’Ca“a,smnua”a,sfsa

Then, (8.53) follows by (8.56), (8.59) and (8.60).

Step 3: Let us prove that a contradiction arises, by showing that

liminf/ fi( Vi £ Ju2 du, — 0.

a—0o0

In fact, for l € {1,2,--- ,k}, set

i (2) = NP (expg, (Ma2)) if 2 € B0,/ M)
¢ 0 otherwise.

We will show that
i, — 0 weakly in D"*(R") and strongly in L] (R"),
for any ¢ € [2,2*) if n > 3 or ¢ > 2 if n = 2. That fact implies that

/M f;a(v Aok, U’ dp“g Z / fsa WAla Ela)u dﬂg

Bg (fla )
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2n
n—2

(Iallase, + ISallas.,)

(8.58)

— 0, this is not
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k
2-n
= > [ s (el @)n UG el (@) u diy
=By ()
k 1
S / I o (Ca2)U(2)) 2 [ges, (hac)|F dz

=1 B0,/ A\

S CZ)\ 2 EQ ‘faa ))|L"/2(R”) |/&a|L2*(Rn) - 0(1)7
=

for € small enough, because (8.51) and |f;a(U z = O(1) hold.

Mg

Finally, we prove (8.63). By (8.55) we get

/ [V gtialg dﬂg“’/ ax)ug, dpg
M M

= [ RO dgt [ Vg )W G
_ /f e dpy + o(1),

because (8.60) holds.

By an change of variable x = expg, (Mia2) in (8.65), we get

/R |V glialge dita + )xlza/R a (expe, (Naz)) @l ditg,

n725a

= Ao fh, 06 Na2)U(2)) g dpg, + o(1).

Rn

(8.64)

(8.65)

(8.66)

Moreover, we observe that ||, ||pr2@n) < ¢|ltalla,s., < ¢, that is the sequence {, } is bounded
in DY2(R™), then there exists @ such that ,(z) — @ weakly in DM?(R") and strongly in
L4(R™) for any ¢ € [2,2*) if n > 3 or ¢ > 2 if n = 2. Then we deduce that @ solve the

problem
At = (2*—=1U* %4 in R

by (8.49), we get that the function 4 is identically zero, then (8.63) holds.

Therefore from the contradiction (8.53) with (8.61), we end proof of Lemma 8.7.

Next, we want to study the estimate the term of R_;¢
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Lemma 8.8. If n > 6 and for any n,p > 0,(A(d),€) € O,,, if ¢ is small enough, there
holds

le| |In |e][** if n =6 and e > 0;

le| |In [e]] otherwise, (8.68)

IR aellos. < c{

where C' is a positive constant.

Proof. Let us introduce the function Z,_z ¢ defined by Vy_ gz := 1"(Z, g 2) that is,
AQVAE(CI),E + a(.r)VAE(CZ)E - ZAs(i),g on M

We remark that VAS@E(QL’) = 0if v ¢ By(&,r) U -+ U By(&, 1), VAS@E(:U) = Wy¢ if
x € By(&,r). Therefore, we have Z, g z(x) =0, if 2 ¢ By(&,7) U+ U By(&, ) and

ZAE(J)E = AQW/\l,iz + CL(QZ)W)\ZQ, if ze Bg(fla T>~

We have
o (fE(VAE(CZ)7E)) — VAE(J),Z o = ||* (fs(VAa(J),E)) 1 (ZAE(d_) 7) as
ySe N ySe iz,
n+2sg nse
< C fe(VAE(J)f) —Zra)E nse ¢ </ fE(VAE(J),E) —Zr(E d“9>
n+2sg M
n+2sg
& ne. nsg
n+2sg
= Cy / F-WVa @) = Za.e dytg
=gy am)
n-+2sg
i nse
- CZ / ’fa(WAl,éz) - (AQWAZ@ + a(x)WAl,fz)|n+255 dpig (869>
=gy
By Lemma 3.2 in [90], for any [ = 1,2,--- , k, we have
n+2se

nsg

‘fs(WAl,§l> — (AQWAZ’& -+ CL(J])WN’&”F;% d/ubg

Bg(&lzr)
2/3 e .
<C le] In ||| if n = 6 and € > 0; (8.70)
le] [In |e]] otherwise.
Then (8.68) holds from (8.69) and (8.70), that concludes the proof of Lemma 8.8.
[
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Proof of Proposition 8.5: In order to solve (8.24) or equivalently equation (8.32), we need

to find a fixed point for the operator T_ ;7 : H. N Kl n@dE HoN KL deﬁned

T.q8(0) = L_;¢ (N.gz() + R.gg) ,

(d), &) € O, ,. We also let

for € small and for any (A
BB) = {0 e MK gz ¢ [0las. < Bl Redelas. }
where (3 is a positive constant to be chosen later on.

By Lemma 8.7, we deduce

I7ag@,... < € (|, + 1 Reell,..) (8.71)
and
1T, a(60) — Tag(@)],.. < € (| N.aglon) - Nogz@al,.. ). (872
By (8.13) and (8.14), we deduce
IN.ag@),, < € fE(VAE(J),§+¢)_fs(VAE(J),g)_fs/<VAE(J),§>¢‘ni;ESE
Heae+ 0 - V@)~ iV@dd] ,, - 6T
and
IN.a2(01) = N gz(o2)l, .
< ClfeVa et 91) — Vi +02) — filVa @) (01 — ¢2) e
o (8.74)

e WVa @z + o) — f-(Viaz T 02) — fiVa @) (o — (?52))27” :

Then by the mean value theorem and the Holder inequality, by Lemma 8.16, it follows that
if n==6and e > 0, for any 7 € (0,1),

-WViz+ 60 = LVae + 02) = V@261 - )|
= [(£Vaz+ o+ 761 — 62) — FVi22) (61— &2)

2n

n+2

< C(1u + 162l ) 101 = dal 2 < C (01l + 162l135) 161 = Gllas,- (8:75)

We note that by (8.15) we have 25— = n2f2 for e > 0.
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If n > 7 or e <0, there holds

f Vi e+ o) = f-(Viiae + ¢2) — FL(Vaaye) (01 — ¢2)‘

nse
n+2sg

— ‘(fé(VAE(J),g + 70y + (1 —7)¢1) — fs/(VAE(J),E)> (¢r — ¢2)‘

< C ‘ <|VA8(J),E

nse
n+2sg

s+ (L= 1) |+ [T + (1 T)¢1|2*727€> (é1 = QSQ)‘

nse
n+2sg

2% —3—¢

= C (|VA€(J),E|sE + |b1l,, + |¢2|35> (Ipal,, +1¢2l,.) lf1 — @2l
2*—3—¢
< C(Wails +161llas, +1e2les ) (161, + g2l ) o1 = Sl (8:76)

Since the problem is supercritical if € < 0, s > 2% ie., -2 > 2 by the embedding

e . n—2’ ) n+42se n+2’
Ln+2se (M) — Ln+2(M), we get

fe(VAE(J),Z +¢1) — fs(VAe(J),E + ¢9) — fs/(VAg(J),E)(le - <Z52)‘

2n
n+2

2*—3—¢
- C (‘VAE@,&L + o1l + H<bz||a,ss) (H¢1Ha,85 + |y¢2||a,s€> lp1 — ol -

(8.77)
Moreover, if n > 7 and € > 0, from (8.15), we have 25— = %
Taking ¢1 = ¢, ¢ = 0 into (8.75) or (8.76) and (8.77), from (8.73), we can get
Cllollzs if n=6ande>0;
N g a5 S ’ *_3_ ¢ e . 8.78
INeag(@lle ¢ (‘VAS(J),E 2ol . + ol ) if n>7ore<0. (8.78)

By Lemma 8.15 (iii), we have |V, 5 ¢[s. = O(1) for € small. By the definition of B(j), from
(8.68), (8.71) and (8.78), we can get that there exists 5 > 0 such that

peB(B) = 1. ::(¢) € B(B), (8.79)

provided that € is sufficiently small. Next we will show that the map 7, ;¢ is a contraction
map for any ¢ small enough.

If n =6 and € > 0, by (8.72), (8.74) and (8.75), we deduce that there exists ¥ € (0,1) such
that

161 llasc |62llas. < le] el
= T, a5(01) = To gg(d2)llase <[P — Pllas. (8.80)

Ifn>T7ore <0,by(8.72), (8.74),(8.76) and (8.77), we can deduce that there exists ¥ € (0, 1)
such that

[ P1lla.ses [|02llas. < el [Ine]]
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= T, a2(91) = To gz(02)llase <o — Pllas. (8.81)

By (8.79) and (8.80) or (8.81), we deduce that T_ ;¢ is a contraction mapping from B() into
B(p) for e small enough, so it has a fixed point gzﬁ 4 Which satisfies (8.24), and (8.26) holds
from (8.68).

In order to prove that the map (d, Z) — ¢.gg s a C! map, we apply the Implicit Function
Theorem to the function G(d cu) s (RTF x MP x H. — H. defined by

Indeed, ¢_ ;¢ satisfies

G(d, &, ¢, 4¢) = 0. (8.82)
We have
0,G(d, &, u)[v] = v — L;CIZ,E ((BuN, g2)(u)v) . (8.83)

Moreover, by the mean value theorem we have

N_ge(#1) — N, ge(92) = (OulN_ g¢)(u) (1 — ¢2),

for some u = 7¢1 + (1 — 7)o, 7 € [0,1]. Then from (8.26), (8.74) and (8.75), there exists a
positive constant ¢ such that

[0uN_ gzllas. <cle] for n=6 or > 0. (8.84)
In the similarly that if n > 6 or € < 0, from (8.26), (8.74), (8.76) and (8.77) , it holds that
[0uN_ gzllas. <cle] for n>7 or e <0. (8.85)

Consequently, using Lemma 8.7, (8.83), (8.84) or (8.85) we obtain that 9,G(d, ¢, ¢ gz) s
invertible with uniformly bounded inverse. Then, the fact that (d,&) ¢, 4z is C* follows

from the fact that (d,€, ¢, ;2) — L™ (N_ ;2(u)) is C' and the implicit functions theorem.
e,d,§ e, d,E €,d,§

8.5 Expansion of the energy

This section is devoted to the proof of Proposition 8.6. At the first step, we have

Lemma 8.9. For ¢ small, if (d,€) is a critical point of the functional je, then Vy g+ ¢.az
is a solution of (8.16), or equivalently of problem (8.1).
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Proof. Let (d,€) be a critical point of J., where d = (dy,dy,--- ,d) € (R)F and € =
(61,62, &) € MP. Let & = &(v)) = eXPSj(yj)v y’ € B(0,7) and

E=¢E(y) = (expgl(yl),~-- ,expgk(yk)) o=ty e B(0,r) x - x B(0,7).

We remark that £(0) = &, since (d, €) is a critical point of J,fore=1,---,n,j=1,---,k,
there holds

0 0
Je (VAE<J>,E+¢5,J,E) [@Vm(d),ﬁ ad; s,d,s] =0, (8.86)
and
0 0
T (Ve +doaz {—.V bE+ .8}20. 8.87
( A@ET O ,ds,s> oyl M @ET =g (8.87)

Let 0y, denotes 0y, or Oy for h=1,2,--- ;kand c=1,--- ,n. By (8.24) we get

R RATE (vAE@,m@z) 0uVioe+ s

- Z Ce < M) OmVa @z + 3m¢57g,5>a ’ (8.88)

i=0 j=1

for some ¢ € R. We have to prove that if we compute (8.88) at y = 0 then, provided ¢ is
small enough, it holds

dl=0 for any i=0,1,---n; j=1,2,--- k. (8.89)

First of all, from (8.126) and (8.127) in Lemma 8.14 we have

LINLES B
>3 {7 (s )| L)

i=0 j=1
n k 1
- Z )\_ Jh5w||VHDl 2(RN) + Z Z C 70n0ic, (8.90)
=0 j=1 =0 j=1
and
n k
v )
c <ZZ —Vy d)€>
i=0 j=1 8d
1 n k
= 2— Z C h(SzOH%H’Dl 2(RN) + Z Z h(sioO (HZE\)j,ﬁj(yj) > ) (89]_)
7 i=0 j=1 i=0 j=1 a
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Moreover, since ¢, ;¢ € Kl A (@) it holds <Zf\j7€j(y]-), ¢€7J7€>a = 0, which implies

<Z§\j,§j(y1)7am¢s7gz>a - <amZ§‘j7§j(yj)’¢s,d_,g>a
- O(Hamzij,mw) a||¢e,cz,gHa>~ (8.92)

5
_‘Zij,sﬂyj))
(3y2 ly=

y=0

From Lemma 8.13, there hold

= O(le|7V%). (8.93)

a

04,2, 00 ], = 001 '

By Proposition 3.1, from (8.92) and (8.93), for any x € (0,1), we get

(2}, 6,001 Omoae) = o(lel"). (8.94)

Therefore, by (8.90), (8.91), (8.92) and (8.94) we deduce that the linear system in (8.88)
has only the trivial solution provide e small. That concludes the proof of the part (i) of
Proposition 8.6.

[
In the next Lemma, we give the expansion of J.(Vy_ ) as € = 0 for (A-(d),§) € O,
Lemma 8.10. Ifn > 5 and (A.(d),€) € O, , satisfies (8.22), then there holds
T (T
Ja(VAE(J)7g) = EKn — ﬁKn ap€ + EKR \I/k(d, §> + 0(8), (895)

ase — 0, Cli—iumformly with respect to & in M* and to d in compact subsets of (R*)*, where
a, and Vi (d, &) defined in (8.29) and (8.30).

Proof. We have

k
J-(Va.@)€) (Z by &)
2
Vy (Z W/\j,ﬁj) dpg + / (Z Wi, 5;) dpg
=1
] ’ k 2% —¢
Wi ¢ d

—¢ Jm <; )‘J’§J>+ Hg
— zk: 1/ |VW ‘2 du +1/ a(x)W3 . du —;/ (W2*_E> dp

2 [ Ve Aji&i Y Ajs&s TP o M Xig&i ) T

j=1
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k k
1 1
+ Z 5//\4 VWi e, VoW g dpg + B Z //\Aa(fﬂ)W,\j,ngAl,gl dpg

Gl=1;5#1 Gl=15#1
1 k 2*—¢ k
Tk _ 6/ § :WAj,gj - § :’WA]-,gj
M =1 j=1

Since W), ¢, and W), ¢, have disjoint supports, we get

2%—¢

dys,. (8.96)

/ ngAjﬂijQWAz,fz d,ug :/ (I(ZL‘)W)\].@W)%& dug = 0, for ]75 l,
M M

k € E
/M ; W>\j £i - ; IWM £

Moreover, by Lemma 4.1 in [90], we get that for any j =1,2,--- k

and
2*

2% —¢

dpg = 0.

1 2 1 2 1 2*—e
2 /M VoW | dig + 5 /M U)W o = 57— /M (WM@ >+ s

- BT (1 P ) o)

K;n 2(n - 1) A ale) — n —2 . ‘ )
* n (n—2)(n—4) €l ( (&) A(n — 1)S 19(5])) + o(e). (8.97)
Thus, (8.95) follows from (8.96) and (8.97). 0

Lemma 8.11. Ifn > 6 and A.(d) = (A1, Ae, -+, A\x) satisfies (8.21), then there holds
Jo(d.&) = J.(Vi @ + beaz) = J-(Va@g) + ol€) (8.98)

as € — 0, C° uniformly with respect to & € M* and to d in compact subsets of (RT)*.

Proof. We argue as Lemma 4.2 in [90]. From the equation (8.24), it holds
J.(d, &) - J-(Vao@e) = Je(Va@aye + 9-az) — Je(Vaae)

1 2

= S lle.all, + /M [VoVa@Vedeae + al@)Vaedear — F(Vawe)beagl dig
- /M [F-(Vaoyg + beae) — F-(Vaiwyg) — f-(Vai@e)Peae] ditg
1 2

= 3 6.4, + /M e Whig + Peqe) — F-(Va@8)] beaz ding

- /M [Fe(Viare + Peae) — F-(Va@e) — f-(Va@&)beag] dug. (8.99)
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We prove that the right hand side of (8.99) is o(¢). In fact, the first term in the right side of
(8.99) is o(e) because of (8.26). Moreover, by the mean value theorem, for some 7, 75 € [0, 1],
we have

/M [ (Vare + 6oaz) — £-(Vae)] 6oz i

/M Vi e+ Tl%,g,g)fﬁidg djtg, (8.100)

and

/M Fe(Va.@é + ¢eiqe) — Fe(Vaag) — f-(Va@.8)9eag] dug
/ FiVaiayg + m20:,48) 0% 4 dhtg. (8.101)
M
By the Holder inequality and (8.26), we have for any 7 € [0, 1]
/ |LlVac@e + T¢ea8)| 92 4z du

S O/ VQ*_2 €¢€d£ d,ug—i—C'/ ¢2 —€ d,ug

S ‘VQ*QQ . E,J,E‘% +Clé. gz ?:_5
2
< CZ ‘WAQ*EJQ ) H¢eﬂ£Ha,sE +Cl6. gellas”
= ole ) (8.102)

because of ’ijgjz_a ~=0(1) by (i) in Lemma 8.15. Therefore (8.98) follows from (8.99),
(8.100), (8.101) and (?3.102). By Lemma 8.10, we deduced that (8.28) holds.

]

Next, we estimate the gradient of the reduced energy.

Lemma 8.12. For any n,p > 0 in (8.22), if € is small enough, for j =1,2,--- |k, it holds

Oa, [J-(Va @y g + ¢ede)] = 0a,Vi(d, €) + o(e), (8.103)

and Setg:g(y) = (expél(y1)7" ) anpgk(yk)); Y= (y17- . ayk) € B(07T) X X B(O7T)7 fO?"
any c=1,2,--- mandj=1,--- k, it holds that

( 0 (Vi@ £+¢Ed£))y 0 ( 0 \Ifk(J 5)) + o(¢), (8.104)

j
Oye ly=0

C° uniformly with respect to & in MF* and d in (RY)*, the function U, is defined in (8.30).
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Proof. Tt holds

O, [J-(Vi ()¢ + 0=.a6)] — 0a,¥(d, )
((Vaaye + ¢=ae) — Ji( VAE 0.8) [04,Va @) }
+ I (Vi@ g + P-ic) [00,0ae] + (0, J-(Va_ay U (d,€))
= I+ 1+ I (8.105)

First, because the parameters d is bounded and bounded from zero, using Lemma 8.10 the
expansion of J.(V,_)¢), we have I5 = o(¢). Next we show that I3, Iy = o(¢).

From (8.130) in Lemma 8.14 and the function ¢, ;¢ belongs to Kzt(&) & we have,
Iz = (JVi@e+ 0eid) = J(Va@e)) [04,Va ]
— [ (40069, (00 Vi i0.0) + )00 Viane) i
M

- /M (fe(Vasidye + Deie) — f-(Va@ ) Oa, Vi ¢ ditg

1
= —_— (Vggbaﬂ,fngg.’g. +a($)¢E,J,ng,§> d/l’g
Qd] M VENY] YRy
1

2d
_ / e 70 4 1 )
= _QTZJ- v fs(VAs(d),g)¢g,d,§ Xj& Qg — ﬂ {fE(VAE aét 0. d,g)

Vi) = [ Vi )0-ag } 28, & iy (8.106)

From (8.26), by the boundary of d;, using the similarly proof of (8.60), we have

(fe( @&+ Pede) = - (Vag)) 23, ¢, dtg

= o(|e]). (8.107)

/ fL (V. (d), ¢sd§Z,\ k3 dpg| =

Moreover,

'/ (fs(vAE(J),E + beag) = f-(Vaa8) — LV -(d) g’)%dg) Z)\ & dug

< / |f VA §+t¢s d£) f/(VAs(J),E)’ ¢€,077§_Z§j7§j d/J/g

C’fMngid_;E)\é]d,u if n =6 and € > 0;
B { CfM (Vg*_g : ?dg ‘|‘¢§*d_§1 EZQ £ > dpg  otherwise
C‘(bs slee gjygj . if n=6and e > 0;
m
< O( ’vj:(jii; |¢Ed£ 2| (8.108)
+ Ws d5| Nl nes > otherwise.

\ nsg—n—2sg
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From (8.26), (8.106), (8.107), (8.108) and (iv) in Lemma 8.15, we get I3 = o(|¢]) for £ small
enough.

Now, for e small, for any (A.(d),€) € O, ,, since (8.24), we have

Iy = J(Vaae+ ¢ic) [04,0.0¢]

n k
— Z Z v <Z§\j7§j, 8dj¢£7g£>a

i=1 j=1
= —ZZ ”<ad ,¢Ed§> . (8.109)
=1 j=1 a
We argue in Lemma 4.2 in [90], we have that for any « € (0, 1), there holds
ZZ 17| = O(Je|") (8.110)
=1 j=1

Then, from (8.26), (8.110) and (8.120) in Lemma 8.13, we have Iy = o(|¢]), therefore, the
estimate (8.103) holds.

Next, we prove (8.104) holds. From Lemma 8.10, we have

0 0 -
J-(V, + ¢, U, (d,
oy (Vac@ g + beae) o0 k(d, &)
= Vaiet doad) — L Vae) + o [(Viae) — Ui(d,B)]
ag € As(d)§ €,d,§ ayg € As(d)g ayg € As(d)7f k )
= JU(V, +¢){8 +—a¢ } JL(V, ){av :|+O<€)
€ As( )f €,d,§ a g As(d)€ ayg €,d,§ € AE( )E ayg As(d)
! ! a
= [J(Vaaye + Pede) — J-(Vaé)] {6 V() 5‘]
, 0
F Vs + 0uae) | org0na| + o0 s.11)
We will prove that
, 0
JL(Va @&+ Peag) —ayjﬁbg,d‘,g‘ = o(e) (8.112)
and
4 A a
[TV + Pede) — Je(Va@ o)) _ayZVAE(J),E = o(e) (8.113)

Then (8.104) will follow from (8.112) and (8.113).
249



CHAPTER 8. MULTIPEAK SOLUTIONS FOR ASYMPTOTICALLY CRITICAL
ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLD

First, we prove (8.112). Since (8.24) holds, and we take into account that ¢, j¢ € K[t(&) &
we have

0 P 0
/ o - o i/ o o
JL(Va. @) + b a¢) [a—yg-%@,g} = Z Ce <ZAI,517 8—yj¢e,d,g>a

Then, from (8.26), (8.110) and (8.120) in Lemma 8.13, we have (8.112) holds.

Finally, by the mean value theorem for some 7 € [0, 1], from (8.26) and (8.128), it holds

0

[T (Va.(@) € + 0ede) — Je(Va )] { o0 VAE<d>,g}

K 0
= /M (Vg@,cz,gvg ( o VAS@,E) +a(w)¢g,g,ga—y(]:-VAs(J),5) dyig

0
- / (f-Vacyg + Deae) — f-Vaae) 57 VADE dpg
M Ye

1 .
- [ et bnas) ~ £0hi00) (32 + oD ) dn
J

1 7
= = [ 10 et 76.a00mae (32 + oD ) dug ol
J

The proof of the part (ii) of Proposition 8.6 follows from Lemma 8.10, 8.11, 8.12.

8.6 Appendix
Let &0 = (&9, &) € M* be fixed. Let & = &;(y/) = expgg(yj), v’ € B(0,7) C R™ and set

=&y = (expg (') expg(uh) .y =" 4") € BO7) x -+ x B(0,7).
We remark that £(0) = £°. Let us introduce the function € defined by

g(y,:)ﬁ) = (51<y1,l‘), T agk(ykax)) , T E M7
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where £7(y/, x) = expgjl(yj)(av) = expeXp O(y])( r) € B(0,r).

Now, by (8.7), we can write [W,\j,gj(yj (z) = >\ o &7y, x) U (A1E () ,] setx=expe, () (A;z) =

expexpgo(yj)()\jz), forc=1,2,---,n we have
J

(8WA£J(yJ)()

o
1 0U(z Oxr(\;z oI (.
Z/\ [ AXr(Aj@ + #U(g)} a_yg <y97expexp§?(yj)()\jz)> (8.115)

9
(ayzwA £“y”>|
y=0

"o, {1 U(E) 3 s 8xr(Ajz)U( )} oE] (0 exper (A, Z)> (8.116)

In particular,

;AJ >\_] aza XT( ]Z) 0Za ayc
In a similar way, for c=1,2,--- . n,
9
(0y Z5, @(yﬂ)) ()
1 9Vi(z Ixr(Nz o&s (.
Z/\ { (a >XT<AJ-Z) n %Vi(z)} o (ya,expexpgg(yj)(Ajz)) (8.117)

and,

(55
—ZZ )

77N E(y7)
ayc |y:0

- A [Aijagj)xr(Ajz)Jr%:j@m(z)] gg (0. expeo(32)) - (8.118)

a=1

Cc

From Lemma 6.4 in [87], we deduce the Taylor’s expansion

2 o¢; 21,12 2
o (0, expgg(3;2) = T2 (0. expgy (0)) + ON[=P) = e + O(dy 2P,
Lemma 8.13. Let O, denote 04, or 8% forj=1,2
. _l .
a‘ZZZ;j’gj(yj) a:O<|e| 2) ifc=1,2,---,n; for y=0;
_ ! |2z 0 if1=1,2,-,k | #7; (8.120)

(8.119)

Jkandc=1,---,n, it holds

Ha Z;\ fj(y])
0

20 2, 5 (w) .
i o 1
9d; Z>\j7§j(yj) 0 0 (|8’2> :
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Proof. By (8.118) and (8.119), we have

2
o . I a
/V (a 4" @(ya)) dpg = / 196,60 (M52 D 98 (Ni2)
M yc ly=0

B(O,%) a,b=1
o 10V, Ixr(Njz o8 (
x { {/\— (= Xr(Aj2) + (A )V;(Z)] d (yj7eXpexp§§g(yj)(>‘jz)>}

0z, 0zq Oy

0z
g oVi(2) dxr(A;2) 98 [
8 aZb Z |i)\ (92d XT(A]Z) - aZd V;'(Z) a g Yy 7eXpexp€?(yJ)()\]Z) dz
d=1 J i}

e (%) —o(): (8.121)

And

2

o0 _.
/M a(x) (3yc Z,\ & (y])) dpg

-

N / |g£](y] )\ Z)‘ a (eXpexp o(y?) (>\ Z))
B(O,/\Lj)
2
[ L V() MeN2) ] O
X {; |:)‘J 024 XT()\]Z) + e ‘/Z(Z) 8yc y eXpeXp 0 (v9) ()\ Z) dz

e (%) —o(4), (3122

By (8.121) and (8.122) we can get the first estimate holds.

=0forl,j=1,2,--- ,k, | # j. Moreover

Q r7i
From (8.20), we have Hadz ZA &),
8 7 a e -1 -1 —a)\j
@ZA].,&W) T o\ {X” <eXp§ (z )> AtV (Aj P (m)>} ad,

= g (e0p) {757 (4 e ()

—I—)\jT %Vi (A;lexpgjl(m)) } (8.123)

It yields that

2

>
ad; iesw)
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= / ‘géj(yj)(/\ Z Z gf yf)

B(OT/A) a,b=1

Xa_ {2’{;\' xr (N2) {2;n1/;(z) + %Vi(z)”
o {2‘§' »(A2) {2 Vi (2)+ a%vi (Z)H dz

1
+ / ‘gfj(yj)(Ajz) ’ ‘a <eXpexp§Q(y1)()\jZ))
J

B(0,r/);)

2)\ 2

€]
= 51 |9aj<yj)(AZ Zggg(yf
2\,

B0,/ a,b=1

A ) |25 + (z)} }zdz

(om0 506 + 5 u )

2 {2‘—”% @+ 50}
a X ( [ )+ (%Vi (Z)}

+xr (Ajz) 5— 7 [%”v (2) + 8%\4 (z)] } dz

el \2 R
! (2’_>\’]) / 96, ) (Ns2)|* @ <eXp§j(yj)()\jZ)>

B(0,r/A5)

<02 25506 + 5 n ) }2dz

() ] 5 (o) o)
+C (2_7") (%) / (expé ey z)> V2 dz

+Xr (Aj2)

IN

B(0,r/Xj)
= O(le)). (8.124)
O]
Lemma 8.14. Fori,h=20,1,--- ,n and j,l =1,2,---k, 1t holds
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Moreover for c =1,2,--- ,n, if € is small, we have
1 2
< (8 1 ZWM Li(yh) ) > = )\_jéjléic “ViHDl,2(Rn) + 0(1), (8.126)
cl 1 ly=0 "
and

<ZAj,§j(yj), aleVAE(d;),§>a = 54,0 [Vollpagen) + o (HZA () ) (8.127)

Proof. By the similar way as proof of (8.47), we can get (8.125) holds.

Next, we prove (8.126). From (8.116) and (8.119), set = = expg,(,1)(Ai2), we have

0 2n IS (1 0U(2) Oxr(Ni2) 2012
= )2 — - (A —_ e A
(aremn) = w3 (52 v+ 280 )] (1. + 0021
= oU(z) 2-n 90X, (N12) 91 19
= o) T AT 2y ) 4 opapy
1 C 1 C

Then, from (8.125) we have

<Z’L y])? (a 1 ZW)‘Z ﬁl ) > = < y])?Z )\ )‘l €1 +0 ’6‘)>
Cl 1 ly=0 a

1 1
)\_z <Z/\ &(yi) Z3, §l> + 0(|5’)||Z,\ &i(y) Ha = ]l§lc HV||D12 ®n) T o(l)  (8.129)

for e — 0.

Finally, we prove (8.127) holds. From (8.23), a straightforward computation establishes that

) 1
—Vy iy =—29% .. (8.130)
8dj Ae(de),€ 2d, YRS,

Then, by (8.125) and (8.130), for € small enough, we have

i 4 L 70
<Z,\]-7§j(yj)7aﬁdije(ds)£> - <Z’\ £ (y7) 2d, 24, N J)>

1 0 1

i _ 0
= % <ij,sj<yj>= ij,fj(yj>>a = 54,0 [Vollp12gan) + 0 (‘

Zxs5(9)

)
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Lemma 8.15. For (A.(d),§) € O, ,, for ¢ is small enough, we have

D) | (Vis@e)] . = 0).

V|3

(1) |V = 0(1).

2nsg
2n—(n—6)se

=0(1), formn>7 ore<0.

Se

(i) |f: (V@)

(i) |[Viae

=O0(1) for n>7 ore<0.

3
Proof. (i)
12 (Vaaye % / |2 (Vi dﬂg
(2r—2-¢)5
= (2 —1—6 ZW)\ & dﬂg
n 2—n (2*—2— E)
= (2"=1-¢)2 Zx\" / Xr(Aj2)A; 2 Uz )‘ ‘ggj)\z)} dz
B(0,r/X;)
N k n(2 n) 2* 2 5)+TL « n
< f—1-—c¢ 2ZAJ U (2)|F279)3 dz
=t B(0r/A;)
n k n_ n(n—2) T/)\] 1 n(n—2)
< —1—552)\J —2))2 7 & wn/ i dt
J=1 0
= 0(1)
(ii) Since
k
FVa@e)| s = | (Z ijvﬁa) |
2n—(n—=6)se j=1 2nse

2n—(n—6)se

_ (fo expg! (@), U (N expg (o >>>

2nse
2n—(n—6)se

)\71 2n—(n—6)se
A
2 -2 Ja *_o_ 2ns
< C)\ 2 A (/ ’U(2>’(2 2-8) 3 (maoree (g
0

2nse
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-1

' {(—4+(n=2)e)0+n—1 dz)

A o
C)\(n 2)(1+5) </ i
0

= O(1) as ¢ —0,

1
0

IN

because (—4+ (n —2)e)0 +n — 1 <0, where 0§ = 2n72(2876)ss'

(iii) We have

k .
- / X lexpg @)\ U rexpg ! (@) dpy
7j=1 Bg(&j,r)
k N 1
e BOX/A)
F s
< DN / U(2)|* d=
e BO/\)
k AT
n— n(n—2) ()
< (nn—2)TEY N / e g
Jj=1 0
— o).
(iv) We have
” s,:ig
fe Vh@e)|
se—3
* * _Se (2*7375)5375
= [(2"=1—-¢)(2 —2—5)]553/ }VAE(J),E =
M
k ( .
* * _Se 2 _3_¢)
< (@ -1-e)2 —2-e)=7 ) / W | S dus
=By (g 1)
s 23— 1
< CZAJQ e / |U()( - 5953’95 )\Z)P dz
=t B(0,r/X;)
7"/>\- 7"/)\- ) n o .
< C/ Jtn—l—(n—Z)(Q*—3—g)S§i3 dt:C/ Jt ( 625(nt12))t+(2(n3>6()3 13) it
0 0
— o).
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Lemma 8.16. (/69]) For any a > 0, b real, we have

C(B) min{|b|?, a®~1|b|} if0<f<1;

In particular, we get for any ¢ € H., we have

Clop|* 2= if n==6 and ¢ > 0;

! N ¢ - ! N < * * .
fa(VAE(d)@ + ¢) fa(VAE(d)g)‘ — { C (VAQ (;’?ga|¢| + |¢|2 7275) otherwise. (8 132)
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Chapter 9

Blow-up Solutions for
Paneitz-Branson type equations with
critical growth

9.1 Introduction

In 1983 Paneitz [102] introduced a conformally fourth order operator defined on 4-dimensional
Riemannian manifolds. Branson [14] generalized the definition to n—dimensional Riemannian
manifolds.

We let (M, g) be a smooth compact Riemannian manifold of dimension n > 5. We also let
H2Z(M) be the Sobolev space consisting of functions in L?(M) with two derivatives in L*(M).
We consider the geometric Paneitz equation

Pru= [uf*%u in M. (9.1)

g

Here 2f = 2 is the critical exponent for the Sobolev embedding, P is the Paneitz-Branson
n—4 & g

operator which is given by

n —

4
9 Qqu (9.2)

Pru = AZu — div, (Agdu) +

where Ay, = —div,V is the Laplace-Beltrami operator, @), is the Q—curvature of g, A, is the

!The main result of this chapter was worked with Angela Pistoia, was published in Asymptotic Analysis,
Volume 73(4), 2011, 225-248.
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smooth symmetrical (2,0)—tensor field

(n—2)%+4 4
X —1)(n—2)"99 " n_alC (9:3)

Ay =
where Rey and S, are respectively the Ricci curvature and the Scalar curvature of g.

The Paneitz operator is conformally invariant in the sense that if g = qﬁﬁ g is conformal to
g then Pfu = gb*%in”(gbu) for any u € C*°(M). From the viewpoint of conformal geometry
equation (9.1) turns out to be the natural fourth order analogue of the second order Yamabe
problem. That is why we are led to study extensions to this operator of some classical
problems.

Using a terminology introduced by Hebey, we refer to a Paneitz-Branson type operator with
general coefficients as an operator of the form

Pyu = Au — divy (Adu) + au (9.4)

where A € A5 (M) is a smooth symmetric (2,0)—tensor field and a € C*°(M) and we refer
to Paneitz-Branson type operator with constant coefficients as an operator of the form

Pu = A?]u + bA u + cu (9.5)
where b and ¢ are real numbers.

The Paneitz-Branson operator (9.2) is as in (9.4) whatever (M, g) is. In particular, when
(M, g) is Einstein, i.e. Rc, = Ag for some A € R, the Paneitz-Branson operator (9.2) has

constant coeflicients as in (9.5) with b = ”;(_112_7‘1_)4/\ and ¢ = %)\2.

Equation
Pyu = Nu+ bAgu+ cu = u[*%u in M, (9.6)

when P, is a Paneitz-Branson type operator with constant coefficients as in (9.5), was widely
studied. Examples of compact manifolds including locally conformally flat manifold for which
equations (9.6) have non constant solutions are in [42, 51]. Compactness of problem (9.6)
was studied in [61, 62, 63, 64]. Recently, in [63] Hebey and Robert also studied the stability
of problem (9.6). They introduce the following definition of stability. Equation (9.6) is said
to be stable if for any sequences (b, ) and (cq)q of real numbers converging to b and ¢ and
for any sequence (ug), of solutions to

2 262 :
Ao + ba Ayt + Coltla = |Ual™ “u in M,

bounded in HZ(M), there holds that, up to a subsequence, u, — u in C*(M) where u is
a smooth solution of (9.6). In other words, problem (9.6) is stable if arbitrary bounded
sequences in H3(M) of solutions of equations close to (9.6) do not blow up in one or more
points of the manifold. In particular, they prove that if (M, g) is locally conformally flat
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and the Paneitz-Branson type operator is coercive then problem (9.6) is stable provided
b # %TrgAg ifn>9%o0orn="7and b < éTrgAg if n = 8. Here and in what follows, if A
denotes a smooth (2,0)—tensor field, we let TryA = g" A;; be the trace of A with respect to
g. It is easily seen that if A, is defined in (9.3) then

n?—2n—4

Tr,A, = . 9.7
Tgfg 2(n—1) ¢ (9.7)

As far as we know, a few results are known about problem
Pyu = Alu — divy (Adu) + au = lu|* 24 in M, (9.8)

when P, is a Paneitz-Branson type operator with general coefficients as in (9.4). In [50]
among other existence results, Esposito and Robert proved that problem (9.8) when n > 8
has a non constant solution provided miny, Try(A — A,y) < 0. In [108] Sandeep proved that
problem (9.8) is stable provided A — A, is either positive or negative definite. We would like
to point out that in the quoted results the quantity Tr,A plays a crucial role in studying
existence of solutions and stability of problems (9.6) and (9.8).

The aim of the present paper is to show how stability of the problem (9.8) actually depends
on the trace of A,. In particular, by building blowing-up solutions of the slightly subcritical
problem (9.9), we will show that problem (9.8) is not stable if max,; Tr, (A — A,) > 0 and
n > 8 or if miny Try (A—Ay) >0and n > 7.

More precisely, we consider the following Paneitz-Branson type equation with slightly sub-
critical growth

AZu —divg ((Ag + B)du) + au = u|* 2w, in M, (9.9)

where A, is given in (9.3), B € Af (M) is a smooth symmetric (2,0)—tensor field, a €
C*(M) and ¢ is a small positive parameter.

Let Py p(u) := AZu — divy ((Ag + B)u) + au. We will assume that Py p is coercive, i.e. there
exists ¢ > 0 such that

/ (P, pu)udpy, > c/ u?du, for any u € Hy(M).
M M
Coercivity was studied in [61].

Given a C*'—function ¢ on M, we say that a critical point &, ) of ¢ is C!—stable if there exists
an open neighborhood  of &, such that for any point £ € € there holds V(&) = 0 if and
only if £ = £, and such that the Brouwer degree

deg (V,,,0) # 0.

If & is a strict local minimum point or a strict local maximum point of ¢ then &, is a
C'—stable critical point of . Moreover, if ¢ is a C2—function on M, then any non degenerate
critical point of ¢ is C!—stable.
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Theorem 9.1. Assume

. n>8 and & is a C*—stable critical point of Tr,B with Tr,B(&) > 0,

. n>7,Tr,B is not constant and mj\}n TryB > 0.

Then there exists g > 0 such that for any € € (0,e0) equation (8.1) admits a solution u.
such that the family (u.). is bounded in H3(M) and the u’s blow up at the point & if n > 8
or at a global minimum point of Tr,B if n =7, as € goes to zero.

In particular, as far as it concerns the stability of equation (9.8), we can extend the definition
given by Hebey and Robert in [63]. We say that equation (9.8) is stable if for any sequences
(€a)a of positive real numbers converging to zero and for any sequence (u, ), of solutions to

Alu, — divg ((Ag + B)ua) + aug = u|” 20w, in M,
bounded in H3(M), there holds that, up to a subsequence, u, — u in C*(M) where u is a
smooth solution of (9.9) with € = 0.
Therefore, Theorem 9.1 immediately implies the following stability result.

Corollary 9.2. Assume

. n>8 and & is a C'—stable critical point of TryB with Tr,B(&) > 0,

. n>7,Tr,B is not constant and mAiJn TryB > 0.

Then (9.9) with e = 0 is not stable.

The proof of our result relies on a very well known Liapunov-Schmidt reduction procedure,
introduced in [9, 52]. We use Liapunov-Schmidt reduction method to reduce the problem
to a finite dimensional one, with some reduced energy. Then, the solutions in Theorems 9.1
turn out to be generated by critical points of the reduced energy functionals. In particular,
we follow some ideas recently developed in [90], where the authors studied the Yamabe type
equation with slightly subcritical growth

n—2 s l_g .
Agu+(mSg—l—h>u:u2 ! , u>0, in M,

where 2% = % is the critical exponent for the Sobolev embedding, h € C*°(M) and ¢ is a

small positive parameter.

This chapter is organized as follows. In Section 9.2, we describe the proof of the main result.
Section 9.3 is devoted to perform the finite dimensional reduction. Section 9.4 contains the
asymptotic expansion of the reduced energy.
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9.2 The existence result

Let H2(M) be the standard Sobolev space defined as the completion of C°°(M) with respect

to the norm
1/2
ullgzeary = </ (Agu)? dpg +/ |V ul? dp, +/ u? dug> .
M M M

Let LY(M) be the Banach space equipped with the standard norm

1/q
aly = ( [ dug) 7
M

The Sobolev embedding theorem asserts that H2(M) is continuously embedded in LI(M) for
1 < ¢ < 2% and this embedding is compact when ¢ < 2%

Since P, p is assumed to be coercive, we can provide the Hilbert space H3 (M) with the inner
product

() = [ Pt disy = [ 18080+ (4, + B) (V,0,,0) + aue] dy,
M M

which induces the norm equivalent to the standard one
1/2
ot = ([ [0+ (4 BT+ i) )

It will be useful to rewrite equation (9.9) in a differential setting, we introduce the following
operator.

Definition 9.3. Let i* : Ln%(M) — H2(M) be the adjoint operator of the embedding i :
H2(M) — L¥ (M), namely

i"(w) =u < (u,v) = / uv dpg, Yo € HY (M) < P,g(u) =w on M, u € Hy(M).(9.10)
M

By the continuity of the embedding H2(M) into L¥ (M), we get
-k _2n_
|i*(w)|| < Clw|anjmay for any w € Ln+i(M), (9.11)
where C' is a positive constant independent of w.

We can rewrite equation (9.9) in the equivalent way

w=i(f(w), ueHY(M), (9.12)
262



CHAPTER 9. BLOW-UP SOLUTIONS FOR PANEITZ-BRANSON TYPE
EQUATIONS WITH CRITICAL GROWTH

where f.(s) := |s[¥"2<s.

Let 6 be a positive number less or equal than the injectivity radius of M and x be a smooth
cut-off function such that 0 < y < 1in R", x = 1 in B(0,6) and x = 0 out of B(0,24),
Vx(2)] < 2 and [V2x(2)| < 3.

For any point £ in M and for any positive real number )\, we define the function Wy on M
by

1 4—n -1 1 . .
Wye(e) = X (exp5 (93)) A2 U ()\ expg (1‘)) if v € Bg(ﬁ, 20); (9.13)
’ 0 otherwise,
where
1 n—4
2 n—4
U(z) = an (TW) , with o, = (n(n —4)(n” —4)) ¥ . (9.14)
In particular, the functions A"z U(\~!2) satisfy the following equation (see [80])
AU =U*"inR*, ue D*R")
where A = —div(V) is the Laplace-Beltrami operator in R™ associated with the Euclidean
metric.
We will look for a solution to (9.12), or equivalently to (9.9) of the form
U = Wi e + dene  with A(t) = Vet, t > 0,and £ € M (9.15)

where the functions Wy_() ¢ are defined in (9.13), and the rest term ¢, » ¢ belongs to the space
K ()¢ defined as follows.

It is known that (see [82]) every solution of the linear equation
A% = (2! = 1)U % in R", v e D**(R") (9.16)

is a linear combination of the functions

d (A4=M2U (A 12)) n—4  |z?-1
_ — 1
Vo(2) d\ ‘,\:1 G 2 (14 |z2)(n-2/2’ (9.17)
and
Vi(z) = _8zi(z) :an(n—4)(1+|z|2>(n_2)/2 for i=1,2,--- ,n. (9.18)
Let us define on M the functions
: @) NFV (M lexp () if @ € By(€, 20);
VA p— (eng (l’)) 7 pg g\s» ’ 1
2e(@) { 0 otherwise, (9.19)
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for i = 0,1,2,--- ,n. We also define the projections II, ¢ and Hig of the Sobolev space
H3(M) onto the respective subspaces K¢ = Span{Zj,: i =0,1,2,--- ,n}
and Kf’g ={¢p e H}(M): (¢,Z§’£> =0,vVi=0,1,2,--- ,n}.

Finally, in order to solve problem (9.12) we will solve the system

Iy e (W + 6 =i [fe Wawe+9)]} =0, (9.20)

My e {Wae + 0 =7 [fe Wae +0)]} =0 (9.21)

Equation (9.20) is solved in the following Proposition, whose proof is postponed to Section

3.

Proposition 9.4. If n > 7 and \.(t) is as in (9.15), then for any real numbers c; and co
satisfying 0 < ¢1 < ¢o, such that for € small, for any point & in M, and for any real number
t in [c1, ca], equation (9.20) admits a unique solution ¢. ¢ in K)t(t),& which is continuously
differential with respect to & and t, moreover,

3

C
||¢E,A,g||so{“ if n=7

ellne] if n>8. (9:22)

where C' is a positive constant dependent on ¢y and c;.

Then, we introduce the functional J. : H2(M) — R defined by
1 1 f_e
{@(u)::§¥K;f;3(uytdug—-%__gtz;uz iy

whose critical points are solutions to equation (9.9). We also define the functional j; ;
R% x M — R by

ja(ta €)= J: (Wi e + dene) (9.23)

where Wy_ ;)¢ is defined as (9.13) and ¢. ¢ is given by Proposition 9.4.

The next result, whose proof is postponed until Section 4, allows to solve equation (9.21), by
reducing the problem to a finite dimensional one.

Proposition 9.5. (i) If n > 7 and \.(t) is as in (9.15), there holds

(n—4)* (n—1)
16

(n —6)(n* —4)

2 _n
J-Wi.t)e) = ﬁKn : {1 — Che — eln (et) + TryB(§)et + o(e) }9.24)

as € = 0, C'—uniformly with respect to & in M and t in compact subsets of R%.. Here

c, = 2n-4(n_4)2wn71 /+oo r'z In(1 +r)dr+ E(;(zn—:l; (1 ol m) '

Wh, (14+r)
264




CHAPTER 9. BLOW-UP SOLUTIONS FOR PANEITZ-BRANSON TYPE
EQUATIONS WITH CRITICAL GROWTH

(17) If n > 8 and A\.(t) is as in (9.15), there holds
ja(tag) = J-(Wi..¢) + ole) (9.25)

as € = 0, C'—uniformly with respect to & in M and t in compact subsets of R. Ifn =7
estimate (9.25) holds only C°—uniformly with respect to & in M and t in compact subsets of
R* .

+

(1ii) For e small, if (t,€) is a critical point of the functional J., then Wi.t),e + Gepe 15 a
solution of (9.12), or equivalently of equation (9.9).

Proof of Theorem 9.1: By (i) and (ii) of Proposition 9.5, we have
J.(t,€) = Oy — Cye — Cseln (et) + C4Tr,B(&)et + o(e) as € — 0.
Here C', Cy, U3, Cy are positive constants which only depend on n. We define the functional
J R x M — R by
J(t, f) = —Cg Int + O4T’f’gB(f>t

If n > 8 we argue exactly as in the proof of Theorem 1.1 in [90]. It n > 7and TryB has a
strict global minimum point with miny; Tr,B > 0, then the function J has a global minimum
point which is stable under C°—perturbation, which easily implies the existence for & small

enough of a critical point (t.,&.) of the function J. such that & approaches the minimum set
of TryB as € goes to zero. The claim follows by (iii) of Proposition 9.5.

9.3 The finite dimensional reduction

This section is devoted to the proof of Proposition 9.4. Let us introduce the linear operator
Lepe : K¢ = Ky defined by

Lepg(9) =Ty (e 10 — " [fL(Wa)9] } -

This operator is well defined because of (9.11). Therefore equation (9.20) turns out to be
equivalent to

Lepg(9) = Nexe(d) + R, (9.26)
where
Nope(9) = T e {7 [fe W + @) — F-Wa ) = FL(Wa. )9 } (9.27)
and
Repe = Hi(t),g L (f-Waiwe)) = Wawe ) - (9.28)

As a first step, we want to study the invertibility of L. 5.
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Lemma 9.6. If \.(t) is as in (9.15), then for any real numbers c; and co satisfying 0 < ¢; <
co, there exists a positive constant C' dependent on c¢; and co such that for e small, for any
point & in M, any real number t in [c1, co, and any function ¢ € Ki(t) ¢» there holds

[Lere(@)]l = Cligll- (9.29)

Proof. We argue by contradiction. Assume there exist a sequences of (¢,), converging to 0,
a sequence of points (£,), in M, a sequence of real numbers (t,), in [c1, 2], and a sequence
of functions (a)a € K. (., satistying

Lepre(ta)£a(Pa) = Yo, @all =1 and libal| = 0. (9.30)

For any «, for notation’s convenience we will write A\, = A._(t,). From (9.30) we get there
exists (o € K, ¢, such that

Ga — 0" [J2,(W, g.)ba] = ta + Ca. (9.31)
We set ga(2) = expf g(Aaz).
Step 1. We claim that
I<all = 0 as o — oc. (9.32)

Let (o, = > C’ZYZimga. For any j =0,1,--- ,n, we multiply (9.31) by Zioufa’ and taking into
i=0

account that ¢, v, € K )J\_ouga’ we get

D CilZ e Ben) = = (@ [F1aWinie )bl s 2 e0) - (9.33)
i=0
Fori,7 =0,1,--- ,n and any «, we have
(ZhooBoc) = | PanlZh) g, g

= / AgZia,gaAgzia,ga dpig
M
+/M<Ag+B) (ng;a,gaangia,ga) dpig

™ / 02560 3 e Uty
M
=. Il +[2+[3 (934)
By (9.55) we have

I = /AQZ;Q,EaAgzia,éa djig
M
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— b / Ay (x (expg, (2)) Vi (A" expg, ()
By (£a,26)

XAg( (expg (z ))V; ()‘ eXPyg, Ha ))) dptg
_ - 0* (x(Ma2)Vi(2)) ¢ 9 (x(Maz)Vi(2))
= /3(072/\;15) ( Z (ga (2) 82,02 — )\arab()\az) 0z ))

a,b,c=1
- 0% (x(\a2)V;(2)) 0 (x(Aa2)V;(2)) 1
ab o J _ Te o J 3
X <a7b720:1 (ga (’Z) 8za82b )\a ab(AO&Z> 820 ) ’ga(’z)’ dZ,
. AQ‘/; d .f . — -;
{ ({R : ;f z%i as o — +oo. (9.35)
Moreover, setting (Ay + B)o(2) = (A + B)(exp, (Aaz)), we have
L, = /(Ag+B)(V Z e VoZ3 ¢) dpg
M
- Aot B (T (e () Ve (3 e ()),
BQ goz 2
Vy (x (expg, (2)) Vi (A" expg(2)))) iy
- 1 V() Ix(Aa?)
= x*a/ Ay + B)a ;@ﬁf’z(— Aaz) + Vi
g 2o (0 Btz (5% s + 2o
L v, ox(2)., ;
(1200 + 2Ly ) a2
— 0as a— 400, (9.36)

and setting a.(z) = a(expg, (A\a2)) we also have

Iy = / aZy, e 23, . ditg
M

= )‘i_n/B ) ax? (expgm1 (:L")) Vi ()\;1 expgal(x)) V; (/\;1 expgal(x)) ditg
(€2

= [ ANV )l

— 0as a— +oo. (9.37)
Then from (9.34)- (9.37) we have

i j Jon AV dz if i = j;
<Zxa,£a’Z§a,5a> - { ()R if i# 7. (9.38)

Now, set

5@(2) . )\51%4)/2(% (expga()\az)) if z € B(0,2)\;'0),
0 otherwise.
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By (9.30), we deduce that the sequence {@a}q is bounded in D22(R"), where D22(R™) is
the completion of C§°(R") with respect to the norm ||| p22@ny = HAuHLz rn). Passing to a

subsequence, we may assume that {(ba}a converges weakly to a function ¢ in D* 2(R"), and
thus in L2 (R™) by the continuity of the embedding of D2(R") into L (R™).

Since, for any «, the function ¢, € K /\nga, we have

0 = (Bogta) = [ PunlZq)on duy
= / NgZ3 e Dgda+ (Ag+ B) (VoZ3 .. Vyba) dpg
M
+/ aZia’gaqba djtg
M

= / AV;Ad dz +o(1)  as a — oo, (9.39)
Since the function V; solves (9.16), it yields that
AV;Ap dz = (2° — 1)/ U* 2V, dz = 0. (9.40)

Rn

Moreover, we have

<Z [ o W/\a §a)¢a}a Ao §a>
— /];4 féa (WAmfa ) Z/]\a Sa qbad'ug

_ / £ (Whe e )x(expt (2) A Vi(Ast expet (1)) badiy
M

_ o / 12, (X222 U(2)) X2V (2)dl2) dity,

B(0,22516)
(n=4ea Eo e, ~
= @ oreah [ U X aVa:) (i,
B(0,22516)
— (2F - 1)/ U(Z)Qn_QV}(z)QE(z) dz=0as a = 400, (9.41)
# n—4)eq ~ ~
because Ao ? = (o)1 — 1, the sequence {q }o converges weakly to ¢ in D>2(R")

and (9.40) holds. It follows from (9.33), (9.38) and (9.41) that for any i = 0,1,--- ,n C* — 0
as a — 0o and, so (9.32) is proved.

Step 2. We prove that

lim inf / fL (W, e )u? dug — 1, (9.42)
a=oo  Jar « ?
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where
Uy = Go — Vo — Cay  with  [Jua]] = 1. (9.43)
Let us write equation (9.31) as

Py p(ua) = fL (Wi, e)ta + L, (Wi, e.) (o + Ca)- (9.44)

If we multiply (9.44) by u,, we get

Jua|* = /Mfe'a(WAa,ga)Ui djig +/Mf£a(WAa,fa)(% + Ca)Ua dpig (9.45)

By Hélder inequality, from (9.11), (9.30) and (9.32), then we have

'/ féa(WAa,sa)(% + Ca)Ua dpig
M

< L W), 1+ Calon s [talan s = 0(1). (9.46)

Therefore, from (9.43), (9.45) and (9.46) (9.42) follows.

Step 3. Set
(n—1)/2 : 15y
i (2) = Ao g (expe, (Aa2)) if 2 € B(0, 20.16); (9.47)
0 otherwise.
We claim that
U, — 0 weakly in D**(R") and strongly in L?(R") for any ¢ € [1, 2%). (9.48)

In fact, by (9.43) we get that (@4)s are bounded in D*?(R™). Then, up to a subsequence,
o — @ weakly in D*?(R") and strongly in LI(R") for any ¢ € [1,-2%). By (9.44) we casily

deduce that @ solves the linearized problem (9.16) and by (9.40) we also deduce that the
function @ is identically zero and (9.48) holds.

Therefore, we have that

a—00

lim inf / fL (W, ea)u? dpg — 0. (9.49)
M

In fact, by (9.48) we deduce that the sequence ( s/a(W/\a,Ea))a converges strongly to f(U)
in L3(R") and by the fact that the functions @2 are uniformly bounded in L#-1(R") and

«
converge almost everywhere to zero in R™ we deduce that they converge weakly to zero in

L1 (R™).
Finally a contradiction arises, because of (9.42) and (9.49).

That concludes the proof. O
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Next, we want to study the estimate the term of R. 5.

Lemma 9.7. If \.(t) is as in (9.15), then for any real numbers c; and cy satisfying 0 < ¢; <
Ca, there exists a positive constant C dependent on ¢ and co such that for e small, for any
point & in M, any real number t in [c1, c3|, there holds

3

if n="7,

<
1Bl C{ el lne| if n>8.

(9.50)

Proof. Let us introduce the function Z, ¢ defined by Wy ¢ := i*(Zy¢), i.e. Pyp(Wie) = Zag
on M.

By (9.28) and (9.11), we get there exists a positive constant C' such that for € small, for any
point & in M and any positive real number ¢ € [¢1, ¢o], there holds,

[Rerell < Clfe(Wae) = Pop(Wig)] 2

The claim will follow once we prove that

3

if n="1;

00 = sl <c{ 5 nST 9.51)
We have
[eWae) = PopWag)l 2n < [fe(Wie) = foWag)l 2
+1foWae) = Pop(Wae)] 2n - (9.52)

Let us estimate the first term of the right hand side of (9.52). A change of variable yields
(setting x-» = x(A:(t)2))

00 = f00s0) 2,
OA(t ) X2ﬁ>\ 1—¢ (U2ﬁ—1—s _ Uzﬁ—1>

CH <)\s —s 21— ot 1) vz,
+ ( Xe A Xs)\ L7FT (R
= O(lelng|), (9.53)

:O(/ ’U2ﬁ15 -1
B(02\:(t
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and

)\27?0 Snfl 2n_
= 0 [ 1+327LT_45—1H+4 dz
(/ ava )

%?t) st i
= 0 d
</ (T+s2)" )
- 0 <5%> ,

/ ()\g(t)"T"laXzﬁ)\—l—a . ngi)\q) Uzﬁ_l

on 72/\5(75) Sn—l +oo Sn—l
= In A (2)|»+2 —d - d
) |5n (t)] +4/0 (1+ s2)n Z—l_/5 (1 + s2)n <

- 0 (|€ln A()]755 + Aa(t)”) o
= 0 (\slnd%) :

—4
z 5 eln(1 + s?)

2n
n+4

dz

Let us estimate the second term of the right hand side of (9.52).

We claim that

P,pu=A’u+Ru, Ru=0 (|u| + |Opu| 4 |02 u| + ]m||8fjku| + |:U|2|8fjlku|) ) (9.54)

In fact, by standard properties of the exponential map, in geodesic normal coordinates, there

hold

and

Agu = —Au+ a”0}u + b Ogu, (9.55)
a(x) == — [ (x) — 6 (x)] = %Rmﬂj (292 + O(|2?), (9.56)
Vi (x) := g (x)Ffj(x) = 9% (&) + O(|z|?). (9.57)

By (9.55) we can compute

Ay [—Au+ a0%u + b"Opu]
= —A[-Au+d” 0l u+ bhﬁhu} + aijﬁfj [—Au+ a0 u+ bhf)hu}
+b50), [—Au + a0 u + b"Opul

and by (9.56) and (9.57), using the definition of P, g, estimate (9.54) follows.
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We perform a change of variable z = exp, U (2) and set Uy(z) := A="2 U(z/)\). By (9.54),
taking into account that A?U, = fo (Uy) we deduce that

Py s(Wae) = fo(Wie) = RUN + 1, (9.58)
where 7 := Py pg [(x — 1) (Wxe)] — (X? — x) fo (Wae) -

We also point out that for some positive constant ¢ we have

1
0:U] < e———, 05U + [2[105 U] + |2*|05u U] < e——
(14 [2?) 2 (1 + [zf?) 2

Therefore, by (9.54) we deduce
IRU| 2, = O (10 + 10U + 1050 + el |93Ua] + o105 | 2, )
O (XN°) ifn>09,
= { O(N[In}]) if n =38, (9.59)
O(A%> if5<n<T,

because

A1 A ifn: 12,

n

)\T> if 5 <n <11,

10 22, =
(A?) if n > 11,

(A*]In Al) if n = 10,
(\3) it5<n<o

and

O (XN?) ifn>09,

102.05] + 121182 Un| + |20k Un]| 2 = ¢ O (V[InA]) ifn =8,

nzi':‘l B n—4
O(AT) if5<n<7.
Is it easy to check that the term
7l e, =0 (IRUA 22, ) (9.60)
Finally, by (9.58), (9.59) and (9.60) we get
O (e) iftn>09,
[fo(Wae) = Bop(Wag)l 2n = O (elIne]) if n =8, (9.61)
O ( 1) ifn=".
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Finally, by (9.52), (9.53) and (9.61), estimate (9.51) follows. O

Proof of Proposition 9.4: For £ small, for any point £ in M and any positive real number
t € ler, e, welet T ¢ KAL,& — K/\%g be defined by

Tene(®) = L5 e (Nene(d) + Rene) s
where N; ) ¢(¢) and R, ¢ are as (9.27) and (9.28). We also set
Boae(y) = {0 € K¢ | [0l < vl[Renell}

where 7 is a positive constant to be chosen large later on. We take A = A.(¢) for some real
number ¢ in [c1, co]. In order to solve (9.20) or equivalently equation (9.26), it suffices to
show that the map T ()¢ admits a fixed point ¢, »¢.

By Lemma 9.6, we deduce that

[ Ter.06(@)]| < C ([[Nea-e(@)]] + [ Bencoell) - (9.62)
and
T rc0.6(01) = T @) < C (| None(@1) = Noe(@2)])) - (9.63)
By (9.11) and (9.27), we deduce
[ Nexe(@)]| < ClEWawe +0) = f-(Waie) = FL(Wai£)9] 20 E (9.64)
and

INorte(61) = Neaooye(02)]|
S C ‘fa W)\E(t)7§ + ¢1) fE(W)\E(t )€ + ¢2) - fé(WAE(t)’g)(¢1 — ¢2)‘27n . (965)

n+4

Then by the mean value theorem and Holder and Sobolev inequalities, it follows that, for
any 7 € (0, 1), we have

| feWae + ¢1) = fe(Wae + 02) = [L(Waiwe) (61 — ¢2)|n%
= |[fE(Waie + 702+ (1 =7)b1) — fL(Wi6)] (61 — ¢2)|n%
< L (Waye + 702+ (1= 7)o1) — fé(WAs(t),s)‘% |[P1 — Palys
< ClfEWaye + 700+ (1 =7)o1) — fé(WAs(t),iﬂ% [¢1 — 2|

By Lemma 8.16, we deduce that

Wi+ 01) = FoWatoe + 02) = FL(Wa0.0) (@1 = 62)] o
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_ (il 10l ) N — el if n > 12
T CUWarels + 101l + 12l) T (0alas + I2lye) 61 — dall i 5 <m < 12,
=L eIl el ) o — ol 21z oo
T O (Wl + 11l + 1620772 (ull + el 6 — doll - i 5<n <12,
Taking ¢, = ¢, ¢ = 0 into (9.66), from (9.64) we have
||N5)\ (t)§(¢)H < { CHQSHQLI_E 243 2 of _1_ ?f n= (9.67)
o C (IWnelZ ol + 61 1) i 5<n <12,

n—1
2f of S
’ As(t)vflzﬁ /M‘ /\e(t)vﬁ‘ Hg @ </B(O, % (1+82>n 5) O( )> (9 68)

e
then we have |[Wy_¢% 2~ = O(1). From (9.62), (9.63), (9.65), (9.66) and (9.67), for any
functions ¢, ¢1 and @9 in B. x_)¢(7) and for € small, we have
C (7 Bepeq el 72 + ||Re,A5(t>,5||) if n > 12;

Toxwe(@)]| < .
H g,Ae(1),€ H C 72||Rs,/\g(t),£||2 + ,yzﬁfl—sHRE’)\E(t)’&Hﬁ—lfs + HRE,Aa(t)é‘D if 5<n <12,

and

f_o_ f_o_
| Tenee(61) — Tenc.e(02)|| < CY* 2 | Reperell” 27 [l — 2l

where C'is a positive constant independent of v, ¢, £, ¢, @, 91 and ¢. By Lemma 9.7, it follows
that if v is fixed large enough, then for e small, for any point £ in M, and any real number ¢
in [c1, ¢a], T:x.(1),¢ is a contraction mapping on Be x_1)¢(y) and satisfies

¢ c Bs,)\g(t),ﬁ(fy) - TE,Ae(t)7£(¢) € Bs,Ag(t),§(7>7

therefore T, _(1)¢ has a fixed point ¢, »¢ which satisfies (9.20), and (9.22) holds from (9.50).
The regularity of the map (¢,£) — ¢. ¢ can be proved by standard arguments involving the
implicit function theorem.

9.4 The reduced problem: proof of Proposition 9.5

Let K,, be the sharp constant for the embedding of D22(R™) into L¥ (R"), i.e.

4
1 nn?—4)(n—4)w;
K, 16 ’
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where w,, is the volume of S™.

Proof of (i) of Proposition 9.5:

Let us prove the C?—estimate. The C'—estimate can be proved using the same argument as
in [87, 90].

In Section 4 of [50] it was proved that for n > 7

1
3 /M Py (Wa..e) Wai.e ditg

= K {1 - [n(n 4_(2){;2)_ 1 (Try Ayl + Tr,B(E)) - 6((7; T foi) Scalg@} w)?}
+0 (A:(1)?)

I 4(n—1) . . _ n(n® +4n —20) N .

L {1+ =60 — T ((T o A0() + Try BE)) = 5 S 19(5)) t}
+o(e), (9.69)

as £ — 0, C®—uniformly with respect to £ in M and ¢ in compact subsets of R .

Now, let us estimate the term Z%E S I Wf:&fg dpig. It is useful to introduce some notations.

For any positive real numbers p and ¢ satisfying p — ¢ > 1, we set

[‘1:/%0 i ds andfq:/+oomds.
P o (1+s)P P 0 (1+s)P

As is easily checked (see [8]) there hold

+1 q+1 p—q—1
Ig+1 = m]ngl and ]g+1 = Tlg
Moreover, we have
nwy, oK

2 = = .
" 21 (n —2)w,—1 a2(n—2)(n—4)(n? — 4w,

We also recall the Cartan expansion of the metric

1
VIgl(z) =1 =2 Riz'2" + O(=%),

where the R;; is the component of the Ricci tensor in the exponential chart and |g| is the
determinant of the components of the metric g in geodesic normal coordinates. Moreover,
we point out that

n_< n ~n—2
K 2 4 —[,7 e+ O(e2).

2 n=2 n—4.n=2 n
[ 20, =D + T]nQ e+0(), and 7 ,_, =17 +
2 2
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Finally, using both the previous facts, we compute

1 2’3—5
3, W

= ! /M <X (expgl(x)) A(t) 2 U ()\5(75)71 expgl(l’))fu_a dptg

28 — ¢

= 0T [ U @) ds

B(0,26/X¢(1))
_ 1 L_Zlg 2’1—5
= o) / U lg2l(2) dz
B(0,5/Xc (1)
1 L*‘l 2t ¢
2
= A0 ( ) V1926l(2) dz
05/>\E
of _ nd.
an
- oo [ (3 ) " Joed ) d
B(0,6/A:(t))
2n75 n—2 n
R W () R i I Scal JE17 s A(8)* + o(A(1)?)
M — ¢ 2 ”_TE 3 €
s a2 w 1 n=2 o —4.n=2 1 n
— e mn n— 2 772 ~_ 2 2 2
= A(t) 2 T E— ([n +— I,* ¢ 6nSCalg(§)In Ae(t)” + o(Ae(2) ))
ws_(n(n —4)(n? — 4))T T S,y [ nz2 4. 1 0 ,
— In2 —I - 1 [n2 € 3
A (t) e : + e o-Scaly ()1 A () + o(Ac(1)?)
B (n(n—4)(n2—4))%wn_1n—4 n=2 p—4 n=2
_ 5 o {In n 1,7 eln(\.(t))
n—4 sn2 5 1 5 2 2
+7 (mn +(1—nln/nln— )L ) = — —Scal, (L A-(t)? + o(\-(1) )}
 n—4(nn—4)(n?—4)5 w, , u2 —4
e 5 I {1 n eln(\.(t))
1 n—4/ -n=2 B — 2y 1 2 2
=5 (nI* + (U =nln/n(n =21 ) e = ——— gy Sl (X0 + 00 (1) )}
n—4 _n n—4 n—4 ne2 <l—nln n(n—4)>
= K,*q1 | I,*
o { + eln(et) + - / + p— 5
L Seal, ()et + (5)} (9.70)
6(n—2) cal, 0 , :

as ¢ — 0, C’—uniformly with respect to £ in M and ¢ in compact subsets of R* . Thus, (9.24)
follows by (9.7), (9.69) and (9.70).
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Proof of (ii) of Proposition 9.5:
We argue as Lemma 4.2 in [90]. Let us write:

Jo(t.€) = J-(Wi.).¢)
= /M (Pos(Wa.ity.) = J- (W) Pene ditg

_/M (Fs(Wks(t)é"‘Cbe,A,é) _F(WAS ) fe(WAE(t)f)QbaAg) dug, (9.71)

where F.(u) = [, f-(v) dv. We firstly estimate the first term in the right hand side of (9.71).
By Hoélder and Sobolev inequalities, we have

'/ (Ps(Wiw.e) = f-(Wiye) Pene ditg
|Pos (W) = fe(Wa)] 2, 102 rel
< C|PsWiwe) — f-Waw.e \ o [Perell = o(e), (9.72)

IN

because of estimates (9.51) and (9.22). Next, we estimate the second term in the right hand
side of (9.71). By the mean value theorem and Holder inequality, it holds that

’/ t(Wiie + Gene) = FeWaiy.e) = F-(Waw.e)Pene) ditg

f_o_ f_
< / Wi e P2ne dig + / Sené dhg
# #
< Cloeneld (IWaeld ™7 +16enel2 ™)
f_o_ |
< Cllgenell (IWnweld ™7 + loanel*=7%) = 0(e), (9.73)

because of (9.22). The C®—uniform estimate (9.25) then follows from (9.72) and (9.73).

Now, let us show the C' —uniform estimate (9.25). From Proposition 9.4, for & small, for any
point £ in M and any positive real number ¢, there holds

DI (Wi ). + d=p6) = Z Chrm.el 2 .60 (9.74)
i=0
for some real numbers CY IOV IRERE C,T\:(t),p where the functions Zf\g(t),g are as in (9.19). First,
we claim that
Z [Suy: (e¥*ifn="7, ¢|lne| if n > 8). (9.75)
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Indeed, for 7,5 =0,1,2,--- ,n we have

HViH%zz(Rn) if i=j;
) {0 if i . (9.76)

On the other hand, from (9.74) and (9.76), for i = 0,1, -+ ,n, there holds

(Ze Do

DI (Wi + 0=p )23 el = Ch eIVill pooany +0<Z|Cﬂ g|) (9.77)

=0
Let us prove that

DJ. (W, (. + Gene)[Za iyl = O (" if n =17, e|Ilne| if n > 8). (9.78)
Estimate (9.75) will follow by (9.77) and (9.78).

Let us prove (9.78). Since, for ¢ small, the function ¢. ¢ belongs to Kj’)\@, by Holder
inequality and Lemma 8.16 we have

DJ.(Wx )¢ + ¢6,)\7E)[Z§\5(t),§]

= /M(Pg,B(WAE(t),s)—fs(WAE ¢)) Z5. e diig
- /M (fe-Wiittre + bene) = F-Wiae)) Z. e ditg

=0 (\Pg,B(WAE(t),s) - fs(WAg(t),s)t% ‘Z/i\g(t),g‘mz)
+0 <’¢€,A,§’23|Zi5(t),§‘2u <’WAa(t),£’2gLQiE + |¢s,x,g|2£7275>)
= O0(ifn=1, ¢|lne|if n > 8), (9.79)
because of (9.51) and (9.22).
Finally, let us compute the derivative of jg(t, €). Firstly, we remark that
dWi.t).¢) _ 1 70

=08 — =280 (9.80)
which implies

dJc(t,§)  dJ-(Wx.e)
t dt

t
/M (Bos(Z e — L (W0, 28 o0) bemne ity

d

1

it

/]V[(fs(W/\E 16t bene) = feWae) = FLWa.)Pene) 23, e Mg}
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d(qba,)\,g)}
dt '

+DJ. (W)\E e+ ng)\g) l (9.81)

Secondly, if § = £(y) = exp,(y), y € B(0,7), with £(0) = &, we have for any i = 1,2,--- ,n
(see estimate (6.13) in [87])

OWx. (0).expe (v)) :
hila =7 R R = O(\(1)%), 9.82
By ymo (D) e T Bvme  [[Bxwell (A(2)7) (9.82)
which easily implies
OJ-(texpe(y))|  OL-(Waexve)
0y; y=0 y; y=0

1 .
= )\E(t){/M (Pg,B(Z;E(t),g) f (W)‘a(t)f)ZAg )(bz-:Ag d,ug

/ (fe-Wie + bene) = F-Waiwe) = FLWii,6)Pene) Zaoye Mg}

a(¢a,A,exp§(y))
9y

We will estimate each term of the right hand of (9.81) and (9.83). By Holder inequality and
(9.22), for i = 0,1,--- ,n, we have

DLW+ 0uns) | Lot IR s

‘/ (Po.8(Z5(1).¢) = FEXWi.6) 25 1)) Pene dig
< ‘ 9.8 ZAE(t fs/(W/\a(t),é)Zg\s(t){‘% | Pen 22
= 0O (53/2 ifn="7, |lnelif n >38), (9.84)

because arguing exactly as in the proof of Lemma 9.7, we can show that forany i =0,1,--- ,n

| Po5(Z5.e) — fE’(WAg(t),E)Zf{S(t)A% =0 (g% if n =17, ellnelif n > 8) (9.85)

From Lemma 9.7, by Hélder inequality and (9.22), we have

’/ (feWiwe + bene) = f-(Wine) — FrWaiiw).€)bene) Za. e ditg

( CfMI/VQﬁ 3,5 ?MZ d,ug if n>12;
<
) CfM [ ,\2”(,53 Piaet ¢§u,\_51_6] A (edhg 15 <n <12
[ Cloenel’an W2 el it >12;
<
C (16onele WEGSE 28 el +10rels 1 2 gl ) i< <12
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= 0(¢%), (9.86)

because ]Wf (_tfgaZf\ nelz =0(1).

Finally, since the function ¢. ,¢ belongs to K- 6 rom (9.74) we have

d(¢. (o,
DJ.(Wi. ) + Pere) {%} = ZC& - <ZJ e (de;;\,ﬁ)>

. A7 )
J— J E(t)vg
- ijo C e(1),€ < dt 7¢E,)\,£ 5 (987)

and fori =1,2,--- ., n
8(gbsz\exp (y)) - ; ; a(¢5Aexp (y))
DJ. (Wi + Gene) | —2—— }: 4 <Zﬂ , —— >
( >\6 f ¢ Aﬁ) |: ayz y:0 JZO 6(t)7£ )\g(t)7£ ayz y=0
" [ e
= > B — 52| e Y088
; E(t),§< Dy ly=o Peng )(9.88)
It is easy to check that
. i-n _
|| |, L (o ly))] =0(1) (9.89)
dt 2t d\ = ’ ‘
and
o(Z? 1 . 1
M H Vil _ O (_) (9.90)
8yi y=0 )\g<t> Gyz /\E(t)

By (9.87) (9.89), (9.22) and (9.75), we get

d(¢. -
DJ.(Wi_ ). + Gere) [%} = 0O (”@,A,&H Z ’C]E(t),§’>
=0

= 0(&ifn=7, &|lnel*ifn>8), (9.91)

and by (9.88),(9.90), (9.22) and (9.75) we get

[de el EO G0l

UG [
N0

Oy

DJ.(Wi.(t) + Pere) {
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= O(eifn=7, "* el if n > 8) (9.92)

By (9.22) and (9.82) we get

O (lIgerell 1 Br.0el) = of(e). (9.93)

Finally, collecting all the estimates (9.81), (9.83), (9.84), (9.86), (9.91), (9.92) and (9.93) we
get the C'—uniform estimate (9.25).

That concludes the proof.

Proof of (iii) of Proposition 9.5: We argue exactly as in [90], see also the proof of Lemma
8.9 in chapter eight.
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