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Resumen
Desde que Andersen et al. introdujeron los “multi-row cuts”, ha habido mucho
interés en ellos. Sin embargo, la cantidad de estudios computacionales ha sido
limitada. La mayor parte de las investigaciones se centran en los multi-row cuts
que pueden deducirse usando dos filas, relajando las cotas de las variables o, al
menos, de un tipo de las variables. En este último caso, se relaja la integralidad de
las variables no básicas. Asimismo, la mayor parte de las investigaciones busca
sólo la separación exacta.
En esta tesis, utilizamos un enfoque numérico que nos permite explorar relaja-
ciones más complejas e introducimos un esquema de separación aproximada, que
pueda ser útil desde el punto de vista de la implementación práctica. También, in-
corporamos criterios sencillos para aprovechar la integralidad de las variables no
básicas. Es importante asegurar que los cortes generados sean válidos, por lo que
incluimos métodos que buscan la estabilidad numérica, minimizando la creación
de cortes falsos.
Una vez obtenido el tableau, buscamos “deep cuts”, que definimos como cortes
(αx≥ 1) que minimizan ||α||. Para encontrarlos, resolvemos el dual del problema
de minimización mediante generación de columnas.
Probamos las normas `1 y `2, y la no-linealidad es resuelta aplicando la aproxi-
mación del cono de segundo orden de Ben-Tal and Nemirovsky. Para acelerar el
proceso, buscamos representaciones violadas de algunos puntos fijos.
Igualmente, probamos diferentes criterios para la selección de filas: al azar, mayor
producto punto y menor producto punto. Para obtener una idea más acabada sobre
la capacidad de los multi-rows cuts, utilizamos todas las combinaciones posibles
de filas para generar cortes, pero sin agregación de filas. Comparamos esto último
con los resultados de Balas respecto al split closure.
Finalmente, analizamos el impacto en el nodo raı́z de estos cortes sobre la librerı́a
MIPLIB3 y elegimos una buena configuración de las distintas opciones para pro-
bar en branch and bound.
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Abstract
Since Andersen et al. there has been a lot of interest in multi-row cuts. How-
ever, computational study has been limited. Most research considers multi-row
cuts deduced from only 2 rows and they use bounds on none or only on one type
of variables, always relaxing integrality of non-basic variables when bounds are
taken into account. Also, most applications aim to exact separation as well as
using fixed convex lattice free bodies to separate.
In this work we try a numerical approach that allows us to look into more complex
relaxations and we introduce an approximated separation hoping for a practical
implementation to be possible. Extensively numerical analysis has been done to
ensure numerical stability and minimize the creation of false cuts. Also, we incor-
porate some simple forms of taking advantage of integrality of non basic variables.
Once the rows of a tableau are obtained we search for a “deep cut” which we un-
derstand as a cut (αx≥ 1) that minimizes ||α||. To find it, we solve the dual using
a column generation approach.
We tested both, `1−norm and `2−norm, where the latter one is treated using Ben-
Tal and Nemirovsky approximation of the second order cone. In order to speed
up the process we seek for violated representations of fixed points.
Different criteria for row selection are tested: random selection, largest dot prod-
uct and smallest dot product. To give a more complete idea about the strength of
multi-rows cuts, we also generated all possible cuts using all combination of rows,
but without aggregation of rows. We compare this to Balas computations of the
split closure.
As for the experiments done in this work, we analyze the impact in the root node
of the procedure (using various rounds) over MIPLIB3. Also, we select a good
configuration and test its performance in branch and bound.
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1 Introduction
The most powerful approach to solve general MIP we have today is branch and
cut. Although branch and bound has been around since its introduction by Land
and Doig in 1960, it was not until the implementation of cuts that we were able
to solve big and difficult problems. Maybe the most important family of general
purpose cuts are the GMI [8]. These cuts are obtained after studying mixed inte-
ger sets with only one constraint.
For the pure integer case, it is known that a cutting plane algorithm converges
when GMI cuts are used, but this is not true for the mixed integer problems. Fur-
thermore, in [10] a three variable mixed integer problem, with infinite Chvatal-
Gomory rank, is presented. This means that simply adding cuts derived from one
row relaxation of the tableau (in particular, GMI cuts) will not solve the problem.
Recently, Anderson et al. [3] showed that a single cut derived from a two row re-
laxation is enough to solve this problem. However, the example was generalized
by Li and Richards [19], so this behavior repeats at higher dimension.
Anderson et al. [3] considered following mixed integer set

X =

{
(x,s) ∈ Zq×Rn

+ : x = f + ∑
j∈N

r js j

}

where all data is rational and f /∈ Zq.
They studied the case q = 2 and geometrically characterized all facets of conv(X),
showing a relationship between facets and maximal lattice free convex sets in R2.
Gomory and Johnson [17] suggested the semi-infinite relaxation of X :

x = f + ∑
r∈Qq

rsr

x ∈ Zq

s≥ 0
s has finite support

Borozan and Cornuéjols [9] show that for the infinite relaxation of X there is a
one to one correspondence between minimal valid inequalities and maximal lat-
tice free convex sets in Rq that contain f in their interior and that minimal valid
functions for the semi-infinite relaxation are non-negative, piecewise linear, posi-
tively homogeneous and convex. Using these results, Cornuéjols and Margot [11]
determine conditions that valid inequalities of X must satisfy to be facets when
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q = 2. Espinoza [14] used the results of [9] in a computational study of multi-row
cuts with as much as q ≤ 15 rows, where he fixes the lattice free convex set used
to separate.
More recently, different relaxations have been taken into account. In [2] Andersen
et al. extended their previous work by considering upper bounds on the continu-
ous variables of X where q = 2 and Fukasawa and Günlük [15] considered non-
negativity on integral variables. Dey and Wolsey [13] used the integrality of some
nonbasic variables to lift minimal inequalities derived from lattice free triangles.
Dey et al. [12] performed a computational study of cuts based on lattice free tri-
angles (q = 2), using bounds and lifting integer nonbasic variables. Louveaux and
Poirrier [20] proposed an algorithm that does not assume the shape of the lattice
free set used to separate, instead, they search deep cuts for conv(X) with q = 2.

In this thesis, we investigate a column generation framework that enables us
to deduce multi-row cuts from any number of rows and to explore more complex
relaxations than the ones already in the literature. We will seek cuts that minimize
their `1-norm or `2-norm. In addition, several options can be set:

• bounds on none, basic, nonbasic or both variables

• consider nonbasic integer variables

• different criteria for row selection

This way we can computationally explore what has only been explored theoreti-
cally. In particular, we can test the importance on bounds when using multi row
cuts, something that has not been tested, even though it gives a stronger relaxation.
This also let us work with more dimensions, where most of the results valid for
two row relaxations have not been generalized.
Aside from testing the importance of different relaxations, we are trying to obtain
an effective way to derive multi-row cuts. An important aspect is the time used in
the cut generation process, so it is necessary to have a way of dealing with high
dimensional relaxations.
With this in mind, we propose an approximated separation that, instead of fixing
the shape of the lattice free set, fixes the rays r j. We try to determine whether the
number of rays used in the approximation is important, how much we can gain in
time and how much we lose in quality.
We perform experiments on MIPLIBs 3 [7], 2003 [1] and 2010 [18], compar-
ing the performance on the root node between different types of relaxations and
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against CPLEX alone. We try to answer the following questions. Does consid-
ering integrality of nonbasic variables give us better cuts? How do three simple
row selecting criteria influence the process? Is the approximation scheme a vi-
able way to deduce cuts, either by time issues and/or quality? Which are the best
relaxations to derive cuts?

The thesis is organized as follows. Section 2 introduces some definitions and
notations, as well as the general framework. In section 3 we show how to deal
with high dimensional relaxation and the concept of transformation is introduced,
as well as the approximation. Section 4 shows how to build the relaxation. Section
5 discuses some numerical issues and a way to improve the overall performance.
Finally, section 6 presents computational results.
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2 Background & Framework
We consider a general mixed integer problem (MIP),

min ctx
s.t

Ax = b
x≥ 0
xi ∈ Z for i ∈ I

where all data is rational and I is the set of integer variables. Denote the linear
relaxation of the MIP by LP and let x∗ be a basic feasible solution with basic
variables B and nonbasic variables N. We also denote B and N the sub-matrices
of A associated with basic and nonbasic variables respectively.
We can write the problem as follows

xi + ∑
j∈N

āi jx j = b̄i ∀i ∈ B

where b̄i =
(
B−1b

)
i and āi j =

(
B−1N

)
i j. We are interested in multi-row cuts, so

we select q > 1 rows i1, . . . , iq ∈ B∩ I such that
(
b̄i1 , . . . , b̄iq

)
/∈ Zq.

Let us call,
f =

(
b̄i1, . . . , b̄iq

)t

r j =−
(
āi1 j, . . . , āiq j

)t

Finally, the mixed integer set that we will study is

X =

{
(x,s) ∈S ×Rn

+ : x = f + ∑
j∈N

r js j, s j ≤ u j

}
where S = {x ∈ Zq : a≤ x≤ b}, u j ∈ R ∪ {+∞}, a ∈ (R∪{−∞})q and b ∈
(R∪{+∞})q. We also write N for {1, . . . ,n}.
Let

R f
(
r1, . . . ,rn;u;S

)
=

{
s ∈ Rn

+ : f + ∑
j∈N

r js j ∈S , s j ≤ u j

}
(1)

When context allows it, we will write R f instead of R f
(
r1, . . . ,rn;u;S

)
. Note

that R f is the projection of X to Rn. Our objective is to find valid inequalities for
conv(X) that cut off the point ( f ,0). Let us start with a proposition that gives us
the form of these cuts.
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Proposition 2.1. Every non-trivial valid inequality for X that cuts off the point
( f ,0) can be written as

∑
i∈N

αisi ≥ 1

Proof. Let (π,π0) be a valid inequality for X , i.e., ∑
q
i=1 πixi +∑ j∈N π js j ≥ π0 is

satisfied for every (x,s) ∈ X . As xi = fi +∑ j∈N r j
i s j, the last inequality is equiv-

alent to ∑ j∈N θ js j ≥ θ0 where θ0 = π0−∑
q
i=1 πi fi and θ j = π j +∑

q
i=1 πir

j
i . For

( f ,0) to satisfy this inequality we would need that 0 ≥ θ0, then θ0 > 0. If we let
α j =

θ j
θ0

we obtain the desired form.

We are going to ask our cuts to displace the point s = 0 the most. The distance
between 0 and the hyperplane ∑ j∈N α js j = 1 is 1

||α||2
. In order to maximize this

distance, we need to find cuts that have a small norm.

Definition 2.2. A cut α is a deep cut if it solves the problem

min ||Γα||
s.t

∑
j∈N

α js j ≥ 1, ∀s ∈ R f

(2)

where Γ is a n×n diagonal matrix with non-negative entries and the norm can be
the `1-norm or `2-norm.

The Γ matrix is a weight matrix that will only appear when some transforma-
tion is applied (see the next section). If no transformation is applied, this matrix
is the identity.
Andersen et al. showed in [3] that when no bounds are present, the cut’s coeffi-
cients α j must be non-negative for every j, but when we consider bounds on the
x variables, Fukasawa and Günlük showed an example where some coefficients
can be negative (see [15]). The same is true when bounds on s are considered
(see [2]). For deep cuts, we have the following proposition.

Proposition 2.3. Let α be the optimal solution of (2), then α j ≥ 0 for all j ∈ N

Proof. Suppose that α has a negative component, say α j < 0. Then α∗ given by
α∗i = αi, i 6= j and α∗j = 0 is a feasible point that has lower objective value since
all s are positive and Γ has non-negative entries. This contradicts the minimality
of α .
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This implies that the bounds α ≥ 0 can be added to (2). Note that this is true
for any norm.
Before we go into the column generation approach, we will introduce some sets
that where defined in [3].

Definition 2.4. Let XLP be the linear relaxation of X, i.e.,

XLP =

{
(x,s) ∈ S̄ ×Rn

+ : x = f + ∑
j∈N

r js j, s j ≤ u j

}
.

where S̄ = {x ∈ Rq : a≤ x≤ b}.
Given α ∈ Rn

+, let

Lα =

{
x ∈ S̄ : there exist s ∈ Rn such that (x,s) ∈ XLP and ∑

j∈N
α js j ≤ 1

}
.

In other words, Lα is the projection to the Rn of the points in XLP that violate the
inequality ∑ j∈N α js j ≥ 1.

The following results apply when no bounds are present, so we will work with
R f = R f

(
r1, . . . ,rn;∞;Zq).

Let α ∈ Rn
+, N+ =

{
j ∈ N : α j > 0

}
and v j = f + ri

α j
for j ∈ N+. From [3] we

know that
Lα = conv

(
f ∪
{

v j}
j∈N+

)
+ cone

({
r j}

j∈N\N+

)
.

Notice that α is a valid inequality for R f if and only if the interior of Lα is lattice
free.

Observation 2.5. For a general R f we can still define the set Lα . It is straightfor-
ward to see that α is a valid inequality for R f if and only if the interior of Lα is
S free, i.e. it does not contain any point of S .

Proposition 2.6. Let α be the optimal solution of (2). Then for every j ∈ N+, v j

belongs to the boundary of Lα .

Proof. Choose any j ∈ N+. First, lets show that the half-line
{

f +λ r j : λ ∈ R+

}
intersects the boundary of Lα . To prove this, assume that the half-line does not
intersect the boundary. Take any 0 < ε < α j0 and define α̃ as α̃i = αi if i 6= j,
α̃ j = α j− ε and ṽ j = f + r j

α̃ j
.

10



We have that α̃ is a cut since Lα̃ = Lα and Lα does not contain any integer point
in its interior. Also ||α̃||< ||α||, which contradicts the optimality of α .
Let us prove now that v j belongs to the boundary of Lα . If not, there exist ε > 0
such that ṽ j = f + r j

α j−ε
∈ Lα . Defining α̃ as above and using the same argument

we conclude.

2.1 Column generation
In general, the number of constraints of (2) is very large (possibly infinite). As it
is easier for solvers to deal with many variables instead of many constraints, we
apply a column generation approach to solve the dual of (2).

2.1.1 The `1-norm case

We can restate our primal problem (2). Let γ j = Γ j j, as α j and γ j are non-negative
for every j ∈ N, the primal can be written as

min ∑
j∈N

γ jα j

s.t.

∑
j∈N

α js j ≥ 1 ∀s ∈ R f

α j ≥ 0 ∀ j ∈ N

(3)

Define γ =
(
γ j
)

j∈N . Then the dual in vector notation is

max ∑
s∈R f

βs

s.t

∑
s∈R f

sβs ≤ γ

βs ≥ 0

(4)

The objective of the column generation is to solve (4). For this, we start with
R′f = /0 instead of R f . The dual values of (4) give us a cut candidate π , initially 0,
that is tested in the subproblem:
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min ∑
j∈N

π js j

s.t

f +∑risi = x

0≤ s≤ u
a≤ x≤ b

x ∈ Zq

(5)

If the solution of (5) is less than 1, then there is a point that violates the cut. We
add that point to R′f and repeat. If the solution is greater than 1, then it is a valid
cut.
As usual, we will call (4), with R′f instead of R f , the master problem.

2.1.2 The `2-norm case

In this case, the primal problem is

min ||Γα||2
s.t.

∑ j∈N α js j ≥ 1 ∀s ∈ R f
α j ≥ 0 ∀ j ∈ N

(6)

Since Γ is a diagonal matrix, the dual problem is

max ∑
s∈R f

βs

s.t

∑
s∈R f

sβs ≤ Γy

||y||2 ≤ 1
y≥ 0

βs ≥ 0

(7)

To linearize the constraint ||y||2 ≤ 1 we use Ben-Tal and Nemirovski approxi-
mation [6]. Basically, the method consists on repeatedly using the approximation
of the cone L2 =

{
(y, t) ∈ R2×R : ||y||2 ≤ t

}
given by
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ξ
0 ≥ |y1|

η
0 ≥ |y2|

ξ
j = cos

(
π

2 j+1

)
ξ

j−1 + sin
(

π

2 j+1

)
η

j−1

η
j ≥
∣∣∣−sin

(
π

2 j+1

)
ξ

j−1 + cos
(

π

2 j+1

)
η

j−1
∣∣∣

ξ
ν ≤ t

η
ν ≤ tan

(
π

2ν+1

)
ξ

ν

, j = 1, . . . ,ν

where ν is a parameter that controls the quality of the approximation. The column
generation scheme is the same as above, except that the cut candidate π is obtained
from the dual values associated with the constraints involving βs variables only.
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3 Dealing with the high dimension of R f

The column generation method presented so far, will require at least n iterations,
hence the process can be very slow if n is too big. In this section we present
a general transformation idea that allows us to work with less rays. Then, we
show how to remove parallel rays, proving that in some cases we obtain the same
solution and showing that in others we will just get a non optimal solution. Finally,
we present the approximation scheme.

3.1 Transformations
Finding a valid inequality for R f can be very expensive. Here we will present a
simple way to transform valid inequalities from a simpler set R̂ f to the original
more complex set R f .

Definition 3.1. Let R f = R f
(
r1, . . . ,rn;u;S

)
and R̂ f = R f

(
q1, . . . ,qm; û;Ŝ

)
. A

linear function T : R f → R̂ f will be called a transformation.

As it is usual, we will refer to the matrix underlying T as T .

Proposition 3.2. Let R f and R̂ f be two sets as before, and T : R f → R̂ f a trans-
formation. If α̂ is a cut for R̂ f , then T tα̂ is a cut for R f .

Proof. Let s ∈ R f . As T s ∈ R̂ f and α̂ is a cut for R̂ f , then

1≤ α̂ ·T s
= α̂

tT s

=
(
T t

α̂
)t s

= T t
α̂ · s

As s is general, we conclude that T tα̂ is a cut for R f

Now, instead of looking for deep cuts in R f we can restrict to a subfamily of
cuts, namely, cuts of the form T tα̂ . So, instead of solving (2), we solve

min
∣∣∣∣T t

α̂
∣∣∣∣

s.t
T t

α̂ · s≥ 1, ∀s ∈ R f

α̂i ≥ 0, for i = 1, . . . ,m
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If T is onto, this problem is equivalent to the following.

min
∣∣∣∣T t

α̂
∣∣∣∣

s.t

α̂ · ŝ≥ 1, ∀ŝ ∈ R̂ f

α̂i ≥ 0, for i = 1, . . . ,m

(8)

Even though T is not necessarily onto, we will still solve (8). Due to the type
of transformations that will arise later, we will always be able to find a diagonal
matrix Γ such that ||T tα̂||= ||Γα̂||.

3.2 Removing parallel rays
When no upper bounds on s variables are present, it is easy to see that one can
forget about rays pointing in the same direction.

Proposition 3.3. Let j1, j2 ∈ N, j1 6= j2 be such that r j1 = λ r j2 for some λ ≥ 0.
If α solves (2) without upper bounds on s variables, then α j1 = λα j2

Proof. Suppose that α j1 < λα j2 . We just have to prove that α∗ given by

α
∗
i = αi, i 6= j2

α
∗
j2 =

α j1
λ

is a feasible point of (2). Let s ∈ R f and N′ = N \{ j1, j2}, then

f + ∑
j∈N′

s jr j + s j1r j1 + s j2r j2 = f + ∑
j∈N′

s jr j + s j1r j1 +
s j2
λ

λ r j2

= f + ∑
j∈N′

s jr j +
(

s j1 +
s j2
λ

)
r j1

Hence, s∗ given by s∗j = s j if j ∈ N′, s∗j1 = s j1 +
s j2
λ

and s∗j2 = 0, belongs to R f .
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Given that α is a valid inequality,

1≤ ∑
j∈N

s∗jα j

= ∑
j∈N′

s jα j +
(

s j1 +
s j2
λ

)
α j1

= ∑
j∈N′

s jα
∗
j + s j1α j1 +

s j2
λ

α j1

= ∑
j∈N′

s jα
∗
j + s j1α

∗
j1 + s j2α

∗
j2

= ∑
j∈N

s jα
∗
j

we conclude that α∗ is feasible for (2). For the other case, just notice that if we
change j1 with j2 and divide by λ we recover the first case.

Our objective is to remove rays pointing in the same direction and show that,
in some cases, the cuts we generate will not be affected by this. Let us start with
a few definitions.

Definition 3.4. We say that two rays, r1 and r2, are parallel (written r1 ‖ r2) if
there exists a positive scalar λ , such that

r1 = λ r2

We write r1 ∦ r2 when the rays are not parallel.

Definition 3.5. For every j ∈ N we define N j as the set of indices of rays parallel
with j. That is

N j =
{

i ∈ N : ri ‖ r j, i 6= j
}

Let M ⊆ N be such that if i, j ∈M, i 6= j, then ri ∦ r j and

M∪
⋃
j∈M

N j = N.

In other words, M is a maximal subset of indices, with respect to inclusion, of
non-parallel rays.
For each i ∈ N j, let λi > 0 be such that r j = ri

λi
and define T as T (s) = ŝ ∈ Rm
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where ŝ j = s j +∑i∈NJ λisi and m = |M|. Let R f = R f

((
r j)

j∈N ;u;S
)

and R̂ f =

R f

((
r j)

j∈M ;T (u);S
)

. Clearly, T : R f → R̂ f is a transformation.
Whenever we remove parallel rays, we will be solving

min
∣∣∣∣T t

α
∣∣∣∣

s.t

∑
j∈M

α js j ≥ 1, ∀s ∈ R̂ f

α j ≥ 0, ∀ j ∈M

(9)

When solving with `1-norm, the diagonal matrix Γ given by Γ j j = 1+∑i∈N j λi
for j ∈M satisfies

||Γα||1 =
∣∣∣∣T t

α
∣∣∣∣

1

For the `2-norm, we need Γ j j =
√

1+∑i∈N j λi instead.
In some cases the cut obtained in the transformed problem is the same as the cut
obtained in the original problem.

Proposition 3.6. Assume that s variables do not have upper bounds and that Γ is
the identity matrix in (2). Let α∗ be the solution of (9). Then T tα∗ solves (2).

Proof. First notice that by Proposition 3.2, T tα∗ is a feasible point of (2). Let α

be the optimal solution of (2).
Define α̂ ∈ Rm by α̂ j = α j for j ∈M, i.e., α̂ is the projection to Rm of α .
We have that α̂ is a feasible point of (9). To see this, choose any ŝ ∈ R̂ f and let s
be its extension by 0 to RN , then

f + ∑
j∈M

ŝ jr j = f + ∑
j∈N

s jr j.

This implies that s ∈ R f , which implies that

α̂ · ŝ = α · s≥ 1.

From Proposition 3.3 it is easy to see that T tα̂ = α . Finally, the optimality of α∗

tells us that ∣∣∣∣T t
α
∗∣∣∣∣≥ ∣∣∣∣T t

α̂
∣∣∣∣= ||α||

from which the proposition follows.
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When upper bounds on s are present this result is not generally true as shown
in the following example.

Example 3.7. Consider the rays r1 =

(
−1

2

)
, r2 =

(
−1
−2

)
, r3 =

(
1
0

)
and r4 =(2

3
0

)
. Let N = 1,2,3,4 and R f = R f

(
r1,r2,r3,r4;

(
∞,∞,∞, 1

12

)
;Z2) where f =

1
2

(
1
1

)
. Using `1-norm, the problem that we want to solve is

min α1 +α2 +α3 +α4

s.t

∑
j∈N

α js j ≥ 1, ∀s ∈ R f

α j ≥ 0 ∀ j ∈ N

The point α1 = α2 = 2, α3 = 0.72 and α4 = 0 is feasible, since Lα is lattice free
as shown in Figure 1. Hence, the value of the optimal solution is at most 4.72.
Now lets remove parallel rays. For this, let us choose M = {1,2,3}.
We have that N1 = N2 = /0, N3 = 4 and λ4 =

2
3 , then T (s) = ŝ where

ŝ =
(

s1,s2,s3 +
2
3

s4

)
.

We can now write our new set, R̂ f =
(
r1,r2,r3;(∞,∞,∞) ;Z2) and the problem we

want to solve is
min α̂1 + α̂2 +

5
3

α̂3

s.t

∑
j∈M

α̂ js j ≥ 1, ∀s ∈ R̂ f

α j ≥ 0 ∀ j ∈M

From Figure 1, we see that α̂1 = α̂2 = 2 and α̂3 =
2
3 is a feasible solution. Let us

prove that this cut is the optimal solution.
First note that the objective value of the cut is 5.1̄ and that

(1
4 ,0,

3
4

)
,
(
0, 1

4 ,
3
4

)
,(1

8 ,
3
8 ,0
)

and
(3

8 ,
1
8 ,0
)

belongs to R̂ f .
This implies that any cut must satisfy α̂1 + α̂2 ≥ 4 and α̂1 + α̂2 +6α̂3 ≥ 8.
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Let Ẑ be the objective value of the optimal solution, then for the optimal cut we
have

Ẑ = α̂1 + α̂2 +
5
3

α̂3 ≥ 8− 13
3

α̂3.

Therefore, 5
3 α̂3 ≥ 5

13(8− Ẑ). Now,

Ẑ = α̂1 + α̂2 +
5
3

α̂3

≥ 4+
5

13
(8− Ẑ)

This inequality implies that Ẑ ≥ 5.1̄, hence our cut is optimal.
This cut, in the original problem corresponds to α = T tα̂ , explicitly α1 = α2 = 2,
α3 =

2
3 and α4 =

4
9 . As the objective value is 5.1̄ which is greater than 4.72, we

conclude that solving the reduced problem does not always gives us the optimal
solution.

r
1

r
2

r
3

r
4

f

Figure 1: The polyhedron in red corresponds to Lα , while the blue one corre-
sponds to Lα̂ . Both are valid cuts, since there are no integer points in their interior.
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3.3 Approximation
The number of iterations of the column generation process is very sensitive to the
number of rays. The idea of the approximation is to consider a fixed set of rays
and try to deduce a cut using those. Also, it can be seen as a natural question
that arises from previous research. In the introduction, we mentioned that in some
computational experiments the lattice free set used to separate was fixed, so a
natural follow up is to fix the rays.
Let m > 0 be an integer number and consider a set of rays

{
q1, . . . ,qm} such that

cone
(
q1, . . . ,qm)= Rq.

We will decompose each ray r j in terms of the new rays. Let j ∈ N, then there
exists

{
θi j
}m

i=1 ⊆ R+ such that

r j =
m

∑
i=1

θi jqi.

Define T by T (s)= ŝ∈Rm where ŝi =∑ j∈N θi js j and R̂ f =R f
(
q1, . . .qm;T (u);S

)
.

Proposition 3.8. Let T be defined as above, then T is a transformation from R f
to R̂ f .

Proof. Clearly, T is linear. We just have to prove that if s ∈ R f , then T (s) ∈ R̂ f .
Let s ∈ R f , ŝ = T (s) and û = T (u). We have to check that f +∑

m
i=1 ŝiqi ∈S and

that ŝi ≤ ûi.
Indeed,

f +
m

∑
i=1

ŝiqi = f +
m

∑
i=1

(
∑
j∈N

θi js j

)
qi

= f + ∑
j∈N

s j

(
m

∑
i=1

θi jqi

)
= f + ∑

j∈N
s jr j ∈S

and
ŝi = ∑

j∈N
θi js j

≤ ∑
j∈N

θi ju j = ûi
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Let us make explicit the Γ matrix that appears when solving the transformed
problem (8). We have that T (s) = Θs where Θi j = θi j, then the objective function
of (8) is ||T tα̂||= ||Θtα̂|| and

(
Θ

t
α̂
)

j =
m

∑
i=1

θi jα̂i

In the `1-norm case, we can write the objective as follows.∣∣∣∣T t
α̂
∣∣∣∣

1 = ∑
j∈N

(
Θ

t
α̂
)

j

= ∑
j∈N

m

∑
i=1

θi jα̂i

=
m

∑
i=1

(
∑
j∈N

θi j

)
α̂i

Then, Γii = ∑ j∈N θi j.
The `2-norm case is special since the objective function has cross products and,
therefore, there is no diagonal matrix Γ such that ||T tα̂||2 = ||Γα̂||2.
Trying to solve (8) with `2-norm would introduce n variables in the dual, while
one of the objectives of approximation was to reduce the number of variables.
Instead, we change the objective function from√√√√

∑
j∈N

(
m

∑
i=1

θi jα̂i

)2

to √√√√m
m

∑
i=1

(
∑
j∈N

θi j

)2

α̂2
i (10)

This allows us to have a smaller dual since now there exists a diagonal matrix Γ,
that is given by Γii = ∑ j∈N θi j as in the `1-norm case.
Let us show that not much is lost when applying this change.

Proposition 3.9. If the objective function of (8) is changed to (10) a m-approximation
is obtained.
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Proof. This follows from the equivalence between `1-norm and l2-norm, i.e., from
the inequality

||x||2 ≤ ||x||1 ≤
√

m ||x||2 , ∀x ∈ Rm.

Let Z be the optimal value of (8) and Ẑ the optimal value of the same problem,
but with the new objective function. We have to prove that Z ≤ Ẑ ≤ mZ. Indeed,

∣∣∣∣T t
α̂
∣∣∣∣

2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
(

m

∑
i=1

θi jα̂i

)
j∈N

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
(

m

∑
i=1

θi jα̂i

)
j∈N

∣∣∣∣∣∣
∣∣∣∣∣∣
1

=
m

∑
i=1

(
α̂i ∑

j∈N
θi j

)

=

∣∣∣∣∣
∣∣∣∣∣
(

α̂i ∑
j∈N

θi j

)m

i=1

∣∣∣∣∣
∣∣∣∣∣
1

≤
√

m

∣∣∣∣∣
∣∣∣∣∣
(

α̂i ∑
j∈N

θi j

)m

i=1

∣∣∣∣∣
∣∣∣∣∣
2

Thus, we have that Z ≤ Ẑ.
For the other inequality we have to retrace our steps:

√
m

∣∣∣∣∣
∣∣∣∣∣
(

α̂i ∑
j∈N

θi j

)m

i=1

∣∣∣∣∣
∣∣∣∣∣
2

≤
√

m

∣∣∣∣∣
∣∣∣∣∣
(

α̂i ∑
j∈N

θi j

)m

i=1

∣∣∣∣∣
∣∣∣∣∣
1

=
√

m

∣∣∣∣∣
∣∣∣∣∣
(

α̂i ∑
j∈N

θi j

)m

i=1

∣∣∣∣∣
∣∣∣∣∣
1

=
√

m

∣∣∣∣∣∣
∣∣∣∣∣∣
(

m

∑
i=1

θi jα̂i

)
j∈N

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤ m

∣∣∣∣∣∣
∣∣∣∣∣∣
(

m

∑
i=1

θi jα̂i

)
j∈N

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= m
∣∣∣∣T t

α̂
∣∣∣∣

2
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Hence, Ẑ ≤ mZ

Still the set of rays,
{

q1, . . . ,qm} is undefined. We choose two sets of rays. The
first one consists of all the canonical vectors plus the negative of the canonical vec-
tors and complete diagonals, i.e.,

(
δ1, . . . ,δq

)
where δi ∈ {−1,1} for i = 1, . . . ,q.

This is called the type 1 approximation.
The second set of rays, called the type 2 approximation, is{(

δ1, . . . ,δq
)

: δi ∈ {−1,0,1} for i = 1, . . .q
}
\{0}.

Notice that both sets are the same when q = 2.
For the first set we have that m = 2q+2q and for the second set, m = 3q−1.
The idea of the first set is that it is the simplest non trivial one (the trivial set is
the set of canonical vectors with their negatives). We consider the second set to
determine if more rays give us better cuts. Heuristically, this makes sense, since
more rays means that we have more degrees of freedom to approximate the convex
set related with the cut. Obviously, this are two of many possible approximations.
In the next example we show that this approximation scheme can be arbitrarily
bad.

Example 3.10. Consider the rays r1 =

(
−1
−1

)
, r2 =

(
1
−1

)
, r3 =

(
n+1

n

)
and

f = 1
2

(
1
1

)
, and let R f =R f

(
r1,r2,r3;∞;Z2). The rays of R̂ f are q1 =

(
0
1

)
, q2 =(

1
1

)
, q3 =

(
1
0

)
, q4 =

(
1
−1

)
, q5 = −q1, q6 = −q2, q7 = −q3 and q8 = −q4

(see Figure 2).

Let Z be the optimal value of the original problem and Ẑ the optimal value of
the approximated problem.
We have the following decomposition of r rays into q rays:

r1 = q6

r2 = q4

r3 = nq2 +q3
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q
1

q
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5

q
6

q
7

q
8

Figure 2: The black rays correspond to R f rays and the red ones to R̂ f rays. The
dots are the integer lattice and n = 2.

Then, the approximated problem is

min ||(α̂6, α̂4,nα̂2 + α̂3)||
s.t

α̂ · ŝ≥ 1, ∀ŝ ∈ R̂ f

α̂i ≥ 0, for i = 1, . . . ,m

Clearly ŝ =
(
0, 1

2 ,0,0,0,0,0,0
)
∈ R̂ f , therefore the constraint 1

2 α̂2 ≥ 1 belongs
to the approximated problem and in the optimal solution α̂2 ≥ 2. It follows that
Ẑ ≥ 2n.
On the other hand, α1 = α2 = α3 = 2 is a feasible point for the original problem

(see Figure 3). To see this we will show that there is no
(

x
y

)
∈ Z2 such that(

x
y

)
= f + r1s1 + r2s2 + r3s3 and s1 + s2 + s3 <

1
2 .

If such point should exist, then x− y = 2s2 + s3 ∈ Z. Recall that s1,s2,s3 ≥ 0
and since s1 + s2 + s3 < 1

2 we have that s1,s2,s3 ≤ 1
2 , so 0 ≤ 2s2 + s3 ≤ 3

2 . The
integrality of x− y implies that 2s2 + s3 ∈ {0,1}.
If 2s2 + s3 = 0, then s2 = s3 = 0 and s1 ≥ 1

2 contradicting the hypothesis.
If 2s2+ s3 = 1, then 2s1+2s2+2s3 ≥ 2s2+ s1 = 1, therefore s1+ s2+ s3 ≥ 1

2 also
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f

Figure 3: Here we appreciate the set Lα for α = (2,2,2) for n = 2 (the blue one)
and n = 5 (the red one). Notice that both are lattice free, hence the cut is valid.

contradicting the hypothesis.
This shows that α1 = α2 = α3 = 2 is a feasible point, thus Z ≤ 6.
We see then that the approximated solution can be arbitrarily bad.

Even though this example shows that there is no warranty on the quality of the
solution provided by the approximation, we will show in the results that approxi-
mated cuts can be useful.
Let us conclude this section with a final advantage of this approximation. As the
rays are fixed, the only thing that changes is the f vector, therefore we can use
the s points we have already computed, translating them so that they become valid
points for the new f .
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4 Building the relaxation
In this section we will show how to build the relaxation, i.e., the X set. In general,
the procedure is as follows.

1. Solve the LP relaxation.

2. Compute the tableau of basic integer variables.

3. Select rows.

4. Set Γ as the identity, apply options and transformations.

In the previous section we saw the transformations and how to use them, as well
as the Γ matrices involving each of them. Now, we will discuss how to select rows
and the rest of the options.

4.1 Row selection
We have to select q rows from the tableau. The criteria for row selection that we
use are the following.

Random We select q random rows. We need at least one component of f to be
fractional, so the first row is selected randomly over all rows that have a
fractional right hand side and the q−1 left are selected over all rows.

Biggest dot product We select one row randomly over the rows that have a frac-
tional right hand side. Then we compute the dot product between the se-
lected row and all others and choose the q−1 that has the biggest dot prod-
uct.

Smallest dot product The same as before, but now the smallest dot product is
selected instead of biggest.

The idea is to see if selecting rows using the biggest or smallest dot product is
better than random. There are many other rows selection criteria that can be tested,
however we focus on these two criteria, basically, because of their simplicity.
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4.2 Bounds
We consider the 4 scenarios: Bounds on both the x and s variables, only on x, only
on s and bounds on none of them.
This is a central contribution of our work, since, to the best of our knowledge, no
tests have been made with bounds on both variables.

4.3 Modification of non-basic integer variables
Here we take advantage of the integrality of some nonbasic variables and mod-
ify the rays associated to them. The modification used is one of many possible
modifications. We try that both rays, the original and the modified, point towards
the same orthant. Specifically, let r j be a ray associated with an integral nonbasic
variable and let [x] be the rounding towards 0 function, i.e.,

[x] =

{
max{n ∈ Z : n≤ x} , x≥ 0
min{n ∈ Z : n≥ x} , x≤ 0

(11)

Also, let {x}= x− [x], then for each j ∈ N that corresponds to an integer variable,
we transform r j into r̂ j defined by

r̂ j
i =

{
r j

i

}
, i = 1, . . . ,q

The remaining part,
(
r j− r̂ j)s j, is absorbed by the x variables.

When we are asked to separate using bounds on x variables, bounds on s will
be computed and used to calculate the new bounds on x due to the addition of(
r j− r̂ j)s j.

This modification is particularly useful when the ray to be modified is integral,
because the remaining part is the zero vector and the number of rays is reduced.
Another heuristic argument in favor of this modification is that by reducing the
norm of the ray, one would expect to obtain a cut with smaller coefficients. This
may help the numerical stability of the cuts and may produce deeper cuts.
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5 Numerical issues and algorithmic improvements
In this section we first show how we can use some optimality conditions to im-
prove the performance of the overall process. Then we discuss how we deal with
numerical issues.

5.1 Optimality conditions and algorithmic improvements
Assume that R f = R f

(
r1, . . . ,rn;∞;Zq), i.e., the s variables do not have upper

bounds and the x variables are free. We can use the optimality condition presented
in Proposition 2.6 to improve the performance of the column generation.
During the column generation, we can ask for the v j that are not at the boundary
and introduce a new constraint in (2) (variable in the master) that forces v j to
be at the border. Tests done using this new constraints show that the time spent
searching for the cut can be reduced.
Below, we deduce this constraints. For this we need to work with the translation
of Lα by f ,

K = Lα − f = conv

(
{0}∪

{
r j

α j

}
j∈N+

)
+ cone

({
r j}

j∈N\N+

)
.

Definition 5.1. The guage function ψ is defined by

ψ(x) = inf
{

λ > 0:
x
λ
∈ K

}
It is useful to study the gauge function since the boundary of K (denoted by

∂K) satisfies ∂K = {x ∈ Rq : ψ(x) = 1}.
The polar of K (see [22] for standard definitions and notation) is given by

K◦ =
{

z ∈ Rq : z · r j ≤ α j, for j ∈ N
}

We will use the following theorem proved in [21].

Theorem 5.2. Let C be a closed convex set containing the origin. The polar C◦ is
another closed convex set containing the origin. The gauge function ψ satisfies

ψ(x) = max{x · z : z ∈C◦} (12)

Note that 0 ∈ K and that K is a polyhedron, hence it is a closed convex set.
Also, for j∈N+, r j

α j
∈ ∂K if and only if ψ

(
r j

α j

)
= 1. The last equality is equivalent

to ψ
(
r j)= α j.
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Definition 5.3. Let α be a cut candidate during the column generation process.
We say that α violates a boundary constraint at i if i ∈ N+ and ψ

(
ri)< αi.

Proposition 5.4. Let α be a cut candidate during the column generation process
and i ∈ N+. If α violates a boundary constraint at i, then there exist λ1, . . . ,λN ∈
R+ such that

λi = 0,

∑
j∈N\{i}

λ jr j = ri and

∑
j∈N\{i}

λ jα j < αi

(13)

Proof. The result follows from the dual of (12), i.e., the dual of ψ
(
ri),

max z · ri

s.t.

z · r j ≤ α j ∀ j ∈ N

which is
min ∑

j∈N
λ jα j

s.t.

∑
j∈N

λ jr j = ri

λ j ≥ 0

(14)

From duality theory and ψ
(
ri)< αi, we have that the optimal solution λ ∗ of (14)

satisfies ∑ j∈N λ ∗j r j = ri and ∑ j∈N λ ∗j α j < αi.

If λ ∗i > 0, then necessarily λ ∗i < 1 and by setting λ j =
λ ∗j

1−λ ∗j
for j 6= i and λi = 0,

we have the desired result.
If λ ∗i = 0, set λ j = λ ∗j for all j ∈ N to conclude.

Now it is clear that the sought constraints are of the form

∑
j∈N\{i}

λ jα j ≥ αi,

where the λ vector is obtained by solving (14).
The problem with this constraints are that they only apply for the unbounded case.
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Actually, for the general case, Proposition 2.6 does not hold, so we need a new
optimality condition. We use the following trivial condition: if α solves (2), then
it must be feasible.
Let R f = R f

(
r1, . . . ,rn;u;S

)
.

Definition 5.5. Let α be a cut candidate during the column generation process
and x ∈S . We will say that x has a violated representation if there exists s ∈ R f
such that α · s < 1.

In our column generation process, we can use this to search for violated rep-
resentations of points that we already now, instead of looking for any (x,s) such
that s violates the cut. Tests done using this simple idea, proves to speed up the
process as well.
We implemented this as follows:

1. Solve the master problem and obtain the cut candidate α

2. For every basic βs of the master, check if x = f +∑ j∈N s jr j has a violated
representation.

3. Select the nearest x to f that has a violated representation. If it does not
exist, solve the subproblem.

4. Add the s that represents x to the master and repeat.

Basically, instead of solving (5), we fix the value of the x variables and solve the
remaining LP.
Apart from being applicable in any R f , this procedure generalizes the previous
one in the sense that any time there is a violation to a boundary constraint, we can
find a violated representation (only on the cases where boundary constraint apply,
i.e., in the unbounded case).
To prove this, let R f = R f

(
r1, . . . ,rN ;∞;Zq).

Suppose we are at some point in our column generation process and recall that
R′f is the set of s points that we have found so far. For each s ∈ R′f let xs =

f +∑ j∈N s jr j.
We will now show that if there is any i ∈ N+ such that α has a violated boundary
constraint at i, then there is a xs that has a violated representation.

Proposition 5.6. Let α be a cut candidate during the column generation process
and i ∈ N+ such that α violates a boundary constraint at i. Then there is a basic
variable βσ such that xσ has a violated representation.
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Proof. Let us find σ . Since i ∈ N+, αi > 0 and by complementary slackness (CS)
we have that ∑s∈R′f

βssi = 1. This equality implies that there exists a σ ∈ R′f such
that βσ > 0 and σi > 0.
Now by CS we have that ∑ j∈N α jσ j = 1. By Proposition 5.4 there exists λ1, . . . ,λN ∈
R+ that satisfies (13).
We are now ready to give the violated representation of xσ .

xσ = f + ∑
j∈N

σ jr j

= f + ∑
j∈N\{i}

σ jr j +σiri

= f + ∑
j∈N\{i}

σ jr j +σi ∑
j∈N\{i}

λ jr j

= f + ∑
j∈N\{i}

(
σ j +σiλ j

)
r j

Finally,
∑

j∈N\{i}

(
σ j +σiλ j

)
α j = ∑

j∈N\{i}
σ jα j +σi ∑

j∈N\{i}
λ jα j

< ∑
j∈N\{i}

σ jα j +σiαi

= ∑
j∈N

σ jα j

= 1

5.2 Numerical issues
Here we explain how we numerically manage the cut candidates, the s points, par-
allelism and tableau’s coefficients.

5.2.1 Cut candidates

Every time a cut candidate is obtained, we first check its coefficients. If any value
is below the absolute zero tolerance, whose value is 10−8, we set it to 0. Then,
if any value π j is below the zero tolerance, from now on denoted by ε , whose
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default value is 10−6, we ask if there is a known s point such that π j · s j > ε . If
true, then we keep the value of π j, but if not, we set π j to 0.
All nonzero coefficients are amplified by the security tolerance, whose default
value is 1.001. We do this in order to help the column generation process. It
is known that, in general, the convergence of column generation is usually slow
(see [5] and [16]), so this amplification will stop the process before optimality.
To assure numerical stability, we check that for all known points, ∑ j∈N π js j ≥ 1.
If for any point this is not true, the separation is aborted. Amplifying by the secu-
rity tolerance also helps the numerical stability of the process, since its less likely
to cut off an integer feasible point.
Let us call (ζ ,ζ0) the cut obtained after we transformed it into the original vari-
ables (ζ0 is the right hand side of the cut). Define its quality as ζ0−ζ ·x∗

||ζ ||2
and its

stability as ζmax
ζmin

where ζmax is the biggest coefficient in absolute value, ζmin is the
smallest nonzero coefficient in absolute value and x∗ is the optimal solution of the
LP relaxation of the MIP that we are trying to solve. We only add the cut if its
quality is greater than 10−3 and its stability is less than 106.

5.2.2 The s points

Many numerical issues arise because of s points. We can obtain numerically un-
stable master problems if some coefficients of s are large. To try to avoid this, we
obtain the first point by using a fake cut candidate with π j = 1 for all j ∈ N. For
the following points, we use the previous optimal solution of the subproblem as a
starting point, hoping that coefficients stay bounded.
Every time a new s is generated, we check for coefficients smaller than ε . If s j < ε

for some j ∈ N, we set s j to 0.

5.2.3 Tableau’s coefficients

The process starts by solving the LP relaxation of a MIP using SIMPLEX. After-
words we need to build the optimal tableau. When doing so, we have to decide
whether a variable obtains an integral value or not. We say that a value is frac-
tional, when the distance between the value and the nearest integer is greater than
10−3.
However, when we are modifying rays associated to integral nonbasic variables,
we consider a ray’s coefficient as fractional when the distance between the coeffi-
cient and the nearest integer is greater than ε .
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The reason for this, is that we want to make sure that f /∈ Zq, i.e., we want f to
have a sufficiently fractional component, but when we set to 0 a ray’s coefficient,
we want to be sure that we are not making a gross approximation.
For the coefficients of the tableau associated to the basic variables (which should
form a permutation of the identity matrix), we check that the 0 and 1 coefficients
are really 0 and 1, by asking if the distance between the coefficient and 0 is less
than ε and that the distance between the coefficient and 1 is less than ε respec-
tively. If any of these coefficients fail to be 0 or 1 enough, we abort the construc-
tion of the tableau due to numerical instability.
We treat rays’ small coefficients (coefficients of the tableau associated to the non-
basic variables) similarly as cut’s coefficients. Let r j be a ray with j ∈ N. When
we find a small coefficient, i.e., r j

i ≤ ε , we ask if the maximum value achievable
by s j can make the product r j

i s j greater than ε . If yes, we leave the coefficient as
it is and if no, we set it to 0. Finally, given two rays r1 and r2, we regard them as
parallel if there exists λ > 0 such that

∣∣∣∣λ r1− r2
∣∣∣∣

∞
≤ ε .

33



6 Experiments & Results

6.1 The Balas experiment
Our first experiment consist on computing all possible cuts deduced from exactly
q rows from the tableau obtained by solving the LP relaxation. In other words, we
read the problem, solve the LP relaxation and obtain the tableau. Then, suppose
we are separating with q = 3 and that our tableau has 5 rows. We deduce cuts with
rows 1-2-3 of the tableau, then 1-2-4, 1-2-5, and so on.
We compare these results against Balas and Saxena results on the split closure
(see [4]), so our test bed is a subset from MIPLIB3. We ran our experiments with
a time limit of 2 hours.
For all the runs, we removed parallel rays and we limited the number of iterations
to 10000. Also we use CPLEX basic presolve, which only tightens the bounds.
We did not use the approximation scheme. When we minimize the `2−norm, we
use a 0.01-approximation of the norm.
We remove problems whose LP value and optimal value are the same as their
optimal value (dsbmip, enigma and noswot), the ones that did not finish (air04,
air05, fast0507, mitre, seymour, 10teams, dano3mip, danoint, mod11 and qnet1)
and problems for which ours and Balas procedure were not able to improve the
LP value (stein27, stein45, pk1).
The percentage of gap closed is computed as

100−100× remaining gap
original gap

In Table 6.1 we present the results of the configuration that managed to finish
more instances against Balas. The configuration consists of: 2 rows, bounds only
on x variables, `1−norm and the modification of nonbasic integer variables.

Now we can compare the effect of each option over the closed gap against our
base configuration. For this, we will compute the geometric average of the gap
closed only on the instances that both configurations managed to solve. We only
considered positive gaps.
When we do not modify nonbasic integer variables, we obtained 38 problems in
common with our base configuration. We obtained 22.87% of closed gap when we
modified and 18.17 % of closed gap when we did not. When no bounds were con-
sider, there were 36 problems in common and the closed gaps were 22.42% and
23.45% for no bounds and bounds on x variables, repectively. If we considered
bounds on both variables we had 35 problems in common and we got a closed gap
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Instance gap Balas gap Instance gap Balas gap Instance gap Balas gap
p0282 4.14 99.90 air03 99.90 100.00 gesa3 69.99 95.78
p0548 50.36 100.00 cap6000 42.38 37.63 gesa3 o 71.58 95.31
p2756 0.72 92.32 fiber 13.70 98.50 khb05250 74.81 100.00

arki001 21.75 83.05 gt2 57.60 100.00 misc06 41.29 100.00
bell3a 44.66 55.19 harp2 9.10 17.50 modglob 21.02 96.48
bell5 14.51 87.44 l152lav 5.93 92.10 pp08aCUTS 34.02 97.01

blend2 16.41 46.77 lseu 33.62 93.75 qiu 2.57 77.51
dcmulti 42.37 100.00 misc03 8.61 51.47 qnet1 o 43.99 100.00
egout 96.58 100.00 misc07 0.72 19.48 rgn 8.98 100.00

fixnet6 31.75 99.76 mod008 1.40 100.00 rout 2.70 70.73
flugpl 12.43 100.00 mod010 97.57 100.00 set1ch 59.37 89.41
gen 49.51 100.00 nw04 66.00 100.00 vpm1 11.28 100.00

gesa2 33.61 98.66 p0033 10.49 87.42 vpm2 21.56 81.22
gesa2 o 35.65 100.00 p0201 33.75 74.93

Table 1: Comparison between multi-row cuts generated from every tableau with 2
rows with bounds on x, `1−norm and modification of nonbasic integer variables,
and Balas split closure.

of 23.33%, against a 23.06% for bounds only on the x variables. When comparing
the norms, we had 38 problems in common and we found that `1−norm performed
better than `2−norm, closing 22.08% of gap against 21.48%. Finally, if we con-
structed tableau with 3 rows, we had 24 problems in common and 18.06% of the
gap was closed, while only a 16.25% of the gap was closed with 2 row tableau.

6.2 The locally optimal configuration
For the following experiments, our procedure was called as a cut callback on
CPLEX and the maximum number of iterations was limited to 5×Number of rays.
Calling Z the value obtained by our procedure, the gap was computed as

100−100× MIPOPT−Z
max{1, |MIPOPT|,MIPOPT−LPOPT}

Using this formula, we ensure that the gap is between 0 and 100 and that we do
not divide by 0.
Our test bed was the benchmark subset of MIPLIB 2010, where we eliminated all
the problems for which some configuration could not add any cut. These problems
were ex9 and mspp16.
We decided that our procedure would only add cuts at the root node and every
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time the cut callback was called, it tried to add 20 cuts. If 1000 cuts had been
added, then no more cuts were generated. Notice that the cut callback can be
called several times on the root node.
On our first experiment, we ran with a time limit of 2 hours and we stopped the
optimization when the root node was solved.
We have that the configuration: 4 rows, bounds on all variables, type 2 approx-
imation, modification of nonbasic integer variables, security tolerance of 1.001,
select rows using the least dot product criteria and minimization of the `1−norm,
is locally optimal in the sense that if we changed any single parameter while keep-
ing the others, the results were worse. We used MIPLIB2003 to obtain a starting
point to search for this locally optimal configuration.
In Table 2, we associate numbers to the configurations considered, and in Figure 4
we show the results. The percentage of closed gap is the geometric average of the
closed gaps and the time factor is the geometric average of the time spent for each
instance normalized by the best time of that instance across all configurations. We
show the results on logarithmic scale.

Number Configuration Number Configuration
0 r4 a2 M1 b0 m2 T1.001 N0 9 r2 a2 M1 b3 m2 T1.001 N0
1 r5 a2 M1 b3 m2.T1.001 N0 10 r4 a2 M1 b3 m2 T1.1 N0
2 r3 a2 M1 b3 m2 T1.001 N0 11 r4 a2 M1 b3 m1 T1.001 N0
3 r4 a2 M1 b3 m2 T1.001 N0 12 r4 a2 M0 b3 m2 T1.001 N0
4 r4 a2 M1 b3 m2 T1.001 N1 13 r4 a2 M1 b3 m2 T1.0001 N0
5 CPLEX 14 r4 a2 M1 b3 m2 T1.01 N0
6 r4 a1 M1 b3 m2 T1.001 N0 15 r4 a2 M1 b1 m2 T1.001 N0
7 r4 a2 M1 b3 m2 T1.00001 N0 16 r4 a2 M1 b3 m0 T1.001 N0
8 r4 a0 M1 b3 m2 T1.001 N0 17 r4 a2 M1 b2 m2 T1.001 N0

Table 2: Configurations: r means the number of rows, a means the type of approx-
imation, M means if we modify nonbasic integer variables, b means on which
variables we consider bounds (0 is none, 1 is only s, 2 is only x and 3 is both), m
means the method of row selection used (0 is random, 1 biggest dot product and 2
lowest dot product), T means the security tolerance and N means if we use Ben-Tal
and Nemirovski approximation (optimize the `2-norm using a 0.01-approximation
of the norm).

Finally, we wanted to see how multi-row cuts affect the branch and bound tree,
so we compare our locally optimal configuration against CPLEX, but this time we
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Figure 4: Sensitivity analysis for r4 a2 M1 b3 m2 T1.001 N0 over the benchmark
subset of MIPLIB2010.

ran with a 4 hour time limit and we did not stop the optimization once the root
was solved. However, cuts were only added at the root node.
The results are shown on Figure 5. The geometric average of the closed gap is
given in the following table.

Configuration % closed GAP (avg)

CPLEX 78.31
OPTCONF 85.09

The difference between the gap averages is explained by the problem ns1208400.
The optimal value of this problem is 2, while its LP value is 0. Our procedure
managed to obtain a lower bound of 1 while CPLEX could not improve the LP
value. If we remove this problem, we obtain the following averages.
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Configuration % closed GAP (avg)

CPLEX 87.13
OPTCONF 85.63
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7 Conclusions and future work
When multi-row cuts where introduced, Andersen et al. showed an example in
which a single cut was needed to solve the problem. Here we observed also some
problems in which multi-row cuts worked better than existing techniques. For
example, cap6000 in Table 6.1 or ns1208400 as shown in the last section. This
suggests that multi-row cuts may be very useful, but it is not yet clear how to gen-
erate them. In particular, the question “How to select the rows of the tableau?”
seems to be the most important.
Comparing rank 1 cuts, as in the Balas experiment, provides us with the fairest
possible scenario for comparing different configurations, since this avoids the
feedback inherent to the cutting process (i.e. whenever we add an active cut, the
resulting optimal tableau depends on the cuts previously added). Unfortunately,
the current implementation of our algorithm does not allow us to explore bigger
problems or more than 3 rows.
Regarding the question of how the number of rows affects the cuts generated, our
experiments showed that up to 4 rows we get an improvement. However, further
tests are required, given that we observed the added effect of multi-row cuts with
other types of cuts without trully understanding how they relate.
On a more positive side, it is clear that even a simple modification on nonbasic
integer variables generates better cuts. This is clearly shown both in the Balas
experiment and in the sensitivity analysis. Also, using l2−norm does not give
better results than l1−norm, while considering bounds, at least on the x variables,
proved to be better than not doing so.
The approximation scheme allowed us to generate cuts on bigger problems and,
as results showed, may be a useful way to produce multi-row cuts in a general
purpose solver. The reason why approximated cuts performed better than non ap-
proximated cuts is that, while approximated configurations solved the root node,
the non approximated configuration did not because of the impossed time limit.
Tests with more time are needed in order to see how much we lose when we ap-
proximate.
It is our belief, that for multi-cuts to be useful we have to understand, first, how to
obtain the tableaus and then how do multi-row cuts relate to other kinds of cuts.
Regarding the first question, we think that generating cuts deduced from the LP
relaxation only, give us a fair framework for comparing the cuts. As for future
research, it would be interesting to know how different approximation schemes
work. For example, apart from using q rays pointing towards all integer points
inside the ball centered at the origin with radius 1, what happens if we consider
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the points inside the ball with radius 2. Or, what if we fix a maximum number, N,
of rays and form N groups of rays and then we select a representative (that could
be the average of the rays) of each group and separate with the representatives.
Notice that the results suggest that more fine approximations, i.e., with more rays,
may be better.
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