
UNIVERSIDAD DE CHILE
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS
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FECHA: SEPTIEMBRE 2013

PROF. GUÍA: DR. RAUL GOUET

ANÁLISIS NO-LINEAL DE COMPONENTES PRINCIPALES APLICADO A
MEDIDAS E IMÁGENES

En esta tesis definimos dos adaptaciones no-lineales del análisis de componentes princi-
pales, para el estudio de la variabilidad de datos conformados por medidas de probabilidad
y por imágenes.

En el Capitulo 2 introducimos el método de análisis de componentes principales geodésico
(ACPG) en el espacio de medidas de probabilidad en la ĺınea real, con segundo momento
finito, dotado de la métrica de Wasserstein. Apoyándonos en la estructura pseudo-riemanniana
del espacio de Wasserstein, definimos el ACPG basado en adaptaciones del ACP a variedades,
propuestas en la literatura. En este contexto, el ACPG se define por medio de un problema
de minimización sobre el espacio conformado por los subconjuntos geodésicos del espacio de
Wasserstein. Usando argumentos de compacidad y de gama-convergencia, establecemos la
consistencia del método, demostrando que el ACPG converge a su contraparte poblacional,
cuando el tamaño de la muestra crece a infinito. Discutimos las ventajas de este método,
respecto a un ACP funcional estándar de medidas de probabilidad en el espacio de Hilbert de
funciones a cuadrado integrable. Con el fin de mostrar los beneficios de este procedimiento
para el análisis de datos, exhibimos algunos ejemplos ilustrativos en un modelo estad́ıstico
simple.

En el Capitulo 3 describimos el método de análisis de componentes principales geométrico
(ACP geométrico) para analizar los modos principales de variación geométrica de un con-
junto de imágenes. En este contexto proponemos modelar la variabilidad geométrica de las
imágenes, respecto a un patrón medio de referencia, por medio de un operador de deformación
parametrizado por un espacio de Hilbert. El ACP geométrico consta de dos etapas: (1) regis-
tro de imágenes usando un operador de deformación y (2) ACP estándar en los parámetros
asociados a las deformaciones. La consistencia del procedimiento es analizada en el contexto
de un modelo estad́ıstico de patrón deformable, con una doble aśıntota, donde el número de
observaciones tiende a infinito y el ruido aditivo converge a cero. Para destacar los benefi-
cios de este procedimiento, describimos un algoritmo y su aplicación a algunos experimentos
numéricos con imágenes reales.
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Abstract

In this thesis we define two non-linear adaptations of principal components analysis for
studying the variability of dataset of probability measures and of images.

In Chapter 2 we introduce the method of Geodesic Principal Component Analysis (GPCA)
on the space of probability measures on the line, with finite second moments, endowed with
the Wasserstein metric. Relying on the pseudo-Riemannian structure of the Wasserstein
space, we define the GPCA based on existing PCA adaptations to manifolds. In this context,
the GPCA is defined by means of a minimization problem over the space of geodesic subsets
of the Wasserstein space. By using arguments of compactness and gamma-convergence, we
establish the consistency of the method by showing that the empirical GPCA converges to
its population counterpart, as the sample size tends to infinity. We discuss the advantages of
this approach over, a standard functional PCA of probability densities in the Hilbert space,
of square-integrable functions, and give illustrative examples on simple statistical models to
show the benefits of this approach for data analysis.

In Chapter 3 we describe the method of Geometric Principal Component Analysis (geo-
metric PCA) for analyzing the principal modes of geometric variability of images. In this
context, we propose to model the geometric variability of images around a reference mean
pattern by using a deformation operator parametrized over a Hilbert space. The geometric
PCA is a two-step procedure: (1) image-registration using a deformation operator and (2)
standard PCA on the resulting deformation-parameters. The consistency of this procedure
is also analyzed in the context of statistical deformable models, with a double asymptotic
setting, where the number of observations tends to infinity and the additive noise converges
to zero. We describe a simple algorithm for estimating the geometric variability of a set of
images and some numerical experiments on real data are proposed, to highlight the benefits
of this approach.
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Chapter 1

Introduction

A central problem in many applications is the characterization a of population’s variability
around an estimated mean pattern. If the data belongs to a Hilbert space, then a common
approach for addressing such problem is Principal component analysis (PCA). However, in
many situations the data cannot be properly modeled as element in a Hilbert space and thus
PCA does not lead to meaningful results. The latter situation occurs, in particular, for two
instances of data we investigate in this thesis, namely images and probability measures on the
line. In Chapter 2 we define and analyze the geodesic principal analysis in the Wasserstein
space, a framework for analyzing the variability of a set of probability measures on the line.
Chapter 3 is devoted to the description and analysis of the geometric PCA of images, which
is a method well adapted for describing the geometric variability of a set of images. In both
chapters, our main theoretical concern is the probabilistic consistency of these methods with
respect to a given population model. Though both chapters are self contained and can be
read independently, there exists a common basis and several links between them. In the
following paragraphs we describe the different building-blocks of this thesis work.

PCA in multivariate data analysis. Commonly, the data can be represented as elements
in the vector space Rd and, in this case, Principal Component Analysis (PCA) [Jolliffe, 2002]
is one of the most used technique for describing variability. PCA on R

d consist of finding
an orthonormal basis such that, for any k ≤ d, the projection of the data onto the subspace
generated by the first k vectors of the basis has maximum variance. This is achieved by
diagonalizing the covariance matrix of the data, sorting the eigenvalues in decreasing order
and taking the associated eigenvectors. PCA is a widely used method with applications in
several fields, it is commonly used as a dimensionality reduction method and combined with
other multivariate techniques such as discriminant, cluster or correlation analysis.

Functional PCA. In many applications the data have the form of functions defined on a
continuous domain. For instance, time series in econometrics, medical images or probability
density functions estimated from frequency histograms. Such data cannot always be repre-
sented by elements in a finite dimensional vector space and therefore an infinite dimensional
framework is necessary for its analysis. The extension of finite dimensional PCA for func-
tional data is usually known as functional PCA (FPCA), see [Ramsay and Silverman, 2002,
2005] for an introduction and [Shang, 2013] for a recent survey on FPCA. In this setting, the
data are considered as elements in the Hilbert space L2

µ(Ω), of square integrable functions
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defined on a convex set Ω ⊂ R
d, endowed with its usual inner product. Analogously to

the finite-dimensional case, FPCA amounts to computing the spectral decomposition of the
covariance operator of the data and the first k eigenfunctions associated with the k largest
eigenvalues recover the variability of the data in an optimal sense.

PCA on a Hilbert space. The general mathematical framework for defining PCA is to
consider the data belonging to a Hilbert space H. This setting includes the cases H = R

d and
H = L2

µ(Ω) described above. The choice of the inner product in H plays an important role
in modeling the data variability. It allows for instance, to consider smoothness constraints
by taking a Sobolev inner product [Silverman, 1996]. In Section 1.1 we describe the PCA on
a Hilbert space in detail.

Analogs of PCA for data belonging to a Riemannian manifold. Modern applications
of image analysis and computer vision require representation of the data in non euclidean
spaces, such as Riemannian manifolds [Shi et al., 2009; Sommer et al., 2010], leading to the
development of extensions of PCA for data belonging to a Riemannian manifold [Fletcher
et al., 2004; Huckemann et al., 2010]. The main idea of such methods, is to find geodesic
submanifolds (generalization of linear subspaces), capturing the variability of the data in an
optimal sense. In [Fletcher et al., 2004] a linear approximation is considered, by means of
which the data on the manifold is mapped onto a suitable Hilbert space, where a standard
PCA (or FPCA) is performed. In contrast, the methods analyzed in [Huckemann et al.,
2010; Sommer et al., 2010] deal with the inherent manifold structure, thus more sophisticated
theoretical and numerical tools are required. For more details, see Sections 1.2.3 and 1.2.4.

Geodesic PCA in the Wasserstein space. In some situations of applied interest, the
data takes the form of probability measures on a common space; see [Kneip and Utikal, 2001]
for a motivating application. In this thesis we develop and study a new PCA-type technique
for analyzing the variability of such data. If each of these probability measures admits a
square integrable density with respect to Lebesgue’s measure, then one can consider the
data as points on the space of square-integrable functions and carry out a standard FPCA,
as done in [Kneip and Utikal, 2001]. However, such an analysis does not always leads to
interpretable results (see Section 1.1.1), as the set of densities is not a linear subspace and
the Euclidean distance is not appropriate to compare densities. In this thesis we suggest that
the appropriate framework to consider is the space W2 of probability measures, with finite
second moment, endowed with the Wasserstein distance (see [Villani, 2003]). We believe that,
in our context, the Wasserstein metric is particularly well adapted because its definition
relies on ideas close to ”deformation” or ”transportation” stress between two probability
measures. Besides this attractive interpretation, the Wasserstein metric space has convenient
technical properties well adapted to our methodology, such as a pseudo-Riemannian structure
[Ambrosio and Savaré, 2007]. Using this property, we introduce a new concept of PCA in W2

by mimicking the PCA on manifolds, mentioned in the previous paragraph. We believe this
framework represents a novel contribution to the field of statistical applications of optimal
transportation theory. This subject will be thoroughly developed in Chapter 2.
It worth to mention that there are a number of classical references (see [Amari and Nagaoka,
2000; Murray and Rice, 1993] ) that define and study the Riemanian manifold structure of
parametric families of probability measures, when the parameter space is a finite dimensional
vector space and the dependence on the parameter is one-to-one and smooth. In this context,
the associated Riemaniann metric (and thus geodesics) is based on the Fisher information
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matrix. We believe that it might be of interest (but out of our scope) to apply the PCA-like
methods defined in the previous paragraph, based on the definition of geodesics derived from
the Fisher information matrix. In contrast to the previous framework, our approach does not
require that the family of probability measures considered be smoothly parametrized over a
Hilbert space, however, applying our method for such families of probability measures might
constitute an interesting future line of research.

PCA-like methods for analyzing geometric variability of images. An important
problem in the field of image analysis, is the characterization of the shape variability of a given
object within a population. For instance, it is possible to asses the state of a degenerative
disease, track a growth process or classify healthy versus ill subjects, by analyzing shape
discrepancy with respect to a reference. Images can be considered as element of the Hilbert
space L2

µ(Ω), however PCA applied to a set of images does not lead to meaningful results
(see Section 1.1.2) as it consists only on a point-wise analysis and no geometric information
of the objects represented in the images is considered. A standard approach to analyze
geometric variability of a set of images is to use registration. This well-known method
consists in computing parametric transforms on the domain Ω, so that the images deformed
by these transforms are geometrically aligned. Then, the main idea to estimate the geometric
variability of such data is to apply classical PCA to the resulting transformation parameters
after registration and not to the images themselves. This approach is at the core of several
methods to estimate the geometrical variability of images and constitutes the basis of the
general framework we call geometric PCA.

Geometric PCA of images. Grenander’s pattern theory of deformable templates [Grenan-
der and Miller, 1993, 2007] provides a mathematical framework for analyzing the geometric
variability of images and, in particular, for defining and analyzing the geometric PCA. Fol-
lowing Grenander’s ideas, one may consider that the observed images (or, more generally,
shapes) are obtained through the deformation of a common reference image (resp. shape).
In this setting, images are treated as points in L2(Ω) and the geometric variations of the im-
ages are modeled by Lie groups (groups that are Riemannian manifolds) of transformations
acting on the domain Ω [Grenander and Miller, 1998; Miller and Younes, 2001]. We propose
to model the geometric variability through the use of what we call deformation operators. A
deformation operator can be understood as a family of smooth and invertible mappings from
Ω onto Ω, parametrized by elements in a Hilbert space. Then, we define the geometric PCA
as a two step procedure for analyzing the geometric variability of a set of images. The first
step consists of groupwise registration of the images by means of a deformation operator.
The second step consists of PCA applied to the resulting parameters (which are elements
of a Hilbert space) after registration. We remark here that, from the methodological point
of view, geometric PCA can be interpreted as PCA on the ”manifold” of deformations and
hence, there exists a link between the geometric PCA and the PCA-like methods for manifold
we mentioned before. In Section 3.1.1 we provide a brief overview of related method existing
in the literature and specially in the context of Grenander’s theory of deformable templates.
The geometric PCA of images is defined and analyzed in Chapter 3.

Probabilistic consistency. Our main theoretical results deal with the probabilistic con-
sistency of the methods we propose. We assume that the data are independent observations
from a given stochastic model and we study the convergence of the method’s output to its
population counterpart when the sample size growth. This is a technically complicated prob-
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lem, that constitutes one of the original contributions of this thesis. On the other hand,
various author have studied the asymptotic properties of PCA in the multivariate and the
functional settings [Anderson, 1963; Dauxois et al., 1982].

1.1 PCA on Hilbert spaces

Let us introduce some tools and notations related to the standard PCA in a Hilbert space,
that will be used throughout the thesis. Let H be a separable Hilbert space, endowed with
the inner product 〈·, ·〉 and the associated norm ‖ · ‖. Let d be the induced distance in H and
denote by d(v, S) = infv′∈S ‖v−v′‖ the distance from v ∈ H to S ⊂ H. Let V be an H-valued
random variable. If E‖V ‖ < +∞, then V has expectation EV ∈ H, which happens to be
the unique element satisfying 〈EV, v〉 = E〈V, v〉, for all v ∈ H. If E‖V ‖2 < +∞, then the
(population) covariance operator K : H → H corresponding to V is

Kv = E〈V −EV, v〉(V −EV ), for v ∈ H. (1.1)

Moreover, the operator K is self-adjoint, positive semidefinite and trace-class. Hence, K is
compact, with nonnegative (population) eigenvalues (λk)k∈K and orthonormal (population)
eigenvectors (φk)k∈K and such that

Kv =
∑
k∈K

λk〈v, φk〉φk,

where K = {1, . . . , dim(H)}, if dim(H) < ∞ or K = N otherwise. If we assume that the
eigenvalues are arranged in decreasing order λ1 ≥ λ2 ≥ . . . ≥ 0, the k-th mode of variation
of the random variable V is defined by the curve

γk(t) = EV + tφk, t ∈ R. (1.2)

We define the PCA of V as the problem of diagonalizing the covariance operator K defined
in (1.1). On the other hand, it is well known that the PCA can be formulated as the problem
of finding a sequence of nested affine subspaces, minimizing the norms of the projection
residuals of the data. It can be shown that EV can be characterized as

EV = arg min
v∈H

E‖v − V ‖2 (1.3)

and the eigenvectors (φk)k∈K of K can be characterized as

φk ∈ arg min
v∈E⊥k ,‖v‖=1

E
(
d2(V, EV + span(v))

)
(1.4)

= arg min
v∈E⊥k ,‖v‖=1

E‖V −EV − 〈V −EV, v〉v‖2 (1.5)

= arg max
v∈E⊥k ,‖v‖=1

E〈V −EV, v〉2, (1.6)

where E1 = {0}, Ek = span(φ1, . . . , φk−1), k ≥ 2, and span(U) is the subspace spanned by
U ⊂ H.
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Now, let us consider v1, . . . , vn ∈ H and let V (n) ∈ H be the random element such that
P(V = vi) = 1/n, i = 1, . . . , n. We define the empirical PCA of v1, . . . , vn as the PCA
of the random element V (n), i.e., the empirical PCA consists of diagonalizing the empirical
covariance operator Kn : H → H, given by

Knv =
1

n

n∑
i=1

〈vi − v̄, v〉(vi − v̄), for v ∈ H, (1.7)

where, v̄ = 1
n

∑n
i=1 vi. As K is also self-adjoint, positive semidefinite and compact, it admits

the decomposition

Knv =
∑
k∈K

λk〈v, φk〉φk,

where λ1 ≥ λ2 ≥ . . . ≥ 0 are the (empirical) eigenvalues, and (φk)k∈K is the set of (empirical)
orthonormal eigenvectors of Kn. The (empirical) principal k-th mode of linear variation of
v1, . . . , vn is defined by the curve

γk(t) = v̄ + tφk, t ∈ R. (1.8)

As in (1.3) to (1.6), v̄ can be characterized as

v̄ = arg min
v∈H

1

n

n∑
i=1

‖v − vi‖2 (1.9)

and the eigenvectors (φk)k∈K of Kn can be characterized as

φk ∈ arg min
v∈E⊥k ,‖v‖=1

1

n

n∑
i=1

d2(vi, v̄n + span(v)) (1.10)

= arg min
v∈E⊥k ,‖v‖=1

1

n

n∑
i=1

‖vi − v̄n − 〈vi − v̄n, v〉v‖2 (1.11)

= arg max
v∈E⊥k ,‖v‖=1

1

n

n∑
i=1

〈vi − v̄n, v〉2, (1.12)

where E1 = {0} and Ek = span(φ1, . . . , φk−1), k ≥ 2.

IfH is finite-dimensional, diagonalizingKn corresponds to the empirical PCA for vectors in
a finite dimensional Euclidean space. If H = L2(Ω) =

{
f : Ω→ R, ‖f‖2

2 :=
∫

Ω
f 2(t)dt <∞

}
diagonalizing Kn is usually referred to as the method of functional PCA in nonparametric
statistics (see e.g. [Dauxois et al., 1982; Ramsay and Silverman, 2005; Silverman, 1996]).
Various authors (see e.g. [Dauxois et al., 1982], [Silverman, 1996] and references therein),
under standard probabilistic assumptions on the data, have studied the consistency of the
empirical PCA in Hilbert spaces and have stated sufficient conditions to ensure that the em-
pirical eigenvalues and eigenvectors converge to the population eigenvalues and eigenvectors,
as n→ +∞.

5



1.1.1 Standard PCA on probability measures

The main goal of Chapter 2 is to define a notion of principal component analysis (PCA) of
a family of probability measures ν1, . . . , νn, defined on the real line R. In the case where the
measures admit square-integrable densities f1, . . . , fn, with respect to the Lebesgue measure,
the standard approach is to use functional PCA (FPCA) (see e.g. [Dauxois et al., 1982; Ram-
say and Silverman, 2005; Silverman, 1996]) on the Hilbert space L2(R) of square-integrable
densities, endowed with its usual inner product. This method has already been applied in
[Kneip and Utikal, 2001] for analyzing the main modes of variability of a set of densities.
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Figure 1: Graphs of Gaussian densities f1, . . . , f4, with different means and variances.

Let us illustrate the strategy described above on a set of Gaussian densities f1, . . . , f4,
shown in Figure 1, in the Hilbert space H = L2(R). We first compute the Euclidean mean f̄ =
1
4

∑4
i=1 fi, shown in Figure 2(d), and obtain a bi-modal density which is not a ”satisfactory”

average of the uni-modal densities f1, . . . , f4. We also compute the first empirical mode of
linear variation (1.8), defined by the curve (we omit the dependence on k = 1),

γ(t) = f̄ + tφ, t ∈ R, (1.13)

where φ ∈ L2(R) is the eigenvector associated with the largest eigenvalue λ, of the empirical
covariance operator K4 : L2(R) → L2(R), defined by K4(f) = 1

4

∑4
i=1〈fi − f̄ , f〉2(fi − f̄).

We observe that γ is not a ”meaningful” descriptor of the data variability. Indeed, for |t|
sufficiently large, the function γ(t) may take negative values and does not integrate to one,
as illustrated in Figure 2(e),(f). Moreover, even for small values of |t|, γ(t) does not represent
the typical shape of the observed densities f1, . . . , f4, as shown by Figure 2(c),(d). Therefore,
functional PCA of densities in L2(R) is not always interpretable as it leads to principal modes
of linear variation that may be not coherent with the shape variability that is observed in
the data. This drawback of functional PCA comes from the fact that the Euclidean distance
‖f1 − f2‖L2(R) is not necessarily appropriate to compare two measures ν1 and ν2, admitting
f1 and f2 as densities.

1.1.2 Standard PCA on images

In Chapter 3 we define a PCA-like method well suited for describing the variability of a set
of images y1, . . . , yn, which can be considered as square-integrable functions on a domain Ω,
a convex subset of Rd. Let us illustrate the method of standard PCA in the Hilbert space
H = L2

µ(Ω), applied to a set of n = 30 images of handwritten digits y1, . . . , y30; see Figure
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Figure 2: An example of functional PCA of densities. First principal mode of linear variation
γ(t) in the Hilbert space L2(R) for −2λ ≤ t ≤ 2λ, see equation (1.13), of the densities
displayed in Figure 1.

3. We compute the Euclidean mean ȳ = 1
30

∑30
i=1 yi and, for k = 1, 2, we compute also the

k-empirical mode of linear variation of the data (1.8), defined by the curve,

γk(t) = ȳ + tφk, t ∈ R, (1.14)

where φk ∈ L2
µ(Ω) is an eigenvector associated with the k-th largest eigenvalue λk ≥ 0 of the

empirical covariance operator K30 : L2
µ(Ω)→ L2

µ(Ω), with K30y = 1
30

∑30
i=1〈yi− ȳ, y〉2(yi− ȳ).

Empirical PCA on H =  L2(Ω), applied to this set of images, is a method to compute
the principal directions of photometric variability of the yi’s around the Euclidean mean ȳ.
However, these images also exhibit a large geometric variability; see Figure 3. In such a case,
ȳ is not a satisfying estimator of the typical shape of each individual image, see Figure 4 (a),
and standard PCA does not meaningfully reflect the modes of variability of the data, see
Figure 4 (b),(c). In particular, the second empirical mode of variation γ2(t) at t = −λ2 is no
longer a single digit but rather the superposition of two digits in different orientations.

The idea underlying PCA is that the Hilbert space  L2(Ω), equipped with the standard
inner product, is well suited to model natural images. However, the set of such objects (as
those in Figure 3) typically cannot be considered as a linear sub-space of  L2(Ω). Therefore,
the Euclidean distance ‖y1 − y2‖2 is generally not well suited, since it is not adapted to the
geometry of the set to which the images y1 and y2 truly belong. Actually one can see that
the images in Figure 3 have mainly a geometric variability in space, which is much more
important than the photometric variability.
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Figure 3: Digit 5. A sample of 8 images out of n = 30 taken from the Mnist database [LeCun
et al., 1998]

(a) ȳ (b) γ1(−λ1) (c) γ2(−λ2)

Figure 4: Standard Euclidean mean, first and second empirical modes of variation γ1(t) and
γ2(t) at t = −λ1 and t = −λ2 respectively.

1.2 Analogs of PCA for data belonging to a Rieman-

nian manifold

There is currently a growing interest in the statistical literature on the development of non-
linear analogs of PCA, for the analysis of data belonging to curved Riemannian manifolds;
see e.g. [Fletcher et al., 2004; Huckemann et al., 2010; Sommer et al., 2010] and references
therein. These methods, generally referred to as Principal Geodesic Analysis (PGA), ex-
tend the notion of classical PCA on Hilbert spaces. After providing a brief overview of
Riemannian Manifolds, we describe some of the main ideas of PGA. In order to be coherent
with the literature, we give such description in the empirical setting, that is, we describe
the method of PGA applied to a data set p1, . . . , pn belonging to a complete Riemannian
manifold M. However, it could be formulated as a population PGA applied to a M-valued
random element.

1.2.1 Riemannian manifolds

A Riemannian manifold M is a topological space, locally homeomorphic at every p ∈M to
a Hilbert space (TpM, 〈, 〉p), called the tangent space at p. Given a smooth curve γ : I →M
from an interval I ⊂ R, it is possible to define the derivative or velocity at t ∈ I, which is
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an element of Tγ(t)M. The length of γ is defined as the integral of the norm of the velocity
over t ∈ I. The geodesic distance dM(p1, p2) between p1, p2 ∈M is the minimum length over
all smooth curves with endpoints p1 and p2. Geodesics, which are generalizations of straight
lines in Hilbert spaces to manifolds, are smooth curves that are locally length minimizer. The
manifold is said to be complete if every geodesic can be extended indefinitely. Now, given
a reference element q ∈ M and v a tangent vector in TqM, it is known that there exists a
unique geodesic γv such that γv(0) = q, having v as initial velocity. If M is complete, then
the Riemannian exponential map at q, expq : TqM → M, is defined by expq(v) = γv(1).
Therefore, the curve t → expq(tv), t ∈ R, is a geodesic. Generally, the exponential map is a
diffeomorphism only in a neighborhood of zero and its inverse is the Riemannian log map, that
we denote by logq. The log map is not, in general, an isometry, however dM(q, p) = ‖ logq(p)‖q
for all p ∈M, where ‖‖q denotes the norm in TqM.

1.2.2 Fréchet mean on a Riemannian manifold

Consider p1, . . . , pn ∈ M. In order to define a PGA one needs a notion of average on
M. It has been suggested [Fletcher et al., 2004] that the appropriate notion is the Frechet
mean, defined as an element q ∈M (not necessarily unique) minimizing the sum of squared
distances to the data, namely

q ∈ arg min
p∈M

1

n

n∑
i=1

d2
M(p, pi).

From (1.9) we can observe that the Fréchet mean generalizes the Euclidean mean in a Hilbert
space. We refer to [Bhattacharya and Patrangenaru, 2003] for further details and properties
of the Fréchet mean in Riemannian manifolds. After computing a Fréchet mean q, it is
possible to define the main modes of variability of the data in two different ways, that are
described below.

1.2.3 PGA along geodesics on a Riemannian manifold

Recall that the curve t → expq(tv), t ∈ R, with v ∈ TqM, is a geodesic, thus expq(span(v))
generalizes the concept of one dimensional affine sub-space through q. The notion of PGA
along geodesics on M is inspired by problem (1.10), which characterizes standard PCA. In
a first step, one computes

φgeok ∈ arg min
v∈E⊥k , ‖v‖=1

1

n

n∑
i=1

d2
M
(
pi, expq(span(v))

)
, (1.15)

where E1 = {0} and Ek = span(φgeo1,n , . . . , φ
geo
k−1,n), k ≥ 2. Then, in a second (and final) step,

one projects the element φgeok ∈ TqM onto M, by computing the geodesic

γgeok (t) = expq(tφ
geo
k ), t ∈ R.

We remark that, among other differences, PGA was originally proposed in [Fletcher et al.,
2004] in terms of maximizing variance. In the case of PCA on Hilbert spaces, both for-
mulations, minimizing residuals (1.11) and maximizing variance (1.12), are equivalent. In
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contrast, in the case of PGA, such formulations do not coincide, as discussed in [Huckemann
et al., 2010; Sommer et al., 2010]. We also remark that PGA along geodesic, is a com-
plicated procedure that requires sophisticated theoretical and numerical tools [Huckemann
et al., 2010; Sommer et al., 2010].

1.2.4 PGA via linearization in the tangent space

As we said before, (1.15) is a difficult problem, thus in [Fletcher et al., 2004] an approximation
through linearization in the tangent space is proposed. In this approach, the data p1, . . . , pn is
first projected on TqM by means of the logq map, thus obtaining vi = logq(pi), i = 1, . . . , n.
Next, a standard PCA of v1, . . . , vn is performed in the linear space (TqM, 〈·, ·〉, ‖ · ‖), which
amounts to computing the eigenvectors (φlink )k∈K associated with the eigenvalues λ1 ≥ λ2 ≥
. . ., of the covariance operator

Knv =
1

n

n∑
i=1

〈vi − v̄, v〉(vi − v̄), v ∈ TqM,

where v̄ = 1
n

∑n
i=1 vi. Finally, φlink is projected back onto M by means of the expq map, to

obtain the geodesic
γlink (t) = expq(tφ

lin
k ), t ∈ R,

which represents a second notion of principal geodesic.

PGA via linearization can be understood as an approximation of PGA along geodesic,
described in Section 1.2.3. Indeed, consider the approximation

dM(p, pi) ≈ ‖ logq(p)− logq(pi)‖q, i = 1, . . . , n, (1.16)

under the assumption that p, p1, . . . , pn are well concentrated around the Fréchet mean q and
the curvature of M at q is small. Then, from (1.9) and (1.16), v̄ ≈ logq(q) = 0 and, again
by (1.16), the objective function in (1.15) can be approximated as

1

n

n∑
i=1

d2
M
(
pi, expq(span(v))

)
≈ 1

n

n∑
i=1

d2
µ(vi, span(v)) ≈ 1

n

n∑
i=1

d2
µ(vi, v̄ + span(v)). (1.17)

The right-hand side above, characterizes the standard PCA of v1, . . . , vn (see (1.10)).

This yields another definition of principal geodesics of the data and generally one has
that γlink 6= γgeok , except if M is a Hilbert space. Therefore, PGA via linearization on the
tangent space and PGA along geodesics may lead to different definitions of principal geodesic
in a curved manifold. A detailed analysis of the differences between these methods can be
found in [Sommer et al., 2010]. Observe that PGA via linearization is easy to compute as
it amounts to diagonalizing the covariance operator Kn. On the other hand, due to the
approximation (1.17), if the data is not well concentrated around the Fréchet mean q or M
has high curvature at q, then PGA via linearization might not be a good descriptor of the
variability of the data [Huckemann et al., 2010; Sommer et al., 2010].
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1.3 Summary of contributions and results of this thesis

The main contribution of this thesis are the following

1. Definition and analysis of the geodesic principal analysis in the Wasserstein space, a
framework for analyzing the variability of a set of probability measures on the line.
Since the Wasserstein space W2 is not a Riemannian manifold, one cannot directly
use the methods described in Section 1.2 to define a notion of PCA. Nevertheless, the
space W2 has a formal Riemannian structure [Ambrosio and Savaré, 2007] that we
use to define a new notion of Geodesic PCA (GPCA) similar to those described in
Section 1.2. Our main results of existence of GPCA are Theorem 2.2 and Theorem 2.3,
corresponding to GPCA in two variants, called global and nested.

2. An illustrative example of GPCA based on Gaussian densities. We show in this case
that GPCA can be solved using a simple numerical procedure.

3. Proof of the strong consistency of the empirical GPGA performed on a random data
set. In this context, our main result is Theorem 2.4.

4. Definition and analysis of the geometric PCA of images, which is a method well adapted
for describing the geometric variability of a set of images. The definition of the geomet-
ric PCA relies on standard procedures in the field of image processing. We define the
geometric PCA in a framework where the spatial deformation operators (to represent
geometric variability) are invertible and can be parametrized by elements of a Hilbert
space. For estimating geometric variability, we use a preliminary registration step.
Then, we apply classical PCA on Hilbert spaces to the resulting parameters represent-
ing the deformations after registration. The existence of geometric PCA is ensured by
Proposition 3.1, under certain regularity conditions.

5. Development of an optimization procedure and numerical implementation of the geo-
metric PCA, applied to a set of handwritten images.

6. Proof of the consistency of the geometric PCA in statistical deformable models. Here,
our main results are Theorems 3.1 and 3.3, corresponding to geometric PCA using two
alternative registration procedures, called template and groupwise, respectively.
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Chapter 2

Geodesic principal components
analysis in the Wasserstein space

2.1 Introduction

2.1.1 Main goal of this chapter

The main goal of this chapter is to define a notion of principal component analysis (PCA) of
a family of probability measures ν1, . . . , νn, defined on the real line R. In the case where the
measures admit square-integrable densities f1, . . . , fn, with respect to the Lebesgue measure,
the standard approach is to use functional PCA (FPCA) (see e.g. [Dauxois et al., 1982; Ram-
say and Silverman, 2005; Silverman, 1996]) on the Hilbert space L2(R) of square-integrable
functions, endowed with its usual inner product. This method has already been applied in
[Kneip and Utikal, 2001] for analyzing the main modes of variability of a set of densities.

In Section 1.1.1 we illustrate standard PCA on a set of n = 4 Gaussian densities f1, . . . , f4,
shown in Figure 1. From this analysis, we concluded that functional PCA of densities in L2(R)
is not always interpretable as it leads to principal modes of linear variation that may be not
coherent with the shape variability that is observed in the data. In this thesis, we suggest to
rather consider that the measures ν1, . . . , νn belong to the Wasserstein space W2 of probability
measures over (R,B(R)), with finite second order moment, endowed with the Wasserstein
distance dW2 , associated with the quadratic cost; see [Villani, 2003] for information on the
Wasserstein space. In this setting, it is not possible to define a notion of PCA in the usual
sense as the Wasserstein space W2 is not linear. Nevertheless, in this chapter we show how
to define a proper notion of PCA in W2, relying on the formal Riemannian structure of
W2, described in Section 2.2.3. A first idea in that direction is related to the mean of the
data, which is an essential ingredient in any notion of PCA. We propose to use the Fréchet
mean (also called barycenter) as introduced in [Agueh and Carlier, 2011], whose asymptotic
properties have been studied in [Bigot and Klein, 2012]. It is significant to see that the
barycenter of f1, . . . , f4, has a shape which is coherent with the shapes of the densities; see
Figure 5(b).
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Figure 5: (a) Euclidean mean of the densities shown in Figure 1.(b) Density of the barycenter
ν̄n in the Wasserstein space W2 of the probability measures ν1, . . . , ν4 admitting f1, . . . , f4 as
densities.

2.1.2 Main contributions and organization of the chapter

Since the Wasserstein space W2 is not a Riemannian manifold, one cannot directly use the
methods described in Section 1.2. Nevertheless, the space W2 has a formal Riemannian
structure [Ambrosio et al., 2004; Ambrosio and Savaré, 2007] that we use to define a new
notion of Geodesic PCA (GPCA) in W2, similar to those described in Section 1.2. Another
contribution of this chapter is a proof of consistency of the empirical GPGA performed on a
random data set.

Before precisely defining GPCA, we display in Figure 6 the first principal mode of geodesic
variation g̃ in W2, of the data displayed in Figure 1; see equation (2.26). GPCA clearly gives
a better description of the variability in the data compared to the results displayed in Figure
2, that correspond to the first principal mode of linear variation g in L2(R), as defined in
(1.2).

The chapter is organized as follows. In Section 2.2 we give a precise definition of the
Wasserstein space W2 and we describe its formal Riemannian structure. In particular, we
recall basic definitions such as tangent space, geodesics, exponential map and logarithmic
map in the Wasserstein space framework, having their analogs in the Riemannian manifold
setting. The main results are contained in sections 2.3 and 2.5. Section 2.3 is devoted to the
construction and existence of GPCA in two variants, called global and nested, while Section
2.5 is dedicated to the consistency of GPCA, when the number n of random data points tends
to infinity. Finally, we conclude the chapter in Section 2.6 with a discussion of the differences
between GPCA and the methods described in Section 1.2. In order to be self-contained, we
give in Appendix A some classical results on quantile functions, geodesic spaces, Kuratowski
convergence and Γ-convergence. Throughout the chapter, we provide numerical experiments
to illustrate the properties of GPCA in simple statistical models.

2.2 Preliminaries and definitions

2.2.1 A running example: the homothetic model

We begin this section by describing a simple construction of probabilities on the line, that
will be used throughout the chapter as illustrative example. Let µ0 ∈ W2 with density f0
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Figure 6: An example of GPCA of densities. First principal mode of geodesic variation g̃t in
the Wasserstein space W2 for −2 ≤ t ≤ 2 of the densities displayed in Figure 1. See equation
(2.26).

and cdf F0. For (a, b) ∈ (0,∞)× R, let us denote by ν(a,b) the probability the density

f (a,b)(x) :=
1

a
f0

(
x− b
a

)
, x ∈ R. (2.1)

and cdf

F (a,b)(x) := F0

(
x− b
a

)
, x ∈ R. (2.2)

Then, if (a1, b1), . . . , (an, bn) belong to (0,∞)×R, we consider as a running example the case
where the data ν1, . . . , νn satisfy the model

νi = ν(ai,bi), i = 1, . . . , n, (2.3)

to be referred as the homothetic model of measures in the rest of the chapter. The densities
displayed in Figure 1 represent an example of realizations of this model with f0 being the
standard normal density and n = 4.

2.2.2 Optimal transportation theory

Let Ω denote either the real line R or an interval of R. We denote by W2(Ω) the set of
probability measures over (Ω,B(Ω)) with finite second order moment, where B(Ω) is the
sigma field of Borel subsets of Ω; if Ω = R, we write W2 instead of W2(R). We also denote by
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W ac
2 (Ω) ⊂ W2(Ω) the set of probability measures that are absolutely continuous with respect

to the Lebesgue measure dx on Ω. For a measurable map T : Ω → Ω, we recall that the
push-forward measure T#µ of µ ∈ W2(Ω) through the map T is defined as

(T#µ)(A) = µ(T−1(A)) for all A ∈ B(Ω).

Definition 2.1. Given µ, ν ∈ W2(Ω), the Wasserstein distance between µ and ν is defined
by

dW2(µ, ν) :=

(
inf

π∈P(µ,ν)

∫
Ω×Ω

|x− y|2dπ(x, y)

)1/2

,

where P(µ, ν) is the set of probability measures on Ω× Ω with marginals µ and ν.

It can be shown that W2(Ω) endowed with the distance dW2 is a metric space, the so-called
Wasserstein space. For a detailed analysis of its properties, we refer to [Villani, 2003]. Let
us now recall the following key theorem from optimal transportation theory, due to Brenier
[Brenier, 1991].

Theorem 2.1. Let µ ∈ W ac
2 (Ω) and ν ∈ W2(Ω), then

d2
W2

(µ, ν) = inf
T∈MP(µ,ν)

∫
Ω

|T (x)− x|2dµ(x), (2.4)

where MP(µ, ν) = {T : Ω → Ω | T is measurable and ν = T#µ}. Moreover, there exists
T ∗ ∈ MP(µ, ν) such that d2

W2
(µ, ν) =

∫
Ω
|T ∗(x) − x|2dµ, characterized as the unique (up to

a µ negligible set) element in MP(µ, ν) that can be represented as the gradient of a convex
function.

Since we are in dimension one, a mapping T : Ω→ Ω is the gradient of a convex function
if and only if T is increasing. Therefore, if F and G are the cumulative distribution functions
(cdf) of µ and ν, then the optimal mapping in Theorem 2.1 is given by T ∗ = G− ◦ F and

d2
W2

(µ, ν) =

∫
Ω

(G− ◦ F (x)− x)2dµ(x), (2.5)

where G−(y) := inf{x ∈ R : G(x) ≥ y} is the quantile function of ν. Note that G− is
increasing, hence almost everywhere differentiable. By the change of variable x = F−(y), we
obtain the well-known characterization of the Wasserstein distance via the quantile functions
of µ and ν:

d2
W2

(µ, ν) =

∫ 1

0

(G−(y)− F−(y))2dy. (2.6)

2.2.3 The pseudo-Riemannian structure of the Wasserstein space

The Wasserstein space over (Ω,B(Ω)) has a formal Riemannian structure considered, for
example, in [Ambrosio et al., 2004; Ambrosio and Savaré, 2007]. We first provide some basic
definitions in the Wasserstein space framework, having their analogs in the Riemannian
manifold setting. Following [Ambrosio et al., 2004; Ambrosio and Savaré, 2007], given µ ∈
W ac

2 (Ω) we define the tangent space at µ as the Hilbert space L2
µ(Ω) of real-valued, µ-square-

integrable functions on Ω, equipped with the standard inner product and its associated norm
denoted by ‖ · ‖µ. Furthermore, we define the exponential and the logarithmic maps at µ as
follows.
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Definition 2.2. Let µ ∈ W ac
2 (Ω) be a reference measure. The exponential map expµ :

L2
µ(Ω)→ W2(Ω) and the logarithmic map logµ : W2(Ω)→ L2

µ(Ω) are defined respectively as

expµ(v) = (id + v)#µ and logµ(ν) = G− ◦ F − id, (2.7)

where F,G are the cdf of µ, ν respectively, id is the identity function on Ω, and (id + v)#µ
is the push-forward measure of µ through the map T = id + v.

Note that the exponential map is well defined in the sense that expµ(v) ∈ W2(Ω) for any
v ∈ L2

µ(Ω), since∫
Ω

x2d expµ(v)(x) =

∫
Ω

(x+ v(x))2dµ(x) ≤ 2

∫
Ω

x2dµ(x) +

∫
Ω

v2(x)dµ(x) < +∞.

Similarly, the logarithmic map is well defined in the sense that logµ(ν) ∈ L2
µ(Ω) since

‖ logµ(ν)‖2
µ = d2

W2
(µ, ν) < +∞, for all ν ∈ W2(Ω).

Example 2.1. In order to illustrate the notions of exponential and logarithmic maps, we
consider the homothetic model (2.3). Let µ ∈ W ac

2 be a reference measure with cdf F . Then

logµ(ν(a,b))(x) = [F (a,b)]− ◦ F (x)− x, x ∈ R.

Taking µ = µ0, from (2.2), the expression above simplifies to

logµ0(ν
(a,b))(x) = (a− 1)x+ b, x ∈ R.

Therefore, letting v(x) = (a− 1)x+ b, x ∈ Ω, then

expµ0(v) = ν(a,b). (2.8)

In the setting of Riemannian manifolds, the exponential map at a given point is a local
homeomorphism from a neighborhood of the origin in the tangent space onto the manifold.
However, this is not the case for the exponential map expµ defined above, as it is possible
to find two arbitrarily small functions in L2

µ(Ω) with equal exponentials, see e.g. [Ambrosio
et al., 2004; Ambrosio and Savaré, 2007]. On the other hand, we will show that expµ is an
isometry when restricted to a specific set of admissible functions defined below.

Definition 2.3. Let µ ∈ W ac
2 (Ω). The function v ∈ L2

µ(Ω) is said to be admissible if id + v
is increasing µ-a.s. It is said to be strictly admissible if id + v is strictly increasing µ-a.s.
The set of admissible (resp. strictly) functions is denoted by Vµ (resp. V s

µ ).

We remark that Vµ is not a linear space.

Lemma 2.1. Let (Tk) be a sequence in L2
µ(Ω) such that Tk is µ-a.s increasing , for all k ≥ 1.

(a) If (Tk) converges pointwise µ-a.s to T ∈ L2
µ(Ω) then T is µ-a.s increasing. (b) If (Tk)

converges in norm to T ∈ L2
µ(Ω) then T is µ-a.s increasing.

Proof. (a) It is possible to find a measurable set A, such that µ(A) = 1, Tk is increasing in
A, for all k ≥ 1 and Tk → T pointwise in A. Then it directly follows that T is increasing in
A.
(b) As (Tk) converges in norm to T and using a result from measure theory, we know there
exists a subsequence (Tkj) converging µ-a.s to T . Then the conclusion follows from (a).
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The following result is a key ingredient for the construction of GPCA in the Wasserstein
space.

Proposition 2.1. Let µ ∈ W ac
2 (Ω), then Vµ is closed and convex in L2

µ(Ω). Moreover V s
µ is

convex and dense in Vµ.

Proof. For convexity take λ ∈ [0, 1], v1, v2 ∈ Vµ. Then, from Definition 2.3, id + v1 and
id + v2 are increasing and so is id +λv1 + (1−λ)v2 = λ(id + v1) + (1−λ)(id + v2). The same
arguments apply for the convexity of V s

µ . For closeness, take a sequence (vk) in Vµ converging
to v ∈ L2

µ(Ω). Then id + vk → id + v and, by Lemma 2.1, id + v is increasing, that is v ∈ Vµ.
Finally, we prove that V s

µ is dense in Vµ by taking a sequence (hk) in V s
µ such that hk → 0.

Then, for v ∈ Vµ, we have v + hk ∈ V s
µ and v + hk → v, so the conclusion follows.

The following proposition shows that the exponential map in W2(Ω), restricted to the
convex set of admissible functions Vµ, is an isometry. This is an important property that will
allow us to define and to compute the GPCA in W2(Ω).

Proposition 2.2. Let µ ∈ W ac
2 (Ω), then expµ(Vµ) = W2(Ω) and expµ(V s

µ ) = W ac
2 (Ω). Also,

the exponential map expµ restricted to Vµ or V s
µ is an isometric homeomorphism, with inverse

given by logµ.

Proof. Let ν ∈ W2(Ω) then, from Theorem 2.1, G− ◦ F is the unique µ-a.s. increasing map
such that (G−◦F )#µ = ν, where F and G are the cdf of µ and ν respectively. In other words,
v := logµ(ν) = G− ◦ F − id is the unique element in Vµ such that expµ(v) = ν. Now, take
ν ∈ W ac

2 (Ω) and observe that, since ν is absolutely continuous with respect to the Lebesgue
measure, G− is strictly increasing (see for instance [Embrechts and Hofert, 2013]). As F is
strictly increasing µ-a.s, we have that G− ◦ F is strictly increasing µ-a.s. and so, v ∈ V s

µ .

Let us now prove the isometry property. From (2.6) and a change of variable we obtain
d2
W2

(ν1, ν2) = ‖ logµ(ν1) − logµ(ν2)‖2
µ, for any ν1, ν2 ∈ W ac

2 (Ω), and so expµ : V s
µ → W ac

2 (Ω)
is an isometry. Finally, thanks to Proposition 2.1, V s

µ is dense in Vµ, which implies that
expµ : Vµ → W2(Ω) is an isometry as well.

2.2.4 Geodesics in the Wasserstein space

A general overview of geodesics in a metric space is given in Appendix A.2. In this section,
we consider the notion of geodesic in the metric space W2(Ω) as given in Definition A.4.
A direct consequence of Corollary A.1 and Proposition 2.2 is that geodesics in W2(Ω) are
exactly the image under expµ of straight lines in Vµ, where µ ∈ W ac

2 (Ω) is a reference measure.
In particular, given two measures in W2(Ω), there exists a unique shortest path connecting
them. This property is stated in the following lemma.

Lemma 2.2. Let µ ∈ W ac
2 (Ω) and γ : [0, 1] → W2(Ω) be a curve, where v0 := logµ(γ(0))

and v1 := logµ(γ(1)). Then γ is a geodesic if and only if γ(t) = expµ((1− t)v0 + tv1), for all
t ∈ [0, 1].

Example 2.2. To illustrate Lemma 2.2, let us consider again the homothetic model (2.3)
and take µ = µ0 as reference measure. If we let ν0 := µ0 and ν1 = ν(a,b), with a > 0, b ∈ R,
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then one has

v0(x) := logµ0(ν0) = 0 and v1(x) := logµ0(ν1) = (a− 1)x+ b, x ∈ R.

From (2.8) and Lemma 2.2, the curve γ : [0, 1]→ W2(Ω), defined by

γ(t) = expµ0((1− t)v0 + tv1) = expµ0(t(a− 1)x+ tb) = ν(at,bt), t ∈ [0, 1],

is a geodesic such that γ(0) = µ0 = ν(1,0) and γ(1) = ν(a,b), where at = 1− t+ ta and bt = tb.
Moreover, for each time t ∈ [0, 1], the measure γ(t) admits the density

f (at,bt)(x) =
1

at
f0

(
x− bt
at

)
, x ∈ R. (2.9)

In Figure 7, we display the densities f (at,bt), for some values of t ∈ [0, 1], in the case where
µ0 is the standard Gaussian measure, a = 0.5 and b = 2.
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(e) f (at,bt) for t = 0.8
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(f) f (at,bt) for t = 1

Figure 7: Visualization of the densities f (at,bt) associated with the geodesic curve γ(t) = ν(at,bt)

in W2, described in Example 2.2, with a = 0.5 and b = 2, in the case where µ = µ0 is the
standard Gaussian measure.

Note that, by Lemma 2.2, W2(Ω) endowed with the Wasserstein distance dW2 is a geodesic
space. Moreover, we immediately have the following corollary.

Corollary 2.1. Let µ ∈ W ac
2 (Ω) be a reference measure. Then G ⊂ W2(Ω) is geodesic (in

the sense of Definition A.5) if and only if logµ(G) is convex.

Finally, to define the GPCA in W2(Ω) we will need the following definition of the dimension
of a geodesic subset.
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Definition 2.4. Let G be a geodesic subset of W2(Ω). We define the dimension of G, denoted
dim(G), as the dimension of the smallest affine subspace of L2

µ(Ω) containing logµ(G).

We observe that the previous definition does not depend on the choice of the measure µ.
Indeed take µ′ ∈ W2(Ω) and E an affine subspace of L2

µ(Ω) containing logµ(G). It is easy to
see that Tµ,µ′ := logµ′ ◦ expµ is an affine function from L2

µ(Ω) to L2
µ′(Ω), therefore Tµ,µ′(E) is

an affine subspace of L2
µ′(Ω) containing logµ′(G) and dim(E) = dim(Tµ,µ′(E)). Observe also

that, if γ : [0, 1]→ W2(Ω) is a geodesic, then γ([0, 1]) is a geodesic space of dimension 1.

2.3 Population Fréchet mean and principal geodesics

Throughout this section we consider a reference measure µ ∈ W ac
2 (Ω) and a W2(Ω)-valued

random element ν which we assume to be square-integrable, in the sense of the following
definition:

Definition 2.5. A random measure ν ∈ W2(Ω) is said to be square-integrable if

E(d2
W2

(ν, µ′)) < +∞,

for some (thus for all) µ′ ∈ W2(Ω).

From now on all random measure ν in W2(Ω) are assumed to be square-integrable, ac-
cording to the previous definition. Also, we consider W2(Ω) equipped with the Borel sigma
field relative to the Wasserstein metric.

2.3.1 Fréchet Mean

A natural notion of average in W2(Ω) is the Fréchet mean, studied in [Bigot and Klein, 2012]
in a general setting, for random measures with support in R

d, d ≥ 1. In what follows we
define and give some properties of the population Fréchet meanM(ν) of a random measure
ν ∈ W2(Ω). Note that results are stated for the one-dimensional case, that is, d = 1. The
higher dimensional case is much more involved and we refer to [Agueh and Carlier, 2011;
Bigot and Klein, 2012] for further details.

Let u be a random element in L2
µ(Ω), such that E(‖u‖µ) < +∞. Then the expectation

E(u) of u is defined by E(u)(x) = E(u(x)), for all x ∈ R. Observe that ‖E(u)‖µ ≤
E(‖u‖µ) < ∞, hence E(u) ∈ L2

µ(Ω). Also, if P(u ∈ Vµ) = 1, then clearly E(u) ∈ Vµ and if
P(u ∈ V s

µ ) = 1, then E(u) ∈ V s
µ . We refer to [Carrasco, 2005] and Chapter 8 of [Bonaccorsi

and Priola, 2006] for a detailed exposition on probabilities in Banach and Hilbert spaces.

Proposition 2.3. Let ν ∈ W2(Ω) be a random measure. Then, one has the following.

(i) There exists a unique element M(ν) ∈ arg minπ∈W2(Ω)E
(
d2
W2

(ν, π)
)

that we define as
the (population) Fréchet mean of ν.

(ii) M(ν) = expµ(E(v)), for any µ ∈ W ac
2 (Ω), where v = logµ(ν).

(iii) M(ν) has cdf Ḡ that satisfies Ḡ− = E(G−), where G is the cdf of ν.
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(iv) If P(ν ∈ W ac
2 (Ω)) = 1, then M(ν) ∈ W ac

2 (Ω).

Proof. (i),(ii) Let µ ∈ W ac
2 (Ω), and let v = logµ(ν). From Proposition 2.2 and as ν is

square-integrable, we have that E
(
‖v − u‖2

µ

)
= E

(
d2
W2

(ν, expµ(u))
)
<∞, for all u ∈ L2

µ(Ω).
Therefore

inf
π∈W2(Ω)

E
(
d2
W2

(ν, π)
)

= inf
u∈Vµ

E
(
‖v − u‖2

µ

)
, (2.10)

and u∗ is a minimizer of the right-hand side (rhs) of (2.10) if and only if expµ(u∗) is a
minimizer of the left-hand side (lhs) of (2.10). On the other hand, observe that E(v) belongs
to the convex set Vµ and that it is clearly the unique minimizer of u 7→ E

(
‖v − u‖2

µ

)
for

u ∈ Vµ. Hence E(v) is the unique minimizer of the rhs of (2.10) and thus, by Proposition
2.2, this implies that M(ν) = expµ(E(v)) is the unique minimizer of the lhs of (2.10), for
any µ ∈ W ac

2 (Ω).

(iii) From Proposition A.1(vi), if µ ∈ W ac
2 (Ω), with cdf F and if T : R→ R is increasing

and left-continuous, then the quantile of T#µ is given by G− = T ◦ F−. Therefore, by (ii)
and Definition 2.2, we have

Ḡ− = (id+E(v)) ◦ F− = E(id+ logµ(ν)) ◦ F− = E(G− ◦ F ) ◦ F− = E(G−),

where v = logµ(ν).

(iv) It is a direct consequence of (ii) and Proposition 2.2.

One can remark that Proposition 2.3(ii) implies that expµ(E(logµ(ν))) does not depend
on µ.

2.3.2 Principal geodesics

Let us first introduce some definitions and results that are needed to define the notion of
principal geodesics of a random measure ν in W2(Ω).

Definition 2.6. Let G ⊂ W2(Ω) and ν ∈ W2(Ω). We define the distance between ν and G
by

dW2(ν,G) = inf
π∈G

dW2(ν, π),

Definition 2.7. Let ν be a random measure in W2(Ω) and G ⊂ W2(Ω). We associate to G
the cost given by the expected value of the square residual of projecting ν onto G, that is,

cost(G) := E
(
d2
W2

(ν, G)
)
. (2.11)

Note that cost(G) depends on the random measure ν and that it is necessarily finite as ν
is assumed to be square-integrable. Observe also that cost is monotone, in the sense that

cost(G) ≥ cost(F ), if G ⊂ F. (2.12)

Definition 2.8. Let CL be the metric space of nonempty and closed subsets of W2(Ω), en-
dowed with the Hausdorff distance hW2 (see Definition A.7). Let also

CGµ,k = {G ∈ CL | µ ∈ G, G is a geodesic set and dim(G) ≤ k} , k ≥ 1,

where dim(G) is defined in Definition 2.4.
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In the rest of this Section 2.3.2, we concentrate on defining and showing the existence of
principal geodesics under the assumption that Ω is compact. In this case it is well known
that (W2(Ω), dW2) is also a compact metric space, see e.g. [Villani, 2003]. Note also that the
compactness of W2(Ω) implies that every random measure ν in W2(Ω) is square-integrable.
Furthermore, compactness of W2(Ω) also implies that hW2(Gn, G) → 0, as n → ∞ if and
only if Gn → G in the sense of Kuratowski (see Definition A.6). From Proposition A.2 we
obtain the following result.

Proposition 2.4. For any ν ∈ W2(Ω), the function G ∈ CL 7→ dW2(ν,G) is continuous.

Corollary 2.2. The function cost of Definition 2.7 is continuous on CL.

Proof. Let ν ∈ W2(Ω) be a random measure and (Gn) be a sequence in CL converging to
G ∈ CL, in the sense of Hausdorff’s distance. Take π ∈ W2(Ω) and observe that

d2
W2

(ν, Gn) ≤ 2d2
W2

(ν, π) + 2d2
W2

(π,Gn).

Since ν is square-integrable, one has that E(d2
W2

(ν, π)) < ∞ and, given that W2(Ω) is
compact, d2

W2
(π,Gn) ≤ R, for some constant R > 0. Hence, by Proposition 2.4 and the

dominated convergence theorem, we conclude that cost(Gn)→ cost(G).

Proposition 2.5. The sets CL and CGµ,k, from Definition 2.8, are compact.

Proof. Since the logµ map is a continuous bijection from the compact set W2(Ω) onto Vµ
(see Proposition 2.2), then Vµ is also compact. Hence, from Proposition A.3, CL(Vµ) :=
{C ⊂ Vµ | C is nonempty and closed} and CCk,0(Vµ) := {C ∈ CL(Vµ) | C is convex, 0 ∈
C and dim(C) ≤ k} are compact metric spaces, for the topology induced by the Hausdorff
distance hµ of sets in L2

µ(Ω) (see Definition A.7). Now, consider the map

iµ : (CL(Vµ), hµ)→ (CL, hW2)

C → expµ(C)

and observe that iµ(CL(Vµ)) = CL, by Proposition 2.2, and iµ(CGk,0(Vµ)) = CGµ,k, by
Corollary 2.1. On the other hand, as the exponential map is an isometry, it is easy to see
that

hµ(C1, C2) = hW2(expµ(C1), expµ(C2)), C1, C2 ∈ CL(Vµ). (2.13)

Hence iµ is an isometric bijection and so, CL and CGµ,k are compact.

Global principal geodesics

We now present a first definition of GPCA, namely the notion of global principal geodesic of
a random measure ν, with respect to a reference measure µ ∈ W ac

2 (Ω).

Definition 2.9. Let µ ∈ W ac
2 (Ω) be a reference measure, ν ∈ W2(Ω) a random measure and

k ≥ 1 an integer. A global k-principal µ-geodesic of ν is an element of

Gµ,k := arg min{cost(G) | G ∈ CGµ,k}. (2.14)

The following is the main result about the existence of global principal geodesics.
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Theorem 2.2. Let µ ∈ W ac
2 (Ω) be a reference measure and k ≥ 1 an integer. Then Gµ,k,

from Definition 2.9, is nonempty.

Proof. The result is a direct consequence of Corollary 2.2 and Proposition 2.5.

Nested principal geodesics

Here we inductively define a second variant of GPCA that we call nested principal geodesics.
This approach is inspired by the usual characterization of PCA in terms of a nested sequence
of optimal linear subspaces.

Definition 2.10. Let µ ∈ W ac
2 (Ω) be a reference measure, ν ∈ W2(Ω) a random measure

and k ≥ 1 an integer. A nested k-principal µ-geodesic of ν is a k-tuple (G1, . . . , Gk) such
that

G1 ∈ arg min{cost(G) | G ∈ CGµ,1}

and for j = 2, . . . , k,

Gj ∈ arg min{cost(G) | G ∈ CGµ,j, G ⊃ Gj−1}.

The set of nested k-principal µ-geodesics of ν is denoted by Nµ,k.

Theorem 2.3. Let µ ∈ W ac
2 (Ω) be a reference measure and k ≥ 1 an integer. Then Nµ,k,

from Definition 2.10, is nonempty.

Proof. Let F,Gn ∈ CL such that F ⊂ Gn, n ≥ 1. If (Gn) converges to G ∈ CL then, thanks
to (ii) in Definition A.6, F ⊂ G. Therefore, the set {G ∈ CL : G ⊃ F} is closed and so
{G ∈ CGµ,k : G ⊃ F} is compact, thanks to Proposition 2.5. Thus, from Corollary 2.2,

arg min{cost(G) | G ∈ CGµ,k, G ⊃ F} 6= ∅.

Let us show that Nµ,k is nonempty by induction on k. First observe that Nµ,1 = Gµ,1; then,
from Theorem 2.2, we have Nµ,1 6= ∅. Assume Nµ,k−1 6= ∅, let (G1, . . . , Gk−1) ∈ Nµ,k−1 and
define Gk as an element in arg min{cost(G) | G ∈ CGµ,k, G ⊃ Gk−1}, which was shown above
to be nonempty. Finally (G1, . . . , Gk−1, Gk) ∈ Nµ,k by definition.

Remark 2.1. (1) For k = 1, the notions of global and nested principal geodesics coincide.
However, this might be not the case for k ≥ 2.
(2) Our proofs of existence of principal geodesics, in Theorems 2.2 and 2.3, rely on the
assumption that Ω is compact. However, this assumption is not a necessary condition as
seen in Theorem 2.6, where we prove existence of principal geodesic in the case Ω = R and
k = 1. However, the non-compactness of Ω significantly complicates our proofs.

2.3.3 Empirical Fréchet mean and principal geodesics

We define the empirical Fréchet mean of measures ν1, . . . , νn ∈ W2(Ω) as follows.
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Definition 2.11. An empirical Fréchet mean of ν1, . . . , νn ∈ W2(Ω) is defined as an element
of

arg min
ν∈W2(Ω)

1

n

n∑
i=1

d2
W2

(νi, ν).

Definition 2.12. Given ν1, . . . , νn ∈ W2(Ω), we denote by ν(n) the random measure in W2(Ω)
such that P(ν(n) = νi) = 1/n, for i = 1, . . . , n.

It is clear that ν(n), defined above, is square-integrable, according to Definition 2.5.

Proposition 2.6. For any ν1, . . . , νn ∈ W2(Ω) there exists a unique empirical Fréchet mean,
denoted by ν̄n. Furthermore,

Ḡ−n =
1

n

n∑
i=1

G−i , (2.15)

where Ḡn the cdf of ν̄n and G1, . . . , Gn are the cdf of ν1, . . . , νn respectively.

Proof. First observe that the empirical Fréchet mean can be characterized as the Fréchet
mean (Proposition 2.3 (i)) of the random measure ν(n) (see Definition 2.12), that is, ν̄n =
M(ν(n)). Hence, the conclusions follow from Proposition 2.3 (i), (ii).

Observe that (2.15) is the well known formula of quantile averaging in statistics, see e.g.
[Zhang and Müller, 2011; Gallón et al., 2013]. A detailed characterization of the empirical
Fréchet mean in the Wasserstein space, can be found in [Agueh and Carlier, 2011], for the
general case of measures supported on Rd, d ≥ 1.

Definition 2.13. Let µ ∈ W ac
2 (Ω) be a reference measure, ν1, . . . , νn ∈ W2(Ω) and k ≥ 1 an

integer. The empirical global and nested k-principal µ-geodesics of ν1, . . . , νn are defined as in
Definitions 2.9 and 2.10 respectively, applied to the random measure ν(n), given in Definition
2.12. The sets of empirical global and nested k-principal µ-geodesics are denoted by Gµ,k,n
and Nµ,k,n respectively.

Note that Theorems 2.2 and 2.3 yield the existence of empirical principal geodesics. Ob-
serve also that cost in (2.11) can be written in this empirical setting as

costn(G) := E
(
d2
W2

(ν(n), G)
)

=
1

n

n∑
i=1

d2
W2

(νi, G). (2.16)

In this section we are assuming that the reference measure µ ∈ W ac
2 (Ω) is arbitrary.

However, by analogy with the PCA in Hilbert spaces, a natural choice for µ would be the
Fréchet meanM(ν), which belongs to W ac

2 (Ω) if P(ν ∈ W ac
2 (Ω)) = 1, thanks to Proposition

2.3(iv).

2.3.4 Formulation of GPCA as an optimization problem in L2
µ(Ω)

In this section we formulate the empirical GPCA, as an optimization problem in L2
µ(Ω).

Then, in the next section, we use this formulation to compute principal geodesics in the
case of the homothetic model. First we introduce some notation to be used throughout this
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section. For U = {u1, . . . , uk} ⊂ L2
µ(Ω), k ≥ 1, we denote by span(U) the subspace spanned

by u1, . . . , uk, by Πspan(U)v the projection of v ∈ L2
µ(Ω) onto span(U) and by Πspan(U)∩Vµv the

projection of v onto the closed convex set span(U) ∩ Vµ.

Definition 2.14. Let v be a random element in L2
µ(Ω) such that E(‖v‖2) < ∞ and let

U = {u1, . . . , uk} ⊂ L2
µ(Ω), k ≥ 1. We associate to U the cost given by the expected value of

the square residual of projecting ν onto span(U) ∩ Vµ, that is,

cost∗(U) := E
(
‖v − Πspan(U)∩Vµv‖2

µ

)
. (2.17)

Note that cost∗, which depends on the random element v, is necessarily finite as ‖E(v)‖2 ≤
E(‖v‖2) <∞.

Definition 2.15. Let µ ∈ W ac
2 (Ω) be a reference measure and U = {u1, . . . , uk} ⊂ L2

µ(Ω),
k ≥ 1. We define the geodesic set generated by U as

GU := expµ(span(U) ∩ Vµ).

Observe that, by Corollary 2.1, GU is indeed a geodesic set in W2(Ω). In order to simplify
the notation, we write span(u), cost∗(u) or Gu, in the definitions above, if U = {u}.

The following proposition shows that the problem of finding global k-principal µ-geodesics,
(see Definition 2.9), can be formulated as an optimization problem in (L2

µ(Ω))k.

Proposition 2.7. Let µ ∈ W ac
2 (Ω) be a reference measure, ν ∈ W2(Ω) a random measure,

v = logµ(ν) and k ≥ 1 an integer. Let U∗ = {u∗1, . . . , u∗k} be a minimizer of cost∗, given by
(2.17), over orthonormal sets U = {u1, . . . , uk} ⊂ L2

µ(Ω), then GU∗ ∈ Gµ,k.

Proof. Recall that, by Corollary 2.1, geodesic sets in W2(Ω) correspond to the image under
expµ of convex sets in Vµ. Therefore, as expµ is an homeomorphism, we have

GU∗ ∈ CGµ,k. (2.18)

On the other hand, from (2.11), (2.17) and as expµ is an isometry (see Proposition 2.2), we
have

cost∗(U) = cost(GU), U = {u1, . . . , uk} ⊂ L2
µ
. (2.19)

Again by Corollary 2.1, given G ∈ CGµ,k, there exists an orthonormal set U = {u1, . . . , uk} ⊂
L2
µ(Ω), such that G ⊂ GU . Thus, as cost is monotone, in the sense of (2.12), and from (2.19),

we have
cost(G) ≥ cost(GU) = cost∗(U) ≥ cost∗(U∗) = cost(GU∗)

and the conclusion follows thanks to (2.18).

Similarly to the previous proposition, the next result shows that the problem of finding
nested principal geodesics (see Definition 2.13) can be formulated as a sequence of optimiza-
tion problem in L2

µ(Ω). The proof is based on the same arguments as the proof of Proposition
2.7, so it is omitted.
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Proposition 2.8. Let µ ∈ W ac
2 (Ω) be a reference measure, ν ∈ W2(Ω) a random measure,

v = logµ(ν) and k ≥ 1 an integer. Let u∗1, . . . , u
∗
k ∈ L2

µ(Ω) such that

u∗1 ∈ arg min{cost∗(u) | u ∈ L2
µ(Ω), ‖u‖µ = 1}

and for j = 2, . . . , k,

u∗j ∈ arg min{cost∗(u) | u ∈ span(u∗1, . . . , u
∗
j−1)⊥, ‖u‖µ = 1}

where ⊥ denotes orthogonal. Then (Gu∗1
, G{u∗1,u∗2} . . . , G{u∗1,...,u∗k}) ∈ Nµ,k.

Given data ν1, . . . , νn ∈ W2(Ω), Propositions 2.7 and 2.8 can be applied to the random
measure ν(n) of Definition 2.12. In this case, the empirical version of (2.17) can be written
as

cost∗n(U) =
1

n

n∑
i=1

‖vi − Πspan(U)∩Vµvi‖2
µ (2.20)

and an optimal solution U∗ = {u∗1, . . . , u∗k} leads to the construction of empirical principal
geodesics.

2.3.5 PCA on logarithms

Motivated by the method described in Section 1.2.4, we consider applying the standard PCA
to the logarithms of the data. The next proposition provides conditions ensuring that such
procedure leads to a solution of GPCA. For the sake of simplicity, we state the result only
for global principal geodesics.

Proposition 2.9. Let µ ∈ W ac
2 (Ω) be a reference measure, ν ∈ W2(Ω) a random measure,

v = logµ(ν) and k ≥ 1 an integer. Let Ũ = {ũ1, . . . , ũk} ⊂ L2
µ(Ω) be a set of orthonormal

eigenvectors associated with the k largest eigenvalues of the covariance operator K : L2
µ(Ω)→

L2
µ(Ω), given by

Kv = E〈v −E(v), v〉(v −E(v)), v ∈ L2
µ(Ω). (2.21)

If Πspan(Ũ)v ∈ Vµ a.s. then GŨ ∈ Gµ,k.

Proof. It is well known that Ũ is minimizer of

c̃ost(U) := E‖v − Πspan(U)v‖2
µ, (2.22)

over orthonormal sets U = {u1, . . . , uk} ⊂ L2
µ(Ω). On the other hand, from (2.17) and (2.22),

it is clear that

cost∗(U) ≥ c̃ost(U), for all U = {u1, . . . , uk} ⊂ L2
µ(Ω). (2.23)

As we have assumed that Πspan(Ũ)v ∈ Vµ a.s. then, from (2.17) and (2.22), we have

cost∗(Ũ) = c̃ost(Ũ). (2.24)

From (2.23) and (2.24) we have that Ũ is a minimizer of cost∗(U) over orthonormal sets
U = {u1, . . . , uk} ⊂ L2

µ(Ω). Finally, from Proposition 2.7 we obtain the result.
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Let ν1, . . . , νn ∈ W2(Ω) and ν(n) from Definition 2.12. If in Proposition 2.9 we replace ν
by ν(n), we obtain the empirical version of this result. In this case, if Ũ = {ũ1, . . . , ũk} ⊂
L2
µ(Ω) are orthonormal eigenvectors associated with the k largest eigenvalues of the empirical

covariance operator

Kv =
1

n

n∑
i=1

〈vi − v̄n, v〉(vi − v̄n), v ∈ L2
µ(Ω), (2.25)

with vi = logµ νi and if Πspan(Ũ)vi ∈ Vµ, i = 1, . . . , n, then GŨ ∈ Gµ,k,n.

From Proposition 2.9, we can informally say that, if the data is sufficiently concentrated
around the reference measure µ, then the GPCA in W2(Ω) can be simply obtained from the
standard PCA on logarithms.

2.4 Some numerical examples of GPCA in W2

In Section 2.4.1 we present an example of concentrated data such that the conditions in
Proposition 2.9 are satisfied and so, the problem of finding principal geodesics is reduced to
the standard PCA on the data logarithms. On the other hand, in Section 2.4.2 we present an
example of spread out data, where the GPCA cannot be obtained from the standard PCA
of the logarithms.

2.4.1 The case of sufficiently concentrated data

To illustrate the empirical GPCA in W2, let us consider the set of n = 4 probability mea-
sures ν1, . . . , ν4 with densities f1, . . . , f4, displayed in Figure 1. These measures satisfy the
homothetic model (2.3), with µ0 being the standard Gaussian measure (with zero mean and
unit variance) and let the values of ai’s and bi’s be given in Table 2.1.

i 1 2 3 4
ai 0.4 0.8 1.2 1.6
bi −1.8 −0.1 0.7 1.2

Table 2.1: Values of (a, b).

We first calculate the Fréchet mean ν̄4 of ν1, . . . , ν4. To that end, we apply the quantile
average formula (2.15), from which we obtain the density ḡ4 of ν̄4 (displayed in Figure 1(f)),
given by

ḡ4(x) = f (ā4,b̄4)(x) =
1

ā4

f0

(
x− b̄4

ā4

)
, x ∈ R,

where ā4 = 1
4

∑4
i=1 ai = 1 and b̄4 = 1

4

∑4
i=1 bi = 0. Hence, in this example, one has that

ḡ4 = f0 and ν̄4 = µ0.

Observe that ν1, . . . , ν4 are concentrated around their empirical Fréchet mean ν̄4, in the
sense that their expectations and variances are not too far from those of ν̄4, see Figure 1. Let

26



us apply Proposition 2.9 to compute explicitly an empirical first principal geodesic, taking
µ = µ0 as reference measure. Let ũ be the eigenvector associated with the largest eigenvalue
of the empirical covariance operator

Kv =
1

4

4∑
i=1

〈vi − v̄, v〉(vi − v̄), v ∈ L2
µ0

(R)

where

vi(x) = logµ0(νi)(x) =

(
ai
ā4

− 1

)
x+ bi − b̄4

ai
ā4

= (ai − 1)x+ bi, x ∈ R,

for i = 1, . . . , 4. Using the fact that the vi’s are affine functions belonging to the space
generated by the identity function and the constant function 1, which are orthonormal in
L2
µ0

(R), the operator K can be identified with the 2× 2 matrix

M =
1

4

4∑
i=1

V ′i Vi,

with Vi = (ai − 1, bi)
′ ∈ R2, 1 ≤ i ≤ 4. Therefore, ũ is also an affine function i.e. ũ(x) =

α̃x + β̃, x ∈ R, where Ũ = (α̃, β̃)′ ∈ R
2 (with α̃ = 0.36 and β̃ = 0.93) is the eigenvector

associated with the largest eigenvalue of M . In other words, computing Ũ simply amounts
to calculating the first eigenvector associated with the standard PCA of Vi ∈ R2, i = 1, . . . , 4,
that represent the slope and intercept parameters of the affine functions vi. In Figure 8, we
display the vectors Vi (blue circles) for 1 ≤ i ≤ 4, together with the linear space spanned by
Ũ (red dash-dot line), which corresponds to the first principal direction of variation of this
data set. Any affine function u(x) = αx + β in L2

µ0
can be represented in R

2 by the vector
U = (α, β)′. If α ≥ −1, then such function belongs to Vµ0 , which corresponds to the case
where the point (α, β) ∈ R2 is located to the right of the vertical green dashed line in Figure
8. Hence, it can be seen from the projections of the vectors Vi onto the linear space spanned
by Ũ , that Πspan(ũ)vi ∈ Vµ0 for all 1 ≤ i ≤ 4, and therefore, from Proposition 2.9, we conclude
that the family of probability measures

Gũ =
{
ν̃t := expµ0(tũ), for all t ∈ R such that 1 + tα̃ ≥ 0

}
,

is a first empirical principal geodesic. From (2.1) and (2.8), each ν̃t in Gũ admits the density

g̃t(x) =
1

ãt
f0

(
x− b̃t
ãt

)
, x ∈ R, (2.26)

with ãt = 1 + tα̃ and b̃t = tβ̃. In Figure 6, we display the first principal mode of geodesic
variation g̃t, for −2 ≤ t ≤ 2, of the densities displayed in Figure 1. As already mentioned,
the GPCA in W2 gives a better interpretation of the data variability when compared to the
results given by the first principal mode of linear variation of these densities (in the Hilbert
space L2(R)), displayed in Figure 2.
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Figure 8: A two-dimensional representation of the affine functions u(x) = αx+β in L2
µ0

. The
horizontal axis is the slope parameter α, and the vertical axis is the intercept parameter β.
The points to the right of the vertical green dashed line at α = −1 correspond to the affine
functions belonging to Vµ0 . The blue circles correspond to the vectors Vi = (ai − 1, bi)

′ ∈
R

2 that are associated with the affine functions vi(x) = (ai − 1)x + bi, for 1 ≤ i ≤ 4,
corresponding to the measures with densities displayed in Figure 1. The dash-dot red line is
the linear space spanned by the first eigenvector Ũ ∈ R2 of a standard PCA of the vectors
V1, . . . , V4.

2.4.2 The case of spread-out data

In this section, we exhibit a situation where the GPCA of ν1, . . . , νn in W2 and the standard
PCA of the functions vi = logν̄n(νi), i = 1, . . . , n in the Hilbert space L2

ν̄n , lead to different
results. Let ν1, . . . , ν4 from the homothetic model (2.3), with µ0 again chosen as the standard
Gaussian measure and the values of ai’s and bi’s be given in Table 2.2.

i 1 2 3 4
ai 0.2 0.2 0.2 3.4
bi −3 −1 1 3

Table 2.2: Values of (a, b).

Since ā4 = 1 and b̄4 = 0, the empirical Fréchet mean of these measures is ν̄4 = µ0, as in the
example in Section 2.4.1. From Figure 9 it can be seen that ν1, . . . , ν4 are less concentrated
around their Fréchet mean when compared with the previous example (see Figure 1).
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Figure 9: An example of n = 4 Gaussian densities f1, . . . , f4 satisfying the homothetic model
(2.3) with means and variances given in Table 2.2. (e) Euclidean mean of these densities in
the Hilbert space L2(R). (f) Density of the barycenter ν̄4 in the Wasserstein space W2 of the
probability measures ν1, . . . , ν4 with densities f1, . . . , f4.

We apply Proposition 2.7 to compute an emprirical first principal geodesic. Let

vi(x) = logµ0(νi)(x) = (ai − 1)x+ bi, x ∈ R,

for i = 1, . . . , 4. Recall that the affine functions vi’s belong to the space generated by the
identity function and the constant function 1, which are orthonormal in L2

µ0
(R). Recall also

that an affine function u(x) = αx + β belongs to Vµ0 if and only if α ≥ −1. Therefore, if
S = {(α, β)′ ∈ R2 | α ≥ −1} then minimizing cost∗4 in (2.20) is equivalent to minimizing

U ∈ R2 7→ 1

4

4∑
i=1

‖Vi − Πspan(U)∩SVi‖2, (2.27)

with Vi = (ai − 1, bi)
′ ∈ R

2, 1 ≤ i ≤ 4. We have numerically found a unique minimizer
U∗ = (α∗, β∗) of (2.27), and so u∗(x) = α∗x + β∗, is the unique minimizer of cost∗4. From
Proposition 2.7, the set of probability measures

Gu∗ :=
{
ν∗t := expµ0(tu

∗), for all t ∈ R such that 1 + tα∗ ≥ 0
}
,

is a first empirical principal geodesic, and, from (2.1) and (2.8), each ν∗t in Gu∗ admits the
density

g∗t (x) =
1

a∗t
f0

(
x− b∗t
a∗t

)
, x ∈ R, (2.28)

with a∗t = 1 + tα∗ and b∗t = tβ∗.

We have also computed Ũ = (α̃, β̃)′ ∈ R
2, the eigenvector associated with the largest

eigenvalue of the empirical covariance operator M in (??) of V1, . . . , V4 and obtain that the
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affine function ũ(x) = α̃x + β̃, is the eigenvector associated with the largest eigenvalue of
the empirical covariance operator of v1, . . . , v4. We see that U∗ 6= Ũ , so we have cost∗n(u∗) <
cost∗n(ũ). Hence, from (2.19), we obtain

costn(Gu∗) < costn(Gũ).

The previous inequality proves that computing a GPCA in W2 of a set of measures ν1, . . . , νn
cannot always be achieved by performing a standard functional PCA in L2

µ0
(R) of the func-

tions vi = logµ0(νi), i = 1, . . . , 4. Figure 10 shows the vectors Vi’s and the convex sets

span(U∗) ∩ S and span(Ũ) ∩ S. From this figure one can see that (2.27) is strictly smaller if
evaluated at U∗ than evaluated at Ũ .
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0
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3

4

Figure 10: A two-dimensional representation of the affine functions u(x) = αx+β in L2
µ0

(Ω).
The horizontal axis is the slope parameter α and the vertical axis is the intercept parameter
β. The points that lie in S (the region to the right of the vertical green dashed line at α = −1)
correspond to the affine functions belonging to Vµ0 . The blue circles correspond to the vectors
Vi = (ai− 1, bi)

′ ∈ R2 that are associated with the affine functions vi(x) = (ai − 1)x+ bi, for
1 ≤ i ≤ 4, which are the logarithms of the measures with densities displayed in Figure 9. The
dash-dot red line is the linear space spanned by the first eigenvector U ′ ∈ R2 of the standard
PCA of V1, . . . , V4. The black line is the convex set span(U∗)∩S, where U∗ = (α, β∗)′ ∈ R2 is
the minimizer of (2.27). The black dot is the projection of V1 = (0.2,−3) onto span(U∗)∩S,
while the red dot is the projection of the vector V1 onto span(U ′) ∩ S.
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2.5 Consistency of the empirical GPCA

As in Section 2.3, we assume that Ω is compact and that ν is a square-integrable random
element in W2(Ω). We will study the convergence of the empirical Fréchet mean and the
empirical global principal geodesics to their population counterparts, when ν1, . . . ,νn are iid
copies of ν.

Proposition 2.10. Let ν be a random measure in W2(Ω). Let ν1, . . . ,νn be iid copies of ν
and denote by ν̄n their empirical Fréchet mean. Then, as n→∞,

dW2(ν̄n,M(ν))→ 0 a.s.

Proof. Let µ ∈ W ac
2 (Ω), then from Proposition 2.3(ii), logµ(M(ν)) = E(v) and logµ(ν̄n) =

1
n

∑n
i=1 vi, where v = logµ(ν) and vi = logµ(νi), i = 1, . . . , n. Observe that v1, . . . ,vn

are iid copies of v and that E(‖v‖2
µ) = E(d2

W (ν, µ)) < ∞. Then, By Proposition 2.2,
d2
W (ν̄n,M(ν)) = ‖ 1

n

∑n
i=1 vi − E(v)‖2

µ → 0, a.s., by the strong law of large numbers in a
Hilbert space (see e.g. [Ledoux and Talagrand, 2011]).

Observe that the previous lemma is also valid for non compact Ω, provided that ν is
square-integrable. In the following lemma we show that the indicators of CGµn,k, Γ-converge
to the indicator of CGµ,k when µn converges to µ in W ac

2 (Ω). We refer to Section A.4 in the
Appendix for the definitions of Γ-convergence and of indicator function.

Lemma 2.3. Let (µn) be a sequence in W ac
2 (Ω) converging to µ ∈ W ac

2 (Ω), then

Γ- lim
n→∞

χ
CGµn,k

= χ
CGµ,k

. (2.29)

Proof. By Lemma A.4 with (X, d) = (CL, hW2), it is sufficient to show that CGµn,k converges
to CGµ,k in the sense of Kuratowski. That is, we have to show that

(a) for every G ∈ CGµ,k there exists a sequence (Gn) converging to G such that Gn ∈ CGµn,k,
for every n ≥ 1, and

(b) if G is an accumulation point of a sequence (Gn), with Gn ∈ CGµn,k, n ≥ 1, then
G ∈ CGµ,k.

For (a) let Rn : L2
µ(Ω)→ L2

µn(Ω) be defined by Rn(u) = u◦F−◦Fn, where F and Fn are the
cdf of µ and µn respectively. Let also Tn : W2(Ω)→ W2(Ω) be given by Tn = expµn ◦Rn◦logµ,
n ≥ 1. Take G ∈ CGµ,k and define Gn = Tn(G), n ≥ 1. From Corollary 2.1 and as Rn is
linear, it is easy to check that Gn ∈ CGµn,k, n ≥ 1. Denote by dµ the distance in L2

µ(Ω).
As the logarithmic map is an isometry and after some calculation we get that the deviation
from Gn to G (see Definition A.7), satisfies

dW2(G,Gn) = dµ(logµ(G), logµ(Gn)) ≤ ‖ logµ(µn)‖µ = dW2(µ, µn), n ≥ 1.

Similarly, dW2(Gn, G) ≤ dW2(µ, µn), n ≥ 1, and we conclude that

hW2(G,Gn) ≤ dW2(µ, µn)→ 0, as n→∞.

For (b) take G,Gn, n ≥ 1 as stated above. Since µn ∈ Gn, n ≥ 1, and µn → µ, it follows that
µ ∈ G, by (ii) in Definition A.6.
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On the other hand, let CGk = {G ∈ CL | G is a geodesic set and dim(G) ≤ k}, which is
shown to be compact, following the same arguments in Proposition 2.5. Then, as Gn ∈
CGk, n ≥ 1, we have G ∈ CGk and recalling that µ ∈ G, we conclude that G ∈ CGµ,k.

As CL is compact, every sequence (Gn) with Gn belonging to the set of empirical global
k-principal ν̄n-geodesics Gν̄n,k,n, n ≥ 1 has a convergent subsequence. The following theorem
ensures that the limit set belongs almost surely to the population global k-principal M(ν)-
geodesics GM(ν),k. This is the main result about consistency of global GPCA.

Theorem 2.4. Let ν be a random measure in W ac
2 (Ω) with Fréchet mean µ := M(ν) and

let ν1, . . . ,νn be iid copies of ν, with empirical Fréchet mean µn := ν̄n. Let Gµ,k be the global
k-principal µ-geodesics of ν and Gµn,k,n be the empirical global k-principal µn-geodesics of
ν1, . . . ,νn.

Then for every sequence (Gn), with Gn ∈ Gµn,k,n, one has

lim
n→∞

costn(Gn) = min{cost(G) | G ∈ CGµ,k} a.s. (2.30)

Moreover, the accumulation points of (Gn) belong to Gµ,k a.s. In other words, subsequential
limits of (Gn) are global principal population geodesics.

Proof. Observe that µ, µn ∈ W ac
2 (Ω), n ≥ 1, by Proposition 2.3(iv). Also, by Proposition

2.10, µn → µ a.s. On the other hand, one may remark that the set of global principal
geodesics (2.14) can be characterized as

Gµ,k = arg min{cost(G) + χ
CGµ,k

(G) | G ∈ CL}, (2.31)

where χ
CGµ,k

: CL → R ∪ {+∞} is the indicator of CGµ,k according to Definition A.11.

Similarly,
Gµn,k,n = arg min{costn(G) + χ

CGµn,k
(W )

(G) | G ∈ CL}. (2.32)

By applying Lemma 2.3, we have that

Γ- lim
n→∞

χ
CGµn,k

= χ
CGµ,k

a.s., (2.33)

where the Γ-convergence holds in the space CL. From Proposition 2.4 and recalling that
W2(Ω) is compact, we have that d2

W2
(ν,G) is separately continuous in ν ∈ W2(Ω) and G ∈ CL.

Hence d2
W2

(ν,G) is measurable on the product space W2(Ω) × CL; see [Johnson, 1969] or
[Rudin, 1981]. Also, from Theorem 2.3 in [Artstein and Wets, 1995], we have the following
Γ-convergence in CL,

Γ- lim
n→∞

costn = cost a.s. (2.34)

On the other hand, as W2(Ω) is compact, there exists a constant R > 0 such that d2
W2

(ν,G) ≤
R, for all ν ∈ W2(Ω) and G ∈ CL. Also, by Proposition 2.5, CL is a compact set. Therefore,
by the uniform strong law of large number (see Lemma 2.4 in [Newey and McFadden, 1994]),
costn(G)→ cost(G) uniformly in CL a.s., that is,

lim
n→∞

sup
G∈CL

| cost(G)− costn(G)| = 0 a.s. (2.35)
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From (2.33) to (2.35) and by Proposition 6.24 in [Dal Maso, 1993], we obtain

Γ- lim
n→∞

costn +χ
CGµn,k

= cost +χ
CGµ,k

a.s. (2.36)

Therefore, from (2.31), (2.32) and (2.36); the compactness of CL and Theorem A.1, the
conclusions follow.

The following theorem ensures that the limit set of sequences (Gn) withGn ∈ Nν̄n,k,n, n ≥
1, belongs almost surely to the population nested k-principalM(ν)-geodesics NM(ν),k. This
is the main result about consistency of nested GPCA.

Theorem 2.5. Let ν be a random measure in W ac
2 (Ω), with Fréchet mean µ :=M(ν), and

let ν1, . . . ,νn be iid copies of ν, with empirical Fréchet mean µn := ν̄n. Let Nµ,k be the
nested k-principal µ-geodesics of ν and Nµn,k,n the empirical nested k-principal µn-geodesics
of ν1, . . . ,νn. If Gn = (G1,n, . . . , Gk,n) ∈ Nµn,k,n and (Gn′) is a subsequence converging to
G = (G1, . . . , Gk), then G ∈ Nµ,k and costn′(Gj,n′)→ cost(Gj), j = 1, . . . , k.

Proof. Let us show the result by induction on k. First observe that Nµn,1,n = Gµn,1,n and
Nµ,1 = Gµ,1, then the case k = 1 follows from Theorem 2.4. Let us assume that the result is
valid for k − 1 and show that it is also true for k ≥ 2. Observe that set of population and
empirical nested principal geodesic can be expressed as

Nµ,k = {(G1, . . . , Gk) | (G1, . . . , Gk−1) ∈ Nµ,k−1, Gk ∈ Gµ,k and Gk−1 ⊂ Gk} (2.37)

and

Nµn,k,n = {(G1, . . . , Gk) | (G1, . . . , Gk−1) ∈ Nµn,k−1,n, Gk ∈ Gµn,k,n and Gk−1 ⊂ Gk}, (2.38)

where Gµ,k and Gµn,k,n are the sets of population and empirical global principal geodesic, re-
spectively. Let Gn = (G1,n, . . . , Gk,n) ∈ Nµn,k,n and let (Gn′) be a subsequence of (Gn) con-
verging to an element G = (G1, . . . , Gk). From (2.38) we have (G1,n, . . . , Gk−1,n) ∈ Nµn,k−1,n

and therefore, by hypothesis of induction, (G1, . . . , Gk−1) ∈ Nµ,k−1 and costn′(Gj,n′) →
cost(Gj), j = 1, . . . , k − 1. Also from (2.38), Gk,n ∈ Gµn,k,n, n ≥ 1, hence Gk ∈ Gµ,k
and costn(Gk,n) → cost(Gk), thanks to Theorem 2.4. Finally, from Lemma A.3, Gk−1 ⊂ Gk

and since (G1, . . . , Gk−1) ∈ Nµ,k−1 and Gk ∈ Gµ,k, the result follows from (2.37).

The interpretation of Theorems 2.4 and 2.5 is that the empirical GPCA is strongly con-
sistent in its two variants. From the proofs of these theorems, one can immediately see
that µ, µn, n ≥ 1, can be arbitrary measures in W ac

2 (Ω) provided that µn → µ. However, it
seems natural to use µn = ν̄n as a reference measures to compute the empirical GPCA in
the Wasserstein space W2(Ω). In this case, we obtain convergence to the population GPCA,
related to the reference measure µ =M(ν).

2.6 Conclusions and discussion of this chapter

In this concluding section we make a comparison between GPCA in W2 and analogs of PCA
on Riemannian manifolds. As already mentioned in the introduction, nonlinear analogs of
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PCA have been proposed in the literature [Fletcher et al., 2004; Huckemann et al., 2010]
for the analysis of data belonging to curved Riemannian manifolds. To perform a PCA-like
analysis, two popular approaches are: (1) standard PCA of the data projected onto the
tangent space at their Fréchet mean, with back projection onto the manifold, as presented
in Section 1.2.4 and (2) PGA along geodesics, as described in Section 1.2.3. These two
approaches lead generally to different directions of geodesic variability in a curved manifold
[Sommer et al., 2010].

In this chapter we consider the analysis of data in the Wasserstein space W2(Ω), which
is not a Riemannian manifold but has pseudo-Riemannian structure, rich enough to allow
the definition of a notion of geodesic PCA. By means of the analogs of the logarithmic
and of the exponential maps, we also introduce the corresponding version of the standard
PCA in the tangent space, with back projection onto W2(Ω), thus establishing a parallel
to the methodological duality available for data in Riemannian manifolds, described in the
introduction. Also, as could be expected, these two approaches yield, in general, different
forms of geodesic variability.

There is however a significant distinguishing feature of our methodology, namely the pos-
sibility of performing a PCA on the tangent space under convexity restrictions, which is
equivalent (after projection) to the geodesic PCA in W2(Ω). This restricted PCA on the
logarithms of the data is interesting because it is formally simpler than the geodesic PCA in
W2(Ω) although more complex than standard PCA. In this respect it is also worth noticing
that if the data are “sufficiently concentrated”, the standard and the restricted PCA in the
tangent space yield the same results.

Finally, it should be mentioned that the terminology geodesic PCA (GPCA) was used
previously in [Huckemann et al., 2010] to denote a Riemannian manifold generalization of
linear PCA. Their approach shares similarities with the PGA method introduced in [Fletcher
et al., 2004], but optimizes additionally for the placement of the center point (not necessarily
equal to the Fréchet mean). Furthermore, it does not use a linear approximation of the
manifold and is only suited for Riemannian manifolds, where explicit formulas for geodesics
exist. However, it is difficult to compare our approach to the GPCA in [Huckemann et al.,
2010] since the notion of principal geodesic, that we propose in this chapter, is defined with
respect to a given reference measure µ (chosen to be either the population or the empirical
Fréchet mean). For a precise comparison it would be necessary to carry out the optimization
(2.14) with respect to the reference measure µ, a task which is beyond the scope of this thesis.

2.7 Extensions and related problems

In this section we discuss possible extensions and related problems of the geodesic PCA. In
this thesis we have not explored such issues in depth, as they can be the object of future
investigations.
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2.7.1 Consistency of GPCA in a statistical deformable model

In Section 2.5 we study the consistency of the empirical GPCA of ν1, . . . , νn, when n→∞.
In the current section we consider the consistency in the context of the following statistical
model:

νεi = νi ∗ κεi , i = 1, . . . , n, (2.39)

where

� νi = expµ0(ui), i = 1, . . . , n and u1, . . . ,un are iid, zero mean, Vµ0-valued random
variables, such that ‖u1‖µ0 ≤ r a.s. with r > 0,

� µ0 is a mean pattern belonging to W ac
2 (Ω),

� the symbol ∗ denotes the convolution operator,

� ε ≥ 0 is a noise level parameter.

� Furthermore, for every ε ≥ 0, κε1, . . . ,κ
ε
n are iid W ac

2 (Ω)-valued random variables such
that, κ0

1 = δ0, dW2(κ
ε
1, δ0) → 0 a.s. as ε → 0, with δ0 the Dirac measure on 0 and

dW2(κ
ε
1, δ0) ≤ s a.s., for all ε > 0, with s > 0.

� (ν1, . . . ,νn) and (κε1, . . . ,κ
ε
n) are mutually independent, for all ε > 0.

� We either assume that ε belongs to a denumerable set or that {κε1 : ε ≥ 0} is a separable
process.

Let νε,ν,u,κε be generic random variables distributed as νε1,ν1,u1,κ
ε
1 respectively, for

ε ≥ 0. In model (2.39), the mean pattern µ0 is randomly warped by means of u and randomly
blurred by means of κε. An example of random blur is given by κε = expκ((Y

ε−1)id), where
κ ∈ W ac

2 (Ω) is such that
∫
x2dκ(x) ≤ 1 and Y ε, ε > 0, is a family of positive valued random

variables such that, as ε → 0, Y ε → 0 a.s. and Y ε ≤ s a.s. In fact, as logκ(δ0) = −id and
by Proposition 2.2, dW2(κ

ε, δ0) = ‖ logκ(κ
ε)− logκ(δ0)‖κ = ‖(Y ε − 1)id + id‖κ = ‖Y εid‖κ ≤

s(
∫
x2dκ(x))

1
2 ≤ s.

The following proposition provides a technical tool to deal with the convolution operator
in model 2.39. The proof follows from [Villani, 2003], Proposition 7.17.

Proposition 2.11. Let µ, κ ∈ W2(Ω) and δ0 be the Dirac measure on 0, then dW2(µ∗κ, µ) ≤
dW2(κ, δ0).

Observe that ν and νε are square-integrable according to Definition 2.5. In fact, by
Propositions 2.2, dW2(ν, µ0) = ‖u‖µ0 ≤ r < ∞ and, by Proposition 2.11, dW2(ν

ε, µ0) ≤
dW2(ν

ε,ν) + dW2(ν, µ0) ≤ dW2(κ
ε, δ0) + r ≤ s + r < ∞. Thus M(ν) = M(expµ0(u)) =

expµ0(E(u)) = expµ0(0) = µ0 and νε has a unique Fréchet mean M(νε), thanks to Proposi-
tion 2.3.

We are interested in the problem of analyzing the consistency of GPCA when n→∞ and
ε→ 0. The following Proposition is a first step towards such analysis.

Proposition 2.12. Let νε1, . . . ,ν
ε
n from the model (2.39) and let ν̄εn be the corresponding

empirical Frechet mean. Then dW2(ν̄
ε
n, µ0)→ 0 a.s. as n→∞ and ε→ 0.
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Proof. Let us denote uε = logµ0(ν
ε) and uεi = logµ0(ν

ε
i), i = 1, . . . , n. From Proposition 2.10,

dW2(ν̄
ε
n,M(νε))→ 0, a.s., as n→∞. (2.40)

Propositions 2.2 and 2.3 imply that

dW2(M(νε), µ0) = ‖E(uε)‖µ0 = ‖E(uε)−E(u)‖µ0 ≤ E(‖uε − u‖µ0) = E(dW2(ν
ε,ν)),

hence, by Propositions 2.11 and the dominated convergence theorem,

dW2(M(νε), µ0) ≤ E(dW2(κ
ε, δ0))→ 0, as ε→ 0. (2.41)

From (2.40) and (2.41) we conclude that limε→0 limn→∞ ν̄
ε
n = µ0.

Let ν1, . . . ,νn, from model (2.39). Using the same arguments as above, we have

dW2(ν̄
ε
n, ν̄n) =

∥∥∥∥∥ 1

n

n∑
i=1

uεi −
1

n

n∑
i=1

ui

∥∥∥∥∥ ≤ 1

n

n∑
i=1

‖uεi − ui‖ =
1

n

n∑
i=1

dW2(ν
ε
i ,νi)

≤ 1

n

n∑
i=1

dW2(κ
ε
i , δ0)→ 0 a.s., as ε→ 0.

Thus, by Proposition 2.10 we conclude limn→∞ limε→0 ν̄
ε
n = µ0.

2.7.2 GPCA in the case of non-compactly supported measures

As we have remarked, our proofs of existence of principal geodesics in Theorems 2.2 and
2.3, rely on the assumption that Ω is compact. However, this assumption is not a necessary
condition as seen in Section 2.4, where we provide an example with Ω = R and compute a
first principal geodesic. In this section we prove the existence of first principal geodesics,
for the case of Ω = R; see Theorem 2.6. The proof is considerable more complicated and
“less elegant” than the proof of Theorem 2.2, so in this thesis we didn’t further develop the
techniques and arguments involved.

Before stating Theorem 2.6, let us introduce some definitions and prove some intermediate
results. Recall that a subset C of a vector space X is said to be absorbing if for every x ∈ X
there exists t > 0 such that x ∈ tC. It is clear that C is absorbing if and only if p(x) <∞ for
all x ∈ H, where p is the Minkowski functional of C (see Definition A.12). Let µ ∈ W2(Ω)ac

and denote by p the Minkowski functional of Vµ. Let v ∈ C1(Ω) and observe that v ∈ tVµ if
and only if (1 + v′(x)/t) ≥ 0, for all x ∈ Ω, µ-a.s., therefore

p(v) =

{
supx∈Ω,v′(x)≤0 |v′(x)|, if {x ∈ Ω, v′(x) ≤ 0} 6= ∅
0, if {x ∈ Ω, v′(x) ≤ 0} = ∅

(2.42)

and
max(p(−v), p(v)) = ‖v‖1,∞ := sup

x∈Ω
|v′(x)| <∞. (2.43)

We show that Vµ (see Definition 2.3) is not, in general, absorbing in L2
µ(Ω). Let Ω = [−π, π]

and µ0 be the probability on [−π, π], with density f0(x) = 1/(2π), x ∈ [−π, π]. Let also
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uj(x) =
√

2 sin(jx), x ∈ [−π, π], j ≥ 1 and observe that u′j(x) =
√

2j cos(jx), so from (2.42)

we have, p(uj) =
√

2j. Let wj = 1
j
uj and note that wj → 0 in L2

µ0
as j →∞. But, by Lemma

A.6(i), p(wj) = 1
j
p(uj) =

√
2, which does not converge to 0. Therefore p is not continuous

and, by Lemma A.7, Vµ0 is not absorbing in  L2
µ0

.

Based on the concept of absorbing set, we introduce the following definition.

Definition 2.16. Let C be a subset of a Hilbert space H and let p be its Minkowski functional
(see Definition A.12). We say that C is quasi-absorbing if there exists an orthonormal set
U = {xi}i≥1 ⊂ H such that C ⊂ span(U) and p(−xi), p(xi) <∞ for all i ≥ 1.

Observe that if C is an absorbing set in a Hilbert space, then it is quasi-absorbing. The
next proposition, shows that Vµ (see Definition 2.3) is quasi-absorbing, when µ ∈ W ac

2 (Ω)
has bounded density.

Proposition 2.13. If µ ∈ W ac
2 (Ω) has bounded density f , then Vµ is quasi-absorbing in

L2
µ(Ω).

Proof. Without loss of generality assume that [−π, π] ⊂ Ω and let µ0 be the probability on
Ω, with density f0(x) = (1/(2π))1[−π,π](x), x ∈ Ω and cdf denoted by F0. Let also u0(x) = 1,

uj(x) =
√

2 sin(jF0(x)), vj(x) =
√

2 cos(jF0(x)), x ∈ Ω, j ≥ 1, be the Fourier basis of L2
µ0

(Ω).
Let us define

R : L2
µ0

(Ω)→ L2
µ(Ω)

u→ u ◦ F−0 ◦ F,

where F−0 is the quantile of µ0 (see Definition A.1) and F is the cdf of µ. Observe that R
is invertible with inverse given by R−1(v) = u ◦ F− ◦ F0 , linear and 〈Ru,Rv〉µ = 〈u, v〉µ0 ,
u, v ∈ L2

µ0
(Ω). Therefore, ũ0(x) := R(u0)(x) = 1, ũj := R(uj)(x) =

√
2 sin(jF (x)), ṽj(x) :=

R(vj)(x) =
√

2 cos(jF (x)), j ≥ 1, is an orthonormal basis of L2
µ(Ω). From (2.43) we have

max(p(−ũ0), p(ũ0)) = 0, max(p(−ũj), p(ũj)) = supx∈Ω

√
2jf(x)| cos(jF (x))| ≤

√
2j‖f‖∞

and max(p(−ũj), p(ũj)) ≤ 2j‖f‖∞, where ‖f‖∞ = supx∈Ω f(x) <∞.

Now, let us denote by T the weak topology of a Hilbert space H. Given a sequence (xn)
in H we write xn ⇀ x if (xn) weakly converges to x ∈ H. We say that g : H → R is
T -continuous if it is continuous with respect to T . Similarly, we say that g is T -lsc, if it is
lower semicontinuous with respect to T .

Lemma 2.4. Let H be a Hilbert space and C ⊂ H a closed and convex set containing
0. Denote by q the reciprocal Minkowski functional of C (see Definition A.12) and let f :
H ×H → R be defined by

f(x, y) = ‖y‖2 − 〈x, y〉2 + (〈x, y〉 − λ(x, y))2. (2.44)

where

λ(x, y) =


−q(−x), if 〈x, y〉 < −q(−x)

〈x, y〉, if − q(−x) ≤ 〈x, y〉 ≤ q(x)

q(x), if 〈x, y〉 > q(x).

(2.45)

Then
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(i) f(·, y) is T -lsc, for all y ∈ H, and

(ii) for x ∈ B and y ∈ H, the function t → f(tx, y) is decreasing for t ≥ 0. Moreover, if
q(x) > 0 and 〈x, y〉 > 0, then it is strictly decreasing.

Proof. (i) From (2.45),

(〈x, y〉 − λ(x, y))2 = (h2
1h>0)(−x, y) + (h2

1h>0)(x, y),

where h(x, y) = 〈x, y〉 − q(x). Hence

f(x, y) = ‖y‖2 − 〈x, y〉2 + (h2
1h>0)(−x, y) + (h2

1h>0)(x, y). (2.46)

Observe that h(·, y) is T -lsc because−q is T -lsc, by Lemma A.8, and 〈·, y〉 is T -continuous, for
any y ∈ H. Recall that the maximum of two lsc functions is lsc and that the square of a pos-
itive lsc function is also lsc. Therefore h2(·, y)1h(·,y)>0 = (h(·, y)1h(·,y)>0)2 = (max(h(·, y), 0))2

is T -lsc. As the sum of two lsc functions is also lsc, then, from (2.46), we conclude that
f(·, y) is T -lsc.

(ii) Since f(x, y) = f(−x, y), we can assume, without loss of generality, that 〈x, y〉 ≥ 0.
So, from (2.46), we have

f(x, y) = ‖y‖2 − 〈x, y〉2 + (h2
1h>0)(x, y)

= ‖y‖2 − 〈x, y〉21h≤0(x, y)− 〈x, y〉21h>0(x, y) + (h2
1h>0)(x, y)

= ‖y‖ − 〈x, y〉21h≤0(x, y)− (〈x, y〉2 − h2(x, y))1h>0(x, y).

= ‖y‖ − 〈x, y〉21h≤0(x, y)− (q2(x)− 2q(x)〈x, y〉)1h>0(x, y).

Observe that q(tx) = 1
t
q(x), for t > 0, hence,

f(tx, y) = ‖y‖ − t2〈x, y〉21h≤0(tx, y)− (
1

t2
q2(x)− 2q(x)〈x, y〉)1h>0(tx, y),

for t > 0. From the previous equation,

f(tx, y) =

{
‖y‖2 − t2〈x, y〉2, if t ≤ ( q(x)

〈x,y〉)
1
2

‖y‖2 + 1
t2
q2(x)− 2q(x)〈x, y〉, if t > ( q(x)

〈x,y〉)
1
2 ,

which is decreasing in t ≥ 0 and strictly decreasing if q(x) > 0 and 〈x, y〉 > 0.

Lemma 2.5. Let H be a Hilbert space and C ⊂ H a quasi-absorbing (see Definition 2.16),
closed and convex set containing 0. Let ξ be an H-valued random variable such that ξ ∈ C
a.s. and E(‖ξ‖2) <∞. Let cost∗ : H → R+ be defined by

cost∗(x) = E(‖ξ − Πspan(x)∩C(ξ)‖2), (2.47)

where Πspan(x)∩Cy := miny′∈span(x)∩C ‖y − y′‖2 is the projection of y ∈ H onto the closed
convex set span(x) ∩ C and span(x) = {tx : t ∈ R}. Let B = {x ∈ H : ‖x‖ ≤ 1} and
∂B = {x ∈ H : ‖x‖ = 1}. Then

(i) the function F : B → R+, defined by F (x) = E(f(x, ξ)) with f given in (2.44), is T -lsc.

(ii) F (x) = cost∗(x), for all x ∈ ∂B.
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(iii) F (x) < E(‖ξ‖2) if and only x ∈ Q or −x ∈ Q, where

Q = {x ∈ B : q(x) > 0 and P(〈x, ξ〉 > 0) > 0}. (2.48)

(iv) If ‖ξ‖ > 0 a.s, then Q is nonempty.

(v) arg minx∈∂B cost∗(x) = arg minx∈B F (x).

(vi) arg min∂B cost∗(x) is nonempty and closed in the weak topology T of H.

Proof. (i) It follows from Lemma 2.4(i) and Fatou’s Lemma.

(ii) Take x ∈ ∂B and y ∈ H. By Lemma A.5(ii), Πspan(x)∩C(y) = λ(x, y)x , therefore

cost∗(x) = E(‖ξ − λ(x, ξ)x‖2) = E(‖ξ‖2 − 2λ2(x, ξ)〈x, ξ〉+ λ2(x, ξ))

= E(‖ξ‖2 − 〈x, ξ〉2 + (〈x, ξ〉 − λ(x, ξ))2 = E(f(x, ξ)),

so we obtain the result.

(iii) Let x ∈ Q and Ax := {y ∈ H : 〈x, y〉 > 0}. From (2.46), for any y ∈ Ax,

f(x, y) = ‖y‖2 − 〈x, y〉2 + (h2
1h>0)(x, y)

= ‖y‖2 − 〈x, y〉21h≤0(x, y)− 〈x, y〉21h>0(x, y) + (h2
1h>0)(x, y)

= ‖y‖ − 〈x, y〉21h≤0(x, y)− (〈x, y〉2 − h2(x, y))1h>0(x, y).

As 〈x, y〉 > 0 and q(x) > 0, we have

f(x, y) =

{
‖y‖2 − 〈x, y〉2 < ‖y‖2, if h(x, y) ≤ 0

‖y‖2 − (〈x, y〉2 − h2(x, y)) < ‖y‖2, if h(x, y) > 0,

therefore f(x, y) < ‖y‖2. Let Pξ(A) = P(ξ ∈ A), A ∈ B(H). Since Pξ(Ax) > 0 we have∫
Ax

f(x, y)dPξ(y) <

∫
Ax

‖y‖2dPξ(y).

From Lemma (2.4)(ii), we have that f(x, y) ≤ f(0, y) = ‖y‖2 for all y ∈ H, so we obtain∫
H

f(x, y)dPξ(y) <

∫
H

‖y‖2dPξ(y),

i.e. F (x) < E(‖ξ‖2). Now, if we assume that −x ∈ Q then F (−x) < E(‖ξ‖2), but F (x) =
F (−x), so we obtain F (x) < E(‖ξ‖2).To prove the other implication, assume that −x, x /∈ Q.
From (2.46) it is easy to check that f(x, y) = ‖y‖2 for all y ∈ H a.s.

(iv) As C is quasi-absorbing, there exists an orthonormal set {xi}i≥1 ⊂ H such that ‖y‖2 =∑
i≥1〈xi, y〉2 and q(−xi), q(xi) > 0 for all i ≥ 1. By hypothesis Pξ(y ∈ H : ‖y‖2 > 0) > 0,

hence
0 < Pξ(y ∈ H :

∑
i≥1

〈xi, y〉2 > 0) ≤
∑
i≥1

Pξ(y ∈ H : 〈xi, y〉2 > 0).

From the previous inequality, there exists j ≥ 1 such that Pξ(y ∈ H : 〈xj, y〉 > 0) > 0 or
Pξ(y ∈ H : 〈−xj, y〉 > 0) > 0. As q(xj), q(−xj) > 0, we obtain that xj or −xj belongs to Q.
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(v) Take x∗ ∈ arg minx∈B F (x) and let us show that x∗ ∈ ∂B. If ξ = 0 a.s, then F (x) =
cost∗(x) = 0, for all x ∈ H and the result holds. So, let us assume that ‖ξ‖ > 0 a.s.
From (iii) and (iv), there exists x ∈ B such that F (x) < E(‖ξ‖2), hence F (x∗) < E(‖ξ‖2).
As F (x∗) = F (−x∗), from (iii) we can assume, without loss of generality that x∗ ∈ Q, so
q(x∗) > 0 and Pξ(Ax∗) > 0, where Ax∗ = {y ∈ H : 〈x∗, y〉 > 0}. Observe that t → f(tx∗, y)
is decreasing for all y ∈ H, and strictly decreasing for all y ∈ Ax∗ , thanks to Lemma 2.4(ii).
As Pξ(Ax∗) > 0, we conclude that t → F (tx) is strictly decreasing, for t ≥ 0, which implies
that x∗ ∈ ∂B. Finally, the result follows from (ii).

(vi) As F is T -lsc and as B is T -compact, we obtain the result.

Let us state the main result of this section.

Theorem 2.6. Let Ω = R, µ ∈ W ac
2 (Ω) a reference measure with bounded density, ν ∈ W2(Ω)

a square-integrable random measure (see Definition 2.5) and k ≥ 1 an integer. Then Gµ,1,
from Definition 2.9, is nonempty.

Proof. The idea is to apply Lemma 2.5(vi), with H = L2
µ(Ω), C = Vµ and ξ = logµ(ν). From

Proposition 2.2 and as ν is square-integrable, we have thatE
(
‖ logµ(ν)‖2

µ

)
= E

(
d2
W2

(ν, µ)
)
<

∞. On the other hand, from Propositions 2.1 and 2.13, Vµ is a quasi-absorbing, closed and
convex set containing 0. Then the result follows from Proposition 2.7 and Lemma 2.5(vi).

2.7.3 GPCA based on kernel density estimation

So far we have assumed that the input data consist of n probability measures ν1, . . . , νn
belonging to W2(Ω). However, in many applications we have access only to random obser-
vations from these measures. In such case we propose to carry out a density estimation step
before performing the GPCA. For i = 1, . . . , n, let Xi,j, j = 1, . . . ,mi be mi ∈ N iid random

variables from νi, with density fi. Let ν̂i be the probability measure with density f̂i, obtained,
for example, by kernel smoothing as

f̂i(x) =
1

mih

mi∑
j=1

K

(
x−Xi,j

h

)
, x ∈ R, i = 1, . . . , n,

where K : R → R is probability density kernel and h > 0 is a bandwidth parameter. We
define the method of GPCA on Xi,j, j = 1, . . . ,mi, i = 1, . . . , n, as the GPCA on ν̂1, . . . , ν̂n.
In this context, the main question we formulate has to do with the consistency of this method
in the asymptotic setting mi →∞, i = 1, . . . , n and n→∞.
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Chapter 3

Geometric principal components
analysis of images

3.1 Introduction

In many applications, observations are in the form of a set of n gray-level images y1, . . . , yn
(e.g. in geophysics, in biomedical imaging, or in signal processing for neurosciences), which
can be considered as square-integrable functions on a domain Ω, a convex subset of Rd.
Such data are generally two or three dimensional images. In many situations the observed
images share the same structure. This may lead to the assumption that these observations
are random elements, which vary around the same mean pattern. Estimating such a mean
pattern and characterizing the modes of individual variations around this common shape,
is of fundamental interest. Principal component analysis (PCA) is a widely used method
for estimating the variations in intensity of images around the usual Euclidean mean ȳn =
1
n

∑n
i=1 yi. However, such data typically exhibit not only a classical source of photometric

variability (a pixel intensity changes from one image to another) but also a (less standard)
geometric source of variability which cannot be recovered by standard PCA (see Section
1.1.2).

The goal of this chapter is to provide a general framework for analyzing the geometric
variability of images through the use of deformation operators that can be parametrized by
elements in a Hilbert space. This setting leads to a simple algorithm for estimating the main
modes of geometric variability of images, and we prove the consistency of this approach in
statistical deformable models.

3.1.1 An overview of PCA-like methods for analyzing geometric
variability

A standard approach for analyzing geometric variability is to use registration. This well-
known approach consists in computing geometric transforms of a set of images y1, . . . , yn, so
that they can be compared. Then, the main idea for estimating the geometric variability
of such data is to apply classical PCA to the resulting transformation parameters after
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registration and not to the images themselves. This approach is at the core of several methods
for estimating the geometrical variability of images, that we choose to call geometric PCA
methods in what follows.

In [Rueckert et al., 2003], a linear and finite dimensional space of non-rigid transformations
is considered as the admissible space of deformations onto which a standard PCA is carried
out. This is the so-called statistical deformation model that is inspired by Cootes active
shape models [Cootes et al., 1995]. An important limitation of this approach is the lack
of invertibility of the deformations in such models. In several cases, the invertibility is a
desirable property from the point of view of physical (for instance when analyzing geometric
variability of a determined organ) and mathematical modelling. Within the context of a
linear space of deformations, the non-invertibility issue had been addressed by enforcing
the positiveness of the Jacobian determinant [Haber and Modersitzki, 2006; Sdika, 2008].
However, such methods are unsuited for further statistical analysis, as statistical procedures
on resulting transformation parameters (such the empirical Euclidean mean), do not lead to
invertible transforms. Moreover, the inverse transforms do not belong to the initial space of
transformations.

More recently, diffeomorphisms have been used for modeling geometric transformations
between images in the context of Grenander’s pattern theory [Beg et al., 2005; Hernandez
et al., 2009; Ashburner, 2007]. In this framework, the set of admissible diffeomorphic trans-
formations is considered as a Riemaniann manifold, and thus first and second order statistics
analysis on manifolds [Fletcher et al., 2004; Pennec, 2006] can be applied for performing
statistical analysis of diffeomorphic deformations [Arsigny et al., 2006; Bossa et al., 2007;
Hernandez et al., 2007; Wang et al., 2007]. Such diffeomorphisms are constructed as solu-
tion of an ordinary differential equation (ODE), governed by a time dependent vector field
belonging to a linear space, see e.g. [Beg et al., 2005]. In this way, it is possible to build
sets of diffeomorphisms that have mathematical properties very similar to Lie groups. This
approach, which leads to the representation of the geometric variability of images through
the use of standard PCA on the elements in the “Lie algebra” of vector fields, is discussed in
details in [Trouvé and Younes, 2005; Trouvé and Younes, 2005; Younes, 2010]. In particular,
the optimal diffeomorphism after the registration of two images can be fully characterized
by the initial point in time (or equivalently by the initial momentum) of the associated time
dependent vector field. This key property, called momentum conservation, allows to carry
out PCA on the Hilbert space of initial momentums, see e.g. [Wang et al., 2007].

A particular sub-class of diffeomorphic deformations is the set of diffeomorphisms gen-
erated by an ODE governed by stationary vector fields. In this way, diffeomorphisms are
directly characterized by vector fields belonging to a Hilbert space, and thus a standard sta-
tistical analysis such as PCA can be carried out on the vector fields computed after image
registration. Compared to the case of diffeomorphisms generated by non-stationary vector
fields, the resulting deformations do not have the same desirable properties in term of group
structure. Nevertheless, the natural parametrization of these deformations by a linear space,
make them well suited for the purpose of geometric PCA. Moreover, the computational cost
of the registration step when using stationary vector fields is considerably smaller, while
keeping comparable accuracy according to the experimental results reported in [Ashburner,
2007; Hernandez et al., 2009]. The properties of diffeomorphisms generated by stationary
vector fields also allow simple and fast computations of the diffeomorphism associated with
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a vector field and vice versa. Hence, PCA methods for manifolds can be implemented for
analyzing geometric variability of diffeomorphic deformations generated by stationary vector
fields, see [Arsigny et al., 2006; Bossa et al., 2007; Hernandez et al., 2007].

3.1.2 Main contributions and organization of this chapter

In Section 3.2, we propose for analyzing geometric PCA methods using a general framework
where the spatial deformation operators (to represent geometric variability) are invertible
and can be parametrized by elements of a Hilbert space. For estimating geometric variabil-
ity, as it is done in geometric PCA methods, we use a preliminary registration step. Then,
we apply classical PCA on Hilbert spaces to the resulting parameters representing the de-
formations after registration. The main contributions of this chapter are then the following
ones. First, for the application considered in this chapter and for algorithmic purposes, we
use diffeomorphic deformations parametrized by stationary vector fields that are expanded
into a finite dimensional basis of a linear space of functions. We show that such deformations
are well suited for the analysis of handwritten digits. In this setting, an important and new
contribution is to provide an automatic method for choosing the regularization parameter
that represents the usual balance between the regularity of the spatial deformations and the
quality of images alignment. Secondly, in Section 3.3, we consider the problem of building
geometric PCA methods that are consistent. To the best of our knowledge, this issue has
not been very much studied in the literature on geometric PCA. We discuss the appropriate
asymptotic setting for such an analysis and prove the consistency of our approach in statisti-
cal deformable models. We conclude the chapter in Section 3.4 by a short discussion. Almost
all proofs are gathered in Appendix B.

3.2 Geometric PCA

For convenience, we prefer to present the ideas of geometric PCA under the assumption that
the images are observed on a continuous domain Ω. In practice, such data are obviously
observed on a discrete set of time-points or pixels. However, assuming that the data are
random elements of L2(Ω) is more convenient for dealing with the statistical aspects of an
inferential procedure, as it avoids the treatment of the bias introduced by any discretization
of the domain Ω. We refer to Section 3.3 for a detailed discussion on this point.

3.2.1 Grenander’s pattern theory of deformable templates

Following the ideas of Grenander’s pattern theory (see [Grenander and Miller, 2007] for
a recent overview), one may consider that the data y1, . . . , yn are obtained through the
deformation of the same reference image. In this setting, images are treated as points in
L2(Ω) and the geometric variations of the images are modeled by the action of Lie groups on
the domain Ω. Recently, there has been a growing interest in Lie groups of transformations for
modeling the geometric variability of images (see e.g. [Beg et al., 2005; Trouvé and Younes,
2005; Trouvé and Younes, 2005; Younes, 2010] and references therein), and applications are
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numerous, in particular, in biomedical imaging, see e.g. [Fletcher et al., 2004; Joshi et al.,
2004].

Grenander’s pattern theory leads to the construction of non-Euclidean distances between
images. In this chapter we propose for modeling geometric variability through the use of
deformation operators (acting on Ω), that are parameterized by a separable Hilbert space V ,
with inner product 〈·, ·〉 and norm ‖ · ‖. We also assume that Ω is equipped with a metric
denoted by dΩ.

Definition 3.1. Let V be a Hilbert space. A deformation operator parameterized by V is a
mapping ϕ : V × Ω→ Ω such that, for any v ∈ V, the function x 7→ ϕ(v, x) is a homeomor-
phism on Ω. Moreover, ϕ(0, ·) is the identity on Ω and, for any v ∈ V, there exists v∗ ∈ V
such that ϕ−1(v, ·) = ϕ(v∗, ·).

In this chapter we study, as illustrative examples of deformation operators, the cases of
translations, rigid deformations and non-rigid deformations generated by stationary vector
fields.

Translations: Let Ω = [0, 1)d, for some integer d ≥ 1 and V = R
d. Let also

ϕ(v, x) = (mod(x1 + v1, 1), . . . ,mod(xd + vd, 1)) , (3.1)

with
ϕ−1(v, x) = (mod(x1 − v1, 1), . . . ,mod(xd − vd, 1)) ,

for all v = (v1, . . . , vd) ∈ Rd and x = (x1, . . . , xd) ∈ Ω, where mod(a, 1) denotes the modulo
operation between a ∈ R and 1. Clearly, ϕ(0, ·) is the identity in Ω and v∗ = −v. Moreover,
it can be shown (see Section 3.3.3) that ϕ(v, ·) is an homeomorphism.

Rigid deformations of 2D images: Let Ω = R
2 and V = R× R2. Let also

ϕ(v, x) = Rαx+ b,

with
ϕ−1(v, x) = R−α(x− b),

for all v = (α, b) ∈ R×R2, and x ∈ R2, where Rα is the rotation matrix of angle α and b ∈ R2

defines a translation. Observe that, ϕ((0, 0), ·) is the identity in Ω and v∗ = (−α,−R−αb).
Clearly, ϕ(v, ·) is an homeomorphism.

Diffeomorphic deformations generated by stationary vector fields: Let Ω = [0, 1]d, for some
integer d ≥ 1, and V a separable Hilbert space of smooth vector fields, such that V is
continuously embedded on C1

0(Ω), the space of functions v : Ω→ R
d which are continuously

differentiable and such v and its derivatives vanish at the boundary of Ω. For x ∈ Ω and
v ∈ V , define ϕ(v, x) as the solution at time t = 1 of the following ODE

dφt
dt

= v(φt), (3.2)

with initial condition φ0 = x ∈ Ω. It is well known (see e.g. [Younes, 2010]) that, for any
v ∈ V , the function x 7→ ϕ(v, x) is a C1 diffeomorphism on Ω. The inverse of x 7→ ϕ(v, x) is
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given by x 7→ ϕ(−v, x), and thus v∗ = −v. Hence, ϕ(v, ·) satisfies the conditions in Definition
3.1.

3.2.2 Registration

Registration is a widely used method in image processing that consist in geometric transforms
of a set of images y1, . . . , yn ∈ L2(Ω), so that they be compared. This method can be described
as an optimization problem, which amounts to minimizing a dissimilarity functional between
images.

Definition 3.2 (Dissimilarity functional). Let ϕ be a deformation operator, as described in
Definition 3.1, v = (v1, . . . , vn) ∈ V := Vn and y = (y1, . . . , yn), with yi ∈ L2(Ω), i =
1, . . . , n.
(a) The template dissimilarity functional corresponding to v, y and f ∈ L2(Ω) is defined as

M t(v,y, f) :=
1

n

n∑
i=1

∫
Ω

(
yi(ϕ(vi, x))− f(x)

)2

dx. (3.3)

(b) The groupwise dissimilarity functional corresponding to v and y is defined as

M g(v,y) :=
1

n

n∑
i=1

∫
Ω

(
yi(ϕ(vi, x))− 1

n

n∑
j=1

yj(ϕ(vj, x))
)2

dx. (3.4)

Template registration of the images y1, . . . , yn, onto some known template f ∈ L2(Ω), is
defined as the problem of minimizing the criterion given by the dissimilarity functional (3.3),
with respect to v in

Vµ := {v = (v1, . . . , vn), vi ∈ Vµ} ,

where Vµ := {v ∈ V : ‖v‖ ≤ µ}, for some regularization parameter µ ≥ 0. Note that
imposing the constraint ‖vi‖ ≤ µ allows to explicitly control the norm of the vector vi, which
is generally proportional to the distance between the deformation ϕ(vi, ·) and the identity.
The choice of µ is obviously of primary importance. A data-based procedure for its calibration
is thus discussed in details in Section 3.2.3.

On the other hand, groupwise registration of y1, . . . , yn is defined as the problem of mini-
mizing the functional (3.4) with respect to v in U ⊆ Vµ. Two possible choices for U , defined
in terms of linear constraints on v, are

U0 :=
{
v ∈ Vµ,

n∑
m=1

vm = 0
}

and U1 :=
{
v ∈ Vµ, v1 = 0

}
. (3.5)

Choosing U = U0 amounts to imposing that the deformation parameters (v1, . . . , vn), used
to align the data, have an empirical mean equal to zero, while taking U = U1 corresponds
to choosing y1 as a reference template onto which y2, . . . , yn will be aligned.

Geometric PCA applied to the images y = (y1, . . . , yn) is the following two step procedure.
In the first step, one applies either a template or a groupwise registration, which leads to the
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computation of

v̂ = v̂µ ∈ arg min
v∈Vµ

M t(v,y, f) or v̂ = v̂µ ∈ arg min
v∈U

M g(v,y). (3.6)

In the second step, a standard PCA (see Section 1.1) is carried out on v̂ = (v̂1, . . . , v̂n), based
on the following covariance operator

K̂nv =
1

n

n∑
i=1

〈v̂i − vn, v〉(v̂i − vn), for v ∈ V , (3.7)

with vn = 1
n

∑n
i=1 v̂i. This operator is compact and so it admits the decomposition

K̂nv =
∑
k∈K

λ̂k〈v, φ̂k〉φ̂k, (3.8)

where λ̂1 ≥ λ̂2 ≥ . . . ≥ 0 and (φ̂k)k∈K are the eigenvalues and orthonormal eigenvectors of K̂n

and K = {1, . . . , dim(V)}, if dim(V) < ∞ or K = N otherwise. We now state the definition
of geometric PCA of a set of images.

Definition 3.3 (Geometric PCA). Let ϕ be a deformation operator parametrized by V, as
described in Definition 3.1. Let (λ̂k, φ̂k)k∈K be the eigenvalues and orthonormal eigenvectors
of the operator K̂n in (3.7). For k ∈ K, the k-th empirical mode of geometric variation of
the data y1, . . . , yn is the homeomorphism ψ̂k : Ω→ Ω defined by

ψ̂k(x) = ϕ−1(vn +

√
λ̂kφ̂k, x), x ∈ Ω. (3.9)

We also define ψ̂k,ρ(x) = ϕ−1(vn + ρ
√
λ̂kφ̂k, x), where ρ ∈ R is a weighting value.

After the registration step we obtain a set of deformed images y1◦ϕ(v̂1, ·), . . . , yn◦ϕ(v̂n, ·),
each of them aligned either with respect to f , in the case of template registration, or with
respect to f̂ := 1

n

∑n
j=1 yj(ϕ(v̂j, x)), in the case of groupwise registration. Hence, in the case

of template registration, f ◦ ψ̂k can be used to visualize the k-th mode of geometric variation
of the data. Similarly, in the case of groupwise registration, one uses f̂ ◦ ψ̂k. Note that f̂ can
be interpreted as a mean pattern image. Moreover, the computation of f̂ is closely related
to the notion of Fréchet mean of images, recently studied in [Bigot and Charlier, 2011], from
a statistical point of view.

We conclude this section by providing sufficient conditions ensuring the existence of a
solution of the registration problem and thus the existence of (λ̂k, φ̂k)k∈K in Definition 3.3.
In the following proposition we say that a condition holds for all x ∈ Ω a.e., if it holds for all
x ∈ Ω up to a set of null Lebesgue-measure.

Proposition 3.1. Let ϕ be a deformation operator, as described in Definition 3.1 and
f, y1, . . . , yn ∈ L2(Ω). Assume also that

(i) if (vk) is a sequence in Vµ that weakly converges to v ∈ Vµ, then ϕ(vk, x) converges to
ϕ(v, x), for all x ∈ Ω a.e.

(ii) yi, . . . , yn are continuous in every x ∈ Ω a.e.
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Then v̂ defined in (3.6) exists, for the cases of template and groupwise registration.

Proof. We prove the case of template registration of an image y ∈ L2(Ω) onto f . The case
of template registration, with n > 1 and groupwise registration, can be shown using similar
arguments. Take a minimizing sequence (vk) in Vµ for the template dissimilarity functional
M t(·, y, f), i.e. M t(vk, y, f) decrease to infu∈V M

t(u, y, f). Since (vk) is bounded, we can ex-
tract a subsequence, that we will name as the original, that weakly converges to some v ∈ Vµ.
From conditions (i),(ii) and Fatou’s lemma, we have M t(v, y, f) ≤ lim infk→∞M

t(vk, y, f) =
infu∈V M

t(v, y, f) and we conclude that M t(v, y, f) = infu∈V M
t(u, y, f).

Let us check that condition (i) in Proposition 3.1 is satisfied for the 3 examples of defor-
mation operators defined in Section 3.2.1. Recall that in finite-dimensional spaces, weak and
strong convergence coincide, thus (i) follows directly in the case of rigid deformations and
from the fact that mod(·, 1) is continuous in R\Z, in the case of translations. In the case of
non-rigid deformations, generated by stationary vector fields, such condition is guaranteed
by Theorem 8.11 in [Younes, 2010].

3.2.3 Numerical implementation and application of geometric PCA
to handwritten digits data

In this section we explain in detail the implementation of geometric PCA, in the case of
groupwise registration, using the class of diffeomorphic deformations described in Section
3.2.1. The method is applied to a set of n = 30 images, defined on the domain Ω = [0, 1]2,
taken from the Mnist database of handwritten digits [LeCun et al., 1998].

Specification of the Hilbert space of parameter V

We choose V as the vector space of functions from Ω to R2, generated by a B-Splines basis
of functions, because they have good properties for approximating continuous functions and
implementing efficient computations [Unser et al., 1993a,b]. Let {bk : Ω → R, k = 1, . . . , p}
denote a set of bi-dimensional tensor product B-Splines, with knots defined on a regular grid
of Ω, and p some integer whose choice has to be discussed. We define V as the space of vector
fields of the form v =

∑p
k=1 ṽkbk, where ṽk = (ṽ

(1)
k , ṽ

(2)
k ) ∈ R2, k = 1, . . . , p. We denote by

v(1), v(2) : Ω→ R the coordinates of v ∈ V , i.e., v(x) = (v(1)(x), v(2)(x)) for x ∈ Ω. Note that
the dimension of V is 2p and that a basis is given by

{(b1, 0), . . . , (bp, 0), (0, b1), . . . , (0, bp)}. (3.10)

We endow V with the inner product

〈u, v〉 := 〈u(1), v(1)〉L + 〈u(2), v(2)〉L, u, v ∈ V ,

where 〈u(1), v(1)〉L :=
∫

Ω
Lu(1)(x)Lv(1)(x)dx, 〈u(2), v(2)〉L :=

∫
Ω
Lu(2)(x)Lv(2)(x)dx and L is a

differential operator. As suggested in [Beg et al., 2005] we take L = γI +α∆, where I is the
identity operator, ∆ is the Laplacian operator and γ, α are positive scalars. By using the
basic properties of differentiation and integration of B-Splines [Unser et al., 1993a], we derive
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an explicit formula for computing the inner product in V , that can be implemented using
convolution filters. By an adequate design of the B-Spline grid, we ensure that the values of
v and its derivatives are zero at the boundary of Ω.

Minimization of the dissimilarity functional M g

In the case of groupwise registration, we minimize the dissimilarity functional (3.4) over the
set U0 defined in (3.2.2). Thanks to the above choice for V , the minimization of the criterion
(3.4) has to be performed over a subset of R2p. In order to take into account the constrains
‖vi‖ ≤ µ, 1 ≤ i ≤ n, we use a logarithmic barrier approach to obtain an approximate
solution. Then, for the minimization, we use a gradient descent algorithm, with an adaptive
step. Such an algorithm requires the computation of the deformation operator ϕ : V×Ω→ Ω
and its gradient, with respect to the coefficients ṽk = (ṽ

(1)
k , ṽ

(2)
k ) that parameterize the vector

field v. In the case of diffeomorphic deformation operators, ϕ(v, x) corresponds to the solution
at time t = 1 of the ODE (3.2). We solve the ODE using a forward Euler integration scheme.
For a comparison of different methods for solving such ODE, we refer to [Bossa et al., 2008].
It can be shown (see Lemma 2.1 in [Beg et al., 2005]), that the gradient of ϕ with respect to

the ṽk = (ṽ
(1)
k , ṽ

(2)
k )’s has a closed-form expression.

Spectral decomposition of the empirical covariance operator

Let v̂1, . . . , v̂n be the vector fields in V obtained after the registration step described above.
Recall that the empirical covariance operator of the v̂i’s is defined as K̂nv = 1

n

∑n
i=1〈v̂i −

vn, v〉(v̂i − vn), v ∈ V . In what follows, we describe how for performing the spectral decom-
position of K̂n.

Let ṽi = (ṽ
(1)
i , ṽ

(2)
i ) with ṽ

(1)
i = (ṽ

(1)
i,1 , . . . , ṽ

(1)
i,p ) and ṽ

(2)
i = (ṽ

(2)
i,1 , . . . , ṽ

(2)
i,p ) being the coef-

ficients of v̂i with respect to the base (3.10), i.e. v̂i =
∑p

k=1(ṽ
(1)
i,k , ṽ

(2)
i,k )bk. We identify the

Hilbert space V with R2p, endowed by the inner product

〈ũ, ṽ〉 := ũΣũt, ũ, ṽ ∈ R2p, (3.11)

where Σ is a 2p × 2p matrix with entries Σj,k = Σj+p,k+p := 〈bj, bk〉L for j, k = 1, . . . , p and

Σj,k := 0 in the other cases. Hence, the operator K̂n can be identified with a 2p× 2p matrix
K̃n, given by

K̃n :=
1

n
ṽṽtΣ,

where ṽ is the 2p × n matrix with i-th column equal to ṽti − 1
n

∑n
j=1 ṽ

t
j. The matrix Σ

is symmetric, hence admits a diagonalization Σ = PΛP t with Λ a diagonal matrix and
P tP = PP t = I. The idea now is to reduce the problem to a standard diagonalization of the
symmetric matrix M := 1

n
Λ

1
2P tṽṽtPΛ

1
2 , namely we find the decompositionM = WDW t with

D a diagonal matrix and W tW = WW t = I. We obtain the following spectral decomposition
of K̃n relative to the inner product (3.11)

K̃n = UDU tΣ,
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where U := P tW . Remark that the columns of U are orthonormal vectors in R2p relative to
the inner product (3.11). Indeed, it holds that U tΣU = I. Finally, we define λ̂k as the k-th
elements of the diagonal matrix D and we let φ̂k :=

∑p
k=1(Uk,k, Uk+p,k)bk, for k = {1, . . . , 2p}.

It can be checked that (φ̂k)
2p
k=1 are orthonormal vectors of V , and we thus obtain that K̂nv =∑2p

k=1 λ̂k〈v, φ̂k〉Lφ̂k. If we assume that λ̂1 ≥, . . . ,≥ λ̂2p, then

ψ̂k,ρ = ϕ−1(vn + ρ

√
λ̂kφ̂k, ·)

is the k-th empirical mode of geometric variation, according to Definition 3.3.

Choice of the regularization parameter µ and application of geometric PCA to
handwritten digits data

We now describe the application of geometric PCA to handwritten digits, taken from the
Mnist database [LeCun et al., 1998], based on the numerical framework we have described
so far. We also discuss the problem of automatically selecting the regularization parameter
µ and we finally illustrate the benefits of geometric PCA over standard PCA.

For the B-Spline base of V , we choose a B-Spline degree equal to 3, as it provides a good
trade-off between smoothness and the size of the support. The number of B-Spline knots is
p = 81 arranged in a 9 × 9 regular grid. Such value of p provides a fine B-Spline grid with
respect to an image size of 28× 28. For defining the differential operator L, we take γ = 100
and α = 1. Note that γ is much larger than α in order to compensate for the scaling factor
associated with the inter knot spacing.

For each available digit (from 0 to 9) we determine the regularization parameter µ ex-
perimentally, by trying to obtain a good balance between the regularity of the vector fields
and the matching of the images during the preliminary registration step. Our approach is
inspired by the classical L-curve method in inverse problems. More precisely, for each digit,
we took n = 30 images and we carried out registration on each of these image sets. In this
database, for each digit, one observes a large source of geometrical variability that can be
modeled by diffeomorphic deformations. We proceed by groupwise registration, as there are
no reference images available. For each digit and for a given µ > 0, we define r(µ) as the
relative percentage value between:

- the dissimilarity M g(v̂µ,y) of the images after registration, with regularization param-
eter µ, see equation (3.6),

and

- the dissimilarity M g(v̂0,y) of the images before registration (i.e., with regularization
parameter µ = 0) ,

that is

r(µ) = 100 ∗ M
g(v̂µ,y)

M g(v̂0,y)
.

We also define the finite difference derivative ∆hr(µ) = −(r(µ+ h)− r(µ))/h, for h > 0. For
h = 2 and for all digits, we observed that the curves µ→ r(µ) (with µ = 0, 0+h, . . . , 30) have
an approximate convex shape and that the curves µ → ∆hr(µ), with µ = 0, 0 + h, . . . , 28,
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have a decreasing trend to 0. We display the curves µ→ r(µ) in Figure 11, for digits 0 and
1. It is reasonable to say that taking µ such that ∆hr(µ) is large, corresponds to a situation
of underfitting, whereas the cases such that ∆hr(µ − h) is small corresponds to a situation
of overfitting.

Hence, an automatic choice for the regularization parameter is to take

µ∗ = max{0, 0 + h, . . . , 28 : ∆r(µ) > t},

where 0 ≤ t ≤ 100/h is a threshold value. One thus has the following interpretation: for µ
larger than the selected value µ∗ the rate of decrease of r(µ) is less than t%. By setting t = 2,
we have obtained µ∗ = 12, 16, 14, 14, 18, 18, 12, 12, 10, 10 for digit 0, 1, . . . , 9 respectively. We
observed that r(µ∗) range from 0.1 to 0.3 among all digits, that is, the dissimilarity between
the images after registration, using the regularization parameter µ∗, corresponds to 10%−30%
of the dissimilarity between the images before registration.
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Figure 11: Choice of the regularization parameter µ∗ for digit 0 and digit 1 though the analysis
of the curves µ→ r(µ) (figure on left-hand side) and µ→ ∆r(µ) (figure on right-hand side)
with threshold t = 2%.

For each digit, we carried out a geometric PCA with a preliminary registration step, as
described in the previous paragraph, and with regularization parameter µ∗. To illustrate the
advantages of our procedure we have also carried out a standard PCA of each digit, which
amounts to analyzing the photometric variability of the data. Thus, we have computed

ȳn + ρ
√
γ̂kûk,

the k-th standard empirical mode of photometric variation of the data as described in Section
1.1. In Figure 12, we show the geometric modes of variations by displaying the images

f̂ ◦ ψ̂k,ρ,

where f̂(x) = 1
n

∑n
j=1 yj(ϕ(v̂j, x)), k = 1, 2 and ρ = 2,−2. Results using the standard PCA

are also displayed in Figure 12. We observe that geometric PCA better reflects the main
modes of variability of the digits. To the contrary, standard PCA fails in several cases in
representing the geometric variability of some digits and it results, sometimes, in a blurring
of the images. Also, it can be seen that f̂ is a much better mean pattern of the data than
the Euclidean mean ȳn.
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We also use the learned Fréchet mean f̂ and the learned empirical eigenvalues (λ̂k)k∈K and
eigenvectors (φ̂k)k∈K to produce simulated images consisting of a random warp of the Fréchet
mean. More precisely, we generate a new image Y ∈ L2(Ω) from the model

Y (x) = f̂(ϕ−1(V, x)), x ∈ Ω, (3.12)

where V = v̄n +
∑q

k=1 ρk
√
λ̂kφ̂k, q ≤ 2p and ρk, k = 1, . . . , q, are independent standard

normal random variables. Observe that E(V ) = v̄n and that the covariance operator K̃n of
V is the projection of K̂n onto the space generated by φ̂1, . . . , φ̂q. In Figure 13, we display
for each digit, five independent random images obtained from (3.12), with q = 8. For such
choice of q we have that the ratio between the trace of K̃n and the trace of K̂n, that is∑2p

k=1 λ̂k/
∑q

k=1 λ̂k, ranges from 0.75 to 0.9, among digits 0, . . . , 9.

Figure 12: Visualization of the standard PCA (block of five images in the left-hand side) and
geometric PCA (block of five images in the right-hand side) for digits 0 to 9. For each digit,
from left to right, the images correspond to ȳ, ȳn − 2

√
γ̂1û1, ȳn + 2

√
γ̂1û1, ȳn − 2

√
γ̂2û2 and

ȳn + 2
√
γ̂2û2, and then to f̂ , f̂ ◦ ψ̂1,−2, f̂ ◦ ψ̂1,2, f̂ ◦ ψ̂2,−2 and f̂ ◦ ψ̂2,2. We observe, in several

cases, that standard PCA results do not recover well the shape of the digits and that they
produce a blurring of the images. In contrast, geometric PCA results recover the geometric
features of the digits.
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Figure 13: Simulated images for each digit 0, . . . , 9 from model (3.12) based on the learning
of the Fréchet mean f̂ and the eigenvalues/eigenvectors of the empirical covariance operator
K̂n.

3.3 Consistency of geometric PCA in statistical de-

formable models

In the last decades, in the framework of Grenander’s pattern theory, there has been a growing
interest in the use of first order statistics for the computation of mean pattern from a set
of images [Allassonière et al., 2007, 2010; Bigot and Charlier, 2011; Bigot et al., 2009b,a]
and in the construction of consistent procedures. However, there is not so much work in
the statistical literature on the consistency of second order statistics for the analysis of the
geometric variability of images. In particular, the convergence of such procedures in simple
statistical models has generally not been established.

We study the consistency of geometric PCA, in the context of the following statistical
deformable model

Yi(x) = f ∗(ϕ−1(Vi, x)) + εWi(x), x ∈ Ω, i = 1, . . . , n, (3.13)

where

� f ∗ is an unknown mean pattern belonging to L2(Ω),

� ϕ is a deformation operator associated with a Hilbert space V , (in the sense of Definition
3.1), equipped with inner product 〈·, ·〉 and induced norm ‖ · ‖,

� V1, . . . , Vn are independents copies of V , a zero-mean, square-integrable V-valued ran-
dom variable (i.e. EV = 0 and E‖V ‖2 <∞),

� There exists µ > 0 (regularization parameter) such that P(V ∈ Vµ) = 1,

� ε > 0 is a noise level parameter,

� W1, . . . ,Wn are independents copies of a zero mean Gaussian process W ∈ L2(Ω), such
that E‖W‖2

2 = 1,

� (V1, . . . , Vn) and (W1, . . . ,Wn) are mutually independent.
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Additionally, we assume that the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ 0 of the population covari-
ance operator K, defined as

Kv = E〈V, v〉V , v ∈ V , (3.14)

have algebraic multiplicity 1, i.e. λ1 > λ2 > . . . ≥ 0. This implies that the k-th eigen-gap,
defined as δk := mink′∈K\{k} |λk − λk′ |, is strictly positive, for any k ∈ K.

Observe that the function f ∗ in (3.13) models the common shape of the Yi’s. The Wi’s
represent the individual variations in intensity of the data around the mean pattern f ∗ and
thus correspond to a classical source of variability, that could be analyzed by standard PCA.
On the contrary, the random elements ϕ−1(Vi, ·) model deformations of the domain Ω, and
thus correspond to a source of geometric variability in the data.

Model (3.13) is somewhat ideal since images are never observed in a continuous domain
but rather on a discrete set of pixels. A detailed discussion on this issue can be found in
[Allassonière et al., 2007, 2010] where it is proposed to deform a template model and not
the observed discrete images themselves for the purpose of template estimation. However, to
study the asymptotic properties of a statistical procedure, it is simpler to assume that the
data are random elements of L2(Ω) thus avoiding the treatment of the bias introduced by
any discretization scheme.

Definition 3.4 (Population geometric modes of variations). Let K be the population co-
variance operator, defined in (3.14), with (population) eigenvalues λ1 > λ2 > . . . ≥ 0 and
(population) orthonormal eigenvectors φ1, φ2, . . .. For k ∈ K, the k-th population mode of
geometric variation of the random variable V is the homeomorphism ψk : Ω→ Ω defined by

ψk(x) = ϕ−1(
√
λkφk, x), x ∈ Ω.

In this chapter we say that geometric PCA is a consistent procedure if, for data Y =
(Y1, . . . , Yn) following model (3.13), and for all k ∈ K, the k-th empirical mode of geometric
variation ψ̂k (see equation (3.9)) tends to the k-th population mode of geometric variation ψk,
as n→ +∞ and ε→ 0, in a sense to be made precise later on. In this context, the empirical
modes of geometric variation are obtained from the eigenvalues λ̂k and the eigenvectors φ̂k
of the empirical covariance operator

K̂nv =
1

n

n∑
i=1

〈V̂i − V n, v〉(V̂i − V n), for v ∈ V , (3.15)

where (V̂1, . . . , V̂n) belongs to arg minv∈VµM
t(v,Y , f ∗) or arg minv∈U M

g(v,Y ). Conse-
quently, from now on, empirical eigenvalues, eigenvectors and modes of geometric variations
will be considered as random elements.

Remark 3.1. Observe that, for template registration, where v̂ ∈ argminv∈VµM
t(v,y, f ∗),

each coordinate v̂i depends only on vi. This fact implies that V̂1, . . . , V̂n are independent and
identically distributed (i.i.d.). However, this is not the case for groupwise registration, where
v̂i may depend on all the vi’s.

The asymptotic n→ +∞ is rather natural and it corresponds to the setting of a growing
number of images. On the other hand, the setting ε → 0 corresponds to the analysis of
the influence of the additive term εWi in model (3.13). In the statistical literature, see e.g.
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[Brown and Low, 1996], it has been shown that ε→ 0, in a white noise model such as (3.13),
corresponds to the setting where the number N ∼ ε−2 of pixels would tend to infinity in a
related model of images sampled on a discrete grid of size N . Therefore, one may interpret
ε→ 0 as the asymptotic setting where one observes images with a growing number N ∼ ε−2

of pixels.

The main result of this section is that geometric PCA is consistent only in the double
asymptotic setting n→ +∞ and ε→ 0. This result illustrates the fact that the photometric
perturbations εWi in model (3.13) have to be sufficiently small in order to recover the geo-
metric modes of variation. One may argue that the main interest for practical purposes is
the asymptotic setting where n→ +∞ and ε is fixed. However, recent results show that, in
the setting where ε is fixed, it is not possible to recover the random variables Vi encoding the
deformations in model (3.13), by any statistical procedure, see e.g. [Bigot and Charlier, 2011;
Bigot and Gadat, 2010]. In the double asymptotic setting n → +∞ and ε → 0, a detailed
analysis of the problem of recovering the template f ∗ in model (3.13) has been carried out in
[Bigot and Gendre, 2013]. In particular, some answers are given in [Bigot and Gendre, 2013]
on the relative rate between n and ε that is needed to guarantee a consistent estimation of
f ∗ via the use of the Fréchet mean. However, it is out of the scope of this thesis to discuss
such issues for the problem of consistent estimation of the main modes of geometric variations.

Definition 3.5. A deformation operator ϕ (see Definition 3.1) is said to be µ-regular if there
exists µ > 0 such that

(i) ∫
Ω

f 2(ϕ−1(v, x))dx ≤ Aµ

∫
Ω

f 2(x)dx, (3.16)

for all f ∈ L2(Ω), v ∈ Vµ and some constant Aµ > 0; and

(ii) the mapping v → ϕ(v, ·) from Vµ to C(Ω,Ω) is continuous,

where C(Ω,Ω) is the space of continuous functions from Ω to Ω, endowed with the metric
dC(ψ, φ) := supx∈Ω dΩ(ψ(x), φ(x)).

Note that if ϕ(v, ·) is sufficiently smooth, such that the determinant of its Jacobian matrix
is bounded, that is |det(J(ϕ(v, x))| ≤ Aµ, for all v ∈ Vµ and x ∈ Ω, then (3.16) follows from
a change of variable.

Finally, before stating our consistency results, we define convergence in probability in
the double asymptotic setting n → ∞, ε → 0. Let Xn,ε, Xn, Xε, X, n = 1, 2, . . . , ε > 0 ran-
dom variables with values on a metric space (S, d). The notation plimεXn,ε = Xn stands for
d(Xn,ε, Xn)→ 0 in probability as ε→ 0; plimnXn,ε = Xε denotes d(Xn,ε, Xε)→ 0 in probabil-
ity as n→∞. Finally, plimn,εXn,ε = X means that plimn plimεXn,ε = plimε plimnXn,ε = X.
In this chapter, all equalities and inequalities involving random variables are understood
in the almost sure sense. We require the following definition: for u, v ∈ V , sin(u, v) :=√

1− 〈u/‖u‖, v/‖v‖〉2.
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3.3.1 Case of template registration

Theorem 3.1. Let Y = (Y1, . . . , Yn) be i.i.d. observations of model (3.13), with deformation
operator ϕ and regularization parameter µ. Let λ̂k and φ̂k, k ∈ K, be the empirical eigenvalues
and eigenvectors corresponding to template registration of Y , with f = f ∗. Suppose that ϕ
is µ-regular and that ϕ∗ : Vµ → L2(Ω), defined by ϕ∗(v) := f ∗ ◦ ϕ−1(v, ·), for v ∈ Vµ, is

one-to-one and its inverse ϕ∗−1 : ϕ∗(Vµ) → Vµ is continuous. Then plimn,ε λ̂k = λk and

plimn,ε sin2(φ̂k, φk) = 0, for all k ∈ K.

The injectivity condition of ϕ∗ in the previous theorem, implies that, if there were no
additive noise in model (3.13), then the registration of the observations Y onto the template
f ∗ would lead exactly to the non-observed deformation parameters V1, . . . , Vn. In other
words, if ε = 0 in (3.13), then the template dissimilarity functional M t(v,Y , f ∗) (see (3.3))
has a unique minimizer over Vµ given by v = (V1, . . . , Vn). The condition of continuity of
ϕ∗−1 ensures that the registration problem with noise level ε will converge to the registration
problem with no noise as ε→ 0. In the following proposition, we provide sufficient conditions
to ensure that if ϕ∗ is one-to-one, then its inverse is continuous.

Proposition 3.2. Let ϕ be a µ-regular deformation operator, with Ω compact and V finite
dimensional. If f ∗ is continuous and ϕ∗, defined in Theorem 3.1, is one-to-one, then its
inverse is continuous.

Proof. Let us show first that ϕ∗ is continuous, so take a sequence (vn) in Vµ converging to
v ∈ Vµ. By the continuity of f ∗ and condition (ii) of Definition 3.5, we have f ∗(ϕ−1(vn, x))→
f ∗(ϕ−1(v, x)), for all x ∈ Ω. On the other hand, f ∗(ϕ−1(v∗n, x)) ≤ supx′∈Ω |f ∗(x′)| < ∞, for
all x ∈ Ω. Then, by the dominated convergence theorem, we conclude that ϕ∗ is continuous.
Finally, recall that the inverse of a one-to-one and continuous function from a compact space
onto a topological space, is also continuous. Therefore, as Vµ is compact, we obtain the
result.

In Section 3.3.3, we analyze the case where ϕ is the translation operator defined in Section
3.2.1 and we provide some conditions on f ∗ and ϕ ensuring that the hypotheses of Theorem
3.1 are satisfied. In the case where ϕ is the diffeomorphic deformation operator, defined in
Section 3.2.1, it is necessary to impose much stronger assumptions on the template f ∗ and
the space of vector fields V to ensure that ϕ∗ : Vµ → ϕ∗(Vµ) has a continuous inverse; see
Section 3.3.4.

Remark 3.2. Observe that, under the hypotheses of Theorem 3.1, the k-th empirical mode
of geometric variation ψ̂k converges in probability the the k-th population mode of geometric
variation ψk, when n → +∞ and ε → 0, as elements of (C(Ω,Ω), dC). Indeed, this result
follows from the continuity of the mapping v → ϕ(v, ·), which is guaranteed by the µ-regularity
of ϕ.

We show below how a stronger regularity assumption on ϕ allows one to obtain rates of
convergence for λ̂k and φ̂k, via a concentration inequality that depends explicitly on n and ε.

Theorem 3.2. Under the hypotheses of Theorem 3.1 and if ϕ∗−1 is uniformly Lipschitz (in
the sense that ‖u − v‖2 ≤ L(f ∗, µ)‖ϕ∗(u) − ϕ∗(v)‖2

2, for every u, v ∈ Vµ and some constant
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L(f ∗, µ) > 0 depending only on f ∗ and µ), then

P

(
|λ̂k − λk|2 > C(f ∗, µ) max(h(u, n, ε) +

√
h(u, n, ε); g(u, n))

)
≤ exp(−u),

for any u > 0, where C(f ∗, µ) > 0 is a constant depending only on f ∗ and µ; h(u, n, ε) =

ε2
(
1 + 2u

n
+ 2
√

u
n

)
and g(u, n) =

(
u
n

+
√

u2

n2 + u
n

)2

.

Take now u∗ > 0 such that

C(f ∗, µ) max(h(u∗, n, ε) +
√
h(u∗, n, ε); g(u∗, n)) < (δk/2)2,

then, for any 0 < u ≤ u∗,

P

(
sin2(φ̂k, φk) > (2/δk)

2C(f ∗, µ) max(h(u, n, ε) +
√
h(u, n, ε); g(u, n))

)
≤ 2 exp(−u).

3.3.2 Case of groupwise registration

In order to prove consistency for groupwise registration, we require model (3.13) to satisfy
the set of identifiability assumptions, shown below. For u,v ∈ V = Vn, let

Dg(u,v) := M g(u, (f ∗1 , . . . , f
∗
n)) =

1

n

n∑
i=1

∫
Ω

(
f ∗i (ϕ(ui, x))− 1

n

n∑
j=1

f ∗j (ϕ(uj, x))

)2

dx,

(3.17)
where f ∗i (x) := f ∗(ϕ−1(vi, x)), x ∈ Ω, i = 1, . . . , n. Observe that, Dg(u,V ) = M g(u,Y )
when Y = (Y1, . . . , Yn) follows model (3.13) with ε = 0.

Definition 3.6 (g-identifiability). Model (3.13) is said to be g-identifiable if

(i) there exists a measurable function u∗ : Vµ → U such that for every η > 0 there exists a
constant C > 0, not depending on n, with Dg(u,v)−Dg(u∗,v) > C, for every u ∈ U
satisfying d̄2(u∗,u) > η, and

(ii) plimn d̄
2(u∗(V ),V ) = 0,

where d̄2(u,v) := 1
n

∑n
i=1 ‖ui − vi‖2, for u,v ∈ V.

Observe that condition (i) above implies that, for every v ∈ Vµ, Dg(u,v) has a unique
measurable minimizer u∗(v) on U .

Theorem 3.3. Let Y = (Y1, . . . , Yn) be i.i.d. observations of model (3.13), with deformation
operator ϕ and regularization parameter µ. Let λ̂k and φ̂k, k ∈ K, be the empirical eigenvalues
and eigenvectors corresponding to the groupwise registration of Y . Suppose that ϕ is µ-regular
and that (3.13) is g-identifiable. Then plimn,ε λ̂k = λk and plimn,ε sin2(φ̂k, φk) = 0, for all
k ∈ K.

Remark 3.3. Observe that, as in the case of template registration, it can be shown that
under the hypotheses of Theorem 3.3, ψ̂k converges to ψk in probability, as n → +∞ and
ε→ 0.
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3.3.3 Translation operator

We study the applicability of Theorems 3.1, 3.2 and 3.3 to the translation operator ϕ given
by (3.1). In this case, Ω = [0, 1)d, for some integer d ≥ 1, is equipped with the distance
dΩ(x, y) :=

∑d
k=1 min{|xk − yk|, 1− |xk − yk|}, for x = (x1, . . . , xd) , y = (y1, . . . , yd) ∈ Ω. Let

also V = R
d be equipped with the usual Euclidean inner product.

Now, let us show that ϕ is a deformation operator in the sense of Definition 3.1. It holds
that ϕ(0, ·) is the identity in Ω and ϕ−1(v, ·) = ϕ(−v, ·). Last, from (i) in Lemma B.5, it
follows that the mapping ϕ(v, ·), is continuous for all v ∈ V . Moreover, we prove that ϕ is
µ-regular, for all µ > 0: for (i) in Definition 3.5, take f ∈ L2(Ω) and consider its periodic
extension fper to Rd. Then (3.16) is a consequence of f(ϕ(v, x)) = fper(x + v) which holds
for all v ∈ Rd, x ∈ Ω. Finally, condition (ii) in Definition 3.5, follows from (ii) in Lemma B.5.

We impose further conditions on model (3.13) implying that ϕ∗−1, defined in Theorem 3.1,
is Lipschitz. Let θk, k = 1, . . . , d, be the low frequency Fourier coefficients of the template
f ∗, that is

θk :=

∫
Ω

f ∗(x)e−i2πxkdx 6= 0 for all 1 ≤ k ≤ d. (3.18)

Lemma 3.1. Suppose that f ∗ is such that θk 6= 0, for all 1 ≤ k ≤ d, and let µ < 1/2. Then
ϕ∗ is one-to-one and ϕ∗−1 is uniformly Lipschitz.

Hence, if θk 6= 0, for all 1 ≤ k ≤ d and µ < 1/2, the hypotheses of Theorems 3.1 and
3.2 are verified. Thus, the geometric PCA is consistent in the case of template registration
with translation operator. Observe that the hypotheses of Lemma 3.1 imply that translation
invariant templates f ∗ are excluded.

We now turn our attention to groupwise registration. We have to impose further conditions
on model (3.13) ensuring g-identifiability, so that Theorem 3.3 applies. The set of deformation
parameters U ⊂ Vµ over which M g(v,y) will be minimized, is U = U0, given in (3.2.2). We
have the following.

Proposition 3.3. Suppose θk 6= 0, for all 1 ≤ k ≤ d, and that P(V ∈ [−ρ, ρ]d) = 1, with
ρ = min(µ

2
, µ√

d
) and 0 < µ < 1

12
. Then

Dg(u,v)−Dg(u∗(v),v) ≥ C(f ∗, µ)d̄2(u,u∗(v)), for all u ∈ U , (3.19)

where u∗(v) :=
(
v1 − 1

n

∑n
i=1 vi, . . . , vn −

1
n

∑n
i=1 vn

)
and C(f ∗, µ) > 0 is a constant depend-

ing only on f ∗ and µ.

Remark that, in Proposition 3.3, Dg(u∗(v),v) = 0. This shows that Dg(u,v) is bounded
below by a quadratic functional.

We are now ready to prove g-identifiability under the hypotheses of the previous propo-
sition. Observe that (i) in Definition 3.6 follows at once from (3.19). For (ii) note that
d̄2(u∗(V ),V ) = ‖ 1

n

∑n
i=1 Vi‖. Hence, given that EV = 0, from Bernstein’s inequality for

bounded random variables in a Hilbert space (see e.g. [Bosq, 2000], Theorem 2.6) we con-
clude that, for any η > 0,

P (d(u∗(V ),V ) > η) ≤ 2 exp

(
− nη2

2E‖V ‖2 + µ
3
η

)
.
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Therefore d̄2(u∗(V ),V ) converges in probability to 0 as n→ +∞.

Finally, having checked the g-identifiability of the model, we conclude that the geometric
PCA is consistent, in the case of groupwise registration with translation operator.

3.3.4 Non-rigid diffeomorphic operator

We study the applicability of Theorem 3.1 to the non-rigid diffeomorphic operator ϕ, defined
in Section 3.2.1, in the case of dimension d = 1. In this case, Ω = [0, 1] is equipped with
the distance dΩ(x, y) := |x− y|, for x, y ∈ Ω. Let V a separable Hilbert space, continuously
embedded in the set C1

0(Ω) of functions v : Ω→ R, which are class C1 on Ω and such v and
its derivative vanish at the boundary of Ω. That is, there exists a positive constant c0 such
that

‖v‖1,∞ ≤ c0‖v‖, ∀v ∈ V , (3.20)

where ‖v‖1,∞ = supx∈Ω |v(x)|+ | ∂v
∂x

(x)| is the sup-norm. For x ∈ Ω and v ∈ V , define ϕ(v, x)
as the solution at time t = 1 of the ODE (3.2), with initial condition φ0 = x ∈ Ω.

Now, we show that ϕ is a deformation operator in the sense of Definition 3.1. The
smoothness condition (3.20) implies that, for any v ∈ V , the function x 7→ ϕ(v, x) is a
diffeomorphism on Ω (see e.g. [Younes, 2010], Theorem 8.7 or [Grenander and Miller, 2007],
Theorem 11.3) with inverse given by x 7→ ϕ(−v, x) (see e.g. the proof of Theorem 8.14 in
[Younes, 2010] or Theorem 11.3 in [Grenander and Miller, 2007]). Moreover, we prove that ϕ
is µ-regular, for all µ > 0. From Theorem 8.9 in [Younes, 2010], there exist constants c1, c2,
such that

‖ϕ(v, ·)− id‖1,∞ ≤ c1e
c2‖v‖1,∞ , v ∈ V , (3.21)

from where we obtain that

sup
x∈Ω

∣∣∣∣∂ϕ(v, x)

∂x

∣∣∣∣ ≤ 2 + c1e
c2µ, v ∈ Vµ. (3.22)

Then (3.16) follows from (3.22) and a change of variable. Finally, condition (ii) in Definition
3.5 follows from [Younes, 2010], Theorem 8.11.

We impose further conditions on model (3.13) implying that ϕ∗, defined in Theorem 3.1,
is one-to-one and continuous. We show first that the map v 7→ ϕ(v, ·) is one-to-one, under
appropriate assumptions over the space V .

Definition 3.7. We say that v ∈ V is non-oscillatory if there exists a positive integer p
(depending on v) such that the zero-level set of v defined by L(v) = {x ∈ Ω : v(x) = 0} can
be written as

L(v) =
⋃

i=1,...,p

Ai, (3.23)

where Ai = [ai, bi], for i = 1, . . . , p with 0 = a1 ≤ b1 < a2 ≤ b2 < . . . ap ≤ bp = 1. In words,
L(v) is the union of disjoint closed subintervals of Ω.

Remark 3.4. The previous definition is satisfied for the following two spaces, which are a
common election for numerical implementation. First, the space generated by a finite basis
of Fourier functions. In this case it can be shown that any function in V has a finite number
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of roots [Boyd, 2006]. Second, the space generated by a finite number of B-Splines, which
are piecewise polinomious with compact support. In this case, the previous assumption can
be easily checked.

Proposition 3.4. If every v ∈ V is non-oscillatory, according to Definition 3.7, then the
mapping v ∈ V 7→ ϕ(v, ·) is one-to-one.

We impose conditions over the template f ∗, to discard invariance under the action of
diffeomorphisms.

Definition 3.8. We say that a function f : Ω→ R has no flat regions if

∀x ∈ Ω, ∀Nx neighborhood of x in Ω, ∃x′ ∈ Nx such that f(x) 6= f(x′). (3.24)

Recall that the mapping ϕ∗ : Vµ → L2(Ω) is defined by ϕ∗(v) := f ∗ ◦ϕ−1(v, ·), for v ∈ Vµ.

Proposition 3.5. Assume that f ∗ is continuous and has no flat regions and let u, v ∈ V
such that ϕ∗(u) = ϕ∗(v). Then ϕ(u, x) = ϕ(v, x), for all x ∈ Ω.

So, if f ∗ is continuous with no flat regions and V is a finite dimensional space of non-
oscillatory functions, then, by Propositions 3.2, 3.4 and 3.5, ϕ∗ is one-to-one, with continuous
inverse and so, the hypotheses of Theorem 3.1 are verified. Thus, the geometric PCA is
consistent in the case of template registration, with the non-rigid diffeomorphic operator ϕ,
previously defined.

3.4 Conclusions and discussion of this chapter

The contribution of this thesis, related to the geometric PCA, is twofold. First, the use
of deformation operators (as introduced in this chapter) provides a general framework for
modeling and analyzing the geometric variability of images. As a particular case, it allows
the use of diffeomorphic deformations parametrized by stationary vector fields. In the case of
diffeomorphisms computed with nonstationary vector fields, as in [Beg et al., 2005], the link
with our framework is not straightforward. Indeed, in this setting, there are two possibilities
for defining the deformation operators. One can parameterize them either by the Hilbert
space of time-dependent vector fields, or by the Hilbert space of initial velocities. Both cases
are rather complex from the analytical and the computational points of view and treating
them is beyond the scope of this thesis. In contrast, due to its analytical and numerical
tractability, we have preferred to focus on diffeomorphic deformation operators, parametrized
by stationary vector fields belonging to a finite-dimensional Hilbert space.

The second contribution in this chapter is the study of the consistency of geometric PCA
methods in statistical deformable models which, to the best of our knowledge, has not been
investigated so far. One can remark that our consistency results rely on strong assumptions
on the template f ∗ and the deformation operator ϕ. For the case of translations, we have
provided (see Section 3.3.3) verifiable conditions to satisfy such assumptions. A similar
analysis, in the case of diffeomorphic deformations, is much more complex (see Section 3.3.4).
For the case of template registration, one of our main assumptions is that the mapping
ϕ∗ : Vµ → L2(Ω), defined by ϕ∗(v) := f ∗ ◦ϕ−1(v, ·), for v ∈ Vµ, is one-to-one. Such condition
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together with some regularity conditions on ϕ ensure that, if Y = (Y1, . . . , Yn) is sampled
from model (3.13), with noise level ε = 0, then the registration problem minv∈VµM

t(v,Y , f ∗)
has a unique solution, given by the non-observed deformation parameters V = (V1, . . . , Vn),
where M t is the template dissimilarity functional defined in (3.3). In particular, in the
case where ϕ is a diffeomorphic deformations operator, the injectivity condition requires
necessarily the template f ∗ not to be constant in any open region of Ω, which is a quite
restrictive assumption that does not hold in applications. One possibility to remove this
injectivity condition could be, for instance, estimating deformation parameters in the set

arg min{‖v‖ : v ∈ V , ϕ∗(v) = ϕ∗(Vi)}, (3.25)

instead of estimating Vi, for all i = 1, . . . , n. In Section 3.5.1 we discuss an approach based
on Tikhonov regularization to address this issue. However, such an approach makes much
more difficult the analysis on the consistency of our procedure.
We hope that the methods presented here will stimulate further investigation into the devel-
opment of consistent statistical procedures for the analysis of geometric variability.

3.5 Extensions and related problems

In this section we discuss possible extensions and related problems of the geometric PCA. In
this thesis we have not investigated such issues in depth, as they can be the object of future
investigations.

3.5.1 Tikhonov regularization

In this section we discuss the use of Tikhonov regularization in the registration step of the
geometric PCA. For simplicity we discuss only the case of template registration. Instead of
the constrained regularization we have proposed (see (3.6)), it is possible to use Tikhonov
regularization with parameter τ > 0. That is, given f ∈ L2(Ω) and y = (y1, . . . , yn), with
yi ∈ L2(Ω), i = 1, . . . , n, define v̂τ as a solution of

min
v∈Vn

M t(v,y, f) + τR(v), (3.26)

where M t is the template dissimilarity functional defined in (3.3) and R(v) := 1
n

∑n
i=1 ‖vi‖2

is a regularization term. Minimizing the cost functional (3.26) is a widely used approach in
many image registration problems. In order for analyzing the consistency of the geometric
PCA, using the previous registration method, consider Y1, . . . , Yn from model (3.13), with
associated random parameters V1, . . . , Vn ∈ V . Based on the guidelines in [Droske, 2005], we
believe that if V̂ τ is a solution of (3.26), with y := (Y1, . . . , Yn), then the distance from V̂ τ

to the set
arg min{‖v‖ : v ∈ V , ϕ∗(v) = ϕ∗(Vi)}, (3.27)

converges to zero, when n→∞, ε→ 0 and τ → 0.
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3.5.2 Discrete model

For convenience, we have presented the ideas of geometric PCA under the assumption that
the images y1, . . . , yn ∈ L2(Ω) are observed on the continuous domain Ω. In this section,
we assume that we observe yi,` = yi(x`), ` = 1, . . . , p, i = 1, . . . , n, where x1, . . . , xp ∈ Ω
is a discrete set of pixels. We propose to interpolate/smooth the data before calculating
deformation parameters. Denote by (ek)

∞
k=1 an orthonormal basis of L2(Ω) (e.g. a Fourier or

a wavelet basis). Then define, for 1 ≤ i ≤ n, the following estimators obtained by smoothing
the data

ŷi =

k0∑
k=1

β̂i,kek, with β̂i,k =
1

p

p∑
`=1

yi,`ek(x`),

where k0 ∈ N is a regularization parameter whose choice has to be discussed. We define the
method of geometric PCA on the data yi,` = yi(x`), ` = 1, . . . , p, i = 1, . . . , n as the geometric
PCA (see Definition 3.3) applied to ŷ1, . . . , ŷn.

Analogously to the analysis made in Section 3.3, we are interested in studying the consis-
tency of discrete geometric PCA, when data comes from the following statistical deformable
model

Yi,` = f ∗(ϕ−1(Vi, x`)) + εWi(x`), x` ∈ Ω, i = 1, . . . , n, ` = 1, . . . , p, (3.28)

which is the discrete analog of model 3.13.
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Conclusions

In this thesis we define and analyze two different adaptations of the Principal Components
Analysis (PCA) for analyzing the variability of two instances of infinite dimensional data:
measures on the line and images. Each of the proposed methods is analyzed independently,
however, there exists a common basis and several connections between them, as we point
out in the Introduction. In Chapter 2 we define the Geodesic PCA of measures, a method
that has a clear parallel with respect to recently proposed PCA adaptations to Riemaniann
manifolds, (see discussion in Section 2.6). In Chapter 3 we define the geometric PCA of
images, a method that relies on well known procedures of image analysis, but it also can
be interpreted as as PCA on the manifold of deformations (see discussion in Section 3.1.1).
Our main mathematical result is the statistical consistency of our procedures, that is, the
convergence of the empirical characteristics to their population counterparts. We remark that
these results are original contributions that make use, from our point of view, of advanced
mathematical tools and techniques.

There exists another interesting link between the two approaches we propose, namely a
possible application of Geodesic PCA to analyze the variability of an image set. Modeling
image variability using Wasserstein distance is based on the idea that images represent a
material density over the domain Ω and that the source of image variability is due to a
transportation of material. Therefore, the Wasserstein distance is well suited, for instance,
when the gray level values represent the density of a tissue, as in the case of MRI cardiac
applications [Zhu and Tannenbaum, 1998]. However, the extension of our methodology to
dimension d > 1 is necessary to deal with applications in image analysis, but is clearly not
straightforward. In this context we mention recent work on image registration based on
Wasserstein distance: [Zhu and Tannenbaum, 1998; Haker et al., 2001; Museyko et al., 2009;
Haker et al., 2004; Sulman et al., 2009].

Finally we remark that the subject of this thesis belongs primarily to the fields of prob-
ability and statistics, however it also has components of others fields: differential geometry,
metric geometry, functional analysis, convex analysis, optimal transportation theory, shape
optimization and image processing. Last, as closing remark, we would like to mention that
our ambition in this research project was to strike a good balance between theory and nu-
merical implementations. We hope this work partially fulfills such aspirations.
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Appendix A

Appendix of Chapter 2

A.1 Quantile functions

Let us recall the definition of the quantile function of a probability measure, and let us state
some of its properties.

Definition A.1. Let µ be a probability measure on R with cdf F . The quantile function of µ
is defined as F−(y) = inf{x ∈ R : F (x) ≥ y}, y ∈ (0, 1).

The quantile function F− corresponds to the so called generalized inverse of F .

Definition A.2. let T : R→ R be an increasing and left-continuous map. For x ∈ R define
T †(x) = sup{z ∈ R : T (z) ≤ x}.

Proposition A.1. Let µ be a probability measure on R and T : R→ R be an increasing and
left-continuous map. Denote by F the cdf of µ and by G the cdf of T#µ. Then

(i) F− is increasing, left-continuous and has a limit from the right.

(ii) F (x) ≥ y if and only if x ≥ F−(y).

(iii) If µ is absolutely continuous with respect to the Lebesgue measure, then F− is strictly
increasing and F (F−(y)) = y, for all y ∈ (0, 1).

(iv) T (z) ≤ x if and only if z ≤ T †(x).

(v) (F−)† = F and (T †)− = T .

(vi) G− = T ◦ F−.

Proof. Properties (i), (ii) and (iii) are well known, see for instance [Embrechts and Hofert,
2013]. (iv) is analogous to (ii). (v) is direct from (ii) and (iv). Let us prove (vi). From
(iv), G(x) = µ(z : T (z) ≤ x) = µ(z : z ≤ T †(x)) = F (T †(x)). Therefore, from (ii) and (iv),
G−(y) = inf{x ∈ R : F (T †(x)) ≥ y} = inf{x ∈ R : T †(x) ≥ F−(y)} = inf{x ∈ R : x ≥
T (F−(y))} = T (F−(y)).
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A.2 Geodesics in metric spaces

We introduce the concept of geodesic in metric spaces. For notations, definitions and results,
we follow [Chodosh, 2011] and references therein.

Definition A.3. A curve in a metric space (X, d) is a continuous function γ : I → X, where
I ⊂ R is a closed (not necessarily bounded) interval. Also

(i) γ is said to pass through z ∈ X if γ(t) = z, for some t ∈ I;

(ii) γ joins x, y ∈ X if there exists a, b ∈ I, a ≤ b, such that γ(a) = x and γ(b) = y.

(iii) γ is rectifiable if its length L(γ) is finite.

For convenience, without loss of generality, we consider I such that [0, 1] ⊂ I.

Definition A.4. A metric space (X, d) is said to be geodesic if for every x, y ∈ X, there
exists a rectifiable curve γ joining x and y, such that d(x, y) = L(γ). Such minimum length
curve γ is called a shortest path between x and y. A curve γ : I → X is a geodesic if for
every t ∈ I, there exist a, b ∈ I, a < b, a ≤ t ≤ b such that the restriction of γ to [a, b] is a
shortest path between γ(a) and γ(b).

The following is a useful characterization of shortest path (See [Chodosh, 2011] for a
proof).

Lemma A.1. For any shortest path, there exists a continuous reparametrization γ on [0, 1]
such that

d(γ(s), γ(t)) = |t− s|d(γ(0), γ(1)) for all s, t ∈ [0, 1].

Lemma A.2. Let H be a Hilbert space and x, y ∈ H. Then γ is a shortest path joining x and
y if and only if γ(t) = (1− t)x+ ty, for all t ∈ [0, 1], up to a continuous reparametrization.

Proof. Denote the inner product and the induced norm in H by 〈·, ·〉 and ‖ · ‖ respectively.
Let γ be a shortest path between x and y, and t ∈ [0, 1]. From Lemma A.1 we have
‖x− γ(t)‖ = t‖x− y‖ and ‖γ(t)− y‖ = (1− t)‖x− y‖, then

‖x− γ(t)‖+ ‖γ(t)− y‖ = ‖x− y‖.

Squaring and simplifying the expression above, we get

‖x− γ(t)‖‖γ(t)− y‖ = 〈x− γ(t), γ(t)− y〉.

Hence, by the Cauchy-Schwartz inequality, there exists λ ≥ 0 such that x−γ(t) = λ(γ(t)−y).
Finally, taking norm we find λ = t

1−t and the result follows. The other implication is
direct.

From the previous lemma, we deduce that in Hilbert spaces, any geodesic is locally a
segment, therefore geodesics correspond to straight lines. We state this in the following
corollary.

Corollary A.1. Let H be a Hilbert space and γ : I → H a curve such that γ(0) = x ∈ H
and γ(1) = y ∈ H. Then, γ is a geodesic if and only if γ(t) = (1− t)x+ ty, for all t ∈ I, up
to a continuous reparametrization.
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Definition A.5. Let (X, d) be a geodesic space and Y ⊂ X. We say that Y is geodesic if
the induced metric space (Y, d) is geodesic. In other words, if for any x, y ∈ Y , there exists
a shortest path joining x and y, totally contained in Y .

Note that, as direct consequence of Lemma A.2, any Hilbert space H is geodesic and
C ⊂ H is geodesic if and only if C is convex.

A.3 K-convergence

In this section we provide definitions and results that we use for proving the existence of
principal geodesics (see Section 2.3.2). In particular, we define an appropriate concept of
convergence for sequences of convex sets in a metric space.

Definition A.6. Let (X, d) be a metric space and C,Cn ⊂ X,n ≥ 1. We say that the
sequence (Cn) converges to C in the sense of Kuratowski, denoted by K-limn→∞Cn = C, if

(i) for every x ∈ C there exists a sequence (xn) converging to x such that xn ∈ Cn, n ≥ 1;

(ii) for any sequence (xn) such that xn ∈ Cn, n ≥ 1, any accumulation point of (xn) belongs
to C.

Definition A.7. Let (X, d) be a metric space and A,B ⊂ X. The deviation from x ∈ X
to B is defined by d(x,B) := infx′∈B d(x, x′); the deviation from A to B is d(A,B) :=
supx∈A d(x,B) and the Hausdorff distance between the sets A and B is

h(A,B) := max{d(A,B), d(B,A)}. (A.1)

It is well known (see [Price, 1940; Beer, 1985] and references therein) that convergence with
respect to the Hausdorff distance is stronger than convergence in the sense of Kuratowski.
Moreover, if X is compact, then both notions of convergence coincide.

Definition A.8. Let (X, d) be a metric space. We define the metric space

CL(X) := {C ⊂ X | C 6= ∅, closed, bounded} ,

endowed with the Hausdorff distance between sets.

Proposition A.2. Let (X, d) be a compact metric space and y ∈ X, then the function
C 7→ d(y, C) is continuous in CL(X).

Proof. Let y ∈ X and let (Cn) be a sequence in CL(X), converging to C ∈ CL(X). Observe
that, by the compactness of X, there exists x∗ ∈ C and x∗n ∈ Cn, n ≥ 1, such that d(y, C) =
d(y, x∗) and d(y, Cn) = d(y, x∗n), n ≥ 1. From (i) in Definition A.6, there exists a sequence
(xn) converging to x∗, such that xn ∈ Cn, for every n ≥ 1. Then

lim sup
n→∞

d(y, Cn) ≤ lim sup
n→∞

d(y, xn) = lim
n→∞

d(y, xn) = d(y, x∗) = d(y, C). (A.2)

Now, let ϑn := d(y, Cn) and let (ϑnj) be a subsequence of (ϑn) such that lim infn→∞ ϑn =
limj→∞ ϑnj . By compactness, (x∗nj) converges, up to a subsequence, to an element x ∈ X.
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From (ii) in Definition A.6, x belongs to C, therefore

lim inf
n→∞

d(y, Cn) = lim
j→∞

d(y, Cnj) = lim
j→∞

d(y, x∗nj) = d(y, x) ≥ d(y, C). (A.3)

From (A.2) and (A.3) we obtain the result.

If X is a subset of a Hilbert space, then, for an integer k ≥ 1, we denote by CCk(X) the
collection of convex sets C in CL(X), such that dim(C) ≤ k, where dim(C) is the dimension
of the smaller affine subspace containing C. We denote also by CCk,0(X) the collection of
sets C in CCk(X) such that 0 ∈ C.

Proposition A.3. If X is a compact subset of a Hilbert space, then CL(X), CCk(X) and
CCk,0(X) are compact.

Proof. The compactness of CL(X) is proved in [Price, 1940] and [Hai and An, 2013]. Let us
prove that CCk(X) is closed. Take a sequence (Cn) in CCk(X) that converges to C ∈ CL(X),
for the Hausdorff distance. From Blaschke’s selection theorem in Banach spaces (see [Price,
1940] and [Hai and An, 2013]), we have that C is convex.
Let us now check by contradiction that dim(C) ≤ k. If we assume that that dim(C) > k,
then there exists x1, . . . , xk+1 ∈ C linearly independent or, equivalently, the Gram deter-
minant det(GM) of x1, . . . , xk+1 (the Gram matrix GM has elements GMi,j = 〈xi, xj〉,
i, j = 1, . . . , k + 1) is non-zero. By (i) in Definition A.6, there exist x1,n, . . . , xk+1,n ∈ Cn,
for every n ≥ 1, such that (xj,n) converges to xj for j = 1, . . . , k + 1. But dim(Cn) ≤ k,
therefore the Gram determinant det(GMn) of x1,n, . . . , xk+1,n is zero. But, it is easy to
see that det(GMn) → det(GM) which implies that det(GM) = 0 (a contradiction) and so
dim(C) ≤ k. We have proved that C ∈ CCk(X) and so CCk(X) is closed, hence compact
subset of the compact space CL(X).
On the other hand, observe that if Cn → C in CL(X) and 0 ∈ Cn, for all n ≥ 1, then 0 ∈ C,
by (ii) in Definition A.6. We conclude that CCk,0(X) is also closed, thus compact.

Lemma A.3. Let (X, d) be a metric space and B,C,Bn, Cn ⊂ X,n ≥ 1, such that K-
limn→∞Bn = B, K-limn→∞Cn = C and Bn ⊂ Cn, n ≥ 1. Then B ⊂ C.

Proof. Take x ∈ B and note that there exists a sequence (xn) converging to x such that
xn ∈ Bn, n ≥ 1, by (i) in Definition A.6. As xn ∈ Bn ⊂ Cn, n ≥ 1, from (ii) in Definition
A.6, we have that x ∈ C.

A.4 Γ−convergence

The proof of Theorem 2.4 relies on the notion of Γ-convergence of functions [Attouch, 1984;
Dal Maso, 1993].

Definition A.9. Let (X, d) be a metric space and (Fn) a sequence of functions from X into
R = R∪{+∞,−∞}. We say that (Fn) Γ-converges to F : X → R, denoted Γ-limn→∞ Fn = F ,
if for every x ∈ X, it holds that

(i) for every sequence (xn) converging to x, F (x) ≤ lim infn→∞ Fn(xn) and
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(ii) there exists a sequence (xn) converging to x such that F (x) = limn→∞ Fn(xn).

Definition A.10. For F : X → R, we denote M(F ) = {x ∈ X : F (x) = infy∈X F (y)}.

The following result (see [Dal Maso, 1993], Theorems 7.8 and 7.23) shows that Γ-convergence
together with compactness (or more generally equicoercivity) implies convergence of mini-
mum values and minimizers.

Theorem A.1. Let (X, d) be a compact metric space and (Fn) a sequence of functions from
X to R, Γ-converging to F : X → R. Then M(F ) is nonempty and

lim
n→∞

inf
x∈X

Fn(x) = min
x∈X

F (x)

Moreover, if xn ∈M(Fn), n ≥ 1, then the accumulation points of (xn) belong to M(F ).

Definition A.11. Let (X, d) be a metric space and A ⊂ X. The indicator of A is the
function χ

A
: X → R ∪ {+∞} defined by χ

A
(x) = 0, if x ∈ A, and χ

A
(x) = +∞, if x /∈ A.

The following Proposition ([Attouch, 1984], Proposition 4.15.) shows the relation between
K-convergence (see Definition A.6) and Γ-convergence.

Lemma A.4. Let (X, d) be a metric space and A,An ⊂ X, n ≥ 1. Then K-limn→∞An = A
if and only if Γ-limn→∞ χAn = χ

A
.

A.5 Minkowski functional

In this section we recall the notion of Minkowski functional of a convex set, introduce the
concept of reciprocal Minkowski functional and state some properties.

Definition A.12. Let X be a vector space and C ⊂ X. The Minkowski functional of C
is the function p : X → R+ ∪ {+∞}, given by p(x) = inf{t > 0 : x ∈ tC}, x ∈ X, with
the convention inf ∅ = +∞. Also, the reciprocal Minkowski functional of C is the function
q : X → R+ ∪ {+∞}, given by q(x) = sup{t > 0 : tx ∈ C}, x ∈ X, with the convention
sup ∅ = 0.

Lemma A.5. Let X be a vector space and C ⊂ X a closed and convex set containing 0.
Let p and q be the Minkowski and reciprocal Minkowski functionals of C, respectively (see
Definition A.12). We have the following properties:

(i) For any x ∈ X,

q(x) =


∞ if p(x) = 0,

1
p(x)

if 0 < p(x) <∞,
0 if p(x) =∞.

(A.4)

(ii) For any x ∈ X,

span(x) ∩ C =


{tx : t ∈ R} if q(−x) =∞ and q(x) =∞,
{tx : t ≤ q(x)} if q(−x) =∞ and q(x) <∞,
{tx : t ≥ −q(−x)} if q(−x) <∞ and q(x) =∞,
{tx : −q(−x) ≤ t ≤ q(x)} if q(−x), q(x) <∞.

(A.5)
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(iii) For any t > 0, {x ∈ X : p(x) ≤ t} = tC.

(iv) For any t > 0, {x ∈ X : q(x) ≥ t} = t−1C.

Proof. (i) For x ∈ X define Tx = {t > 0 : x ∈ tC} and observe that

p(x) = inf Tx. (A.6)

We claim that Tx is convex and, if p(x) > 0, then Tx is a closed subset of R+. Indeed,
let s, t ∈ Tx and r = λs + (1 − λ)t, with 0 ≤ λ ≤ 1. As x ∈ sC and x ∈ tC, we have
x = λx + (1 − λ)x ∈ λsC + (1 − λ)tC = rC. We conclude that Tx is convex. Assume now
that p(x) > 0 and take tn ∈ Tx, n ≥ 1, such that tn converges to t ≥ 0. From (A.6) and as
p(x) > 0, we have t > 0. Moreover, the sequence tnx belongs to the closed set C, thus its
limits tx also belongs to C. Hence t ∈ Tx and we conclude that Tx is closed. It is clear that
Tx in nonempty if and only if p(x) <∞, therefore, from the previous claim,

Tx =


(0,∞) if p(x) = 0,

[p(x),∞) if 0 < p(x) <∞,
∅ if p(x) =∞.

(A.7)

Now, define Sx = {t > 0 : tx ∈ C} and observe that

q(x) = supSx. (A.8)

Note also that t ∈ Tx if and only if 1/t ∈ Sx. Hence, from (A.7),

Sx =


(0,∞) if p(x) = 0,

(0, 1/p(x)] if 0 < p(x) <∞,
∅ if p(x) =∞.

(A.9)

From (A.8) and (A.9) we obtain (A.4).

(ii) Observe that span(x) ∩ C = {tx : t ∈ R, tx ∈ C}, therefore

span(x) ∩ C = {tx : t ∈ S−x ∪ {0} ∪ Sx}. (A.10)

On the other hand, from (A.8) and (i),

Sx =


∅ if q(x) = 0,

(0, q(x)] if 0 < q(x) <∞,
(0,∞) if q(x) =∞.

(A.11)

Thus (A.5) follows from (A.10) and (A.11).

(iii) Take t > 0 and denote D := {x ∈ X : p(x) ≤ t}. Let us first show that tC ⊂ D. If
x ∈ tC, then t ∈ Tx and p(x) = inf Tx ≤ t, thus x ∈ D. Now, let us show that D ⊂ tC, so
take x ∈ D. If 0 < p(x) ≤ t, by (A.7) we have Tx = [p(x),∞), therefore t ∈ Tx and x ∈ tC.
Finally, if p(x) = 0, then x ∈ t′C, for all t′ > 0, so, in particular, x ∈ tC.

(iv) It follows from (i) and (iii).
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The following properties are well known, see for instance [Fabian et al., 2011], Lemma
2.11.

Lemma A.6. Let p be the Minkowski functional of a convex subset C of a normed vector
space X. Then

(i) p(λx) = λp(x), for all λ ≥ 0, x ∈ X.

(ii) p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X.

(iii) If C is a neighborhood of 0, then p is continuous. Moreover {x ∈ X : p(x) < 1} =
interior(C) ⊂ C ⊂ closure(C) = {x ∈ X : p(x) ≤ 1}.

Definition A.13. A subset C of a vector space X is said to be absorbing if for every x ∈ X,
there exists t > 0 such that x ∈ tC.

Lemma A.7. Let p be the Minkowski functional of a convex subset C of a Banach space. If
C is absorbing, then p is continuous.

Proof. Recall that, by a version of Baire’s Lemma, a convex absorbing set in a Banach space
is a neighborhood of 0. Then, the result follows from Lemma A.6(iii)

Lemma A.8. Let H be a Hilbert space and C ⊂ H a closed and convex set containing 0.
Let p and q be the Minkowski and reciprocal Minkowski functionals of C, respectively (see
Definition A.12). Then p and −q are lower semicontinuous (lsc) with respect in the weak
topology T of H.

Proof. Recall that a function g : X → R+ ∪ {+∞} defined, on a topological space X, is
lsc if and only if, for all t ≥ 0, the set {x ∈ X : g(x) ≤ t} is closed. Let us show that p
is T -lsc, based on the previous characterization. For t > 0, by Lemma A.5-(iii), we have
{x ∈ H : p(x) ≤ t} = tC, which is a (strong) closed convex set, therefore T -closed. Also,
{x ∈ H : p(x) ≤ 0} = ∩t>0{x ∈ H : p(x) ≤ t}, which is T -closed. Finally, if t < 0 then
{x ∈ H : p(x) ≤ t} = ∅. We conclude that p is T -lsc. By Lemma A.5-(iv) and using
analogous arguments, it can be shown that −q is T -lsc as well.
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Appendix B

Appendix of Chapter 3

B.1 Preliminary technical results

In this section, we give a deviation inequality for supv∈Vµ |Dg(v) −M g(v,Y )|, under ap-
propriate assumptions on the deformation operators and the additive noise in model (3.13),
where M g(v,Y ) and Dg(v) are defined in (3.4) and (3.17) respectively.

Lemma B.1. Consider the model (3.13), with µ-regular deformation operator ϕ. Let

Q(v) =
ε2

n

n∑
i=1

∫
Ω

W 2
i (ϕ(vi, x))dx, v ∈ Vµ. (B.1)

Then, for any s > 0,

P

(
sup
v∈Vµ

Q(v) ≥ Aµh(s, n, ε)

)
≤ exp(−s),

where Aµ is given in Definition 3.5 (i) and h(s, n, ε) = ε2
(
1 + 2 s

n
+ 2
√

s
n

)
.

Proof. From Definition 3.5 (i), we have, for v ∈ Vµ,

Q(v) ≤ Aµ
ε2

n

n∑
i=1

∫
Ω

W 2
i (x)dx. (B.2)

Let g ∈ L2(Ω) and KWg(x) =
∫

Ω
k(x, y)g(y)dy be the covariance operator of the random pro-

cess W , where k(x, y) = EW (x)W (y) for x, y ∈ Ω. Then there exist orthonormal eigenfunc-
tions (φk)k∈K in L2(Ω) with strictly positive eigenvalues (wk)k∈K, such that KWφk = wkφk,
with w1 ≥ w2 ≥ . . . > 0 and K = {1, 2, . . .}. For any i = 1, . . . , n, the Gaussian process Wi

can thus be decomposed as

Wi =
∑
k∈K

w
1/2
k ξi,kφk,

where ξi,k = w
−1/2
k 〈Wi, φk〉2, i = 1 . . . , n, k ≥ 1, are i.i.d. standard Gaussian random

variables, and so ‖Wi‖2
2 =

∑+∞
k=1wkξ

2
i,k. We have, from the assumptions on W , E‖Wi‖2

2 =
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∑+∞
k=1 wk = 1 < +∞, and one can thus consider the following centered random variable

Z =
n∑
i=1

+∞∑
k=1

wk(ξ
2
i,k − 1).

Since the generating function of a χ2 random variable, with one degree of freedom, is

E

(
esξ

2
i,k

)
= (1− 2s)−1/2, for 0 < s < 1

2
, it follows that

log
(
E
(
etZ
))

= −n
+∞∑
k=1

(
twk +

1

2
log(1− 2twk)

)
. (B.3)

Then, using the inequality −s − 1
2

log(1 − 2s) ≤ s2

1−2s
, which holds for all 0 < s < 1

2
, from

(B.3) we obtain

log
(
E
(
etZ
))
≤ n

+∞∑
k=1

t2w2
k

1− 2twk
≤ t2n

1− 2tw1

(
+∞∑
k=1

wk

)2

=
t2n

1− 2tw1

<∞, 0 < t < (2w1)−1.

Applying the exponential Chebyshev’s inequality P (Z > ε) ≤ exp(−tε)E(exp(tZ)), t > 0,
ε > 0, we obtain

P (Z > ε) ≤ exp(−h(ε)), ε > 0,

where

h(ε) := sup
0<t<(2w1)−1

{
tε− t2n

1− 2tw1

}
.

The supremum is It can be checked that h(2w1s+ 2
√
ns) = s, hence

P
(
Z > 2w1s+ 2

√
ns
)
≤ exp(−s). (B.4)

By (B.2), it follows that

sup
v∈Vµ

Q(v) ≤ Aµ
ε2

n

n∑
i=1

∫
Ω

W 2
i (x)dx = Aµ

ε2

n

n∑
i=1

+∞∑
k=1

wkξ
2
i,k = Aµ

ε2

n
(Z + n).

Hence, it follows from (B.4) that

P

(
sup
v∈Vµ

Q(v) > Aµ
ε2

n

(
n+ 2w1s+ 2

√
ns
))
≤ exp(−s),

for any s > 0. The conclusion follows noting that w1 ≤ E‖W‖2
2 = 1.

Lemma B.2. Consider the model (3.13), with µ-regular deformation operator ϕ. Let

Dt(v) :=
1

n

n∑
i=1

∫
Ω

(f ∗i (ϕ(vi, x))− f ∗(x))2 dx, v ∈ V , (B.5)

with f ∗i (x) := f ∗(ϕ−1(Vi, x)), x ∈ Ω, i = 1, . . . , n. Then

P

(
sup
v∈Vµ

|Dt(v)−M t(v,Y , f ∗)| > C
(
h(s, n, ε) +

√
h(s, n, ε)

))
≤ exp(−s), s > 0,

where M t is defined in (3.3), C > 0 is a constant depending only on f ∗ and µ, and h(s, n, ε)
is defined in Lemma B.1.
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Proof. For v ∈ V = Vn, let

R(v) = 2ε
1

n

n∑
i=1

∫
Ω

(f ∗i (ϕ(vi, x))− f ∗(x))W ∗
i (ϕ(vi, x))dx.

For any v ∈ Vµ, we have the decomposition

M t(v,Y , f ∗) = Dt(v) +Q(v) +R(v), (B.6)

where Q is defined in (B.1).

By applying the Cauchy-Schwartz inequality in L2(Ω) and in R
n we obtain R(v) ≤

2
√
Dt(v)

√
Q(v). Also, the µ-regularity of ϕ implies Dt(v) ≤ 4A2

µ‖f ∗‖2
2, and therefore

R(v) ≤ 4Aµ‖f ∗‖2

√
Q(v). Now, using the decomposition (B.6), one obtains

sup
v∈Vµ

|Dt(v)−M t(v,Y , f ∗)| ≤ max (1, 4Aµ‖f ∗‖2)

(
sup
v∈Vµ

Q(v) + sup
v∈Vµ

√
Q(v)

)
and the result follows from Lemma B.1.

Lemma B.3. Consider the model (3.13), with µ-regular deformation operator ϕ. Then

P

(
sup
v∈Vµ

|Dg(v,V )−M g(v,Y )| > C
(
h(s, n, ε) +

√
h(s, n, ε)

))
≤ exp(−s), s > 0,

where M g and Dg are defined in (3.4) and (3.17) respectively; C > 0 is a constant, depending
only on f ∗ and µ, and h(s, n, ε) is defined in Lemma B.1.

Proof. Let

Qg(v) =
ε2

n

n∑
i=1

∫
Ω

(
Wi(ϕ(vi, x))− 1

n

n∑
j=1

Wj(ϕ(vj, x))

)2

dx, v ∈ V

and

R(v) = 2ε
1

n

n∑
i=1

∫
Ω

(
1

n

n∑
j=1

f ∗j (ϕ(vj, x))− f ∗i (ϕ(vi, x))

)

×

(
1

n

n∑
j=1

W ∗
j (ϕ(vj, x))−W ∗

i (ϕ(vi, x))

)
dx, v ∈ V .

Then, for any v ∈ Vµ, we have the decomposition

M g(v,Y ) = Dg(v) +Qg(v) +R(v). (B.7)

From the Cauchy-Schwartz inequality in L2(Ω) and in Rn, we have R(v) ≤ 2
√
Dg(v)

√
Qg(v).

Also, from the µ-regularity of ϕ, we obtainDg(v) ≤ 1
n

∑n
i=1

∫
Ω

(f ∗i (ϕ−1(vi, x)))
2
dx ≤ A2

µ‖f ∗‖2
2.

So R(v) ≤ 2Aµ‖f ∗‖2

√
Qg(v). Now, using the decomposition (B.7), one obtains

sup
v∈Vµ

|Dg(v)−M g(v,Y )| ≤ max (1, 2Aµ‖f ∗‖2)

(
sup
v∈Vµ

Qg(v) + sup
v∈Vµ

√
Qg(v)

)
and the result follows from the fact that Qg ≤ Q (see (B.1)) and Lemma B.1.
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Remark B.1. Observe that Lemma B.2 and Lemma B.3 imply

plim
ε

sup
v∈Vµ

|Dt(v)−M t(v,Y , f ∗)| = plim
ε

sup
v∈Vµ

|Dg(v,V )−M g(v,Y )| = 0, (B.8)

and

plim
n,ε

sup
v∈Vµ

|Dt(v)−M t(v,Y , f ∗)| = plim
n,ε

sup
v∈Vµ

|Dg(v,V )−M g(v,Y )| = 0. (B.9)

The proofs of Theorems 3.1, 3.2 and 3.3 rely on the following two propositions that
establish the consistency of the registration procedures described in Section 3.2.2.

Proposition B.1. Let V̂ ∈ arg minv∈VµM
t(v,Y , f ∗) be the parameters obtained from tem-

plate registration of Y on f ∗. Then,

1. under the hypotheses of Theorem 3.1, plimn,ε d̄
2(V̂ ,V ) = 0, and

2. under the hypotheses of Theorem 3.2,

P

(
d̄2(V̂ ,V ) > C

(
h(s, n, ε) +

√
h(s, n, ε)

))
≤ exp(−s), s > 0,

where C > 0 is a constant, depending only on f ∗, µ and h(s, n, ε) is defined in Lemma
B.1.

Proof. Observe that Dt(V ) = 0 and so

Dt(v) = Dt(v)−Dt(V ) ≤ 2 sup
v∈Vµ

|M t(v,Y , f ∗)−Dt(v)|, v ∈ Vµ, (B.10)

where Dt and M t are defined in (B.5) and (3.3) respectively. On the other hand, from
Definition 3.5 (i),

1

n

n∑
i=1

‖ϕ∗(Vi)− ϕ∗(vi)‖2
2 ≤ AµD

t(v), v ∈ Vµ.

Hence,
1

n

n∑
i=1

‖ϕ∗(Vi)− ϕ∗(V̂i)‖2
2 ≤ 2Aµ sup

v∈Vµ
|M t(v,Y , f ∗)−Dt(v)|. (B.11)

We proceed now to prove part (i). From (B.11) and (B.8) we have plimε ‖ϕ∗(Vi)−ϕ∗(V̂i)‖2
2 =

0, that is, plimε ϕ
∗(V̂i) = ϕ∗(Vi), for i = 1, . . . , n. From the continuity of ϕ∗−1 we have

plimε V̂i = Vi, for i = 1, . . . , n, therefore

plim
n

plim
ε

1

n

n∑
i=1

‖Vi − V̂i‖2 = 0.

Now, the fact that ‖V1 − V̂1‖2 is bounded by 2µ and tends to 0 in probability, as ε → 0,
implies that E‖V1− V̂1‖2 → 0, as ε→ 0. Noting that (Vi− V̂i)i≥1 are i.i.d. (see Remark 3.1),
we conclude from the weak law of large number that

plim
ε

plim
n

1

n

n∑
i=1

‖Vi − V̂i‖2 = 0,
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thus proving part (i).

For (ii), inequality (B.11) and the fact that ϕ∗−1 is uniformly Lipschitz, with constant
L(f ∗, µ) > 0, implies

d̄2(u,v) ≤ 2AµL(f ∗, µ) sup
v∈V
|M t(v,Y , f ∗)−Dt(v)|

and the result follows from Lemma B.2.

Proposition B.2. Let V̂ ∈ arg minv∈U M
g(v,Y ) be the parameters obtained from groupwise

registration of Y . Then, under the hypotheses of Theorem 3.3, plimn,ε d̄
2(V̂ ,V ) = 0.

Proof. Let u∗(V ) be the unique minimizer of Dg(u,V ) on U , which exists because the model
is g-identifiable. Since (by definition) V̂ ∈ arg min

v∈U
M g(v,Y ), one obtains that

Dg(V̂ ,V )−Dg(u∗,V ) ≤ 2 sup
u∈U
|M g(u,Y )−Dg(u,V )|

≤ 2 sup
u∈Vµ

|M g(u,Y )−Dg(u,V )|.

Therefore, from (B.9) and the g-identifiability of the model, we have plimn,ε d̄
2(V̂ ,u∗) = 0.

Also, the g-identifiability implies that plimn,ε d̄
2(u∗,V ) = 0. Finally, the conclusion follows

from the inequality d̄2(V̂ ,V ) ≤ 2d̄2(V̂ ,u∗) + 2d̄2(u∗,V ).

In what follows, ‖ · ‖HS denotes the Hilbert-Schmidt norm of operators on a Hilbert space
H. Recall that, given an orthonormal basis {ej}j≥1 of H, the Hilbert-Schmidt norm of an
operator K is defined as ‖K‖2

HS =
∑

j,k〈K(ej), ek〉2.

Lemma B.4. Let H be a separable Hilbert space, with inner product 〈·, ·〉 and induced norm
‖ · ‖. Let {ui}ni=1, {vi}ni=1 in Br = {h ∈ H : ‖h‖ ≤ r}, for some r > 0. Define the
covariance operators Ku, Kv : H → H by Ku(h) = 1

n

∑n
i=1〈ui − ū, h〉(ui − ū) and Kv(h) =

1
n

∑n
i=1〈vi − v̄, h〉(vi − v̄), where ū = 1

n

∑n
i=1 ui and v̄ = 1

n

∑n
i=1 vi. Then

‖Kv −Ku‖2
HS ≤ (6r)2 1

n

n∑
i=1

‖vi − ui‖2.

Proof. Let us define εi = vi − ui, so vi = ui + εi. Let h ∈ H and write

Kv(h) =
1

n

n∑
i=1

〈ui − ū+ εi − ε̄, h〉(ui − ū+ εi − ε̄) = Ku(h) + L(h) + L∗(h) + S(h),

where L(h) = 1
n

∑n
i=1〈ui − ū, h〉(εi − ε̄), L∗ is the adjoint the operator of L and S(h) =

1
n

∑n
i=1〈εi − ε̄, h〉(εi − ε̄). Then, after some simple calculations, we get

‖L‖2
HS =

∑
j≥1

∑
k≥1

(
1

n

n∑
i=1

〈ui − ū, ej〉〈εi − ε̄, ek〉

)2

≤ 1

n2

n∑
i=1

n∑
i′=1

‖ui−ū‖‖ui′−ū‖‖εi−ε̄‖‖εi′−ε̄‖.
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Hence, since ui ∈ Br, i = 1, . . . , n, one has

‖L‖2
HS ≤

(
1

n

n∑
i=1

‖ui − ū‖‖εi − ε̄‖

)2

≤ (2r)2

(
1

n

n∑
i=1

‖εi − ε̄‖

)2

≤ (2r)2 1

n

n∑
i=1

‖εi‖2.

Similarly, since ‖εi‖ ≤ ‖ui‖+ ‖vi‖ ≤ 2r,

‖S‖2
HS ≤

(
1

n

n∑
i=1

‖εi − ε̄‖2

)2

≤

(
1

n

n∑
i=1

‖εi‖2

)2

≤ (2r)2 1

n

n∑
i=1

‖εi‖2.

Finally, ‖Kv−Ku‖HS ≤ 2‖L‖HS+‖S‖HS ≤ 6r (
∑n

i=1 ‖εi‖2)
1
2 , which completes the proof.

The following theorem follows from the theory developed in [Bhatia et al., 1983; Davis
and Kahan, 1970].

Theorem B.1. Let H be a separable Hilbert space endowed with the inner product 〈·, ·〉H. Let
A, Â : H → H be self-adjoint Hilbert-Schmidt operators on H, with eigenvalues/eigenvectors
pairs (λk, φk)k≥1 and (λ̂k, φ̂k)k≥1 respectively. Then,

sup
k≥1
|λk − λ̂k| ≤ ‖A− Â‖HS. (B.12)

Moreover, if δ̂k = mink′∈K\{k} |λk − λ̂k′| > 0, then

sin(φk, φ̂k) ≤ δ̂−1
k ‖A− Â‖HS. (B.13)

B.2 Proofs of main results

B.2.1 Proof of Theorem 3.1

Proof. Let K̃n be the sample covariance operator of V1, . . . , Vn, that is K̃nv = 1
n

∑n
i=1〈Vi −

V̄n, v〉(Vi − V̄n), with V̄n = 1
n

∑n
i=1 Vi. Note that

‖K̂n −K‖
2

HS ≤ 2‖K̂n − K̃n‖
2

HS + 2‖K̃n −K‖
2

HS, (B.14)

The first term in the right-hand side of inequality (B.14) can be controlled by using Lemma
B.4 and noting that ‖Vi‖, ‖V̂i‖ ≤ µ, i = 1, . . . , n, that is,

‖K̂n − K̃n‖
2

HS ≤ (6µ)2 1

n

n∑
i=1

‖V̂i − Vi‖2. (B.15)

Let us now bound the second term in the right-hand side of (B.14). To do so, remark that
‖V ‖, ‖Vi‖ ≤ µ, i = 1, . . . , n, and, thanks to a Bernstein’s inequality for Hilbert-Schmidt
operators (see e.g. [Bosq, 1998], Chapter 3), it follows that

P

(
‖K̃n −K‖HS > η

)
≤ 2 exp

(
− nη2

C̃(µ)(1 + η)

)
, η > 0, (B.16)
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for some constant C̃(µ) > 0 depending only on µ. Hence, we can combine (B.14), (B.15) and

(B.16) with Proposition B.1 (i) to obtain that, for any η > 0, limn,εP

(
‖K̂n −K‖

2

HS > η
)

=

0, that is,
plim
n,ε

K̂n = K. (B.17)

Now, from (B.12) and (B.17) we obtain plimn,ε λ̂k = λk, k ∈ K. For k ∈ K define the k-th
empirical eigen-gap as

δ̂k = min
k′∈K\{k}

|λk − λ̂k′|.

From (B.12), it holds that δk ≤ δ̂k + maxk′ |λk′ − λ̂k′ | ≤ δ̂k + ‖K̂n −K‖HS. By (B.17), it
follows that

lim
n,ε
P

(
δ̂k >

δk
2

)
= 1. (B.18)

Recalling that, from the specification of model (3.13), we have δk > 0, hence inequality (B.13)
implies

P

(
sin(φ̂k, φk) > η

)
≤ P

(
‖K̂n −K‖HS/δ̂k > η

)
= P

(
‖K̂n −K‖HS/δ̂k > η, δ̂k > δ/2

)
+P

(
‖K̂n −K‖HS/δ̂k > η, δ̂k ≤ δ/2

)
≤ P

(
‖K̂n −K‖HS > (δkη)/2

)
+P

(
δ̂k ≤ δ/2

)
.

From the above inequality, combined with (B.17) and (B.18), we obtain plimn,ε sin2(φ̂k, φk) =
0.

B.2.2 Proof of Theorem 3.2

Proof. Combining (B.14), (B.15) and (B.16) with Proposition B.1 (ii), we obtain

P

(
‖K̂n −K‖2

HS > C max(h(s, n, ε) +
√
h(s, n, ε); g(s, n))

)
≤ 2 exp(−s), s > 0,

where C > 0 is a constant depending only on f ∗ and µ and g(s, n) =

(
s
n

+
√

s2

n2 + s
n

)2

.

Hence, from (B.12) we obtain

P

(
|λ̂k − λk|2 > C max(h(s, n, ε) +

√
h(s, n, ε); g(s, n))

)
≤ 2 exp(−s), s > 0.

Take now s∗ > 0 such that C max(h(s∗, n, ε)+
√
h(s∗, n, ε); g(s∗, n)) < (δk/2)2. Then, thanks

to (B.18) and (B.13) we obtain, for any 0 < s ≤ s∗,

1− 2 exp(−s) ≤ P
(
‖K̂n −K‖2

HS < C max(h(s, n, ε) +
√
h(s, n, ε); g(s, n))

)
= P

(
‖K̂n −K‖2

HS < C max(h(s, n, ε) +
√
h(s, n, ε); g(s, n)), δ̂k > δk/2

)
≤ P

(
(1/δ̂k)

2‖K̂n −K‖2
HS < (2/δk)

2C max(h(s, n, ε) +
√
h(s, n, ε); g(s, n))

)
≤ P

(
sin2(φ̂k, φk) < (2/δk)

2C max(h(s, n, ε) +
√
h(s, n, ε); g(s, n))

)
.
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B.2.3 Proof of Theorem 3.3

Proof. We proceed similarly as in the proof of Theorem 3.1. In the case of groupwise reg-
istration, inequalities (B.14), (B.15) and (B.16) are still valid, and can be combined with
Proposition B.2 to obtain plimn,ε K̂n = K. The rest of proof is identical to that of Theorem
3.1.

B.3 Technical results for translation operators

Lemma B.5. Let ϕ be defined by (3.1), then

1. dΩ(ϕ(v, x), ϕ(v, y)) = dΩ(x, y), for all x, y ∈ Ω and v ∈ V.

2. dC(ϕ(u, ·), ϕ(v, ·)) ≤
∑d

k=1 |uk − vk|, for all x ∈ Ω and u, v ∈ V.

Proof. Remark that, for any a ∈ R, there exists a unique k(a) ∈ Z such that mod(a, 1) =
a+ k(a). Then

mod(a, 1)−mod(b, 1) = a− b+ k(a)− k(b).

Take a, b ∈ R such that |a − b| < 1 and assume that a ≥ b. Since a − b ∈ [0, 1) and
mod(a, 1)−mod(b, 1) ∈ [−1, 1], we obtain that

k(a)− k(b) =

{
0 if mod(a, 1) ≥ mod(b, 1),

−1 if mod(a, 1) < mod(b, 1).

Then

|mod(a, 1)−mod(b, 1)| =

{
a− b if mod(a, 1) ≥ mod(b, 1),

1− (a− b) if mod(a, 1) < mod(b, 1)

We conclude that, for a ≥ b,

min{|mod(a, 1)−mod(b, 1)|, 1−|mod(a, 1)−mod(b, 1)|} = min{|b−a|, 1−|b−a|}. (B.19)

Because of the symmetry in the expression above, we conclude that (B.19) is valid for any
a, b ∈ R, such that |a− b| < 1.

For the sake of simplicity, let us prove the lemma in the one-dimensional case (i.e. d = 1),
where dΩ(x, y) := min{|x− y|, 1− |x− y|}. Take x, y ∈ Ω and u, v ∈ V . Part (i) is directly
implied by (B.19), taking a := x+v and b := y+v. For part (ii), note that dΩ(x, y) ≤ 1

2
, hence

if |u−v| ≥ 1, then dΩ(ϕ(u, x), ϕ(v, x)|) ≤ 1
2
≤ |u−v|. On the other hand, if |u−v| < 1 we can

use (B.19) with a := x+ v and b := x+u to obtain dΩ(ϕ(u, x), ϕ(v, x)|) ≤ dΩ(u, v) ≤ |u− v|.
Finally, dC(ϕ(u, ·), ϕ(v, ·)) ≤ |u− v|.

In order to prove Lemma 3.1 and Proposition 3.3 , denote by e`(x) = ei2π
∑d
k=1 `kxk , for

x = (x1, . . . , xd) ∈ Ω = [0, 1]d and ` = (`1, . . . , `d) ∈ Zd, the Fourier basis of L2([0, 1]d). Let
θ` =

∫
Ω
f(x)e`(x)dx, ` ∈ Z

d, be the Fourier coefficients of f ∗. For 1 ≤ k ≤ d, denote by

`(k) = (`
(k)
1 , . . . , `

(k)
d ) the vector of Zd such that `

(k)
k′ = 0, for k′ 6= k and `

(k)
k = 1. Remark

that, with this notation, θk = θ`(k) , where θk is defined in (3.18).
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B.3.1 Proof of Lemma 3.1

Proof. Recall that ϕ∗(v) = f ∗ ◦ ϕ−1(v, ·), v ∈ Vµ. For u, v ∈ [−ρ, ρ]d with 0 < ρ < 1/2, we
have

‖f ∗(ϕ−1(u, x))− f ∗(ϕ−1(v, x))‖2
2 ≥

d∑
k=1

|θ`(k)e−i2πuk − θ`(k)e−i2πvk |2

=
d∑

k=1

|θ`(k)|2|e−i2πuk − e−i2πvk |2. (B.20)

Then, by the mean value theorem, we have |e−i2πuk − e−i2πvk |2 = | cos(2πuk)− cos(2πvk)|2 +
| sin(2πuk)− sin(2πvk)|2 ≥ (2π)2cos2(ρ)|uk − vk|2, for any 0 ≤ uk, vk ≤ ρ. Hence,

‖f ∗(ϕ−1(u, x))− f ∗(ϕ−1(v, x))‖2
2 ≥ (2π)2cos2(ρ) min

0≤k≤d
|θ`(k)|2

d∑
k=1

|uk − vk|2.

B.3.2 Proof of Proposition 3.3

Proof. Remark that Dg, defined in (3.17), has the following expression in the Fourier domain:

Dg(u,V ) =
1

n

n∑
m=1

∑
`∈Zd

∣∣∣∣∣ 1n
n∑
j=1

θ`e
−i2π〈`,Vj−uj〉 − θ`e−i2π〈`,Vm−um〉

∣∣∣∣∣
2
 , u ∈ V . (B.21)

For u ∈ U0 we have

Dg(u,V ) ≥ 1

n

n∑
m=1

 d∑
k=1

|θ`(k)|
2

∣∣∣∣∣ 1n
n∑
j=1

e
−i2π

(
V

(k)
j −u(k)j

)
− e−i2π

(
V

(k)
m −u(k)m

)∣∣∣∣∣
2


≥
d∑

k=1

|θ`(k)|
2

1−

∣∣∣∣∣ 1n
n∑

m=1

e
i2π
(
u
(k)
m −V

(k)
m

)∣∣∣∣∣
2
 . (B.22)

Further, remark that∣∣∣∣ 1n
n∑

m=1

e
i2π
(
u
(k)
m −V

(k)
m

)∣∣∣∣2 =
1

n
+

2

n2

n−1∑
m=1

n∑
m′=m+1

cos
(

2π
((
u(k)
m − V (k)

m

)
−
(
u

(k)
m′ − V

(k)
m′

)))
.

Let 0 ≤ α < 1/4. Using a second-order Taylor expansion and the mean value theorem,
one has that cos(2πu) ≤ 1 − C(α)|u|2, for any real u such that |u| ≤ α, with C(α) =

2π2 cos(2πα). From the hypotheses, one has that
∣∣∣(u(k)

m − V (k)
m

)
−
(
u

(k)
m′ − V

(k)
m′

)∣∣∣ ≤ 2(µ +

ρ) < 1/4. Therefore, for α = 2(µ+ ρ), it follows that∣∣∣∣ 1n
n∑

m=1

e
i2π
(
u
(k)
m −V

(k)
m

)∣∣∣∣2 ≤ 1

n
+

2

n2

n−1∑
m=1

n∑
m′=m+1

1− C(α)
∣∣∣(u(k)

m − V (k)
m

)
−
(
u

(k)
m′ − V

(k)
m′

)∣∣∣2
≤ 1− 2

n2

n−1∑
m=1

n∑
m′=m+1

C(α)
∣∣∣(u(k)

m − V (k)
m

)
−
(
u

(k)
m′ − V

(k)
m′

)∣∣∣2 .
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Hence, using the lower bound (B.22), it follows that, for u ∈ U0,

Dg(u,V ) ≥ 2C(α)
1

n2

n−1∑
m=1

n∑
m′=m+1

(
d∑

k=1

|θ`(k)|
2
∣∣∣(u(k)

m − V (k)
m

)
−
(
u

(k)
m′ − V

(k)
m′

)∣∣∣2) . (B.23)

The following identity is obtained from elementary algebraic manipulations and the fact that
u ∈ U0 (

∑n
m=1 u

(k)
m = 0).

1

n

n−1∑
m=1

n∑
m′=m+1

∣∣∣(u(k)
m − V (k)

m

)
−
(
u

(k)
m′ − V

(k)
m′

)∣∣∣2 =
n∑

m=1

∣∣u(k)
m − (V (k)

m − V̄ (k)
n )
∣∣2 ,

where V̄
(k)
n = 1

n

∑n
m=1 V

(k)
m . Inserting the above equality in (B.23), we finally obtain

Dg(u,V ) ≥ C0(f ∗, µ)
1

n

n∑
m=1

d∑
k=1

∣∣∣u(k)
m − Ṽ (k)

m

∣∣∣2 , (B.24)

with C0(f ∗, µ) = 2C(α) min1≤k≤d
{
|θ`(k)|

2} and Ṽ
(k)
m = V

(k)
m −V̄ (k)

n . Thanks to the assumption
θ`(k) 6= 0, for all 1 ≤ k ≤ d, it follows that C0(f ∗, µ) > 0. The inequality µ ≥ 2ρ, implies that

|Ṽ (k)
m | = |V (k)

m − V̄ (k)
n | ≤ 2ρ ≤ µ, for any 1 ≤ k ≤ d and all 1 ≤ m ≤ n, therefore, u ∈ U0.

Then, using inequality (B.24) and Dg(u∗,V ) = 0, the proof is completed.

B.4 Technical results for non-rigid diffeomorphic oper-

ators

B.4.1 Proof of Proposition 3.4

As in Section 3.3.4, let Ω = [0, 1] and V be a Hilbert space of smooth functions, continuously
embedded in C1

0(Ω). Also, for t ≥ 0 and x ∈ Ω, consider the ODE

φt = x+

∫ t

0

v(φs)ds, (B.25)

which is equivalent to (3.2), with initial condition φ0 = x ∈ Ω. It is well known that there
exists a unique solution φvt (x) of (B.25), moreover x 7→ φvt (x) is a diffeomorphism on Ω and
t→ φvt (x) is continuous; see e.g. [Younes, 2010]. Observe that, ϕ(v, ·) = φv1.

Lemma B.6 (One-parameter semigroup). For v ∈ V, the family φvt , t ≥ 0, is a one-parameter
semigroup over Ω. That is, φvt ◦φvs = φvt+s, for all s, t ≥ 0 and φv0 = id, where id is the identity
map in Ω.

Proof. From (B.25) it immediately follows that φv0(x) = x, for all x ∈ Ω. Take x′ ∈ Ω and
observe that t → φvt ◦ φvs(x′) and t → φvt+s(x

′) are solutions of (B.25), with initial condition
x := φvs(x

′), hence the result follows from the uniqueness of the solution.

The proof of Proposition 3.4 is based on the following lemma.
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Lemma B.7. Let u, v ∈ V and x̄ ∈ Ω.

(i) If u(x̄) = 0, then φut (x̄) = x̄, for all t ≥ 0.

(ii) If u(x̄) > 0, then φut (x̄) > x̄, for all t > 0.

(iii) If u(x) ≥ v(x) for all x ∈ [x̄, 1], then φut (x̄) ≥ φvt (x̄), for all t ≥ 0.

(iv) If u(x̄) > 0 and u(x) ≥ v(x), for all x ∈ (x̄, 1], then φut (x̄) > φvt (x̄), for all t > 0.

Proof. (i) The function φt := x̄, t ≥ 0 satisfies the O.D.E φt = x̄ +
∫ t

0
u(φs)ds, so the result

follows from the uniqueness of the solution.
(ii) Consider the function g(t) := φut (x̄), t ≥ 0 and observe that g(0) = x̄ and g′(0) =
u(φu0(x̄)) = u(x̄) > 0. As g is continuous, there exists s > 0 such that

φut (x̄) > x̄, t ∈ (0, s]. (B.26)

From Lemma (B.6), (B.26) and since φut−s is strictly increasing for t ≥ s, we obtain

φut (x̄) = φut−s(φ
u
s (x̄)) > φut−s(x̄) > x̄, t ∈ (s, 2s].

Following the previous arguments we obtain by induction that φut (x̄) > x̄, t ∈ ((k − 1)s, ks],
for any k ∈ N, which concludes the proof.
(iii) Consider the function g(t) := φut (x̄) − φvt (x̄), t ≥ 0, and suppose there exists t0 > 0
such that g(t0) < 0. Thanks to the continuity of g and from the fact that g(0) = 0, the
set S := {t ∈ [0, t0] : g(t) = 0} is closed and nonempty, so we can define s := supS. Since
g(s) = 0, it follows that φus (x̄) = φvs(x̄) and thus

g′(s) = u(φus (x̄))− v(φvs(x̄)) = u(φus (x̄))− v(φus (x̄)). (B.27)

From (i) and (ii) we have φus (x̄) ≥ x̄ and from (B.27) we deduce that g′(s) ≥ 0. But g(t0) < 0,
so there must exist r ∈ (s, t0) such that g(r) = 0, which is a contradiction by definition of s.
Therefore, we conclude that g(t) ≥ 0, for all t ≥ 0, which proves the result.
(iv) Let again g(t) := φut (x̄) − φvt (x̄), t ≥ 0, and note that that g(0) = 0 and g′(0) =
u(x̄)− v(x̄) > 0. Hence, there exists s > 0 such that g(t) > 0, t ∈ (0, s] i.e,

φut (x̄) > φvt (x̄), t ∈ (0, s]. (B.28)

From the previous inequality and the fact that φvt−s, for t ≥ s, is strictly increasing, we obtain

φvt−s(φ
u
s (x̄)) > φvt−s(φ

v
s(x̄)), t ≥ s. (B.29)

Let x̃ := φus (x̄) and note that x̃ > x̄, thanks to (ii). Hence, applying (iii) to the point x̃, we
obtain

φut−s(φ
u
s (x̄)) ≥ φvt−s(φ

u
s (x̄)), t ≥ s. (B.30)

From Lemma B.6, (B.29) and (B.30),

φut (x̄) > φvt (x̄), t ≥ s. (B.31)

Thus, the result follows from (B.28) and (B.31).
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Proof of Proposition 3.4. Let u, v ∈ V with u 6= v. Since ϕ(u, ·) and ϕ(v, ·) are continuous,
we have to show that there exists x̄ ∈ Ω, such that ϕ(u, x̄) 6= ϕ(v, x̄). As w := u − v is
non-oscillatory, according to Definition 3.7, there exists 0 ≤ a < b ≤ 1 such that w(a) = 0,
w(x) 6= 0, x ∈ (a, b) and w(x) = 0, x ∈ (b, 1]. Hence, without loss of generality, we have that
u(a) = v(a), u(x) > v(x), x ∈ (a, b) and u(x) = v(x), x ∈ (b, 1], thanks to the continuity of u
and v. Let us analyze the cases u(a) ≥ 0, u(a) < 0 and u(a) = 0.
Case u(a) > 0: take x̄ ∈ (a, b) such that u(x̄) > 0 and note that u(x̄) > v(x̄) and u(x) ≥ v(x),
x ∈ (x̄, 1]. From Lemma B.7(iv), ϕ(u, x̄) > ϕ(v, x̄) and the proof is concluded in this case.
Case u(a) < 0: let now x̃ ∈ (a, b) such that u(x̃) < 0. With the notation v∗ = −v and
u∗ = −u, we have v∗(x̃) > u∗(x̃) > 0 and v∗(x) ≥ u∗(x), x ∈ (x̃, 1]. Hence, by Lemma
B.7(iv), we obtain

ϕ(v∗, x̃) > ϕ(u∗, x̃). (B.32)

Recall that ϕ(v∗, ·) = (ϕ(v, ·))−1 and let x̄ := ϕ(v∗, x̃). So, from (B.32), we have

ϕ(u∗, ϕ(u, x̄)) = x̄ = ϕ(v∗, x̃) > ϕ(u∗, x̃) = ϕ(u∗, ϕ(v, x̄)). (B.33)

As ϕ(u, ·) is strictly increasing and ϕ(u∗, ·) = (ϕ(u, ·))−1, from (B.33) we obtain ϕ(u, x̄) >
ϕ(v, x̄), which concludes the proof for the case u(a) < 0.
Case u(a) = 0: in this case, the result can be obtained from the two previous cases.

B.4.2 Proof of Proposition 3.5

The proof of Proposition 3.5 make use of two lemmas that we state below. Let us consider
a closed interval D = [a, b] ⊂ R, with a < b, and denote by Diff(D)+ the group of increasing
C1 diffeomorphisms of D. Recall that a continuous function from D to D is one-to-one if and
only if it is strictly monotone, hence we can characterize Diff(D)+ as

Diff(D)+ = {φ : D → D : φ(a) = a, φ(b) = b, φ is C1 and φ is strictly increasing}.

Lemma B.8. Let φ ∈ Diff(D)+ such that φ(x) > x, for all x ∈ (a, b). The only continuous
functions f : D → R satisfying the equality f ◦ φ = f are the constant functions.

Proof. For an integer n ≥ 2, let φn = φn−1 ◦ φ, with the convention φ1 = φ. Let us define
the w − limit set of x ∈ D as the set of accumulations points of the sequence (φn(x))n∈Z+ ,
that is

w(x) = {y ∈ D : lim
k→∞

φnk(x)→ y for some subsequence nk →∞}.

Let us take x ∈ (a, b) and remark that the sequence (φn(x))n∈Z+ is strictly increasing and
bounded from above by b, hence w(x) is a singleton. Moreover it is clear that w(x) is totally
invariant, that is, φ(w(x)) = w(x), hence w(x) = {b}. On the other hand, if f ◦ φ = f then
f(φn(x)) = f(x), for all n ∈ Z+. Hence, by letting n→∞ and using the continuity of f , we
conclude that f(x) = f(b). Therefore, we have proved that f(x) = f(b), for any x ∈ (a, b),
which implies that f(x) is constant over D, and completes the proof.

Lemma B.9. Assume that f : D → R is continuous and does not have flat regions (see
Definition 3.8), then I(f) = {id}, where

I(f) := {φ ∈ Diff(D)+ : f ◦ φ = f}
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is the set of deformations in Diff(D)+ that act invariantly on f and id : D → D denotes the
identity function, namely id(x) = x, for all x ∈ D.

Proof. It is clear that {id} ⊂ I(f), so let us prove the other inclusion. Let φ ∈ I(f)
and suppose there exists x̃ ∈ D such that φ(x̃) 6= x̃. Without loss of generality we will
assume that φ(x̃) > x̃. As φ is continuous, the sets K1 = {x ∈ [0, x̃) | φ(x) = x} and
K2 = {x ∈ (x̃, 1] | φ(x) = x} are compact. Therefore, there exists ã = max{x : x ∈ K1},
b̃ = min{x : x ∈ K2} satisfying a ≤ ã < x̃ < b̃ ≤ b, φ(ã) = ã and φ(b̃) = b̃. Let f̃ and
φ̃ be the restriction of f and φ to [ã, b̃], respectively. By the continuity of φ it is clear that
φ̃(x) > x, for all x ∈ (ã, b̃) and φ̃([ã, b̃]) = [ã, b̃]. Since f̃ ◦ φ̃ = f̃ and f̃ is a continuous
function, Lemma B.8 implies that f̃ is constant over [ã, b̃], which contradicts the assumption
that f does not have flat regions. Therefore, we conclude that φ(x) = x, for all x ∈ D, which
completes the proof.

Proof of Proposition 3.5. If ϕ∗(u) = ϕ∗(v), then f = f ◦ ϕ(u, ·) ◦ (ϕ(v, ·))−1. As ϕ(u, ·) ◦
(ϕ(v, ·))−1 ∈ Diff(Ω)+, then, by Lemma B.9, we obtain that ϕ(u, ·) = ϕ(v, ·).
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