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Resumen

Este trabajo de tesis contiene dos capítulos principales, donde se estudian dos problemas
independientes de Modelación Matemática. En el Capt́itulo 1 se estudia la existencia y
unicidad de distribuciones quasi estacionarias para un movimiento Browniano con drift
extinguido en cero, para el caso que infinito es Frontera de Entrada y cero frontera de
salida de acuerdo a la clasificación de Feller. El trabajo está relacionado con la publi-
cación pionera [8], donde algunas condiciones suficientes son establecidas para demostrar
la existencia y unicidad de QSD en el contexto de una familia de Modelos de Dinámica
de Poblaciones y difusiones de Feller. El trabajo generaliza los teoremas más importantes
de [8] , ya que no se imponen condiciones extras para obtener los resultados de existencia
y unicidad de QSD y la existencia del límite de Yaglom. La parte técnica está basada en
la teoría del problema de Sturm Liouville sobre la semirecta positiva. Específicamente, se
demuestra que bajo las principales hipótesis existe espectro discreto si y solo si infinito
es frontera de entrada y todas las eigenfunciones son simples e integrables respecto a la
medida de rapidez del proceso.
En el capítulo 2, se estudia el problema de obtener cotas optimales sobre el Hamilto-
niano para el Modelo de Ising de largo alcance, con término de interacción decayendo
de acuerdo a dα−2, α ∈ [0, 1). El trabajo está basado en el artículo publicado en 2005
[31], donde cotas optimales son obtenidas para el caso α ∈ [0, log3

log 2
− 1) en términos de

estructuras jerárquicas llamadas triángulos y contornos. Los teoremas principales de este
trabajo pueden ser resumidos como (i) No existe una cota optimal para el Hamiltoniano
en términos de triángulos para α ∈ [ log3

log 2
− 1, 1). (ii) Existe una cota optimal para el

Hamiltoniano en términos de Contornos para α ∈ [0, 1), resultados que son demostrado
en los Teoremas 2.16 y 2.24 respectivamente.

Ambos generalizan los resultados existentes, y constituyen la principal contribución de
este trabajo. Para demostrar el Teorema 2.16, se construye explícitamente una familia de
contraejemplos. La parte técnica está fuertemente basada en la teoría de Fractales sobre
Conjuntos Discretos. Para demostrar teorema 2.24 , se usa el argumento se agrupar y
sumar sobre contornos con la misma masa. Las demostraciones para ambos resultados
son muy técnicas y requieren una gran cantidad de cálculos , los cuales son entregados en
detalle. Por otra parte, los teoremas principales tienen importantes implicancias en ésta
clase de Modelos. La más importante y directa es la existencia de una fase de transición
para bajas temperaturas basada en el argumento de Peierls. Dicha demostraciún, es
también entregada en este trabajo.
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Abstract

This tesis contains two main Chapters, where we study two independent problems of
Mathametical Modelling : In Chapter 1, we study existence and uniqueness of Quasi
Stationary Distributions (QSD) for a drifted Browian Motion killed at zero, when +∞ is
an entrante Boundary and zero is an exit Boundary accordingly to Feller’s classifications.
Also, the existence of a Yaglom limit is shown. The work is related to the early paper
”Quasi stationary distributions and diffusion models in population dynamics. Annals of
Probability, 37(5):1926-1969”, where some suficiente conditions are provided to prove the
existence and uniqueness of QSD in the context of a family of Dynamic Population Models
and Feller’s difussions. This work generalizes the most important theorems of this early
work, since no extra conditions are imposed to get the existence, uniqueness of QSD and
the existence of a Yaglom limit. The technical part is based on the Sturm Liouville theory
on the half line. Specifically, we show that under main hypothesis there exists discrete
spectrum if and only if +∞ is an entrance boundary and that all the eigenfunctions are
simple and integrable respect to the speed measure of the process.

In Chapter 2, we study the problem of getting optimal bounds on the Hamiltonian
for the Long Range Ising Model with the interaction term decaying according to 1

d2−α ,
α ∈ (0, 1). This work is based on the piooner paper published in 2005, ”Geometry of
contours and Peierls estimates in d=1 Ising models with long range interactions” where
optimal bounds for the Hamiltonian are obtained for α ∈ [0, log 3

log2
−1) in terms of herarchical

structures called triangles and Contours . Main theorems of this work can be summarized
as : (1) There is not exists an optimal bound for the Hamiltonian in terms of triangles
for α ∈ [ log 2

log 3
, 1) and (2) There exists an optimal bound for the Hamiltonian in terms of

Contours for α ∈ [0, 1). Those theorems generalizes existing results, and constitutes the
main contribution of this work. For the statement (1) we proceed by building explicitily a
family of counterexamples. The thechnical part is strongly based in the Theory of Fractals
on Discrete Sets. For stament (2) we use of gropuing and sum over Contours with the
mass. Proofs are quite technical and requires lots of detailed computations, which are
given in detail.

Main Theorems have some important consecuences into this clases of Models. On
the most important and direct consecuence is the existence of a phase transition for low
temperatures by giving an explicit proof based on the Peierls argument. This explicit
proof is given in this work
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Chapter 1

Uniqueness of quasistationary
distributions and discrete spectra when
∞ is an entrance boundary and 0 is
singular

1.1 History of Quasi Stationary Distributions

The study of the number of survival after a long time started with early work of Kol-
mogorov in 1938. Later, on 1947 Yaglom [1] showed that the limit behavior of subcritical
branching processes conditiond to survival was given by a proper distribution. This work
trigged a very important activity in this field.

On 1965, Darroch & Seneta [2] started the study of QSD on finite state irreducible
Markov Chain. Many of the most important ideas can be developed by using the Perron-
Frobenius theory for finite positive matrices, which gives all the requrided information
for finite positive matrices. The exponencial rate of survival time is the Perron-Frobeius
eigenvalue and the QSD is its associated eigenmeasure. The chain of trayectories that
are never killed is goberned by a process (the h-process), where h is the Perron-Frobenius
eigenfunction. In addition, since the dominant eigenvalue is simple, the QSD attracts all
the conditioned measures.

For countable state Markov Chains, Seneta and Vere Jones [3] on 1966. Characteri-
zation of QSDs as a finite eigenmeasure is due to Pollet . A very important publication
was done by Van Doorn in 1991, [4] which states a criteria to determine the existence and
uniqueness of QSD for birth and death chains.
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For continuous time diffusion process on the half line, the first work is due to Mandl
[5], who studied the existence of a QSD on the half line for +∞ being a natural boundary
accordingly to Feller’s classification. This allows an important development to study the
existence of QSD in the context of diffusion process. In subsequent works, many some
result of existence of QSD and limit laws for one dimensional difussions killed at 0 are
provided (see Ferrari Kesten Martínez Picco (1995) [10], Collet Martínez San Martín [11]
(2001) and Martínez San Martín [12] [13] [14] [15].

The existence of QSD on diffusions not satisfying Mandl conditions on +∞ started in
2009, with the recent publication [8], where some necessary and sufficient and conditions
are provided to determine the existence and uniqueness of QSD for +∞ being an entrance
boundary. On the recently years, Kolb and Steinsaltz in [20] stated necessary conditions
for existence of QSD for 0 being a regular boundary.

In this work, we study quasistationary distributions (QSD) for a drifted Brownian
motion killed at 0, when +∞ is an entrance boundary according to Feller’s classification.
The most recent results for the existence and uniqueness of QSDs when 0 is a regular
type-boundary are given in [20], and sufficient conditions are stated in [8] when 0 is an
exit type boundary.

This work was published in J. Appl. Probab. Volume 49, Number 3 (2012), 719-730
and is related to [8]. We state the existence of a unique QSD when 0 is an exit type
boundary and +∞ is an entrance boundary, under the most general conditions. Also,
the existence of the Yaglom limit is shown. In Section 1.2 the main hypothesis and some
preliminary results are provided. In Section 1.3 the required elements of spectral theory
are introduced. Finally, in Section 1.4 we summarize the main theorems on the existence
of a unique QSD and the existence of the Yaglom limit.

The most technically difficult result Theorem 1.13, which states the integrability of the
eigenfunctions . The key of its proof is an increasing condition property of the eigenfunc-
tions, which is established in (1.4).

1.2 One-dimensional diffusion processes killed at the
origin

Let X be a one-dimensional drifted Brownian motion in (0,∞), i.e.

dXt = dBt − α(Xt)dt, X0 = x > 0 (1.1)
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where α ∈ C1(0,∞) and (Bt)t≥0 is a standard one-dimensional Brownian motion. We
note that the drift α can explode at the origin. A pathwise solution of X in (1.1) exists
up to the explosion time τ . We denote by Ty the first time the process hits y ∈ (0,∞)
(see [6], Chapter VI, Section 3) before the explosion, so Ty = inf{0 ≤ t < τ : Xt = y}.
We denote by

T∞ = lim
n→∞

Tn and T0 = lim
n→∞

T1/n .

Since α is regular in (0,∞), then τ = T0 ∧ T∞.

1.2.1 Main Hypothesis

Let γ(x) = 2
∫ x

1
α(z)dz for x ∈ (0,∞). Associated to α, we consider the following

functions defined for x ∈ (0,∞):

Λ1(x) =

∫ x

1

eγ(z)dz

κ(x) =

∫ 1

x

e−γ(z)

∫ z

x

eγ(y)dydz

J(x) =

∫ x

1

e−γ(z)

∫ z

1

eγ(y)dydz ,

Λ1(x) is the scale function and µ(dx) = e−γ(x)dx is the speed measure for X.
Observe that under condition α ∈ C1(0,∞) , γ(y) is finite for all y > 0 and both∫ b
a

eγ(y)dy <∞ and
∫ b
a

e−γ(y)dy <∞, for all 0 < a < b <∞.

Let us to state the following conditions on α.

(H1) Almost sure absorption at 0: for all x > 0 Px(τ = T0 < T∞) = 1.
(H2) J(+∞) <∞.
(H3) µ((0, δ)) =∞ for all δ > 0.

It is well known (see for example, Chapter VI, Theorem 3.2 [6]) that (H1) holds if
and only if: Λ1(+∞) = ∞ and κ(0+) < ∞. Also note that (H1) can be written as
Px(limt→∞Xt∧τ = 0) = 1.

As a direct consequence of Hypothesis (H1) and (H2), +∞ is a Entrance Boundary
according to Feller classification (see [7] Ch. 15, Table 7.1 for details). Under Hypothesis
(H1) and (H3), 0 is an exit boundary according to Feller’s classification (see [7] Ch. 15,
Table 6.2 for details).

Hypothesis (H) is said to hold when α ∈ C1(0,∞) and (H1), (H2) and (H3) are

3



satisfied. Note that, under (H), the function

Λ(x) =

∫ x

0

eγ(z)dz for all x ∈ (0,∞)

is finite. We also obtain some additional properties on the functions already defined,
which we summarize in the next lemma.

Lemma 1.1 Assume that (H) holds. Then the following relations are satisfied:
(i) Λ1(0+) > −∞.

(ii) µ((δ,∞)) <∞ (for all δ > 0).

(iii)
∫∞

0
e−γ(y)Λ(y)dy =

∫∞
0

eγ(z)
∫∞
z

e−γ(y)dydz <∞.

Proof: (i) For all 0 < δ < 1, we have:(∫ δ

0

eγ(y)dy

)(∫ 1

δ

e−γ(z)dz

)
<

∫ δ

0

eγ(y)

(∫ 1

y

e−γ(z)dz

)
dy < κ(0+) <∞.

Since 0 <
∫ 1

δ
eγ(z)dz <∞, the result is shown.

(ii) Since
∫M
δ

e−γ(y)dy < ∞ for all 0 < δ < M < ∞, it is enough to show that∫∞
M

e−γ(y)dy < ∞ for some M > δ. From the condition Λ1(+∞) = ∞, there exists
M greater than 1 such that Λ1(x) > 1 for all x > M , so we have∫ ∞

M

e−γ(y)dy < Λ1(M)

∫ ∞
M

e−γ(y)dy <

∫ ∞
M

e−γ(y)Λ1(y)dy < J(+∞) <∞.

(iii) From properties (i) and (ii) we have∫ ∞
0

e−γ(y)Λ(y)dy =

∫ 1

0

e−γ(z)Λ(y)dy +

∫ ∞
1

e−γ(y)Λ(y)dy

< κ(0+) + J(+∞) +

(∫ ∞
1

e−γ(y)dy

)(∫ 1

0

eγ(y)dy

)
< ∞.

�

1.2.2 Preliminary results

Let
λ∗ := lim inf

t→∞
− logPx(T0 > t)

t
= sup{λ : Ex(e

λT0) <∞} . (1.2)

In fact, the right-hand equality follows from Fubini’s Theorem. Also, by irreducibility,
both expressions on the right hand do not depend on x (see claim 1 in the proof of
Theorem 1.4 below), so λ∗ is well defined.
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The next lemma gives some additional information about λ∗ when +∞ is a entrance
boundary.

Lemma 1.2 Assume (H) holds. Then:

λ∗ >
1

2
∫∞

0
eγ(z)

∫∞
z

e−γ(y)dydz
> 0 .

Proof: The proof is analogous to that of Proposition (7.6) of [8]. We have Jδ(x) =∫ x
0

eγ(y)
∫∞
y

e−γ(z)dzdy+δ, with δ > 0. From (H2), Jδ(∞) <∞ and from a straightforward

computation we get LJδ = 1
2
J
′′

δ − J
′

δ = −1
2
,
∫ 1/ε

ε
|J ′δ(s)|2ds <∞, for all ε > 0.

By Itô’s formula,

Ex

(
eaTε∧T1/ε∧tJδ(XTε∧T1/ε∧t)

)
= Jδ(x) + Ex

(∫ Tε∧T1/ε∧t

0

eas(aJδ(Xs) + LJδ(Xs))ds

)
.

For 0 < a ≤ 1/2Jδ(+∞), it is clear that Jδ(Xs) + LJδ(Xs) ≤ 0, so

δEx
(
eaTε∧T1/ε∧t

)
≤ Ex

(
eaTε∧T1/ε∧tJδ(XTε∧T1/ε∧t)

)
≤ Jδ(x)

Let t→∞ and ε→ 0. From the monotone convergence theorem we obtain

Ex(e
aT0) ≤ Jδ(x)

δ
<∞ for all a ∈

(
0,

1

2Jδ(∞)

]
Finally, since the result is true for all δ > 0, we conclude the proof by taking δ → 0+. �

We recall that a probability measure ν is a QSD if Eν(Xt ∈ A |T0 > t) = ν(A)
for all Borel subsets A ⊆ (0,∞). It is known (see [9], [12]) that if ν is a QSD then
Pν(T0 > t) = e−λ(ν)t for some 0 < λ(ν) ≤ λ∗, where λ(ν) is the survival rate of T0 starting
from ν. Then, each QSD is necessarily associated to a λ ∈ (0, λ∗]. Theorem 1.4 below
shows that, when ∞ is an entrance boundary, any QSD ν satisfies λ(ν) = λ∗, but before
presenting this result we recall the next definition.

Definition 1.3 X comes down from ∞ if, for some y > 0, limx→∞ Px(Ty ≤ t) > 0.

Theorem 1.4 Let hyphotesis (H) hold. Then no QSD is associated to some λ ∈ (0, λ∗).

Proof: We verify this result by proving the following four claims.

Claim 1.5 If Ex0(eλT0) =∞ for some x0 > 0, then Ex(eλT0) =∞ for all x > 0.

5



Proof: For x > x0, the claim follows straightforwardly since Ex(eλT0) > Ex0(eλT0). For
0 < x < x0 we have

Ex(e
λT0) > Ex(e

λT01T0>Tx0
) = Ex(e

λTx0 1T0>Tx0
)Ex0(eλT0) ≥ Px(Tx0 < T0)Ex0(eλT0) .

Since 0 < Px(Tx0 < T0) = Λ(x)/Λ(x0) < 1 the claim follows.

Claim 1.6 Let x0 > 0 and λ > 0 such that Ex0(eλT0) < ∞. Then X comes down from
∞ if and only if supx>0Ex(e

λT0) <∞.

Proof: Let us prove the ’if’ part. We know that Ex(eλT0) < ∞ for all x > 0. From [8]
Proposition (7.6) we know that, for all λ > 0, there exists yλ such that supx>yλ Ex(e

λTyλ ) <
∞. By monotonicity and the strong Markov property, supx>0Ex(e

λT0) <∞.

Let us now prove the ’only if’ part. Let y > x > 0. By using the Markov inequality
we have

Px(Ty > t) ≤ e−λtEx(e
λTy) ≤ e−λt sup

x>0
Ex(e

λTy) < 1

for large enough t. The latter implies that X comes down from∞ (see Definition 1.3).
This completes the proof of the claim.

Claim 1.7 Assume that (H) holds. If λ > 0 satisfies supx>0Ex(e
λT0) < ∞, then there

does not exist a QSD associated to λ.

Proof: Assume that πλ is a QSD associated to λ, then Pπλ(T0 > t) = e−λt. Now, for all

t > 0 it is satisfied

∞ > sup
x>0

Ex(e
λT0)

≥ Eπλ(eλT0)

=

∫ ∞
0

Ex(e
λT0)πλ(dx)

≥ λ

∫ ∞
0

(∫ t

0

eλsPx(T >s)ds

)
πλ(dx).

By using Fubini’s theorem in the expression at the right hand becomes

λ

∫ t

0

(∫ ∞
0

π(dx)Px(T0 > s)

)
eλsds = λ

∫ t

0

e−λseλsds = λt.

The inequality holds for t > 0, which is a contradiction, and so the claim is proven.

6
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Claim 1.8 If X comes down from ∞ then, for all λ ∈ (0, λ∗) we have supx>0E(eλT0) <
∞.

Proof: From Claims 2 and 3, it is sufficient to show that, for λ ∈ (0, λ∗), Ex(eλT0) <∞
holds for some (for all) x > 0 . From (the lim inf) definition in (1.2), for all ε > 0,
there exists t0 such that for all t > t0 it holds that λ∗ > − logPx(T > t)/t > λ∗ − ε, or
equivalently, Px(T0 > t) < e−(λ∗−ε)t for all t > t0. By choosing 0 < ε < λ∗ − λ we obtain

Ex(e
λT0) = 1 + λ

∫ ∞
0

eλsPx(T0 > s)ds

= 1 + λ

(∫ t0

0

eλsPx(T0 > s)ds+

∫ ∞
t0

eλsPx(T0 > s)ds

)
< 1 + λt0eλt0 +

∫ ∞
t0

e(λ−λ∗+ε)sds

< ∞.

proving the claim.

This completes the proof of Theorem 1.4.

1.3 L2 and Spectral Theory of the diffusion process

1.3.1 Spectral Theory and the Sturm Liouville problem

As in [8] we will give a L2 version of the semigroup Pt and its associated generator L.
The analysis is based on the theory of the Sturm Liouville problem, which has recently
been studied in detail in [19].

Let µ be the speed measure of the process. For f, g ∈ L2(µ), we define

(f, g)µ =

∫ ∞
0

f(s)g(s)µ(ds).

Let ACloc(0,∞) be the space of locally absolutely continuous functions on (0,∞), let
Dmax =

{
f : f, eγ(e−γf ′)

′∈ACloc(0,∞) ∩ L2(µ)
}
and letD0 ={f ∈Dmax : f has compact support}.

Consider the following operators on L2(µ): Lmaxf = −1
2
eγ(e−γf

′
)
′ for f ∈ Dmax and

L0f = −1
2
eγ(e−γf

′
)
′ for f ∈ D0. Note that these expressions are defined µ almost-

everywhere in both cases. For f, g in D0 (L0f, g)µ = (f
′
, g
′
)µ is a symmetric form on

D0.
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Following Lemma (10.3.1) of [19], let Dmin and Dmax be dense in L2(µ), let L0 be clos-
able, so that its closure, denoted by Lmin is closed, symmetric, densely defined (on D0)
and let Lmin and Lmax satisfy L∗min = Lmax and let L∗max = Lmin. Then, for any self-adjoint
extension L of Lmin we have Lmin ⊆ L = L∗ ⊆ Lmax.

We will see that in our case, Lmin is itself a self-adjoint operator with no proper self-
adjoint extensions on L2(µ), i.e. if L is a self-adjoint extension of Lmin, it satisfies Lmin =
L = L∗ = Lmax. For this purpose, it is necessary to give an appropriate classification of
the end points 0 and ∞. We introduce the following notions for the endpoint 0.

Definition 1.9 (i) 0 is a regular end point if
∫ d

0
e−γ(s)ds < ∞ holds for some (and

therefore, for all) d > 0. If an end point is not regular, it is called singular.

(ii) 0 is a limit circle (LC) end point if all the solutions of the equation −1
2
eγ(e−γf

′
)
′
= λf ,

λ ∈ C, are in L2(µ, (0, d)) for some 0 < d <∞. If 0 is not a LC end point, it is called a
limit point (LP).

(iii) 0 is an oscillatory (O) end point if there exists a non trivial real-valued solution to
−1

2
eγ(e−γf

′
)
′

= λf , λ ∈ R, with an infinite number of zeros in any neighborhood of the
origin. Otherwise, we say that 0 is a non-oscillatory (NO) end point. �

Similar definitions hold for +∞. We recall that the LC/LP classifications are indepen-
dent of λ, but the O/NO depend on λ in general. It is clear that under hypothesis (H)
both end points are singular, in fact

∫ d

0

e−γ(s)ds =∞ and
∫ ∞

d

eγ(s)ds =∞ for all 0 < d <∞.

In the next result we show that 0 and ∞ are also LP endpoints.

Lemma 1.10 Assume (H) holds. Then 0 and +∞ are of LP type.

Proof: Since the classification does not depend on the value of λ, we will use λ = 0. In
this case, the solutions are linear combinations of f1(x) = 1 and f2(x) = Λ(x). The case
0 is trivial since

∫ d

0
|f1(s)|2e−γ(s)ds =

∫ d

0
e−γ(s)ds = ∞, for all d > 0. For the +∞ case,

note that
∫∞

d
(eγ(s)/Λ(s)2)ds = 1/Λ(d) <∞ and 0 < e−γ(d)Λ2(d) <∞, for all 0 < d <∞,
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Then, for M > 0 we have

M =

∫ M+d

d

(
1{e−γ(s)Λ2(s)>1} + 1{e−γ(s)Λ2(s)≤1}

)
ds

≤
∫ M+d

d

e−γ(s)Λ2(s)ds+

∫ M+d

d

eγ(s)

Λ(s)2
ds

≤
∫ ∞

d

e−γ(s)Λ2(s)ds+
1

Λ(d)
.

Since the inequality holds for all M > 0, letting M → ∞ we conclude that the integral
on the right hand diverges. �

Theorem 10.4.1 of [19] states that if (and only if) 0 and ∞ are LP end points, then
Lmin is itself a self-adjoint operator and has no proper self-adjoint extensions on L2(µ)
(see above). We conclude that L0 is a symmetric, closable, densely defined operator on
L2(µ), whose smallest closure Lmin (denoted by L in the sequel) is a self-adjoint opera-
tor with no proper extensions, and it is also Markovian. Hence, L is a regular Dirichlet
form and possesses the local property (see for example [8] and [16] Theorem 2.1.2). We
recall that the approach is the same as that in [8] if D0 is replaced by C∞0 (0,∞) (which
is included in D0). Then, Theorem 6.2.2 of [16] applied as in [8] gives the existence of a
nonpositive self-adjoint operator L on L2(µ) with domain D(L) ⊇ C∞0 ((0,∞)) such that,
for f, g ∈ C((0,∞))

0 , E(f, g) = −2(f,Lg)µ (see [16], Theorem 1.3.1). We point out that for
g ∈ C∞0 ((0,∞)), Lg = 1

2
g
′′ − αg′ . Moreover, L is the generator of a strongly continuous

symmetric semigroup of contractions on L2(µ) denoted by (Pt : t ≥ 0). This semigroup is
subMarkovian, that is, 0 ≤ Pt ≤ 1 µ−almost everywhere if 0 ≤ f ≤ 1 (see [16] Theorem
1.4.1)).

Following [8] it can be shown that The semigroup Pt and the semigroup induced by the
strong Markov process (Xt∧τ ) coincides on the set of smooth and compactly supported
functions. Also, from [8] we know that, when absorption is sure, that is (H1) holds, the
semigroup coincides with the semigroup ofX killed at 0, that is, Ptf(x) = Ex(f(Xt)1T0>t).

Now we will show the discreteness of the spectrum which is the main theorem of this
section.

Proposition 1.11 Assume that (H) holds. Then −L has purely discrete spectrum. The
eigenvalues:

−∞ < λ0 < λ1 < ...λ2 < ...

are simple, limn→∞ λn = +∞, and the eigenfunction ψn associated to λn has exactly n
roots belonging to (0,∞) and a orthonormal basis of L2(µ). In particular, we can take
ψλ0 strictly positive.

Proof: Recall that we are analyzing the non nontrivial solutions of the equation

(e−γψ
′

λ)
′
= −2λe−γψλ

9



Let σe = σe(L) the essential spectrum and σd = σd(L) the discrete part of the spectrum.
From part 8 of Theorem (10.4.1) of [19], we know that if (at least) one end point is LP,
then either σe or σd is nonempty. Let σ0 = inf σe, the result will be shown once we prove
σ0 = +∞. Since σ0 is such that all the nontrivial solutions of Lψλ = −λψλ are NO for
λ < σ0 and O for λ > σ0, we need to prove that the solutions are NO for each λ > 0.

Using the same argument as in Theorem 3.16 of [20], we find that between a local
minimum xi and a local maximum xi ∈ (0,∞), there exists exactly one solution to the
equation ψλ(x) = 0 and also ψλ(xi) < 0 and ψλ(xi) > 0. Moreover, for each pair of
consecutive xi and xi local extrema, we have

1

2λ
<

∫ xi

xi

Λ(s)e−γ(s)ds .

Then the relation∫ ∞
0

Λ(s)e−γ(s)ds >

∫ ∞
ε

Λ(s)e−γ(s)ds >
∑

(xi,xi)

∫ xi

xi

Λ(s)e−γ(s)ds ≥ 1

2λ
#(xi, xi)

is satisfied for all ε > 0, where #(xi, xi) denotes the number of solutions to ψλ(x) = 0 in
(ε,∞). So, the number of roots in [ε,∞) is bounded uniformly by 2λ

∫∞
0

Λ(s)e−γ(s)ds+1.
The result follows by letting ε→ 0+. �

A direct consequence of the previous proof is the inequality λn ≥ n
2
∫∞
0 Λ(s)e−γ(s)ds

. In-
deed, it is impled by the fact that ψλn has exactly n roots. Also we can erase the term
+1 if we already know that ψλ has a finite number of zeros.

Theorem 1.12 Assume (H) holds. Then,

(Ptf, g)µ =
∑
i≥0

e−λit(ψλi
, f)µ(ψλi

, g)µ, for all f, g ∈ L2(µ)

Ptf =
∑
i≥0

e−λit(ψλi
, f)µψλi

(x) for all f ∈ L2(µ)

lim
t→∞

eλ0t(g, Ptf)µ = (ψλ0 , f)µ(ψλ0 , g)µ for all f, g ∈ L2(µ), f ≥ 0, g ≥ 0. (1.3)

Proof: It is straightforward from the L2 version of the process. �

Theorem is similar to Theorem 3.2 of [8], with the main difference being that here we
do not impose extra conditions on α to get a discrete spectrum. In fact, we only assume
regularity on α to guarantee the existence of a diffusion process, a hypothesis that is often
assumed to avoid technical problems.

The next step is to prove the existence (and as we will see below, also uniqueness)
of QSDs. The function e−γψλ0 is a natural candidate for being a QSD; in fact, for all
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f ∈ L2(µ) we have:
(ψλ0 , Ptf)µ = (ψλ0 , f)µ

Then, e−γψλ0 satisfies the necessary condition on a restricted set of functions. We need to
prove the following two facts: (i) ψλ0 ∈ L1(µ) and (ii)λ0 > 0. The latter assertion follows
from 1.3 . In fact, since ψλ0 is a positive element in L2(µ) we can take f = g = ψλ0 in
(1.3) to obtain

0 = lim
t→∞

(Ptψλ0 , ψλ0)µ = lim
t→∞

e−λ0t|ψλ0 |2L2(µ)

This implies λ0 > 0.

It remains to prove the integrability of ψλ0 . In Theorem 1.13 we will prove that all
the eigenfunctions are in L1(µ). First, let us collect some elementary properties of the
eigenfunctions.

• +∞ is a LP, and from [19] Lemma 10.4.1 we know that, for all g ∈Dmax limx→∞ e−γ[ψ
′

λk
g−

g′ψλk ](x) = 0. If we choose g ∈ Dmax such that g(x) = 1 for large x (the existence
of such a g is guaranteed by

∫∞
1

12e−γ(s) <∞), we obtain limx→∞ e−γψ
′

λk
(x) = 0.

• Since ψλ0 > 0, and it satisfies
(
e−γ(x)ψ

′

λ0
(x)
)′

= −2λ0e−γ(x)ψλ0(x), x > 0, we obtain
e−γ(x)ψ

′

λ0
(x) > limx→∞ e−γψ

′

λ0
(x) = 0. In particular, ψλ0

is increasing function.
• The last assertion implies the existence of the limit ψλ0(0+) = limx→0 ψλ0(x) and

also that its value is 0. In fact, if the limit is greater than 0 we obtain
∫ 1

0
ψ2
λ0

(s)e−γ(s)ds >

ψ2
λ0

(0+)
∫ 1

0
e−γ(s)ds =∞, which is a contradiction.

For ψλi
i ≥ 1 we can state similar results; in fact, without loss of generality, we can suppose

ψλi
> 0 in (0, x1,i), where x1,i denotes the smallest positive solution of ψλi

= 0 , in which
case ψ′λi

(x1,i) < 0, (or equivalently e−γ(x1,i)ψ
′

λi
(x1,i) < 0) and e−γψ

′

λi
decreases (0, x1,i).

Moreover there exists 0 < x∗0,i < x1,i such that e−γψ
′

λi
(x∗0,i) = 0 (because otherwise we

obtain ψλi
(0+) > 0, which is a contradiction). Then, for x ∈ (0, x∗0,i), ψ

′

λi
(x) > ψ

′

λi
(x∗0,i) =

0, so we conclude that ψλi
is positive and increasing for some neighborhood of 0.

1.3.2 Integrability of the eigenfunctions

First, let us note that for all δ > x and k ≥ 0,∫ ∞
x

|ψλi
(s)|e−γ(s)ds ≤

√∫ ∞
x

e−γ(y)dy

√∫ ∞
x

ψλi
(y)2e−γ(y)dy

<

√∫ ∞
x

e−γ(y)dy

< ∞ .

Then,
∫∞
x
|ψλi

(s)|e−γ(s)ds converges if and only if
∫ x

0
|ψλi

(s)|e−γ(s)ds for some (and, there-
fore, for all) x > 0. The next theorem shows that, in fact, all the eigenfunctions are
absolutely integrable with respect to the measure µ.
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Theorem 1.13 Let Hypothesis (H) holds, then for all k ≥ 0, ψλk ∈ L1(µ).

Proof: Let us recall the equation(
e−γ(x)ψ

′

λi
(x)
)′

= −2λie
−γ(x)ψλi

(x)

Let x0,0 = x̂∗0,0, x0,i = min(x∗0,i, x̂
∗
0,i), where x̂∗0,i is the solution to the equation 2λi

∫ x
0

e−γ(s)Λ(s)ds =

1, and x∗0,i denotes the smallest solution to e−γψ
′

λi
(x) = 0.

Take g ∈ Dmax such that g(x) = −Λ(x) for x ∈ (0, x∗0,i). By integration by parts,

ψλi
(x)−e−γ(x)ψ

′

λi
Λ(x)−

(
e−γ(ε)ψ

′

λi
(ε)Λ(ε)−ψλi

(ε)
)

=2λi

∫ x

ε

Λ(s)ψλi
(s)e−γ(s)ds.

Letting ε→ 0+, since 0 is an LP endpoint, Lemma 10.4.1 of [19] implies that

e−γ
[
ψ
′

λi
Λ− ψλi

Λ
′
]

(ε)→ 0+.

By the Monotone Convergence Theorem,∫ x

ε

Λ(s)ψλi
(s)e−γ(s)ds→

∫ x

0

Λ(s)ψλi
(s)e−γ(s)ds .

So, we obtain

ψλi
(x)− e−γ(x)ψ

′

λi
(x)Λ(x) = 2λi

∫ x

0

Λ(s)ψλi
(s)e−γ(s)ds .

We know that in (0, x0,i), ψλi
is positive and increasing, so the following inequality holds

ψλi
(x)− e−γ(x)ψ

′

λi
(x)Λ(x) ≤ 2λiψλi

(x)

∫ x

0

Λ(s)e−γ(s)ds .

Using the fact that ψλi
(x) = − 1

2λi
(e−γ(x)ψ

′

λi
(x))

′
eγ(x) and by multiplying by 2λie

−γ(x), we
obtain

2λiΛ(x)e−γ(x)
(

e−γ(x)ψ
′

λi
(x)
)

+
(

e−γ(x)ψ
′

λi
(x)
)′ (

1− 2λi

∫ x

0

Λ(s)e−γ(s)ds

)
≥ 0 .

Dividing by
(
1− 2λi

∫ x
0

Λ(s)e−γ(s)ds
)2 (which is strictly positive in (0, x0,i)), and by notic-

ing that
(
1− 2λi

∫ x
0

Λ(s)e−γ(s)ds
)′

= −2λiΛ(x)e−γ(x), we deduce that(
e−γ(x)ψ

′

λi
(x)

1− 2λi

∫ x
0

Λ(s)e−γ(s)ds

)′
≥ 0 (1.4)

Then, for 0 < x < y < x0,i the following relations is satisfied

e−γψ
′

λi
(0+) <

e−γψ
′

λi
(x)

1− 2λi

∫ x
0

Λ(s)e−γ(s)ds
<

e−γψ
′

λi
(y)

1− 2λi

∫ y
0

Λ(s)e−γ(s)ds
<∞
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The right hand inequality follows from∣∣∣∣e−γ(x)ψ
′

λ(x)

2λi

∣∣∣∣ =

∣∣∣∣∫ ∞
x

e−γ(y)ψλi
(y)dy

∣∣∣∣ ≤ ∫ ∞
x

e−γ(y)|ψλi
(y)|dy <∞ for all x > 0.

It guarantees the integrability of ψλi
because∫ x0,i/2

0

|ψλi
(s)|e−γ(s)ds =

∫ x0,i/2

0

ψλi
(s)e−γ(s)ds

=
e−γψ

′

λi
(0+)− e−γψ

′

λi
(x0,i/2)

2λi

≤ e−γψ
′

λi

(x0,i

2

) 2λi

∫ x0,i/2

0
Λ(s)e−γ(s)ds

1− 2λi

∫ x0,i/2

0
Λ(s)e−γ(s)ds

< ∞.

�

1.4 QSD and the Yaglom Limit

1.4.1 Existence

In the previous section we showed that ψλ0 is a strictly positive µ−integrable function.
Then, by standard methods, for instance as in Theorem 5.2 of [8], the normalized measure
defined by e−γψλ0 is a QSD. From theorem 1.4, a QSD exists only if it is associated to
the value λ∗. Hence, we have proven the following result.

Theorem 1.14 If Hyphotesis (H) holds then there exists a unique QSD given by

ν(dx) =
ψλ0(x)

(1(0,∞), ψλ0)µ
dx .

Moreover λ0 = λ∗.

In our case, i.e. one-dimensional diffusions killed at 0 verifying hypothesis (H), we
will use the same arguments as in the proof of Theorem 5.3 of [8] to show the existence
of a Yaglom limit. To achieve this, we need first to study in detail the behavior of the
transition density of the diffusion process. We recall Theorem 2.3 of [8], which states that
hypothesis (H1) guarantees that, for all x > 0 and t > 0, there exists a density r(t, x, y)
that satisfies

Ex(f(Xt)1T0>t) =

∫ ∞
0

r(t, x, y)f(y)µ(dy) . (1.5)

Moreover, we also have the following result on the density r(t, x, y) of (1.5). Under
hypothesis (H) the density satisfies

r(t, x, y) =
∑
k≥0

e−λktψλk(x)ψλk(y) uniformly on compact sets of (0,∞)3 . (1.6)
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The proof of this property is similar to that of Proposition 3.3 of [8], since it only uses
the discrete spectrum property. Let us state the last required property on the density
r(t, x, y), in order to obtain the Yaglom limit property similarly as was done in Theorem
5.2 of [8].

Proposition 1.15 Assume that hypothesis (H) holds. Then r(t, x, y) ∈ L2(µ) for all
t > 0 and x > 0. Moreover, there exists a function B(t) ≥ 0, limt→∞B(t) = 0, such that∫ ∞

0

r2(t, x, y)µ(dy) < r(t, x, x)B(t) <∞ for all t > 0 , x > 0 .

Proof: From relation 1.6 and the Cauchy Schwartz inequality, we obtain

r2(t, x, y) ≤
∑
k≥0

e−λktψ2
λk

(x)
∑
k≥0

e−λktψ2
λk

(y) = r(t, x, x)
∑
k≥0

e−λktψ2
λk

(y) ,

where the series are convergent. Moreover, on any compact set K of R+, we obtain∫
K

r2(t, x, y)µ(dy) ≤ r(t, x, x)

∫
K

∑
k≥0

e−λktψ2
λk

(y)µ(dy)

By Tonelli’s theorem,∫
K

∑
k≥0

e−λktψ2
λk

(y)µ(dy) =
∑
k≥0

e−λkt
∫
K

ψ2
λk

(y)µ(dy) ≤
∑
k≥0

e−λkt,

since |ψλk |L2(µ) = 1. On the other hand, we know that k
2
∫∞
0 e−γ(s)Λ(s)ds

= kJ is a lower
bound for λk, so e−λkt ≤ e−kJt and moreover, there exists k0 such that λk0 ≥ k0J ≥ λ0.
It follows that∑

k≥0

e−λkt ≤ e−λ0t + ...+ e−λk0−1t +
∑
k≥k0

e−tkJ ≤ e−λ0t

(
k0 +

1

1− e−Jt

)
= B(t)

We obtain, for any compact set K, the inequality∫
K

r2(t, x, y)µ(dy) ≤ r(t, x, x)B(t)

Since the bound on the right hand does not depend on K, letting it to tend to R+, yields
the result. �

Theorem 1.16 Assume that hypothesis (H) holds. Then, for all x > 0 and all Borel
subsets A ⊆ (0,∞),

lim
t→∞

eλ0tPx(T0 > t) = ψλ0(x)(ψλ0 , 1)µ

lim
t→∞

eλ0tPx(Xt ∈ A, T0 > t) = ν(A)ψλ0(x)(ψλ0 , 1)µ.
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We also have
lim
t→∞

eλ0tPx(Xt ∈ A|T0 > t) = ν(A)

that is ν is the Yaglom limit distribution. Moreover, any measure ρ with compact support
in (0,∞) satisfies,

lim
t→∞

eλ0tPρ(T0 > t) = (ψλ0 , 1)µ

∫
ψλ0ρ

lim
t→∞

eλ0tPx(Xt ∈ A, T0 > t) = ν(A)(ψλ0 , 1)µ

∫
ψλ0ρ.

lim
t→∞

eλ0tPρ(Xt ∈ A|T0 > t) = ν(A).

Proof: The same proof as in [8] works because r(t, x, y) fulfills all the required properties.
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Chapter 2

Optimal Bounds on the one
dimensional Long Range Ising Model
and its consequences

2.1 History of the One dimensional Ising model with
long range interactions

The history of one dimensional Ising models with long range interactions can be divided
in 4 periods:

• 1966-1973

In this period the fundamental works of Dobrushin and Lanford & Ruelle set the
framework for mathematical statistical mechanics:

The definition of Gibbs states are linked to the so called DLR equations or DLR states
for (Dobrushin-Lanford-Ruelle) that comes from the two articles [1] [2]. Conditions for
uniqueness of the DLR state were simultaneously given in [3] for two body potentials and
in [4] for multi body potential. They proved that if the interaction between two half lines
is bounded then there is only one Gibbs or DLR states at all temperature. For a two
body potential decaying as J(r) = 1/r2−α this means α < 0. (α must be strictly less than
1 to have stability).

On the other side of the Atlantic Ocean, Mark Kac & Colin Thompson in [6] suggested
that for α ≥ 0 there is a phase transition at low enough temperature.
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This was proved for α > 0 by Dyson (see below) just after the preprint of Kac &
Thompson appears, Dyson mention this as the Kac & Thompson conjecture.

They wrote in the published article that the case α = 0 is rather special in the sense
that "There is as yet no proof that this is or is not the case" (that a phase transition
exists at low temperature)

Dyson proved in [5] that if 0 < α < 1 then at low enough temperature, there is spon-
taneous magnetization and therefore at least two Gibbs states by inventing a Hierarchical
model and use the Griffiths inequality to compare the true long range model and the
hierarchical one. By explicit computation the Hierarchical model has spontaneous mag-
netization at low enough temperature for the case corresponding to α > 0. Concerning
the case α = 0, Dyson said : "We have no definite opinion concerning the occurrence
of a transition for J(n) = n−2, and we recommend this case as an interesting object for
further study".

An historical remark seems important to the two citations mentioned above: the
preprint of Kac & Thompson is quoted by Dyson in his 1969 paper. In the published
version, Kac & Thompson quoted the Dyson result as a preprint.

Moreover Dyson, interested by this model, he called it Anderson model, built a Hier-
archical model where the magnetization exhibit a jump at the critical temperature, he
called this fact a Thouless effect. this was done in [7]. The hierarchical model introduced
by Dyson was then studied by Bleher & Sinai with interest in critical behaviors in two
articles [8] where gaussian limit theorem with non usual normalization is proved at the
critical temperature in [9]. See also the Collet & Eckmann monograph [10]

On the other side of the Atlantic Ocean (EAST) in a rather fundamental work Do-
brushin [11] where he proved that in the case α < 0 the Free energy is an analytic function
of the parameters of the interaction. The proof is given for two body potential however
Dobrushin wrote "The proof is not simple; we give a complete proof here only for a
bounded two body potential. The proof in the general case, and some additional results,
will be published elsewhere" which is never did.

• the period 1979-1988

In 1979 a paper by Khanin & Sinai proved that for long range system with randommean
zero interactions the infinite volume free energy exists even in the regime 1 ≤ α < 3/2.
In ferromagnetic models, this is not true since the energy grows faster than the volume.
This is the so called long range Edwards and Anderson model for spin glasses [12]. In
1980 Khanin extend the uniqueness result of Dobrushin 1968 to the case of the Edwards
and Anderson model with long range interactions with 0 ≤ α ≤ 1/2 [13] . This is a strong
uniqueness results since it holds for all the boundary conditions that could depend on the
realization of the disorder. In 1981 in a fundamental article Cassandro & Olivieri proved
the case left by Dobrushin for analyticity in [14]. This paper is more important that just
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giving a complete proof of analyticity in the multi body case since it will open the way
to a sequence of articles dedicated to uniqueness, infinite differentiability or analyticity of
the free energy with respect to the interaction parameter in one dimension. The first one
concerns the Edrwards and Anderson model with 0 ≤ α < 1/2 where strong uniqueness
occurs as proved bt Khanin [15], the second concerns the case of unbounded spin system
when α < 0 [16]. The third one concerns the Edwards and Anderson model in the case
1/2 ≤ α < 1 which is a lot more difficult than the case 0 ≤ α < 1/2 since only weak
uniqueness is proved in [17] while the infinite differentiability is proved in the fourth paper
[18].

On the other side of Atlantic Ocean, the ferromagnetic case α = 0 was intensively
studied : In a fondamental article Fröhlich and Spencer solved what they call the Dyson
conjecture even if Dyson-Kac-Thompson conjecture is more appropriate [19] and J. Imbrie
showed optimal bound on the correlation functions in [20]. These two papers are difficult
to read. On the other hand, starting from a fundamental article on the long range perco-
lation in one dimension, [21] [22]. Then Imbrie and Newman proved the existence of an
intermediate phase in an article that can be considered as a milestone in mathematical
physic : [23]. In the same period, but on the Pacific Ocean coast, Rogers & Thompson, in
[24] give sufficient condition for uniqueness at all temperature that is weaker to the one
of Dyson.

Concerning the long range Edwards and Anderson model, among the few rigorous
results note that Fröhlich & Zegarlinski proved that in the large temperature phase there
is a weak uniqueness when 1 ≤ α < 3/2, see [25].

• The period 1990-2000

A highly non trivial model is the antiferromagnetic Ising model with long range interac-
tions, it was first studied at the level of ground states by Burkov & Sinai [26]. Uniqueness
for all temperature is delicate when 0 ≤ α ≤ 1 owing to a very large number of ground
states,

This was proved first at very low temperature which is the most complicated part by
Kerimov [27] and later at all temperature in [28]. Concerning the long range Edwards
and Anderson model, among the few rigorous results one has [29]. For these models
(antiferromagnetic and Edwards and Anderson model) one expect phase transition at
small temperature only for 1 ≤ α < 3/2. However proof of an existence of phase transition
is missing.
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• The period 2000-2013

In this period, the study of phase transition for one dimensional long range model
changed of the side of the Atlantic Ocean and start with a re–reading of the Fröhlich &
Spencer article. This was done by Cassandro Ferrari Merola and Presutti where there
extend the Fröhlich & Spencer proof of a phase transition by using a Peierls argument
[31]. Important results were proved using their method in particular : For low enough
temperature, the existence of a phase transition for the random field long range Ising
model was proved by Cassandro, Orlandi & Picco when 1/2 < α < (log 3)/(log 2)−1 [30].

When 0 ≤ α < 1/2, that is is the regime of uniqueness (as it follows from the Aizenman
& Wher result, a description of typical configurations was given by Cassandro, Orlandi &
Picco (Comm. Math. Phys.). The extension of the results of Imbrie about optimal bounds
on the decay of correlation functions and rather unexpect behavior of the localization of
the point separation of phases when α = 0 were shown in a work by Cassandro, Merola,
Picco & Rozikov [32] (submitted Comm. Math. Phys). They proved that when α = 0
the localization of the point separation of phases has macroscopic fluctuations while when
α > 0 these fluctuations are microscopic, and the point of separation is located at zero
when one take Dobrushin type boundary conditions on volume that are symetric with
respect to the origin. This fact seems to have escaped to all the people working in this
subject. Some other works in preparation include coexistence of phases in the sense of
Minlos & Sinai. One important question is the limitation of the Cassandro, Ferrari,
Merola & Presutti method to the regime 0 ≤ α < (log 3)/(log 2)− 1 and is the subject of
this part of the thesis.

2.2 Model Description

In the one dimensional case, each i ∈ Z is associated with a value, we say +1, −1 which
describes the spin orientation of the particle stated in the lattice i (just two states for each
particle are allowed) . Each σ ⊂ {−1,+1}Z is called a spin configuration and σi describes
the state of the particle i. The corresponding Hamiltonian associated with the model is

H(σ) =
1

2

∑
i,j∈Z

J(x, y)1σx 6=σy (2.1)

where

J(n) =

{
J + 1 n = 1

1
n2−α n > 1

(2.2)

and 0 ≤ α < 1. In this work, homogeneous boundary conditions are considered only,
so either σx = +1, σx = −1 ∀|x| ≥ L, for some L ≥ 1. By symmetry, we can restrict
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without loss of generality to the case σx = +1, |x| ≥ L.
For our purposes, it is more convenient to introduce the dual lattice Z∗ ∼ Z + 1/2 of
nearest neighbor bonds. Each feasible configuration σ specifies a subset σ∗ ⊂ Z∗ which is
the set of spin flip points, i.e. for any x ∈ Z

σx 6= σx+1 ⇔ x+ 1/2 ∈ σ∗ (2.3)

We note that when homogeneous boundary conditions are considered, the cardinality
of the spin flips points associated to any Z∗ is an even number and determines uniquely
a configuration of spin states with homogeneous boundary conditions.

In particular, given a configuration of spins with boundary conditions Λ+ whose spin
flip points are σ∗ any subset σ∗0 ∈ σ∗ with even cardinality determines uniquely a spin
configuration with boundary condition Λ+

2.3 Triangles and Contours

2.3.1 Triangles

In this section we start recalling the content of [31][32]. For each i∗ ∈ Λ∗, we consider an
interval [i∗ − 1

100
, i∗ + 1

100
] ⊂ R and choose one point in each interval, say ri ∈ R in such a

way that for any four distinct points ri, i = 1, ..., 4 |r1 − r2| 6= |r3 − r4|.

We next embbed R ∈ R2 where the line containing the r∗i represents the states at t = 0,
and the orthogonal axis represent the envolving time of a process of growing ”∨− lines”:
each point r∗i branches into two twin lines growing in the positive half plane, in the direc-
tions respectively of angles π/4 and 3π/4, until one of the two meets another line coming
from a diferent r∗j . At the instant when two branches of different ∨ − lines meet, they
are frozen and stop their growth, at the same their twin lines dissapear, while all the
other ∨− lines meet associate to the other points are undisturbed and keep growing. The
collision of two lines is represented graphically in the (r,t) plane by a triangle whose basis
is the interval between the two points r∗i , r∗j roots of the two lines that collided, ad the
third vertex is the point representing the collision in the plane (r, t). The construction is
a way to construct a pairing of spin flips with a criterium of minimal distance. Our choice
of r∗i , makes the definition of triangles non ambiguous.

For any finite L, in the case of homogeneous b.c, the process stops at the finite time
T ≤ L+ 1 giving rise to a configuration of triangles. In addition, since the cardinality of
the spin flip points is even, each point ri is the basis of some triangle.
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The triangles will be denoted by T and by x−, x+ respectively the left and the right root
of the associated ∨ − lines. We also write

∆(T ) = [x−, x+] ∩ Z The basis of the triangle T (2.4)
|T | = #{∆(T )} The mass of the triangle T (2.5)

sf ∗(T ) = {inf ∆(T )− 1/2, sup ∆(T ) + 1/2} (2.6)

where Z is equipped with its natural order

dist(T, T
′
) = dist(sf(T ), sf(T

′
)) (2.7)

From our construction it follows that for all triangles Ti 6= Tj,

dist(Ti, Tj) ≥ min(|Ti|, |Tj|) (2.8)

We denote TΛ+ the set of configuration of triangles T = {T1, ..., Tn} that satisfy (2.8)
and such that ∆(Ti) ⊂ Λ for = 1, ..., n. Note that the above construction uniquely groups
the spin flip points into dipoles satisfying the distance rule given by (2.8).

2.3.2 Contours

In order to get local energy estimates, those used in Peierls argument, we collect the
triangles in subsets suitably separated. As in [31] section 3.1 [32], section 4.2 respectively,
the triangles of a configuration T are clustered into more sophisticated structures, giving
rise to a configuration Γ of contours. A contour Γ is a collection of ”connected triangles”,
where the network of connections is defined hierarchically and depends on a parameter c
and on a distance rule.

Formally, we will call contour to a family of triangles Γ ≡ {T : T ∈ Γ} that satisfy the
definition given next.

Definition 2.1 Given a configuration of triangles T ∈ TΛ+, a configuration of contours
Γ = Γ(T ) is a partition of T whose atoms, called contours are determined by the following
properties

P.0 Let R ≡ (Γ1, ...,ΓN), Γi = {Tj,i, 1 ≤ j ≤ ki}, then T = {Tj,i, 1 ≤ j ≤ ki, 1 ≤ j ≤ n}.

P.1 Contours are well separated from each other. Any pair Γ 6= Γ
′ in R(T ) verifies one

of the following two alternatives.
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• ∆(Γi) ∩∆(Γj) = ∅.

• ∆(Γi) ⊆ ∆(Γj) or ∆(Γj) ⊆ ∆(Γi). If we suposse the first case, ∀Tm,j ∈ Γj, we
have one of the next

1. ∆(Γi) ⊂ Tm,j

2. ∆(Γi) ∩ Tm,j = ∅

where ∆(Γ) ≡
⋃
T∈Γ ∆(T ). In both cases

dist(Γ,Γ
′
) ≡ inf

T∈Γ,T ′∈Γ′
dist(T, T

′
) > c|Γi|3 (2.9)

where c < 1 is a constant that we will be chosen enough large.

P.2 Independence. Let {T (1)..., T (k)}, be k > 1 configurations of triangles; R(T (i)) =

{Γ(i)
j , j = 1, ..., ni} the contours of the configuration T (i). Then, for any distinct pair

Γ
(i)
j and Γ

(i
′
)

j′
satisfie s P.1

R(T (1), T (2), ..., T (k)) =
{

Γ
(i)
j , j = 1, ..., ni : i = 1, ..., k

}
(2.10)

For any single contour, we introduce the next definitions

supp(Γ) ≡ sf∗(Γ) ∩ Z (2.11)

sf∗(Γ) ≡
⋃
T∈Γ

sf∗(T ) (2.12)

A very detailed proof of existence and uniqueness of an algorithm R(T ) satisfying
definition 2.1 can be founded in Theorem 3.1 from [31]. Since we are interested into the
consequences of this construction, we avoid to rewrite the proof.

We emphasize that we have a bijection between spin configurations in SΛ and triangles
in TΛ and another between TΛ and its image by R, in particular there is a one to one
correspondence between spin and contours configurations.

2.3.3 Internal and external Triangles

In a typical compatible triangle configuration, we could find triangles whose basis is
contained into the basis of a bigger triangle or conversely, its basis could contain the basis
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of another triangle. In the following sections, it will be very important to distinguish
those cases, so we will give next some useful definitions.

Definition 2.2 Given a compatible configuration of triangles T , a triangle T ∈ T is
external respect to T if ∆(Γ) if its basis is not contained into the basis of another triangle
that belongs to T , i.e.

∆(T ) 6⊂
⋃

T ′∈T ,T ′ 6=T

∆(T
′
) (2.13)

A triangle which is not external is called internal.

We emphasize that the notion of internal and external depends strongly on T . For
example, if T = {T} for an arbitrary triangle T, it is always external accordingly to the
definition. Nevertheless, it could be internal respect to another configuration containing
more then one triangle.

Remark 2.3 For an arbitrary compatible configuration of triangles, we can decompose
it uniquely as follows

T = ∪Nex(T )
j=1 (Tj,ex ∪ T in(Tj,ex)) (2.14)

where Nex(T ) the number of external contours of T and Ti,ex, i = 1, ..., Nex(T ) are
external contours of T . For all i = 1, ..., Nex(T ), we denote

T in(Tj,ex) ≡ {T ∈ Γ : ∆(T ) ⊂ Tj,ex} (2.15)

the subset of internal contours contained into the basis of Tj,ex.

In this work, we are interested mainly into the decomposition of internal and external
triangles for a single contours, nevertheless the definition is valid for an arbitrary com-
patible configuration.

2.3.4 Internal and External Contours

In a very similar way to the triangles, and accordingly to the properties of contours, it
can be possible that the basis of a typical contour can either be contained into the basis
of another contour or not, so it is necessary to distinguish between those class of contours.
The notion of internal and external contours is given next.

Definition 2.4 Given a compatible configuration of contours Γ, a contour Γ ∈ Γ is
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external respect to Γ if the basis of ∆(Γ) is not contained into the basis of another contour
that belongs to Γ.

∀T ∈ T,∆(T ) 6⊂
⋃

Γ′∈Γ,Γ′ 6=Γ

∆(Γ
′
) (2.16)

A contour which is not external is called internal.

Similar to triangles, for a single contour, the condition of internal and external depends
strongly on the configuration Γ and in general a contour can be external respect to Γ but
internal respect to another compatible configuration Γ

′
.

Remark 2.5 Note that a collection of contours Γ can be uniquely decomposed at follows:

Γ = ∪Nex(Γ)
j=1 (Γj,ex ∪ Γin(Γj,ex)) ≡ ∪Γex∈Γ(Γex ∪ Γin(Γex)) (2.17)

where Nex(Γ) the number of external contours of Γ and Γi,ex, i = 1, ..., Nex(Γ) is the set
of external contours of Γ. For all j = 1, ..., Nex(Γ), we denote Γin(Γj,ex) ≡ {Γ ∈ Γ :
supp(Γ) ⊂ Γj,ex}.

For any single contour we set,

|Γ| ≡
∑
T∈Γ

|T | (2.18)

||Γ||α ≡
∑
T∈Γ

|T |α α > 0 (2.19)

||Γ||0 ≡
∑
T∈Γ

(log(|T |) + 4) (2.20)

Note that the partition function can be written in term of contours

Z =
∑
σΛ

e−βHΛ(σΛ) =
∑

Γ:R(T )=Γ

e−βHΛ(Γ) (2.21)

2.4 Contours and the Peierls argument

The main idea behind building contours is to distinguish between triangles that are close
enough and those that are far away. Intituively, the interaction between distant triangles
is weak, so it should not have a significant contribution to the Hamiltonian. As we will
see it makes sense, but we need to be more precise with which means exactly ”close” and
”far” triangles.

26



In order to introduce the main concerns of this work, we revisit the results given in
[31] associated to optimal bounds for the Hamiltonian and the connection with the Peierls
argument.

2.4.1 Some existing Results

Theorem 2.6 (Theorem 3.2 [31]) Let Γ∪Γ0 be a compatible contour configuration. For
all 0 < α < log 3

log 2
− 1 and c enough large

H[Γ ∪ Γ0]−H[Γ] ≥ ζ

2

∑
T∈Γ0

|T |α (2.22)

where ζ = 23−2α+1

α(1−α)
. For α = 0, |T |α is replaced by log |T |+ 4.

Theorem 2.7 (Theorem 4.2 [31]) For any b enough large and for any m ≥ 1

∑
Γ:|Γ|=m,0∈Γ

e−
βζ
2

∑
T∈Γ |T |α ≤ 2me−bm

α

(2.23)

Phase Transition

In this section, we revisit the proof of existence of a phase transition by using a Peierls
argument for the one dimensional mode, which is given in section 3.3 from [31]. Let Λ an
interval containing the origin and µΛ+ the Gibbs measure in Λ+ with boundary conditions.
Then

µ+
Λ(σ0 = −1) ≤ µ+

Λ({σ0 ∈ Γ}) (2.24)

where {0 ∈ Γ} denotes the event that there is a contour Γ which has a triangle T which
contains the origin. Then

µ+
Λ({σ0 ∈ Γ}) =

1

Z+
Λ

∑
0Γ

∑
Γ:Γ∈Γ

e−βH[Γ] (2.25)

From Theorem (2.6)
e−βH[Γ] ≤ e−βH[Γ\Γ]e−

βζ
2

∑
T∈Γ |T |α (2.26)

then
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µ+
Λ({σ0 ∈ Γ}) ≤

∑
0Γ

e−
βζ
2

∑
T∈Γ |T |α =

∑
m

∑
Γ:|Γ|=m,0∈Γ

e−
βζ
2

∑
T∈Γ |T |α (2.27)

From Theorem (2.7), we get for β enough large

µ+
Λ ({0 ∈ Γ}) ≤ 2

∑
m

me−
ζβmα

2 (2.28)

We observe that the Peierls argument depends strongly on Theorems (2.6), (2.7) where
some optimal bounds are provided for 0 ≤ α < log 3

log 2
− 1. The main concern of this work is

to find equivalent versions of those Theorems for log 3
log 2
− 1 ≤ α < 1 in order to generalize

the Peierls argument to the complete interval 0 ≤ α < 1. So, the main conjectures that
motivates this work are

• Given an arbitrary compatible configuration of contours Γ ∪ Γ0, there exists δα > 0
such that

H[Γ ∪ Γ0]−H[Γ] ≥ δαH[Γ] (2.29)

• Given any single contour, there exists ωα > 0 such that

H[Γ] ≥ ωα
∑
T∈Γ

|T |α (2.30)

2.4.2 Optimal Bounds on the Hamiltonian

Before studying properties on triangles and contours, we will give some preliminary bounds
for the Hamiltonian when a single contour is considered. This preliminary results we will
show some facts of the behavior of the Hamiltonian, specifically the dependence on some
physical quantities. Let us to start by providing the next definition.

Definition 2.8 Let Γ be a compatible contour configuration such that Γ = {Γ0}. We
denote by Q(Γ0) the cardinality of the subset of negative spins, i.e.

Q(Γ0) =
∑
x∈Λ

1σx=−1 (2.31)

The quantity Q(Γ0) represents the total amount of ”negative charge” present in the
model, so have a very definite physical interpretation. Next proposition states lower and
upper bounds for the Hamiltonian, in terms of Q.

Proposition 2.9 Let be Γ a compatible contour configuration with boundary condition
Λ+ such that Γ = {Γ0}. Then
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(i) The following inequalities are satisfied

H[Γ0] ≥ 2

Q∑
x=1

∞∑
y=Q+1

J(x, y) (2.32)

H[Γ0] < 2Q(J + ξ(α− 2)) (2.33)

where ξ(α− 2) =
∑

k≥1
1

k2−α is the Riemann zeta function.

(ii) As a consequence, there exists constants ω1(α), ω2(α) does not depending on Γ0,
such that for 0 < α < 1.

ω1(α)Qα < H[Γ0] ≤ ω2(α)Q (2.34)

for α = 0, Qα is replaced by logQ+ 4.

Proof:

Part (ii) of the proof is a direct consequence from (i) and that for Q ≥ 1 , 0 < α < 1

Q∑
x=1

∞∑
y=Q+1

J(x, y) ≥ ω1(α)Qα (2.35)

for some ω1(α) > 0. When α = 0, Qα is replaced by logQ. Inequality (2.35) is
obtained from the well known argument on replace sums by integrals and its left to the
reader. To prove part (i), let Γ0 be a compatible configuration with boundary condition
Λ+ containing a single contour. Note that if x1 < x2 < ... < xQ are those sites such that
σxi

= −1, i = 1, ..., Q, the Hamiltonian can be written as

H[Γ0] =
1

2

∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ0)6=σy(Γ0) (2.36)

where σx(Γ0) denotes the value of the spin state at site x when the configuration
Γ = {Γ0} is considered. Let us to write σx(Γ0). Note that the above expression is
equivalent to
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H[Γ0] =
1

2

∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ0)6=σy(Γ0) (2.37)

=
1

2

∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ0)=−11σy(Γ0)=+1 +
1

2

∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ0)=+11σy(Γ0)=−1(2.38)

=
∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ0)=−11σy(Γ0)=+1 (2.39)

=
∑
x∈Z

∑
y∈Z
y 6=x

J(x, y)1σx(Γ0)=−11σy(Γ0)=+1 (2.40)

It is certain σx(Γ0) = σx(Γ0) and 1σx(Γ0)=−1 = 1− 1σx(Γ0)=+1, so we have

H[Γ0] =
∑
x∈Z

∑
y∈Z
y 6=x

J(x, y)1σx(Γ0)=−11σy(Γ0)=+1 (2.41)

=
∑
x∈Z

∑
y∈Z
y 6=x

J(x, y)1σx(Γ0)=−1(1− 1σy(Γ0)=−1) (2.42)

=
∑
x∈Z

∑
y∈Z
y 6=x

J(x, y)1σx(Γ0)=−1 −
∑
x∈Z

∑
y∈Z
y 6=x

J(x, y)1σx(Γ0)=−11σy(Γ0)=−1 (2.43)

We recall that if x1 < x2 < ... < xQ are those sites such that σxi
(Γ0) = −1, i = 1, ..., Q.

By using this, we get for the Hamiltonian

H[Γ0] =
∑
x∈Z

∑
y∈Z
y 6=xi

J(x, y)1σx(Γ0)=−1 −
∑
x∈Z

∑
y∈Z
y 6=x

J(x, y)1σx(Γ0)=−11σy(Γ0)=−1 (2.44)

=

Q∑
i=1

∑
y∈Z
y 6=xi

J(xi, y)−
Q∑

i=1

Q∑
j=1
j 6=i

J(xi, xj) (2.45)

=

Q∑
i=1

∑
y∈Z
y 6=xi

J(xi, y)− 2

Q∑
i=1

Q∑
j=i+1

J(xi, xj) (2.46)

We note first that for each xi, i = 1, ..., Q fixed,
∑

y∈Z
y 6=xi

J(xi, y) = 2(J + ξ(2− α)) does

not depend on the site xi, so the next equality follows

30



Q∑
i=1

∑
y 6=xi

J(xi, y) = 2Q(J + ξ(2− α)) (2.47)

In addition, since J(xi, xj) depends only on x1, ...xQ, specifically on its distances, we
write for i = 1, ..., Q− 1

xi+1 = xi + 1 + [d(xi+1, xi)− 1] (2.48)

An equivalent expression by using the notation di,i+1 = [d(xi+1, xi)− 1] is

xi+1 − xi = 1 + di,i+1 (2.49)

where di,i+1 ≥ 0. Also, we check that

• d(xi+1, xi)− 1 = 0 if and only if xi+1 = xi + 1 and xi + 1/2 is not a spin flip point.
• d(xi+1, xi)− 1 6= 0 if and only if both xi+1/2 and xi+1 − 1/2 are spin flip points.

For any pair xj, xi, j > i we get

xj − xi = j − i +

j−1∑
m=i

dm,m+1

:= j − i +Di,j (2.50)

where Di,j =
∑j−1

m=i dm,m+1. In the same way as (2.49), Di,j = 0 implies dm,m+1 = 0,
m = i, ..., j − 1 and by consequence xi + 1/2, ..., xj−1 + 1/2 are not spin flip points. By
using (2.46), (2.47) and (2.50) and recalling that J(xi, xj) = J(|xj − xi|), we deduce

H[Γ0] = 2Q(J + ξ(α− 2))− 2

Q−1∑
i=1

Q∑
j=i+1

J(|j − i +Di,j|) (2.51)

< 2Q(J + ξ(α− 2)) (2.52)

We remark that Di,j i 6= j and by consequence the Hamiltonian depends only on
dl,l+1, i = i, ..., j − 1. In addition, since Di,j ≥ 0 for all 1 ≤ i, j ≤ Q and J(|d|) is a
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decreasing function on the distance, we get J(|j− i+Di,j|) ≤ J(|j− i|) for any compatible
configuration , and it implies

H[Γ0] ≥ 2Q(J + ξ(α− 2))− 2

Q−1∑
i=1

Q∑
j=i+1

J(|j − i|) (2.53)

To complete the proof, we proceed by direct computation. We recall the identity

2Q(J + ξ(α− 2)) = 2

Q∑
i=1

∞∑
j=i+1

J(|j − i|) (2.54)

By replacing (2.54) in (2.53)

H[Γ0] > 2

Q∑
i=1

∞∑
j=i+1

J(|j − i|)− 2

Q−1∑
i=1

Q∑
j=i+1

J(|j − i|) (2.55)

= 2

(
Q−1∑
i=1

∞∑
j=i+1

J(|j − i|)−
Q−1∑
i=1

Q∑
j=i+1

J(|j − i|

)
+ 2

∞∑
j=Q+1

J(|j −Q|) (2.56)

= 2

Q−1∑
i=1

∞∑
j=Q+1

J(|j − i|) + 2
∞∑

j=Q+1

J(|j −Q|) (2.57)

= 2

Q∑
i=1

∞∑
j=Q+1

J(|j − i|) (2.58)

concluding the proof.

2.5 Optimal bounds for a single contour

In this section we are concerned primarily on finding optimal bounds for the Hamiltonian
of a single contour, specifically we are intersted in accepting or refusing the conjecture

H[Γ] ≥ ωα
∑
T∈Γ

|T |α (2.59)

Let us to explain shortly the importance of thisFor any single triangle T we have

H[T ] ∼ |T |α (2.60)
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So, the idea behind the conjecture is that, for any contour

H[Γ] ≥ ωα
∑
T∈Γ

|T |α (2.61)

for some ωα. Intuitively, given a fixed compatible configuration, for α close to zero
the interaction between two sites is weaker than in the case α close to zero, so it is
more difficult that the conjecture could be certain for α close to 1. The strategy to get
the results shown in this section are basically based in exploting the hierarchical and
self similar structure of contours. It is well known that the contour structure exhibes
some self similar behavior. In [31] was shown that a single contour configuration can
be decomposed into some primaries structures called pre-contours, which are compatible
contours by itself. We recommend to read sections (4.1) (4.2) from [31], where a very
proof was made. So, self similarity plays an important role in a appropriate description
of the model, including some optimal bounds for the Hamiltonian. In fact, we will see in
Theorem 2.16, by building some discrete type fractal counterexamples that the conjecture
(2.59) is not certain, for α ≥ log 2

log 3
, so it is not possible to get an optimal bound in terms

of ||Γ||α, which is the optimal bound for the Hamiltonian in the interval 0 < α < log 3
log 2
− 1.

The intermediate case log 3
log 2
− 1 ≤ α < log 2

log 3
remains as an open problem.

2.5.1 Preliminaries

Let us to start by setting up some notation.

Definition 2.10 Let be A ⊆ Z, the following sets are defined

tA = {tx : x ∈ A}
A+ y = {y + x : x ∈ A} (2.62)
tA+ y = {tx+ y : x ∈ A}

(2.63)

Definition 2.11 Let be A,B ⊂ Z. We say that A < B if

x < y for all x ∈ A, y ∈ B (2.64)

Definition 2.12 Let A ⊂ N, we define the upper counting measure as

M(A) = lim sup
n

log |A ∩ {1, ..., n}|
log n

(2.65)

In [37], Theorem (2.1) was shown that an equivalent formulation of (2.65) is the zeta
dimension defined as
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dimζ(A) = inf{s : ζ(A) <∞} (2.66)

where ζ(A) =
∑

n∈A n
−s. For any arbitrary finite discrete set

M(A) = lim sup
n

log |A ∩ {1, ..., n}|
log n

(2.67)

≤ lim sup
n

log |A|
log n

(2.68)

= log |A| lim sup
n

1

log n
(2.69)

= 0. (2.70)

i.e. the discrete fractal dimension is zero. In a typical spin configuration, the number
of negative spins is a finite number, and the fractal dimension is zero. Nevertheless it
will not be the case for some interesting limiting examples. Those limiting examples are
studied next.

2.5.2 Discrete Fractals

There exists a close connection between fractal sets and in some limiting cases of spin
configurations, which plays an important role in the studying of the behavior of the Long
Range Ising Model. We start by giving an explicit building to the discrete analogue of
the Cantor Set.

The Discrete Cantor Set

Let be Cn
d , n ≥ 1 a sequence of subsets of Z defined recursively

P.0 C
(0)
d = {1}.

P.1 C
(1)
d = {1, 3}.

P.2 C
(2)
d = {1, 3} ∪ {7, 9}.

P.3 C
(3)
d = {1, 3, 7, 9} ∪ {19, 21, 25, 27}.

P.N Given a configuration C(n−1)
d at step n− 1, we set

C
(n)
d = C

(n−1)
d

⋃
{2× 3n−1 + C

(n−1)
d } (2.71)
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The procedure continues for all n ∈ N. We note that Cn
d ⊆ Cm

d when n < m. The
discrete Cantor set is defined as

Cd =
⋃
n≥1

C
(n)
d (2.72)

Now, let us to show the connection with the classical example. We consider the family
of continuous intervals on the form [i, j], i, j ∈ Z and numerable union of them, which will
be denoted by IZ on R. In addition, we define the mapping

f : Z −→ IZ
x −→ [x− 1, x].

Note that for any subset A ⊆ Z

f(A) =
⋃
j∈A

[j − 1, j] (2.73)

and more generally

f

(
n⋃

i=1

A

)
=

n⋃
i=1

f(Ai) (2.74)

By consequence, we get that for any n ≥ 1

f(C
(n)
d )

3n
=
⋃

i∈C(n)
d

[
i− 1

3n
,

i

3n

]
(2.75)

coincides with the classical Cantor set C(n) at step n. Since f(C
(0)
d ) = [0, 1] we get the

identity

⋂
n≥0

f(C
(n)
d )

3n
= C (2.76)

where C denotes the classical Cantor set.
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A generalized discrete Cantor set

We will build a generalization of the discrete Cantor set defined above, which is the
discrete analog to the generalized continuous Cantor set. Let λ > 1 ∈ N, the sequence of
sets C(n)

d,λ , n ≥ 1 is defined recursively

C
(0)
λ,d = {1}

C
(0)
λ,d = {1, λ} (2.77)

C
(n)
λ,d = C

(n−1)
λ,d ∪

{
(λ− 1)λn−1 + C

(n−1)
λ,d

}
, n ≥ 2. (2.78)

The generalized Cantor Set is defined as

Cλ,d =
⋃
n≥1

C
(n)
λ,d (2.79)

For λ = 3, we recover the discrete Cantor set. On the other hand, analougsly to (2.75),

we get that f(C
(n)
λ )

λn
, satisfies the recursive formula

f(C
(n)
λ )

λn
=

1

λ

f(C
(n−1)
λ )

λn−1
∪

{
λ− 1

λ
+

1

λ

f(C
(n−1)
λ )

λn−1

}
(2.80)

where f(C
(0)
λ )

λ0 = [0, 1]. We deduce that

Cλ =
⋂
n≥1

f(C
(n)
λ )

λn
(2.81)

is the generalized Cantor set defined.

Proposition 2.13 Let Cλ,d defined as (2.79). Then,

dimζ(Cλ,d) =
log 2

log λ
(2.82)

in particular, for λ = 3, we get that the zeta dimension of the discrete Cantor set is
log 2
log 3

.

Proof: The proof is given in 2.7
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2.5.3 Spin Configurations associated to discrete fractal sets

The Discrete Cantor Set Spin Configuration

Let σ(n)
C , n ≥ 1 be a sequence of spin flips configuration with boundary condition Λ+,

defined by

σ
(n)
C,x =

{
−1 if x ∈ C(n)

d

+1 otherwise
(2.83)

Note that the spin flip configurations are given by the next procedure

P.0 sf∗(σ
(0)
C,x) = {1

2
, 3

2
}.

P.1 sf∗(σ
(1)
C,x) = {1

2
, 3

2
, 5

2
, 7

2
}.

P.2 sf∗(σ
(2)
C,x) = {1

2
, 3

2
, 5

2
, 7

2
} ∪ {13

2
, 15

2
, 17

2
, 19

2
}.

P.N Given a configuration σ(n−1)
C,x at step n− 1, we set

sf∗(σ
(n)
C,x) = sf∗(C

(n−1)
d ) ∪

{
2× 3n−1 + sf∗(C

(n−1)
d )

}
(2.84)

Triangle Structure of the Discrete Cantor Spin Configuration

We recall that in order to get a consistent construction of triangles, each spin flip point
x∗ ∈ Z∗ is associated with a number rx ∈ [x∗ − 1

100
, x∗ + 1

100
], which satisfies |rx∗1 − rx∗2 | 6=

|rx∗3 − rx∗4 |, for any arbitrary selection of four spin flip points. This property guarantees
a consistent construction of the triangles. Nevertheless, the contour norm ||Γ||α can
dramatically change in some examples, depending on r∗x’s choose. Let us to review in
detail the Cantor discrete case, specifically when the points r∗x according to the next
procedure

P.0 For sf∗(σ
(0)
C,x), we choose

r1/2 =
1

2
+ δ1

r3/2 =
3

2
+ δ2 (2.85)

where |δ1| ∨ |δ2| < 1
100

. At first step we have just one option, which is a triangle
whose mass is 1.
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P.1 For sf∗(σ
(1)
C ) we set r1, r2 as (2.86) and

r5/2 =
5

2
+ δ3

r7/2 =
7

2
+ δ3 + δ2 − δ1 (2.86)

where |δ3| < 1
100

, and δ3 − δ2 < δ2 − δ1. Then

r5/2 − r3/2 = 1 + δ3 − δ2

< 1 + δ2 − δ1

= r3/2 − r1/2 := r7/2 − r5/2

we have two triangles: an external triangle whose mass is 3 and an internal triangle
whose mass is 1.

P.N Given a collection of points r(sf∗(σ(n−1)
C )) at step n− 1, we set

r(sf∗(σ
(n)
C,x)) = r(sf∗(σ

(n−1)
C,x )) ∪

{
r(sf∗(σ

(n−1)
C )) + 2× 3n−1 + δn

}
(2.87)

where |δn| < 1
100

is chosen in a way such that r2×3n−1+ 1
2
− r3n−1+ 1

2
< r3n−1+ 1

2
− r 1

2
.

Contour Structure

We use the notation T (n)
Cd

and Γ
(n)
Cd

to denote respectively the triangle and contour config-
uration associated σ(n)

Cd
. We claim that Γ

(n)
Cd

= {ΓCd
} is a single contour, for all n ≥ 1. To

prove that, we first note that by construction T (n)
Cd

contains exactly one maximal triangle,
we say T and T in(T ) = {T1, T2, ..., T2n−1} contains exactly 2n − 1 internal triangles,
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the above picture shows the Cantor discrete set for n = 4. We observe that for any
pair Ti, Ti+1 ∈ T (n)

Cd
, i = 1, ...2n−2 , dist(Ti, Ti+1) = 1 < c|Ti|3∧|Ti+1|3 and by consequence

the configuration is a single contour, i.e.

Γ
(n)
Cd

= {Γ(n)
Cd
} (2.88)

where Γ
(n)
Cd

= T ∪2n−1
i=1 Ti.

Contour mass

We recall equation (2.75)
f(C

(n)
d )

3n
=
⋃

i∈C(n)
d

[
i− 1

3n
,

i

3n

]

From the building procedure, we can check that, up to scale, the internal triangles are
the ”erased” third middle intervals of the Classical Cantor set, whereas the negative spins
is its complement. The mass contour is given by the expression

|Γ(n)
Cd
| = 3n + 3n−1 + 2× 3n−2 + ...+ 2n−1 × 30

= 3n +
n∑
j=0

2j−13n−j (2.89)

Analougsly,

||Γ(n)
Cd
||α = 3nα + 3(n−1)α + 2× 3(n−2)α + ...+ 2n−1 × 30α

= 3nα +
n∑
j=0

2j−13(n−j)α (2.90)
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We note that for 0 ≤ α ≤ 1, ||Γ(n)
Cd
||α satisfies the recursive equation

||Γ(n)
Cd
||α = 2||Γ(n−1)

Cd
||α + (3α − 1) 3(n−1)α (2.91)

Either, by equations (2.89), (2.90) or solving the recursive equation (2.91), we get

||Γ(n)
Cd
||α =

{
3nα + 3nα−3nα0

3α−3α0
α 6= α0

2n
(
1 + n

2

)
α = α0

(2.92)

where α0 = log 2
log 3

.

Hamiltonian

For each n ≥ 1, the configuration Γ
(n)
Cd

contains 2n negative spins, distributed in 2n intervals
whose length is 1. It implies that the configuration contains 2n+1 spin flips, so a lower
bound for the Hamiltonian is

H[Γ
(n)
Cd

] > 2n+1 (J + 1) (2.93)

from Proposition 2.9 we know that

H[Γ
(n)
Cd

] < 2n+1 (J + ξ(α− 2)) (2.94)

where ξ is the Riemann zeta function. It means

H[Γ
(n)
Cd

] ∼ 2n (2.95)

Limit Behaviour

Proposition 2.14 For all α ≥ α0

lim
n→∞

H[Γ
(n)
Cd

]

||Γ(n)
Cd
||α

= 0 (2.96)

Proof: It is a direct consequence from equations (2.92), (2.93), (2.94). For all n ≥ 1, we
have
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H[Γ
(n)
Cd

] <


2n+1(J+ξ(α−2))

3nα+ 3nα−3nα0

3α−3α0

α > α0

2n+1

2n(1+n
2 )

α = α0

(2.97)

since 3α0 = 2, we have rewriting the above expresions

H[Γ
(n)
Cd

]

||Γ(n)
Cd
||α

<


2(J+ξ(α−2))

3n(α−α0)+ 3n(α−α0)−1
3α−3α0

α > α0

2(J+ξ(α−2))

(1+n
2 )

α = α0

(2.98)

For α > α0, limn→∞ 3n(α−α0) = ∞, similarily, for α = α0 limn→∞ 1 + n
2

= ∞ and in
both cases the limit is zero.

2.5.4 A generalized Cantor type Spin configuration

Let λ ∈ (0, 1) and x ∈ Z such that λx ≥ 1. We define the following sequence of sub sets
∈ Z accordingly to the recursive formula

C
(0)
λ,d = {1, ..., x}

C
(n)
λ,d = C

(n−1)
λ,d ∪

{
[λln−1] + C

(n−1)
λ,d

}
(2.99)

where [λln−1] denotes the entire part of λln−1 and ln−1 = diam(C
(n−1)
λ,d )+1 . Associated

to (2.99), we define the following sequence of spin configurations with boundary condition
Λ+

σ
(n)
Cλ,d,x

=

{
−1 if x ∈ C(n)

λ,d

+1 otherwise
(2.100)

Triangle and Contour Configuration

Since λ < 1 we have [λln−1] < ln−1, so there is not confusion about the triangle config-
uration. Similary to the discrete Cantor configuration, we get for all n ≥ 1, σ(n)

Cλ,d
has

one maximal triangle and 2n − 1 internal triangles that satisfies T1 < T2 < .... < T2n−1.
Moreover, for λ ≥

(
2
c

) 1
3
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dist(Ti, Ti+1) = x

=
(λx)3

λ3x2

≤ 1

λ3
(λx)3

≤ 2

λ3
[λx]3

≤ c|Ti|3 ∧ |Ti+1|3 (2.101)

In addition, ||Γ(n)
λ,d||α satisfies the recursive equation

||Γ(n)
λ,d||α = 2||Γ(n−1)

λ,d ||α − 2lαn−1 + [λln−1]α + lαn (2.102)
lαn = (2ln−1 + [λln−1])α (2.103)

The argument to get that equations is the very same to the used in the Cantor case.
Actually, for λ→ 1, we recover equation (2.91).

Limit Behaviour

Proposition 2.15 For all α ≥ log 2
log(2+λ)

lim
n→∞

H[Γ
(n)
Cλ,d

]

||Γ(n)
Cλ,d
||α

= 0 (2.104)

Proof:

For all n ≥ 1, we get from equation (2.103), for α = 1

ln = (2ln−1 + [λln−1])

≥ (2 + λ)ln−1 − 1

≥ (2 + λ)2ln−2 − (2 + λ)− 1

≥ (2 + λ)3ln−3 − (2 + λ)2 − (2 + λ)− 1
...

≥ (2 + λ)nl0 −
n−1∑
j=0

(2 + λ)j

≥ (2 + λ)nl0 −
(2 + λ)n − 1

1 + λ
(2.105)
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since l0 = x and 1
1+λ

> 0, we have

ln ≥ (2 + λ)n(x− 1) (2.106)

ln ≥ (2 + λ)ln−1 − 1⇒ lαn ≥ (2 + λ)αlαn−1 − 1 (2.107)

[λln−1]α ≥ λlαn−1 − 1 (2.108)

so replacing in (2.102)

||Γ(n)
λ,d||α = 2||Γ(n−1)

λ,d ||α − 2lαn−1 + [λln−1]α + lαn

≥ 2||Γ(n−1)
λ,d ||α − 2 + ((2 + λ)α − 2 + λα) lαn−1

≥ ((2 + λ)α − 2 + λα) lαn−1

By using equation (2.106)

||Γ(n)
λ,d||α ≥ (2 + λ)nα

(x− 1)α

(2 + λ)α
((2 + λ)α − 2 + λα) (2.109)

On the other hand, for all n ≥ 1, the configuration Γ
(n)
λ,d contains 2n intervals of negative

spins whose length is 1. So, by using proposition 2.9, an upper bound of the Hamiltonian

H[Γ
(n)
Cλ,d

] < 2n+1

x∑
i=1

∞∑
j=x+1

J(i, j) (2.110)

So, from equations (2.109), (2.110) we get for all n ≥ 1

H[Γ
(n)
Cλ,d

]

||Γ(n)
Cλ,d
||α
≤
(

2

(2 + λ)α

)n (2 + λ)α2
∑x

i=1

∑∞
j=x+1 J(i, j)

((2 + λ)α − 2 + λα) (x− 1)α
(2.111)

For α > log 2
log(2+λ)

we have 2
(2+λ)α

< 1, so we deduce the result directly from (2.111) and
letting n→∞.

We have builded explicitly some sequences σ(n) of configurations such that the limit
satisfies
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lim
n→∞

H[Γ
(n)
σ ]

||Γ(n)
σ ||α

= 0 (2.112)

The next theorem generalizes the above equations.

Theorem 2.16 Let TΛ+
L
be the set of compatible configurations with boundary condition

σx = +1 for |x| ≥ L. For all α ≥ α0, given any constant δ, there exists a family
Tδ,Λ+

L
⊂ ∪L≥1TΛ+

L
of compatible triangle configuration such that

sup
T∈T

δ,Λ+
L

H[T ]

||T ||α
≤ δ (2.113)

Proof: It is a direct consequence from equations (2.104), (2.96). Given δ > 0, there
exists n0(δ) such that

sup
n≥n0

H[Γ
(n)
Cλ,d

]

||Γ(n)
Cλ,d
||α
≤ δ (2.114)

and

sup
n≥n0

H[Γ
(n)
Cd

]

||Γ(n)
Cd
||α
≤ δ (2.115)

It suffices to take

Tδ =
⋃
n≥n0

Γ
(n)
Cλ,d

(2.116)

for λ = 21/α − 1 to deduce the theorem.

2.6 An upper bound for the contour mass

An equivalent form to state Theorem (2.16) is that, given α ≥ α0 and a constant δ > 0
there exists a contour Γδ such that

H[Γ] ≤ δ
∑
T∈Γ

H[T ] (2.117)

the above equation implies that the Hamiltonian is not quasi additive in term of trian-
gles. In order to get some general bounds for the Hamiltonian in similarly as Proposition
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2.9, we study in this section an upper bound for the contour mass and for ||Γ||α, α ∈ (0, 1)
in terms of Q(T ) =

∑
x∈supp(T ) 1σx=−1. To do this, we work directly on a maximization

problem over a single contour. So, we define for α ∈ (0, 1)

f(q, α) := max
T∈T q

Λ+

||T ||α (P)

where

T qΛ+ = {T ∈ TΛ+ : Q(T ) = q} (2.118)

denotes the set of compatible configurations whose number of negative spins is q. In
addition, we define

fk(q, α) := max
T∈T q

Λ+,k

||T ||α (Pq,k)

T qΛ+,k = {T ∈ T qΛ+ : |sf ∗(T )| = k} (2.119)

we observe that T qΛ,k is the subset of compatible configurations of T qΛ whose number of
spin flips is k. We recall that under boundary conditions Λ+, k is an even number, and
moreover

T qΛ+ =

2q⋃
k=2
k even

T qΛ+,k (2.120)

We state next the main theorem of this section

Theorem 2.17 Let T qΛ+ be the set of compatible configurations defined in (2.118). For
all α ∈ (0, 1) we have

(i) For all n ≥ 0, f(2n, α) gets the maximum at the discrete Cantor set configuration
C

(n)
d .

(ii) Given an arbitrary q, there exists constants 0 < K1(α) < K2(α) <∞ such that for
all q ≥ 1

a 6= α0

K1(α)q
α∨α0
α0 < f(q, α) < K2(α)q

α∨α0
α0 (2.121)

a = α0

K1(α0)q log q < f(q, α0) < K2(α0)q log q (2.122)
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2.6.1 Proof of Theorem (2.17)

Proof of (ii)

We show first part (ii). It is a direct consequence from part (i) and the following Lemma

Lemma 2.18 For all α ∈ [0, 1) fixed, and 1 ≤ q1 < q2, we have

f(q1, α) < f(q1 + 1, α). (2.123)
and by consequence f(q1, α) < f(q2, α) for any pair q1 < q2.

Proof: Suposse that T is a configuration satisfying f(q1, α) = ||T ||α. The configuration

T ∗ = T ∪ T1 (2.124)
where T1 is a triangle with mass is 1 located at the right hand of T and dist(T , T1) = 1.
We get that T ∪ T1 is compatible configuration and satisfies

T ∗ ∈ T q1+1
Λ+

||T ∗||α = f(q1, α) + 1

So, we have the inequality

f(q1, α) < ||T ∗||α ≤ f(q1 + 1, α) (2.125)

concluding the proof.

Now, by using part (i), we have that for q = 2n, n ≥ 1

f(q, α) ≤

 q
α
α0 −q
3α−2

+ q
α
α0 if α 6= α0

q
(

log(q)
log(2)

+ 1
)

if α = α0

(2.126)

For q arbitrary, we have that m =
[

log(q)
log(2)

]
satisfies 2m ≤ q ≤ 2m+1. So, by using lemma

(2.18)
f(2m, α) < f(q, α) < f(2m+1, α) (2.127)

and from a straightforward computation (see Appendix 2.6.3)

1/2 < f(q,α)
q

<
2

2− 3α
α < α0

1

8 log(2)
< f(q,α)

q log(q)
<

6

log(2)
α = α0 (2.128)

3−α < f(q,α)

q
α
α0

<
2

3
3α α > α0
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Proof of part (i)

The proof is based in giving first some necessary conditions to get the maximum of (P).
We start by giving some preliminaries definitions.

Definition 2.19 Let be T qΛ as (2.118). We say that T ∈ T qΛ+ is a candidate configuration
if satisfies the following conditions

(C1) The number of maximal triangles is 1

T = T ∪ T in(T ) (2.129)

(C2) The set of internal triangles satisfies ∆(Ti) ∩∆(Tj) = ∅, i 6= j or equivalently the
set of internal triangles of T satisfies T1 < T2 < ... < Tn.

(C3) The number of spin flips is 2q or equivalently, the length of each interval of negative
spin is 1.

The subset of candidate triangle configuration of T qΛ+,k will be denoted as CqΛ+,k

The above picture shows an example of a candidate type configuration. The fractal
type examples including the Cantor discrete configuration satisfies (C1), (C2), (C3). The
next proposition states a necessary condition for the configuration where the problem (P)
gets the maximum.

Proposition 2.20 For each q ≥ 2 , α ∈ (0, 1) if T ∈ T qΛ+ is not a candidate , there
exists a configuration T ∗ ∈ T qΛ+ satisfiyng ||T ∗||α > ||T ||α.

Proof: The proof requires some technical and long computation, so it is given in Ap-
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pendix 2.6.2, where we show separately that (C1), (C2) and (C3) are necessary conditions.

Main part of the Proof

Note the configuration that maximize P is a candidate type, so we can write

f(q, α) := max
T∈T q

Λ+,k

||T ||α (P)

:= max
T∈Cq

Λ+,k

||T ||α (2.130)

i.e. , we only need to search the maximum over candidate configurations. To prove
that σ0

C maximizes P for Q = 2m, m ≥ 0 we proceed by induction over m.

m=0 We have just one option, a single triangle with mass 1, and the spin configuration
coincides with σ0

C .

m=1 For m = 1 there exists three possible type of configuration depending on the
location of the negative spins. Let d = dist(x1, x2)− 1 where x1, x2 are the negative
spins , we have

· If d = 0 the configuration only contains a single external triangle whose length
is 2.

· If d = 1 the configuration contains an external triangle whose length 3 and an
internal triangle whose length is 1.

· If d ≥ 2 the configuration contains two external triangles whose length is 1.

We notice that we have only one candidate configuration, consisting on an external
triangle with mass 3, and an internal triangle with mass 1, whose spin configuration is
exactly σ1

C . From proposition 2.20 we get that maximizes (P) for Q=2.
To prove m ⇒ m + 1, from condition (C3) of Definition 2.19 there exists an internal
triangle, we say Tc such that for any x0 ∈ ∆(Tc) (the basis of Tc)

Qleft(T , x) = Qright(T , x) = 2m (2.131)

where
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Qleft(T , x0) =
∑
x<x0

1σx=−1 (2.132)

Qright(T , x0) =
∑
x>x0

1σx=−1 (2.133)

(2.134)

denotes respectively the number of negative spins at the left and right hand of x0. On
the other hand, for any T ∈ CqΛ+,k we get

||T ||α =
∑
T∈T

|T |α (2.135)

||T ||α =
∑
T<Tc

|T |α +
∑
T>Tc

|T |α + |Tc|α + |Tex|α (2.136)

Now, let {x∗1,c < x∗2,c} and {x∗1,ex < x∗2,ex} be the spin flip points of Tc and Tex respec-
tively. We denote

l1 = |x∗1,c − x∗1,ex| (2.137)
l2 = |x∗2,c − x∗2,ex| (2.138)

The mass of the external triangle can be written as

|Tex| = |Tc|+ l1 + l2 (2.139)

In addition, from the distance rule we get the next inequality for |Tc|

|Tc| ≤ l1 ∧ l2 (2.140)

so, we write equation (2.135) in the form

||T ||α =
∑
T<Tc

|T |α + lα1 − lα1 (2.141)

+
∑
T>Tc

|T |α + lα2 − lα2 (2.142)

+ |Tc|α + |Tex|α (2.143)

Note that
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∑
T<Tc

|T |α + lα1 =
∑
T∈T ′
|T |α (2.144)

for some T
′ ∈ C2m

Λ . The same follows for
∑

T>Tc
|T |α + lα2 . It implies the following

inequalities,

∑
T<Tc

|T |α + lα1 ≤ fα(2m) (2.145)∑
T>Tc

|T |α + lα2 ≤ fα(2m) (2.146)

(2.147)

and by consequence, for each T ∈ C2m+1

Λ

||T ||α ≤ 2fα(2m)− lα1 − lα2 + |Tc|α + |Tc + l1 + l2|α (2.148)

We claim

|Tc|α + |Tc + l1 + l2|α − lα1 − lα2 ≤ (3α − 1) max{lα1 , lα2 } (2.149)

If equation (2.149) is true, we get

||T ||α ≤ 2fα(2m) + (3α − 1) max{lα1 , lα2 } (2.150)
≤ 2fα(2m) + (3α − 1)3mα (2.151)

The inequality does not depend on ||T || ∈ C2m

Λ+,k, then

fα(2m+1) ≤ 2fα(2m) + (3α − 1)3mα (2.152)
(2.153)

From the induction Hypothesis , fα(2m) = ||ΓC2m ||α, so
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fα(2m+1) ≤ 2||ΓC2m ||α + (3α − 1)3mα (2.154)
= ||ΓC2m+1 ||α (2.155)

concluding the proof. We left to prove equation (2.149), note that we have already
shown the claim for m = 0, 1 (see 2.6.1) so we will proceed by induction on m. To prove
m⇒ m+ 1, we observe

|Tex| = |Tc|+ l1 + l2 (2.156)

Since l1 = |Tex| for some Tex ∈ T a, T a ⊆ C2m

Λ,k and from the Induction hyphotesis,
we get l1 ≤ 3m and we use the very same argument to prove l2 ≤ 3m. In addition,
|Tc| ≤ l1 ∧ l2 ≤ 3m and it implies

|Tex| ≤ 3m + 3m + 3m (2.157)
= 3m+1 (2.158)

2.6.2 Appendix

Proof of Proposition 2.20

Lemma 2.21 (Proof of Condition (C1)). Let T be a compatible triangle configuration
such that R(T ) = Γ is a single contour and the number of negative spins is Q(T ) = q. If
Nex(T ) > 1, then there exists a compatible triangle configuration T

′
satisfying

R(T
′
) = {Γ′} (2.159)

Nex(T
′
) < Nex(T ) (2.160)

Q(T
′
) = q (2.161)

||T ′||α > ||T ||α (2.162)

Proof: We recall the notation

T =

Nex(T )⋃
i=1

Tex,i(T ) ∪ T in(Tex,i) (2.163)
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where Tex,1 < Tex,1 < · · ·TNex(T ) are the external triangles of T and its internal triangles
are denoted by T in(Tex,i). By writing T ∗i = Tex,i(T ) ∪ T in(Tex,i), i = 1, · · · , Nex(T ) we get
an equivalent expression for (2.163)

T =

Nex(T )⋃
i=1

T ∗i (2.164)

Also, we denote the spin flip points of T as

sf∗(T ) =

Nex(T )⋃
i=1

sf∗(T ∗i ) (2.165)

sf∗(T ∗i ) =
⋃
T∈T ∗i

sf∗(T ) (2.166)

in a very similar way, we denote the middle points r′s

r(T ) =

Nex(T )⋃
i=1

r(T ∗i ) (2.167)

r(T ∗i ) =
⋃
T∈T ∗i

r(T ) (2.168)

We will build explicitly T
′
. To do that, we first set the constants

K := KTex,1(T ),Tex,2(T ) = |Tex,1(T )| ∧ |Tex,2(T )| − dist(Tex,1(T ), Tex,2(T )) (2.169)

If Nex(T ) ≥ 3 we define additionally

M := MTex,2(T ),Tex,3(T ) = K(Tex,1(T ), Tex,2(T ))− dist(Tex,2(T ), Tex,3(T )) (2.170)

We consider the following spin flip configurations

• If Nex(T ) = 2

sf∗(T ∗ex,1)
⋃{

sf∗(T ∗ex,2) +K
}

(2.171)

• If Nex(T ) ≥ 3

sf∗(T ∗ex,1)
⋃{

sf∗(T ∗ex,2) +K
}Nex(T )⋃

i=3

{
sf∗(T ∗ex,i) +M

}
(2.172)
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The middle points ri’s of the configuration are given by

• If Nex(T ) = 2

r(T ∗ex,1)
⋃{

r(T ∗ex,2) +K
}

(2.173)

• If Nex(T ) ≥ 3

r(T ∗ex,1)
⋃{

r(T ∗ex,2) +K − δ1

}Nex(T )⋃
i=1

{
r(T ∗ex,i) +M − δ2

}
(2.174)

where δ1, δ2 enough small satisfying

dist(r(T ∗ex,1), r(T ∗ex,2) +K − δ1) < |Tex,1(T )| ∧ |Tex,2(T )| (2.175)
dist(r(T ∗ex,2) +K − δ1, r(T

∗
ex,3) +M − δ2) > diam(r(T ∗ex,1) ∪ {r(T ∗ex,2) +K − δ1})(2.176)

We call T
′
to the compatible triangle configuration defined uniquely by (2.173). We

compare next this new configuration with T .

• From condition (2.175), we get that both Tex,1(T ) and Tex,2(T ) disappears, obtaining
a new external triangle, we say T̂ex,1 whose mass is |Tex,1(T )|+|Tex,2(T )|+|Tex,1(T )|∧
|Tex,2(T )| and a new internal triangle, we say T̂ whose mass is |Tex,1(T )|∧ |Tex,2(T )|.
• If Nex(T ) ≥ 3, condition (2.176) guarantees that for i ≥ 3, T ∗ex,i(T ) are preserved up

to translation.

Note that T
′
can be written as

T
′
=

Nex(T )⋃
i=3

T̂ ∗i
⋃

T̂ ∗1 (2.177)

where

T̂ ∗1 = T̂1 ∪ T̂ in(T1,ex) ∪ T̂ in(Tex,2) ∪ T̂in (2.178)

T̂ ∗i = {T ∗i +M} i ≥ 3 (2.179)
T̂ in(Tex,i) = {T in(Tex,i) +K} i = 1, 2 (2.180)

We compute next ||T ′||α
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||T ′||α = ||T̂
∗
1||α +

Nex(T
′
)∑

i=3

||T̂
∗
i ||α (2.181)

= ||T̂
∗
1||α +

Nex(T )∑
j=3

||T ∗i ||α (2.182)

=

Nex(T )∑
j=1

||T ∗i ||α − ||T ∗1||α − ||T ∗2||α + ||T̂
∗
1||α (2.183)

= ||T ||α − ||T ∗1||α − ||T ∗2||α + ||T̂
∗
1||α (2.184)

> ||T ||α (2.185)

The last inequality follows from

||T̂ ∗1 ||α = ||T ∗1 ||α + ||T ∗2 ||α + ||T̂ex,1||α + ||Tex,1 ∧ Tex,2||α − ||Tex,1||α − ||ex,2||α (2.186)

and

||T̂ ∗ex,1||α > ||Tex,1||α ∨ ||Tex,2||α (2.187)

Finally, we prove Q(T ) = Q(T
′
). In fact

Q(T
′
) =

Nex(T
′
)∑

i=1

Q(T̂ ∗ex,i) (2.188)

=

Nex(T
′
)∑

i=3

Q(T̂ ∗ex,i) +Q(T̂ ∗ex,1) +Q(T̂ ∗ex,2) (2.189)

=

Nex(T
′
)∑

i=1

Q(T ∗ex,i) (2.190)

= Q (2.191)

The main argument used in the above equations is based on the fact that there is not
exist negative spins outside external triangles and , in addition, that the translation of
sf(T ∗i ) , i = 1, ..., Nex(T ) does not affect the number of negative spins.
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Corollary 2.22 (Proof of Condition (C2)). Let T be a triangle configuration such that
R(T ) = {Γ} and Nex(T ) = 1. Suposse that some non external triangle T ∈ T satisfies
T in(T ) 6= ∅, where

D(T ) = {Ta ∈ T , Ta 6= T : ∆(Ta) ⊂ ∆(T )} (2.192)

then there exists a compatible triangle configuration T
′
such that

R(T
′
) = {Γ′} (2.193)

Q(T
′
) = q (2.194)

||T ′ ||α > ||T ||α (2.195)

Proof: If D(T ) 6= ∅ for some internal triangle of T , necessarily

D(Ta) 6= ∅ (2.196)

for some Ta ∈ T which is external respect to the configuration T\Tex. By taking the
spin configuration whose spin flip points are

{sf∗(T )\sf∗(T in(Ta))} ∪ {sf∗(T in(Ta)) +M} (2.197)

where M > 0 is chosen such that

sf∗(Tex) < {sf∗(T in(Ta)) +M} (2.198)

dist(Tex, {sf∗(T in(Ta)) +M}) > |Ta| (2.199)

The associated middle points are

{r(T )\r(T in(Ta))} ∪ {r(T in(Ta)) +M} (2.200)

The above configuration consists on the original triangle configuration, where the spin
flips of the triangle Ta and its internal triangles are removed and placed at the right hand
of Tex.

The triangle configuration T associated to the spin flip points given by (2.197) and
middle points given by (2.200) satisfies
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(a) Q(T
′
) = Q(T )

(b) Nex(T
′
) > 1

(c) ||T ′ ||α = ||T ||α

Equation (2.199) guarantees that there exists more than one external triangle. The
number of external triangles is greater than 1, so the result follows directly from propo-
sition 2.21.

We left to check (a), (c). To prove (a) we take

supp(T in(Ta)) ∩ Z = [x−(T in(Ta)), x
+(T in(Ta))] ∩ Z (2.201)

the minimal interval that contains all the sites of T in(Ta). We also define

I1 = supp(Tex) ∩ Λ (2.202)
I2 = supp(Tex)\supp(Ta) ∩ Λ (2.203)
I3 = supp(Ta) +M (2.204)

We have

σx(T
′
) =


+1 if x ∈ I1

σx(T ) if x ∈ I2

σx−M(T ) if x ∈ I3

(2.205)

Then

Q(T
′
) =

∑
x∈I1

1σx(T
′
)=−1 +

∑
x∈I2

1σx(T
′
)=−1 +

∑
x∈I3

1σx(T
′
)=−1 (2.206)

=
∑
x∈I2

1σx(T
′
)=−1 +

∑
x∈I3

1σx(T
′
)=−1 (2.207)

=
∑

x∈supp(Tex)\supp(Ta)

1σx(T
′
)=−1 +

∑
x∈supp(Ta)+M

1σx(T
′
)=−1 (2.208)

=
∑

x∈supp(Tex)\supp(Ta)

1σx(T )=−1 +
∑

x∈supp(Ta)+M

1σx−M (T )=−1 (2.209)

=
∑

x∈supp(Tex)\supp(Ta)

1σx(T )=−1 +
∑

x∈supp(Ta)

1σx(T )=−1 (2.210)

=
∑

x∈supp(Tex)

1σx(T )=−1 (2.211)

= Q(T ) (2.212)
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In addition

||T ′ ||α = ||T\T in(Ta)||α + ||T in(Ta)||α (2.213)
= ||T ||α − ||T in(Ta)||α + ||T in(Ta)||α (2.214)
= ||T ||α (2.215)

Proposition 2.23 (Proof of Condition (C3)). If T is a triangle configuration satisfying
R(T ) = {Γ} and |sf∗(T )| < 2Q, then there exists a triangle configuration T

′
such that

(a) |sf∗(T )| < |sf∗(T ′)|.
(b) Q(T ) = Q(T

′
).

(c) ||T ′||α > ||T ||α.

Proof: We suppose that T contains one external triangle and it internal triangles satisfies
T1 < T2 < TN(T )−1, otherwise the result is a direct consequence from 2.21 and 2.22. We
observe that if |sf∗(T )| = 2k < 2Q. there exists a site x ∈ Λ such that σx = σx+1 = −1.
In addition, from the condition on the internal triangles T1 < T2 < TN(T )−1 we deduce
that the distance between two consecutive internal triangles is the length of some interval
of negative spins. Then, there exists a pair of triangles Ta, Tb such that

dist(Ta, Tb) = d > 1 (2.216)

For each x ∈ Z fixed we denote the set of spin flip points of T at the right hand of x

sf∗left(T , x) = {x∗ ∈ sf∗(T ) : x∗ < x} (2.217)

Similarily, we denote the spin flip points of T at the right hand of x

sf∗right(T , x) = {x∗ ∈ sf∗(T ) : x∗ > x} (2.218)

Now, let {x0, ..., xd−1} be those sites of negative spins and T
′
the configuration whose spin

flip points are

sf∗left(T , x0) ∪ {x0 +
1

2
, x0 +

3

2
} ∪ {sf∗right(T , x0) + 1} (2.219)

Let us to explain shortly the action of the above procedure

(i) Add a pair of spin flips at points {x0 + 1
2
, x0 + 3

2
}.

(ii) The set of spin {sf∗right(T , x0) + 1} are translated one site at the right hand.
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The associated middle points are

rleft(T , x0) ∪ {x0 +
1

2
+ δ, x0 +

3

2
− δ} ∪ rright{(T , x0) + 1} (2.220)

where

rleft(T , x) = {x∗ ∈ r(T ) : x∗ < x} (2.221)

rright(T , x) = {x∗ ∈ r(T ) : x∗ > x} (2.222)

and |δ| < 1/100 is chosen such that

1− 2δ < dist(x0 + 1/2− δ, rleft(T , x)) ∧ dist(x0 + 3/2− δ, rright(T , x)) (2.223)

Note that the new configuration contains 2(k + 1) spin flip points and from equation
(2.223) we get that the effect of adding the spin flip points {x0 + 1

2
+ δ, x0 + 3

2
− δ} is that

a new internal triangle whose length is 1 appears. Moreover, Q(T ) = Q(T
′
) and

||T ′ ||α = ||T ||α + 1 (2.224)
> ||T ||α (2.225)

concluding the proof.

2.6.3 Technical Results

Proof of 2.128

We recall that for q = 2n, n ≥ 1

f(q, α) =

 q
α
α0 −q
3α−2

+ q
α
α0 if α 6= α0

q
(

log(q)
log(2)

+ 1
)

if α = α0

(2.226)

For an arbitrary q, m =
[

log(q)
log(2)

]
satisfies 2m ≤ q ≤ 2m+1.
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α = α0

f(2m+1, α) = 2m+1

(
log(2m+1)

log(2)
+ 1

)
= 2m+1 (m+ 2)

≤ 6m2m

≤ 6

log 2
q log q (2.227)

whereas

f(2m, α) = 2m (m+ 1)

=
1

2
2m+1 (m+ 1)

≥ 1

2 log 2
q log q (2.228)

So, by using lemma (2.18)

1

2 log 2
q log q < f(q, α) <

6

log 2
q log q (2.229)

α < α0

f(2m+1, α) =
2m+1 − 2

(m+1) α
α0

2− 3α
+ 2

(m+1) α
α0

≤ 2m+1

2− 3α
+ 2m+1

=
3− 3α

2− 3α
2m+1

≤ 4

2− 3α
2m

≤ 4

2− 3α
q (2.230)
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whereas

f(2m+1, α) =
2m − 2

(m) α
α0

2− 3α
+ 2

(m) α
α0

=
1

2− 3α
2m +

1− 3α

2− 3α
2

(m) α
α0

≥ 1

2− 3α
2m +

1− 3α

2− 3α
2m

= 2m

=
1

2
2m+1

≥ 1

2
q (2.231)

So, by using lemma (2.18)

1

2
q < f(q, α) <

4

2− 3α
q (2.232)

α > α0

f(2m+1, α) =
2m+1 − 2

(m+1) α
α0

2− 3α
+ 2

(m+1) α
α0

≤ 2
(m+1) α

α0

3α − 2
+ 2

(m+1) α
α0

=
3α − 1

3α − 2
2

(m+1) α
α0

= 2
α
α0

3α − 1

3α − 2
2
m α
α0

≤ 6

3α − 2
q
α
α0 (2.233)

whereas

f(2m, α) =
2m − 2

m α
α0

2− 3α
+ 2

m α
α0

≥ 2
m α
α0

=
1

2
α
α0

2
(m+1) α

α0

≥ 1

2
α
α0

q
α
α0 (2.234)

So, by using lemma (2.18)

1

2
α
α0

q
α
α0 < f(q, α) <

6

2− 3α
q
α
α0 (2.235)
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2.7 Proof of Proposition 2.13

Proof:

We first claim that for all k ≥ 1, diam(C
(k)
λ,d) = λk − 1. To prove this, we proceed by

induction. For k = 0 we have C(0)
λ,d = {1} and diam(C

(k)
λ,d) = 0 = λ0 − 1, so the hyphotesis

is satisfied. To prove n− 1⇒ n, we first note that from construction, we get for n− 1

C
(n)
λ,d = C

(n−1)
λ,d ∪

{
λ(λ− 1)n−1 + C

(n−1)
λ,d

}
(2.236)

and by definition of diam(C
(n)
λ,d)

diam(C
(n)
λ,d) = max

{
|x− y| : x ∈ C(n−1)

λ,d , y ∈ λ(λ− 1)n−1 + C
(n−1)
λ,d

}
= max{|x− y| : x ∈ C(n−1)

λ,d , y ∈ C(n−1)
λ,d }+ (λ− 1)λn−1

= diam(C
(n−1)
λ,d ) + (λ− 1)λn−1

= λn−1 − 1 + (λ− 1)λn−1

= λn − 1 (2.237)

then, for all k ≥ 1

|Cλ,d ∩ {1, ..., λk}| = 2|Cλ,d ∩ {1, ..., λk−1}| (2.238)

by using the above equation recursively

|Cλ,d ∩ {1, ..., λk}| = 2k (2.239)

On the other hand, k =
[

logn
log λ

]
, satisfies

λk < n < λk+1 (2.240)

or equivalently

k log λ < log n < (k + 1) log λ (2.241)

It implies
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|Cλ,d ∩ {1, ..., λk}| ≤ |Cλ,d ∩ {1, ..., n}| ≤ |Cλ,d ∩ {1, ..., λk+1}| (2.242)

from equations (2.239), (2.240), (2.242)

k log 2 ≤ log |Cλ,d ∩ {1, ..., n}| ≤ (k + 1) log 2 (2.243)

So

k

k + 1

log 2

log λ
≤ log |Cλ,d ∩ {1, ..., n}|

log n
≤ k + 1

k

log 2

log λ
(2.244)

Finally, since k =
[

logn
log λ

]
tends to infinity when n→∞, we conclude

lim
n→∞

log |Cλ,d ∩ {1, ..., n}|
log n

=
log 2

log λ
(2.245)

2.8 Optimal bounds on Contours

In this section, we are concentrated in finding some sufficient conditions on the building
of contour configurations, in order to get sort of quasi additivity on the Hamiltonian. We
remark that in the classical One Dimensional Ising Model , for any Γ = Γ ∪ Γ0

H[Γ0 ∪ Γ] = H[Γ0] +H[Γ] (2.246)

This is not our case, because of Long Range interactions. As we will see below, Main
theorem of the section states

H[Γ0 ∪ Γ] ∼ H[Γ0] +H[Γ] (2.247)

for a suitable choose of the constant c of the contour structure. The proof is quite
technical and we will be the main concern of this section. Consequently, we revisit the
Peierls argument by using the bounds obtained in this work.

Theorem 2.24 Let Γ0, ...,Γn be an arbitrary configuration of compatible contours. Then,
for all 0 ≤ α < 1

(i) The next inequalities are satisfied
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0 > H[Γ0, ...,Γn]−H[Γ1, ...,Γn]−H[Γ0] ≥ −ϕc(α)H[Γ0] (2.248)

or equivalently

H[Γ0] > H[Γ0, ...,Γn]−H[Γ1, ...,Γn] ≥ (1− ϕc(α))H[Γ0] (2.249)

where c is the constant used in the contours construction and

ϕc(α) =
(2− α)

c1−α +
π2

6c
(2.250)

(ii) By using the formula

H[Γ0, ...,Γn] = H[Γn] +
n−1∑
i=0

H[Γi, ...,Γn]−H[Γi+1, ...,Γn] (2.251)

and equation (2.249) recursively, we get

n∑
i=0

H[Γi] > H[Γ0, ...,Γn] ≥ (1− ϕc(α))
n∑

i=0

H[Γi] (2.252)

(iii) For 0 ≤ α < α+ = log 3
log 2
− 1, there exists functions 0 < ξ1(α) < ξ2(α) such that for

any single contour

ξ2(α)||Γ||α > H[Γ] > ξ1(α)||Γ||α (2.253)

Then, equation (2.252) can be rewritten

ξ2(α)
n∑

i=0

||Γi||α > H[Γ0, ...,Γn] ≥ ξ1(α)(1− ϕc(α))
n∑

i=0

||Γi||α (2.254)

Theorem 2.24 proves the quasi additivity of contours for all 0 ≤ α < 1 and could be
extended to ”reasonable” non increasing interaction. We recall that in the classical Ising
Model, any family of compatible contours is additive, i.e

H[Γ0, ...,Γn] =
n∑

i=0

H[Γi] (2.255)
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We emphasize that the case 0 ≤ α < α+, which is extensively studied in [31] [32] is
also considered in our theorem, specifically in (iii), where a lower a bound in terms of
|| ||α is provided. Also, equation (2.253) states the quasi adittivity not only of contours
but also of triangles, which is not true for any α in (0,1) ( We have already shown that
for α ≥ log(2)/ log(3) there exists an infinity amount of fractal type contours which does
not satisfies an inequality similar to equation (2.253).

A especial case of interest is when only mutually external contours are considered, i.e.
we make a partition of Γ = ∪N

ex(Γ)
j=1 (Γex

j ∪ Γin(Γex
j )). The Hamiltonian can be written as

H[Γ] =

Nex(Γ)∑
i=1

H[Γ∗i ] + 2
∑
Γ6=Γ′

K[Γ∗i ,Γ
∗
j ] (2.256)

where Γ∗i = Γex
i ∪ Γin(Γex

i ) and

K[Γ∗i ,Γ
∗
j ] =

∑
x∈Z

∑
y∈Z

J(x, y)
{

1σx(Γ∗i ,Γ
∗
j ) 6=σy(Γ∗i ,Γ

∗
j ) − 1σx(Γ∗i )=−1 − 1σy(Γ∗j )=−1

}
= −2

∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ∗i ,Γ
∗
j )=−1,σy(Γ∗i ,Γ

∗
j )=−1 (2.257)

the notation (σx(Γ
∗
i ,Γ

∗
j), x ∈ Λ) represents the spin configuration when only the family

of contours Γ∗i ,Γ
∗
j is present, σx(Γ

∗
i ) denotes the spin configuration where only the family

of contours Γ∗i is present. The same follows for σx(Γ∗i )

In this case, the Hamiltonian can be written a sum of two body interaction terms.
The importance of this type of interpretation has important consequences, specifically
in studying a cluster type expansion. We emphasize that the equation (2.248) does not
depend on the choose of Γ0, the ”erased” contour. It makes possible to state a very similar
result for mutually external contours and in general for an arbitrary partition of Γ.

Corollary 2.25 Let Γ be an arbitrary configuration of compatible contours, and P a
partition whose atoms are {Γ1, ...,Γl} . For c enough large, it is satisfied

H[Γ] ≥ (1− ϕc(α))
l∑

i=1

H[Γi] (2.258)

In particular, if the partition whose atoms are Γ∗i =
{

Γex
i ∪ Γin(Γex

i )
}
, i = 1, ..., nex(Γ)
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is considered, we get

H[Γ] ≥ (1− ϕc(α))

nex(Γ)∑
i=1

H[Γ∗i ] (2.259)

Proof: From part (i) of Theorem 2.24 we get

H[Γ0,Γ1, ...,Γn] ≥ (1− ϕc(α))
n∑

i=0

H[Γi] (2.260)

= (1− ϕc(α))
l∑

i=0

∑
Γ∈Γi

H[Γ] (2.261)

≥ (1− ϕc(α))
l∑

i=0

H[Γi] (2.262)

2.8.1 Revisiting the Peierls argument

In this section, we revisit the Peierls argument used to show the existence of a Phase
Transition for α ≥ log 3

log 2
− 1.

µ+
Λ(σ0 = −1) ≤ µ+

Λ({σ0 ∈ Γ}) (2.263)

=
1

Z+
Λ

∑
0Γ

∑
Γ:Γ∈Γ

e−βH[Γ] (2.264)

From Theorem (2.24)

e−βH[Γ] ≤ e−βH[Γ\Γ]e−β(1−ϕc(α))H[Γ] (2.265)

then

µ+
Λ({σ0 ∈ Γ}) ≤

∑
0Γ

e−β(1−ϕc(α))H[Γ] =
∑
m

∑
Γ:|Γ|=m,0∈Γ

e−β(1−ϕc(α))H[Γ] (2.266)

In the following, given δ > 0we differentiate between those ”problematic” contours such
that

H[Γ] < δ||Γ||α (2.267)

from those contours satisfying
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H[Γ] ≥ δ||Γ||α (2.268)

For δ > 0 fixed close to zero, a necessary condition for a contour satisfying (2.267) is
|Γ| > M0 for some M0 enough large. Then, the right hand of 2.266 can be decomposed as∑

m

∑
Γ:|Γ|=m,0∈Γ

e−β(1−ϕc(α))H[Γ]1m>m0 +
∑
m

∑
Γ:|Γ|=m,0∈Γ

e−β(1−ϕc(α))H[Γ]1m≤m0 (2.269)

For m ≤ m0, we get from equation (2.268) for β enough large

∑
m

∑
Γ:|Γ|=m,0∈Γ

e−β(1−ϕc(α))H[Γ]1m≤m0 ≤
∑
m

∑
Γ:|Γ|=m,0∈Γ

e−β(1−ϕc(α))δ||Γ||α1m≤m0(2.270)

≤
∑
m

∑
Γ:|Γ|=m,0∈Γ

e−βδ(1−ϕc(α))||Γ||α (2.271)

≤
∑
m≥1

e−βδ(1−ϕc(α))mα (2.272)

Analougsly, for m > 0 it could happen (2.267) and we can proceed directly as before.
However, given a fixed configuration, the Hamiltonian is a increasing function of α we can
use the equality

Hα[Γ] =
1

2

∑
x∈Z

∑
y∈Z

(
|x− y|α−2 + J1|x−y|=1

)
1σx(Γ) 6=σy(Γ) (2.273)

>
1

2

∑
x∈Z

∑
y∈Z

(
|x− y|α∗−2 + J1|x−y|=1

)
1σx(Γ)6=σy(Γ) (2.274)

= Hα∗ [Γ] (2.275)

where α∗ < log 3
log 2
− 1 < α < 1. We have deduced that is possible to use a lower value of

α to estimate the Hamiltonian

Hα[Γ] > Hα∗ [Γ] > ξ(α∗)||Γ||α∗ (2.276)

Replacing in equation 2.269

∑
m

∑
Γ:|Γ|=m,0∈Γ

e−β(1−ϕc(α))H[Γ]1m>m0 ≤
∑
m

∑
Γ:|Γ|=m,0∈Γ

e−β(1−ϕc(α))δξ(α∗)||Γ||α∗1m>m0(2.277)

≤
∑
m>m0

e−β(1−ϕc(α))δξ(α∗)||Γ||α∗ (2.278)

66



We have gotten

µ+
Λ(σ0 = −1) ≤

∑
m>m0

e−β(1−ϕc(α))δξ(α∗)||Γ||α∗ +
∑
m≥1

e−βδ(1−ϕc(α))mα (2.279)

For m0 enough large, the term
∑

m>m0
e−β(1−ϕc(α))δξ(α∗)||Γ||α∗ decrease faster than the

another one. Intuitively, contour with great mass and by consequence fractal type contours
are unlikely.

2.8.2 Proof of Theorem 2.24

We recall the expression for the Hamiltonian

H[Γ0,Γ] =
1

2

∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ0,Γ)6=σy(Γ0,Γ) (2.280)

where σx(Γ0,Γ) denote the spin state at site x when the contours Γ and Γ0 are present.
Analougsly, we write

H[Γ0] =
1

2

∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ0)6=σy(Γ0) (2.281)

H[Γ] =
1

2

∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ)6=σy(Γ) (2.282)

where σx(Γ0) denotes the spin state at site x when only Γ0 is present. Similarily, σx(Γ)
denotes the spin state at site x when only Γ is present.

We rewrite the Hamiltonian in a more convenient form

H[Γ0,Γ] = H[Γ0,Γ]−H[Γ]−H[Γ0] +H[Γ] +H[Γ0] (2.283)

So
H[Γ0,Γ] = H[Γ] +H[Γ0]−K[Γ0,Γ] (2.284)

where

K[Γ0,Γ] = H[Γ] +H[Γ0]−H[Γ0,Γ] (2.285)
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can be interpreted as an interaction term between Γ0 and the remaining contours.

We expand explicitly this interaction term

K[Γ0,Γ] =
1

2

∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ0)6=σy(Γ0) (2.286)

+
1

2

∑
x∈Z

∑
y∈Z

J(x, y)1σx(Γ)6=σy(Γ) (2.287)

− 1

2

∑
x∈Z

∑
y∈Z

1σx(Γ0,Γ)6=σy(Γ0,Γ) (2.288)

The above expression is the same as

K[Γ0,Γ] =
1

2

∑
x∈Z

∑
y∈Z

J(x, y)θ(Γ0,Γ)(x, y) (2.289)

where

θ(Γ0,Γ)(x, y) = 1σx(Γ0) 6=σy(Γ0) + 1σx(Γ)6=σy(Γ) − 1σx(Γ0,Γ) 6=σy(Γ0,Γ) (2.290)

Let us to define

lΓ0(x) =
x∑

i=−∞

1σi−1(Γ0)6=σi(Γ0) (2.291)

the number of spin flips at the left hand of Γ0. We remark that x∗ ∈ Z∗ is an spin
flip point of Γ0 if σx∗−1/2(Γ0) 6= σx∗+1/2(Γ0). We also emphasize that lΓ0(x) depends only
on the spin flips of Γ0 and that lΓ0(x) is well defined when boundary conditions Λ+ are
considered, since for any compatible configuration the number of negative spins is a finite
number

lΓ0(x) =
x∑

i=−∞

1σi−1(Γ0)6=σi(Γ0) (2.292)

=
∑

i∈Λ,i≤x

1σi−1(Γ0) 6=σi(Γ0) (2.293)

≤ |Λ| (2.294)
< ∞ (2.295)
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We claim

θ(Γ0,Γ)(x, y)

2
= 1σx(Γ0,Γ)=σy(Γ0,Γ) × 1lΓ0

(x)+lΓ0
(y) odd (2.296)

2.8.3 An explicit characterization for the difference

We will check claim 2.296 explicitly. We observe first

σx(Γ0) = (−1)lΓ0
(x) ∀x ∈ Z (2.297)

σx(Γ) = (−1)lΓ0
(x) · σx(Γ0,Γ) ∀x ∈ Z (2.298)

For any pair x, y ∈ Z we necessarily have one of the next cases

lΓ0(x) + lΓ0(y) odd (2.299)
lΓ0(x) + lΓ0(y) even (2.300)

If lΓ0(x) + lΓ0(y) even

(i) Since (−1)lΓ0
(x) = (−1)lΓ0

(y) , we deduce

1σx(Γ0)6=σy(Γ0) ≡ 1
(−1)

lΓ0
(x) 6=(−1)

lΓ0
(y) (2.301)

≡ 1
(−1)

lΓ0
(x) 6=(−1)

lΓ0
(x) (2.302)

≡ 0 (2.303)

(ii) In addition σx(Γ) = (−1)lΓ0
(x)σx(Γ,Γ0) , σy(Γ) = (−1)lΓ0

(y)σy(Γ,Γ0), so we deduce

1σx(Γ)6=σy(Γ) ≡ 1
(−1)

lΓ0
(x)
σx(Γ0,Γ)6=(−1)

lΓ0
(y)
σy(Γ0,Γ)

(2.304)

≡ 1
(−1)

lΓ0
(x)
σx(Γ0,Γ)6=(−1)

lΓ0
(x)
σy(Γ0,Γ)

(2.305)

≡ 1σx(Γ0,Γ)6=σy(Γ0,Γ). (2.306)

From (i), (ii) we get

θ(Γ0,Γ)(x, y)

2
= 1σx(Γ0)6=σy(Γ0) + 1σx(Γ) 6=σy(Γ) − 1σx(Γ0,Γ)6=σy(Γ0,Γ) (2.307)

= 0 + 1σx(Γ0,Γ)6=σy(Γ0,Γ) − 1σx(Γ0,Γ)6=σy(Γ0,Γ) (2.308)
= 0 (2.309)
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If lΓ0(x) + lΓ0(y) is odd

(i) Since (−1)lΓ0
(x) = −(−1)lΓ0

(y)

1σx(Γ0)6=σy(Γ0) ≡ 1
(−1)

lΓ0
(x) 6=(−1)

lΓ0
(y) (2.310)

≡ 1
(−1)

lΓ0
(x) 6=−(−1)

lΓ0
(x) (2.311)

≡ 1 (2.312)

(ii) In adittion

σx(Γ) = (−1)lΓ0
(x)σx(Γ,Γ0) (2.313)

σy(Γ) = (−1)lΓ0
(y)σy(Γ,Γ0) (2.314)

= −(−1)lΓ0
(x)σy(Γ,Γ0) (2.315)

Implies

1σx(Γ)6=σy(Γ) ≡ 1
(−1)

lΓ0
(x)
σx(Γ0,Γ) 6=(−1)

lΓ0
(y)
σy(Γ0,Γ)

(2.316)

≡ 1
(−1)

lΓ0
(x)
σx(Γ0,Γ) 6=−(−1)

lΓ0
(x)
σy(Γ0,Γ)

(2.317)

≡ 1σx(Γ0,Γ)=σy(Γ0,Γ). (2.318)

From (i), (ii) we get

θ(Γ0,Γ)(x, y) = 1σx(Γ0)6=σy(Γ0) + 1σx(Γ) 6=σy(Γ) − 1σx(Γ0,Γ) 6=σy(Γ0,Γ) (2.319)
= 1σx(Γ0,Γ)=σy(Γ0,Γ) + 1− 1σx(Γ0,Γ)6=σy(Γ0,Γ) (2.320)
= 21σx(Γ0,Γ)=σy(Γ0,Γ) (2.321)

The last equality follows directly from the identity

1σx(Γ0,Γ)6=σy(Γ0,Γ) + 1σx(Γ0,Γ)=σy(Γ0,Γ) = 1 (2.322)

We write 2.296 as

θ(Γ0,Γ)(x, y) =

{
0 lΓ0(x) + lΓ0(y) even

21σx(Γ0,Γ)=σy(Γ0,Γ) lΓ0(x) + lΓ0(y) odd (2.323)

2.8.4 A characterization of the sites in terms of the spin flip points
of Γ0

We start by introducing the collection of subsets

70



IΓ0(l) = {x ∈ Z : lΓ0(x) = l} (2.324)

which denotes an interval of Z of sites that has the same number of spin flips at its
left hand. Note that if x∗1 < x∗2 < · · · < x∗2n ⊂ Z∗ are the spin flip points of Γ0 then

IΓ0(l) =


[x∗l , x

∗
l+1] ∩ Z 1 ≤ l ≤ 2n− 1

(−∞, x∗1] ∩ Z l = 0
[x∗2n,∞) ∩ Z l = 2n

∅ otherwise

(2.325)

Also, we define

∆Γ0,in
= ∪2n−1

l=1 IΓ0(l) (2.326)
∆Γ0,ex

= I(0) ∪ I(2n) (2.327)

Since Z = ∪2n
l=0IΓ0(l), or equivalently Z = ∆Γ0,in

∪∆Γ0,ex
we can decompose the inter-

action as

K[Γ0,Γ] =
1

2

∑
x∈Z

∑
y∈Z

J(x, y)θ(Γ0,Γ)(x, y) (2.328)

=
1

2

∑
x∈∆Γ0,in

 ∑
y∈∆Γ0,in

+
∑

y∈∆Γ0,ex

 J(x, y)θ(Γ0,Γ)(x, y) (2.329)

+
1

2

∑
x∈∆Γ0,ex

 ∑
y∈∆Γ0,in

+
∑

y∈∆Γ0,ex

 J(x, y)θ(Γ0,Γ)(x, y) (2.330)

From the above expression and from the symmetry of J(x, y) we get

K[Γ0,Γ] =
1

2

∑
x∈∆Γ0,in

∑
y∈∆Γ0,in

J(x, y)θ(Γ0,Γ)(x, y) (2.331)

+ 2× 1

2

∑
x∈∆Γ0,in

∑
y∈∆Γ0,ex

J(x, y)θ(Γ0,Γ)(x, y)

+
1

2

∑
x∈∆Γ0,ex

∑
y∈∆Γ0,ex

J(x, y)θ(Γ0,Γ)(x, y) (2.332)
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For an arbitrary pair of sets A,B ⊂ Z we define

KA,B[Γ0,Γ] =
1

2

∑
x∈A

∑
y∈B

J(x, y)θ(Γ0,Γ)(x, y) (2.333)

By using this notation, equation (2.331) can be written as

K[Γ0,Γ] = K∆Γ0,in
,∆Γ0,in

[Γ0,Γ] + 2K∆Γ0,in
,∆Γ0,ex

[Γ0,Γ] +K∆Γ0,ex
,∆Γ0,ex

[Γ0,Γ] (2.334)

We need next to discriminate those points that are close to Γ0 from those that are far
away. To do that, we introduce the following partition of ∆Γ0,ex

∆
(1)
Γ0,ex

= {x ∈ ∆Γ0,ex
: d(x,Γ0) > c|Γ0|3} (2.335)

∆
(2)
Γ0,ex

= {x ∈ ∆Γ0,ex
: d(x,Γ0) ≤ c|Γ0|3} (2.336)

Since

K∆Γ0,in
,∆Γ0,ex

[Γ0,Γ] = K
∆Γ0,in

,∆
(1)
Γ0,ex

[Γ0,Γ] +K
∆Γ0,in

,∆
(2)
Γ0,ex

[Γ0,Γ] (2.337)

The next expression is valid for the interaction term

K[Γ0,Γ] = K∆Γ0,in
,∆Γ0,in

[Γ0,Γ]+2K
∆Γ0,in

,∆
(1)
Γ0,ex

[Γ0,Γ]+2K
∆Γ0,in

,∆
(2)
Γ0,ex

[Γ0,Γ]+K∆Γ0,ex
,∆Γ0,ex

[Γ0,Γ]

(2.338)

The next proposition states that the terms at the right hand of equation (2.338) are
well bounded.

Proposition 2.26 For any compatible configuration Γ0,Γ and for all α ∈ (0, 1) it holds

K∆Γ0,in
,∆Γ0,in

[Γ0,Γ] = 0 (2.339)

2K
∆Γ0,in

,∆
(1)
Γ0,ex

[Γ0,Γ] ≤ (2− α)

c1−α H[Γ0] (2.340)

2K
∆Γ0,in

,∆
(2)
Γ0,ex

[Γ0,Γ] ≤ 2π2

6c

∑
x∈∆Γ0,in

∑
y∈∆

(2)
Γ0,ex

J(x, y)1σx(Γ0)6=σy(Γ0) (2.341)

K∆Γ0,in
,∆Γ0,in

[Γ0,Γ] ≤ 2π2

6c

∑
x∈∆Γ0,in

∑
y∈∆Γ0,in

J(x, y)1σx(Γ0)6=σy(Γ0) (2.342)
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And by consequence

K[Γ0,Γ] ≤
(

(2− α)

c1−α + 2
π2

6c

)
H[Γ0] (2.343)

Proof of 2.339

From the definition of ∆Γ0,ex
, for each x ∈ ∆Γ0,ex

,either lΓ0(x) = 0 or lΓ0(x) = 2n. Then ,
for x, y ∈ ∆Γ0,ex

it is certain that lΓ0(x) + lΓ0(y) is an even number and by consequence

θ(Γ0,Γ)(x, y) = 0 x, y ∈ ∆Γ0,ex
(2.344)

Equation 2.339 follows directly from (2.344)

Proof of 2.340

For each y ∈ ∆Γ0,ex
, we have that lΓ0(y) is an even number, so for x ∈ ∆Γ0,in

, y ∈ ∆Γ0,ex

θ(Γ0,Γ)(x, y) 6= 0 ⇒ lΓ0(x) is an odd number. (2.345)
⇒ x ∈ IΓ0(l) for some l odd. (2.346)

From the above equation, we get

K
∆Γ0,in

,∆
(1)
Γ0,ex

[Γ0,Γ] =
1

2

∑
x∈∆Γ0,in

∑
y∈∆

(1)
Γ0,ex

J(x, y)θ(Γ0,Γ)(x, y) (2.347)

=
∑

x∈∆Γ0,in

∑
y∈∆

(1)
Γ0,ex

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ)1lΓ0
(x)+lΓ0

(y) odd(2.348)

=
∑
l odd

∑
x∈IΓ0

(l)

∑
y∈∆

(1)
Γ0,ex

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ) (2.349)

=
∑
l odd

K
IΓ0

(l),∆
(1)
Γ0,ex

[Γ0,Γ] (2.350)
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From the inequality 1σx(Γ0,Γ)=σy(Γ0,Γ) ≤ 1, we get for each l odd fixed

K
IΓ0

(l),∆
(1)
Γ0,ex

[Γ0,Γ] =
∑

x∈IΓ0
(l)

∑
y∈∆

(1)
Γ0,ex

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ) (2.351)

≤
∑

x∈IΓ0
(l)

∑
y∈∆

(1)
Γ0,ex

J(x, y) (2.352)

In addition, for any pair x ∈ IΓ0(l), l odd, y ∈ ∆
(1)
Γ0,ex

we have

σx(Γ0) = −1 σy(Γ0) = +1 (2.353)

1σx(Γ0)6=σy(Γ0) = 1 x ∈ IΓ0(l) l odd, y ∈ ∆Γ0,ex
(2.354)

Then

∑
x∈IΓ0

(l)

∑
y∈∆

(1)
Γ0,ex

J(x, y) =
∑

x∈IΓ0
(l)

∑
y∈∆

(1)
Γ0,ex

J(x, y)1σx(Γ0)6=σy(Γ0) (2.355)

And by consequence

K
∆Γ0,in

,∆
(1)
Γ0,ex

[Γ0,Γ] =
∑
l odd

K
IΓ0

(l),∆
(1)
Γ0,ex

[Γ0,Γ] (2.356)

≤
∑
l odd

∑
x∈IΓ0

(l)

∑
y∈∆

(1)
Γ0,ex

J(x, y) (2.357)

=
∑

x∈∆Γ0,in

∑
y∈∆

(1)
Γ0,ex

J(x, y)1σx(Γ0) 6=σy(Γ0) (2.358)

We remark that the last equality holds since σx(Γ0) = −1 if and only if x ∈ IΓ0(l), l odd.

We recall the definition

Q(Γ0) =
∑
x∈Λ

1σx(Γ0)=−1 (2.359)

the number of negative spins when only Γ0 is present. Since J(x, y) is decreasing as a
function of |x− y| and |Γ0| > Q(Γ0) we get
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∑
x∈∆Γ0,in

∑
y∈∆

(1)
Γ0,ex

J(x, y)1σx(Γ0) 6=σy(Γ0) ≤ 2

Q∑
x=1

∞∑
y=cQ3+Q+1

J(x, y) (2.360)

From the inequality cQ3 +Q > cQ and from Propostion (2.27) for k = c

Q∑
x=1

∞∑
y=cQ3+Q+1

J(x, y) ≤ 2
(2− α)

c1−α

Q∑
x=1

∞∑
y=Q+1

J(x, y) (2.361)

We emphasize that 2
∑Q

x=1

∑∞
y=Q+1 J(x, y) denotes the Hamiltonian of a single con-

tours that contains just one triangle of mass Q.

We have already proven in Proposition (2.9) that for any single contour

2

Q∑
x=1

∞∑
y=Q+1

J(x, y) ≤ H[Γ0] (2.362)

We conclude from equations (2.356), (2.360), (2.361), (2.362)

K
∆Γ0,in

,∆
(1)
Γ0,ex

[Γ0,Γ] ≤ (2− α)

c1−α H[Γ0] (2.363)

Proof of 2.341

We remark that for y ∈ ∆Γ0,ex
, lΓ0(y) is an even number, whereas for x ∈ ∆Γ0,in

, lΓ0(x) is
an odd number if and only if x ∈ IΓ0(l) for l odd. Then

1

2

∑
x∈∆Γ0,in

∑
y∈∆

(2)
Γ0,ex

J(x, y)θ(Γ0,Γ)(x, y) =
∑

x∈∆Γ0,in

∑
y∈∆

(2)
Γ0,ex

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ)1lΓ0
(x)+lΓ0

(y) odd

=
∑
l odd

∑
x∈IΓ0

(l)

∑
y∈∆

(2)
Γ0,ex

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ) (2.364)

We recall that σ0 denotes the spin state at the leftmost point of Γ0 when Γ0,Γ are
present

σ0 = σx−(Γ0)(Γ0,Γ) (2.365)

75



From Proposition (2.31), we get

∑
x∈∆Γ0,in

∑
y∈∆

(2)
Γ0,ex

J(x, y)1σx(Γ0,Γ)=σ01σy(Γ0,Γ)=σ0 ≤
π2

6c

∑
x∈∆Γ0,in

∑
y∈∆

(2)
Γ0,ex

J(x, y)(2.366)

∑
x∈∆Γ0,in

∑
y∈∆

(2)
Γ0,ex

J(x, y)1σx(Γ0,Γ)=−σ01σy(Γ0,Γ)=−σ0 ≤
π2

6c

∑
x∈∆Γ0,in

∑
y∈∆

(2)
Γ0,ex

J(x, y)(2.367)

and by using the identity

1σx(Γ0,Γ)=σy(Γ0,Γ) = 1σx(Γ0,Γ)=σ01σy(Γ0,Γ)=σ0 + 1σx(Γ0,Γ)=−σ01σy(Γ0,Γ)=−σ0 (2.368)

We get for each l odd fixed

∑
x∈IΓ0

(l)

∑
y∈∆

(2)
Γ0,ex

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ) ≤ 2
π2

6c

∑
x∈∆Γ0,in

∑
y∈∆

(2)
Γ0,ex

J(x, y) (2.369)

Since

σx(Γ0) = −1 ⇔ x ∈ IΓ0(l) l odd (2.370)
σy(Γ0) = +1 y ∈ ∆Γ0,ex

(2.371)

We get σx(Γ0) = −1 for x ∈ IΓ0(l) l odd and σy(Γ0) = +1 for y ∈ ∆Γ0,ex
. It implies

1σx(Γ0)6=σy(Γ0) = 1 (2.372)

From equations (2.369), (2.372) we deduce

2
π2

6c

∑
x∈∆Γ0,in

∑
y∈∆

(2)
Γ0,ex

J(x, y) ≤ 2
π2

6c

∑
x∈∆Γ0,in

∑
y∈∆

(2)
Γ0,ex

J(x, y)1σx(Γ0)6=σy(Γ0) (2.373)

which is exactly equation (2.341)
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Proof of 2.342

1

2

∑
x∈∆Γ0,in

∑
y∈∆Γ0,in

J(x, y)θ(Γ0,Γ)(x, y) =
1

2

2n−1∑
l=1

2n−1∑
m=1

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)θ(Γ0,Γ)(x, y) (2.374)

=
1

2

2n−1∑
l=1

2n−1∑
m=1

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)θ(Γ0,Γ)(x, y)1l+m odd

+
1

2

2n−1∑
l=1

2n−1∑
m=1

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)θ(Γ0,Γ)(x, y)1l+m even

If l+m is even, we have that lΓ0(x) + lΓ0(y) is an even number, so θ(Γ0,Γ)(x, y) = 0. It
means

1

2

2n−1∑
l=1

2n−1∑
m=1

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)θ(Γ0,Γ)(x, y)1l+m even = 0

On the other hand, if l +m is an odd number

θ(Γ0,Γ)(x, y) = 21σx(Γ0,Γ)=σy(Γ0,Γ) (2.375)

From equations (2.374), (2.375), (2.375) we deduce

1

2

∑
x∈∆Γ0,in

∑
y∈∆Γ0,in

J(x, y)θ(Γ0,Γ)(x, y) =
2n−1∑
l=1

2n−1∑
m=1

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ)1l+m odd

Since

1l+m odd = 1l odd1m even + 1m odd1l even (2.376)

By symmetry we get

1

2

∑
x∈∆Γ0,in

∑
y∈∆Γ0,in

J(x, y)θ(Γ0,Γ)(x, y) = 2
1

2

2n−1∑
l=1:
l odd

2n−1∑
m=1:
m even

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ)

(2.377)
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We fix 1 ≤ l,m ≤ 2n− 1 such that l +m is an odd number, so we will estimate

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ) (2.378)

It can be checked

1σx(Γ0,Γ)=σy(Γ0,Γ) = 1σx(Γ,Γ0)=σ01σy(Γ,Γ0)=σ0 + 1σx(Γ,Γ0)=−σ01σy(Γ,Γ0)=−σ0 (2.379)

By replacing the above identity, we get

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ) =
∑

x∈IΓ0
(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0,Γ)=σ01σy(Γ0,Γ)=σ0

+
∑

x∈IΓ0
(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0,Γ)=−σ01σy(Γ0,Γ)=−σ0

By using Proposition (2.32)

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0,Γ)=σ01σy(Γ0,Γ)=σ0 ≤
π2

6c

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)(2.380)

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0,Γ)=−σ01σy(Γ0,Γ)=−σ0 ≤
π2

6c

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)(2.381)

And consequently

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ) ≤ 2
π2

6c

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y) (2.382)

We remark that σx(Γ0,Γ) 6= σy(Γ0,Γ) if and only if lΓ0(x) + lΓ0(y) is an odd number.
For each fixed pair x ∈ IΓ0(l), y ∈ IΓ0(m) we have 1σx(Γ0)6=σy(Γ0) = 1 and it implies

2
π2

6c

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y) = 2
π2

6c

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0)6=σy(Γ0) (2.383)
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Finally, by taking all the possible values of l odd, m even

2
2n−1∑
l=1:
l odd

2n−1∑
m=1:
m even

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0,Γ)=σy(Γ0,Γ) ≤ 4
π2

6c

2n−1∑
l=1:
l odd

2n−1∑
m=1:
m even

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0)6=σy(Γ0)

= 2
π2

6c

2n−1∑
l=1

2n−1∑
m=1

∑
x∈IΓ0

(l)

∑
y∈IΓ0

(m)

J(x, y)1σx(Γ0)6=σy(Γ0)1l+m odd

= 2
π2

6c

∑
x∈∆Γ0,in

∑
y∈∆Γ0,in

J(x, y)1σx(Γ0) 6=σy(Γ0) (2.384)

We rewrite the above inequality

1

2

∑
x∈∆Γ0,in

∑
y∈∆Γ0,in

J(x, y)1σx(Γ0)6=σy(Γ0) ≤ 2
π2

6c

∑
x∈∆Γ0,in

∑
y∈∆Γ0,in

J(x, y)1σx(Γ0)6=σy(Γ0) (2.385)

which is exactly equation 2.342.

2.8.5 Technical Results

The most technical part of the Proof of (2.24) is given in this section.

Proposition 2.27 Let

S(N, d) =
N∑
x=1

∞∑
y=N+d+1

J|y−x|

=
N∑
x=1

∞∑
y′=1

J|y′+N+d−x| y
′
= N − d

=
N∑

x′=1

∞∑
y′=1

J|y′+x′+d−1| x
′
= N − x+ 1

then , for all d > kN , N ≥ 1

S(x, d)

S(x, 0)
=

∑N
x′=1

∑∞
y′=1 J|y′+x′+d−1|∑N

x′=1

∑∞
y′=1 J|y′+x′−1|

≤ (2− α)kα−1 (2.386)
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Proof: We use the approach of replacing sums by integrals. From the property that
J(x) is a decreasing function, we get for all d > 0

0 ≤
∞∑
y=1

J|x+y+d−1| −
∫ ∞

1

J|x+s+d−1|ds ≤ J|x+d| (2.387)

So

∑∞
y=1 J|x+y+d−1|∑∞
y=1 J|x+y−1|

≤
J|x+d| +

∫∞
1
J|x+s+d−1|ds∫∞

1
J|x+s−1|ds

≤ max
1≤x≤N

J|x+d| +
∫∞

1
J|x+s+d−1|ds∫∞

1
J|x+s−1|ds

(2.388)

For J(n) = nα−2 + J1n=1 we get

max
1≤x≤N

J|x+d| +
∫∞

1
J|x+s+d−1|ds∫∞

1
J|x+s−1|ds

= max
1≤x≤N

|x+ d|α−2 + |x+d|α−1

1−α

J1x=1 + |x|α−1

1−α

= max
1≤x≤N

[
x+ d

x

]α−1(
1 +

1− α
|x+ d|

)
≤

[
N + d

N

]α−1(
1 +

1− α
|1 + d|

)
(2.389)

The last inequality is a consequence from that as a function of x,
[
x+kN
x

]α−1 is increasing
where as 1

x+d
is decreasing. Finally, since d > kN > 1, we deduce

max
1≤x≤N

J|x+d| +
∫∞

1
J|x+s+d−1|ds∫∞

1
J|x+s−1|ds

≤ (k + 1)α−1

(
1 +

1− α
1 + k

)
(2.390)

≤ kα−1(1 + 1− α) (2.391)
= (2− α)kα−1 (2.392)

We have proven

N∑
x=1

∞∑
y=1

J|x+y+d−1| =
N∑
x=1

∑∞
y=1 J|x+y+d−1|∑∞
y=1 J|x+y−1|

∞∑
y=1

J|x+y−1|

≤ (2− α)

k1−α

N∑
x=1

∞∑
y=1

J|x+y−1| (2.393)
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which is exactly equation 2.386.

Propositions 2.31 and 2.32

We left to prove Propositions 2.31 2.32, which are based on the argument of grouping
contours with the same mass in order to bound ”far interaction”. Before we provide the
proof, we need to introduce a tree expansion of contours.

A tree expansion of contours

In this section, we give a tree representation of a typical contour configuration. To achieve
this, we start the section by setting up some definitions for the contour configuration.

Definition 2.28 Let Γ be an arbitrary configuration of compatible contours. We say that
Γ is a ”white” contour if σx−(Γ)(Γ) is equal to −1. Otherwise, we say that Γ is a ”black”
contour

We recall that σx−(Γ)(Γ) represents the spin state at the leftmost point of Γ when the
family of contours Γ is present. Every one can be identified either as a white or black,
depending of its colour. Complementarily, we introduce the next definition to determine
such an order notion in Γ.

Definition 2.29 Let Γ be an arbitrary configuration of compatible contours. For any
pair Γ,Γ

′ ∈ Γ we say that Γ ↪→ Γ
′ if supp(Γ) ⊆ supp(Γ

′
).

Definition 2.30 Let Γ be an arbitrary configuration of compatible contours. We say that
Γ is a maximal contour respect to Γ if Γ ↪→ Γ

′ implies Γ
′

= Γ, i.e any Γ
′ 6= Γ,supp(Γ) 6⊆

supp(Γ
′
).

Note that the definition of maximal contour is the very same we give at the very
beginning of this work. For any Γa ∈ Γ we introduce the subset

D(Γa) = {Γ ∈ Γ : Γ ↪→ Γa} (2.394)

which denotes the family of such contours whose support is contained in supp(Γa). The
next properties can be deduced

• If Γ ↪→ Γ
′ and Γ

′
↪→ Γ

′′ , then Γ ↪→ Γ
′′ .
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• If Γ ↪→ Γ
′ and Γ

′
↪→ Γ, then Γ ≡ Γ

′

• Γa ∈ D(Γa) for all Γa ∈ Γ.

• Γa ↪→ Γb implies D(Γa) ⊆ D(Γb)

• Γa ↪→ Γb and Γb ↪→ Γc implies Γa ↪→ Γc and by consequence D(Γa) ⊆ D(Γb) ⊆ D(Γc)

The next algorithm shows the main rules to build the tree expansion

Lev. 0 Represents Γ, is a single node.

Lev. 1 The nodes at the first level are given by the family of maximal contours of Γ. If
Γ1,1, ...,Γ1,n1 are those contours, we define A(Γ1,i) = D(Γ1,i)\{Γ1,i}, 1 ≤ i ≤ n1. At
the first level, the nodes are white uniquely.

Lev. 2 At the second level, branches of Γ1,i, i = 1, ..., n1 is the family maximal contours
respect to A(Γ1,i). We define A2,i = D(Γ2,i)\{Γ2,i}, 1 ≤ i ≤ n2, where Γ2,i 1 ≤ i ≤ n2

is the number of nodes at the second level.

Lev. t Given the nodes Γt−1,1, ...,Γt−1,nt−1 of Γt−1,m at level t-1, the branches of Γt−1,m

at level t are given by the family of maximal contours respect to A(Γt−1,m) =
D(Γt−1,m)\{Γt−1,m}, 1 ≤ m ≤ nt−1

The algorithm continues while there exist some contour such that the subset of its
branches is not empty. Note that the maximum number of levels is the number of contours
of Γ, so the procedure stops in a finite time.

Γ

We recall the definitions
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∆
(2)
Γ0,ex

= {y ∈ ∆
(2)
Γ0,ex

: dist(y,Γ0) ≤ c|Γ0|3}

lΓ0(x) =
∑
x∈Λ

1σx(Γ0)=−1

I(l) = {x ∈ Z : l(x) = l}
σ0 = σx−(Γ0)

Also, we introduce the following subsets of contours

Γin,l := {Γ ∈ Γ : supp(Γ) ⊂ I(l)}

Γex,2 := {Γ ∈ Γ : supp(Γ) ⊂ ∆
(2)
Γ0,ex
}

(2.395)

Note that for l = 1, ..., 2n − 1, Γin,l denotes the set of internal contours of Γ0 whose
support is contained in [x∗l , x

∗
l+1]. Since those contours are internal, we get

dist(Γ,Γ0) > c|Γ|3 (2.396)

for all Γ ∈ Γin,l, l = 1, ..., 2n − 1. Similarily, for Γ ∈ Γex,2, dist(Γ0,∆
(2)
Γ0,ex

) ≤ c|Γ0|3
implies |Γ| < |Γ0| and dist(Γ,Γ0) > c|Γ|3

Associated to the above subsets we define

E−σ0
0 (Γex,2) = {Γ ∈ Γex,2 : σx−(Γ)(Γ,Γ0) = −σ0}

E−σ0(Γex,2) =
⋃

Γ∈E−σ0
0 (Γex,2)

D(Γ) (2.397)

E−(−1)lσ0

0 (Γin,l) = {Γ ∈ Γin,l : σx−(Γ)(Γ,Γ0) = −(−1)lσ0}

E−(−1)lσ0(Γin,l) =
⋃

Γ∈E−(−1)lσ0
0 (Γin,l)

D(Γ) (2.398)

Let us to make some comments about the subsets defined in (2.398) and (2.397).
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• If σ0 := σx−(Γ̃)(Γ) = −1, then E−σ0
0 (Γex,2) contains the black contours of Γex,2 and

E−σ0(Γex,2) is the union of E−σ0(Γ̃) and its descendants accordingly to the tree
expansion, so Γ\E−σ0(Γex,2) is a set of compatible contours.
• In the same way if σ0 = +1, E−σ0

0 (Γex,2) contains the black contours of Γex,2 and
E−σ0(Γex,2) is the union of E−σ0(Γ̃) and its descendants.

The very same argument can be used to show that Γ\E−σ0(Γin,l) is a set of compatible
contours.

Proposition 2.31 Let Γ,Γ0 be an arbitrary set of compatible contours , and 1 ≤ l ≤
2n− 1 an odd number, the next inequalities hold

(I) For each fixed x0 ∈ I(l)

∑
y∈∆

(2)
Γ0,ex

J(x0, y)1σy(Γ,Γ0)=σ0 ≤
∑

y∈supp(Γex,2)

J(x0, y)1σx(Γ,Γ0\E−σ0 (Γex,2))=σ0
(2.399)

≤ π2

6c

∑
y∈supp(∆

(2)
Γ0,ex

)

J(x0, y) (2.400)

(II) For each fixed y0 ∈ ∆
(2)
Γ0,ex

,

∑
x∈∆Γ0,in,l

J(x, y0)1σx(Γ,Γ0)=−σ0 ≤
∑

x∈supp(Γin,l)

J(x0, y)1σx(Γ,Γ0\E−σ0 (Γin,l))=−σ0
(2.401)

≤ π2

6c

∑
x∈I(l)

J(x, y0) (2.402)

From equations (2.400), (2.402) we get

∑
x∈IΓ0

(l)

 ∑
y∈∆

(2)
Γ0,ex

J(x, y)1σy(Γ,Γ0)=σ0

 ≤ π2

6c

∑
x∈IΓ0

(l)

∑
y∈∆

(2)
Γ0,ex

J(x, y) (2.403)

∑
y∈∆

(2)
Γ0,ex

 ∑
x∈IΓ0

(l)

J(x, y)1σx(Γ,Γ0)=−σ0

 ≤ π2

6c

∑
y∈∆Γ0,in,l

∑
x∈IΓ0

(l)

J(x, y) (2.404)
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Proof: We suppose E−σ0(Γex,2) is not empty, otherwise it is direct. We claim

{x ∈ supp(Γex,2) : σx(Γ,Γ0) = σ0} ⊆ {x ∈ supp(Γex,2) : σx(Γ,Γ0\E−σ0(Γex,2) = σ0}
(2.405)

If (2.405) is true, it follows

1σx(Γ,Γ0)=σ0 ≤ 1σx(Γ,Γ0\E−σ0 (Γex,2)=σ0
(2.406)

and (2.399) is a direct consequence. To prove the claim (2.405), we notice that

x 6∈
⋃

Γ∈E−σ0 (Γex,2)

supp(Γ) ⇒ σx(Γ,Γ0) = σx(Γ,Γ0\E−σ0(Γex,2)) (2.407)

x ∈
⋃

Γ∈E−σ0 (Γex,2)

supp(Γ) ⇒ σx(Γ,Γ0\E−σ0(Γex,2)) = σ0 (2.408)

but not necessarily σ0 = σx(Γ,Γ0) for x ∈
⋃

Γ∈E−σ0 (Γex,2) supp(Γ). In fact, it is certain
for x = x−(Γa), Γa ⊂ E−σ0(Γex,2)

σx(Γ,Γ0) = −σ0

σx(Γ,Γ0\E−σ0(Γex,2)) = σ0 (2.409)

Proof of (2.400). We will use the argument of grouping into contours with the same
mass, based on the techniques used in [31] [32]. Let x0 be a fixed point

∑
y∈supp(Γex,2)

J(x0, y)1σx(Γ,Γ0\E−σ0 (Γex,2))=σ0
≤

∑
Γ∈Γ̂ex,2

∑
y∈supp(Γ)

J(x0, y)1σy(Γ,Γ0\E−σ0 (Γex,2))=σ0
(2.410)

=
∑
M≥1

∑
Γ∈Γ̂ex,2

|Γ|=M

∑
y∈supp(Γ)

J(x0, y)1σy(Γ,Γ0\E−σ0 (Γex,2))=σ0
(2.411)

where
Γ̂ex,2 = Γex,2\E−σ0(Γex,2)

Equation (2.411) depends strongly on the fact that those contours whose state at the
leftmost point is −σ0 were erased, so the interaction can be decomposed into a sum of
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terms where the contours belonging to Γ,Γ0\E−σ0(Γex,2). Now, by fixing M and denoting
by Γ1, ...,ΓnM ⊂ Γex,2 the subset of contours with mass is M and by using some of the
main properties of contours, we deduce

• There exists at most M points in supp(Γi), 1 ≤ i ≤ nM whose state is σ0.
• Contours with the same mass are mutually external, so we can denote Γ1 < Γ2..., <

Γn1,M
for contours at the right hand of x0 and Γ

′
1 > Γ

′
2..., > Γ

′
n2,M

for contours at
the left hand of x0.
• If yk ⊂ supp(Γk) is the nearest point to x0, then

dist(yk, x0) ≥ [(k − 1)M + ckM3]

dist(yk, yk+1) > [M + cM3]

The same follows for contours at the left hand of x0. If y
′

k ⊂ supp(Γ
′

k) is the nearest
point to x0, then

dist(y
′

k, x0) ≥ [(k − 1)M + ckM3]

dist(y
′

k, y
′

k+1) > [M + cM3]

The interaction is a decreasing function of the distance, so

∑
Γ∈Γ̂ex,2

|Γ|=M

∑
y∈supp(Γ)

J(x, y)1σy(Γ,Γ0\E−σ0 (Γex,2))=σ0
≤ M

(
n1,M∑
k=1

J(yk, x0) +

n2,M∑
k=1

J(y
′

k, x0)

)

≤ M

cM3

 ∑
y∈∆

(2)
Γ0,ex

y<x0

J(y, x0) +
∑

y∈∆
(2)
Γ0,ex

y>x0

J(y, x0)

(2.412)

=
1

cM2

∑
y∈∆

(2)
Γ0,ex

J(x, y0) (2.413)

The above inequality implies

∑
M≥1

∑
Γ∈Γ̂ex,2

|Γ|=M

∑
x∈supp(Γ)

J(x, y)1σx(Γ,Γ0\E−σ0 (Γex,2))=σ0
≤

∑
M≥1

1

cM2

∑
x∈supp(Γex,2)

J(x, y0)(2.414)

Finally, since
∑

M≥1
1
M2 = π2

6
, we conclude the result.
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Proof of (2.401) The argument used is the very same as (2.401). Nevertheless we will
reproduce it again. Suppose E−(−1)lσ0(Γin,l) is not empty, otherwise it is direct. We claim

{x ∈ supp(Γin,l) : σx(Γ,Γ0) = −σ0} ⊆ {x ∈ supp(Γin,l) : σx(Γ,Γ0\Eσ0(Γin,l) = −σ0}
(2.415)

It implies

1σx(Γ,Γ0)=σ0 ≤ 1σx(Γ,Γ0\Eσ0 (Γex,2)=σ0 (2.416)

and (2.401) is a direct consequence from this. To prove (2.415), we check

x 6∈
⋃

Γ∈Eσ0 (Γin,l)

supp(Γ) : σx(Γ,Γ0) = σx(Γ,Γ0\Eσ0(Γin,l)) (2.417)

x ∈
⋃

Γ∈Eσ0 (Γin,l)

supp(Γ) ⇒ σx(Γ,Γ0\Eσ0(Γin,l)) = −σ0 (2.418)

but not necessarily σ0 = −σx(Γ,Γ0) for x ∈
⋃

Γ∈Eσ0 (Γin,l)
supp(Γ). In fact, it is certain

for x = x−(Γb), Γb ⊂ Eσ0(Γin,l).

σx(Γ,Γ0) = σ0

σx(Γ,Γ0\Eσ0(Γex,2)) = −σ0 (2.419)

Proof of (2.402). We use the very same argument as (2.400). Let y0 be a fixed point

∑
x∈supp(Γin,l)

J(x, y0)1σx(Γ,Γ0\Eσ0 (Γin,l))=−σ0 ≤
∑

Γ∈Γ̂in,l

∑
x∈supp(Γ)

J(x0, y)1σx(Γ,Γ0\Eσ0 (Γin,l))=−σ0(2.420)

=
∑
M≥1

∑
Γ∈Γ̂in,l

|Γ|=M

∑
x∈supp(Γ)

J(x0, y)1σx(Γ,Γ0\Eσ0 (Γin,l))=−σ0(2.421)

where

Γ̂in,l = Γin,l\Eσ0(Γin,l) (2.422)
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Equation (2.421) depends strongly on the fact that those contours whose state at the
leftmost point is σ0 were erased, so the interaction can be decomposed into a sum over
contours belonging to Γ,Γ0\Eσ0(Γex,2). Now, by fixingM and denoting Γ1, ...,ΓnM ⊂ Γex,2

to those contours with mass is M and using some of the main properties of contours, we
can deduce

• There exists at most M points in supp(Γk), 1 ≤ i ≤ nM whose state is −σ0.
• Contours with the same mass are mutually external, so we can denote Γ1 < Γ2..., <

Γn1,M
for contours at the right hand of y0 and Γ

′
1 > Γ

′
2..., > Γ

′
n2,M

for contours at
the left hand of y0.
• If xk ⊂ supp(Γk) is the nearest point to y0, then

dist(xk, x0) ≥ [(k − 1)M + ckM3]

dist(xk, xk+1) > [M + cM3]

The same follows for those contours at the left hand of y0. If x′k ⊂ supp(Γ
′

k) is the
nearest point to y0, then

dist(x
′

k, y0) ≥ [(k − 1)M + ckM3]

dist(x
′

k, x
′

k+1) > [M + cM3]

since the interaction is not increasing as a function on the distance, we get

∑
Γ∈Γ̂in,l

|Γ|=M

∑
x∈supp(Γ)

J(x, y0)1σx(Γ,Γ0\Eσ0 (Γin,l))=−σ0 ≤ M

(
n1,M∑
k=1

J(yk, x0) +

n2,M∑
k=1

J(y
′

k, x0)

)

≤ M

cM3

 ∑
x∈IΓ0

(l)
x<y0

J(y0, x) +
∑

x∈IΓ0
(l)

x>y0

J(y0, x)


=

1

cM2

∑
x∈IΓ0

(l)

J(x, y0) (2.423)

It implies∑
M≥1

∑
Γ∈Γ̂in,l

|Γ|=M

∑
x∈supp(Γ)

J(x, y)1σx(Γ,Γ0\E−σ0 (Γin,l))=σ0
≤

∑
M≥1

1

cM2

∑
x∈supp(Γin,l)

J(x, y0)(2.424)

Finally, since
∑

M≥1
1
M2 = π2

6
, we conclude the result.
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Proposition 2.32 Let l,m be a pair of numbers such that l is odd and m is even, then

∑
x∈I(l)

∑
y∈I(m)

J(x, y)1σx(Γ,Γ0)=σ01σy(Γ,Γ0)=σ0 ≤
π2

6c

∑
x∈I(l)

∑
y∈I(m)

J(x, y) (2.425)

∑
x∈I(l)

∑
y∈I(m)

J(x, y)1σx(Γ,Γ0)=−σ01σy(Γ,Γ0)=−σ0 ≤
π2

6c

∑
x∈I(l)

∑
y∈I(m)

J(x, y)

Proof:

We observe for x ∈ I(l) fixed

∑
y∈I(m)

J(x, y)1σx(Γ,Γ0)=σ01σy(Γ,Γ0)=σ0 ≤
∑

y∈I(m)

J(x, y)1σy(Γ,Γ0)=σ0 (2.426)

It can be shown for each x ∈ I(l) that

∑
y∈I(m)

J(x, y)1σy(Γ,Γ0)=σ0 =
∑

y∈supp(Γin,m)

J(x, y)1σy(Γ,Γ0)=σ0

≤ π2

6c

∑
y∈I(m)

J(x, y) (2.427)

see equation (2.402) from Proposition 2.31. Note that equation (2.427) implies

∑
x∈I(l)

∑
y∈I(m)

J(x, y)1σx(Γ,Γ0)=σ01σy(Γ,Γ0)=σ0 ≤
∑
x∈I(l)

∑
y∈I(m)

J(x, y)1σy(Γ,Γ0)=σ0 (2.428)

≤ π2

6c

∑
x∈I(l)

∑
y∈I(m)

J(x, y) (2.429)

(2.430)

Analougsly, for y ∈ I(m) fixed

∑
x∈I(l)

J(x, y)1σx(Γ,Γ0)=−σ01σy(Γ,Γ0)=−σ0 ≤
∑
x∈I(l)

J(x, y)1σx(Γ,Γ0)=−σ0 (2.431)
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From equation (2.402) of Proposition 2.31

∑
x∈I(l)

∑
y∈I(m)

J(x, y)1σx(Γ,Γ0)=−σ01σy(Γ,Γ0)=−σ0 ≤
∑
x∈I(l)

∑
y∈I(m)

J(x, y)1σx(Γ,Γ0)=−σ0(2.432)

≤ π2

6c

∑
x∈I(l)

∑
y∈I(m)

J(x, y) (2.433)

.1 Some general notes on Fractals

.1.1 The Cantor set

The most famous fractal set is the Cantor set on [0, 1], so we start by revisiting this
classical example. The procedure to build this set by ”erasing” the middle third part is
summarized in the next algorithm

P.0 C(0) = [0, 1].

P.1 C(1) = [0, 1
3
] ∪ [2

3
, 1].

P.2 C(2) = [0, 1
9
] ∪ [2

9
, 1

3
] ∪ [6

9
, 7

9
] ∪ [8

9
, 1].

P.3 C(3) = [0, 1
27

] ∪ [ 2
27
, 1

9
] ∪ [ 6

27
, 7

27
] ∪ [ 8

27
, 9

27
] ∪ [2

3
, 19

27
] ∪ [21

27
, 22

27
] ∪ [24

27
, 25

27
] ∪ [26

27
, 1].

P.N Given a configuration C(n−1) at step n− 1, we set

C(n) =
C(n−1)

3
∪
{

2

3
+
C(n−1)

3

}
(434)

Note that for n < m, we have Cm ⊂ Cn. The Cantor set can be defined as

C = ∩n≥1C
(n) (435)

The above picture shows the procedure for the first three steps

C(0)

C(1)

C(2)

C(3)

0 1
27

2
27

3
27

6
27

7
27

8
27

9
27

18
27

19
27

20
27

21
27

24
27

25
27

26
27

27
27

note that C satisfies
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1

3
C ∪

{
2

3
+

1

3
C

}
= C (436)

and

1

3
C ∩

{
2

3
+

1

3
C

}
= ∅ (437)

Equations (436), (437) plays an important role , which will be formalized next.

.1.2 Self Similarity

Definition .33 We say that a mapping

S : R −→ R (438)

is a similitude if there exists 0 < r < 1 such that

|S(x)− S(y)| = r|x− y|, x, y ∈ R (439)

where r is called the contraction ratio.

Definition .34 Suppose S = {S1, ...,SN}, N ≥ 2 is a finite sequence of similitudes with
contraction ratios r1, ..., rN . We say that a non empty compact set K is invariant under
S if

K =
N⋃

i=1

SiK (440)

We remark that for any finite collection of similarities S there exists a unique invariant
compact set that satisfies (440) . A formal definition of a self similar set is given next

Definition .35 We say that S = {S1, ...,SN} satisfies the open condition if there exists
an open set O such that

∪Ni=1 Si(O) ⊆ O Si(O) ∩ Sj(O) = ∅ , i 6= j (441)
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From equation (436) we know that the Cantor can be written as

C = S1(C) ∪ S2(C) (442)

where

S1(x) =
1

3
C

S2(x) =
2

3
+

1

3
C

we note that C satisfies definition (.33) with r1 = r2 = 1/3. We will see in the next
lemma that , the Cantor set also satisfies the Open Condition set defined in (.35).

Lemma .36 Let be the open set

B(C, ε) = {x ∈ R : d(x,C) < ε} (443)

Then, for 0 < ε < 1/12 we have

(i)

B(C, ε) ⊂ B(C, ε)

3
∪
{
B(C, ε)

3
+

2

3

}
(444)

(ii)
B(C, ε)

3
∩
{
B(C, ε)

3
+

2

3

}
= ∅ (445)

in particular, the Cantor set satisfies the Open condition

Proof:

We have that x ∈ B(C, ε) if and only if there exists y ∈ K such that |x− y| < ε. On
the other hand, from equation (443) we get for i = 1, 2

|Si(x)− Si(y)| = |x− y|
3

<
ε

3
< ε (446)

since S(y) ∈ C, we deduce that S(x) ∈ B(C, ε) for all x ∈ B(C, ε), and by consequence

Si(B(C, ε)) ⊂ B(C, ε) (447)

for i = 1, 2. On the other hand, for ε < 1/12, we get

92



dist(S1(B(C, ε)),S2(B(C, ε))) > |1
3
− 2ε| > 1

6
(448)

then S1(B(C, ε)) ∩ S2(B(C, ε)) = ∅. We conclude that C satisfies the open condition.

.1.3 Hausdorff Dimension

Let X be a separable metric space and 0 ≤ s < ∞. For any E ∈ X, we denote de
s-dimensional Hausdorff measure by

Hs(A) = lim
δ→0
Hs
δ(A) (449)

where

Hs
δ(A) = inf

{∑
d(Ei)

s : A ⊂ ∪i≥1Ei, Ei measurable and d(Ei) ≤ δ
}

(450)

where d(E) = max{|x−y| : x, y ∈ E} is the diameter of E, with the convention 00 = 1
and d(∅) = 0. The Hausdorff measure have nice properties under translation and dilation
transformations on R. For A ∈ R, y ∈ R, 0 < t <∞

Hs(A+ y) = Hs(A)

Hs(tA+ y) = tsHs(A) (451)

Definition .37 The Hausdorff dimension on a set A ∈ R is

dimH(A) = sup {s : Hs(A) > 0} (452)
= sup {s : Hs(A) =∞}

or equivalently

dimH(A) = inf {s : Hs(A) <∞} (453)
= inf {s : Hs(A) = 0}
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The Hausdorff dimension has some desirable properties

dimH(A) ≤ dimH(B) if A ⊆ B

dimH(∪i≥1Ai) = sup
i

dimH(Ai)

dimH(tA+ y) = dimH(A) (454)

The Hausdorff dimension is the unique number such that

s < dimH(A)⇒ Hs(A) =∞
s > dimH(A)⇒ Hs(A) = 0

At the border case t = dimH(A) there is not exist a general non trivial behavior, and
the three cases Hs(A) =∞, 0 < Hs(A) <∞, Hs(A) = 0 are possible.
In general, a computation of the Hausdorff dimension could be very hard, so it is desirable
to get a simple criteria to the most important cases. We state next a simple criteria to
compute the Hausdorff dimension, which applies for a general subset of fractal sets

Theorem .38 Let S = {S1,S2, ...,SN} a similitude with contraction ratios r1, ..., rN .
and K the unique compact set that satisfies S(K) = ∪Ni=1Si(K). Then the Hausdorff
dimension of K is given for the unique real solution to the equation

N∑
i=1

rsi = 1 (455)

Proof: See Theorem 4.14 from [36]

Corollary .39 The Hausdorff Dimension of the Cantor set is s = log 2
log 3

Proof: From the identity C = 1
3
C ∪

{
2
3

+ 1
3
C
}
, we have that the contraction ratios are

r1 = r2 = 1/3, so we get directly from theorem (.38) that the Hausdorff dimension is
given by the solution to the equation

1

3s
+

1

3s
= 1⇔ 3s = 2⇔ s =

log 2

log 3
(456)

.1.4 A generalized Cantor Set

We will build in the following a more general case, accordingly to the next procedure. Let
λ ∈ (0, 1) , we set recursively
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C
(0)
λ = [0, 1]

C
(n)
λ = λC

(n−1)
λ ∪

{
(1− λ) + λC(n−1)

}
, n ≥ 1. (457)

Note that for n < m, we have Cm
λ ⊂ Cn

λ . The generalized Cantor set is defined by

Cλ = ∩n≥1C
(n)
λ (458)

We remark that for λ = 1/3, the Classical Cantor Set is recovered. This generalized
set satisfies the identity

Cλ = λCλ ∪ {(1− λ) + λCλ}

In addition, for ε close to zero

B(Cλ, ε) ⊂ λB(Cλ, ε) ∪ {(1− λ) + λB(Cλ, ε)}
∅ = λB(Cλ, ε) ∩ {(1− λ) + λB(Cλ, ε)} (459)

where B(Cλ, ε) = {x ∈ R : d(x,C) < ε} (the argument is the very same as the used in
Lemma (.36)). We deduce that the compact set Cλ is self similar and satisfies the open
condition, so the Hausdorff dimension is given by the solution to the equation

λs + λs = 1⇔ s = − log 2

log λ
(460)
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