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Resumen

Esta tesis contiene cinco capitulos. En el primer capitulo, presentamos algunas motiva-
ciones de los problemas que consideramos en los siguientes cuatro capitulos. En particular,
describimos algunos resultados conocidos para el problema Gelfand, ecuacién y sistema de
Lane-Emden, y el problema clésico de Brézis y Nirenberg, y enunciamos los principales re-
sultados de esta tesis.

En el Capitulo 2, estamos interesados en la estructura de las soluciones al problema de
tipo Gelfand

—Au=Ae*—1), u>0 en B;
u=20 en 0B,

donde B es la bola de radio 1 en R?, N > 3 y A > 0 es un parametro. Establecemos
multiplicidad infinita de soluciones regulares para 3 < N < 9 y un valor particular de A, y
obtenemos una cota para el indice de Morse y el nimero de soluciones cuando N > 10.

El Capitulo 3 esta dedicado a estudiar soluciones positivas radialmente simétricas estables
del sistema de Lane-Emden

—Au=v" u>0 en RV,
—Av=ul v>0 en RV,

donde N > 1y p > q > 1. Se obtiene una nueva curva critica que describe de manera 6ptima
la existencia de este tipo de soluciones.

En el Capitulo 4 analizamos la multiplicidad de soluciones para el siguiente problema
—Au=uP 4+ Iu?, u>0 en (),
u=20 en OS2,

donde € es un dominio suave y acotado en R3, A >0, p=5—¢,e >0y 1 <q¢<3. En
particular, demostrar que si 2 < ¢ < 3, para A > 0 suficientemente grande, ¢ > 0 pequeno,
el problema tiene al menos tres soluciones.

En el dltimo capitulo, utilizando el procedimiento de reduccién de Lyapunov-Schmidt,
construimos soluciones tipo torre de burbuja de la ecuacién eliptica ligeramente supercritica

~Au+u=uP+ i, u>0 enRY;
u(z) = 0 cuando |z| — oo,
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dondep:p*—i—e,conp*:N—fg,1<q<%siN24,3<q<581N:3,)\>Oyeesun
parametro positivo.
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Summary

This thesis contains five chapters. In the first chapter, we introduce some motivations
for the problems which we consider in the following four chapters. In particular, we mention
some known results for the Gelfand problem, Lane-Emden equation and system, the classical
Brézis and Nirenberg problem and so on. We also state the main results in this thesis.

In Chapter 2, we are interested in the structure of solutions to the Gelfand-type problem
—Au=Ae*"—1), u>0 in B;
{ u=>0 on 0B,
where B is the unit ball in RY, N > 3 and A > 0 is a parameter. We establish infinite

multiplicity of regular solutions for 3 < N < 9 and some A, and we obtain a bound for the
Morse index and the number of solutions when N > 10.

Chapter 3 is devoted to study stable positive radially symmetric solutions of the Lane-
Emden system

—Au=v", u>0 in RY,
—Av=ul, v>0 in RY,

where N > 1 and p > ¢ > 1. We obtain a new critical curve that optimally describes
existence of such solutions.

In Chapter 4, we are concerned with multiplicity of solutions to the following Dirichlet
problem

—Au=u?+ i, u>0 in Q;
u=>0 on 0f),

where € is a bounded and smooth domain in R3, A >0, p=5—¢,e>0and 1 <¢g<3. In
particular, we prove that if 2 < ¢ < 3, for A > 0 sufficiently large, £ > 0 small enough, then
the problem has at least three solutions.

In the last chapter, using Lyapunov-Schmidt reduction procedure, we construct bubble-
tower solutions to slightly supercritical elliptic equation

{—Au—l—u:up—l—)\uq, uw>0 in RY;

u(z) >0 as |z| = oo,
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where p = p* +¢, with p* = 142, 1 < g < IH2if N >4,3<¢<5if N=3,A>0, and ¢ is
a positive parameter.
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Chapter 1

Introduction

In this thesis, we investigate multiplicity phenomenon and Morse index of solutions for
some elliptic equations and a Liouville-type theorem for stable radial solutions of the Lane-
Emden system. In Chapter 2 , we are interested in the structure of solutions to a Gelfand-
type problem, we establish multiplicity of solutions and analyse the Morse index of solutions.
In the third chapter, we obtain a new critical curve that optimally describes existence of
radially symmetric stable solutions for the Lane-Emden system in RY. Using Lyapunov-
Schmidt method, we get multiplicity of solutions to elliptic equations with mixed Sobolev
growth in the last two chapters. In this chapter, we introduce briefly these problems.

1.1 A Gelfand-type problem

Consider the following elliptic boundary value problem

{—Au:)\f(u) in ;

1.1
u=>0 on 0, (L)

where  is a smooth bounded domain in R¥, A\ > 0 is a parameter and the nonlinearity
f:]0,400) = R is a C*, increasing, convex function satisfying

f(0) >0, (1.2)
and f is superlinear as s — oo in the following sense
lim J(5) = (1.3)
§—00 S

Typical examples are f(u) = e* and f(u) = (1 + w)? with p > 1.

Existence, uniqueness and multiplicity of positive solutions to problem (1.1) in terms of
the parameter A and the domain €2 have brought a lot of attention in the past decades, see
for example [13, 15, 34, 51] et al. and references therein.
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CHAPTER 1. INTRODUCTION

We note that 0 is a subsolution to problem (1.1) for every A > 0. On the other hand, for
A > 0 small, let ¢ solve

—A(=1 in Q;
(=0 on 0,
then
—A¢ > Af(C)
provided A < inf w——. So ¢ > 0 is a supersolution. Then by the method of sub and

L 7@y
supersolutions, we obtain there exists a solution to problem (1.1) for A > 0 small.

Moreover, there is no classical solution if A > 0 is large. In fact, assume ¢, is the first
eigenfunction of —A with Dirichlet boundary condition, i.e. ¢; > 0 satisfies

—A¢r =1 in
01 =0 on 0f),

where p; is the first eigenvalue of —/A. Multiplying (1.1) by ¢; and integrating by parts over

Q, we get
- A .
J251 / u¢1 / f(u)qbl

By the hypotheses on f, there exists ¢ > 0 such that f(u) > cu for all v > 0. Then

;qLu@Zc&Au@.

A< B

C

Thus

Define
A" = sup{A > 0 : such that (1.1) has a classical solution},

thus \* € (0,400). We recall the following properties for problem (1.1), we refer to see
[13, 15, 28, 31, 66, 75].

Proposition 1.1. Assume N > 1, then there exists 0 < \*(N, ), f) < +oo such that
e for 0 < A\ < \*, (1.1) has the minimal solution uy € C?(Q);

e for A\ > \*, (1.1) has no solution (even in the weak sense).

Remark 1.2. The minimal solution wuy is in the sense that for any solution u of (1.1), we
have uy < u.

In addition, for each z € 2, the mapping A — wu, is increasing in (0, \*), this allows
one define u* := limy_, « uy. We call u* the extremal solution of (1.1) and A\* the extremal
parameter. Furthermore, H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa [13] proved
that



CHAPTER 1. INTRODUCTION

Proposition 1.3. [15] u* = limy_,\ uy is a weak solution of (1.1) for A = \* in the following
sense.

Definition 1.4. A weak solution of problem (1.1) is a function u € L*(Q), u > 0, such that
f(w)d(z) € L'(Q),

where d(x) is the distance function with respect to the boundary,
d(z) = dist(x,00),

and

—/uAgpda::)\/f(u)goda::O for ¥ ¢ € CF(Q).
Q 0

It is natural to ask what happens to the solution when A = \*. Before considering this
question, we give another characterization of the minimal solution uy, i.e. its stability.

Definition 1.5. Let f € CY(R) and u € C*(Q) be a solution to (1.1),
(1) We say that u is stable if

Qulp) = /Q (IVel? = Af(w)e*) dz >0 forV ¢ € C5°(Q).

(i) We say that u has Morse index K if K > 1 is the mazimal dimension of a subspace
Xk of C°(Q) such that Q.(p) < 0 for any ¢ € Xk\{0}. We write K = m(u).

Remark 1.6. If u is stable, we write m(u) = 0.

Many authors are interested in the regularity of the extremal solution uv*, which maybe
bounded or singular, depending on the situation. The most well-known cases are exponential
and power-type nonlinearities, see for instance [15, 31, 73, 84].

e For f(u) = e", if N < 9, then the extremal solution u* € L>*(Q). If N > 10 and
Q) = B;(0) is the unit ball in RY| the extremal solution u*(z) = —2log|z]| is singular.

o For f(u) = (14+u)P withp>1,if N <2+ z% +4, /555, then u” is smooth, and when

N >2+ z% +4,/55, @ = Bi(0), u*(z) = |m|_% — 1 is the extremal solution, which is

unbounded.

Let us recall some related results for the exponential and power-type nonlinearities in
(1.1). We first study the following classical Gelfand problem

(1.4)

—Au = le* in §2;
u=>0 on 0,
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where  is a bounded domain in RY(N > 1) with the boundary 95, and A > 0 is a
real parameter. When Q = B;(0) is a unit ball in RY, by the classical result of Gidas-
Ni-Nirenberg [67], all smooth solutions of (1.4) are radially symmetric. For N = 1, this
problem was first considered by Liouville [79] and the author found an explicit solution
in 1853. For N = 2, Bratu [12] also found an explicit solution to (1.4) in 1914. When
N = 3, numerical progress for (1.4) was made by Frank-Kamenetshii [62] in his development
of thermal explosion theory. Further progress for N = 3 was made by Chandrasekhar [23].
Building upon Frank-Kamenetshii’s work, in dimension 3, Gelfand [66] used the Emden’s
transformation to prove the existence of A for which (1.4) has infinitely many nontrivial
solutions. Joseph and Lundgren [73] completely characterized the solution structure of (1.4)
for all dimensions via phase plane analysis in 1973. We also refer to see the survey of J.
Dévila [34] and the book of L. Dupaigne [51].

Proposition 1.7. [75] Let Q be a unit ball in RN, N > 1. Then
(a) If N = 1,2, then there exists \* > 0 such that for 0 < X\ < \*, there are exactly two

solutions to (1.4), one of them is the minimal solution uy. The other one, denote Uy, has
Morse index 1.

(b) If 3 < N <9, then \* > 2(N —2). For 0 < X< X, A\ #2(N —2), (1.4) has finitely
many solutions; for A\ = 2(N —2), (1.4) has infinitely many solutions; for X close to 2(N —2),
(1.4) has a large number of solutions that converge to —2log |x|.

(¢c) If N > 10, then \* = 2(N — 2) and u*(x) = —2log|z|. Moreover (1.4) has a unique
minimal solution uy for each A € (0, \*).

We summarize these results in Figure 1, which plot the mazimum of u against the param-
eter \.

Remark 1.8. Thanks to the following Hardy’s inequality, the function u*(x) = —2log|z| is
a stable weak solution to (1.4) for A = X" =2(N —2) if and only if N > 10.

Proposition 1.9. (Hardy’s inequality) Let N > 3. Then for all ¢ € CHRY),

N_22 2
( y )/ L4 d:cg/ Vo |2dz. (1.5)
R RN

v |z[?

When nonlinearity f(u) is power-type in (1.1), the problem becomes

—Au = A1+ u)?, u>0 in
(1.6)

u=>0 on 0,

with p > 1. When the domain Q is a unit ball in RY (N > 3), Joseph and Lundgren’s
results[73] also apply to (1.6). In order to state these results, we introduce the following
notations. Denote the critical Sobolev exponent by

400 if N <2;
Ps = (1.7)

N+2 .
N—J_FQ it N >3,



CHAPTER 1. INTRODUCTION

A
([

Y
Y
|

A* 2(}\}_2) 2(3\{_2) -_—
1< N <2 2< N <10 N >10

Figure 1: Bifurcation diagrams for positive radial solutions of the Gelfand problem.

we shall refer to the cases p < ps, p = ps, or p > pg as to Sobolev subcritical, critical, or
supercritical respectively.

Define

(N—2)2—4N+8V/N—-1 it N> 11, (1-8)

(N=2)(N-10)

00 if 2 <N <10;
piL =

which is called Joseph-Lundgren exponent introduced in [73]. Note that the exponent p;y, is
larger than the classical Sobolev critical exponent pg.

Proposition 1.10. [73] Let  be a unit ball in RN, N >3, p > 1. Then

(a) If 1 < p < pg, then there exists \* > 0 such that there are exactly two solutions to
(1.6) for any 0 < A < \*, while for A = \* there is a unique solution, which is classical.

(b) If ps < p < pyL, then u* is bounded and X\* > \,, where \, = z%( — %). For
A = A, there are infinitely many solutions; for X close to \,, there are a large number of

solutions.

(c) If p > pyr, then \* = X\, and u*(z) = |x\7p%1 — 1. Moreover (1.6) has a unique
manimal solution uy for each A € (0, \*).

Remark 1.11. (i) The same bifurcation diagrams as in Figure 1 are true for problem (1.6)
when § is the unit ball in RY and the three cases correspond to 1 < p < pg, ps < p < PJL
and p > pyr, respectively.

(11) In the supercritical case, the bifurcation diagrams of (1.6) are completely different for
p<pjLandp>pyr.

(111) Hardy’s inequality (1.5) implies that u*(x) = |$|7ﬁ — 1 is a stable weak solution of
(1.6) for A =\, = -2-(N — %) if and only if p > pyr.

p—1

Applying implicit function theorem, one can establish a local solution curve (\,u) €
[0,00) x C(€2) to (1.4) and (1.6), which stems from (0,0). By Propositions 1.7 and 1.10, we

b}
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note that the exponential and power-type nonlinearities for problem (1.1) in the unit ball of
RY have similar multiplicity phenomena. A related problem with (1.6) is

—Au=u"~4+ Iu, u>0 in B;
(1.9)

u=20 on 0B,

where p > 1 and A > 0 is a parameter and B is the unit ball in RY with N > 3. We
observe that the nonlinearity f(0) = 0 for any A > 0, which does not satisfy condition (1.2).
According to classical bifurcation theory [32], the point (u,0) is a bifurcation point from
which emanates an unbounded branch C of solutions of (1.9), where p; is the first eigenvalue
of the negative Laplacian operator under Dirichlet boundary condition in B. Multiplying
(1.9) by the first eigenfunction and integrating by parts, we get for any p, (1.9) has no
solution for A > py, even when B is replaced by a general bounded smooth domain 2.

For the subcritical case, i.e. p < pg, there is a positive classical solution of (1.9) for
A < pp by a standard constrained minimization procedure involving compactness of the
Sobolev embedding. More precisely, consider the minimizing of the functional

E\(u) = /B(|Vu|2 — \u?)dx

constrained on the manifold

M:{ueHg(B) : /\u|P+1da;:1}.
B

Using the embedding H}(B) < LPT(B) is continuous and compact for p < pg(N > 3), the
infimum is achieved.

For the critical case, i.e. p = pg, Brézis and Nirenberg [14] made great contributions
to this case. Since the Sobolev embedding HJ(B) < LP™(B) loses compactness when
p > ps, problem (1.9) becomes more difficult and delicate. Using the Pohozaev’s identity
[99], problem (1.9) has no solutions for A < 0 or A > p; whenever p > pg. Brézis and
Nirenberg [14] established the following results:

e when N > 4, problem (1.9) has a solution for every 0 < A < py;
e when N = 3, problem (1.9) has a solution only for Ty < X < 1.

For the supercritical case, i.e. p > pg, Budd and Norbury [16] derived formally qualitative
properties of the bifurcation branch of solutions to (1.9). In particular, formal asymptotics
and numerical computations suggest that before reaching A = 0, the curve turns right and
then oscillates infinitely many times in the form of an exponentially damped sinusoidal along
a line A = \,. Merle and Peletier [81] proved that there is a unique value A = A, > 0 such
that there exists a singular solution u, to (1.9). Moreover,

us(r) = A(p, N)T_%[l — B(p, N)r* +o(r*)] asr — 0,

6
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where

A@,N):{L(N_g_i)y”, B@,N):%(N_l_i)?

p—1 p—1 p—1

Merle, Peletier and Serrin [82] also studied the asymptotic behavior of the positive solutions
(Ap, up) as p — 0o. Dolbeault and Flores [49], using geometric theory of dynamical system,
established the numerical computations in [16]. They proved that if

N>11 and ps<p<py or N <10, (1.10)

then there is a unique number A, > 0, such that for A close to A,, a large number of classical
radial solutions of (1.9) exist. In particular, there are infinitely many classical radial solutions
for A\ = A.. See the bifurcation diagrams for positive solutions of (1.9) in Figure 2. Moreover,
in this paper, the authors also considered problem (1.6) when the power s” is perturbed by
a lower order term. More precisely, they established a similar assertion for the following
problem

{—Au:/\((1+u)p+(1+u)q)a u>0 inB; (1.11)

u=20 on 0B,

where 1 < ¢ < p and p satisfies (1.10)

Recently, Guo and Wei [71] studied problem (1.9) further. They found the structure of
the branch C changed for

p>py and ps <p<pjL.
The authors established the following results:
e for ps < p < pyr, C turns infinitely many times around A, € (0, j11);
e for N > 11 and p > py, all solutions (regular or singular) have finite Morse index;

e for N > 12 and p > p,, sufficiently large, all solutions (regular or singular) have exactly
Morse index one.

Motivated from above results, it is natural to ask: is there similar multiplicity phenomena
involving the exponential term in the nonlinearity? The answer is positive.

Chapter 2 is devoted to study the structure of solutions to the following problem

—Au=Ae"—1), u>0 in B;
(1.12)

u=20 on 0B,

where B is the unit ball in RY, N > 3 and A > 0 is a parameter.

Smooth solutions to (1.12) are radially symmetric and decreasing by the classical result
of Gidas, Ni and Nirenberg [67]. We observe that f(0) = 0, which does not satisfy condition
(1.2). Note that u = 0 is a trivial solution to (1.12) for any A > 0. According to classical

7
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[ Jullee |

0 H A 0 /4 oA
P=Pps p=ps. N=3
[lze] o
[[zl] o T
0 1 g 0 Ay H A
p=ps, N>3 ps <p<pi

Figure 2: Bifurcation diagrams for positive solutions of (1.9) in the unit ball of R,

bifurcation theory [32], the point (u1,0) is a bifurcation point from which emanates an
unbounded branch C of solutions of (1.12), where p; is the first eigenvalue of the negative
Laplacian operator under Dirichlet boundary condition in 5.

We get multiplicity of regular radial solutions to problem (1.12) for 3 < N < 9.

Theorem 1.12. If 3 < N < 9, then there exists a unique \. such that problem (1.12) has
infinitely many regular radial solutions for A = \.. Moreover X # A, but close to A\, there is
a large number of reqular radial solutions for (1.12).

Multiplicity results were obtained by using geometric theory of dynamical systems in
three-dimensional phase space, which was applied by Bamon, del Pino, and Flores [8] to
study the following problem,

—Au=uP +u! inRY;
(1.13)
0<u(z) =0 as|zr|— oo,
where p and ¢ are subcritical and supercritical respectively, namely
1<p<ps<yq. (1.14)

By the result of Zou [119], all the ground states to (1.13) are radially symmetric around some
point for p and ¢ satisfying (1.14). Thus it can be written as an ODE equation
—u = = =l w0 (1.15)
W(0)=0, 0<u(r) =0 asr— oo, '
8
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where u, = max{u,0}. A positive solution u(r) of (1.15) in (0, 00) is said to have slow decay
if
u(r) = Cr ot + 0(7“_%) as r — 0o,

for some positive constant C. u(r) is said to have fast decay if
u(r) =0 M=) asr — 0.

Thus wu(r) is said to be a radial ground state of (1.13) if it is finite up to r = 0 with «/(0) = 0.
The first result of existence of radial ground states of (1.13) was given by Lin and Ni in [78].
They found if p and ¢ satisfy (1.14) and ¢ = 2p — 1, then there is an explicit solution of the
form u(r) = (ﬁ)ﬁ, where A, B are positive constants depending on p and N. It is a
ground state of slow decay.

Problem (1.15) is equivalent to a three dimensional autonomous first order system after
the classical Emden-Fowler transformation, then a ground state with fast decay corresponds
to a heteroclinic orbit connecting two stationary points of the system with a two-dimensional
unstable manifold and a two-dimensional stable manifold respectively. Using phase-space
analysis, Bamon, del Pino, and Flores [8] proved that for ¢ > pg is fixed and p approaches pg
from below, then problem (1.13) has a large number of radial ground states with fast decay.
A similar fact holds for % < p < pg fixed and ¢ approaches pg. Moreover, if ¢ is fixed and
p close enough to %, then no solutions exist.

It is also worth mentioning the case ¢ = 2p — 1 and the range of p is further restricted to

N+2VN=1 _
N—d4+2/N -1 P

Flores [59] showed that not only Lin and Ni’s solution exists, but also infinitely many solutions
with fast decay. In addition, if NL_2 < p < ps < q, psatisfies (1.16), and there is a slow decay
radial ground state of (1.13), then there are infinitely many radial ground states with fast
decay.

(1.16)

This method was subsequently applied in [49, 59, 60]. There are some analogies between
the results and techniques of this work and [4, 5, 38, 40, 41] on fourth order problems involving
the exponential nonlinearity.

Although the question of multiplicity of solutions to (1.13) under restriction (1.14) has
been studied in the nearly sub-supercritical case with the help of geometric dynamical systems
tools, Campus [21], using Lyapunov-Schmidt procedure, proved that there exist a large finite
number of ground states of (1.13) with fast decay when % < p < pg is fixed with N > 3
and ¢ lies above but close enough to the critical exponent pg, these solutions behave like
a superposition of “bubbles” of different blow-up orders centered at the origin. In the last
chapter, we are interested in multiplicity of solutions of the following problem

—Au+u=uP+ i, u>0 inRY;
(1.17)

u(z) =0 as |z| = oo,
9



CHAPTER 1. INTRODUCTION

where p and ¢ are in some ranges. A is a positive parameter. We will introduce this problem
at the end of this chapter.

Let us come back to problem (1.12). Another interesting question is: what does happen
in high dimensions? Inspired by the result of Guo and Wei [71], we estimate the Morse index
of solution to (1.12) for N > 10.

Theorem 1.13. Assume N > 10. Then there exists K < oo such that the Morse index of
any radial solution (XN, uy) of (1.12) (regular or singular) is bounded by K. The number of
intersections of any reqular solution and the radial singular solution is uniformly bounded by
2K +1. Moreover, for each X € (Xo, i11), the number of reqular solutions to (1.12) is bounded
by (K +1)2.

Remark 1.14. By Pohozaev’s identity, there exists A\g > 0 such that classical solutions of
(1.12) can exist only for A € (Ao, p11), where uy is the first eigenvalue of the negative Laplacian
operator under Dirichlet boundary condition in B.

1.2 Lane-Emden system

Consider the Lane-Emden system

1.18
—Av=ul, v>0 in RY, ( )

{—Au:vp,u>0 in RY,
where N > 1 and p > ¢ > 1. This system arises in chemical, biological and physical studies,
and has been investigated by many authors, see for example, de Figueiredo-Felmer [42],
Mitidieri [85], Serrin and Zou [106] and Van der Vorst [114].

System (1.18) is a natural extension of the celebrated Lane-Emden equation
—Au=u" z€RY, u>0 N>3 p>1. (1.19)

Problem (1.19) has been studied extensively. There has been much work done on existence
and nonexistence of positive classical solutions of (1.19), see for instance [19, 25, 69, 67]. B.
Gidas and J. Spruck [69] obtained the following beautiful result: the Lane-Emden equation
(1.19) has no positive solution if

| <p< pe e N +2
P<Ps=N_9
L. Caffarelli, B. Gidas and J. Spruck [19] established that if p = pg, up to rescaling and
translation, the positive solution is unique. It is known that the Sobolev exponent

N 42

Ps—m7

10



CHAPTER 1. INTRODUCTION

which is the dividing number for existence and non-existence of solutions of (1.19), that is,
equation (1.19) admits non-negative, non-trivial solutions if and only if p > pg, see [69].

Moreover, Farina [55] proved Liouville-type results for C? solutions of (1.19) belonging
to one of the following classes: stable solutions, finite Morse index solutions, solutions which
are stable outside a compact set, radial solutions and non-negative solutions. The author
got existence of a new critical exponent p;r. This new critical exponent is larger than the
classical Sobolev critical exponent. We state here one of results in [55]. The author obtained
that no nontrivial stable solution (also nonradial) exists if

N<10 or N>11 and 1<p<pyg,
where pyy, is the Joseph-Lundgren exponent. On the other hand, for
N >11 and every p > pyr

(1.19) admits a positive smooth stable radial solution.

For the Lane-Emden system, concerning the question of existence and nonexistence of
entire solutions, it is expected that the role of the Sobolev exponent pg should be played by
the so-called Sobolev hyperbola. It has been conjectured, see for example De Figueiredo and
Felmer [42], that the hyperbola

1 N 1 N-2
p+1 ¢q+1 N’

P, q4>0,
is the dividing curve between existence and nonexistence of solutions to (1.18). That is, there
is no positive classical solution of (1.18) if and only if

11 N2
p+1 q+1~ N

(1.20)

This conjecture is supported by the results that there are no radial positive solutions to (1.18)
provided that p, ¢ satisfy (1.20), see Mitidieri [86] for p,¢q > 1 and Serrin and Zou [107] for
p,q > 0. Moreover, system (1.18) admits positive radial classical solutions provided that

L 1 N=2 (1.21)
p+1 ¢g+1~ N~
see Serrin and Zou [107]. This conjecture was proved for the radial case in all dimensions.
For non-radial solutions, in dimension N < 2, the conjecture is a consequence of a result of
Mitidieri and Pohozaev [87]. Polécik, Quittner and Souplet [100] proved that the conjecture
is true for N = 3. The conjecture was proved by Souplet [110] for N = 4. Moreover, some
partial results were also established for N > 5, see for example [17, 26, 110].

Recently, Cowan [30] proved various Liouville-type theorems for positive stable solutions
of the Lane-Emden system and the fourth scalar equation. For example, the author showed
that the nonexistence of positive classical stable solutions (not necessary radial) to (1.18) for

11



CHAPTER 1. INTRODUCTION

1 < N <10 and p > g > 2. The author also examined nonexistence of positive classical
stable solutions of the fourth order equation, i.e. the case ¢ = 1 in (1.18)

Question: is there a new dividing curve in the pg—plane for existence and
nonexistence of stable radially symmetric positive solution to the Lane-Emden
system?

In Chapter 3, we characterize the stability of radially symmetric solutions of the Lane-
Emden system (1.18). This gives a positive answer for above question. In order to state our
result, we introduce the definition of stable solution for system (1.18) and some notations.

Definition 1.15. A solution (u,v) to (1.18) is stable if there exists a positive supersolution
of the linearized system i.e. if there exists (¢,) € C*(RN)? such that

—A¢ > pvP e in RY,
—A¢p > quil¢ in RY,
¢, >0 in RY.

Let us also note that if (1.21) holds, then
(s, v2) = (o], b2l ), = € RY\ {0} (1.22)
is a weak solution of (1.18) provided

~2(p+1) _2(g+1)
-1 T i

and a = (ST?)5 1 b= (S4T)m 71,8 =a(N —2—a),T = B(N —2—B).
Theorem 1.16. Assume p > q > 1.

(1) If N > 11 and (p, q) lies on or above the Joseph-Lundgren critical curve i.e.

V=2 o= o2
4

then any radially symmetric solution (u,v) of (1.18) is stable and satisfies

> pgaf(N =2 —a)(N —2—f), (1.24)

u<u, and v<wv, in RY\{0},

where (ug, vg) is the singular solution given by (1.22) and o, 5 are the scaling exponents given
by (1.23).

(i) If N < 10 or if N > 11 and (1.24) fails, then there is no stable radially symmetric
solution of (1.18).

The above result states that the stability of a radial solution of the Lane-Emden system
is determined by the position of the exponents (p,q) with respect to a new critical curve,
which we call “Joseph and Lundgren”, since the exponent introduced by these authors in
[73] is the intersection of the curve with the diagonal p = q.

12
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1.3 Bubbling solutions for some elliptic equations

In Chapters 4 and 5, we use Lyapunov-Schmidt Reduction method to consider existence
and multiplicity of bubbling solutions to some asymptotic critical elliptic equations. First we
state this method, see also the book [24]. Then we introduce our main problems and results.

1.3.1 Lyapunov-Schmidt Reduction

Let X, Y be Banach space, and let A be a topological space. Assume that F': O xA - Y
is continuous, where O C X is a neighborhood of z5. We assume that Fj,(z, \g) is a Fredholm
operator, i.e.

(a) ImF,(zg, \) is closed in Y,
(b) d = dimkerF,(zg, o) < 00,

(c) d* = codimImF,(xq, A\g) < 00.
Set
X1 :k€7’Fl«(Z‘0,>\0), }/1 :ImFm(.ro,)\o).

Since both dimX; and codimY; are finite, we have the direct sum decompositions:
X =X, 9 X, Y =Y @Y,

and the projection operator P : Y — Yj, for every x € X, there exists a unique decomposi-
tion:
$:$1+$2, .l’iEXi,’i:l,Q.

Thus

PF(I1+$2,/\) = 0,

F(z,\) =0 <=
(Id — P)F(x1 4+ 29, A) = 0.

Now, PF,(zg, \o) : Xo — Y] is a surjection as well as an injection. According to the Banach

theorem, it has a bounded inverse. If we already have F'(xg, \g) = 0, then from the implicit
function theorem, we have a unique solution

u: Vi xV =1V,

satisfying
PF(zy +u(z1,\),\) =0,

where V] is a neighborhood of x; in U N X7, V5 is a neighborhood of 0 in U N X5, and V is a
neighborhood of \.

It remains to solve the equation:

(Id — P)F(x1 +u(z1,A),\) =0
13
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on V; x V. This is a nonlinear system of d variables and d* equations.

Above procedure is called Lyapunov-Schmidt reduction which reduces an infinite-dimensional
problem to a finite-dimensional system. This method has been used broadly by many math-
ematicians to construct bubbling solutions to elliptic equations, which was first developed
by Bahri and Coron in [7]. We refer to see the nice survey of del Pino and Musso [47], also
see[35, 43, 44, 45, 46, 48, 58, 64, 83, 89, 90, 91, 98, 104, 105, 116] et al. and references therein.
By bubbles we mean the functions

N-2

wy,(2) = OéNLMa with an = (N(N — 2))¥,
(? + |2?) 2"
where 1 > 0, which are the unique positive solutions (except translations) of

—Aw=w?” inR"M.

1.3.2 Multiplicity of solutions to asymptotic critical elliptic equa-
tions

In this subsection, first we are interested in the following semilinear elliptic boundary
value problem

—Au=u+ !, u>0 in §2;
(1.25)

u=20 on 0f),

where  is a bounded and smooth domain in R*, A > 0 and p > g¢.

Existence and multiplicity of solutions to (1.25) have been studied in many works for the
exponents p and ¢ in different ranges. Ambrosetti, Brézis and Cerami [2], using the method
of sub and super solutions, established that for 0 < ¢ < 1 and p > 1 arbitrary, there exists
A > 0 such that problem (1.25) has a minimal solution uy for A € (0, A), and u, is increasing
with respect to A; for A = A, problem (1.25) has at least one weak soltuion; for all A > A,
problem (1.25) has no solution. Moreover, using variational tools, the authors [2] also showed
that if 0 < g <1 <p <5, for all A € (0,A), problem (1.25) has a second solution.

Let us mention some related results of (1.25) for ¢ = 1. Namely, (1.25) reduces to

(1.26)

—Au=uP+ I, u>0 in Q;
u=0 on Jf.

In Section 1.1, we state some results of (1.26) when Q is a until ball in RY with N > 3.
Especially, we recall here some results for N = 3.

If1 <p<5, for0 < A< puy, where p is the first eigenvalue of —A under Dirichlet bound-
ary condition, a solution can be found by the standard constrained minimization procedure
thanks to compactness of Sobolev embedding H}(Q) < LPT1(Q).

14
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If p > 5, this case is more delicate, since for p = 5 the embedding loses compactness while
for p > 5 Sobolev embedding fails. Pohozaev [99] proved that if € is strictly star-shaped,
then there is no solution of (1.26) if A < 0 and p > 5. For p = 5, the great contribution to this
case was the pioneering work of Brézis and Nirenberg [14]. They obtained that (1.26) has a
solution if and only if A € (311, 1) when € is a ball, where i denotes the first eigenvalue of
—A under Dirichlet boundary condition on a ball. Moreover, the authors considered the case
g > 1:if 1 < g < 3, there exists a solution if and only if A > 0 is large enough. If 3 < ¢ < 5,
(1.25) has a solution for every A > 0. In addition, based on numerical computations, they
gave the following conjecture when € is a ball.

(a) If ¢ = 3, there is some \ such that
(i) for A > X, there is a unique solution of (1.25);
(1) for A < A, there is no solution of (1.25).

(b) If 1 < ¢ < 3, there is some A such that
(i) for A > X, there are two solutions of (1.25);
(i1) for A = X, there is a unique solution of (1.25);
(iii) for A < X, there is no solution of (1.25).

Afterwards, Atkinson and Peletier [6] proved the nonuniqueness of solutions to (1.25)
conjectured by Brézis and Nirenberg for N = 3, p = 5 and 1 < ¢ < 3. Not restricting to

integer values of N, they established for 2 < N < 4, p = % and 1 < ¢ < X then

N—2°
there exists some A\ > 0 such that (1.25) has at least two solutions for any A > A, and it
has no solution for A < \. Rey [103] provided another partial answer to above conjecture.
He obtained that for p = 5 and 2 < ¢ < 3, A > 0 large enough, problem (1.25) has at
least C'at(€2) + 1 solutions, where Q is any smooth and bounded domain in R?* and Cat(Q)
denotes Ljusternik-Schnirelman (L-S, for short) category of Q, see [3] for the definition of
L-S category. We put the bifurcation diagrams of positive solutions to problem (1.25) in the

unit ball of R? in Figure 3.

Next, we are also interested in the elliptic equation

(1.27)

— Au+u = uf + M, u>0 in RV,
u(z) >0 as || — oo,

where N > 3, A > 0 and 1 < ¢ < p. This problem arises in the study of standing waves of
a nonlinear Schrodinger equation with two power type nonlinearities, see for example Tao,
Visan and Zhang [113].

If p = q, equation (1.27) reduces to

{ — Au+u=1u", u>0 in RY, (1.28)

u(z) > 0 as |z] = oo,

after a suitable scaling.
15
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Figure 3: Bifurcation diagrams of positive solutions to problem (1.25) when p =5 —¢ and 2 is the
unit ball in R3. The case ¢ = 1 is given in Figure 2

Thanks to the classical result of Gidas, Ni and Nirenberg [68], solutions of (1.27) and
(1.28) are radially symmetric about some point, which we will assume is always the origin.

It is well known that problem (1.28) has a solution if and only if 1 < p < J£2. Existence
was proved by Berestycki and Lions [10], while non-existence from the Pohozaev 1dent1ty [99].
Uniqueness also holds and was fully settled by Kwong [76], after a series of contributions
[22, 80, 93, 94, 96, 97]. See also Felmer, Quaas, Tang and Yu [57] for further properties.

Concerning (1.27), the work of Berestycki and Lions [10] is still applicable if 1 < ¢ < p <
%f;, and one obtains existence of a solution. If p,q > N +2 there is no solution, again from
the Pohozaev identity.

Recently, Dévila, del Pino and Guerra [35] proved that uniqueness does not hold in general
for (1.27),if l<qg<p< N +2 More precisely if N = 3, the authors obtained at least three
solutions to problem (1. 27) 1f 1 < g < 3, A > 0 is sufficiently large and fixed, and p < 5 is

close enough to 5.

Let us next mention some contributions to the question of existence for (1.27) when one
exponent is subcritical and other is critical or supercritical. If 1 < ¢ < p = % in (1.27),
using variational methods, Alves, de Morais Filho and Souto [1] proved:

N2,

e when N > 4, there exists a nontrivial classical solution for all A > 0 and 1 < ¢ < §755;

e when N = 3, there exists a nontrivial classical solution for all A > 0 and 3 < ¢ < 5;

16
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e when N = 3, there exists a nontrivial classical solution for A > 0 large enough and
1<qg<3.

Moreover, Ferrero and Gazzola [56] proved that for ¢ < % < p, there exists A > 0,

such that if A > A, then (1.27) has at least one solution, while for ¢ < %*; < p, there exists
0 < A < A such that if A < )\, then there is no solution.

An interesting problem is bubble-tower phenomena for a slightly supercritical Brézis and
Nirenberg problem. In the work of del Pino, Dolbeault and Musso [43], the authors found for
A = o(1), depending on ¢, a new phenomena happened: the presence of towers constituted
by superposition of bubbles of different blow-up orders for (1.26) in a ball when p = %—Jj +€
with e > 0, N > 4. After that, these authors [44] established bubble-tower solutions to (1.26)
in a general bounded and smooth domain in R3. J. Campos [21] considered the existence of

bubble-tower solutions to a problem related to (1.27):

—Au=uP"* +ui, u>0 inRY;
(1.29)
u(z) >0 as |z] = oo,
with N 5 < q<p = %, N > 3. These solutions were obtained by Lyapunov-Schmidt

reduction procedure. We refer to see [21, 44, 46, 48, 64, 65, 83, 89, 91, 98] for bubble-tower
phenomena.

Motivated from above, the left question is whether there exist multiplicity of solutions to
problems (1.25) and (1.27). We will answer it in the last two chapters.

In Chapter 4, we will establish multiplicity of solutions to subcritical problem

—Au=u" 4+ ud, u>0 in €;
(1.30)

u=20 on 0f),

where ) is a smooth bounded domain in R3, 1 < ¢ < 3, A > 0 and € > 0 small enough.

In Chapter 5, we are concerned with multiplicity of solutions of (1.27), and for this we
take an asymptotic approach, that is, we consider

—Au+u=uP+ i, u>0 inRY;
(1.31)
u(z) =0 as |z] = o0,
where p = p* + ¢, with p* = %—* A > 0 and € > 0 are parameters, and ¢ satisfies
N +2
1<q<Nj if N >4, 3<qg<b if N=3. (1.32)

The main results in Chapters 4 and 5 are as follows.

Theorem 1.17. Let 1 < q < 3, there exists A\g > 0, depending on €2, q, and €y > 0, such that
for any A > Xo, € € (0,¢¢), problem (1.30) has at least two solutions.
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Theorem 1.18. Assume that 2 < q < 3. Then there exist A > N\ and 0y > 0, such that for
any A > X satisfying

0 < eXiza log \ < &, (1.33)

then for all sufficiently small € > 0, problem (1.30) has at least three solutions.

Theorem 1.19. Let X\ > 0 and let q satisfy (1.32). Given an integer k > 1, then there exists
g0 > 0 such that for any € € (0,¢y), there is a solution u.(z) of problem (1.31) of the form

5*[(j71)+piq}(A§>f¥

u(z) = (N(N =2))" 7y

— : = (1 +o0(1)), (1.34)
j=1 (1 + Efm[(Jfl)Jrﬁ}(A;)szP)

2

where the constants A7 >0, j =1,2,...,k, can be compuled explicitly and depend on k, N, q.

The first solution in Theorem 1.17 is obtained by mountain pass theorem [102, Theorem
2.2]. Regarding € > 0 as a small parameter, we use Lyapunov-Schmidt reduction procedure
to construct the second solution.

Basing on Theorem 1.17 which provides a mountain pass solution and a bubble solution
as € > 0 is a small parameter. In order to prove Theorem 1.18, it is sufficient to show
that if (1.33) holds, then (1.30) has a third solution. This solution is also constructed by
Lyapunov-Schmidt reduction procedure by regarding A > 0 as a large parameter. In the case
1 < ¢ <2, it is also possible to find a third solution but the proof is more delicate and will
be addressed in future work.

The proof of Theorem 1.19 starts with a variation of the so-called Emden-Fowler trans-
formation, which reduces the problem of finding k-bubble solution to the problem of finding
a k-bump solution of a second-order ordinary differential equation in R. After a Lyapunov-
Schmidt reduction procedure, see for example [58, 83, 21], the problem becomes to find a
critical point of some functional depending on k real parameters.

18



Chapter 2

Resonance phenomenon for a
Gelfand-type problem

2.1 Introduction

In this chapter, we consider the structure of the solution set of the boundary value problem

—Au=Ae"—1), u>0 in B;
(2.1)

u=0 on 0B,

where B is the unit ball in RN, N > 3 and A > 0 is a parameter. Smooth solutions to (2.1)
are radially symmetric and decreasing by the classical result of Gidas, Ni and Nirenberg [67].

Problem (2.1) is related to the following Gelfand problem:

2.2
u=0 on 0B. (22)

{ —Au = e, in B;
Barenblatt [66] and Joseph and Lundgren [73], using phase-plane analysis, gave a complete
description of the classical solutions to (2.2), which are again radially symmetric [67], see
Proposition 1.7 in Chapter 1.

Nagasaki and Suzuki [92] classified the solutions of (2.2) according to their Morse index. In
a few words, the family of regular solutions of (2.2) can be described as a curve (u(s), A(s))
with s € [0,00), such that (u(s),A(s)) — (0,0) as s — 0 and (u(s), A(s)) — (us, As) as
s — 00, where u,(r) = —2log(r), Ay = 2(N —2) is a singular solution of (2.2). In dimensions
3 < N <9, A(s) oscillates around 2(N — 2) as s — oo and the Morse index of u(s) increases
by one in each oscillation. In dimensions N > 10, A(s) is monotone, u(s) is monotone and is
stable for each s.
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A problem analogous to (2.1) is

—Au=u"~4+ du, u>0 in B;
(2.3)

u=0 on 0B.

where p > 1 and A > 0 is a parameter. According to classical bifurcation theory [32], the
point (u1,0) is a bifurcation point from which emanates an unbounded branch C of solutions
of (2.3), where p; is the first eigenvalue of the negative Laplacian operator under Dirichlet
boundary condition in B.

o If p < ZE2(N > 3), for A < py, there is a positive solution of (2.3) by a standard con-
strained minimization procedure involving compactness of the Sobolev embedding. Moreover,
by Pohozaev’s identity [99], problem (2.3) has no solutions for A < 0 whenever p > %

o Ifp= %, which is the classical Brezis-Nirenberg problem [14], problem (2.3) has a

solution for 0 < A < py if N > 4, andforl,u1<)\<,ulifN:3.

o If p> %Jrg, Dolbeault and Flores found that if p > %*3, and p < pyr or N < 10, then
there is a unique number A\, > 0, such that for A\ close to \., a large number of classical
solutions of (2.3) exist. In particular, there are infinitely many classical solutions for A = A,.

Recently, Guo and Wei in [71] showed that the structure of the branch C changes for

+ 2
N -2

p > pyr and <p<pJL

where p;y, is defined as in (1.8). Moreover, they established that for %J“g <p < pjL, C turns
infinitely many times around A\, € (0, ,ul). For p > pyp, all solutions have a finite Morse
index, and for N > 12 and p > py sufficiently large all solutions have exactly Morse index
one.

The aim of this chapter is to study the structure of solutions to problem (2.1). We start
with some general remarks. First, classical solutions of (2.1) can exist only for A in some
interval.

Proposition 2.1. Let uy be the first eigenvalue of the —A under Dirichlet boundary condition
in B. Then there exists \g > 0, such that a necessary condition for existence of classical
solutions to problem (2.1) is A € (Ao, f41)-

See a proof in the Appendix. By classical bifurcation theory [24, 32] we have that (u1,0)
is a bifurcation point of solutions to (2.1). Both observations are also valid if we replace the
ball by a bounded smooth domain (star shaped in the case of Proposition 2.1).

We are interested also in weak solutions, allowing for possible singularities.

Definition 2.2. We say that u € H}(B) is a weak solution of (2.1) if e* € L*(B) and

/ VuVy = /\/(e“ — 1) for all p € C5°(B). (2.4)
B B
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We say that a weak solution w of (2.1) is regular (resp., singular) if u € L*(B) (resp.,

u ¢ L>(B)).

We say that a radial weak solution u of (2.1) is weakly singular solution if it is singular and
lintl) ru'(r) ezists.

r—

We first study singular solutions to (2.1).

Theorem 2.3. Assume N > 3. Let A\ > 0 and suppose that u € C*(B\ {0}), u > 0 is a
radial solution of

—Au = Ae"—1) in B\{0}. (2.5)

Then either
a) u can be extended as a function in C*(B) and (2.5) holds in B,

or

b) u is singular at r = 0 and satisfies

. . 2(N-2)
ll_r)ré(u(r) +2logr) = log —
limru'(r) = —2.

r—0

As a consequence, u is a radial singular weak solution to (2.1) if and only if u is a weakly
singular solution.

Theorem 2.4. For N > 3, there exists a unique A\, > 0, such that (2.1) admits a radial
singular solution for X = X\, and the radial singular solution is unique.

By Theorem 2.3 the singular solution is weakly singular.

Next, we consider the question of multiplicity of solutions to (2.1).

Theorem 2.5. If3 < N <9, then problem (2.1) has infinitely many regqular radial solutions
for X = \.. For X\ # X\, but close to )\, there is a large number of reqular radial solutions for

(2.1).

Let us recall the definition of the Morse index of solution to (2.1), see Definition 1.5.
Namely, for a weak solution (A, u) of (2.1), we define the Morse index of u as the largest
dimension k of a subspace Y C C2°(B) such that

Quli) = /B Vel —Ae'? <0 Ype Y\ (o).

If u is a regular solution this is the number of negative eigenvalues, counting multiplicity,
of the operator —A — Ae*. By Theorem 3 of Dancer and Farina [33], if 3 < N < 9, for a
sequence of solutions (A,,uy,) to (2.1) with |lu,||z~p) — 00 as n — oo, then the Morse
index of uy, goes to infinity as n — oc.
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Theorem 2.6. Assume N > 10. Then there exists K < oo such that the Morse index of
any radial solution (A, uy) of (2.1)(reqular or singular) is bounded by K. The number of
intersections of any reqular solution and the radial singular solution is uniformly bounded by
2K + 1. Moreover, for each A € (Ao, p1), the number of reqular solutions to (2.1) is bounded
by (K +1)%.

A natural conjecture for N > 10, which is observed in numerical calculations, is that
the Morse index of any radial solution of (2.1) (regular or singular) is 1, the number of
intersections of any regular solution and the radial singular solution is 1, and that for each
A € (As, p1) there is a unique solution.

We use geometric theory of dynamical systems in three-dimensional phase space, which
was applied in [8], and subsequently in [49, 59, 60], to obtain multiplicity of solutions to
problem (2.1). There are some analogies between the results and techniques of this work and
[4, 5, 38, 40, 41] on fourth order problems involving the exponential nonlinearity.

In Section 2.2 we give some preliminaries. In Section 2.3 we prove Theorem 2.3, namely
that radial solutions either are regular or weakly singular. Theorem 2.4, which is about the
existence and uniqueness of a singular solution is proved in Section 2.4. In Section 2.5 we
prove Theorem 2.5 on multiplicity of solutions in dimensions 3 < N < 9. In Section 2.6 we
analyze the Morse index of solutions to problem (2.1), give the structure of the branch of
solutions to (2.1), and prove Theorem 2.6. Finally, we give the proof of Proposition 2.1 in
the Appendix.

2.2 Preliminary results

Let u satisfy (2.1) and make the change of variables
v(t) =u(r) withr=c¢", for té& (—o0,0). (2.6)
Then problem (2.1) becomes

—"(t) + (2 — N)'(t) = MeZ(e’® — 1), t € (—o0,0),
{U(O) =0, tl}r_noo e ' (t) = 0. (2.7)
Define
w(t) = 2(1\?\72)€v(t)+2t7
ua(t) = V(1) (28)
v3(t) = Ae?t.
We find that (v, v9,v3) satisfies the following differential system
v = v1(vg + 2),
vy = —2(N — 2)v; — (N — 2)vy + v3, (2.9)
vy = 2vs,
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with the condition
v3(0) = 2(N — 2)v1(0). (2.10)
System (2.9) has two stationary points
P =(0,0,0) and P,=(1,-2,0).

The linearization of (2.9) around P, is given by X’ = M X, with

2 0 0
My=|-2(N-2) 2—N 1
0 0 2

The eigenvalues of M; are
=0y =2 D3=2—N.

Thus for N > 3, P, = (0,0,0) is a hyperbolic point, which has a 2-dimensional unstable
manifold W*(P;) and a 1-dimensional stable manifold W*(P;).

The linearization of (2.9) around P, is given by X’ = M X, with

0 1 0
My= |-2(N—-2) 2—N 1. (2.11)
0 0 2

The eigenvalues of M, are given by

V=2, vyy= 2-N)+ ‘/(];7 —JW - 10) (2.12)

For 3 < N <9, v, and vz are complex conjugate and Re(vy) = Re(rs) = 25X < 0. For

N > 10, all the eigenvalues are real and 1, > 0, v, < 0, v3 < 0. Thus for all N > 3,
Py = (1,-2,0) is a hyperbolic point, which has a 1-dimensional unstable manifold W*(P;)
and a 2-dimensional stable manifold W*(P,). Actually W*(P,) is contained in the plane
{vs = 0}, which is invariant for (2.9).

Also we note that solutions of system (2.9) restricted to {vs = 0} are related to radial
solutions of the equation

—Au = \e" (2.13)

by exactly the same change of variables (2.6) and the first two equations in (2.8). This yields
immediately a heteroclinic connection from P; to P, which is associated to the unique radial
solution of (2.13) with A = 2(/NV — 2) and initial condition u(0) = «’(0) = 0.

Proposition 2.7. For N > 3, system (2.9) has a heteroclinic orbit from Py to P, which is
contained in the plane {vs = 0}.
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Thanks to a result of Belickii [9], we have the following Lemma.

Lemma 2.8. System (2.9) is C'-conjugate to its linearization around Py = (1,—2,0).

Proof. We just need to check that none of the following relations
Re(v;) = Re(vj) + Re(vy), (2.14)

holds for different indices i, j,k € {1,2,3} such that Re(r;) < 0 and Re(vy) > 0, where
vy, o, V3 are corresponding eigenvalues of M,. It is easy to check this by calculation for
N > 3. O

Lemma 2.9. Let vV, v® 0v®) be the eigenvectors of My associated to v, vs, v5. Then
v® = (1, v, e (e — (2 — N)) + 2(N — 2)) and vV is always real; for 3 < N <9, v )
are complex conjugates. In particular the components of v = (1,2,4(N — 1)) are positive.

Proof. By direct calculations, v® = (1,4, v (v — (2 — N)) +2(N — 2)) is an eigenvector
associated to vy. O

2.3 Characterization of weakly singular solutions

In this section our aim is to prove Theorem 2.3. We assume that v € C?(0,1), u > 0
satisfies
— Au=2(N —-2)(e*—=1) in (0,1), (2.15)

where we assume, by using a scaling, that A = 2(IN — 2). The scaling changes the length of
the interval where the solution is defined, but this is not relevant for the next arguments, so
we assume that the interval is (0, 1).

Define v(t) = u(e'), w(t) = v(t) + 2t for t < 0. Then w satisfies
—w"(t) + (2= N)w'(t) =2(N —2) (e*® —¢e* —1)  forallt <0. (2.16)
We also let vy, vq,v3 be defined in (2.8).
By similar arguments as in [40], we have the following results.
Lemma 2.10. One has
liminfw(t) <O0. (2.17)

t——o00

Proof. We follow [87]. Let L := liminf; , . w(t) and suppose by contradiction that L > 0.
Then there exists Ty > 0, such that w(t) > L/2 for all t < —Tj,. Let ¢ be a smooth cut-off
function in R such that 0 < ¢(¢) < 1, ¢(t) = 0 for t < —(To + 3) and t > —Ty; ¢(t) =1 for
t e [-(To + 2), —(T() + 1)], and for i = 1,2

—To i
/ (gb;j)Z dt := ¢; < +o0.

(To+3)
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Let 7 > 1 and ¢,(t) = ¢(£). Multiplying (2.16) by ¢, and integrating, we get

—Tot —Tot —Tot
/ (e*® — 1), dt = Zaz / D dt + / e pdt, (2.18)

7(T0+3)T T0+3 7(To+3)T

Using Young’s inequality with €; > 0 to be fixed later on, we

2(N 2(N—-2)"
have
—ToT ‘ —Tot —Tot (¢$}))2
‘ / weld) dt‘ <& / w?é, dt + C., / O ) g
—(To+3) —(To+3)r (To43)r  Pr
—Tot )
<g / w?¢, dt + Coer' ™2, (2.19)
—(To+3)T
We also have
—Tot 1
/ e, dt < —e 20T, (2.20)
—(T0+3)’7' 2

From (2.18), (2.19), (2.20) we get

—ToT ) 1
/ [ew(t) -1- 51Kw(t)2} ¢ dt < C., K maxc;m' ™% + 56_2%7
~(To+3)7 =12

with K = |a;| + |az|. Since w(t) > L/2 > 0 for all t < —Tp, we can choose €1 > 0 small, such
that e*® — 1 — ¢, Kw(t)? > o for t < —Tj, where o > 0 is fixed. Then

—Tot | ,
oT < / [ew(t) —1— e Kw(t)?] ¢, dt < O K maxc;7' 7% 4 Ze™207)
—(To+3)T =19 5

which is impossible for 7 > 1 large. ]

Lemma 2.11. We have
limsup w(t) < +o0.

t——o0

Proof. Assume by contradiction that limsup, , . w(tf) = 4+00. Then there is a sequence
ty — —oo such that w(ty) — +oo. Furthermore we can assume that for all £ > 1 we have
Tra1 + 10g2 < t, U}(thrl) > w(tk)

Set My = w(ty), ry = e and py = ™. Note that 0 < py < 3. Let ni(r) = 5527 (1—1?)
so that it satisfies
—An, =2(N —2)r7 in B, m. =0 on 0B.
Define
ug(r) = u(rry) — My + 2log(rx) + ni(r).
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Then we have
—Aug(r) = 2(N — 2)rie"s) = 2(N — 2)eM =m0l for 0 < r < .
Since 7 is bounded from above,
—Auy, > CoeMres V0 <r <1t (2.21)
for some Cy > 0 independent of k. Also note that

uk(l) = u(rk) — Mk + th = O,
uk(pr) = Myp1 — My, + 2(t, — tgy1) + nx(pr) > 0.

Let A;j be the first eigenvalue for —A with Dirichlet boundary condition in the annulus
B\B,, and ¢} > 0 be the corresponding eigenfunction, that is,

—A¢p = Mok, ¢ >0  in B\B,;
or = 0; on 0 (B\B,,),

normalized so that ||¢y| sy = 1. Multiplying (2.21) by ¢, and integrating in B\ B,,, we
get

0
C'OeM’“/ e o dr < / ﬁuk do + )‘Uv/ U Py dx.
B\B,, A(B\B,,) OV B\B,,

But u, > 0 and % <0 on 9(B\B,,) so that

Coe™Mr / ey dr < \p g / wp ¢y de.
B\B,, B\B,,

Now using the inequality e* > u, it yields that
CDGMk S )\Lk.

However, since the annulus B\B,, has a width that does not converge to zero, A ; remains
uniformly bounded. It follows that M} is bounded as k — oo, which is a contradiction. [

Lemma 2.12. Fori=0,1,2, we have
lw®(t)| < C(1+|t]) forall t <0, (2.22)
and for allt=1,2,3

lu;(t)] < C(1+t|) forall ¢<0. (2.23)
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Proof. Since u > 0 and w is bounded above, we have |w(t)| < C(1 + |t|). Moreover, by
equation (2.16), and interpolation inequalities such as in Chapter 6 of [70], we get that for
any t < —land¢=1,2
WD) < C sup (Jw|+2(N = 2)[e” — e* —1|)
[t—1,t+1]
<C sup (Jw|+2(N —2)e" —1]).
[t—1,t+1]

Since w is bounded above, the second term in the supremum is bounded. Then (2.22) and

(2.23) follow from the bound of w. O
Lemma 2.13. Fori=1,2,3

lv;(t)] < C  for all t <0, (2.24)
fori=1,2

lw®(t)| < C forall t<0. (2.25)

Proof. Tt is direct that vs is bounded for all + < 0. Since vy (t) = e*® (recall the change of
variables (2.8) and that we assume A = 2(N — 2)) and w is bounded above, we have v (t) is
bounded as t — —oo. Next we prove that v, is bounded for all ¢ < 0.

Integrating the following equation

d
= (
in [t,to] with t <ty <0, we get

va(5)eN %) = [<2(N — 2)vy(s) + va(s)] N2

to
vy(t) = e~ N1 <vg(t0)e(N_2)t° +2(N — 2)/ e =25y, (s) ds
¢

2(N — 2)

_ - (Nt — eNt)>_

Since v; is bounded, the integral ff‘;o eN=2sy,(s) ds exists. If

2(N —2 fo
%em“ —2(N — 2)/ eWN =Dy, (s) ds # va(ty)e N0,

we deduce that |vy(t)| grows exponentially as t — —oo, which contradicts (2.23). Therefore
we get

—(N-=-2)t fo (N—-2)s 2(N_2) 2t
va(tg) = —2(N — 2)e 0/ e v1(s) ds + —N ¢ ° Vi, <0, (2.26)

It follows that |vy(t)| < C for all t < 0, because vy is bounded.

—00

Finally, the relations
w'(t) = vy + 2, w"(t) = =2(N — 2)vy + (2 — N)vy + vz,
imply (2.25). O
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Proof of Theorem 2.3. The statements in the theorem are consequence of the following prop-
erties, that we will prove next:

(i) If liminf; , o w(t) = —oo, then w(t) - —oo, v;(t) — 0 as t - —oo for i = 1,2, 3, and
u is a regular solution.

(ii) If iminf, , . w(t) > —oo, then w(t) — 0, (v1,v9,v3) — P as t — —oo, and u is a
weakly singular solution.
To prove these claims it is useful to define
1
E(t) = §(w’(t))2 +2(N = 2)(e*® —w(t)) — (N — 2)Cre*,

where C; > 0 is a constant such that |w'(¢)| < C for all ¢ < 0. This constant exists thanks
to Lemma 2.13. Let us compute

E'(t) = (w(t)" + 2(N = 2)(e*® — 1)w(t) — 2(N — 2)Cye*
for t < 0. Using equation (2.16) we get
E'(t) = —(N — 2)w'(t)> + 2(N — 2)e*(w'(t) — Cy) < 0. (2.27)

Let us prove (i) and so we assume liminf, , ., w(t) = —oo. First, we show that w(t) — —oc
as t — —oo. By contradiction, we assume that w(t) does not tend to —oo as t — —oo. Then
we can find sequences s — —00, 7, — —00, such that s, > 7,

w(sg) — —o0, w(7) is bounded.
But then E(7;) is bounded and E(sg) — oo as k — oo. However, by (2.27), E(si) < E(7),
which is a contradiction.

Now, since w(t) — —o0 as t — —oo, we can easily deduce v;(t) — 0 as t — —oo. Using
formula (2.26), we obtain vy(t) — 0 as t — —oo. Therefore limy_, o, V(t) = P;.

Since vy(t) — 0 as t — —oo, we have lim,_,oru/(r) = 0. Then for any € > 0, there exists
ro > 0 such that for any 0 < r < 1o, we have |ru/(r)| < e. Integrating from r to ry in this
inequality, for any 0 < r < rg we obtain

0<u(r) < —elnr+C, e < O, (2.28)

for some C > 0.

We can then get that «'(r) is bounded for » > 0 small enough. In fact, equation (2.1) can

be written as
— (sM M (s)) = AsN T (e — 1),

Integrating the above equation from § to r with (6,7) C (0,79) and using (2.28), letting
0 — 0, we have

[/ (r)] < C’rl_N/ sVH(s =1) ds<C
0
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for 0 < r < r9. From the boundedness of u’' near r = 0 we also get that u is bounded near
r = 0. This shows that u is regular.

We prove now (ii), so we assume that liminf, , . w(t) > —oo. Since w is bounded above
by Lemma 2.11, we have w is bounded. By Lemma 2.13, the derivatives of w are bounded,
then we get that F(t) is bounded as t — —oo. From the boundedness of E together with the
boundedness of the derivatives of w and (2.27), we deduce that

/0 w'(t)? dt < +o0. (2.29)

Set r(t) = w'(t + T'), then we get that
Yr —0 in L?*(0,1) as T — —oo.
Moreover, Y1 satisfies the equation
—7(t) + (2 = N)Yp(t) = 2(N = 2)e" " 9 (t) — 4(N — 2)e” T,

Using regularity theory, we have ¢r(3) — 0 and ¢/%.(3) — 0 as T — —oo. Thus we obtain that
w'(t) — 0 as t — —oo and similarly w”(¢) — 0 as — —oo. This implies that lim; , . v/'(t) =
—2. Since v'(t) = u/(e')e! we see that u is a weakly singular solution by the definition. We
get in addition that (vy,vq,v3) — (1,—2,0) as t — —oo. That is, lim;,_, V (t) = Ps. O

A direct corollary of the proof of Theorem 2.3 is the following.
Corollary 2.14. Let u be a radial singular solution to (2.1) and let V(t) = (vi(t),ve(t), v3(t))
be the corresponding trajectory to (2.9). Then tggéo V(t) =P, =(1,-2,0).

As a consequence of Theorem 2.3 and Corollary 2.14, we have the following.
Corollary 2.15. For u a radial solution of (2.1) we have:

(a) w is reqular if and only if tEEnoo V(t) = P,

(b) w is singular if and only z'ftlim V(t) = Ps.
——00

2.4 The unstable manifold at P

In this section, we study the unstable manifold of P, and prove Theorem 2.4. First we
have the following result.

Proposition 2.16. Let V(t) = (vi(t),va(t),v3(t)) : (=00, T) — R3 be the trajectory in
W™ (Py) such that vi(t) > 0 as t — —oo, where T is the mazimal time of existence. Then
there ezists some t < T such that vs(t) > 2(N — 2)vy(t).

29



CHAPTER 2. GELFAND-TYPE PROBLEM

Proof. First we observe that this trajectory satisfies
vi(t) >0, vh(t) >0, v4(t)>0
for ¢ close to —oo since the tangent vector to this trajectory becomes parallel to (1,2,4(N—1))

as it approaches Ps.

Let z(t) = v3(t) — 2(IN — 2)vy(¢) and by contradiction we assume that
z(t) <0 for Vte (—oo,T). (2.30)
First, we remark that
ve(t) <0 for Vi€ (—oo,T). (2.31)

To prove this, let us suppose it fails, and so there is the first time ¢y € (—o0,T’), such that
ve(tp) = 0. Since limy, o, vo(t) = —2 we must have vy(typ) > 0. But writing the second
equation in (2.9) as

vy(t) = z(t) — (N = 2)va(t)

we would get z(ty) > 0, a contradiction with (2.30).

Using (2.9) and v,(t) < 0 for all t < T we can assert that the solution is defined for all ¢,
that is 7' = +o0. Indeed, the first equation in (2.9) yields

or(t) = v (to) el >+ 2D (2:32)

Since vy(t) < 0 we see that vy (t) cannot blow up as ¢ — 7', if T" were finite. Also v cannot
blow up. This and the linearity of the second equation in (2.9) yield that 7' = +oo0.

Now, let us establish that
vi(t) >0 for Vte (—oo,+00). (2.33)

In fact, this is valid for ¢ near —oo since v1(t) — 1 as t — —oo. If inequality (2.33) does
not hold, then vy(ty) = 0 for some t(, and it follows from (2.32) that v;(t) = 0 for all ¢, a
contradiction.

Next, we prove that

lim sup ve(t) = 0. (2.34)

t——+o00

Indeed, suppose not, we assume that there is a small number § > 0 such that vs(t) < =9 <0
for all £. From the first equation in (2.9), we then get v|(t) < (2 — §)vy(t), so we have
v1(t) < v1(0)e?=9 for all t > 0. But by the third equation in (2.9), we have vs(t) = v3(0)e?.
Hence z(t) = v3(0)e* —2(N —2)v;(0)e=9* > 0 for some t > 0, which contradicts assumption
(2.30).
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From (2.31) and (2.34), there exists a sequence (t;) with ¢, — +o00 as k — 400, such
that

vo(tr) >0, and wvy(ty) =0 ask — 4oo.

Moreover, by the second equation in (2.9) we have 0 > z(tx) = v4(tx) + (N — 2)va(ty) >
(N — 2)vy(ty). Therefore,

2(ty) > 0 as k — +o0. (2.35)

From (2.9), we have 2/(t) — 22(t) = —2(N — 2)vy(t)vo(t). Multiplying by e 2! and integrating
from t to t;, we get

2(ty,) = 2D (z(t) —2(N — 2)e* /t ) 625U1(8)U2(S)d8> (2.36)
From (2.31), (2.33), (2.35) and (2.36) we have that

“+oo
/ e ®v1(s)|va(s)|ds < 400 for any t < +oo. (2.37)
¢

Note that v1(t) = ”3((%:;(;) and hence
(1) = 22(t) = (2(t) — vs(t))v2(t).

Multiplying by e~% and integrating from 0 to t;, we find

175 tk

2(ty,) = e+ (z(()) +/ e %2 (s)vy(s)ds —/ 6_25U2<S)U3(S)d8> :

0 0

Since z(0) < 0, fg’“ e %2(s)vy(s)ds and — fot’“ e~ ,y(s)v3(s)ds are positive, we get
+oo
/ e~ 2| vy(s)|vs(s)ds < 4o0. (2.38)
0

Since v3(t) = v3(0)e*, (2.38) implies that

/0+00 |va(s)|ds < 4o0. (2.39)

Since z(t) < 0 by assumption, we have vy(s) < v2(0)e™ V=% for s > 0. Then for t > 0,

/t—l-oo 6—237)1(8)|U2(8)|d8 — _ /t+°° 6_2SU1(3)U2(S>dS
+oo
> —05(0) /t oy, (5)ds. 210
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Integrating by parts and using (2.9) we get

o0 1
/t e Ny (s)ds = N / Moy (
1~ / s)ds + — / vy(s) ds
— N N S N
and we deduce
/OO e Vouy(s) = Lo, (t) + ey /Oo e™ v (s)va(s) ds
. ! N -2 ! N -2 ),

Hence for ¢ > 0, and since vy(s) < 0

[e’e) ]_ >
/t e Mui(s) > e Mun(t) + m/t e *vi(s)va(s) ds.

From (2.40) and (2.41) we have

+oo
/ e~ 2 (s)|vg(s)|ds > —
¢
which implies that

T s —02(0) —Nt
/t e “v1(s)|va(s)|ds > mvl(t)e :

Now, from (2.35) and (2.36) we have

“+oo
—z(t) = 2(N — 2)62t/t e 2y (s)|vy(s)]ds.

From(2.43) and (2.42), we observe that

He(-N+2)t
N—2—u0 W

—2(t) >

U1

Moreover, using (2.39)
v (t) = (O)thefff va(s)ds _ vy ( ) fo |va(s)|ds > 0, (0)670627&

for some constant C' > 0. Hence,

—2(N = 2)0,(0)2(0) _¢ 4

t.— (4—N)t’
N —2— 0(0) 1

—2z(t) >

for C > 0, which is a contradiction with (2.35) for N = 3, 4.
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From now on we assume N > 4. By the second equation in (2.9) and z(t) = vs(t) —2(N —
2)v1(t), we get that

t
—y(t) = —w5(0)e> Mt 4 6(2—N)t/ (—2(s))eN =25,
0

By (2.46) we have

t
[ua(t)| = —vy(t) > —v5(0)e® Mt 4 Cle(Z_N)t/ e*ds
0

for t > 1 where Cs is a positive constant. Therefore,
+o00 +o00
/ e~ v (s)|va(s)|ds > 02/ e =Ny, (s)ds, (2.47)
t t
while, for N >4 and t > 0

+oo
/ e(Q_N)Svl(s)dS
t

1
:N — 21)1 (t)e(QiN)t —

2 too
+ —/ e =Ny, (s5)ds
¢

1

+o0
N_2 /t e (s)va(s) | ds

N -2
> ! vy (t)e? Mt — ;/Jroo e~ 201 (s)|va(s)|ds
2N ¥ N_2), 1 2
2 +o0 (2-N)
+ m/t e v1(s)ds.
So,
+o0 1 1 +o00
/t e N3y, (5)ds > N 41}1(25)6(2_]\[)lt - m/t e~ vy (s)|va(s)|ds. (2.48)
Combining (2.47) and (2.48), we get
/+<>0 e vy (s)|va(s)|ds > Lv (t)e?M (2.49)
; e SN—4+C, ' '

Then, from (2.43), (2.45) and (2.49) we obtain that

—z(t) > :
S Y S R

for C5 > 0, which is a contradiction with (2.35) for N = 5, 6.

= (e &Mt (2.50)

Starting with (2.50) we can do the same process and obtain a contradiction for all N > 3.
This ends the proof of the proposition. O
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Proposition 2.17. At any point of W* (Py) N{vs = 2(N —2)uv,} the intersection is transver-
sal.

Proof. Let V(t) = (v, v2,v3) be a trajectory in W*(P,) with ¢ in some interval (—oo,T") and
lim; o, V(t) = P2. Suppose that ¢; is such that vs(¢;) = 2(N — 2)v,(¢1). By contradiction,
assume that V’(¢;) is not transversal to the plane {vs(t) = 2(IN — 2)vy(t)}, that is,

V'(t1) € {vg =2(N —2)v, }.

Then, vs(t;) = 2(N — 2)vi(t1), v4(t1) = 2(N — 2)vi(t1). From (2.9) we get vo(t;) = 0. Let
2(t) = v3(t) — 2(N — 2)vy(t). The ODE (2.9) implies that

vy =2— (N —2)vg, 2'=22—2(N—2)vvs.

Treating v; as a given function, we see that vy, z satisfy a first order non-autonomous linear
ODE and the initial condition ve(t1) = 0, 2(t1) = 0. Since v, = z = 0 is a solution of the
ODE with the same initial condition, by uniqueness we deduce vy(t) = 0 for all ¢ where it is
defined. This contradicts lim;, o vo(t) = —2. O

Proof of Theorem 2.4. The existence of some A, > 0 such that (2.1) has a singular solution
is a consequence of Proposition 2.16. Indeed, let V(t) = (v (t), va(t),v3(t)) : (—o0,T) — R?
be the trajectory in W*(P,) such that v4(t) > 0 as t — —oo, where T is the maximal time
of existence. Then there exists some ¢ < T such that vs(t) > 2(N — 2)vy(t). Let t; be the
first time such that vs(¢t;) = 2(N — 2)vy(t1). Because the system (2.9) is autonomous, by
shifting time, we can assume t; = 0. Let P* = V(0) be the point of intersection, and write
P* = (Pr, P, Py). Then

u(r) = —21og(r) + log (2<N - 2>v1<1og<r>>)

A

is a singular solution of (2.1) for A\, = Pj.

The uniqueness of A\, such that a singular solution of (2.1) exists is a consequence of Corol-
lary 2.15, which says that singular solutions must be associated to trajectories in W¥(P,),
and the trajectory in W"(P,) with tangent vector close (1,2,4(N — 1)) as it approaches P,
is unique except a shift in time. This also yields the uniqueness of the singular solution. [

2.5 Multiplicity result: proof of Theorem 2.5

In this section, we assume that 3 < N < 9 and prove multiplicity of solutions to problem
(2.1). Let P, = (0,0,0) and P, = (1,—2,0) be the stationary points of (2.9). We recall
that P, has a 2-dimensional unstable manifold W*(P;) and 1-dimensional stable manifold
W#(P;), while P, has a 1-dimensional unstable manifold W*(P,) and a 2-dimensional stable
manifold W?*(F,).
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From Corollary 2.15 it follows that each regular radial solution of (2.1) corresponds to
exactly one point in W*(P;) N {vs = 2(N — 2)v;}. By Proposition 2.17, we define A, to be
the height v = A, where W (P,) first intersects the plane {v3 = 2(N —2)v; }, and we denote
this intersection point by

s

P*:(Pf7P57P§):(2(N—_2)

Py Ay). (2.51)

Let Vi : R — R3 be the heterochmc connection from P, to P, contained in {vs = 0} as
stated in Proposition 2.7 and let Vo = Vo(—00,+00). Then Vo is contained in both W (Py)
and W*(P,).

Lemma 2.18. W*(Py) and W*(P,) intersect transversally on points of Vo. More precisely,
for points Q € Vi sufficiently close to Py, there are directions in the tangent plane to W"(Py)
which are almost parallel to vV, the tangent vector to W*(P,) at P;.

Proof. Let ug be the solution of the following initial value problem

{ —Aug(r) =2(N — 2)es™ — 3 for 0 <r < R(f), (2.52)

us(0) =0, uy(0) =0,

where 5 € R is a parameter and R(5) > 0 is the maximal time of existence. We claim that
R(B) = 4o00. Indeed, assume R(f) < +oo and fix 7y < R(S). Then for r € [ro, R(S)), from
equation (2.52) we get

wy(r) = rd M (ro)r' N — rl_N/ N (2(N = 2)e" ™ — B) dt, (2.53)

T0

and this implies
uy(r) < rd’ 1u’6(r0)7’ + ’i]i)( — Nl for g < v < R(B).

Integrating we see that

lim sup ug(r) < 4+o0.
r—R(f)

Since ug is bounded above in [rg, R(f)), using again (2.53) we obtain

ot (ro)r' TN = Clr — ' NrlY) <uf(r) for rg <7 < R(f),

and this shows that

lim inf > —00.
r—R(S) 'B( )

Control of ug as 7 — R(f3) also yields control of uj by (2.53) and this contradicts that R(3)
is the maximal time of existence. Therefore the solution wug(r) of (2.52) is defined for all
r > 0.
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Let vg(t) = ug(r) with r = ¢’ for t € (—o0, +00) and set
v p(t) = POy g = u(t),  wvsp(t) = Be™.

Then vy g, vo g, v3 g satisfies system (2.9). Let Vg = (v1,8,v24,v33). We have created in this
way a family of trajectories in W*(P;) with § as a parameter. Note that for § = 0, V; is just
the heteroclinic connection of system (2.9) from P, to P, contained in the plane {vs = 0}
described in Proposition 2.7.

Define X = ‘g—g| g—0. Then X satisfies
X' = (My+ R(t)X (2.54)
where My is the matrix defined in (2.11) and

)
UQ’O(t) + 2 U1’0<t) -1
R(t) = 0 0
0 0

Note that there exist C,a > 0, such that |Vy(t) — Po| < Ce " for all ¢t > 0, which follows for
example from Lemma 2.8. Therefore |R(t)| < Ce™ for all ¢ > 0. Recall that the eigenvalues
of My are v; > 0 and vy, 3, which are complex conjugates with negative real part. Let
v*) € C3 be the eigenvector associated to ;. By Theorem 8.1 of Chapter 3 in [27], there are
solutions ¥, to

0
0
0

Ve = (Mo + R(t))Yy,  for t>0
such that lim;_,o ¥y (t)e™** = v®). Then

3

X(t) = cxthy

k=1
for some constants ¢y, co, c3 € C. Since v, v3 have negative real parts, ¥ (t) — 0 as t — oo,

for k =2,3. If ¢, = 0 then X () — 0 as t — oo and this contradicts 8:;‘23’5 lp=o(t) = €* >0
for all t > 0. So ¢; # 0 and therefore

X(t) = coWet 4 o(e”!) as t — oo.
This shows X (¢) is almost parallel to v as t — oco. Since vV is the tangent vector to
W*(Py), then X(t) is not tangent to W*(P,) for ¢ large. On the other hand, X = g—gm:o is

tangent to W*(Pp). This implies W*(/%) and W*(P;) intersect transversally on points of Vo
close to P,. Since the flow is invertible near Vo, W*(P) and W?*(P,) intersect transversally
at every point of V. O

We write (v1, v2, v3) as points in the phase space R? and let {ey, €2, e3} denote the canonical
basis of R3.

We call S € R? a spiral around P* if there exist independent vectors 01,00 € R3, a
continuous positive function p : [0,00) — R with p(t) — 0 as t — oo, and w € R such that

S ={P" + p(t) cos(wt)oy + p(t) sin(wt)oz + o(p(t)) : t > 0}.
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Lemma 2.19. W*(Py) N{vs = 2(N — 2)v,} contains a spiral S around the point P*.

Proof. The linearization of (2.9) at P, is given by the system

U] = Do,
vy = —2(N —2)v; + (2 — N)vg + U3,

vy = 203,
which is represented by the matrix M,. Let M, denote the matrix

Re(l/g) —Im(l/g) 0
My = [Im(rn) Re(ry) 0
0 0 141

where vy, vy are the eigenvalues (2.12). By Lemma 2.8, system (2.9) is C''-conjugate in a
neighborhood of P to the flow generated by M, around 0. More precisely, let X; denote the
flow generated by (2.9) and Y; = eM2*. Then there are open neighborhoods U of P, and V
of O = (0,0,0), and a C* diffeomorphism ® : & — V such that Y;(z) = ® o X; 0 &~ !(x)
whenever z € V and ¢ !(z) € U.

Let D be the 2-dimensional disk
D ={V = (v1,v9,v3) : v3=2(N —2)vy, |V — P*| <ro},

where 9 > 0 is fixed and small, so that W*"(P,)N{vs = 2(N—2)v; } contains only the point P*.
This 7y > 0 exists by Proposition 2.17. Also by this proposition, D is transversal to W*(P,).
Let B° C W*(P) NU C {v3 = 0} NU be an open neighborhood of P, relative to W*(P,),
which is diffeomorphic to a 2-dimensional disk. Define D; as the connected component of
X:(D)NU that contains X;(P*). We choose U smaller if necessary so that by the A\-Lemma
of Palis [95], D; is a C* manifold, which is C' close to B® for ¢ sufficiently negative. More
precisely, let € > 0 be small to be fixed later on. Then there exists ¢ty < 0, |to| large, such
that for all ¢ < tg, there is a diffeomorphism 7, : D, — B* such that ||i' o n, — i||c1(p,) < €
where 4,47’ denote the inclusion maps. From now on we let M = Dy,.

We fix Q € Vj such that Q € U is sufficiently close to P». From Lemma 2.18, we can find
a C! curve T contained in W*(Py) of the form T' = {v(s) : |s| < do} with v : (=8, dp) — R?
a C'! function such that v(0) = @ and 7/(0) not tangent to W*(P,) at Q. We can also assume
that I' is contained in U by taking J, small. Choosing € > 0 smaller if necessary we can
assume that I' intersects M.

We want to prove that for ¢ > 0 large, there is a point P, € X;(I') N M and that the
collection of points P; describes a spiral around the point Xy, (P*).

By the conjugation ®, we will assume that P, is at the origin and near the origin the flow
is given by Y; = eM2!. Thus the image of W*(P,) NU through @ is {(y1,y2,vy3) : y3 = 0},
which is inside V, and the image of B® is {(y1,y2,¥3) : y3 = 0, |y| < d} for some § > 0.
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Choosing ¢ small in the A-Lemma, we can assume that the normal vector of M = (M)
near ®(P*) is almost parallel to e5 = (0,0, 1). Thus by taking a subset of M, we may assume

that M is a C*! graph with respect to the variables (yi, y»), that is, there exists a C! function
¢ :{y = (y1,y2) € R? |g| <} — R such that

M ={(G,¢(5)) : 5 € R, || < 6}

Since +/(0) is not tangent to W*(FP) at v(0), we have 74(0) # 0. We may assume that
©(g) > 0 for § near the origin and ~4(0) > 0.

—~

We claim that for all ¢ > 0 large there is a unique s = s(¢) > 0 small so that Y;(y(s)) € M.
Indeed, this condition is equivalent to

e"'3(s) = (e (11(s) +i72(9)))- (2.55)
Let 7 =1/t > 0 and define, for (7, s) € (0,d1) X (—d1,01) (61 > 0 a small fixed number)

F(1,5) = 73(s) — e Tp(e"/7(n(s) + i7a(s)))-
Then, since v; > Re(ry), F admits a C' extension to 7 = 0 and

OF oF ,
5(07 S) - 07 5(07 8) - 73(8)'

Since F'(0,0) = 0 and %—5(0, 0) > 0, by the implicit function theorem, given ¢ > 0 large there
is a unique s small so that F(1/t,s) = 0. We obtain a C' function s(t) > 0 defined for all ¢
large such that Y;(v(s(t))) € M. Using (2.55) we see that

W= 5m

as t — oo. Writing v = a + iw, the point of intersection has the form

P, =Yi(v(s(t))) = (0,0,9(0,0)) + e cos(wt)a; + e sin(wt)&s + o(e™),

F(07 S) = 73(3)7

p(0)(1+o(1))

where

5 (momox 220.0m(0) + 520 om<o>) ,
s — (—72(0), 701~ 520,07200) + 2200 om<o>) .

Therefore the curve {P,,: t > t1}, where ¢t; > 0 is large, defines a spiral ‘contained in M.
Applying the conjugation ®~! we obtain a collection of points P, = ®~1(F;) in M N X(T)
that forms a spiral around X;,(P*). Applying the flow X_;, we see that

S ={ Xy (7(s(1))) : = 11}

with ¢; > 0 large has the structure of a spiral around P*. By construction § is contained in
Wu(Pl) N {’U3 = 2<N - 2)1)1}. O
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Proof of Theorem 2.5. Let us define A, to be the height v3 = A, where W*(P,) first intersects
the boundary plane {vz = 2(N — 2)v;}. Define Hy = {vs = A}. If A = A, we know
that P* lies on the line {v3 = A,,v3 = 2(N — 2)v;}. From Lemma 2.19, W*(P;) N {vg =
2(N — 2)v;} contains a spiral S around the point P*. Since the plane H) is transversal to
{vs = 2(N — 2)v,}, it is possible to show that H), and S intersect an infinite number of
times, which means that problem (2.1) has infinitely many radial regular solutions; see for
example Lemma 4 in [49]. If A # A, but X is close to \., we have that Hy NS contains a
large number of points, which means that problem (2.1) has a large number of radial regular
solutions. O

2.6 Estimate the Morse index: proof of Theorem 2.6

In this section we always assume that N > 10 and prove Theorem 2.6. First we give the
asymptotic behavior of a radial singular solution to problem (2.1) near the origin.

Lemma 2.20. Assume that (A, u.) is a radial singular solution of (2.1). Then

2(N — 2)

S +7r?2+o(r*) as r—0. (2.56)

us(r) = —2logr + log

Proof. By Theorem 2.3, u, is a weakly singular radial solution of (2.1). Define v(t) = wu.(r)
with 7 = €', and vy, v9, v3 are given by (2.8). Therefore, from Corollary 2.15,

lim (v, ve,v3) = (1,-2,0).

t——00
By Lemma 2.8 and Lemma 2.9, we have
(v1,v2,03) = (1,-2,0) + (1,2, 4(N — 1))e* (1 + o(e”)) as t — —o0,
with ¢ > 0 small. We then get

2N —2Ju(t)
A

2(N —2) (1+ €% + o(e1))

A

us(r) = v(t) = =2t + log

= —2logr + log

2(N — 2)
A
2(N — 2)
A,

= —2logr + log +log(1 + 7% 4 o(r?™?))

= —2logr + log +7r2+o(r*) as r—0.
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For A > 0, let us define

2N -2 A2 (2.57)

w(r) = —2logr + logT 5N

Let p > 0 be a small number, which will be fixed later and let us write ¢, = w(p). Then w
satisfies

—Aw < A(e¥ —1) in B,
(2.58)
w(p) = c, on 0B,
where B, is a ball with radius p and center at the origin.

We have the following stability property of w.

Lemma 2.21. Suppose N > 10 and let w be defined in (2.57). There exists p € (0,1) small,
such that w is stable in B,, in the sense that

/B Vl|? > )\/B e“o®  for all p € C°(B,). (2.59)

p

Proof. Write A = % Since N > 10,

2
w (%2 2
/ V|* — Ae¥? = / [Ve|* — 2(N — 2)5 e

B, B,

_ /B (|V¢|2 —2(N — 2)%2) —2(N —2)(A+ 0(1))/ o”

By

> [ (e - EEE ) a2y [

P

where o(1) — 0 as p — 0. Let us recall the following improved Hardy’s inequality from [15]:

for ¢ € CX(B,)
92,2
/ (IVMQ— M%) > Hzp‘Q/ 0’
B, 4 T B,

where the constant Hj is the first eigenvalue of the Laplacian in the unit ball in N = 2, hence
it is positive and independent of N.

Choose p > 0 such that 2(N — 2)(A + o(1)) < Hyp2. Then (2.59) holds. O

Lemma 2.22. Let p € (0,1) be small and satisfy Lemma 2.21. Then for any radial reqular
solution u of (2.1) we have

u(r) g{ Z(T) o gp\ 5, (2.60)

where w(r) is defined in (2.57).
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Proof. Arguing by contradiction, suppose there exists 1o € (0, p), such that u(ry) = w(ro).
Then

—Au=Ae*—1) in B,;

—Aw < Ae¥ —1) in B,; (2.61)
U=w on 0B,,.
Therefore,
—A(w —u) < A(e® —e* in B,,,
( ) < A ) 0 (2.62)
w—u=0 on 0B,,.
Multiplying by (w — u)* and integrating in (2.62), we obtain
/ V(w—u)t]? < )\/ (e —e")(w—u)t. (2.63)
By, By,
From Lemma 2.21, w is stable in B,,, by taking ¢ = (w —u)" in (2.59), we then have
/ IV(w —u)t|? = X ((w—u)")? > 0. (2.64)
B

0

Combining (2.63) and (2.64), we get

A et [ e ey

0 70

We rewrite it as

[(e” —e")(w—u)t —e“((w—u)*)?] > 0.

Br,

By convexity, the integrand is nonpositive, therefore,
(e —eYw—ut —e“(w—u)t)? =0 ae in B,,
then
(w—u)"=0  ae in B,.

It implies that w < w in B,,, which is impossible because u is a radial regular solution. Then
u(r) < w(r) for r € (0, p).

Since u is a radially decreasing regular solution, u < ¢, in B\B,. O]

Now, let (A, uy) be any radial solution to (2.1) (regular or singular), and define the
operator L, as

Ly(¢) = —A¢ — Ae™ ) + 7o
with v > 0 large but fixed. We have the following Lemma.
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Lemma 2.23. If v > 0 is fized large enough, we have:
(a) for N > 11, (L,(6),8) = Gill6]2 s, Jor all 6 € C=(B);

(b) for N =10, {L,(6),8) > C3l|6|%a(p, for all 6 € C(B),
where C1 and Cy are positive constants.

Proof. For p > 0 small given in Lemma 2.21, from Lemmas 2.20 and 2.22, we have

(L (), 6) = /B L ()= /B (IV[2 = A + 67

:/B|v¢\2_/3p Ae%?—/B\BP Ae“*¢2+/37¢2

2 B 925_2 2 2\ 2 2
2/B|V¢\ 2(N 2)/Bp 7n2(1+Ar +o(r?)) —C o) +/B’y¢

B\B,
¢2

> [ (1902 -2 - 2% ) + b - max(a(v = 2)(4-+ o), Y [

where A = ﬁ for a radial regular solution uy, A = 1 for a radial singular solution u,, and
o(1) = 0 as p — 0. Choose 7 large such that the second term of above is nonnegative, we
then get the conclusion by Hardy’s inequality. O]

We now define

16l = /B (IV? = A& + 76?)

which is a norm on C'°(B) with associated inner product

(6, 0)1 = /B (V6T — A dyp + 760)

Completing C2°(B) with respect to this norm we obtain a Hilbert space H. We denote by
H* the dual of H. We have H}(B) C H C L*(B) and therefore L?*(B) C H* C H'(B).
Actually by Lemma 2.23, if N > 11, the space H is just H(B).

Given h € L*(B) C H* we consider the following problem
L.p=h in B, and ¢=0 ondB. (2.65)
We say that ¢ € H is a weak solution of problem (2.65) if

(Qb, SO)H = <h, S0>H*,H for all Q< H.

By the Lax-Milgram theorem, for h € L?(B), problem (2.65) has a unique weak solution
¢ € H.

Lemma 2.24. Let T : L*(B) — L*(B) be the operator defined by Th = ¢, where ¢ is the
solution of (2.65). Then T is compact and the natural embedding H — L?(B) is compact.
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Proof. For N > 11, both statements hold since T': L*(B) — H = H(B) and H}(B) —
L*(B) is compact, by the Rellich-Kondrachov theorem. For N = 10, we observe that L,
satisfies

(Ly(0),0) = el 0l Vo € CZ(B)

for 2 < r < % where ¢, > 0, thanks to an improved Hardy’s inequality of Brezis and
Vézquez [15]. Then the statements are proved in [36]. O

Proposition 2.25. The radial singular solution (A, u.) of (2.1) has a finite Morse index.

Proof. By Lemma 2.24, if v > 0 is large, (—A — M\.e" + )~ ! is well defined and compact
from L?(B) into itself, and hence its spectrum except 0 consists of eigenvalues, and these
eigenvalues form a sequence that converges to 0. Hence —A — \,e"* is negative definite on a
finite dimensional space only. O

Next we prove a bound for the Morse index of any radial regular solution of (2.1).

Proposition 2.26. There is an integer K > 1 independent of A\, such that for any radial
regular solution uy of (2.1) we have

1 <m(uy) <K, (2.66)

where m(uy) denotes the Morse index of uy.

/ (Vuy|* = )\/ (" — 1)uy.
B B

/ ([Vurl> = Xe™}) = )\/ (e —1—e"uy)uy <0,
B

B

Proof. From (2.1) we get

Therefore,

so m(uy) > 1.

We prove the proposition by contradiction. Suppose that {(\,, u,)} is a sequence of radial
regular solutions of problem (2.1) and assume that m(u,) — oo as n — oco. Let us write
m(u,) = m, and

L,=—A—\,e".

Let

E, = span {90 € L*(B) : ¢ is eigenvector of L, with negative eigenvalue}
so that dim(E,) = m,,. Since L,, is symmetric there exist eigenfunctions ¢y, ... @m,n € En,
namely

Ln@i,n = WUinPin in Ba
vin=0 on dB,
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with 1, < 0, that form an orthonormal basis of FE,, in L?*(B) sense, that is

/ PinPjn = 52'3' fori,7 € {1’27 - mn}7
B

where 6;; is Kronecker’s delta.

Multiplying by ¢;, and integrating on B, we find

/ (IV@inl® = An€" ¢} ,)) = pin / v, < 0.
B B

Then

/|Vg0¢7n|2 </)‘neun90?n:/ Aneun(:p?n"i_/ )‘neunSO?n
B B ’ B ’ B\B, ’

P

—21 log 2V=2) L 4 .2 o 9
< / /\ne A Pin +C Pin
B, B\B,

2
— (N~ 2) / Pin (1 4 A® 4 o(r)) + C / =
B

2
P r B\B,
8

<

If N > 11 we deduce

/B Vepin]* < N%fo max {2(N — 2)(A,, + o(1)),C},

N_2/B\V(pi,n]2+max{2(]\/—2)(An+0(1)),0}/3g0?7n.

(2.67)

where A,, = ;‘—N Let us assume N > 11 and leave the case N = 10 for later. Thus (¢;n)n
is bounded in H}(B). By a diagonal argument, there is a subsequence (which we write the
same), such that for each i € {1,2,...}, pi, — ¢; weakly in H}(B), @i, — ¢; strongly in

L*(B) and almost everywhere in B as n — +o0o. Therefore for all i > 1,
il gy < 1%1_{2{.15 leinllmzsy < C, il = 1.

Moreover, taking n — oo in (2.67)

/ ngQOJ = 6@‘ fOI' Z,] Z 1
B

(2.68)

Since (¢;)i>1 is bounded in Hj(B), there is a subsequence (g;,); of (¢;) such that ¢; — ¢

in L*(B) as j — +00, and ||¢[/12(5) = 1. But from (2.68) we get
/ @i, i, =0 for j #m.
B
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Taking the limit, as j — +00 and m — 400, we have

/ ©* =0,
B
which is a contradiction.

For N = 10, we define the Hilbert space H as the completion of C2°(B) with respect to
the norm

ol i= [ (V9P = Aet6? 4 76?)
B
with v > 0 large but fixed and w, the radial singular solution of (2.1) with A = A,. Then

linll =/ (IV@inl* = Ae™ o2, +7/ P
B B

= i / Oin + / (A€ = A€™) @7, + / O
B B B
< / (Ape™ — Ae™) 2 +7/ w2
B ) B )

Let p > 0 be as in Lemma 2.21. Let A, = 2/\—]@ From Lemma 2.20 and Lemma 2.22, we find

S SN R
B ’ B, ’ B\B, '

2(N—2) 2 2(N=2) , 2 2
S / </\n€—210gr+10g T+Anr _)\*6—210gr+10g =t +o(r )) (;01271
B

P

+C Pin
B\B,

SC/sO?n-
B 9

H%M%SW+wﬁgasa

That is, (¢in)n is bounded in H. By Lemma 2.24, the natural embedding H < L*(B) is
compact, so using the same argument as the case N > 11 we obtain a contradiction. This
ends the proof of Proposition 2.26. m

Thus we get

Lemma 2.27. Suppose that uy,us are radial reqular solutions of (2.1) associated to the same
parameter X > 0. Then the graph of uy must intersect with the graph of us.

Proof. By contradiction, assume that wy(r) > us(r) for any r € (0,1), and set v = u; — us.
By equation (2.1) we have

—Av = A(e"™ — e"?) > \e"2v in B;

v >0 in B; (2.69)

v=>0 on 0B.
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We consider the following eigenvalue problem
=AY = Xe™) + up in B;
P >0 in B; (2.70)
Y =20 on 0B.

Multiplying by ¢ and v in (2.69) and (2.70) respectively, and then integrating on B, we get

/\/e“2¢v+u/wv>)\/e“2¢v,
B B B

so i > 0, that is us is a stable radial regular solution. Then m(uz) = 0 and this contradicts
Proposition 2.26. O

Proof of Theorem 2.6. The first part follows from Propositions 2.25 and 2.26.

Let K be an integer such that m(u,) < K for any radial regular solution u, of (2.1) and
m(u,) < K. This integer exists by Propositions 2.25 and 2.26. Next we prove that the graph
of any radial regular solution uy of (2.1) intersects with that of the radial singular solution
u, at most 2K + 1 times in (0,1). We follow the idea of Theorem 1.2 in [71].

By contradiction, suppose that the graph of u, intersects with the graph of u, at least
2K + 2 times in (0,1). There are two cases: A < A, and A > ..

For A\ < A, we can show m(uy) > K + 1, contradicting Proposition 2.26. Indeed, since
the graph of (A, uy) intersects with that of (\.,u.) at least 2K + 2 times in (0, 1), there are
at least K + 1 intervals J; C (0,1) (i =1,2,--- , K + 1) such that uy > wu, in J;. Let

b — Uy — Uy in J;;
10 in (0,1)\J;.

Since uy and wu, satisfy equation (2.1), we have

—A(uy —ue) = AMe"™ = 1) — A\ (e™ — 1)
<A™ — ") < Ae"Muy — uy).

Therefore
Qu, (h;) = / [[Vhi|> — Xe"*hi]dx < 0.
B
Since the functions h;, i = 1,..., K + 1 are linearly independent, we conclude that m(u,) >
K+ 1.

For A > \,, similarly we can obtain that m(u,) > K + 1. This contradicts Proposition
2.25. In fact, because the graph of u, intersects with that of u, at least 2K + 2 times in
(0,1), there are at least K + 1 intervals Jy C (0,1) (k =1,2,--- , K + 1) such that u, > uy
in Jy. Let

0 in (0,1)\J.
46
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Note that
—Ahk < )\*e“*hk n Jy

and this implies
Qu. (hy) = / [[Vhe|> = Ae™ hi]dx < 0.
B

Therefore m(u,) > K + 1.

Next we prove that the number of regular solutions to (2.1) is bounded by (K + 1)? for
each A € (Ao, f11).

By contradiction, for each fixed A € (Ag, 1), we suppose that there are at least (K +
1)? 4+ 1 radial regular solutions to (2.1), denoted by w; (i = 0,1,--- , (K + 1)?). Without
loss of generality, assume uo(0) > u1(0) > -+ > ug41)2(0). By Lemma 2.27, the graph of
u;, i =1,--+, (K + 1)% must intersect with that of uy. Let a; be the first point such that
ui(a;) = up(a;) for i = 1,--- (K + 1)% Then there are the following two cases:

Case 1: There are at least (K + 1) different points a; such that uy —u; > 0 in (0, a;) and
u,((l» = UQ(CLZ‘).

Case 2: There exists some point a;, € (0, 1), such that there are at least (K + 1) regular
solutions that intersect ug at a;,.

Case 1. We rearrange the indices so that a; < -+ < agxy1. Now uy(0),...,uk1(0) are not
necessarily ordered. Let ¢; = (up — 4;)X(0,0,)- We claim that {¢; :4=1,2,--- (K +1)}is
linearly independent. Indeed, suppose that

K+1
Z cipi = 0.
i=1
Since a;_1 < a;, there exists r;_1 € (a;_1, a;), such that o1 (r;_1) =0, wa(ri—1) =0, ,@i1(ri_1) =

0,pi(ri_1) # 0, then we can get ¢; =0, for i =1,2,--- , (K +1). Then
Quo (i) = / [Vil* = Aepf]dw
{lz|<a;}
= )\/ [0 — e — e"(up — u;)|(up — u;)dx < 0
{lz[<a:}

by strict convexity and uyp —w; > 0 in {|z| < @;}. This implies that m(ug) > K + 1,
contradicting Proposition 2.26.
Case 2. Rearranging indices, there are at least K + 1 solutions uy,- - ,ux 1 that satisfy
(uo(r) — u;(r)) > 0 for r € (0,a;,) and u;(a;)) = wolai,), 7 = 1,--- , K + 1. Set ¢; =
(ug — uj)x(07ai0), we claim that

{¢j:7=1,---, K+ 1} is linearly independent. (2.71)

Claim (2.71) together with Q,,(¢;) < 0 yields that m(uy) > K + 1, contradicting 1 <
m(ug) < K.

47



CHAPTER 2. GELFAND-TYPE PROBLEM

Let us show that the claim (2.71) holds. From now on, we write 7y = a;,. We assume
that there exist ¢;, j = 1,--- , K + 1, such that

K+1

Z cjpi(r) =0 for all r e (0,r],
j=1

that is,
K+1 K+1
Z cjui(r) = (Z cj) up(r) for all r e (0,7 (2.72)
=1 =1

We will deduce ¢; = -+ = cxy1 = 0 from the following assertion:

K+1 K+1
Z c;(uf(ro))" = (Z cj> (ug(ro))™, for all integers n > 0. (2.73)
=1

j=1
In the following we will establish (2.73). We denote g™ the n—th derivative of g and set
flu):=—=XAe"—1), YueR; b=uy(r).

Then £ (u;(rg)) = —Ae® for any integer n > 1.
In order to prove (2.73), we shall show that for each j € {0,1,2,--- , K + 1},

u§-n) (ro) = Pu(uj(ro)) for any integer n > 1, (2.74)

where P, is a polynomial of degree 1 for n = 1,2, and of degree n — 2 for n > 3, whose
coefficients depend only on N, n, rg, and b.

Indeed, for n = 1, (2.74) is direct and for n = 2 this follows from equation (2.1). By
induction, assume that (2.74) holds for n = k& > 2. From equation (2.1), we have

(Auy) Y = (f(uy) Y., (2.75)
We see that for n > 0,
n n+2 N_l n+1 N_l n
N—-1
—|—n(n—1)Tuj —
N-—-1 N -1
+(—1)”*1n!r—nug+(—1)”n! T u’, (2.76)

and by the formula for derivatives of a composition (e.g. Faa di Bruno [54]) we obtain

n!

(Pl = =2 3 et el |

(25 PR Qn 7
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where the sum ranges over integers a; > 0, - -+, oy, > 0 with a3 + 29+ - - +na,, = n. Using
(2.75)-(2.77) with n = k — 1 and r = rq, we get

k1 N-1 @ N—-1
u V) = == () + (k= 1) == (o) -
_ N -1 _ N -1
o o
(k —1)! LN
Y b . i o
ap3 A (1) (202 -~ a1 1((k — 1)yt Hl(“a (r0))™,
] yeeey A1 i=
where the sum ranges over integers ai; > 0, - -+, agp_1 > O with a1 +2a0+ -+ (k—1)ag_1 =

k — 1. By the induction assumption (2.74), we have H( ‘ (7“0))0“ is a polynomial in u/(ro)

of degree at most a; + as + a3z + 2a4 + 3as + - -+ + (k —3)ag—1 < k — 1. Thus we see the
validity of (2.74).

Next we prove that (2.73) holds, again by induction. From (2.72), we have

K+1 K+1
Z cju§") (ro) = (Z Cj) u™ (o) for any integer n > 0, (2.78)
j=1 =1

and so (2.73) holds for n = 0, 1. Suppose (2.73) holds for n = k. By equation (2.1), we get

(Auy)™ = (f(u;)™. (2.79)

Since u;(rg) = ug(ro) for j =1,2,--- , K + 1, from (2.76)-(2.79), we obtain for any integer
n > 0,

K+1 K+1
Z " Ajn) = (Z CJ) (up(r0))" + Aon) (2.80)

where
o " - (@) o
g = m;)m (1)@ ay!(2Nez2 - - - ay,!(n!)on H(u] ()™
and the sum ranges over integers 0 < oy <n, as >0, -+, a;, > 0 with ay+2ap+- - - +na,, = n.

In writing (2.80) we have used again the formula for the n-th order derivative of a composition,

where we have isolated one term. Consider (2.80) for n = k + 1. By (2.74) we know that
K+l
ljl(ug.’) (70))* is a polynomial in u}(rg) of degree at most

Oél—|'062+063+2044+3045+"'+(k’—l)OékJrl.
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Since 0 < a1 < k + 1, we see that
ay+ag +az+ 20 +3as + -+ (k= 1oy <ar+ 20+ + (k+ 1oy =k +1

and therefore A;, can be expressed as a polynomial in u/(ro) of degree at most k. Thus by
the induction assumption, we have

K+1 K+1
E:chj,n: E ¢j | Aon
j=1 j=1

and so (2.73) holds for any integer n > 0.

Finally we turn to the proof of (2.71), namely the linear independence of ¢;, j =
L. K + 1. We denote uy(rg) = do, uj(ro) = dj for j = 1,2,--- K + 1. For n =
1,2,--- K + 1, we can rewrite (2.73) as

dy — dy dy — dy T dry1— do C1

di—dé dé—dé dz<+1—d§ Co

dy — dy dy — dg e iy —dg 3 =0. (2.81)
d{f-l—l _ d(l)(-‘rl d§+1 _ d(f)(—i—l . dgii _ d(l)(-‘rl CKi1

A calculation shows that the determinant of the coefficient matrix of (2.81) is equal to a
(K +2) x (K + 2) Vandermonde determinant and the value is

II @—-a)+o

0<j<i<K+1

Thus ¢; = ¢y = -+ = cg1 = 0 and this ends the proof of Theorem 2.6. O

2.7 Appendix

Proof of Proposition 2.1. Suppose u is a classical solution of (2.1). Let ¢; > 0 be the first
eigenfunction of —A corresponding to the first eigenvalue p1. Multiplying problem (2.1) by
¢1 and integrating over B, we find

i [ uo=x [ @ =100 > [ uon

Multiplying problem (2.1) by z - Vu, and integrating over B, we have

Thus A < p.

_/BAU(Q,W) — /\/(e“— D(z - V). (2.82)

B
20
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But

_/BAu@.vU) = —%/ Vul’z - v+( )/IW
(1__)/ Vul?, (2.83)

A/B(e“ —1)(z- Vu) = —)\N/B(e“ —1— ). (2.84)

IN

since x - v > 0 on 0B. Moreover,

From (2.82)-(2.84), we get

(%—1>/B|W|QSAN/B(6“—1—U).

We rewrite the above inequality as

N -2
—2/\Vu|2§)\N/(e“—1—u)——/\Vu|2.
B B 4 Jp

Multiplying equation (2.1) by u and substituting we get

%/B\VUFS)\/B{N(e“—l—u)—Niz(e“—l)u}

The integrand on the right hand is negative for u > Cj, with Cj, a positive constant, so the
integral can be restricted to the region {z : u(z) < Cyp} and in this region

N -2
N(e*—1—u)— (e" — 1)u < Cyu’.
Thus
N —2
—/ |VU|2 S)\Cl/UQ S)\CQ/ |Vu|2,
4 B B B
where C > 0, Cy > 0. This implies that u =0if 0 < A < ]ZT_E. n
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Chapter 3

A new critical curve for the
Lane-Emden system

3.1 Introduction

We consider the Lane-Emden system

—Au=v", u>0 in RY,
N (3.1)
—Av=ul v>0 in R™,
where N > 1 and p > ¢ > 1. Introduced independently by Mitidieri [85] and Van der
Vorst [114], the Sobolev critical hyperbola plays a crucial role in the analysis of (3.1). In
particular, Mitidieri [86] (see also Serrin and Zou [109]) proved that (3.1) has a nontrivial
radially symmetric solution if and only if (p, ¢) lies on or above the hyperbola i.e. when
1 1 2
—t+ —<1—-—. 3.2
p+1 g+1- N (3:2)
The Lane-Emden conjecture states that such a result should continue to hold for any positive
solution (not necessarily radially symmetric). See Souplet [110] and the references therein
for the progress on this conjecture.

In this chapter we characterize the stability of radially symmetric solutions of the Lane-
Emden system (3.1). Let us now recall the definition of stable solution of system (3.1), see
also Definition 1.15.

Definition 3.1. A solution (u,v) to (3.1) is stable if there exists a positive supersolution of
the linearized system i.e. if there exists (¢,) € C*(RN)? such that

—A¢ > poP e in RY,
—AY > quiT' in RY,
¢, >0 in RY.
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Let us also recall that if (3.2) holds, then
(us, vs) = (alo] ™ bl ™"), = € RV\ {0} (3.3)
is a weak solution of (3.1) provided

2(p+1) 2(q+1)
= = .4
=TT 5 oy 1 (3.4)

and a = (STP)7 1 b= (SIT)5m 1,8 =a(N—2—a),T = B(N —2—B).

Our main result states that the stability of a radial solution of the Lane-Emden system is
determined by the position of the exponents (p, ¢) with respect to a new critical curve, which
we call “Joseph and Lundgren”, since the exponent introduced by these authors in [73] is the
intersection of the curve with the diagonal p = q.

Theorem 3.2. Assume p > q > 1.
(i) If N > 11 and (p,q) lies on or above the Joseph-Lundgren critical curve i.e.

(N =2~ (a—B)?
4

2
| = paas(v —2 - )y —2- 9, (3.5)
then any radially symmetric solution (u,v) of (3.1) is stable and satisfies

u<us and v<wv, in RY\{0},

where (us, vs) is the singular solution given by (3.3) and a, B are the scaling exponents given

by (3.4).

(1) If N < 10 or if N > 11 and (3.5) fails, then there is no stable radially symmetric
solution of (3.1).

Remark 3.3. Equation (3.5) is derived by studying the stability of the singular solution
(us, vs) given by (3.3).

Remark 3.4. e The above theorem was first proved by Cowan for 1 < N <10, p > q > 2
and (u,v) not necessarily radial. See [30)].

e [n the case p = q, using Remarks 1.1(a) and 2.1(a) of Souplet [110] and Farina’s
seminal work for the case of a single equation [55], part (ii) of the theorem readily follows.
The result continues to hold for possibly nonradial solutions, assumed to be stable only outside
a compact set.

e In the biharmonic case ¢ = 1, the theorem was first proved by Karageorgis [7]] using
the asymptotics found by Gazzola and Grunau in [63].

e [n all the other cases, only partial results were known. To the authors knowledge, the
state of the art for nonradial solutions is contained in the following references: Wei and D.
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Figure 4: The stable region (shaded) for radially symmetric solutions of the Lane-Emden
system (3.1).

Ye [117], Wei, Xu and Yang [115], Haglaoui, A. Harrabi and D. Ye [72] for the biharmonic
case, and Cowan [30] for the general case. We believe that the methods of the paper [52]
by Goubet, Warnault and two of the authors should slightly improve the known results (and
coincide with [72] in the biharmonic case).

e Qur result does not cover the case where one of the exponents is less than 1.

e The left hand-side in (3.5) is related to the following Hardy-Rellich inequality:

[ eriaekas > ¢, [ e (3.6)
R R

The optimal constant C., in the class of radially symmetric functions ¢ = (|z|) is given by

JAERICR _
N —2)% — 4272
C, = inf e _ [N =2 (3.7)

C(RN\{0 —2— 4
R /Q 2| g d

and the above infimum is never achieved. See Caldiroli and Musina [20]. We remark that the
optimal constant C.,, in (3.7) corresponds to the left hand-side in (3.5) withy = a—f € [0, 2).

As an immediate corollary of Theorem 3.2 and standard blow-up analysis, we obtain the
following regularity result.

o4



CHAPTER 3. LANE-EMDEN SYSTEM

Corollary 3.5. Let B denote the unit ball of RN, N > 1, \,u > 0. Let f,g € C*(R) be two
nondecreasing functions such that f(0) >0, g(0) > 0, f'(0)¢’(0) > 0 and

I lim & =0

lim ——- =a,
t—+oo tP—1 t—+oo 41

for some a,b >0, p>q>1, pg > 1. Then, any extremal solution to the system

—Au=Af(v), u>0 in B,
—Av = ug(u), v >0 in B, (3.8)
u=v=0 on 0B

is bounded if either N < 10 or if N > 11 and (p,q) lies below the Joseph-Lundgren critical
curve i.e. (3.5) fails.

For the notion of extremal solution for systems, we refer to Montenegro [88]. See also
Cowan [29] for partial results on general domains. The proof is a straightforward adaptation
of Theorem 1.9 in [37], using the version of the blow-up technique introduced by Polacik,
Quittner and Souplet [100], so we skip it.

3.2 Preliminary results

The following three results will serve for the purpose of comparing solutions. In the
lemma below, we say that a solution is strictly stable in a bounded region Q C R¥ if the
principal eigenvalue of the linearized equation with Dirichlet boundary conditions in €2 is
strictly positive.

Lemma 3.6. Let (u,v) € C*(RY)? be a stable solution of (3.1). Then, given any bounded
domain Q@ C RN, (u,v) is strictly stable in Q. In particular, the linearized operator satisfies
the mazimum principle, that is, any pair (¢,v) € C*(Q)?* such that

—A¢ > pr" 1y in A2,
—Ap > quil in S,
¢, >0 on 951,

satisfies ¢, > 0 in €.

Proof. Since (u,v) is stable in RY the linearized equation has a strict supersolution in Q. As
observed by Sweers [111] and Busca-Sirakov [18], this implies in turn that the principal
eigenvalue of the linearized operator with Dirichlet boundary conditions in €2 is strictly
positive and equivalently that the maximum principle holds.

In the next lemma, we say that a solution is minimal if it lies below any (local) superso-
lution of the same equation. See e.g. [50] for the notion of minimal solution.
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Lemma 3.7. Assume p > q > 1 and let  C RY be a bounded domain, a,b € C(09),
a,b>0. If (u,v) € C*(Q)? is a strictly stable solution of

—Au =P i €,
—Av =uf in €2, (3.9)
u=a(z),v=">0z) on 0%,

then (u,v) is minimal.
Proof. Assume that (u,v) is a strictly stable solution of (3.9). By the maximum principle,

u > mina, v >minb in .
o0 aQ

In particular, there exists the minimal solution (u,,, v,,) of (3.9) and

U > Uy > mina, v >v, >minb in Q.
Elg) 0

Set ¢ = U — Uy, Y = v — v,,. Then, ¢, > 0in  and, since p > g > 1,

—A¢ =P — P, < pvP e in €,
—AY =ul —ul < quite in €,
dp=1=0 on 0f).

Since (u,v) is strictly stable, the maximum principle holds and implies that ¢, < 0 in €.
It follows that ¢ = = 0, that is, u = u,, and v = v,,. O

As an immediate consequence of the two previous lemmas, we obtain

Corollary 3.8. Let (u,v) € C?*(RM)? be a stable solution of (3.1) and let (us,v,) be the
singular solution defined by (3.3). If there exists R > 0 such that u(R) < us(R) and v(R) <
vs(R), then

u<us and v<wvs in Bg\{0}.

Proof. Since us(0) = v5(0) = oo, there exists r € (0, R) such that
u<wu, and wv<wv, inB,\{0}. (3.10)
We next apply Lemma 3.7 for Q = Bp \ B,, a(x) = u, b(z) = v. Thus (u,v) is the minimal

solution of (3.9) and u < u,, v < v, in Br \ B,. This last inequality together with (3.10)
yield the conclusion. O

26



CHAPTER 3. LANE-EMDEN SYSTEM

3.2.1 Stability of the singular solution.

In this part we investigate the stability of the singular solution (us,vs) given by (3.3).
Proposition 3.9. The following are equivalent:
(i) The singular solution (u,,vs) is stable in RN \ {0};
(i1) The singular solution (us,vs) is stable outside of some compact set;
(11i) (p,q) satisfies (3.5).
Proof. Since the implication (i) = (i7) is trivial, we only need to prove the implications
Assume first that (i7) holds, that is, the singular solution (u,vs) is stable outside of a

compact set. Thus, (us,vs) is stable in RN\ B, for some r > 0. By scale invariance, (us,v;)
is stable in RN \ B, for all p > 0.

Set v = a — 3, where «, § are the scaling exponents given by (3.4) and let Ky, K5 be the
constants such that

poi Tt = K|z and quiTt = Kylo[ 2.
Then, (p, q) satisfies (3.5) if and only if
C, > K1 K,

where C, is given by (3.7). Assume by contradiction that (p, q) does not satisfy (3.5). Then,
we may find an open annular region 2 = Bg, \ Bg, such that

|27 Ap[*dz

A:= min < K 1Ko, (3.11)

Q
weH\{0} / 222 da
Q

where H is the space of radial functions ¢ such that [, [z|*"7|Ap|*dz < +o0 and ¢ = 0 on
9. Let ¢ > 0 be a minimizer of (3.11), so that letting ¢ = |z[*77(—Ay), we have

—Ap = [z, 9 >0 in Q,
—AY = \z| 7, Y >0 in €,
p=1v=0 on 0.

Since (us, vs) is strictly stable in €2, thanks to [111, Theorem 1.1], there also exists (¢, 1) €
C?(02)? such that

—Ag = K|z >, ¢ >0 in Q,
—Ap = Ko|lz| 2 7¢ 41,4 >0  inQ,
G=1=0 on Of).
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A straightforward integration by part shows that ¢ and ¢ satisfy
(v, 0) :=/ [>T ApAgdr < 0
Q

which is impossible, since both 1 and ¢ are positive. Hence (p, q) satisfies (3.5) and we have
proved that (ii) implies (i77).

Assume now (7). It is easy to see that

4K,

N—2—~

o(x) = x| 2, Ylr)=|z 2 3.12
@) = T =T () = |a] (3.12)
satisfy
—A¢ = ppP L
¢ pvs_lw (3.13)
—AY > qui o
in RY \ {0}, which means that (us,v,) is stable in RY \ {0}. O
3.3 Proof of Theorem 3.2
We start this section with the following simple remark.
Remark 3.10. Let (u,v) be a radially symmetric solution of (3.1). Then
rlggo u(r) = Tlglolo v(r) =0.
To see this, we first note that (u,v) satisfies
— (N = NP for all > 0,
N—-1,./\/ N-1 (3.14)
—(r ) = e for all r > 0.

This implies that r» —— r¥~1/(r) and r — rV~1/'(r) are decreasing on [0,00) and so

w,v" < 0in [0,00). Thus, u and v are decreasing in [0, 00). Hence, there exist

(y := lim u(r) € [0,00), ¥y := lim v(r) € [0, 00),

r—00 7—00
and u > {1, v > {5 in [0, 00).
If /5 > 0, then the first equation in (3.14) implies

_(TN_IU,)/ > CrN-v for all r >0,

where C' = /4 > 0. Integrating twice over [0, 7] in the above inequality we deduce

C
—u(r) +u(0) > ﬁrz — 00 asr — 00,
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contradiction. Thus, /5 = 0 and similarly ¢; = 0 which proves our claim.

Assume (p, q) satisfies (3.5). Then by Proposition 3.9, the singular solution (us,vs) is
stable in RY \ {0}.

Theorem 3.2(7) follows from the proposition below.

Proposition 3.11. Assume (p,q) satisfies (3.5). Then for any radially symmetric solution
(u,v) of (3.1), we have

u<us and v<wv, in RY\{0}L (3.15)

Proof. Assume by contradiction that there exists a radially symmetric solution (u,v) of (3.1)
for which (3.15) fails to hold and set

U=us—u, V=uv,—v.

Since (3.15) is not fulfilled, U’ and V' must change sign in (0, 00). Indeed, otherwise U’ < 0
or V' < 01in (0, 00) which implies (since U(oo) = V(00) = 0) that us > w or vs > v in (0, 00).
Now, the maximum principle yields us; > u and v > v in (0,00) and this contradicts our
assumption.

Let 7, > 0 (resp. 3 > 0) be the first zero of U’ (resp. V'). Thus
U <0in (0,71), U'(ry) =0, V' <0in (0,r9), V'(rz) =0.
Without losing the generality, we may assume ro > ry. Set next
rg:=inf{r > 0: V(r) <0} € (0, 00]
and we claim that r3 < ry. If r3 > 7 then V > 0 in (0,7) which means
v<vs in (0,7q). (3.16)

Integrating in (3.1) and using (3.16) we find

(rV ) = =N TP > NP = (PN LY in (0, 7y).

Integrating the above inequality over [0, 7] we find «'(r1) > w/(r1) which contradicts U’(r1) =
0. Hence r3 € (0,71). Similarly we define

ry:=1inf{r > 0:U(r) <0} € (0, o0]

and as before we deduce ry € (0,79). In fact, we show that 74 < r;. Assuming the contrary,
that is, r4 > 71, we find 1 < ry < ry. Further, since V' < 0 in (0,r3) we deduce V(r) <
V(r3) =0 for all r € (r3,re) so vs < v in (r3,72). Therefore,

(TN—lu')/ = V71PN =1yP = (TN_lU,)/ in (73, 73).
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Integrating over [ri,7], 11 < r < rg, and using U'(r;) = 0 we obtain u/(r) < u/(r) for all
r € (r1,72). This means that U is increasing in (r1,79). In particular, U(ry) < U(rs) = 0.
On the other hand, from the definition of 74, we have U(ry) > 0, contradiction. We have thus
obtained r3 < r1, 74 < 11 < 19 which yield

U(’I"l) < 0, U/(Tl) = 0, V(’f‘l) < 0, V/(’I"l) < 0. (317)

Next, let (¢,1) be defined by (3.12) and recall that (¢,) solves the linearized equation
(3.13) in RV \ {0}. Also, since p > q > 1, (U, V) satisfies

in RV \ {0}. (3.18)

—AU < pvg_lv
~AV < qut'U

We multiply the equations in (3.13) by V' and U, and the two equations in (3.18) by v and
¢ respectively. Integrating over B,., r > 0, we find

/ (-avy < / (-Ag)V / (-av)s / (-avr

Adding the above inequalities we deduce

/ (VAgb _ quv) n / (UA¢ _ wAU> <0 forallr>0,

T

/aBT<V%_ ?9_‘:>+/BBT<U%_ g—[yj)ﬁo for all 7 > 0.

Since U, V, ¢, 1 are radially symmetric, this yields

that is,

Ve — V' + Uy — U’ <0 in (0,00). (3.19)

Now, let us remark that ¢,¢ > 0 and ¢',¢’ < 0 in (0,00). Combining this fact with (3.17)

we deduce that (3.19) does not hold ar r = ry, a contradiction. Hence u < us and v < v, in

RY \ {0}. O
Assume next that (3.5) fails to hold. We establish first the following result.

Proposition 3.12. Assume (p,q) does not satisfy (3.5). Then, for any stable solution (u,v)
of (3.1) we have
w<us and v<wv, in RY\{0}

Proof. Assume by contradiction that u — u, changes sign in RY \ {0}. Then v — v, also
changes sign in RY \ {0} for otherwise v — vy < 0 in RY \ {0} implies

~A(u—u,) =v" —ovP <0 in RV \ {0}.
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Also u—ug < 0 in a neighborhood of the origin and by Remark 3.10 we have u(z) —us(z) — 0
as |x| — co. By the maximum principle, we deduce u —u, < 0 in R \ {0} which contradicts
our assumption.

Hence v — us and v — v, change sign on (0,00). Denote by 7y (resp. r2) the first sign-
changing zero of u — ug (resp. v — vg). From Corollary 3.8, u — us (resp. v — vs) cannot be
zero in a whole neighborhood of r; (resp. 73). Without losing generality, we may assume
that ry < ra.

We claim that u — us has a second sign-changing point r3 > r;. Indeed, otherwise
u—u, > 0in RY\ B,, which by the maximum principle implies that v — v, > 0 in RN \ B,,,.
Therefore, u > u,, v > v, in RNV \ B,, which implies that (us,v,) is a stable solution of
(3.1) in RV \ B,, and thus, contradicts Proposition 3.9. Hence, there exists r3 > r; a second
sign-changing point of u — us. Further, we must have r3 > ry for otherwise r; < r3 < rs.
Then u(rs) = us(rs) and v(rs) < vs(rs3) which by Corollary 3.8 yields u < u,, v < vy in
B,, \ {0}. But this is impossible since u(r;) = us(ry). Thus, rg > ro.

We next claim that v — v, has a second sign-changing point 74 > 1. As before, if this is
not true, then v — vy, > 0 in RV \ B,, and by the maximum principle we find u — u, > 0 in
RN\ B,,. Then u > u,, v > v, in RV \ B, so (us,vs) is stable in RV \ B,, which contradicts
Proposition 3.9.

We show next that r4 > r3. Assuming the contrary we have ry < ry < r3. At this stage,
two cases may occur:

CASE 1: v < wg in (r4,73). Remark that u(r3) = us(rs) and v(rs) < vs(rs). By Corollary 3.8
we deduce u < ug in B,, which is impossible since u(ry) = u(ry).

CASE 2: v — v, has a third sign-changing point p € (ry4,r3). Then v —vg > 0 on (r2,74) and
v —vs < 0 on (ry,p). On the other hand,

—Aw—v)=ul—ul>0 inB,\ B,

and v — vy, = 0 on d(B, \ B,,). The maximum principle yields v — v, > 0 on (74, p), a
contradiction. We have proved that ry, > rs.

We claim that u — ug has a third sign-changing point 5 > r3. Indeed, if this is not true,
then u — u, < 0 in RY \ B,, and by the maximum principle we have v — v, < 0 in RV \ B,,.
Hence u < u,, v < v, in RY \ B,, which combined with Corollary 3.8 produces u < us,
v < vs in B,,. This is clearly impossible since u(r;) = ug(ry). Hence, u — u,s has a third
sign-changing point r5 > r;.

If r5 < r, then

—A(u—ug)=v"—v* >0 in B, \ By,

and u — us = 0 on J(B,, \ B,,). By the maximum principle we infer that u — us; > 0 in
B,. \ B,, which implies u — us > 0 in B,, \ B,,. This contradicts the fact that r3 € (r,75)
is a sign-changing point of u — u.
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If r5 > ry then u(ry) < ug(ry) and v(ry) = vs(ry). By Corollary 3.8 we deduce u < us,
v < vg in B,, which is again a contradiction. O

We are now ready to complete the proof of Theorem 3.2(i7). We adapt an idea introduced
in [39]. Assume there exists a positive stable radially symmetric solution (u,v) of (3.1) and

set
M, = sup ur) , My= sup o(r) .
re(0,00) Us (T> r€(0,00) US<T)
By Proposition 3.12 we have M;, My < 1. Since lim, . u(r) = 0, u coincides with the

Newtonian potential of v”. Hence

u(z) = ex / = — >N (y)dy
RN

<ot fex [l yP iy} = Mo (o),

Thus, M; < MY and similarly My < M{. Tt follows that M; < M7}?. So, since pg > 1 we have
either My = 0 or M; = 1. If M; = 0 then v = 0 and this yields v = 0 which is impossible.
Therefore M; = 1 and similarly M, = 1, i.e.

u(r) u(r)

sup = sup

=1.
r€(0,00) US<T) r€(0,00) Vs (’T‘)

By the strong maximum principle, (u,v) cannot touch (ug,vs), so there exists a sequence
{Ry} converging to +oo such that

lim ) (3.20)

k—o0 us(Rk)
Define
uk(r) = Rgu(Ryr),  wg(r) = RfU(RkT) r>0.
By scale invariance we have

0<up<us,, 0<uv,<w, inRY\{0} (3.21)

and (uy, vy,) solves the Lane-Emden system (3.1) in R\ {0}. By elliptic regularity, {(ux,vx)}
converges uniformly in C? (RY \ {0}) to a solution (u,?) of (3.1) which, in view of (3.21),
also satisfies
0<u<u,, 0<v<w, inRY\{0}.
Let us remark that by (3.20) we have
u(l) = lim ug(l) = lim Ryu(Rg) = lim Rjus(Ry) = us(1).
k—o0 k—o0 k—o0

On the other hand,

lim (u—us) <0, lim (u—us) <O0.

|z|—0 |z|—o00

{—A(ﬂ—us):@"p—vé’gO in RV \ {0},

By the strong maximum principle we deduce that @ = u, in RY \ {0}. This is impossible,
since @ is a stable solution by construction while u, is unstable when (3.5) fails.
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Chapter 4

Multiplicity of solutions to nearly
critical elliptic equation in the

bounded domain of R3

4.1 Introduction

We are interested in the following semilinear elliptic boundary value problem

—Au=uP 4+ u?, u>0 in Q;
(4.1)

u=>0 on 0f),

where ) is a smooth bounded domain in R?, X is a positive parameter and p > ¢ > 1.

Existence and multiplicity of solutions to (4.1) have been studied intensively by many
authors for the exponents p and ¢ in different ranges. Ambrosetti, Brézis and Cerami [2],
using the method of sub and super solutions, established that for 0 < ¢ < 1 and p > 1
arbitrary, there exists A > 0 such that problem (4.1) has a minimal solution u, for A € (0, A),
and u) is increasing with respect to A; for A\ = A, problem (4.1) has at least one weak soltuion;
for all A > A, problem (4.1) has no solution. Moreover, using variational tools, the authors
[2] also showed that if 0 < ¢ < 1 < p < 5, for all A € (0,A), problem (4.1) has a second
solution.

Let us also mention the question of existence and multiplicity of solutions to (4.1) for
qg=1.

() If 1 < p <5, for 0 < XA < g, where p; is the first eigenvalue of —A under Dirich-
let boundary condition, a solution can be found by the standard constrained minimization
procedure thanks to compactness of Sobolev embedding H}(Q) — LPT1(Q).

(b) If p > 5, this case is more delicate, since for p = 5 the Sobolev embedding loses
compactness while for p > 5 Sobolev embedding fails. Pohozaev [99] proved that if €
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is strictly star-shaped, then there is no solution of (4.1) if A < 0 and p > 5. For the
supercritical case, del Pino, Dolbeault and Musso [44], established existence and multiplicity
of solutions to problem (4.1) when p is supercritical but sufficiently close to 5. For p = 5, the
great contribution to this case was the pioneering work of Brézis and Nirenberg [14]. They
obtained that if ¢ = 1, (4.1) has a solution if and only if A € (3p1, 1) when Q is a ball.
Brézis and Nirenberg [14] obtained the following results for the case ¢ > 1: if 1 < ¢ < 3,
there exists a solution if and only if A > 0 is large enough. If 3 < ¢ < 5, (4.1) has a solution
for every A > 0. In addition, when €2 is a ball, they gave the following conjecture, which
based on numerical computations.

If ¢ = 3, there is some ) such that
e for A > )\, there is a unique solution of (4.1);
e for A\ < ), there is no solution of (4.1).

If 1 < g < 3, there is some A such that
e for A > ), there are two solutions of (4.1);
e for A = )\, there is a unique solution of (4.1);
e for A\ < A, there is no solution of (4.1).

Afterwards, Atkinson and Peletier [6] proved the nonuniqueness of solutions to (4.1)
conjectured by Brézis and Nirenberg for N = 3, p = 5 and 1 < ¢ < 3. Not restricting to
integer values of N, they established for 2 < N < 4, p = % and 1 < ¢ < %, then
there exists some A > 0 such that (4.1) has at least two solutions for any A > X, and it
has no solution for A < \. Rey [103] provided another partial answer to above conjecture.
He obtained that for p =5 and 2 < ¢ < 3, A > 0 large enough, problem (4.1) has at least
Cat(€) +1 solutions, where  is any smooth and bounded domain in R* and Cat(£2) denotes

Ljusternik-Schnirelman category of (2.

The purpose of this chapter is to establish multiplicity of solutions to problem (4.1) when
p approaches to the critical exponent from below. Namely, we consider
~Au=u""+u?, u>0 in Q;
(4.2)
u=20 on 0f),
where (2 is a smooth bounded domain in R?, 1 < ¢ < 3, A > 0 and £ > 0. In the following,
we write p = 5 —e. It is known that the solutions to problem (4.2) correspond to the critical
points of the following functional

1 1 A
Jw) == | |v 2——/ p“——/ Ly e HY(Q). 43
=g [vuP = [ =25 [, we @) (4.9

In order to state our results, we introduce some notations. Let us consider Green’s function
G(z,y), solution for any given y € Q of

{ —A,G(z,y) = dy(x)  in (4.4)
G(z,y) =0 on 0f),
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and its regular part H(z,y) = m — G(z,y). Then H(z,y) satisfies
—A,H(z,y) =0 in €; (45)
4.5
H(.T,y):m on 0f).

The Robin’s function of Q is defined as R(x) = H(z,x), where H(z,y), z,y € Q is given
by (4.5), so R(z) is smooth, R(z) — 400 as & — 02, and it is positive by the maximum
principle. Thus R(z) has a minimum in €2, and hence it has at least one critical point &, € €.

Regarding ¢ > 0 as a small parameter, we construct a large solution. Our results can be
stated as follows.

Theorem 4.1. Let 1 < q < 3, there exists \g > 0, depending on €2, q, and €9 > 0, such that
for any given A\ > Ao, € € (0,e9), problem (4.2) has at least two solutions. One of them is
the mountain pass solution uy, the other one is the large solution us, which has the form of

1 (Ace)z
Ug(x) = 31 -(1+o0(1)), 4.6
) =3 (el (46)
satisfying
J(ug) = \/T§7T2 — azeloge 4+ O(e), (4.7)

where ay > 0 and A, > 0 and &, — &, o(1) — 0 uniformly in Q as e — 0.

Next, we use A as parameter to construct a third solution for 2 < ¢ < 3.
Theorem 4.2. Assume that 2 < q < 3. There exist A > N\ and & > 0, such that for any
A > X\ satisfying
0 < e\va log A < 4o, (4.8)
then for all sufficiently small e > 0, problem (4.2) has at least three solutions.
In the case 1 < ¢ < 2, it is also possible to find a third solution but the proof is more
delicate and will be addressed in future work.

We now mention some contributions to multiplicity of solutions to equations with two
powers in the whole space RY with N > 3. Recently, Dévila, del Pino and Guerra [35]
studied nonuniqueness of positive solution of the following problem

—~Au+u=u’+ i u>0 inR% u(z) =0 as |z| = 0. (4.9)
More precisely, the authors obtained at least three solutions to problem (4.9) if 1 < ¢ < 3,
A > 0 is sufficiently large and fixed, and p < 5 is close enough to 5.

This chapter is organized as follows, in Section 4.2, we compute the energy asymptotic
expansion. We build the large solution in Section 4.3 and prove Theorem 4.1. We prove
Theorem 4.2 in Section 4.4.
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4.2 The asymptotic expansion

We recall that, according to [19], the functions

N[

W
(2 + |z — &)

are the only solutions (except translations) of the problem

=

>0, &R’

wye(r) =3

~Aw=wuw’ w>0 in R (4.10)

As € € Q and p goes to zero, these functions provide us with approximate solutions to the
problem that we are interested in. However, in view of the Dirichlet boundary condition, the
approximate solution needs to be improved.

From now on we assume that £ € € and is far from the boundary of €2, that is, there
exists 0 > 0 such that

d(€,09) > 6. (4.11)

Let U, ¢(z) be the unique solution of

—~AU, ¢ = wd in €2;
e e (4.12)
Uue =0 on OfL.

We have the following estimates.

Lemma 4.3. Let d(§,0Q) > 6 for some § > 0, for p > 0 small enough, one has
(a) O < Ulu'vé(m) S w%g(l‘), 1 1
(b) Uye(x) = wye(x) —4n31pz H(x, &) + O(p

N

).

Proof. By the maximum principle, we obtain (a). Now we define
D(z) = Uy, e(x) — wye(x) + 4m3p2 H(z, €).

Observe that for x € 02, as u — 0,

D(x) = Uue(z) — wye(x) + 4m37 p2 H(z, €)

H ! Ho— g
1 - ~pzle =&
o =€ (it |z —€P)i

=

= 3

Then D(z) satisfies

—AD =0 in Q;
(4.13)

D=0(u2) as p—0  on O

Therefore (b) follows from the maximum principle. O
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In the following we write U = U, ¢, we now compute the energy expansion J(U), where
J(u) is defined by (4.3).

Lemma 4.4. Let d(&,00) > §, assume that p > 0 is small enough, then we have if 2 < q < 3,

J(U) = ap + arpH (€, €) — aselog jt + aze — Aagp = + OO ) + O(12) + o(e).  (4.14)
Ifg=2,

J(U) = ap + arpH(E, &) — ase log i1+ aze — Aasp? log u + O(Au2) + O(12) + o(e).  (4.15)
Ifl<qg<?2,

J(U) = ag+ apH(E, &) — aselog p + aze — Aagp' + O(A/f%q) +O0(p?) +o(e), (4.16)

where o(e) is uniform in the C'-sense on the point & satisfying (4.11) as € — 0, and a;,
1=20,1,...,6, are some constants.

Proof. We write J(U) = J5(U) + (J,(U) — J5(U)) + J»(U), where

A

1 1
Jp(U):§/(;‘VU’2_m/QUP+1 and JA(U)Z_Q—F—l QU‘J+1.

Since U satisfies —AU = wi’g in Q and U = 0 on 012, we write U = 7, ¢ + w, ¢, then

1 1 1 1
Js(U) = —/VU2——/U6:—/w5U——/U6
1 1 6
= 5/“12,5 (77/1,5""“’#,5)_6/(Wu,é""wu,é)
Q Q

1 1 1
-3 /Q wz,E D) /Q wz,ﬁﬂmi - g/ﬂ [(7?“75 + wmg)6 — wgg — 6“)2,57%5}

= I—II+R. (4.17)

By the mean theorem, we find

1
Ri = __/ [(7@,5 + wué)ﬁ - wg,ﬁ - 6w27§7m,§] du

6 Jo
1
—5/ / (wye + tm,g)‘*ﬂi,é(l —t) dtdx = O(p?).
2 Jo

Now we expand the other two terms in the right hand side of (4.17).

1 1 3 1 1
I = - 6 dr== 32— d —/ 32— d
3/9“’“’5 ' 3</ PP T Jamee T PP >
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where ay = \[“ . Moreover from Lemma 4.3, we have

1 1 5 1

I = —/U)5 ™ dl’:—ﬂz/ 34— /LZ+§
2 Q PRI THS 2 % (1—{—'2‘ )5 #6( )
1

= _/9—5 wio(z) [-4#34 [H(&,€) + O(plz]) + o(p )]""O(Mg)] dx
- _/”';(57‘3)@1-1-732,

where a; = 2737 [, wi o(z) dz = 8v/37? and
Ry = 2n3} (uH(&i) / o Mhol?) 2= 00 [, o)l

- /H wy o(2)[o(p?) + 0(u3)]> dz = O(1?).

o

Thus we get the following expansion
J5(U) = ag + a1pH (€, €) + O(i®).

By Taylor expansion in p, we get

L(U) = J5(U) = /U6 _g/UGU ‘
_ 6/QU _ [é 3—65+0( )]/QUG(1—510gU+o(5)>
— [é/UﬂogU—%/Uﬂ + o(¢)

1 1
= € —/ e logw,e — / wh e+ O(plog p) | + oe)
6/ 36

— (—aslog i+ as)e + ofe),

where ay = 5 [s w9 o(2) dz = B and az = & [ w? o(2)[6log(wio(z)) — 1] dz.
Finally we compute J,(U). If 2 < q<3,

A

L(U) = il Uttt d :——/ with dr + O('T)
e [ e L
q+1 Jps (1+122)=

(4.18)

(4.19)
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= dagp T+ O(Au%l),

g+1 3
9Tl S q—2
3T 2l (4=

where a1 = i oo 0l (2) d= = gty - =2
A 3 3 ]_ 3
LU) = —Zpu2 31— dz + O(\u2
\(U) S H Lf RO (Auz)

= —)\&5M% log p1 + O()\u%),

where a5 = —27371, here we use the fact Iy ﬁdr = log(a + V1 + a?)

1<qg<?2,
A

MO) = === | |wne(@) = 4x3tud H(z, &) + O(u?)

q+1Jg
1 1

NI

a1 A
= % 3
8 q+1/g{

= Fag+ 00w,

(2 + |z —¢P)r o —¢]

1 q+1
A3 G, €) + 0(,&)}

(4.20)

— === If

(4.22)

where ag = ﬁ%(4773%)q+1 Jo G (x,€) dx. From (4.18)- (4.22), we obtain C°—estimate of

the energy expansion. By the same way we can get the C'!—estimate also holds.

4.3 Construct the large solution

]

In this section, by Lyapunov-Schmidt reduction procedure, we build a large solution for

A > 0 given and € > 0 small enough. Then we prove Theorem 4.1.

4.3.1 The first approximate solution and the linearized problem

If w is a solution of (4.1), via the change of variables

v(y) = e"uley), k= y € Q.

p—1
where Q. = 2. Then v(y) satisfies

—Av=f.(v), v>0 in Qg
v=20 on 0f),,

where and in the following we denote f.(v) = v? + Ae®v? with o = 22=2).

p—1
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Define the function

V() = Vaely) =<iluglen), A=", ¢=5 yea. (1.2)
where U, ¢ is the solution of (4.12). Then V(y) satisfies
{ —AV(y) =uwiely)  in Qs
V(y) =0 on 0f)..
We note that assumption (4.11) is equivalent to
d(&',00) > g (4.25)
We assume that
b <A< 5 (4.26)
with 6 > 0 small but fixed.
From Lemma 4.3, for £ and A satisfying (4.25) and (4.26), we have
0<V(y) Swpe(y) inQ.. (4.27)
V(y) = wae(y) — 4n3iA2eH(ey, ') + O(?) in Q., ase — 0. (4.28)
We next look for a solution of (4.23) of the form
v(y) = V(y) + o(y),
where V' is given by (4.24) and ¢ is a small term. We can rewrite (4.23) as
{ijZN@%+R i%aw (4.29)
where
R=AV + f(V).

Le(¢) = =A¢ — fi(V)o,  N(¢) = fo(V + ) = fo(V) = fi(V)¢,

We first consider the linearized problem at V' and we invert it in an orthogonal space.

More precisely, we consider the following problem: h € L*°(€.) being given, find a solution

¢ which satisfies

—Ap— (5—e)V*p — NV lp = h+ i cwy o Zi in Qg
¢=0 = on 0f); (4.30)
Jo SWR o Zi=0  i=0,1,2,3,
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for some numbers ¢; (i = 0, 1,2, 3), where Z; are defined by

ov 7 ov

Zoza—Aa iza_ﬂ’

i=1,2,3.
Then Z;(i = 0,1, 2, 3) satisfy

{ —AZi =bwheZ;  in S

Z; =0 on 0f)..
with Zy = A€ and Z; = &gg,s' for i =1,2,3.

Our next aim is to prove that problem (4.30) has a unique solution with uniform bounds in
some appropriate norms. For f a function in €., we define the following weighted L°>°—norms

9-2
1£lle = sup (L + [y = €)= |f(y)], (4.31)
ye,
and
0
£l = sup (L + |y — &'7)=[f(y)], (4.32)
y€Qe
where 6 satisfies
2<0<3. (4.33)
Observe that the first norm || - ||, is equivalent to Hw&(gfz) flleo and the second norm || - ||.«

is equivalent to [|w,% f|ls uniformly with respect to A and ¢'.

Proposition 4.5. Let A > 0 be fivred and &', A satisfy (4.25), (4.26), then there exists g > 0
and a constant C' > 0, such that for all 0 < € < gy and all h € L>*(Q.) with ||k« < 400,
problem (4.30) has a unique solution ¢ := T.(h) with ||¢||. < +oo. Moreover,

ol < CllAlle, el < CllAlw (4.34)

The argument of its proof follows from the ideas of M. del Pino et al. in [45] and Rey et
al. in [105].

We first prove a priori estimate for solutions of the following problem

3
—Ap—(b—e)Vi = p=h+> ciwj{?g,Zi in Q,;
=0
¢=0 on 0€); (4.35)
Jo, owieZi=0 i=0,1,2,3.
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Lemma 4.6. Under the conditions of Proposition 4.5, then there exists C' > 0 such that if
e > 0 is sufficiently small, for any h, ¢ satisfying (4.35), we have

[10ll« < Cllafle, el < Ol

Proof. The proof follows from the following lemma. O]

Lemma 4.7. Assume ¢. solves (4.35) for h = he. If ||he|l — 0 as e — 0, then ||¢c]l. — O.

Proof. For 0 < p < 6 — 2, we define

0—2

= f W)l

1£l, = sup (1 + |y — £1%)

yEQe

Claim: |[¢.], = 0ase— 0.

Indeed, by contradiction, we may assume that ||¢.||, = 1. Multiplying the first equation
in (4.35) by Z; and integrating on €., we get

3
/ (—AZj _ (5 _ €)V475Zj) (bg — /(; hEZj = Z Ci/ wjl\’g,Zz-Zj.
5 i=0 £

€

Since
/Q 5 (~AZ;— (5— )V Z,) 6. = /Q 8 (mjezj —(5— s)v4—€zj) 6.
_ / [ButeZ, — (5-9) (wiz + 06) (2 +0()] 0.
1 1
= 0 e p 5—c 0—2—»p
(5)|| || /QE (1 + ‘y_§/|2)7 (1 + ’y_§/|2) 5
= o(||}ell,),
|z < Wl [ ko2 +06) = O(L.),
Q. Qe

and

| wkezizy = 6 [ who(Zi 0P = dytai+ o)

5

where ¢;; is Kronecker’s delta and v; (: = 0,1,2,3) are strictly positive constants. Conse-
quently, inverting the quasi-diagonal linear system solved by the ¢;’s, we find

¢i = O([[hell+) + olllell)- (4.36)
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In particular, ¢; = o(1) as ¢ — 0. Moreover, the first equation in (4.35) can be written as

0=(2) = [ Ge(z,y) [(5—5)1/4 “(Y)ee(y +chww Zi(y)| dy,

Qe

(4.37)

where G.(x,y) is the Green’s function of —A in €. with Dirichlet boundary condition, which
satisfies

Ge(z,y) = eGlex,ey) <

z =yl
In the following, we use the following basic estimate, which was proved in the Appendix B
[116]: for any 0 < o < 1, there is a constant C' > 0 such that

1 1 du < C
z dy < ————-
we 12—yl (1+ g% (1+2])
Hence we have
/ G, )V (1) (y) dy\so / ko] dy
1 1 1
< Clody | — —
o y<1+\y ¢2)2079 (1 4 |y — er]2)
1 1
< 0||¢E||/ , : 4y
“Ja (@ =N+ ly—e]) 1+ ly—¢)*
1
< Cll¢. / , — dy
|| ||P | y f)l (1+ |y_€,‘)2+0 2
< Cllcballp(1+lw—€’| ) (4.38)
1 1
G2 1)he () dy' < Clltel.. [ _dy
o o |t =yl 4y —ep)?
1 1
< Offhe |l g ; — dy
L A TPy sy ) P ST
_0=2
< Clhelles L+ |2 =€17) 7, (4.39)
and
A 1 1
Ge(z,y)wy ¢ (y) Zi(y) dy| < C = dy
o o v =yl (14 |y — )2
< 1 1 1 i

ot =yl 1+ |y -2+ |y —¢))*?
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< C(l+|z— 5’|2)*% : (4.40)
Then from (4.37)-(4.40), we get
_o=2
[0 (@)| < C (el + Nellas + leal) (1 + 2 = €77) 7, (4.41)
which yields that
0—=2—p Jioy —2
(I+lz =€) 2 loe(x)| <C(1+ |z =€) (4.42)

Moreover, ||¢.||, = 1 and (4.42) imply that there exist R > 0, v > 0 independent of € such
that

| Pell oo (Briery) > 7 (4.43)

Set ¢.(y) = ¢-(y — €'), by local elliptic estimate, passing to a subsequence of (¢, )., still
denote (¢¢)., such that (¢.). converges uniformly on any compact set of R? to a nontrivial
solution of

~A¢ = 5wf\70$ for some A > 0.

It is well known that [104],

Ow L dw
T A0 Owa0
¢—a0—8A +Zaz—ayz .

=1
Recall that
/ pwy o Z; =0 fori=0,1,23.
Qe

By dominated convergence, we find that

8wA ’ 8wA 2
0 0 .
ao/RS( A > wig:() and ai/RS(ayi ) wijoz()’ fori=1,2,3.

So a; = 0 for i = 0,1,2,3 and ¢ = 0, this contradicts (4.43). Therefore we get ||¢.||, — 0 as
e — 0. Finally, from (4.36) and (4.41), we have

IPelle < Clelles + Nl 02ll,)-
Hence [|¢:||« — 0 as € — 0. O

Lemma 4.8. Let A > 0 be fivred and &', A satisfy (4.25), (4.26), there exists C' > 0 such that
if € > 0 is sufficiently small, for any h, ¢ satisfying (4.30), we have

[0ll« < Cllafle, el < CllAlfw
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Proof. We claim that ||[V97 ||, < Ce973||¢||.. Since V < wy ¢, we only need to show that

[wh ol < C2)].

In fact,
_ 0 _
lwi bl = sgg;(l +ly = &%)z |wa e ()| o(y)|
YEQe

< ol sup (1 + |y — €7 wae (y)|7!

yEQ:
=1

< @l sup (L + |y — &%)
yEQe

< |l sup ly — €777 < Ce"?| g
IS8

By the first estimate in Lemma 4.6, we get
9]l < Cllallee + Ce* VI Pllw < O[]l + C*T17% 8.
Recall that o = 5—;" + O(e), we have that o + ¢ — 3 > 0. Thus we get ||¢||. < C||h|sx-
Similarly, we obtain |¢;| < C/||h|sx- O

Proof of Proposition 4.5. By Lemma 4.8, we get the estimates in (4.34). Now we prove
existence and uniqueness of solution to (4.30). We consider the Hilbert space

H= {¢ € HY(Q) : | owieZi=0,i=0, 1,2,3}
Qe

with inner product
@)= [ Vove.

Then problem (4.30) is equivalent to find ¢ € H such that
(p,0) = / [(5—e)V ¢+ Age* VI ¢+ h] ¢, for Vi € H. (4.44)
Qe

By the Riesz representation theorem, (4.44) is equivalent to solve
¢=K(¢)+h (4.45)

with h € H depending linearly on h, and K : H — H being a compact operator. Fredholm’s
alternative guarantees that there is a unique solution to problem (4.45) for any h provided
that

¢ = K(¢) (4.46)
has only the zero solution in H. (4.46) is equivalent to problem (4.30) with A = 0. If h =0,
the first estimate in (4.34) implies that ¢ = 0. This completes the proof.

For later purpose, it is important to understand the differentiability of the operator 7.
with respect to A,¢’. Consider the L°(resp. Lg%) functions defined on Q. with || - ||, norm
(resp. || - ||« norm). We have the following result.
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Proposition 4.9. Under the conditions of Proposition 4.5, the map (A, &) — T.(h) is C*
with respect to A, &' in the considered region and the L norm. Moreover,

JOATe (Rl < Clltlles [T, < ClAe. (4.47)

Proof. T. is C* with respect to A and & follows from the smoothness of K and k, which occur
in the implicit definition (4.45) of ¢ = T.(h), with respect to these variables. Differentiating
(4.30) with respect to &(k = 1,2,3), set ¢ = T.(h), Y = 0g ¢ and d; = 9y c;, k = 1,2,3,
then Y satisfies

3
_ e d—ey _ \geol a1y — 7 w2 i ;
AY = (5= VY = AgeVIY = ht L dwioZ in Qs (4.48)

Y =0 on Qs [, [¢0g (wheZ)+YuioZ] =0 i=0,---3,
where

3
h=(5-¢e)4—e)V**Zip+ \(q— 1)e*VI2Z;¢p + Z ciOg (wiheZi) -

=0

3
Set n =Y — > b;Z;, where b; € R is chosen such that
j=0

/ nwi’g/Zz - O,

€

that is, b; satisfies

3
> b / wh o ZiZ; = / Ywj o Z;. (4.49)
= Jeo Q. ’

Since this system is almost diagonal, it has a unique solution and we have
[b;| < Cllo]l. (4.50)

Moreover, n satisfies

3
—An— (5 =)V = AV iy =g+ Y diw) o Zi in €;
i=0
n=>0 on 0f); (4.51)
Jo.mwAeZi=0 i=0,1,23,
with
3 —
9= bj[-AZ— (5-e)V 2 — Age® VI Z)] + .
=0
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By Proposition 4.5, we have that n = T.(g) and
7]l < Cligll. (4.52)

On the other hand, we have

k%

3
gl < Z b1 | -AZ; — (5= )V Z; — Age® VI~ Z;
7=0
+C V3 Zi || + C|VI2Z1)

3
+2_ leil g, (wieZ:)

=0

ok

Now we estimate all terms in the right hand side in above inequality. We have

H_AZ] - (5 - €)V4_€Zj - )\qgavq_lzj *k
< Cllurt, [AZ; - (5— V<2, — MV ]| <

V> zio

ko

< CllwyV*=Zio|| _ < Cllol.llwig Zill < Clloll..
and
VI Zipllw < O [ VI Zig|| | < C*H72 9]l = o([[¢]l.).

From (4.34), we find

3

> leil||0g, (wh e )

1=0

< Clllellwyy, (wh e Z) oo < Cllle.

*

Thus we get
17l < CliAllws- (4.53)
By (4.50), (4.53) and ||Z;]|. < C, we obtain that
3
19011« < D 15lI1Zll + 19l < CUIg ]« + 1) < CllA]s.
=0

Similarly, we can get the estimate for ||Op¢||. in (4.47). O
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4.3.2 The nonlinear problem
In this subsection, our purpose is to study the nonlinear problem. First, we estimate
[Bl[ss; |06 Rl and [|Ogr B[ .

Lemma 4.10. Assume 1 < q < 3, let A > 0 be fizred and &', A\ satisfy (4.25), (4.26), then
choosing 2 < 0 < 3 appropriately in the norms (4.31), (4.32), there exists a constant C' > 0
independent of &', A, such that

[Bl[« < Ce, OB < Ce, |0 R|se < C, (4.54)
for e > 0 small enough.
Proof. Recall that R = V> —w} ., + Ae®V? By (4.28), V = wy ¢ + O(e). Consequently,

|V5_E - wi’£/| : |

< VI —w Sl wi - wi e
<

Ce (wA,g/ + wA,g/\ log wy ¢]) -
Thus for 2 < 0 < 3,

Cllwye (VI = wj o)l

Vo —wi gl <
< Ce Sélp U)X’%/ (wji_g + UJ?L&/’ log WA ¢! D < Ce.

Moreover,

Cle® if ¢ > 6,

AV, < OXe®||wi2 VYo < CAe® su wil| <
PVl < O Vil < OO sl 8l <3 0L,

Note that a = 252 + O(e), we choose 2 < § < 254, 50 a + ¢ — @ > 1. Therefore we get the

first estimate in (4.54). Furthermore
OnR = (5— )V Zy — 5w} o Zo + \e® VT 2y,

and
OuR=(5—e)VYZ; — bwj o Z; + \ge® V' Z;, i =1,2,3.

By similar computations, we can get the rest estimates in (4.54). O]

Now we consider the following problem

3
—A¢p— (5—e)Vp — \qe*Vi 1l = N(¢p) + R+ Z ciwjl\yg,Zi in Q;
¢=0 ) on OS2, (4.55)
Jo QWi eZi =0 i=0,1,2,3.
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Proposition 4.11. There ezists C' > 0 independent of §', A\ satisfying (4.25), (4.26), such
that for e > 0 small enough, there exists a unique solution ¢ = ¢(A, ') of problem (4.55),
satisfying

¢l < Ce. (4.56)

Proof. By Proposition 4.5, problem (4.55) can be written as the fixed point problem

¢ = T6<N(¢) + R) = Aa(¢)

Define
Fu ={p € Hy(Q)NL=(Q:) : |¢l. < Me}

with M > 0 large but fixed which will be chosen later. Then A. sends Fj; into itself.

Indeed, we have
[A:(@)]ls = T(N (@) + R)[l« < C([IN(&)[|sx + [[Rl]+)- (4.57)

Moreover,

IN(®)]]+x =

\ww/ AV +16)— £V) dtH Il

<C (wa [(V + )t V4_£H|oo + e Jus (V4 1¢) ! — Vq_l]Hoo> [N

/0 AV 4+ t8) — fU(V)] 6 dt

k%

(4.58)
Since
lox%l(V + 16D = V|, < Cllun (wiglol +1619)]| .
< Ol ol + C ulle? 72| ol
< eI gl + CemmTAUTITR ) 1. (4.59)

On the other hand, by Lemma 2.2 in [77], we have

\V]=2|p| + | |7 if 2<q<3;

Vot = Vet <O
IV + ¢ Vil {min{|V|q_2|¢|7 Bl ifl<g<2

Thus for 1 < ¢ < 2,

[V + o)™ = ver]| < Cmin {JwagllT™ 1ol wae 2072 0)07
< Cmin {70 ], 07DV 2 g1} (4.60)
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For 2 < ¢ < 3,
w2 [(V+ 18D = V|| < Cllublwi el + 1ol |

e Ollgll, + COPED 2 glle (4.61)

o0

IN

From (4.58)-(4.61), if 1 < ¢ < 3, for ¢ € Fy;, then we have

IN(¢)]|sx < CeT||P]]«, with some 7 > 0. (4.62)
Thus by (4.54), (4.57) and (4.62), we find for ¢ € Fy,

[4:(@)ll« < C(e7|[9]l+ + &) < C(Me™ + 1)e.

Choosing M large such that C'(Me™ + 1) < M. It implies that A.(Fpr) C Fur.

Next we show that A, is a contraction map. For ¢, ¢2 € Fiy,

1A:(01) — Ac(@a) ||« < C|IN(¢1) — N(d2)]] 4
= O[fiV +tor + (1 = )pa) — fLV)](d1 — P2)llss
[, (V+¢) L) (b1 — ¢2) |

AV +0) = fLV (1 = ¢2)||
CHMA§/ F(V+¢)— H |¢1 — ¢2||*7

IN

IN

where ¢ =ty + (1 — t)¢y € Fuy for t € (0,1). It can be easily checked that
||A5<¢1> — A€(¢2)||* < C€T||¢1 — ¢2||*, with some 7 > 0.

It yields that A. has a unique fixed point in F);. Hence problem (4.55) has a unique solution
¢ such that ||¢]|. < Ce, for some C' > 0. O

Proposition 4.12. The solution ¢(A, ") constructed in Proposition 4.11 is C* with respect
to A and &' in the considered region. Moreover,

|oxéll. < e, Jldedll, < Ce. (4.63)
Proof. We write
B(A.€,0) = 6 — T.(N(6) + ), (4.64)
we have
B(A,f', ®) =0, (4.65)
and
B(A, €, 9)[U] = & — DT(N(9) + R)J = v — TL[(N ()] (4.66)

30



CHAPTER 4. MULTIPLICITY OF SOLUTIONS

By a direct calculation, we get

IT[0(N(0)]]l« < CllOp(N(9)1]r < Cllwy%ds(N(9))llo o]l < CeT|[4)]].

with 7 > 0. Therefore
105 B(A, &', @) Y]l < (14 CeT)[| ]l

It follows that for ¢ > 0 small enough, 0,B(A, ¢, ¢) is invertible in || - ||, with uniformly
bounded inverse. It also depends continuously on its parameters. Let us differentiate (4.64)
with respect to & and by (4.66), we have

O B(A, &, 0) = —(0eT2)(N(A, &, ¢) + R) = Te((9e N)(A, &', ) + O R), (4.67)

where all the previous expressions depend continuously on their parameters. Hence the
implicit function theorem implies that ¢ = ¢(A, &) is C* with respect to A, £ in the considered
region.

Moreover, differentiating (4.65) with respect to &', we get
Oed = —(0,B(A,€,0))7 9 B(A, €, ).
By (4.67), (4.47) and (4.34), we get
100« < CUN(@)llsx + [ Rllsx + (0 N)(A, &', @) |x + 1|0 B|r) < Ce.

Similarly, we can get ||0x¢]|« < Ce. O

4.3.3 The reduced functional

We have solved the nonlinear problem (4.55). In order to find a solution to problem
(4.23), we need to find A and £ such that

(N, E)=0 fori=0,1,2,3. (4.68)

The energy functional to problem (4.23) is given by

1 1 o
() = 1 / Vol - / B / o]
2 Ja. p+1Ja. q+1 Ja.

Set

(A ) = T (Vag(y) + dag(v)), (4.69)

where Vi ¢ is defined in (4.24) and ¢, ¢ is solved by Proposition 4.11. We have the following
fact.

Lemma 4.13. Let £’ and A satisfy (4.25) and (4.26). Then the functional Z(A, ') is of class
C'. Moreover, for all € > 0 sufficiently small, the function v(y) = Vae(y) + dae(y) is a
solution to problem (4.23) if and only if (A, &) is a critical point of Z(A,£').
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Proof. As a consequence of Proposition 4.12, we can get the map (A, &) — Z(A,¢’) is of class
C'. For k € {1,2,3}, we have

) Ve a@\gl}
deI(A,€) = DI(Vae + dne { : :
o Z(A, € (Vag + daer) oe, o,

o aVAg’ aqﬁA}E’

- ZC’/ whe [ o8, o

= ch/ w;“\{,ZZZk (1+0(1)),
i=0 Qe

here we use the fact that ||0g ¢r¢ |« = O(e). Similarly, we find

OWI(A,E) ZCZ/ wAs,Z Zy (14 0(1)),

where o(1) — 0 as ¢ — 0 uniformly for the norm || - ||.. It defines an almost diagonal linear
equation system for ¢;. Thus (A,¢’) is a critical point of Z(A,¢’) if and only if ¢; = 0 for
1 =0,1,2,3. This ends the proof of Lemma. O

Lemma 4.14. As ¢ — 0, we have the following expansion

I(Av fl) - I(VA7§’> - 0(5)7

where o(e) is in the C'— sense uniformly on &', A satisfying (4.25),(4.26).

Proof. For notation simplicity, we write Vi ¢ by V', and ¢, ¢ by ¢. By the Taylor expansion
and the fact that DI(Vy ¢ + ¢ae)[¢] = 0, we have

) —1(Vag)

T(A,
= 1V = 1V) = [ DTV +t0) oot d

1
= / U (IVo]? = p(V +to)P1¢* — Aeq(V + t¢)1~'¢%) dy| ¢ dt
o Lo

1
= /0 {/Q (0 [V7 = (V+19)" '] ¢* + [R+ N(¢)] ¢
FAg [V = (V + 1)1 ¢?) dy}t dt
< O WP (V+ o)l e dy + O™ | VI — (V4 ¢)7 ¢” dy

Qe Qe

+/QE IR| 4] d“/gs IN(6)] [6] dy

= ]1+[2+13—|—]4, (470)
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where

L < c / (V3|6] + |6'4)é? dy < C / (w26 + [6[°) dy

£

(60— 0-2
< Clollt [ wlE O gl [ il dy

< Cllglly < Ce® = ofe),

I, = C/\eo‘/ Vet — (V+¢)7 gl dy
Qe

IBlI2 f, wh o2 Dy + o) 2+ Jo, w wi VO dy if 2<q<3;
< CAe®

. 243(0—-2) 1)(6—-2 .
min {9112 fo, wh O Py, o)t fo, wif P Pay} ir1<q<2.
< O/\6n1in{a+q—2+3(0—2), at+q—2+(q+1)(0-2)} _ 0(6),

since Rl < Cz, [N(@)llu < CeTl6]ls and 6]l < Ce, we get
I - / R || dy = / Wyl | Rlwy & plws? dy

< C|R]loll / witg? dy < Ce”7°||R|.|g]l. < C7% = o(e),

and
o= [ N = [ IN@u et dy
< CING)lelioll / w2 dy
< CEIFN(G) | llélls < O3 = ofe)
Therefore,

(A, €) — I(Vag) = ofe).
where o(¢) is uniform in the C'—sense for ¢, A satisfying (4.25),(4.26). By a similar way, we
can obtain

Deny (Z(A,€) = I(V)) = o(e).
This ends the proof of Lemma. —

Lemma 4.15. Under the change of variable (4.24), as € — 0, we have
I(Vag) = J(Upue) + coeloge + o(e), (4.71)

where o(¢) is in the C'— sense uniformly on &, A satisfying (4.25),(4.26), co is a positive
constant.
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Proof. In fact,

()| dy

1 1
IVag) == | [VVaeg)Pdy——— [ [Vae(y)
2 Ja. p+1Jq.

q+1

/ Unelew) Py

p+1 » +q+1 3 »
|U )P de — A |Uu£ )9

ot It

we(ey) Py — )\

1
= 32 | VUl
Qe

1
= 5 | [VUncla)Pd

1 € %
-3/ rvvu,g<x>12dx—p+1 [ Wasta)ide =%

1 1
= 5 [ VU@ do = — [ Oy d:c—m QUu,da:)q“ o

€ )\ 1—q e
% +1 IR b I v +1
+—[1-¢75] /Q U™ o+ = {1 e ] /Q U,e(2)™ da

€ )\ 1—q =
= JU,e)+——11—¢"2 U, Pl e+ —— |1 —¢g2 1= /U gy
(Une) D [ € }/Q e () z 7+ 1 [ € ] o e () z

uE ‘qﬂdx

1 1 1
— -2 P+l = [+ = -
P [1—¢ ]/QUM(:U) dx (6 + 36€—|—o( )) {2610g€+0(510g5)}

« /Q Uye(2)0 [1 = elog U e(x) + ()]

1

= —5log5/UM§(w)6dac+0(5)
12 o

= c¢oeloge + o(e),

with ¢o = 55 [gs Wye(2)®dz. Moreover,

L1—554 /U )T da

= —1510g5/ wye(2) T dz + o() = o(e)
8(¢+1) o ’

where o(¢) is in the C'— sense uniformly on &', A satisfying (4.25),(4.26). Thus (4.71)
holds. ]

Proof of Theorem 4.1. Since p =5 — ¢ with € > 0 is the subcritical exponent and € is a
smooth bounded domain, for A > 0 fixed, by the mountain pass theorem [102, Theorem 2.2],
problem (4.2) has a mountain pass solution, denoted ;. The mountain pass critical value is
given by

0 < ¢, = inf J(v(t)),
00

84



CHAPTER 4. MULTIPLICITY OF SOLUTIONS

where

L= {y € C([0,1], Hy(Q)) : 7(0) = 0,7(1) = e}
with e € Hj () such that J(e) < 0. Moreover we have the following assertion:

there exists A\g > 0, depending on §2,q, such that for any X > Ao and ¢ > 0, we have
J(uy) < Y372,

Indeed fixed uy € H(2) \ {0} with ug > 0 in 2, we have

2 ) o+l LA q+1 )
Ttu) = / Vgl - / g P — / |+,
Q Q

First note that lim; . J(tuy) = —oo, thus there exists ¢y > 0 such that J(tyug) =
max J(tup). Moreover t satisfies

t§/|Vu0|2 _ t]/)\-H/ |u0|p+1+)\t(/1\+1/ |U0|q+1
Q Q Q

> 8% [ Ju, (172)
Q

1
which implies that t, < { ff“ ||uvz|§? +|1 } . It follows that

lim #y =0 (4.73)

A——+o00

If (4.73) fails, then there exists some sequence ty, — tp > 0 as A\, — +oo. By the first
equality in (4.72), we get

lim 3 /|Vu0|2: lim <t’)’\+1/ |u0|p+1+/\nt§+1/|u0|q+1) = 400,
n—-+00 Q n——+00 m Q n Q

which leads to a contradiction, since {t,,} is bounded.

Therefore, there exists A9 > 0, which depends on 2, ¢, by Lemma 4.18 and (4.73), for
A > Ay, we have

0<c, < max J(tug) = J(tauo)

t2 tp+1 )\tq—H
— _A/ |Vu0 /| |p+1 /|u |q+1
2 Ja q—l—l
t2 tp+1
< —)‘/ |Vug|? — /|u [P — 0.
2 Jg

V3,2
47T.

In particular, J(uy) <

Next we prove existence of the large solution of (4.2). By Lemma 4.13, we know that
u(ey) =" (Vae(y) + ¢ae(y)) is a solution to problem (4.2) if and only if (A, ') is a critical
point of Z(A,¢£’). So we have to prove existence of the critical point of Z(A,¢’).
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From Lemma 4.14 and (4.71), we have
Z(NE) = J(Uug) + coeloge + o(e).
This together with Lemma 4.4 yields that for 2 < ¢ < 3,
Z(A &) = ap+ep(A, €) + ase + o(e), (4.74)
where

p(A, &) = aAH (£, §) — azlog A,
with constants aj, az > 0 being given in Lemma 4.4, and o(¢) is uniform in the C! sense for
&, A in the considered region.
Define B )
T(A&) = 17(0, &)~ —ay

Then we have
Z(A€) = (A, €) +o(1), (4.75)

where ¢ = é and o(1) is in the C'— sense uniformly on &', A satisfying (4.25),(4.26). Since
the function H(,&) has at least one critical point, denoted by &y, with H (&g, &) > 0, then

(Ao, &), with Ay = m, is a nondegenerate critical point of p(A,&). It follows that the

local degree deg(Vp(A,€),0,0) is well defined and is nonzero, where O is arbitrary small
neighborhood of (Ag, &). So deg(VZ(A,£'),0,0) # 0 for e > 0 small enough. Hence we find
a critical point (A, &) of Z(A, €'), such that (A,, &) — (Ao, &) with & = %0 as € — 0. Then
(A, &) is also a critical point of Z(A,¢’). Thus we get that

UQ(J,’) =g " (VA*,& + (rbA*,Ei) (;)

is the solution of problem (4.2). Recalling that xk = z% = 1 + ¢ + o(e), then by above
construction and Lemma 4.4, we get (4.6) and (4.7).

Similarly, we can get existence of the large solution to problem (4.2) for ¢ = 2 and
1<g<?2.

4.4 Proof of Theorem 4.2

In this section, we assume 2 < g < 3, the aim is to construct the third solution by
regarding A\ > 0 as a large parameter. Set

_2
0=\ 3-a,
We observe that ¢ — 0 as A\ = co. Taking the following change of variable

w(y) = o™= uloy).
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If w is a solution of problem (4.2), then w satisfies

CAG =@ 4 A\, w >0 in
(4.76)
w=0 on 0§,
where Q, = % and m = % +2 =294 19(1 4 o(1))e. We observe that
A" = Ao T W < 0p 50 as A — oo (4.77)

For £ > 0 small and A > 0 large enough, (4.10) is the limit equation of problem (4.76).
Let U, ¢(z) be the unique solution of (4.12), we define in €2, the function

Wag(y) =02 Upueloy), A=%, =2 (4.78)

Then WA,gl (y) satisfies
—AfWJAﬁf (y) = wi’g,(y), in Q,; WAg (y) =0 on 09,.

We assume that, for 6 > 0 small but fixed,

1
’ and 0 <A< 5 (4.79)

From Lemma 4.3, we have
Wie(y) = wae(y) — 4735A20H 0y, 06') + O(d") in Q,, as o0—0.
We will look for a solution of (4.76) of the form
(y) = Wag(y) + oly),

where ng (y) is defined by (4.78) and ¢ is a small term. Then problem (4.76) becomes

{el(é)__Aﬁ(&)%_}%l iniﬁg; QLSO)
p=0 on 0€),,
where

Li(¢) = —Ad— ¢ (Wre)d,  with g(w) = w’ = + A" wl. (4.81)

Ni(9) = g(Wrg + ) — g(Wag) — d (Wae)d, Ri=AWrg +g(Wae) — (4.82)

Next, we search for ¢ by the fixed point argument. For f a function in 2,, we define the
same weighted L*®—norms as (4.31) and (4.32). Namely,

1Fllee = sup (1 + |y — € | f (), (4.83)

yely
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and
I£lle0 = sup 1+ Iy = P2, (1:8)
where 6 satisfies
2<6<q. (4.85)
Then we can get
[Brllsve < Co,  [[DagrBallaee < Co (4.86)

In fact, we note that WA{/(y) =wp¢(y) + O(p),

IRilly = |[ATWag + W + 00" W

— HW/?E,E —w} o (y) + AW o
79

*%k **,0

IN

Collwag (y) e + Cellwag (y)* log (wag (y)) e + A0™ [0} &

%, 0

IN

Collwne (1)l + Cln (1) 08 (wa 0 (1)) o+ CA™ w08
Coo*™? + Ceo® P log o| + CAg™ ™% < Co,

‘ e}

IN

since 2 < 0 < q. We get the first estimate in (4.86). By similar computations, we can get
[DaenBallie < Co.

Now we consider the following problem
~ —~ ~ ~ 3 _
—A¢— g (Wag)d = Ni(d) + Ry + X diwy o Z;  in Qy;
- i=0
¢=0 on 09),; (4.87)
ng ggwjl\f'zi =0 1i= 07172737

for some numbers d; (i = 0,1,2,3), where Z; are defined by

= TE z=TRE im123

By similar processes in Section 4.3, we have the following result.

Proposition 4.16. Assume A and & satisfy (4.79), for A > 0 large enough, there exists
a unique solution ¢ = G(\, &) of problem (4.87), which is C' with respect to A and &'
Moreover,

16 < Co, IDwg)dll-, < Co. (4.88)
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In order to find solutions to problem (4.76), we only need to find A and ¢’ such that
di(A, &) =0 fori=0,1,2,3. (4.89)

The energy functional of problem (4.76) is given by

1 i 1 | i
B(i) = 5 | 190 = g [ ol = agn e [l

Set
E(0E) = B (Wag )+ dre(v)). (4.90)
where WA@/ (y) is defined by (4.78) and ¢, ¢ is the solution to problem (4.87), which is solved

by Proposition 4.16.

Lemma 4.17. Under the assumptions of Proposition 4.16, E(A,&') is of class C'. Moreover,

for all X > 0 sufficiently large, the function w(y) = WAygf(y)—f—(;A’g(y) is a solution to problem
(4.76) if and only if (A, ') is a critical point of E(A,E').

The proof of this lemma is similar to Lemma 4.13. Using the same arguments as Lemma
4.14 and (4.71), we can obtain as A — oo,

EN, &) = J(U,e) + o(o), (4.91)

where o(p) is in the C'— sense uniformly on &', A satisfying (4.79).

Proof of Theorem 4.2. Suppose (4.79) holds, recall that © = Ap and § = o9&’ € Q. Then
for ¢ and A satisfying (4.8), from Lemma 4.4 and (4.91), we obain

E(N, &) = ao + ¥g(A, € o+ o(0), (4.92)

where
be(A,€) = arH(E,E)A — asA"=" for 2< g <3

with a; > 0,a4 > 0 being given in Lemma 4.4.

Define

E(NE) == [E(AE) —ag).

|

Then we have _
g(A> 5/) = wq(Aa 5) + 0(1)7
with o(1) = 0 as A — oo, uniformly in the C'— sense for &', A satisfying (4.79).
Next we find the critical point of £(A,&’). Since for 2 < ¢ < 3,

L QGIH(§7£)> ﬁ
fog = ( as(5 — q)
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satisfies Oat0g(A, §)|a=a,, = 0. Moreover, H (&, ) has a critical point &y, with H (&, &) > 0,
then (Ag4, &) is a nondegenerate critical point of 1,(A,€). Thus there is a critical point
(A1,&7) of E(A, '), such that (A4, &) = (Ao, &) with &) = %0. Therefore, by Lemma 4.17,

U3(LL’) = Qirﬁs (AW/Al,fi (%) + (5/\175{ (%))

is a solution of (4.2). By above construction, we have

(Alk_ﬁ)%

us() = 31 :
(MAT702 4 o — &)

(1+0(1)), (4.93)

N|=

where o(1) — 0 uniformly in Q when ) is large enough and satisfies (4.8), and (A;,&) —
(Ao.gs &0). Moreover J(ug) > ‘/T§7r2. In fact, we can easily check that

J(us(z)) = ap + ¥q(Aog, &o)o + o(0),

where

Vy(Nog, &) = a1H(50,§0)A07q_a4A£

— a2 £o>)32-q s ((%H (6.6)) > N

as(5—q) 25— q)

So we get

3
J(ug) > ap = %71‘2.

Basing on Theorem 4.1 which provides two solutions, by comparing the energy of these
solutions, we conclude the result.

4.5 Appendix

Lemma 4.18. For all € > 0, we have

o TR OO = B T et e

where N(Q) = {u € HY(Q) : fo [Vul? = fy a4 f, Jul}.
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Proof. The argument follows from [118]. For the reader’s convenience, we prove it here. Let
e > 0 be fixed, we claim

inf J(u)=  inf maxJ(tu). (4.94)
ueN(Q) ueHL(Q\{0} >0

Let u € H}(Q) \ {0} be fixed, define ®(t) = J(tu) for t > 0. Then we have that ®(0) = 0,
®(t) > 0 for small ¢ > 0 and ®(¢) < 0 for ¢t > 0 large enough. Thus [(Ijnax) ®(t) is achieved.
,+OO

We observe that ®'(¢) = 0 implies

Jollo == [l e [ g

Set p(t) = t*71 [, JulPtt + Xta7 [ Ju|?t!, obviously, ¢ (t) is an increasing function of ¢.
Therefore there is a unique point t=t(u) such that ®'(¢(u)) = 0 and ¢(u)u € N (). Now
we prove that N(2) is radially homeomorphic to HJ(2) \ {0}. It is enough to prove that

: HY(Q) \ {0} — R* is continuous. Indeed, assume that u, — w in Hj(Q2) \ {0}, then
u, — uin H}(Q) and u,, — v in L*(Q) for s < 6. Moreover,

/|Vun|2 "~ (u, /|u P At (uy, /|u |+t (4.95)

thus {t(u,)}, is bounded in R*, then there exists a subsequence of {t(uy,)},,, still denoted by
{t(un)},,, such that t(u,) — ty as n — +o00. By taking the limit in (4.95), we get

/|vu|2:tg—1/ |u|p+1+/\t8_1/ |+,
Q Q Q

Hence t(u) = to, where tou € N'(Q).
Since J(tu) < 0 for u € H}(2) \ {0} and ¢ is large, we obtain

inf max J(vy(t)) < inf  max J(tu).
v€el telo,1] u€HY(Q)\{0} t=0

Finally, we show that
inf max J(y(t)) > inf J(u).

~er te[O 1] ueN ()
It is sufficient to prove that ([0, 1]) Q) #£0 for all v € I'. In fact,

V() : = / Vup — / P — / o
— p+1/‘|p+1+>\ +1/Hq+1

It is easy to check that there exists pg > 0 such that
U(u) >0 forall 0<|lullgiq) < po-

For any v € I', we have ¥(y(0)) = 0 and ¥(y(1)) < 2J(v(1)) < 0. Therefore there exists
t1 € [0,1], such that [[v(t)llg1q) > po and ¥(y(t1)) = 0. So y(t1) € ([0, 1]) N N(Q). We
complete the proof.
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Chapter 5

Bubble tower solutions for
supercritical elliptic problem in RN

5.1 Introduction

We are interested in the elliptic equation
— Au+u=uf + Ml u>0 in RV,
{ 5

u(z) -0 as|z] = oo,

where N > 3, A > 0 and 1 < ¢ < p. This problem arises in the study of standing waves of
a nonlinear Schrodinger equation with two power type nonlinearities, see for example Tao,
Visan and Zhang [113].

If p = q, equation (5.1) reduces to

(5.2)

— Au+u=1u", u>0 in RY,
u(z) — 0 as|z| = oo,

after a suitable scaling.

Thanks to the classical result of Gidas, Ni and Nirenberg [68], solutions of (5.1) and (5.2)
are radially symmetric about some point, which we will assume is always the origin.

It is well known that problem (5.2) has a solution if and only if 1 < p < % Existence

was proved by Berestycki and Lions [10], while non-existence from the Pohozaev identity [99].
Uniqueness also holds and was fully settled by Kwong [76], after a series of contributions
[22, 80, 96, 97, 94, 93]. See also Felmer, Quaas, Tang and Yu [57] for further properties.

Concerning (5.1), the work of Berestycki and Lions [10] is still applicable if 1 < ¢ < p <
%, and one obtains existence of a solution. If p,q > % there is no solution, again from

the Pohozaev identity.
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Recently, Dévila, del Pino and Guerra [35] proved that uniqueness does not hold in general
for (5.1),if 1l <g<p< N *2 More precisely if N = 3, the authors obtained at least three
solutions to problem (5. 1) 1f 1 < g < 3, A > 0 is sufficiently large and fixed, and p < 5 is
close enough to 5.

Let us mention some contributions to the question of existence for (5.1) when one exponent
is subcritical and other is critical or supercritical. If 1 < ¢ < p = % in (5.1), Alves, de
Morais Filho and Souto [1] proved:

N+2,

e when N > 4, there exists a nontrivial classical solution for all A > 0 and 1 < ¢ < §75;

e when N = 3, there exists a nontrivial classical solution for all A > 0 and 3 < ¢ < 5;

e when N = 3, there exists a nontrivial classical solution for A > 0 large enough and
1<qg<3.

Moreover, Ferrero and Gazzola [56] proved that for ¢ < %*g < p, there exists A > 0,
such that if A > A, then (5.1) has at least one solution, while for ¢ < N +2 < p, there exists

0 < A < A such that if A < ), then there is no solution.

In this chapter, we are interested in multiplicity of solutions of (5.1), and for this we take
an asymptotic approach, that is, we consider

—Au+u=uP+ i, u>0 inRY;
(5.3)
u(z) -0 as |z| = oo,
where p = p* + ¢, with p* = N—+2 A > 0 and € > 0 are parameters, and ¢ satisfies
N +2
1<Q<N+2 if N> 4; 3<qg<b if N=3. (5.4)

Our result can be stated as follows.

Theorem 5.1. Let A > 0 and let q satisfy (5.4). Given an integer k > 1, then there exists
g0 > 0 such that for any e € (0,e), there is a solution u.(z) of problem (5.3) of the form

k -[G-D+ *
ulz) = (N ) P (A) L (4o1),  (55)
j=1 (1+5 s ll- (A*) 2|z|2> 2

l\.’)

where the constants A7 >0, j =1,2,...,k, can be computed explicitly and depend on k, N, q.
Remark 5.2. The expansion (5.5) is valid if

1 i+ o 2] < Cenali-Drptg]
c < [z <
with some i € {1,2,--- ,k}, and o(1) — 0 uniformly as € — 0 in this region.
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The solutions described in this result behave like a superposition of “bubbles” of different
blow-up orders centered at the origin, and hence have been called bubble-tower solutions.
By bubbles we mean the functions

wlt(Z):OéNLQ, with OJN:(N<N—2))¥’

where p > 0, which are the unique positive solutions of
—Aw=w?” inRY,

(except translations). Based on numerical simulations, in Figures 5 and 6, we describe
qualitatively the bifurcation diagrams of solutions for problem (5.3) where ¢ satisfies (5.4).
The solutions from Theorem 5.1 (for k = 1,2), are also marked in the diagrams.

Bubble-tower solutions were found by del Pino, Dolbeault and Musso [43] for a slightly
supercritical Brezis-Nirenberg problem in a ball, and after that have been studied intensively
[21, 44, 46, 48, 64, 65, 83, 89, 91, 98]. In particular we mention the work of Campos [21] who
considered the existence of bubble-tower solutions to a problem related to ours:

{—Au:up*ﬂ—i—uq, u>0 inRY;

u(z) >0 as |z] = oo,
With%<q<p*:%,]\f23.

The proof of our result starts with a variation of the so-called Emden-Fowler transfor-
mation, which reduces the problem of finding k-bubble solution to the problem of finding a
k-bump solution of a second-order ordinary differential equation in R. After a Lyapunov-
Schmidt reduction procedure, see for example [58, 83, 21], the problem becomes to find a
critical point of some functional depending on k real parameters.

In Section 5.2, we give Emden-Fowler transformation for problem (5.3) and build the
first approximate solution to the ODE. We study the linearized problem at an approximate
solution and nonlinear problem in Sections 5.3 and 5.4. In Section 5.5, we study the finite-
dimensional variational reduction problem and prove Theorem 5.1. We leave some of the
estimates in the Appendix.
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u(0) = [Jullo
k=2
k=1
/
P j%

Figure 5: Bifurcation diagram u(0) vs. p for solutions of (5.3) for A sufficiently large and
fixed, and ¢ satisfying (5.4).

u(0) = [Jufle

0 A

Figure 6: Bifurcation diagram u(0) vs. A for solutions of (5.3) with p = p* + ¢, € > 0 small
and fixed, and ¢ satisfying (5.4).
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5.2 The first approximate solution

In this section, we build the first approximate solution to (5.3). In order to do this, we
introduce the solutions of problem

—Aw=w? inRY,
which are given by

M 2
wu(2) = N ———— 5=
(1 + 12[2)
N—-2

with ay = (N(N —2)) 7 and any parameter p > 0.

Let us define U, as the unique solution of the following problem

AU, +U, =wP inRY;
SR (5.6)
Ulz) >0 as |z] = oo,
We write
UH('Z) = w#(z) + Ru(2>‘
Then R, (z) satisfies
—AR,(2) + Ru(2) = —w,(z) inRY;
(5.7)
R,(z) =0 as |z| = oo.
We have the following result, whose proof is postponed to the Appendix.
Lemma 5.3. Assume 0 < p <1, we have
(a) 0 <Uu(z) <w,(z), for z€RN,
(b) One has
Uuz) < Op' T |27, for |2 > R,
where R is a large positive number but fized.
(c)Given any p > 0 small, we have
(i) If |z| > 1, then
N—2
,UT
|R,(2)] < C\Z|N*2 for N > 3. (5.8)
(ii) If |2| < &, then
/f¥ for N > 5;
R.(2)] < C ,ulogl% for N = 4; (5.9)
,u% for N = 3.
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If 8 <|z| <1, then

;Fy L - for N>5;
a+zp) T
[Ru(z)] < CF plog i for N = 4; (5.10)
u% for N = 3.

We define the following Emden-Fowler transformation

v(w) = T(u(r)) = (p; 1)““ () (5.11)
with
r=|2=e "0, 2 e (—oo, o). (5.12)

Using this transformation, finding a radial solution u(r) to problem (5.3) corresponds to that
of solving the problem

Lo(v) = aeefoP" T + \Fye P mD%90  in (—o0, +00);
v(x) >0 for =z € (—o0,+00); (5.13)
v(z) >0 as |z| — oo,

where
4

9 2
ﬁo(v) = —U” + v+ (m) G_Wx?], (514)

2 2(p* —q)
—1

p*_l _p* p*_]- pF—1
o= (55 T = ()T

We observe that Ly is the transformed operator associated to —A + Id. Moreover,

4N N—-2

Wi =9 = Tl = (m) - e 79 (1 + 5&@-&))*7

with p = e_ﬁg, is the unique solution of the problem
W"—W 4+ WP =0 in (—o0,+00);
W' (0) = 0; (5.15)
Wi(x) >0, W(x)—0 as |z] = occ.

Note that W (x) = O(e”l®]).

Define the function
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Then Vg(z) is the solution of the problem

{EoV&(x) =Wl =& in (00, +00); (5.16)
Ve(x) =0 as |z| = oo.
We write

Ve(z) = W(z — &) + Re(), (5.17)

where Re¢(x) = T(R,)(r). By the Emden-Fowler transformation and as a consequence of
Lemma 5.3, we have the following estimates.

Lemma 5.4. For £ > 0, we have
(a) 0 < Ve(z) < Wz — &) = O(e 28, for x €R.

(b)
N -2
Ve(z) < Ce%we_g, for —oco<x < — log R, (5.18)
for R > 0 is a fixed large number as in Lemma 5.3.
(¢c) For N > 3, there is a positive constant C, such that
. e~ lz=¢l if x<0;
R < 5.19
‘ é(x)’ — 67|m7£|6_ﬁnlin{x,£} Zf z 2 O ( )
Define
Zg(x) = O¢Ve(x) = O:W (2 — &) + Oc Re(x).
Note that ;W (z — &) = O(e~1*=¢l) and
2
OW (2 = §) = — 1T (Guwu(r)), (5.20)
Ze(w) = —%M (Zn)  with Z,(z) = 9,002, (5.21)
2
OR(r) = s 1T (B, By(r)) (5.22)
Then from (5.102), (5.22) and Lemma 5.4 (c), we have for N > 3,
5 c el if »<0;
R < 5.23
9cRe()| < eleglemwmminted} §f g >0, (5:23)
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Therefore
Ze(x) = O(e™™ ¢y for Vo € R. (5.24)

Moreover, from (5.103) and (5.21), we find

N -2
| Ze(x)| < Cevatet, for —oco<a<— log R, (5.25)
for R > 0 is a fixed large number.
Let 7 > 0 be a small but fixed number. Given an integer number k, let A;, forj =1,--- , k,
be positive numbers and satisfy
1
n<A<-. (5.26)
n
Set
i = @Ay and gy =¥ 20D (5.27)
for j =2,--- k. We observe that
: A
AR i e N (5.28)
145 A;

Define k points in R as

Then we have that
O<fl<€2<"'<fk.

and
& = —Iﬁloge - %105;/\1,
— N2y, A - N (5.29)
£j_§j71__0g€_TOgAj717 J =4 R,
Set
k
W;=W(z—&), Rj=Rg(x), Vi=W;+R;, V=)V, (5.30)
j=1

k
We look for a solution of (5.3) of the form u = ) U, +1 corresponding to find a solution
j=1

of (5.13) of the form
v="V+09,
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where V' is given by (5.30) and ¢ = T (¢) is a small term. Thus problem (5.13) becomes

L(¢)=N(¢) + E in (—00, +00);
¢(x) >0 for z € (—o0,+00); (5.31)

o(x) >0 as |z| — oo,

where
L) = Lo(9) — e(p® + )™ VP T — Agfye @ DTy, (5.32)
N(8) = e [(V 4+ @)+ = V' (p 4 )y 1)
HABne” PO [(V 4 ¢)1 — VT — gV g] (5.33)
and

E = 0. c™VPH = Lo(V) + ABye @97y

k
= 0TV SN WP+ ABye 00Ty, (5.34)

j=1

where L is defined by (5.14).

5.3 The linear problem

In order to solve problem (5.31), we consider first the following problem: given points
&= (&,...,&), finding a function ¢ such that for certain constants ¢y, co, .. ., cx,

L6) = N(6)+ E+ .7 in (—o0, +00);
j=1
lim ¢(x) = 0; (5.35)

|x|—o00

[ Zi¢=0, Yi=1,....k

where Z;(z) = Zg, () = 0¢, Ve, () for j =1,2,--- | k.

To solve (5.35), it is important to understand its linear part, thus we consider the following
problem: given a function h, finding ¢ such that

£5<¢) =h -+ zk: Cij n (—OO7 +OO),
=1
lim 6(z) = 0; (5.36)

|x|—o00

o Zi6=0, Vi=1,...,k

for certain constants Cj.
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Now we analyze invertibility properties of the operator £. under the orthogonality con-
ditions. Let o satisfy

(5.37)

N+2)(2¢q—1) 3qg—p*
O<J<min{q—1,1,< +2)(2 ) 34 p}.

N +6 T2

We define the real number M as follows

0 if 1> %5 +o0;
M= . ) (5.38)
max{0,7} if 1 < = +o,

(- (5e)) o ()

We define the following norms for a function ¢ defined on R,

where v satisfies

k -1
(5 +o)z o —olz—
il = sup e #5*em p(a)] + sup (Ze | @) (@) (5.39)

zeR =1

and
& ~1
[l = sup (Z e‘”'“”) |o(z)]. (5.40)
T€R =1
The following result holds.

Proposition 5.5. There exist positive numbers g, and C' > 0 such that if the points 0 <
& < & < ... <& satisfy (5.29), then for all 0 < € < gy and all functions h € C(R;R) with
|h]| s < 400, problem (5.36) has a unique solution ¢ =: T.(h) with ||¢||« < +o00. Moreover,

16lls < Clihlles  and |cj| < CllAw. (5.41)
We first consider a simpler problem

Lo(¢) — ac(p* +e)e VP Hlp = h + i ¢jZj in (—00,+00);
lim (z) =0, "~ (5.42)
2 Zijp=0, Vji=1,.k,

for certain constants c;, here £ is defined by (5.14).

Lemma 5.6. Under the assumptions of Proposition 5.5, then for all 0 < € < ey and any h,
¢ solution of (5.42), we have

91« < ClR]|xx, (5.43)
and
;| < ClA[s (5.44)
101



CHAPTER 5. BUBBLE TOWER SOLUTIONS

Proof. To prove (5.43), by contradiction, we suppose that there exist sequences ¢, hy, &,
and ¢} that satisfy (5.42), with

IPnlls =1, [hallee =0, en = 0.

We get a contradiction by the following steps.
Step 1: ¢ — 0 as n — +o0.

Multiplying (5.42) by Z! and integrating by parts twice, we get that

k
> e / A
=1 R

- _/ I Z;" + / [Lo(Z]) = oz, (0" + £a)e VP51 0] 4. (5.45)

R R

Note that

/ 2070 = O8; + o(1), (5.46)

R

where d;; is Kronecker’s delta. Then (5.45) defines a linear system in the ;s which is almost
diagonal as n — oo.

Since Z}'(x) = Ogn Ven () = O(e™1#=&), we then have

k
/hnZ? < C||hn||**/ (Zea|zsy> o~ 17—€ gz
R R

J=1

IN

C’thnH**/e'y'dy < Cllhnlon. (5.47)
R

Moreover, Z satisty
Lo(Z]) = p' WPz — )0 W (z — &),

so we get

/ [Lo(Z]) = e, (0 + €n)e™ VI T 120 6,
R

/ [PW(x — &) 0 Wz — &) = ac, (p" + £a)e™ VI 00 W (2 — €1)] dn
R

+ /]R;[Oégn (p* + an)es”xvp*“"’l@gg]%@n ($)]¢n
= o(1)][énll- (5.48)
From (5.45)-(5.48), we obtain

€51 < Cllhnles + (1) | fn ]l (5.49)
102



CHAPTER 5. BUBBLE TOWER SOLUTIONS

Thus lim c;? =0.
n—oo

Step 2: For any L >0, any l € {1,2,--- |k}, we have

sup |pn(x)] — 0, asn — oo. (5.50)
2E[€n—L,&M+1]

Indeed, suppose not, we assume that there exist L > 0 and some [ € {1,2,---  k} such that
|pn(ny)] > ¢ >0, for some x,; € [§' — L, &' + L.

By elliptic estimates, there is a subsequence of ¢,, converging uniformly on compact sets to
a nontrivial bounded solution ¢ of

Lo(¢) = p WP Nz — &)0,

where & = lim &'. By nondegeneracy [104], it is well known that ¢ = ¢Z, for some constant
n—oo

¢ # 0. But taking the limit in the orthogonality condition fR Z'¢, = 0, we obtain gz~5 =0,
which is a contradiction. Thus (5.50) holds.

Step 3: We prove that ||pn]|« — 0 as n — 0.
Claim: For any L > 0 and j € {1,2,--- ,k}, we have

sup (Z e—”—€?> | ()] = 0, (5.51)

R\UF_, [€P—L,£n+1]

j=1
and
sup 6_(ﬁ+0)x605?|¢n($)| — 0, (5.52)
z<—M

as n — 400.

By the definition of || - ||« in (5.39), using (5.50), (5.51) and (5.52), we get that ||¢,|[. — 0
as n — oo.

Now we prove the above claim. We note that

k

k
b+ 320 < (Collhales + 0| 6nll0) Y e85,
j=1

j=1
where Cj is a positive constant.

For x € R\ U'_, (€} — L, & + L], let us define

k

= (00"h”"**+€”L sup |¢n<x>|+o<||¢n||*>)26‘”f?'

Uk [P L& +L]
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k
+o Z 6*5|I*5§L|
=1

with o > 0 small but fixed and 0 < & < o. Then by choosing suitable large L > 0, we get

'CO(@Z)n(x)) —a.,(p* + én)eenmvp*%n_ll/;n(x)
> Lo(¢n(r)) — 0z, (p* +2)e™ VP 1, ().

On the other hand, we have that for any L > 0 and j € {1,2,--- ,k},
Un(§ = L) 2 6n(&f = L) and (€] + L) > on(&] + L).

Moreover, there exists R > 0 large enough, such that

Un(R) > ¢u(R),
and

Un(—R) = dn(—R).
By the maximum principle, we get
bn() < hp(z) for z € [—R,R]\ U§:1 (& — L, &+ L)

Similarly, we obtain ¢,(z) > —t,(z) for z € [-R, R]\ Us_, [€) — L,&} + L]. Thus

[6n(@)] < Yulw) for @€ [=R,R\UL, [§ - L& + L.
Letting R — +o00, we get
[6n(@)] < Wn(z) for @ e R\UL, [§ = L& + L]
Letting o0 — 0, for z € R\ Uj_, [§} — L, &} + L], we have that

k

|¢"(x)'§(c°"h""**+e”L sup |¢n<x>|+o<u¢n||*>)Ze‘”‘f?-

Uk_ [€r—L&r+1) =1

So (5.51) holds.
For x < —M, let p > 0 small and C; > 0 be chosen later, we define

Un(x) = Co (Collhullas + o(l|dn].)) el 2076778 4 pev=a,
According to the definition of M in (5.38), we then have

Lo(Yn(z)) — 0, (p" + €n)e€nxvp*+€nilwn<x>
k

1 2 \?1
> | == T 2: —ola—¢|
= 9 (N—2> kcl(COth”**+0(||¢n||*)) €

J=1
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Choosing C; such that % (%)2 %Cl > 1. then

Lo(Wn(@)) = ae, (0" + €n)e™ VI T "1y (2)
k

k
> (Collbnlles +oll@nll) D e 8 > hy 4 Y 27
j=1

J=1

= Lo(¢n(2)) = ae, (p" + €)™ VI TG, ().
Moreover, by (5.51), we can find
n(=M) = gu(=M),
and there exists R > 0 large enough, such that
Un(=R) = on(=R).
By the maximum principle, we get
On(2) < Pn(x) for z€[-R,—M].
By a similar argument, we obtain ¢,(z) > —tx) for x € [-R, —M]. Thus
|0n ()] < Yu(x) for ze[-R,—M].

Let R — +o00, we get
|pn ()] < p(z) for x € [—o00, —M].

Let p — 0, we have
245z —oen
[6n(@)] < C1 (Collnllex + 0([[nll)) 52T for & € [~o0, —M].

So we obtain that (5.52) holds.
Moreover, estimate (5.44) follows from (5.49) and (5.43). O

Proof of Proposition 5.5. From Lemma 5.6, for ¢ and h satisfying (5.36), we then have
6]l < C (Al + lle™ ="V gL (5.53)
and
6 < € (hllee + e~ =27V 11g)..) (5.54)
In order to establish (5.41), it is sufficient to show that

le=@ =Dry g, < o(1)]| @]l (5.55)
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Indeed,

k —1
”6—(13*—(1)xvq—1¢’|** < sup (Ze ax—fj) |6—(p*—q)xvq—1¢‘

r<—M =1

z>—M
= Q1+ Qo
Now we estimate (); and @), respectively, we first have

z<—M

k —1
+ sup <Z eo’|x§j> ’ef(P**q)IVQ*lqﬁ‘
j=1

k
< C sup e*(ﬁ“)xevﬁl|¢(x)|€ﬁxe—(p*—q)rZe—(q—1)|z—£j|
a x<—M e
< (C sup ef(ﬁJrU)zeUfl|¢(x)|62(q—1)$6—(11—1)§1
- r<—M

z<—-M

For Qq, if —M < x < &, then we have
e~ P-rya-l < Ze —07o—(a-Dlr=§1 < e Dz —(a-1)&

< C max {6 (p* )51’ e—(q—l)fl} _

If x > &, then we have

k

L i Ve Ze—(p —07o—(a-Dlr=§1 < e~ -0z < =" D&

j=1

Thus we find

) -1
Q2 < C’max{e —08 =(a- 151} sup <Ze"|x 5]) |o(z)].

From (5.56)-(5.58), we get
le”®" =DV, < Cmax {e”®08 em D8 L g, = o(1)]| 4.
So estimate (5.55) holds.

(5.56)

(5.57)

(5.58)

We now prove existence and uniqueness of solution to (5.36). Consider the Hilbert space

H:{¢€H%M:L/@¢:Q Vj:LGwk}
R
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with inner product
60) = [ (04 + ov)d.
R
Then problem (5.42) is equivalent to find ¢ € H such that

(0,9) = / [ozg(p* + g)vp*+€—1¢ + /\Q5N€_(p*_q)qu_lgb
R

2 24
+|l =) e¥ o +nh

5 bdx (5.59)

for all v € H. By the Riesz representation theorem, (5.59) is equivalent to solve
¢ =K(¢)+h (5.60)

with h € H depending linearly on k, and K : H — H being a compact operator. Fredholm’s
alternative yields there is a unique solution to problem (5.60) for any h provided that

¢ = K(¢) (5.61)

has only the zero solution in H. (5.61) is equivalent to problem (5.36) with h = 0. If h =0,
estimate (5.41) implies that ¢ = 0. This ends the proof.

Now we study the differentiability of the operator 7. with respect to & = (&1,...,&k).
Consider the Banach space

Co={f €CR) : [|fllx <00}
endowed with the || - ||+ norm. The following result holds.

Proposition 5.7. Under the assumption of Proposition 5.5, the map & — T. is of class C*.
Moreover,

DT (R« < Cllhl (5.62)
uniformly on the vectors & which satisfy (5.29).

Proof. Fix h € C, and let ¢ = T.(h) for € < gy. Let us recall that ¢ satisfies

L. (p) =h+ Xk: ¢jZj in (=00, +00);
=1

1=

lim ¢(x) = 0;
fRngb:o, Vi=1,...,k,
for certain constants ¢;. Differentiating above equation with respect to &, [ € {1,...,k}. Set

Y = 0 ¢ and d; = O, c;, we have
_k
LY)=h+ 3 d;Z; in(—00,+00);
j=1
lim Y(z) = 0;
|| =00

oY Zj+¢0e2; =0, Yi=1,....k
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where
h = a.(p"+e)p*+e— 1V 274
+Aq(q — 1)Bye P " V"VI 216 + 10, Z).

k
Let n =Y — > b;Z;, where b; € R is chosen such that
i=1

R

that is,

k
Zbi/z,-zj:/Yzj:/a£l¢zj:—/¢a&zj.
i—1 R R R R

This is an almost diagonal system, it has a unique solution and we have
[bi] < Cl|o]]

Moreover, n satisfies

k
L.n)=g+> d;Z; in(—o0,+00);
j=1
lim n(x) = 0;
|z| =00
JenZ;=0, Vji=1,.k,
with
k
g=nh-— Z biLe(Zs).
i=1
From Proposition 5.5, there is a unique solution n = T.(g) to (5.65) and

[« < Cllglles-

On the other hand, we have

gl < Cle=VPH2Z8| o + Clle” DTV 22,

k
+Hlere Zllas + > bl I1L(Z0) s

i=1
< C(lolls + lerd + 1b:]) < CllAl,
because [b;| < C|[]]s, [|¢[le < C[h]lw |ci| < Clh]]+s and

PW(zr— &) 0 W(x — &)
108
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—a.(p* +e)e VP Z — AgBye” TOTV T 7|
< CIW(z = &) 0 W (@ = &)l
+C||e= VP HEZ | + Clle™ P D2V 7,
< C.

k3%

By (5.64), (5.66), (5.67) and || Z;||« < C, we obtain that

k
196,011« < Nl + Y 1BilllZille < ClAlle.
1=1

Besides ¢, ¢ depends continuously on & in the considered region for this norm. O

5.4 The nonlinear problem

In this section, our purpose is to study the nonlinear problem. We first have the validity
of the following result.

Lemma 5.8. We have
IN(@)[lr < C (@I "2 4[| e (5.68)
and
105N () [|s < C ([l 211 - [|g|eta=t 1)) (5.69)
Proof. We have

N(¢) = a.e™ [(V + )Pt = VPHe — (p" + e)VP H g
+)\5N6*(p**Q)I [(V + ¢)q —_Ve_ qvq71¢]

1
= v [Vt v g
0

1
+A\gBye~ P T / [(V +tp)T ' — Vi ¢ dt.
0

Then
[N ()]s
k -1 1
= a.(p*+e) Sug (Z 6””5”) e / [(V + t(b)p“rsﬂ _ Vp*+z-:71] & dt‘
xre j=1 0
k -1 1
+AqBN Sllﬂg <Z e—ff|x—§j|> e~ (P" =)z / [(V + t¢)q—1 _ Vq—l] ¢ dt'
xe j=1 0
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= Nl + NQ.

We assume that ||¢]|. < 1, by Lemma 5.15 in the Appendix, if p* > 2, we have

Ny

IN

IN

<

k -1 k -1
C sup (Z efa'\x & ) szvp*+872|¢’2 + C'sup (Z ea|:p£j|> e

z€R z€R =1

2
C S<upM 6Ulsﬂ &1l eSTY/P *te—2 ( 2+20)x€—2051 |: *(ﬁ+o)z€a§1|¢’:|
X

k k 1 2
+C sup (Z e_o—lm_f]'l) 661‘Vp*+6—2 (Z e_alx_£j|> |¢|

e2=M O\ o j=1
) PR L
z<—M
prte—1 % -1 prte
+C sup e~ole=¢il e e~ole=¢il o)
C||¢||f < Cllgli-

Similarly, if 1 < p* < 2, we find that

Thus we get

N < Cllgll?"

Ni < Cllg|mtrn2),

Moreover, we can conclude that

Ny < Ol rte.

Thus we get (5.68).
We differentiate N(¢) with respect to ¢, we have

IN(d) = ac(p” +e)e™ [(V + gb)p*“*l _ Vp*+s—1}
e 070 [+ g0t~ v,

By a similar argument as || N(¢)||., (5.69) holds.

Lemma 5.9. Let o be a positive number which satisfies (5.37) and 0 < & < & <
satisfying (5.29). If q satisfies (5.4), then there exist T € (3,

that

[Ell < Ce™, 0B < CeT.
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Proof. We have

k
B = e YW ey

j=1
k P’
= e (VP VP (e — VP 4 | VP - (Z Wj>
j=1
k p* k
" (Z Wj) N TWE | 4 ABye @0y

j=1 j=1

= E1 +E2+E3+E4+E5. (571)

Estimate of Ei:

1
By = |0456m (V”*JFE—V”*)‘ = 50456”/ V”*Helog‘/dt‘
0
k
< Cee™VEVP | log V| < CeVP | log V| < CsZe‘”'x_fﬂ". (5.72)
j=1

Estimate of Es: by the Taylor expansion, we have

2e
*_1 _p*—l *
(551 )

2 -1 .
= H(l—ap*_llogp2 —i—o(a))e”—llvp

1
= (5:5/ e dt + O(a)em) yProoye
0

Bl = |(0ee™ — 1)V

k
< Celloge| Z e~ole=8l, (5.73)

j=1

Estimate of Es: since

k p* k
|Es| = |V — (Z‘%) <OV R (o).
j=1

j=1
Thanks to Lemma 5.4, for x < 0, we have

k k
|Es| < CcvPt g e"l7=6l < VP lem8 < Cera E eole=6l
j:l j:1
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For 0 <z <&,

k
B3| < ovPt Z o l1=651 = 7 minf{w.&;}
j=1
2

k evr=v-2a  if N > 4;

< O el

j=1 £5-a if N = 3.

Ifx>¢&, for 0 <o <p*—1, we have

k
|E3| < Cvp*—l Z €—|x—§j|e—ﬁ min{z,¢;}
j=1
) k
< CVP*_le—ﬁﬁl < CeN+2=(N-2)q Z e ole=¢l
j=1

Therefore, for x € R, we get

2
eNFEITf N > 4

k
|Es| <O e ole=dil X (5.74)
Jj=1 g5-a if N =3.
Estimate of Ey: if —oco < x < %, we have
k P k
B = (Z%) - =3 Wy
j=1 =2
p* k
< (Z Wz~ @-)) Wl =& |+ Y Wiz —&)
j=1 =2
k Pl k
< p (ZW@_@)) ZW($_§J)+ZW(5E_§J)I?
j=1 =2 =2
. pF—1-0 0 X
= p*< W(zv—@-)) (Z W(x—@-)) D W—&)+) Wa—¢&)”
7=l J=1 Jj=2 j=2
with 6 satisfying 0 < § < p* — 1 — 0. Since
k 0 k k
( W(x—@)) Y Wlr—§) <Y Wa—§)' Y W)
j=1 =2 j=1 =2
k k k
< C Z e~ 02—l Z el < el Z e~ |74l
j=1 =2 =2
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k
= C Z o~ tle—61] ,—0le—¢;] ,—(1-0)|z—¢;]

j=2
k k
= OY ettt (-0k-6l < 37 0161l o= (1-0) 2551
j=2 Jj=2

< Qe 6= _ o -H6-6) < 05

Here we use |z — & | < |z — &, |z — | > % and & — & > & — & for j =2, k.
Moreover,
k k k
Z Wz — Sj)p* < CZ e P =81 — o Z e~ olz=¢il o= (P —0)z—¢;]
=2 =2 =2
k
< Ze—o\x—sﬂe—(p*—o)@;{l
j=2
K
< CEFEY et
j=1
Thus
- G +¢
1460 X
|Ey| < Ce2 Ze“"x_@', for —oco<x< %,
j=1
Similarly, for % <z< % withl=2,---  k—1,and x > %, we get
k
By < Ce 5 ) el
j=1
Therefore, for z € R, we have
k
146 )
By < Ce5 Y et (5.75)
j=1

with0 <0 <p*—1-—o0.
Estimate of Ej:

| Es| = |/\q5N67(p*7q)qu‘ < QVoe P -ary e,

(N+2)(2¢—1)

N— . .
If-oco<ax< —72 log R with R > 0 large but fixed as in Lemma 5.3, for 0 < o < Nie

from (5.18), we have

k q-a
|Es| < CVoe W -a2 (Zem%_s]’)

J=1
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k
< CVoe a0k < Cera Ze—a\ﬂﬂ—ﬁj\'

j=1
It —¥logR <z <&, we have

|E5| < CVoe W—07—(a=o)le—t]
CVU { e(p*,2q+0)¥logRe—(q—o)51 lf p* _ 2q + o 2 O7

<
- e~ (P"—2q+0)81 o —(g—0)&1 if p* —2¢+0 <0.

k

4-9 _ -

< Cmax{e,er-a} E ekl
=1

If x > &, we find

k
‘E5| < CVoe P —dry/a-0 < CVoe P —a)& < ngeﬂﬂzfgﬂ.

J=1

Thus, for x € R, we get that

k
|E5| < C'max{e, 5%} Z e ole=¢51

j=1

From (5.71)-(5.76), for 0 < § < p* — 1 — o and o satisfying (5.37), we have

max {5|10g5|, 5N+2—<2N—2>Q, 51%9,5%} it N > 4;
[E]l < C

max {5| log e, 5ﬁ, 5%, 8;*:0(1} if N =3.
Therefore, if ¢ satisfies (5.4), we find that there exists 7 € (3,1) such that
[E]lsx < Ce™.
Differentiating E with respect to & (i =1,2--- k), we have
i 2
+A\Byge” P DTy a1y

The proof of estimate for ||0¢E||. is similar to || E||...

k
0, F = a.(p'+¢e)e VP19,V — p* Z W(x — &) 10 W(x — &)

(5.76)

]

Proposition 5.10. Assume that 0 < & < & < ... < & satisfy (5.29), then there exists
C' > 0 such that for e > 0 small enough, there exists a unique solution ¢ = ¢(&) to problem

(5.35) with

o]l < Ce™,
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for some T € (5,1), satisfying Lemma 5.9. Moreover, the map & — ¢(§) is of class C* for
the || - ||« norm and

10l < C=". (5.78)

Proof. Problem (5.35) is equivalent to solve a fixed point problem
¢ =T:(N(¢) + E) := A(9).
We will show that the operator A, is a contraction map in a proper region. Set
Fy={p € C[R): ¢l < e}

where v > 0 will be chosen later.

For ¢ € F,, by Lemmas 5.68 and 5.9, we get

1A(@)ll = IT-(N(¢) + E)ll. < CIN@)]ls + 1]
< C (<7€T)m1n{p*,2} + (VST)mln{q,Q} + ST)
- (,ymin{p*,Q}gmin{p*—1,1}7’ + ,ymin{q,Q}gmin{q—l,l}T + 1) a7

Then we have A.(¢) € F, for ¢ € F,, by choosing 7 large enough but fixed.
Moreover, for ¢, ¢o € F,, by writing

1
N(3) = Néa) = [ N2+ tlon = 62)db(on — 62),
By Proposition 5.5, using (5.69) we find
[A(h1) — Ac(@2)[l« < C[IN(¢1) = N(2)[[+s

min{p*—1,1} min{q—1,1}
< ¢ (mpylo.) + (a1, 61— 6all.

< Ce|dr — @2«

with £ > 0, this yields that A, is a contraction map from F, to F,. Thus A, has a unique
fixed point in F,.

Now we consider the differentiability of & — ¢(€). We write
B(&, ¢) = ¢ —T(N(¢) + E).
First we observe that B(¢, ¢) = 0. Moreover,
0 B(E,9)10] = 0 — T.(0(95(N()))) = 0 + M(6),

where
M(0) = —T1-(6(95(N(9))))-
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By a direct computation, we get
[M(O)] < CllO(06(N(0))) ]l < C™[|0]]

So for € small enough, the operator 0,B(¢, ¢) is invertible with uniformly bounded inverse
in || - ||«. It also depends continuously on its parameters. Let us differentiate with respect to
&, we have

0:B(€,¢) = —(0:12)(N(9) + E) — T.((9N) (&, &) + 0 E),
where all these expressions depend continuously on their parameters. The implicit function
theorem yields that ¢(&) is of class C! and

Oed = —(95B(&,9)) ' [0:B(&, 0)]

so that
100l < C([[N(@)]las + ([ Bl + [[(OeN)(E, d)|[ s + 0B 1) < CeT,

since
OeN(E 9) = ac(p™+e)e™ [(V+ o) T = VIl — (p* 4 e — VI 720 OV
+ABnge” PV [(V 4 ¢)T ! — VIl — (¢ — 1)V %9 0cV,
then it is easily checked that
10N (&, @)l < Cllgle < Ce.

5.5 The finite dimensional variational reduction

According to the results of the previous section, our problem has been reduced to find
pOiIltS § - <§17 527 e 75/?) such that

¢j(€)=0 forall j=1,... k. (5.79)

If (5.79) holds, then v = V + ¢ is a solution to (5.13), and u = Zk: U,, + 1 is the solution to
problem (5.3), with ¢ = T 1(¢). -
Define the function Z, : (RT)* — R as
Z.(§) =1 (V + ).
where V' is defined by (5.30) and I. is the energy functional of (5.13) defined as
L = 5 [T wer e () [ e

o0 —0o0

1 +m * ]. +OO *
—ﬁ@a/ €E$|U|p +€+1dl’ — ?)\/BN/ 6_(p —q)$|v|q+1dl,'
prte q

We have the following fact.

—0o0 —00
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Lemma 5.11. The function V + ¢ is a solution to (5.13) if and only if £ = (&1,...,&) is a
critical point of I.(§), where ¢ = ¢(&) is given by Proposition 5.10.

Proof. For s € {1,2,...,k}, we have

0¢.2-(§) = 0e,(I(V + ¢)) = DI(V + ) [0,V + O¢, 9]

k
= ZCJ Z;0e,V + g, ¢]

7j=1

_ 1cj<422dx+0< )

]:

Ee

Ed

where o(1) — 0 as € — 0 uniformly for the norm || - ||.. This implies that the above relations
define an almost diagonal homogeneous linear equation system for the c¢;. Thus ¢ is the
critical point of Z. if and only if ¢; =0 for all j =1,2,... k. O]

Lemma 5.12. The following expansion holds
Z:(§) = 1.(V) + o(e),

as € — 0, o(€) is uniform in the C'-sense on the vectors & satisfying (5.29).

Proof. By the fact that DI.(V + ¢)[¢] = 0 and using the Taylor expansion, we have

L)~ L(V) = L(V+6)—L(V)= / DLV + t)[¢)tdt

—|—oo
= /tdt/ o) + E)odx

+o00
+@"“‘)%/’fdt/ e[V (V )" P
0 —o0
1 +o00
+)‘6NQ/ tdt/ e WOT VTt —(V + 1) ] ¢Pda
0 —00

and since ||¢[|. < Ce”™ and ||El.. < Ce™ with 7 > 3, we get
Z.(§) = (V) = O(e™) = o(e)

uniformly on the points £ satisfying (5.29).

Moreover, differentiating with respect to &, we have

e, (Z:(£) / / - e, [(N E)¢ltdxdt

+o0o
+a(p* + 5)/ tdt/ 20, ([VPHL — (V 4 to) 571 ¢?) da
0 —00
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1 +o00
+Afng / tdt / e P0G ([VITH = (V +1¢)7] ¢%) da
0 —00

By the fact that [|0¢¢|, < Ce™ and ||0¢E ||+ < Ce™ with 7> 1, we deduce that

O, (Z.(€) — I(V)) = O(7) = o(e).

Now we consider the energy functional of problem (5.3), which is defined by

1 1 " A
Ju) =1 / (Va2 +u?) - — / ap e A / o,
2 RN p*+1+€ RN q+1 RN

By a direct calculation, we have that

L(V) = (%)Nl L, (5.80)

WN-1

where V' is defined by (5.30), wy_1 is the volume of the unit sphere in RY, and

= Z Uy, (2)

j=1
with U, satisfying (5.6).
We give the following expansion of J(U), whose proof is in the Appendix.
Lemma 5.13. Assume that (5.26) and (5.29) hold, then we have the following expansion:

J(U) = a1 + ase — p(Ay, -+, Ap)e + azeloge + o(e), (5.81)

where B
N

N+2-(N-2)q A N
(A, Ap) = ash; 2 —a;,ZlogA +GGZ< Hl) ; (5.82)
=1

and as € — 0, o(g) is uniform in the C'-sense on the A\;’s satisfying (5.26), and

koo 1
_ P 2 4
R / T+ 2PN
k N 1
a :—ap +1/ —dz
T 12N ey (L [PV
k 1 o
p "+ lo N dz
T /N (L+[z)N g(1+yz\2)¥ ’

(N — 2) p*+1 1
=t -4
4 AN\ L Ot 2PN
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Y23 - 1) 2
XZ(N—2 +N+2—(N—2)q)’

i=1

A / 1 d
ay = — z
1 (N=2)(g+1) ?
1) (142

(N - 2)2 p*+1/ 1
= —_— —d
5 AN\ e At 2PN )

* ]. 1
p+1

ag = o / —dz.
Mo Jry (14 |22) 5 (2N

Proof of Theorem 5.1. Thanks to Lemma 5.11, we know that

k
uw=>Y U, +¢ withy=T""(¢)
j=1

is a solution to problem (5.3) if and only if £ is a critical point of Z.(£), where the existence
of ¢ is guaranteed by Proposition 5.10.

Finding a critical point of Z.(&) is equivalent to find that of fa(f ), which is defined as

T N —-1\"! WN-1 ay
I.(€) = — (T) 57 Ia(5>+?+a2+a310g5.

On the other hand, from Lemmas 5.12 and 5.13, using (5.80), we have

L) = L)+ = (5] IO+ o)

2 \" 1
= <m> o [a1 + ase — @(Aq, -+, Ap)e + ageloge] + o(e),

as € — 0, where ¢(A) is defined by (5.82) and o(¢) is uniform in the C'-sense. Then we have
Z.(8) = @(A) + o(1), (5.83)

where o(1) is uniform in the C'-sense as € — 0.

We set 51 = Ay, 55 = AA—jl, then we can write o(Aq,- -, Ay) as
P
k k
N+2—(N—-2)q N-—2
O(s1,- -+, 8K) = ass; ° —a5log31—a5210g/\j+a623j2
e =2
N+2—(N-2)q
= a8 — ask log s1
F N-2
— Z [a5(k: —Jj+1)logs; — ags; ]
j=2
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k
= @1_5 PLj,y

=2

with
N42—(N—2)q
pr=ass, *  —asklogs,
and
N—2

¢j=as(k—j+1)logs; —ags; > , j=2,....k
We note that

2
a5k NFI= (V-7
5, = 5.84
5= (croe =) 50
is the critical point of ¢, and
2
_ 2a5(k — 7+ 1)\ V2 .
_ -9 ..k )

S] ( (N - 2)@6 Y ] Y ] (5 85)

is the critical point of ¢;. Moreover
95/1/(51) <0, (ﬁ;,(gj) <0, J= 2, 7k-
So (51, Sg, ..., Sk) is a nondegenerate critical point of ¢(sy,- -, sx). Thus

¥, (= = = = = = - = =
A" = (81, 5951, 538951, -+ , S X -+ X 5281)

is a nondegenerate critical point of (A). It follows that the local degree deg(Ve(A), O,0) is
well defined and is nonzero, here O is an arbitrarily small neighborhood of A*. Hence from
(5.83), for € small enough, we have that

deg(VeZ.(€), 0,0) # 0,

with O is a small neighborhood of £* = (&%, ..., &), where

- lOg(gjgjfl"'§1>,fOI‘Vj:L...,k.

A PN
f_j_|:(] 1)+p*_

} 1 N-=-2
log — —
q

So £* is a critical point of i(f ), which implies there is a critical point of Z..

Furthermore, if for some 7, |z—¢;| < Cy with some Cjy > 0, then we have |¢| = o(W (z—¢&;)).
Thus ¥(|z]) = T H¢(x)) = o(w,,) for Fu; < |z| < Cp,;. Moreover, from (c) of Lemma 5.3,
we get that R, = o(wy,) for Zu; < |z| < Cp;. Therefore we obtain (5.5) holds with

* — .
AjZSij_l"'Sl, j:]_,...,k’,

where 5; are given by (5.84) and (5.85). This finishes the proof. O
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5.6 Appendix

5.6.1 Some useful tools

In this subsection, we first give some useful Lemmas here, we use them for the later
purpose.

Lemma 5.14. [116] For any 0 < o0 < N — 2, there is a constant C > 0 such that

/ 1 1 du < C

s W= he
rv [y — 2[N72 (14 [y))* (1+12])
Lemma 5.15. For any a € R and b € R, we have
|al?=*[b] + [b]® if ¢ > 1;

lla+07 = falf] < C
min{|al?71b], |07} if 0 < g < 1.

5.6.2 Proof of Lemma 5.3

In order to prove Lemma 5.3, we introduce the Green function. For a fixed z € RV, let
G(z,y) be the Green function of —A + Id, which satisfies

_AG(Za y) + G(Z, y) = 6z(y) in R

G(z,y) — 0 ly| = oo.
We have the following result.
Lemma 5.16. We have
|G(z,y)] < m for 0<|y—2z| <1, (5.86)
and
IG(z,y)| < Cly—z" 2 el for ly—z > 1 (5.87)

Proof. By radial symmetry, we can write G(z,y) = G(r) with r = |y — z|. Since G(r) is
singular at zero and tends to zero at infinity, we can verify that G is given by

N -2 -
G(r) = K—NT¥KM(T)7
(2m)2 T (3)? ’
where Ky_2 (r) is a Modified Bessel Function of the Second Kind, see [68]. For N = 3,
the function G has the explicit form G(r) = <. In general, we have that K N2 (r) ~
N—2 B
@(%)% for r close to 0, and Kx_» (1) ~ /3:¢7" for r large. Using these estimates, we
obtain the result. O
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Proof of Lemma 5.3. (a) It is a direct consequence of the maximum principle.

(b) Define the barrier function Q(z) = p'z |2|" ™+, It satisfies —AQ(z) + Q(z) >
= |2| =+ for all |z| > R with R > 0 a large constant, here ¢ is positive constant. Since
Q(z) = 'z REW*2) for |z] = R and U,(2) < wy(2) < anp'z |2~V for all |z > 0. Set
¢(2) = AQ(%)—U,(z) for some constant A > 0, we then have —Ap(2)+¢(z) > 0 for |z| > R,
©(z) > 0 for |z| = R by choosing suitable constant A. By the maximum principle we
get Uy(2) < AQ(z) = Ap = |2|~W+2 for |2| > R.

(c) Set Bi(z) ={y: |y — z| <1}, by Lemma 5.16, we have

R < [ 1602wy

1 N2
2
< C —dy
i) 1Y = 2N (2 y2)
N2
_ 2
+C ly— 2 Fe gy
RN\Bi (2) (w? + |y?) "=
= L(2) + L(2). (5.88)

(1) We may assume that |z| > 2, we first estimate I,(z). For y € By(z), we have |y| >
|z| — 1> % Therefore

L(z) < c—* = / L g
1(z) < - TN
(12 + 15277 Jpuo) Iy — 21V
N2 1
ILL 2
_ ¢ _ / IS
(12 + |22 e |21V
N2 N2
ILL 2 M 2
< C <ol (5.89)
G =
Now let us estimate Ir. Set y = 7, 2 == and d = 1|Z|, we have
- . 1
L(z) = Cu'® (g — 5)|%€7”|yfz‘ﬁdﬂ
RNM\B, (3) (1+1g*) >
N+2 1— _ 1
< Cpz (= 2)| 7 e i . dg
B4 (0) (14 [g)N-2
N+2 1-N _ 1
sop P [ g ) e
Ba(3)\B1 (3) (14 [g|)N—2
m
N+2 1-N - 1
+Cu 2 (g —2)| 7 e ——dj
RN\(By(2)UBq(0)) (L4 g2
= .[2,1 + ]2,2 + ]273. (590)
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Note that for |y — z| > 1, we have |y — z| 2 e ¥~=l < o forany s > 0. If y € By(0), we

have |y — 2| > |Z] — |g| > d, then
N+42 ]. 1

1271 S C/,LT — — — d:lj
Ba0) MG — 2N (14 [g[)N—2

N+2 1 1
B g W
NdN Ba(0) (L+[g[)N—2

e

< . 5.91
= e o2

If § € By(2)\B1(Z2), we have 1+ |g| > |g| = |2+ 97— 2| > |Z| — | — Z| > d, thus

m
1 1 e
N2

Ly <Cu 2 — - dy < Ci——. (5.92)

Ba()\B (2) pN g — ZINH (1 + [g|)N -2 |2 V-2

If § € RV\(By(Z) U B4(0)), we have |§ — z| > d = 3|Z|, |[g| > d = %|Z|. We find that if
9] > 2|2, then | — 2 > |g] — 2] = 3l If 512] < [g] < 2|2], then [§ — 2 > d = 3|2| > 3]
Thus,
N4+2 1 1 ILL¥
Iy < Op’t dj<C (5.93)
RN\ (Ba(2)uBg(0)) KN |G — ZIV (1 + [g)N~ 2|V =2
From (5.90)-(5.93), we obtain that
e
L <(C——s.
= O
Combing this with (5.89), we get that (5.8).
(ii) First we suppose that |z| < §
1 M%
e = cf dy
By [ = 217 (2 4y 2) 75
- 1 1
= CMNQ6/ dy
By YN (L g+ 2)V2
N—6 1 1
<o [ i
By |91V (1 + g2
p=7 if N> 5
< C ,ulogl% if N =4; (5.94)
(2 if N=3
We now assume § < |z| < 1, we have
- 1 1
L=Cu = djj (5.95)

By (5 9= 2V (1 + )2
m
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with Z = 2. Let d = 1|2, then
m

(N\(Ba(2) U Bal0)))

For g € By(2), we have | — 2| <d, |g| > 2| —|Z2—9| >d, so

B(2) = Bu(2) U (B2(5) N Bi(0) U (B

1
w w

-5 ! L g
] ol —ay
Baz) [0 — 2N 72 (1 + |g[)N -2
< op el / L <ol (5.96)
= 2 — = N2y =L e .
dN 2 Bd(é) |y _ Z|N 2 dN 4

Moreover, if § € B4(0), then |g — 2| > |Z] — |g| > d. Thus

s 1 1 di
o = o - — ay
o |7 — 2N =2 (1 + [g|)V 2
N—6 1 1 N-6 1
< Cu 2 —— — dy<Cu 2 . 5.97
= VN /Bd@ (At ghy2@ =" " gy (5:97)

Finally, if § € B1(2)\(Ba(Z) U B4(0)), then we have |y — 2| > C|g|. As a result,

C ~N-6 1 1
H N v
By (O\BazuBao) [§ — 2V 72 (1 + [g))V =2
m

1 1
< CM2/ — — dﬂ
EN\Ba) 171V 2 (L + [g[)N—2

Bi1
m

dy

M7¥W if NV > 5;

< CQ plog iy if N =4; (5.98)
2 (1—|z|) if N =3.

Now we estimate I5(z) for |z| < 1. We assume that |y — z| > 2, then |y| > 1. Therefore

N-2

/ ly — 2| Tl A gy < outT (5.99)
RN\ Ba(2) (1® +[yl?) =
From (5.94) and (5.99), we get (5.9). (5.10) follows from (5.95)-(5.99). O

Set B a
Zu(2) = 0,Uu(2), Zu(2) = Ouwy(2),

then Z,(z) satisfies
~AZ, + Z, = N+2 ZZ in RY;
—R4T R R (5.100)
Z,(2) =0 as |z| = oo.
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We can write

Z,(2) = Zu(2) + 0, Ry (2),
then 0,R,(z) satisfies

—A(0,R,(2)) + 0, Ru(2) = —0,w,(2) in RY;
OuR,(2) =0 as |z] = oo.

We observe that | — d,w,(z)] < Cu~tw,, then we have
Corollary 5.17. One has

10,R.(2)] < Cu YR, (2)| forV z € RY.
Moreover, by the maximum principle, we have that
Zu <Cu T A7V, or |2 = R,

where R is a large positive number but fived in Lemma 5.5.

5.6.3 Expansion of energy

Finally, we compute the expansion of energy functional J(U).

Proof of Lemma 5.13.

1 1 .
JU) = [§/RN(|VU|2+U2)—p*+1/RN Ur ﬂ

+ 1 / Pl 1 / [pitlte| A / [att
p*+1 RN p*+1+5 RN q+1 RN

= J1+J2+J3,

k
where U = ) Uy, with U,, = w,, + R,,.

j=1
Step 1. We expand J;.

_ 1 2 2
5o Q/RN\VU|+U —

1 1 k p*+1
L (S ) (Z ) Al ()
k
1

= 53 [ (VULE+U)+ 5 [ (VU TV, +U,U,)
j=1 i,j=1, i>j

125

(5.101)

(5.102)

(5.103)

(5.104)



CHAPTER 5. BUBBLE TOWER SOLUTIONS

1 k p +1 k k
¢+1M(Z%J S eeey Y un,|e
j:l ‘:

i,7=1, i>j

k
1 *
L UpTdz - Z / UrU,,dz
-1 /R 1,j=1, i>j
= zk:[l/ wp*_Uu.dz— L / p+1dz] — Z / —wp Uu.dz
= 2 RN 1221 J p*+1 RN T J
1 k pr+l k
- Su,) uptewen 3 ogu
p +]‘/RN (]1 j=1 i,j=1, 1>]
= Jii+Jig+ Jis. (5.105)

Now we estimate each term Jy ;, i = 1,2, 3.

k
1 1 1
_ - *+1 - D* . p*+1
Jig = g [2 /RN wﬁj dz + 5 /RN wujRujdz e /RN wy, dz

k
— 1 *+1 1 * 1 *+1 *+1
_ Z{N/RNwﬁj dz+§/RNijRujdz—p*+1/RN(UZZ — Wl Mz,

7j=1
(5.106)
where
o 1
AR S I 5.107
Jor st =k [ e A
and from Lemma 5.3 and (5.27), if N > 5, for j € {1,--- , k}, then we have
[ @R G < [ @R, Gl
N+2 N+2 _N-6
 N-6 [ 2 Iuj2 B 2
< O * / 2j +C 2 9y M2 22Mdz
Lo g+ 121P) 2 ) (b +[=7) 2 L+ [2[2)
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N;2 N;Q
11 7
+C 2 : o\ N+2 JN—Q
21 (12 + |22) 72 |2
< C’,u?zo(s)

If N=4, for 1 < g < 3, we have
/RN wZZ(Z)RM(z)dz
1 1 1 1
Cp?log — / — ——dz+ Oy / log dz
I s (U 2P 3 s TH PP Rl

¥
1 1
C ———d
i LQ}G+MWVPZ
J

1
< Cpilog— =o(e).

Ky

IN

If N =3, for 3 <q <5, we get

1

3 3 >
wh (2)R j(z)dZSC’,u?/ —sz+0/ — L < Cuj =o(e).
/ SR P it (42 + 127)3 iz (12 + |2[2)3 |71 ’

As a result, if ¢ satisfies (5.4), then we have

k
> /R i wh Ry, dz = o(e). (5.108)
j=1

Moreover, by Lemma 5.15 and Lemma 5.3, a simple calculation yields that

/RN(qu Wy Jdz < C/RN [w”j

Thus from (5.106)-(5.109), we find

R.| +|R, [Pt dz = o(e). (5.109)

k p*H/ 1
= — ——d : A1
Ji1 NN o AT 2N z+o(e) (5.110)

Estimate of J; 5. From Lemma 5.3 and (5.27), for ¢ > j, we obtain
/ (U,]j: - wz:)ng‘ < / “wMi + Ry,
RN RN

S C/ (|wﬂi
RN

< [ Junl tu Ruldz 4 C [ Ju,
RN RN
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p* _ 0"
wlh‘

(wuj + |Rﬂj‘)dz

"R,

+ Ry,

p*) (wy, + Ry, )z

PRy |Ry,
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p*

Pdz + C/ IR,
RN

Ry, |dz = o(e).

+C/ Wy, | By,
RN
So

J172 = 0(8). (5111)

Next we estimate J 3.

Given § > 0 small but fixed. Let pq,---,u, be given by (5.26), and set g = Z—Ql and
tr+1 = 0. Define the following annulus

B(07 V Mlﬂz—l)\B(O, \/,U/i,ui—Q—1>7 for 7= 17 ce ’k‘
k
We observe that B(0,8) = |JI_, A;. On each A;, the leading term in > Uy, is Uy,
j=1

k p*+1 k k
—(p*+ 1)1z = Z/A <Z U/ﬂ) N ZUﬁ;H — (" +1) Z UIIZZU“J' dz

i=1 ij=1, i>j

k P+l k k
] () e e
j=1

RN\B(0,6) =1 ij=1, i>j
=l b (5.112)
where
k p*+1 N
" / (ZU ) _ZUﬁ;H—(p*%—l) Z Uﬁ:qu dz
RN\B(0,9) 7=l J=1 ij=1, i#j
k
T+ Y / UP' U, d.
L3=1 <Ipn\ B(0,6)
Since
k k
2 / UpUydz< ) / wh w,,dz
L=1, i<iga\ B(0.6) 5=1, i<\ B0.0)
k N2
< &) i / 1 RS
Ci’f';iq <’” BM\B(,5) (14 [212) 72 (G2 + 1) 7
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and
k P+l k k
[(Sn) -Xwrwen s e
RV\B(0,5) L MTL i=1 ij=1, i#j
k
< CY / Uz +1dz+CZ / UP U,,dz < Oy = ofe).

I=1gN\ B(0,6) LI=1RN\ B(0,6)

Thus
Ly = o(e). (5.113)

On the other hand, let us estimate each integral on A;, we have

p*+1
/ (Uul-i- > UH]> — Tt - Z Uzt — Z Uru,, | dz
A

J=1,5# J=Ly#l i,j=1, i>j

p*+1 k
-/ (U > ) - 3
1

J=1,j#l J=1,j#l
k k
-y / UP *Hdz — (p* + / [ > uru,-un > U,
j=1,j1 7 A A =1, i>j J=1,j#l
= L171+L172—|—L1,3. (5114)

We estimate Ly, for i = 1,2,3 in (5.114). We first estimate L ».

|Li2| = Z /Up+1dz< Z /wp“dz

Jj=1,j#l j=1,j#l
{o«;;;)’l) it j<i-1<l
O((4)%) if j>1+1>1

= o(e). (5.115)

Moreover,

k
1 .
- Lis = ury,, — U U
/Al[Z 5 3 U

ij—l 1>7 j= lj;él
_ p* p*
- / UP U, dz + / UP' U, d=
7=1, ]>lA i,j=1, z;él z>]A
= E / Up —wp U, dz — E /wp U, dz
Hj MG
j=1, ]>lA 7=1, ]>lAz
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k
Y [unve

ig=1, i#Ai>g )

k k
= — Z /(Ufjl —wh Jw,, dz — Z /wﬁlwujdz
i=1, 5>}, J=1 9>y,
k k
-y /Uﬁl Rydz+ ) /Ufji U,,dz
=1, 5>y, ij=1, iAli>j 3
= M1+M2+M3+M4. (5116)
First, we have
k
S D Dl (A T
Jj=1, j>lAl
k
< Z / ||wul + Rm|p - wﬁz ‘ wdeZ
j=15>17 A4
k
< Z / (wh ~twy, | Ry, | 4wy, | Ry, [P) dz = ofe). (5.117)
j=1,5>1 Ay
Moreover,
k
M, = Z /wf;wujdz
j=1 j>lAl
p*+1 J
= OéN (—) N+2 . N-2 dZ
J=1, 1 H (L4 12[7) 727 (5> + 127) 2

k [ 52 1 1
- (ot} oot / dz + o(1) (5.118)
jz§>l (m) [ N ey (14 ]22) 5 [V
Next, it holds
k k
~My= > /Ufj;RMdz < > / wh' R, |dz = o(e). (5.119)
j=1, j>1y, j=1, j>17 A
Finally, we have
k k
M, = Z /Uﬁ;qudz < Z /wﬁ:wﬂjdz = o(e). (5.120)
ij=1, i#li>j ), ij=1, i#li>j ),
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In fact, if ¢ > 7,

re =n
/ ww, = ot / Ki H;
e (2 + |25 (12 + |21)7
A VAT <[/ < T
N—-2

B “N(Z_) / <1+|1|> (L (i >1| o

o (o
VI Z+IS|Z‘S\/1 1—1
K K

N
N-2 /-Ll,ul—1>7 fi<l—1 :
. 2 _— I 7 < {;
co(myTit)
1 (Ji———ﬁ—) i i>l41>1
Hipr—1 HIpI41 - ’
— ofe). (5.121)

Thus, by (5.116)-(5.120) and (5.27), we obtain

N—

(p* + 1)e (A[T) 5 o *4+1 fR o )N” E IN sdz + o(¢)
Lis = ifl=1,-- k-1 (5122
o(e) if = k.

Now we estimate L;; in (5.114). By the mean value theorem, for some ¢ € [0, 1], we have

k p*+1
= (e Sn) cme e ©
Ay

J=1,j#l J=1j#l

e (e u) 7 (50)

J=1,j#l J=1,j#l

IA
Q
—
g
=%,

I
S
= N
+
Q
P
g
‘E’U
gH
= N

VAN
Q
Il
: El
*
Sy
S
IS
S
RS
~
‘d*
VR
}\
S
E5,
+
-
~~
v*‘ H

k
+CZ
1,

i.j=1, i.j
= o(e). (5.123)
Therefore, by (5.112)-(5.115), (5.122) and (5.123), we have
k—1 N-2
AM) N / 1 1
Jizg=—¢ ak dz + o(e). 5.124
v = ( Ay U Se (1 [22) N © o120
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From (5.105), (5.110), (5.111) and (5.124), we get

- g
ho= oy [
A\ T 1 1
I+1 p*+1/ d
—€ z +o(e). (5.125)
— ( ) N e (1+|2[2)"2" |2V 2
Step 2. We estimate Js.
The Taylor expansion gives that
Jy = 1 Up*‘*‘l_;/ [P Hite
p*+1 Jon P+ 1+e Jon
1 . 1 1 «
= urtt - €+08)/ UP (14 elogU + o(s
p*+1/RN (p*+1 (p* +1)? ) RN ( : )
1 * 1 *
= | ——— UP“——/ UP" o U}—i—oe, 5.126
[(p*ﬂ)? /RN P 1 Jan BU| +ote) (5.126)
where
. - 1
Urtt =k p“/ — , 5.127
& Vo T 0420
and
k k Pl k
[ = [ () (3o
RN =1 YA\ j=1 j=1
k k Pl k
S () e ()
=1 YA | \j=1 j=1
k P+l k
- (Z ww) log (Z ww)
j=1 j=1
+/ UP" T logU := Dy + Dy + Ds. (5.128)
RN\ B(0,5)
Since
p*+1 k
-y (W > ) (o 3 )
J=1,j#l J=1,j#l
N—2 p*+1

p* 1 N-2 M
+1 2 J
E ,u / —+M Y N—=2
a\ (L4250 2 anp N2
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_N-=2 1 N=2
xlog |awm 7 | ————xmtm’ Y QMJ—QM dz
(L+]E£[?) it (13 + 2]2) 2
k k =
_ L 7 Ky
" I+ A (i + 2]
=t PEL < |z)<, /2L e :
127 - K
_N-—2 1 N—2 i M;VT_Q
xlog OZN[LZ 2 T‘I—MIQ Z 2 2 R dz
(1+[22)2 j=1,j#l (Mj + uilz?) 2

. 1 an
+kak +1/ log dz + O(e|loge|).
N e TP By i T OBl

By the mean value theorem, we have

>/ (S

Moreover,

k

Dy <C w? T log(w,,. + w,,)dz = O(e|logel).
1% Hj 1223
i1 JRN\BOS) i=1,i#j

Thus from (5.126)-(5.131) we get
J =
T +1 / 1+| DR
L =
~ log —
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e d log A;
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1 —1 2
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(

Step 3. Let us estimate Js.

k q+1
<UM+ > UH].) U = (g+ 1)U Z Uy,

J=Lj#l

p*+1

(5.129)
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+1
o] (20
AT RV\B(0.5) \§

k
+/\Z/ UL + XNg+1) Z/
1=1 YA
= J31+ 32+ J33+ J3a

By the mean value theorem, for some ¢ € [0, 1], we have

k q—1 k 2
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N-—-2

2 N— N
< (ﬂ> M;TQ(HTHOZ?VH / ;N—Zdz‘ (5.136)
M (14 |2|2)7= ¢
[z =
Nenme
For i # [, we have
Cwes v (BT if i<l—1<l;
/ wit < Oy, R Mo o wa L (5.137)
A (W)Qq 1f12l+1>l
From (5.133)-(5.137), (5.4) and (5.27), we get J31 = o(e).
Moreover,
k k
Jap = AZ/ wit 4+ )\Z/ (UL — wtth),
=174 1=1 74
Since by (5.27), we have
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and From Lemma 5.15 and Lemma 5.3, we can easily check that
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Ay Ay
So we find
T e ! d 5.138
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RN

From (5.135) and (5.136), we have
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Finally,
q+1 k
J374 = / U, S C / U)qJ,rle
RN\ B(0,5) Z = JZI RN\B(0,5)
N+2—(N—2)q +o0 rpN-1
< C 2 dr = .
= Z“J /f (14 r2) 5D r=ole)
J
Thus we get

N+2— (N 2)q )\

1
J3 = —eA / — dz + o(e).
RN

From (5.104), (5.125), (5.132) and (5.139), we obtain (5.81) holds.
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