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SALOMÉ MARTÍNEZ SALAZAR

SANTIAGO DE CHILE
DICIEMBRE 2013



Resumen

Esta tesis contiene cinco caṕıtulos. En el primer caṕıtulo, presentamos algunas motiva-
ciones de los problemas que consideramos en los siguientes cuatro caṕıtulos. En particular,
describimos algunos resultados conocidos para el problema Gelfand, ecuación y sistema de
Lane-Emden, y el problema clásico de Brézis y Nirenberg, y enunciamos los principales re-
sultados de esta tesis.

En el Caṕıtulo 2, estamos interesados en la estructura de las soluciones al problema de
tipo Gelfand {

−∆u = λ(eu − 1), u > 0 en B;

u = 0 en ∂B,

donde B es la bola de radio 1 en Rn, N ≥ 3 y λ > 0 es un parámetro. Establecemos
multiplicidad infinita de soluciones regulares para 3 ≤ N ≤ 9 y un valor particular de λ, y
obtenemos una cota para el ı́ndice de Morse y el número de soluciones cuando N ≥ 10.

El Caṕıtulo 3 está dedicado a estudiar soluciones positivas radialmente simétricas estables
del sistema de Lane-Emden {

−∆u = vp, u > 0 en RN ,

−∆v = uq, v > 0 en RN ,

donde N ≥ 1 y p ≥ q ≥ 1. Se obtiene una nueva curva cŕıtica que describe de manera óptima
la existencia de este tipo de soluciones.

En el Caṕıtulo 4 analizamos la multiplicidad de soluciones para el siguiente problema{
−∆u = up + λuq, u > 0 en Ω;

u = 0 en ∂Ω,

donde Ω es un dominio suave y acotado en R3, λ > 0, p = 5 − ε, ε > 0 y 1 < q < 3. En
particular, demostrar que si 2 < q < 3, para λ > 0 suficientemente grande, ε > 0 pequeño,
el problema tiene al menos tres soluciones.

En el último caṕıtulo, utilizando el procedimiento de reducción de Lyapunov-Schmidt,
construimos soluciones tipo torre de burbuja de la ecuación eĺıptica ligeramente supercŕıtica{

−∆u+ u = up + λuq, u > 0 en RN ;

u(z) → 0 cuando |z| → ∞,
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donde p = p∗ + ε, con p∗ = N+2
N−2

, 1 < q < N+2
N−2

si N ≥ 4, 3 < q < 5 si N = 3, λ > 0 y ε es un
parámetro positivo.
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Summary

This thesis contains five chapters. In the first chapter, we introduce some motivations
for the problems which we consider in the following four chapters. In particular, we mention
some known results for the Gelfand problem, Lane-Emden equation and system, the classical
Brézis and Nirenberg problem and so on. We also state the main results in this thesis.

In Chapter 2, we are interested in the structure of solutions to the Gelfand-type problem{
−∆u = λ(eu − 1), u > 0 in B;

u = 0 on ∂B,

where B is the unit ball in RN , N ≥ 3 and λ > 0 is a parameter. We establish infinite
multiplicity of regular solutions for 3 ≤ N ≤ 9 and some λ, and we obtain a bound for the
Morse index and the number of solutions when N ≥ 10.

Chapter 3 is devoted to study stable positive radially symmetric solutions of the Lane-
Emden system {

−∆u = vp, u > 0 in RN ,

−∆v = uq, v > 0 in RN ,

where N ≥ 1 and p ≥ q ≥ 1. We obtain a new critical curve that optimally describes
existence of such solutions.

In Chapter 4, we are concerned with multiplicity of solutions to the following Dirichlet
problem {

−∆u = up + λuq, u > 0 in Ω;

u = 0 on ∂Ω,

where Ω is a bounded and smooth domain in R3, λ > 0, p = 5− ε, ε > 0 and 1 < q < 3. In
particular, we prove that if 2 < q < 3, for λ > 0 sufficiently large, ε > 0 small enough, then
the problem has at least three solutions.

In the last chapter, using Lyapunov-Schmidt reduction procedure, we construct bubble-
tower solutions to slightly supercritical elliptic equation{

−∆u+ u = up + λuq, u > 0 in RN ;

u(z) → 0 as |z| → ∞,
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where p = p∗ + ε, with p∗ = N+2
N−2

, 1 < q < N+2
N−2

if N ≥ 4, 3 < q < 5 if N = 3, λ > 0, and ε is
a positive parameter.
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Chapter 1

Introduction

In this thesis, we investigate multiplicity phenomenon and Morse index of solutions for
some elliptic equations and a Liouville-type theorem for stable radial solutions of the Lane-
Emden system. In Chapter 2 , we are interested in the structure of solutions to a Gelfand-
type problem, we establish multiplicity of solutions and analyse the Morse index of solutions.
In the third chapter, we obtain a new critical curve that optimally describes existence of
radially symmetric stable solutions for the Lane-Emden system in RN . Using Lyapunov-
Schmidt method, we get multiplicity of solutions to elliptic equations with mixed Sobolev
growth in the last two chapters. In this chapter, we introduce briefly these problems.

1.1 A Gelfand-type problem

Consider the following elliptic boundary value problem{
−∆u = λf(u) in Ω;

u = 0 on ∂Ω,
(1.1)

where Ω is a smooth bounded domain in RN , λ > 0 is a parameter and the nonlinearity
f : [0,+∞) → R is a C1, increasing, convex function satisfying

f(0) > 0, (1.2)

and f is superlinear as s→ ∞ in the following sense

lim
s→∞

f(s)

s
= ∞. (1.3)

Typical examples are f(u) = eu and f(u) = (1 + u)p with p > 1.

Existence, uniqueness and multiplicity of positive solutions to problem (1.1) in terms of
the parameter λ and the domain Ω have brought a lot of attention in the past decades, see
for example [13, 15, 34, 51] et al. and references therein.
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CHAPTER 1. INTRODUCTION

We note that 0 is a subsolution to problem (1.1) for every λ > 0. On the other hand, for
λ > 0 small, let ζ solve {

−∆ζ = 1 in Ω;

ζ = 0 on ∂Ω,

then
−△ζ ≥ λf(ζ)

provided λ ≤ inf
x∈Ω

1
f(ζ(x))

. So ζ ≥ 0 is a supersolution. Then by the method of sub and

supersolutions, we obtain there exists a solution to problem (1.1) for λ > 0 small.

Moreover, there is no classical solution if λ > 0 is large. In fact, assume ϕ1 is the first
eigenfunction of −△ with Dirichlet boundary condition, i.e. ϕ1 > 0 satisfies{

−∆ϕ1 = µ1ϕ1 in Ω;

ϕ1 = 0 on ∂Ω,

where µ1 is the first eigenvalue of −△. Multiplying (1.1) by ϕ1 and integrating by parts over
Ω, we get

µ1

∫
Ω

uϕ1 = λ

∫
Ω

f(u)ϕ1.

By the hypotheses on f , there exists c > 0 such that f(u) ≥ cu for all u ≥ 0. Then

µ1

∫
Ω

uϕ1 ≥ cλ

∫
Ω

uϕ1.

Thus
λ ≤ µ1

c
.

Define
λ∗ = sup{λ > 0 : such that (1.1) has a classical solution},

thus λ∗ ∈ (0,+∞). We recall the following properties for problem (1.1), we refer to see
[13, 15, 28, 31, 66, 75].

Proposition 1.1. Assume N ≥ 1, then there exists 0 < λ∗(N,Ω, f) < +∞ such that

• for 0 < λ < λ∗, (1.1) has the minimal solution uλ ∈ C2(Ω̄);

• for λ > λ∗, (1.1) has no solution (even in the weak sense).

Remark 1.2. The minimal solution uλ is in the sense that for any solution u of (1.1), we
have uλ ≤ u.

In addition, for each x ∈ Ω, the mapping λ 7→ uλ is increasing in (0, λ∗), this allows
one define u∗ := limλ→λ∗ uλ. We call u∗ the extremal solution of (1.1) and λ∗ the extremal
parameter. Furthermore, H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa [13] proved
that

2



CHAPTER 1. INTRODUCTION

Proposition 1.3. [13] u∗ = limλ→λ∗ uλ is a weak solution of (1.1) for λ = λ∗ in the following
sense.

Definition 1.4. A weak solution of problem (1.1) is a function u ∈ L1(Ω), u ≥ 0, such that

f(u)δ(x) ∈ L1(Ω),

where δ(x) is the distance function with respect to the boundary,

δ(x) = dist(x, ∂Ω),

and

−
∫
Ω

u△φdx = λ

∫
Ω

f(u)φdx = 0 for ∀ φ ∈ C2
0(Ω̄).

It is natural to ask what happens to the solution when λ = λ∗. Before considering this
question, we give another characterization of the minimal solution uλ, i.e. its stability.

Definition 1.5. Let f ∈ C1(R) and u ∈ C2(Ω) be a solution to (1.1),

(i) We say that u is stable if

Qu(φ) :=

∫
Ω

(
|∇φ|2 − λf ′(u)φ2

)
dx ≥ 0 for ∀ φ ∈ C∞

0 (Ω).

(ii) We say that u has Morse index K if K ≥ 1 is the maximal dimension of a subspace
XK of C∞

0 (Ω) such that Qu(φ) < 0 for any φ ∈ XK\{0}. We write K = m(u).

Remark 1.6. If u is stable, we write m(u) = 0.

Many authors are interested in the regularity of the extremal solution u∗, which maybe
bounded or singular, depending on the situation. The most well-known cases are exponential
and power-type nonlinearities, see for instance [15, 31, 73, 84].

• For f(u) = eu, if N ≤ 9, then the extremal solution u∗ ∈ L∞(Ω). If N ≥ 10 and
Ω = B1(0) is the unit ball in RN , the extremal solution u∗(x) = −2 log |x| is singular.

• For f(u) = (1 + u)p with p > 1, if N < 2 + 4p
p−1

+ 4
√

p
p−1

, then u∗ is smooth, and when

N ≥ 2 + 4p
p−1

+ 4
√

p
p−1

, Ω = B1(0), u
∗(x) = |x|−

2
p−1 − 1 is the extremal solution, which is

unbounded.

Let us recall some related results for the exponential and power-type nonlinearities in
(1.1). We first study the following classical Gelfand problem{

−∆u = λeu in Ω;

u = 0 on ∂Ω,
(1.4)

3



CHAPTER 1. INTRODUCTION

where Ω is a bounded domain in RN(N ≥ 1) with the boundary ∂Ω, and λ > 0 is a
real parameter. When Ω = B1(0) is a unit ball in RN , by the classical result of Gidas-
Ni-Nirenberg [67], all smooth solutions of (1.4) are radially symmetric. For N = 1, this
problem was first considered by Liouville [79] and the author found an explicit solution
in 1853. For N = 2, Bratu [12] also found an explicit solution to (1.4) in 1914. When
N = 3, numerical progress for (1.4) was made by Frank-Kamenetshii [62] in his development
of thermal explosion theory. Further progress for N = 3 was made by Chandrasekhar [23].
Building upon Frank-Kamenetshii’s work, in dimension 3, Gelfand [66] used the Emden’s
transformation to prove the existence of λ for which (1.4) has infinitely many nontrivial
solutions. Joseph and Lundgren [73] completely characterized the solution structure of (1.4)
for all dimensions via phase plane analysis in 1973. We also refer to see the survey of J.
Dávila [34] and the book of L. Dupaigne [51].

Proposition 1.7. [73] Let Ω be a unit ball in RN , N ≥ 1. Then

(a) If N = 1, 2, then there exists λ∗ > 0 such that for 0 < λ < λ∗, there are exactly two
solutions to (1.4), one of them is the minimal solution uλ. The other one, denote Uλ, has
Morse index 1.

(b) If 3 ≤ N ≤ 9, then λ∗ > 2(N − 2). For 0 < λ < λ∗, λ ̸= 2(N − 2), (1.4) has finitely
many solutions; for λ = 2(N−2), (1.4) has infinitely many solutions; for λ close to 2(N−2),
(1.4) has a large number of solutions that converge to −2 log |x|.

(c) If N ≥ 10, then λ∗ = 2(N − 2) and u∗(x) = −2 log |x|. Moreover (1.4) has a unique
minimal solution uλ for each λ ∈ (0, λ∗).

We summarize these results in Figure 1, which plot the maximum of u against the param-
eter λ.

Remark 1.8. Thanks to the following Hardy’s inequality, the function u∗(x) = −2 log |x| is
a stable weak solution to (1.4) for λ = λ∗ = 2(N − 2) if and only if N ≥ 10.

Proposition 1.9. (Hardy’s inequality) Let N ≥ 3. Then for all φ ∈ C1
c (RN),

(N − 2)2

4

∫
RN

φ2

|x|2
dx ≤

∫
RN

|∇φ|2dx. (1.5)

When nonlinearity f(u) is power-type in (1.1), the problem becomes{
−∆u = λ(1 + u)p, u > 0 in Ω;

u = 0 on ∂Ω,
(1.6)

with p > 1. When the domain Ω is a unit ball in RN (N ≥ 3), Joseph and Lundgren’s
results[73] also apply to (1.6). In order to state these results, we introduce the following
notations. Denote the critical Sobolev exponent by

pS =

{
+∞ if N ≤ 2;

N+2
N−2

if N ≥ 3,
(1.7)

4



CHAPTER 1. INTRODUCTION

Figure 1: Bifurcation diagrams for positive radial solutions of the Gelfand problem.

we shall refer to the cases p < pS, p = pS, or p > pS as to Sobolev subcritical, critical, or
supercritical respectively.

Define

pJL =

{∞ if 2 ≤ N ≤ 10;

(N−2)2−4N+8
√
N−1

(N−2)(N−10)
if N ≥ 11,

(1.8)

which is called Joseph-Lundgren exponent introduced in [73]. Note that the exponent pJL is
larger than the classical Sobolev critical exponent pS.

Proposition 1.10. [73] Let Ω be a unit ball in RN , N ≥ 3, p > 1. Then

(a) If 1 < p ≤ pS, then there exists λ∗ > 0 such that there are exactly two solutions to
(1.6) for any 0 < λ < λ∗, while for λ = λ∗ there is a unique solution, which is classical.

(b) If pS < p < pJL, then u∗ is bounded and λ∗ > λp, where λp = 2
p−1

(N − 2p
p−1

). For
λ = λp there are infinitely many solutions; for λ close to λp, there are a large number of
solutions.

(c) If p ≥ pJL, then λ∗ = λp and u∗(x) = |x|−
2

p−1 − 1. Moreover (1.6) has a unique
minimal solution uλ for each λ ∈ (0, λ∗).

Remark 1.11. (i) The same bifurcation diagrams as in Figure 1 are true for problem (1.6)
when Ω is the unit ball in RN and the three cases correspond to 1 < p ≤ pS, pS < p < pJL
and p ≥ pJL respectively.

(ii) In the supercritical case, the bifurcation diagrams of (1.6) are completely different for
p < pJL and p ≥ pJL.

(iii) Hardy’s inequality (1.5) implies that u∗(x) = |x|−
2

p−1 − 1 is a stable weak solution of
(1.6) for λ = λp =

2
p−1

(N − 2p
p−1

) if and only if p ≥ pJL.

Applying implicit function theorem, one can establish a local solution curve (λ, u) ∈
[0,∞)× C(Ω) to (1.4) and (1.6), which stems from (0, 0). By Propositions 1.7 and 1.10, we

5



CHAPTER 1. INTRODUCTION

note that the exponential and power-type nonlinearities for problem (1.1) in the unit ball of
RN have similar multiplicity phenomena. A related problem with (1.6) is{

−∆u = up + λu, u > 0 in B;

u = 0 on ∂B,
(1.9)

where p > 1 and λ > 0 is a parameter and B is the unit ball in RN with N ≥ 3. We
observe that the nonlinearity f(0) ≡ 0 for any λ > 0, which does not satisfy condition (1.2).
According to classical bifurcation theory [32], the point (µ1, 0) is a bifurcation point from
which emanates an unbounded branch C of solutions of (1.9), where µ1 is the first eigenvalue
of the negative Laplacian operator under Dirichlet boundary condition in B. Multiplying
(1.9) by the first eigenfunction and integrating by parts, we get for any p, (1.9) has no
solution for λ ≥ µ1, even when B is replaced by a general bounded smooth domain Ω.

For the subcritical case, i.e. p < pS, there is a positive classical solution of (1.9) for
λ < µ1 by a standard constrained minimization procedure involving compactness of the
Sobolev embedding. More precisely, consider the minimizing of the functional

Eλ(u) =

∫
B

(|∇u|2 − λu2)dx

constrained on the manifold

M =

{
u ∈ H1

0 (B) :

∫
B

|u|p+1dx = 1

}
.

Using the embedding H1
0 (B) ↩→ Lp+1(B) is continuous and compact for p < pS(N ≥ 3), the

infimum is achieved.

For the critical case, i.e. p = pS, Brézis and Nirenberg [14] made great contributions
to this case. Since the Sobolev embedding H1

0 (B) ↩→ Lp+1(B) loses compactness when
p ≥ pS, problem (1.9) becomes more difficult and delicate. Using the Pohozaev’s identity
[99], problem (1.9) has no solutions for λ ≤ 0 or λ ≥ µ1 whenever p ≥ pS. Brézis and
Nirenberg [14] established the following results:

• when N ≥ 4, problem (1.9) has a solution for every 0 < λ < µ1;

• when N = 3, problem (1.9) has a solution only for 1
4
µ1 < λ < µ1.

For the supercritical case, i.e. p > pS, Budd and Norbury [16] derived formally qualitative
properties of the bifurcation branch of solutions to (1.9). In particular, formal asymptotics
and numerical computations suggest that before reaching λ = 0, the curve turns right and
then oscillates infinitely many times in the form of an exponentially damped sinusoidal along
a line λ = λ∗. Merle and Peletier [81] proved that there is a unique value λ = λ∗ > 0 such
that there exists a singular solution u∗ to (1.9). Moreover,

u∗(r) = A(p,N)r−
2

p−1 [1−B(p,N)r2 + o(r2)] as r → 0,

6



CHAPTER 1. INTRODUCTION

where

A(p,N) =

[
2

p− 1

(
N − 2− 2

p− 1

)] 1
p−1

, B(p,N) = 4λ∗

(
N − 1− 3

p− 1

)−1

.

Merle, Peletier and Serrin [82] also studied the asymptotic behavior of the positive solutions
(λp, up) as p → ∞. Dolbeault and Flores [49], using geometric theory of dynamical system,
established the numerical computations in [16]. They proved that if

N ≥ 11 and pS < p < pJL or N ≤ 10, (1.10)

then there is a unique number λ∗ > 0, such that for λ close to λ∗, a large number of classical
radial solutions of (1.9) exist. In particular, there are infinitely many classical radial solutions
for λ = λ∗. See the bifurcation diagrams for positive solutions of (1.9) in Figure 2. Moreover,
in this paper, the authors also considered problem (1.6) when the power sp is perturbed by
a lower order term. More precisely, they established a similar assertion for the following
problem {

−∆u = λ((1 + u)p + (1 + u)q), u > 0 in B;

u = 0 on ∂B,
(1.11)

where 1 < q < p and p satisfies (1.10)

Recently, Guo and Wei [71] studied problem (1.9) further. They found the structure of
the branch C changed for

p ≥ pJL and pS < p < pJL.

The authors established the following results:

• for pS < p < pJL, C turns infinitely many times around λ∗ ∈ (0, µ1);

• for N ≥ 11 and p ≥ pJL, all solutions (regular or singular) have finite Morse index;

• for N ≥ 12 and p > pJL sufficiently large, all solutions (regular or singular) have exactly
Morse index one.

Motivated from above results, it is natural to ask: is there similar multiplicity phenomena
involving the exponential term in the nonlinearity? The answer is positive.

Chapter 2 is devoted to study the structure of solutions to the following problem{
−∆u = λ(eu − 1), u > 0 in B;

u = 0 on ∂B,
(1.12)

where B is the unit ball in RN , N ≥ 3 and λ > 0 is a parameter.

Smooth solutions to (1.12) are radially symmetric and decreasing by the classical result
of Gidas, Ni and Nirenberg [67]. We observe that f(0) = 0, which does not satisfy condition
(1.2). Note that u = 0 is a trivial solution to (1.12) for any λ > 0. According to classical
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CHAPTER 1. INTRODUCTION

Figure 2: Bifurcation diagrams for positive solutions of (1.9) in the unit ball of RN .

bifurcation theory [32], the point (µ1, 0) is a bifurcation point from which emanates an
unbounded branch C of solutions of (1.12), where µ1 is the first eigenvalue of the negative
Laplacian operator under Dirichlet boundary condition in B.

We get multiplicity of regular radial solutions to problem (1.12) for 3 ≤ N ≤ 9.

Theorem 1.12. If 3 ≤ N ≤ 9, then there exists a unique λ∗ such that problem (1.12) has
infinitely many regular radial solutions for λ = λ∗. Moreover λ ̸= λ∗ but close to λ∗, there is
a large number of regular radial solutions for (1.12).

Multiplicity results were obtained by using geometric theory of dynamical systems in
three-dimensional phase space, which was applied by Bamon, del Pino, and Flores [8] to
study the following problem,{

−△u = up + uq in RN ;

0 < u(x) → 0 as |x| → ∞,
(1.13)

where p and q are subcritical and supercritical respectively, namely

1 < p < pS < q. (1.14)

By the result of Zou [119], all the ground states to (1.13) are radially symmetric around some
point for p and q satisfying (1.14). Thus it can be written as an ODE equation{

−u′′ − N−1
r
u′ = up+ + uq+ r > 0;

u′(0) = 0, 0 < u(r) → 0 as r → ∞,
(1.15)

8
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where u+ = max{u, 0}. A positive solution u(r) of (1.15) in (0,∞) is said to have slow decay
if

u(r) = Cr−
2

p−1 + o(r−
2

p−1 ) as r → ∞,

for some positive constant C. u(r) is said to have fast decay if

u(r) = O(r−(N−2)) as r → ∞.

Thus u(r) is said to be a radial ground state of (1.13) if it is finite up to r = 0 with u′(0) = 0.
The first result of existence of radial ground states of (1.13) was given by Lin and Ni in [78].
They found if p and q satisfy (1.14) and q = 2p− 1, then there is an explicit solution of the

form u(r) = ( A
B+r2

)
1

p−1 , where A,B are positive constants depending on p and N . It is a
ground state of slow decay.

Problem (1.15) is equivalent to a three dimensional autonomous first order system after
the classical Emden-Fowler transformation, then a ground state with fast decay corresponds
to a heteroclinic orbit connecting two stationary points of the system with a two-dimensional
unstable manifold and a two-dimensional stable manifold respectively. Using phase-space
analysis, Bamon, del Pino, and Flores [8] proved that for q > pS is fixed and p approaches pS
from below, then problem (1.13) has a large number of radial ground states with fast decay.
A similar fact holds for N

N−2
< p < pS fixed and q approaches pS. Moreover, if q is fixed and

p close enough to N
N−2

, then no solutions exist.

It is also worth mentioning the case q = 2p− 1 and the range of p is further restricted to

N + 2
√
N − 1

N − 4 + 2
√
N − 1

< p. (1.16)

Flores [59] showed that not only Lin and Ni’s solution exists, but also infinitely many solutions
with fast decay. In addition, if N

N−2
< p < pS < q, p satisfies (1.16), and there is a slow decay

radial ground state of (1.13), then there are infinitely many radial ground states with fast
decay.

This method was subsequently applied in [49, 59, 60]. There are some analogies between
the results and techniques of this work and [4, 5, 38, 40, 41] on fourth order problems involving
the exponential nonlinearity.

Although the question of multiplicity of solutions to (1.13) under restriction (1.14) has
been studied in the nearly sub-supercritical case with the help of geometric dynamical systems
tools, Campus [21], using Lyapunov-Schmidt procedure, proved that there exist a large finite
number of ground states of (1.13) with fast decay when N

N−2
< p < pS is fixed with N ≥ 3

and q lies above but close enough to the critical exponent pS, these solutions behave like
a superposition of “bubbles” of different blow-up orders centered at the origin. In the last
chapter, we are interested in multiplicity of solutions of the following problem{

−∆u+ u = up + λuq, u > 0 in RN ;

u(z) → 0 as |z| → ∞,
(1.17)

9
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where p and q are in some ranges. λ is a positive parameter. We will introduce this problem
at the end of this chapter.

Let us come back to problem (1.12). Another interesting question is: what does happen
in high dimensions? Inspired by the result of Guo and Wei [71], we estimate the Morse index
of solution to (1.12) for N ≥ 10.

Theorem 1.13. Assume N ≥ 10. Then there exists K < ∞ such that the Morse index of
any radial solution (λ, uλ) of (1.12) (regular or singular) is bounded by K. The number of
intersections of any regular solution and the radial singular solution is uniformly bounded by
2K+1. Moreover, for each λ ∈ (λ0, µ1), the number of regular solutions to (1.12) is bounded
by (K + 1)2.

Remark 1.14. By Pohozaev’s identity, there exists λ0 > 0 such that classical solutions of
(1.12) can exist only for λ ∈ (λ0, µ1), where µ1 is the first eigenvalue of the negative Laplacian
operator under Dirichlet boundary condition in B.

1.2 Lane-Emden system

Consider the Lane-Emden system{
−∆u = vp, u > 0 in RN ,

−∆v = uq, v > 0 in RN ,
(1.18)

where N ≥ 1 and p ≥ q ≥ 1. This system arises in chemical, biological and physical studies,
and has been investigated by many authors, see for example, de Figueiredo-Felmer [42],
Mitidieri [85], Serrin and Zou [106] and Van der Vorst [114].

System (1.18) is a natural extension of the celebrated Lane-Emden equation

−∆u = up x ∈ RN , u > 0, N ≥ 3, p > 1. (1.19)

Problem (1.19) has been studied extensively. There has been much work done on existence
and nonexistence of positive classical solutions of (1.19), see for instance [19, 25, 69, 67]. B.
Gidas and J. Spruck [69] obtained the following beautiful result: the Lane-Emden equation
(1.19) has no positive solution if

1 < p < pS =
N + 2

N − 2
.

L. Caffarelli, B. Gidas and J. Spruck [19] established that if p = pS, up to rescaling and
translation, the positive solution is unique. It is known that the Sobolev exponent

pS =
N + 2

N − 2
,

10
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which is the dividing number for existence and non-existence of solutions of (1.19), that is,
equation (1.19) admits non-negative, non-trivial solutions if and only if p ≥ pS, see [69].

Moreover, Farina [55] proved Liouville-type results for C2 solutions of (1.19) belonging
to one of the following classes: stable solutions, finite Morse index solutions, solutions which
are stable outside a compact set, radial solutions and non-negative solutions. The author
got existence of a new critical exponent pJL. This new critical exponent is larger than the
classical Sobolev critical exponent. We state here one of results in [55]. The author obtained
that no nontrivial stable solution (also nonradial) exists if

N ≤ 10 or N ≥ 11 and 1 < p < pJL,

where pJL is the Joseph-Lundgren exponent. On the other hand, for

N ≥ 11 and every p ≥ pJL

(1.19) admits a positive smooth stable radial solution.

For the Lane-Emden system, concerning the question of existence and nonexistence of
entire solutions, it is expected that the role of the Sobolev exponent pS should be played by
the so-called Sobolev hyperbola. It has been conjectured, see for example De Figueiredo and
Felmer [42], that the hyperbola

1

p+ 1
+

1

q + 1
=
N − 2

N
, p, q > 0,

is the dividing curve between existence and nonexistence of solutions to (1.18). That is, there
is no positive classical solution of (1.18) if and only if

1

p+ 1
+

1

q + 1
>
N − 2

N
, (1.20)

This conjecture is supported by the results that there are no radial positive solutions to (1.18)
provided that p, q satisfy (1.20), see Mitidieri [86] for p, q > 1 and Serrin and Zou [107] for
p, q > 0. Moreover, system (1.18) admits positive radial classical solutions provided that

1

p+ 1
+

1

q + 1
≤ N − 2

N
, (1.21)

see Serrin and Zou [107]. This conjecture was proved for the radial case in all dimensions.
For non-radial solutions, in dimension N ≤ 2, the conjecture is a consequence of a result of
Mitidieri and Pohozaev [87]. Poláčik, Quittner and Souplet [100] proved that the conjecture
is true for N = 3. The conjecture was proved by Souplet [110] for N = 4. Moreover, some
partial results were also established for N ≥ 5, see for example [17, 26, 110].

Recently, Cowan [30] proved various Liouville-type theorems for positive stable solutions
of the Lane-Emden system and the fourth scalar equation. For example, the author showed
that the nonexistence of positive classical stable solutions (not necessary radial) to (1.18) for

11
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1 ≤ N ≤ 10 and p ≥ q ≥ 2. The author also examined nonexistence of positive classical
stable solutions of the fourth order equation, i.e. the case q = 1 in (1.18)

Question: is there a new dividing curve in the pq−plane for existence and
nonexistence of stable radially symmetric positive solution to the Lane-Emden
system?

In Chapter 3, we characterize the stability of radially symmetric solutions of the Lane-
Emden system (1.18). This gives a positive answer for above question. In order to state our
result, we introduce the definition of stable solution for system (1.18) and some notations.

Definition 1.15. A solution (u, v) to (1.18) is stable if there exists a positive supersolution
of the linearized system i.e. if there exists (ϕ, ψ) ∈ C2(RN)2 such that

−∆ϕ ≥ pvp−1ψ in RN ,

−∆ψ ≥ quq−1ϕ in RN ,

ϕ, ψ > 0 in RN .

Let us also note that if (1.21) holds, then

(us, vs) = (a|x|−α, b|x|−β), x ∈ RN \ {0} (1.22)

is a weak solution of (1.18) provided

α =
2(p+ 1)

pq − 1
, β =

2(q + 1)

pq − 1
(1.23)

and a = (ST p)
1

pq−1 , b = (SqT )
1

pq−1 , S = α(N − 2− α) , T = β(N − 2− β).

Theorem 1.16. Assume p ≥ q ≥ 1.

(i) If N ≥ 11 and (p, q) lies on or above the Joseph-Lundgren critical curve i.e.[(N − 2)2 − (α− β)2

4

]2
≥ pqαβ(N − 2− α)(N − 2− β), (1.24)

then any radially symmetric solution (u, v) of (1.18) is stable and satisfies

u < us and v < vs in RN \ {0},

where (us, vs) is the singular solution given by (1.22) and α, β are the scaling exponents given
by (1.23).

(ii) If N ≤ 10 or if N ≥ 11 and (1.24) fails, then there is no stable radially symmetric
solution of (1.18).

The above result states that the stability of a radial solution of the Lane-Emden system
is determined by the position of the exponents (p, q) with respect to a new critical curve,
which we call “Joseph and Lundgren”, since the exponent introduced by these authors in
[73] is the intersection of the curve with the diagonal p = q.

12
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1.3 Bubbling solutions for some elliptic equations

In Chapters 4 and 5, we use Lyapunov-Schmidt Reduction method to consider existence
and multiplicity of bubbling solutions to some asymptotic critical elliptic equations. First we
state this method, see also the book [24]. Then we introduce our main problems and results.

1.3.1 Lyapunov-Schmidt Reduction

Let X,Y be Banach space, and let Λ be a topological space. Assume that F : O×Λ → Y
is continuous, whereO ⊂ X is a neighborhood of x0. We assume that Fx(x0, λ0) is a Fredholm
operator, i.e.

(a) ImFx(x0, λ0) is closed in Y ,

(b) d = dimkerFx(x0, λ0) <∞,

(c) d∗ = codimImFx(x0, λ0) <∞.
Set

X1 = kerFx(x0, λ0), Y1 = ImFx(x0, λ0).

Since both dimX1 and codimY1 are finite, we have the direct sum decompositions:

X = X1 ⊕X2, Y = Y1 ⊕ Y2,

and the projection operator P : Y → Y1, for every x ∈ X, there exists a unique decomposi-
tion:

x = x1 + x2, xi ∈ Xi, i = 1, 2.

Thus

F (x, λ) = 0 ⇐⇒

{
PF (x1 + x2, λ) = 0,

(Id− P )F (x1 + x2, λ) = 0.

Now, PFx(x0, λ0) : X2 → Y1 is a surjection as well as an injection. According to the Banach
theorem, it has a bounded inverse. If we already have F (x0, λ0) = 0, then from the implicit
function theorem, we have a unique solution

u : V1 × V → V2

satisfying
PF (x1 + u(x1, λ), λ) = 0,

where V1 is a neighborhood of x1 in U ∩X1, V2 is a neighborhood of 0 in U ∩X2, and V is a
neighborhood of λ0.

It remains to solve the equation:

(Id− P )F (x1 + u(x1, λ), λ) = 0

13



CHAPTER 1. INTRODUCTION

on V1 × V . This is a nonlinear system of d variables and d∗ equations.

Above procedure is called Lyapunov-Schmidt reduction which reduces an infinite-dimensional
problem to a finite-dimensional system. This method has been used broadly by many math-
ematicians to construct bubbling solutions to elliptic equations, which was first developed
by Bahri and Coron in [7]. We refer to see the nice survey of del Pino and Musso [47], also
see[35, 43, 44, 45, 46, 48, 58, 64, 83, 89, 90, 91, 98, 104, 105, 116] et al. and references therein.
By bubbles we mean the functions

wµ(z) = αN
µ

N−2
2

(µ2 + |z|2)N−2
2

, with αN = (N(N − 2))
N−2

4 ,

where µ > 0, which are the unique positive solutions (except translations) of

−∆w = wp∗ in RN .

1.3.2 Multiplicity of solutions to asymptotic critical elliptic equa-
tions

In this subsection, first we are interested in the following semilinear elliptic boundary
value problem {

−∆u = up + λuq, u > 0 in Ω;

u = 0 on ∂Ω,
(1.25)

where Ω is a bounded and smooth domain in R3, λ > 0 and p > q.

Existence and multiplicity of solutions to (1.25) have been studied in many works for the
exponents p and q in different ranges. Ambrosetti, Brézis and Cerami [2], using the method
of sub and super solutions, established that for 0 < q < 1 and p > 1 arbitrary, there exists
Λ > 0 such that problem (1.25) has a minimal solution uλ for λ ∈ (0,Λ), and uλ is increasing
with respect to λ; for λ = Λ, problem (1.25) has at least one weak soltuion; for all λ > Λ,
problem (1.25) has no solution. Moreover, using variational tools, the authors [2] also showed
that if 0 < q < 1 < p ≤ 5, for all λ ∈ (0,Λ), problem (1.25) has a second solution.

Let us mention some related results of (1.25) for q = 1. Namely, (1.25) reduces to{
−∆u = up + λu, u > 0 in Ω;

u = 0 on ∂Ω.
(1.26)

In Section 1.1, we state some results of (1.26) when Ω is a until ball in RN with N ≥ 3.
Especially, we recall here some results for N = 3.

If 1 < p < 5, for 0 < λ < µ1, where µ1 is the first eigenvalue of −∆ under Dirichlet bound-
ary condition, a solution can be found by the standard constrained minimization procedure
thanks to compactness of Sobolev embedding H1

0 (Ω) ↩→ Lp+1(Ω).

14
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If p ≥ 5, this case is more delicate, since for p = 5 the embedding loses compactness while
for p > 5 Sobolev embedding fails. Pohozaev [99] proved that if Ω is strictly star-shaped,
then there is no solution of (1.26) if λ ≤ 0 and p ≥ 5. For p = 5, the great contribution to this
case was the pioneering work of Brézis and Nirenberg [14]. They obtained that (1.26) has a
solution if and only if λ ∈ (1

4
µ1, µ1) when Ω is a ball, where µ1 denotes the first eigenvalue of

−∆ under Dirichlet boundary condition on a ball. Moreover, the authors considered the case
q > 1: if 1 < q ≤ 3, there exists a solution if and only if λ > 0 is large enough. If 3 < q < 5,
(1.25) has a solution for every λ > 0. In addition, based on numerical computations, they
gave the following conjecture when Ω is a ball.

(a) If q = 3, there is some λ̃ such that

(i) for λ > λ̃, there is a unique solution of (1.25);

(ii) for λ ≤ λ̃, there is no solution of (1.25).

(b) If 1 < q < 3, there is some λ̃ such that

(i) for λ > λ̃, there are two solutions of (1.25);

(ii) for λ = λ̃, there is a unique solution of (1.25);

(iii) for λ < λ̃, there is no solution of (1.25).

Afterwards, Atkinson and Peletier [6] proved the nonuniqueness of solutions to (1.25)
conjectured by Brézis and Nirenberg for N = 3, p = 5 and 1 < q < 3. Not restricting to
integer values of N , they established for 2 < N < 4, p = N+2

N−2
and 1 < q < 6−N

N−2
, then

there exists some λ̃ > 0 such that (1.25) has at least two solutions for any λ > λ̃, and it
has no solution for λ < λ̃. Rey [103] provided another partial answer to above conjecture.
He obtained that for p = 5 and 2 < q < 3, λ > 0 large enough, problem (1.25) has at
least Cat(Ω) + 1 solutions, where Ω is any smooth and bounded domain in R3 and Cat(Ω)
denotes Ljusternik-Schnirelman (L-S, for short) category of Ω, see [3] for the definition of
L-S category. We put the bifurcation diagrams of positive solutions to problem (1.25) in the
unit ball of R3 in Figure 3.

Next, we are also interested in the elliptic equation{
−∆u+ u = up + λuq, u > 0 in RN ,

u(z) → 0 as |x| → ∞,
(1.27)

where N ≥ 3, λ > 0 and 1 < q < p. This problem arises in the study of standing waves of
a nonlinear Schrödinger equation with two power type nonlinearities, see for example Tao,
Visan and Zhang [113].

If p = q, equation (1.27) reduces to{
−∆u+ u = up, u > 0 in RN ,

u(z) → 0 as |x| → ∞,
(1.28)

after a suitable scaling.
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Figure 3: Bifurcation diagrams of positive solutions to problem (1.25) when p = 5− ε and Ω is the

unit ball in R3. The case q = 1 is given in Figure 2

Thanks to the classical result of Gidas, Ni and Nirenberg [68], solutions of (1.27) and
(1.28) are radially symmetric about some point, which we will assume is always the origin.

It is well known that problem (1.28) has a solution if and only if 1 < p < N+2
N−2

. Existence
was proved by Berestycki and Lions [10], while non-existence from the Pohozaev identity [99].
Uniqueness also holds and was fully settled by Kwong [76], after a series of contributions
[22, 80, 93, 94, 96, 97]. See also Felmer, Quaas, Tang and Yu [57] for further properties.

Concerning (1.27), the work of Berestycki and Lions [10] is still applicable if 1 < q < p <
N+2
N−2

, and one obtains existence of a solution. If p, q ≥ N+2
N−2

there is no solution, again from
the Pohozaev identity.

Recently, Dávila, del Pino and Guerra [35] proved that uniqueness does not hold in general
for (1.27), if 1 < q < p < N+2

N−2
. More precisely if N = 3, the authors obtained at least three

solutions to problem (1.27) if 1 < q < 3, λ > 0 is sufficiently large and fixed, and p < 5 is
close enough to 5.

Let us next mention some contributions to the question of existence for (1.27) when one
exponent is subcritical and other is critical or supercritical. If 1 < q < p = N+2

N−2
in (1.27),

using variational methods, Alves, de Morais Filho and Souto [1] proved:

• when N ≥ 4, there exists a nontrivial classical solution for all λ > 0 and 1 < q < N+2
N−2

;

• when N = 3, there exists a nontrivial classical solution for all λ > 0 and 3 < q < 5;
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• when N = 3, there exists a nontrivial classical solution for λ > 0 large enough and
1 < q ≤ 3.

Moreover, Ferrero and Gazzola [56] proved that for q < N+2
N−2

≤ p, there exists λ̄ > 0,

such that if λ > λ̄, then (1.27) has at least one solution, while for q < N+2
N−2

< p, there exists

0 < λ < λ̄ such that if λ < λ, then there is no solution.

An interesting problem is bubble-tower phenomena for a slightly supercritical Brézis and
Nirenberg problem. In the work of del Pino, Dolbeault and Musso [43], the authors found for
λ = o(1), depending on ε, a new phenomena happened: the presence of towers constituted
by superposition of bubbles of different blow-up orders for (1.26) in a ball when p = N−2

N+2
+ ε

with ε > 0, N ≥ 4. After that, these authors [44] established bubble-tower solutions to (1.26)
in a general bounded and smooth domain in R3. J. Campos [21] considered the existence of
bubble-tower solutions to a problem related to (1.27):{

−∆u = up
∗±ε + uq, u > 0 in RN ;

u(z) → 0 as |z| → ∞,
(1.29)

with N
N−2

< q < p∗ = N+2
N−2

, N ≥ 3. These solutions were obtained by Lyapunov-Schmidt
reduction procedure. We refer to see [21, 44, 46, 48, 64, 65, 83, 89, 91, 98] for bubble-tower
phenomena.

Motivated from above, the left question is whether there exist multiplicity of solutions to
problems (1.25) and (1.27). We will answer it in the last two chapters.

In Chapter 4, we will establish multiplicity of solutions to subcritical problem{
−∆u = u5−ε + λuq, u > 0 in Ω;

u = 0 on ∂Ω,
(1.30)

where Ω is a smooth bounded domain in R3, 1 < q < 3, λ > 0 and ε > 0 small enough.

In Chapter 5, we are concerned with multiplicity of solutions of (1.27), and for this we
take an asymptotic approach, that is, we consider{

−∆u+ u = up + λuq, u > 0 in RN ;

u(z) → 0 as |z| → ∞,
(1.31)

where p = p∗ + ε, with p∗ = N+2
N−2

, λ > 0 and ε > 0 are parameters, and q satisfies

1 < q <
N + 2

N − 2
if N ≥ 4; 3 < q < 5 if N = 3. (1.32)

The main results in Chapters 4 and 5 are as follows.

Theorem 1.17. Let 1 < q < 3, there exists λ0 > 0, depending on Ω, q, and ε0 > 0, such that
for any λ ≥ λ0, ε ∈ (0, ε0), problem (1.30) has at least two solutions.
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Theorem 1.18. Assume that 2 < q < 3. Then there exist λ̂ ≥ λ0 and δ0 > 0, such that for
any λ ≥ λ̂ satisfying

0 < ελ
2

3−q log λ < δ0, (1.33)

then for all sufficiently small ε > 0, problem (1.30) has at least three solutions.

Theorem 1.19. Let λ > 0 and let q satisfy (1.32). Given an integer k ≥ 1, then there exists
ε0 > 0 such that for any ε ∈ (0, ε0), there is a solution uε(z) of problem (1.31) of the form

uε(z) = (N(N − 2))
N−2

4

k∑
j=1

ε−[(j−1)+ 2
p∗−q

](Λ∗
j)

−N−2
2(

1 + ε−
4

N−2
[(j−1)+ 1

p∗−q
](Λ∗

j)
−2|z|2

)N−2
2

(1 + o(1)), (1.34)

where the constants Λ∗
j > 0, j = 1, 2, . . . , k, can be computed explicitly and depend on k,N, q.

The first solution in Theorem 1.17 is obtained by mountain pass theorem [102, Theorem
2.2]. Regarding ε > 0 as a small parameter, we use Lyapunov-Schmidt reduction procedure
to construct the second solution.

Basing on Theorem 1.17 which provides a mountain pass solution and a bubble solution
as ε > 0 is a small parameter. In order to prove Theorem 1.18, it is sufficient to show
that if (1.33) holds, then (1.30) has a third solution. This solution is also constructed by
Lyapunov-Schmidt reduction procedure by regarding λ > 0 as a large parameter. In the case
1 < q ≤ 2, it is also possible to find a third solution but the proof is more delicate and will
be addressed in future work.

The proof of Theorem 1.19 starts with a variation of the so-called Emden-Fowler trans-
formation, which reduces the problem of finding k-bubble solution to the problem of finding
a k-bump solution of a second-order ordinary differential equation in R. After a Lyapunov-
Schmidt reduction procedure, see for example [58, 83, 21], the problem becomes to find a
critical point of some functional depending on k real parameters.
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Chapter 2

Resonance phenomenon for a
Gelfand-type problem

2.1 Introduction

In this chapter, we consider the structure of the solution set of the boundary value problem{
−∆u = λ(eu − 1), u > 0 in B;

u = 0 on ∂B,
(2.1)

where B is the unit ball in RN , N ≥ 3 and λ > 0 is a parameter. Smooth solutions to (2.1)
are radially symmetric and decreasing by the classical result of Gidas, Ni and Nirenberg [67].

Problem (2.1) is related to the following Gelfand problem:{
−∆u = λeu, in B;

u = 0 on ∂B.
(2.2)

Barenblatt [66] and Joseph and Lundgren [73], using phase-plane analysis, gave a complete
description of the classical solutions to (2.2), which are again radially symmetric [67], see
Proposition 1.7 in Chapter 1.

Nagasaki and Suzuki [92] classified the solutions of (2.2) according to their Morse index. In
a few words, the family of regular solutions of (2.2) can be described as a curve (u(s), λ(s))
with s ∈ [0,∞), such that (u(s), λ(s)) → (0, 0) as s → 0 and (u(s), λ(s)) → (uσ, λσ) as
s→ ∞, where uσ(r) = −2 log(r), λσ = 2(N−2) is a singular solution of (2.2). In dimensions
3 ≤ N ≤ 9, λ(s) oscillates around 2(N − 2) as s→ ∞ and the Morse index of u(s) increases
by one in each oscillation. In dimensions N ≥ 10, λ(s) is monotone, u(s) is monotone and is
stable for each s.
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A problem analogous to (2.1) is{
−∆u = up + λu, u > 0 in B;

u = 0 on ∂B.
(2.3)

where p > 1 and λ > 0 is a parameter. According to classical bifurcation theory [32], the
point (µ1, 0) is a bifurcation point from which emanates an unbounded branch C of solutions
of (2.3), where µ1 is the first eigenvalue of the negative Laplacian operator under Dirichlet
boundary condition in B.

• If p < N+2
N−2

(N ≥ 3), for λ < µ1, there is a positive solution of (2.3) by a standard con-
strained minimization procedure involving compactness of the Sobolev embedding. Moreover,
by Pohozaev’s identity [99], problem (2.3) has no solutions for λ ≤ 0 whenever p ≥ N+2

N−2
.

• If p = N+2
N−2

, which is the classical Brezis-Nirenberg problem [14], problem (2.3) has a

solution for 0 < λ < µ1 if N ≥ 4, and for 1
4
µ1 < λ < µ1 if N = 3.

• If p > N+2
N−2

, Dolbeault and Flores found that if p > N+2
N−2

, and p < pJL or N ≤ 10, then
there is a unique number λ∗ > 0, such that for λ close to λ∗, a large number of classical
solutions of (2.3) exist. In particular, there are infinitely many classical solutions for λ = λ∗.
Recently, Guo and Wei in [71] showed that the structure of the branch C changes for

p ≥ pJL and
N + 2

N − 2
< p < pJL

where pJL is defined as in (1.8). Moreover, they established that for N+2
N−2

< p < pJL, C turns
infinitely many times around λ∗ ∈ (0, µ1). For p ≥ pJL, all solutions have a finite Morse
index, and for N ≥ 12 and p > pJL sufficiently large all solutions have exactly Morse index
one.

The aim of this chapter is to study the structure of solutions to problem (2.1). We start
with some general remarks. First, classical solutions of (2.1) can exist only for λ in some
interval.

Proposition 2.1. Let µ1 be the first eigenvalue of the −∆ under Dirichlet boundary condition
in B. Then there exists λ0 > 0, such that a necessary condition for existence of classical
solutions to problem (2.1) is λ ∈ (λ0, µ1).

See a proof in the Appendix. By classical bifurcation theory [24, 32] we have that (µ1, 0)
is a bifurcation point of solutions to (2.1). Both observations are also valid if we replace the
ball by a bounded smooth domain (star shaped in the case of Proposition 2.1).

We are interested also in weak solutions, allowing for possible singularities.

Definition 2.2. We say that u ∈ H1
0 (B) is a weak solution of (2.1) if eu ∈ L1(B) and∫

B

∇u∇φ = λ

∫
B

(eu − 1)φ for all φ ∈ C∞
0 (B). (2.4)
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We say that a weak solution u of (2.1) is regular (resp., singular) if u ∈ L∞(B) (resp.,
u /∈ L∞(B)).
We say that a radial weak solution u of (2.1) is weakly singular solution if it is singular and
lim
r→0

ru′(r) exists.

We first study singular solutions to (2.1).

Theorem 2.3. Assume N ≥ 3. Let λ > 0 and suppose that u ∈ C2(B \ {0}), u ≥ 0 is a
radial solution of

−∆u = λ(eu − 1) in B\{0}. (2.5)

Then either

a) u can be extended as a function in C∞(B) and (2.5) holds in B,
or

b) u is singular at r = 0 and satisfies

lim
r→0

(u(r) + 2 log r) = log
2(N − 2)

λ
,

lim
r→0

ru′(r) = −2.

As a consequence, u is a radial singular weak solution to (2.1) if and only if u is a weakly
singular solution.

Theorem 2.4. For N ≥ 3, there exists a unique λ∗ > 0, such that (2.1) admits a radial
singular solution for λ = λ∗, and the radial singular solution is unique.

By Theorem 2.3 the singular solution is weakly singular.

Next, we consider the question of multiplicity of solutions to (2.1).

Theorem 2.5. If 3 ≤ N ≤ 9, then problem (2.1) has infinitely many regular radial solutions
for λ = λ∗. For λ ̸= λ∗ but close to λ∗, there is a large number of regular radial solutions for
(2.1).

Let us recall the definition of the Morse index of solution to (2.1), see Definition 1.5.
Namely, for a weak solution (λ, u) of (2.1), we define the Morse index of u as the largest
dimension k of a subspace Y ⊂ C∞

c (B) such that

Qu(φ) =

∫
B

|∇φ|2 − λeuφ2 < 0 ∀ φ ∈ Y \ {0}.

If u is a regular solution this is the number of negative eigenvalues, counting multiplicity,
of the operator −∆ − λeu. By Theorem 3 of Dancer and Farina [33], if 3 ≤ N ≤ 9, for a
sequence of solutions (λn, uλn) to (2.1) with ∥un∥L∞(B) → ∞ as n → ∞, then the Morse
index of uλn goes to infinity as n→ ∞.
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Theorem 2.6. Assume N ≥ 10. Then there exists K < ∞ such that the Morse index of
any radial solution (λ, uλ) of (2.1)(regular or singular) is bounded by K. The number of
intersections of any regular solution and the radial singular solution is uniformly bounded by
2K + 1. Moreover, for each λ ∈ (λ0, µ1), the number of regular solutions to (2.1) is bounded
by (K + 1)2.

A natural conjecture for N ≥ 10, which is observed in numerical calculations, is that
the Morse index of any radial solution of (2.1) (regular or singular) is 1, the number of
intersections of any regular solution and the radial singular solution is 1, and that for each
λ ∈ (λ∗, µ1) there is a unique solution.

We use geometric theory of dynamical systems in three-dimensional phase space, which
was applied in [8], and subsequently in [49, 59, 60], to obtain multiplicity of solutions to
problem (2.1). There are some analogies between the results and techniques of this work and
[4, 5, 38, 40, 41] on fourth order problems involving the exponential nonlinearity.

In Section 2.2 we give some preliminaries. In Section 2.3 we prove Theorem 2.3, namely
that radial solutions either are regular or weakly singular. Theorem 2.4, which is about the
existence and uniqueness of a singular solution is proved in Section 2.4. In Section 2.5 we
prove Theorem 2.5 on multiplicity of solutions in dimensions 3 ≤ N ≤ 9. In Section 2.6 we
analyze the Morse index of solutions to problem (2.1), give the structure of the branch of
solutions to (2.1), and prove Theorem 2.6. Finally, we give the proof of Proposition 2.1 in
the Appendix.

2.2 Preliminary results

Let u satisfy (2.1) and make the change of variables

v(t) = u(r) with r = et, for t ∈ (−∞, 0). (2.6)

Then problem (2.1) becomes{−v′′(t) + (2−N)v′(t) = λe2t(ev(t) − 1), t ∈ (−∞, 0),

v(0) = 0, lim
t→−∞

e−tv′(t) = 0.
(2.7)

Define 
v1(t) =

λ
2(N−2)

ev(t)+2t,

v2(t) = v′(t),

v3(t) = λe2t.

(2.8)

We find that (v1, v2, v3) satisfies the following differential system
v′1 = v1(v2 + 2),

v′2 = −2(N − 2)v1 − (N − 2)v2 + v3,

v′3 = 2v3,

(2.9)
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with the condition

v3(0) = 2(N − 2)v1(0). (2.10)

System (2.9) has two stationary points

P1 = (0, 0, 0) and P2 = (1,−2, 0).

The linearization of (2.9) around P1 is given by X ′ =M1X, with

M1 =

 2 0 0
−2(N − 2) 2−N 1

0 0 2

 .
The eigenvalues of M1 are

ν̃1 = ν̃2 = 2, ν̃3 = 2−N.

Thus for N ≥ 3, P1 = (0, 0, 0) is a hyperbolic point, which has a 2-dimensional unstable
manifold W u(P1) and a 1-dimensional stable manifold W s(P1).

The linearization of (2.9) around P2 is given by X ′ =M2X, with

M2 =

 0 1 0
−2(N − 2) 2−N 1

0 0 2

 . (2.11)

The eigenvalues of M2 are given by

ν1 = 2, ν2,3 =
(2−N)±

√
(N − 2)(N − 10)

2
. (2.12)

For 3 ≤ N ≤ 9, ν2 and ν3 are complex conjugate and Re(ν2) = Re(ν3) = 2−N
2

< 0. For
N ≥ 10, all the eigenvalues are real and ν1 > 0, ν2 < 0, ν3 < 0. Thus for all N ≥ 3,
P2 = (1,−2, 0) is a hyperbolic point, which has a 1-dimensional unstable manifold W u(P2)
and a 2-dimensional stable manifold W s(P2). Actually W s(P2) is contained in the plane
{v3 = 0}, which is invariant for (2.9).

Also we note that solutions of system (2.9) restricted to {v3 = 0} are related to radial
solutions of the equation

−∆u = λeu (2.13)

by exactly the same change of variables (2.6) and the first two equations in (2.8). This yields
immediately a heteroclinic connection from P1 to P2, which is associated to the unique radial
solution of (2.13) with λ = 2(N − 2) and initial condition u(0) = u′(0) = 0.

Proposition 2.7. For N ≥ 3, system (2.9) has a heteroclinic orbit from P1 to P2, which is
contained in the plane {v3 = 0}.
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Thanks to a result of Belickĭı [9], we have the following Lemma.

Lemma 2.8. System (2.9) is C1-conjugate to its linearization around P2 = (1,−2, 0).

Proof. We just need to check that none of the following relations

Re(νi) = Re(νj) +Re(νk), (2.14)

holds for different indices i, j, k ∈ {1, 2, 3} such that Re(νj) < 0 and Re(νk) > 0, where
ν1, ν2, ν3 are corresponding eigenvalues of M2. It is easy to check this by calculation for
N ≥ 3.

Lemma 2.9. Let v(1), v(2), v(3) be the eigenvectors of M2 associated to ν1, ν2, ν3. Then
v(k) = (1, νk, νk(νk − (2 − N)) + 2(N − 2)) and v(1) is always real; for 3 ≤ N ≤ 9, v(2), v(3)

are complex conjugates. In particular the components of v(1) = (1, 2, 4(N − 1)) are positive.

Proof. By direct calculations, v(k) = (1, νk, νk(νk − (2−N)) + 2(N − 2)) is an eigenvector
associated to νk.

2.3 Characterization of weakly singular solutions

In this section our aim is to prove Theorem 2.3. We assume that u ∈ C2(0, 1), u ≥ 0
satisfies

−∆u = 2(N − 2)(eu − 1) in (0, 1), (2.15)

where we assume, by using a scaling, that λ = 2(N − 2). The scaling changes the length of
the interval where the solution is defined, but this is not relevant for the next arguments, so
we assume that the interval is (0, 1).

Define v(t) = u(et), w(t) = v(t) + 2t for t ≤ 0. Then w satisfies

− w′′(t) + (2−N)w′(t) = 2(N − 2)
(
ew(t) − e2t − 1

)
for all t ≤ 0. (2.16)

We also let v1, v2, v3 be defined in (2.8).

By similar arguments as in [40], we have the following results.

Lemma 2.10. One has
lim inf
t→−∞

w(t) ≤ 0. (2.17)

Proof. We follow [87]. Let L := lim inft→−∞w(t) and suppose by contradiction that L > 0.
Then there exists T0 > 0, such that w(t) ≥ L/2 for all t ≤ −T0. Let ϕ be a smooth cut-off
function in R such that 0 ≤ ϕ(t) ≤ 1, ϕ(t) = 0 for t ≤ −(T0 + 3) and t ≥ −T0; ϕ(t) = 1 for
t ∈ [−(T0 + 2),−(T0 + 1)], and for i = 1, 2∫ −T0

−(T0+3)

(ϕ(i))2

ϕ
dt := ci < +∞.
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Let τ > 1 and ϕτ (t) = ϕ( t
τ
). Multiplying (2.16) by ϕτ and integrating, we get∫ −T0τ

−(T0+3)τ

(ew(t) − 1)ϕτdt =
2∑

i=1

ai

∫ −T0τ

−(T0+3)τ

wϕ(i)
τ dt+

∫ −T0τ

−(T0+3)τ

e2tϕτdt, (2.18)

where a1 = 1
2
, a2 = − 1

2(N−2)
. Using Young’s inequality with ε1 > 0 to be fixed later on, we

have ∣∣∣ ∫ −T0τ

−(T0+3)τ

wϕ(i)
τ dt

∣∣∣ ≤ ε1

∫ −T0τ

−(T0+3)τ

w2ϕτ dt+ Cε1

∫ −T0τ

−(T0+3)τ

(ϕ
(i)
τ )2

ϕτ

dt

≤ ε1

∫ −T0τ

−(T0+3)τ

w2ϕτ dt+ Cε1ciτ
1−2i. (2.19)

We also have ∫ −T0τ

−(T0+3)τ

e2tϕτ dt ≤
1

2
e−2T0τ . (2.20)

From (2.18), (2.19), (2.20) we get∫ −T0τ

−(T0+3)τ

[
ew(t) − 1− ε1Kw(t)

2
]
ϕτ dt ≤ Cε1Kmax

i=1,2
ciτ

1−2i +
1

2
e−2T0τ

with K = |a1|+ |a2|. Since w(t) ≥ L/2 > 0 for all t ≤ −T0, we can choose ε1 > 0 small, such
that ew(t) − 1− ε1Kw(t)

2 ≥ ϱ for t ≤ −T0, where ϱ > 0 is fixed. Then

ϱτ ≤
∫ −T0τ

−(T0+3)τ

[
ew(t) − 1− ε1Kw(t)

2
]
ϕτ dt ≤ Cε1Kmax

i=1,2
ciτ

1−2i +
1

2
e−2T0τ ,

which is impossible for τ > 1 large.

Lemma 2.11. We have
lim sup
t→−∞

w(t) < +∞.

Proof. Assume by contradiction that lim supt→−∞w(t) = +∞. Then there is a sequence
tk → −∞ such that w(tk) → +∞. Furthermore we can assume that for all k ≥ 1 we have
tk+1 + log 2 < tk, w(tk+1) ≥ w(tk).

Set Mk = w(tk), rk = etk and ρk =
rk+1

rk
. Note that 0 < ρk <

1
2
. Let ηk(r) =

N−2
N
r2k(1− r2)

so that it satisfies

−∆ηk = 2(N − 2)r2k in B, ηk = 0 on ∂B.

Define
uk(r) = u(rrk)−Mk + 2 log(rk) + ηk(r).
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Then we have

−∆uk(r) = 2(N − 2)r2ke
u(rkr) = 2(N − 2)eMk−ηk(r)euk(r), for 0 < r < r−1

k .

Since ηk is bounded from above,

−∆uk ≥ C0e
Mkeuk ∀0 < r < r−1

k , (2.21)

for some C0 > 0 independent of k. Also note that

uk(1) = u(rk)−Mk + 2tk = 0,

uk(ρk) =Mk+1 −Mk + 2(tk − tk+1) + ηk(ρk) ≥ 0.

Let λ1,k be the first eigenvalue for −∆ with Dirichlet boundary condition in the annulus
B\Bρk and ϕk > 0 be the corresponding eigenfunction, that is,{

−∆ϕk = λ1,kϕk, ϕk > 0 in B\Bρk ;

ϕk = 0; on ∂ (B\Bρk) ,

normalized so that ∥ϕk∥L∞(B) = 1. Multiplying (2.21) by ϕk and integrating in B \ Bρk , we
get

C0e
Mk

∫
B\Bρk

eukϕk dx ≤
∫
∂(B\Bρk

)

∂ϕk

∂ν
uk dσ + λ1,k

∫
B\Bρk

ukϕk dx.

But uk ≥ 0 and ∂ϕk

∂ν
≤ 0 on ∂(B\Bρk) so that

C0e
Mk

∫
B\Bρk

eukϕk dx ≤ λ1,k

∫
B\Bρk

ukϕk dx.

Now using the inequality eu ≥ u, it yields that

C0e
Mk ≤ λ1,k.

However, since the annulus B\Bρk has a width that does not converge to zero, λ1,k remains
uniformly bounded. It follows that Mk is bounded as k → ∞, which is a contradiction.

Lemma 2.12. For i = 0, 1, 2, we have

|w(i)(t)| ≤ C(1 + |t|) for all t ≤ 0, (2.22)

and for all i = 1, 2, 3

|vi(t)| ≤ C(1 + |t|) for all t ≤ 0. (2.23)
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Proof. Since u ≥ 0 and w is bounded above, we have |w(t)| ≤ C(1 + |t|). Moreover, by
equation (2.16), and interpolation inequalities such as in Chapter 6 of [70], we get that for
any t ≤ −1 and i = 1, 2

|w(i)(t)| ≤ C sup
[t−1,t+1]

(
|w|+ 2(N − 2)|ew − e2t − 1|

)
≤ C sup

[t−1,t+1]

(|w|+ 2(N − 2)|ew − 1|) .

Since w is bounded above, the second term in the supremum is bounded. Then (2.22) and
(2.23) follow from the bound of w.

Lemma 2.13. For i = 1, 2, 3

|vi(t)| ≤ C for all t ≤ 0, (2.24)

for i = 1, 2

|w(i)(t)| ≤ C for all t ≤ 0. (2.25)

Proof. It is direct that v3 is bounded for all t ≤ 0. Since v1(t) = ew(t) (recall the change of
variables (2.8) and that we assume λ = 2(N − 2)) and w is bounded above, we have v1(t) is
bounded as t→ −∞. Next we prove that v2 is bounded for all t ≤ 0.

Integrating the following equation

d

ds

(
v2(s)e

(N−2)s
)
= [−2(N − 2)v1(s) + v3(s)] e

(N−2)s

in [t, t0] with t ≤ t0 ≤ 0, we get

v2(t) = e−(N−2)t
(
v2(t0)e

(N−2)t0 + 2(N − 2)

∫ t0

t

e(N−2)sv1(s) ds

− 2(N − 2)

N
(eNt0 − eNt)

)
.

Since v1 is bounded, the integral
∫ t0
−∞ e(N−2)sv1(s) ds exists. If

2(N − 2)

N
eNt0 − 2(N − 2)

∫ t0

−∞
e(N−2)sv1(s) ds ̸= v2(t0)e

(N−2)t0 ,

we deduce that |v2(t)| grows exponentially as t → −∞, which contradicts (2.23). Therefore
we get

v2(t0) = −2(N − 2)e−(N−2)t0

∫ t0

−∞
e(N−2)sv1(s) ds+

2(N − 2)

N
e2t0 ∀ t0 ≤ 0, (2.26)

It follows that |v2(t)| ≤ C for all t ≤ 0, because v1 is bounded.

Finally, the relations

w′(t) = v2 + 2, w′′(t) = −2(N − 2)v1 + (2−N)v2 + v3,

imply (2.25).
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Proof of Theorem 2.3. The statements in the theorem are consequence of the following prop-
erties, that we will prove next:

(i) If lim inft→−∞w(t) = −∞, then w(t) → −∞, vi(t) → 0 as t→ −∞ for i = 1, 2, 3, and
u is a regular solution.

(ii) If lim inft→−∞w(t) > −∞, then w(t) → 0, (v1, v2, v3) → P2 as t → −∞, and u is a
weakly singular solution.

To prove these claims it is useful to define

E(t) =
1

2
(w′(t))2 + 2(N − 2)(ew(t) − w(t))− (N − 2)C1e

2t,

where C1 > 0 is a constant such that |w′(t)| ≤ C1 for all t ≤ 0. This constant exists thanks
to Lemma 2.13. Let us compute

E ′(t) = (w(t)′′ + 2(N − 2)(ew(t) − 1))w(t)′ − 2(N − 2)C1e
2t

for t ≤ 0. Using equation (2.16) we get

E ′(t) = −(N − 2)w′(t)2 + 2(N − 2)e2t(w′(t)− C1) ≤ 0. (2.27)

Let us prove (i) and so we assume lim inft→−∞w(t) = −∞. First, we show that w(t) → −∞
as t→ −∞. By contradiction, we assume that w(t) does not tend to −∞ as t→ −∞. Then
we can find sequences sk → −∞, τk → −∞, such that sk > τk,

w(sk) → −∞, w(τk) is bounded.

But then E(τk) is bounded and E(sk) → ∞ as k → ∞. However, by (2.27), E(sk) ≤ E(τk),
which is a contradiction.

Now, since w(t) → −∞ as t → −∞, we can easily deduce v1(t) → 0 as t → −∞. Using
formula (2.26), we obtain v2(t) → 0 as t→ −∞. Therefore limt→−∞ V (t) = P1.

Since v2(t) → 0 as t → −∞, we have limr→0 ru
′(r) = 0. Then for any ϵ > 0, there exists

r0 > 0 such that for any 0 < r < r0, we have |ru′(r)| < ϵ. Integrating from r to r0 in this
inequality, for any 0 < r < r0 we obtain

0 ≤ u(r) ≤ −ϵ ln r + C, eu(r) ≤ Cr−ϵ, (2.28)

for some C > 0.

We can then get that u′(r) is bounded for r > 0 small enough. In fact, equation (2.1) can
be written as

−
(
sN−1u′(s)

)′
= λsN−1(eu(s) − 1).

Integrating the above equation from δ to r with (δ, r) ⊂ (0, r0) and using (2.28), letting
δ → 0, we have

|u′(r)| ≤ Cr1−N

∫ r

0

sN−1
(
s−ϵ − 1

)
ds ≤ C
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for 0 < r < r0. From the boundedness of u′ near r = 0 we also get that u is bounded near
r = 0. This shows that u is regular.

We prove now (ii), so we assume that lim inft→−∞w(t) > −∞. Since w is bounded above
by Lemma 2.11, we have w is bounded. By Lemma 2.13, the derivatives of w are bounded,
then we get that E(t) is bounded as t→ −∞. From the boundedness of E together with the
boundedness of the derivatives of w and (2.27), we deduce that∫ 0

−∞
w′(t)2 dt < +∞. (2.29)

Set ψT (t) = w′(t+ T ), then we get that

ψT → 0 in L2(0, 1) as T → −∞.

Moreover, ψT satisfies the equation

−ψ′′
T (t) + (2−N)ψ′

T (t) = 2(N − 2)ew(T+t)ψT (t)− 4(N − 2)e2(T+t).

Using regularity theory, we have ψT (
1
2
) → 0 and ψ′

T (
1
2
) → 0 as T → −∞. Thus we obtain that

w′(t) → 0 as t→ −∞ and similarly w′′(t) → 0 as → −∞. This implies that limt→−∞ v′(t) =
−2. Since v′(t) = u′(et)et we see that u is a weakly singular solution by the definition. We
get in addition that (v1, v2, v3) → (1,−2, 0) as t→ −∞. That is, limt→−∞ V (t) = P2.

A direct corollary of the proof of Theorem 2.3 is the following.

Corollary 2.14. Let u be a radial singular solution to (2.1) and let V (t) = (v1(t), v2(t), v3(t))
be the corresponding trajectory to (2.9). Then lim

t→−∞
V (t) = P2 = (1,−2, 0).

As a consequence of Theorem 2.3 and Corollary 2.14, we have the following.

Corollary 2.15. For u a radial solution of (2.1) we have:

(a) u is regular if and only if lim
t→−∞

V (t) = P1;

(b) u is singular if and only if lim
t→−∞

V (t) = P2.

2.4 The unstable manifold at P2

In this section, we study the unstable manifold of P2 and prove Theorem 2.4. First we
have the following result.

Proposition 2.16. Let V (t) = (v1(t), v2(t), v3(t)) : (−∞, T ) → R3 be the trajectory in
W u(P2) such that v′3(t) > 0 as t → −∞, where T is the maximal time of existence. Then
there exists some t < T such that v3(t) ≥ 2(N − 2)v1(t).
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Proof. First we observe that this trajectory satisfies

v′1(t) > 0, v′2(t) > 0, v′3(t) > 0

for t close to −∞ since the tangent vector to this trajectory becomes parallel to (1, 2, 4(N−1))
as it approaches P2.

Let z(t) = v3(t)− 2(N − 2)v1(t) and by contradiction we assume that

z(t) < 0 for ∀t ∈ (−∞, T ). (2.30)

First, we remark that

v2(t) < 0 for ∀t ∈ (−∞, T ). (2.31)

To prove this, let us suppose it fails, and so there is the first time t0 ∈ (−∞, T ), such that
v2(t0) = 0. Since limt→−∞ v2(t) = −2 we must have v′2(t0) ≥ 0. But writing the second
equation in (2.9) as

v′2(t) = z(t)− (N − 2)v2(t)

we would get z(t0) ≥ 0, a contradiction with (2.30).

Using (2.9) and v2(t) < 0 for all t < T we can assert that the solution is defined for all t,
that is T = +∞. Indeed, the first equation in (2.9) yields

v1(t) = v1(t0)e
∫ t
t0
(2+v2(s)) ds (2.32)

Since v2(t) < 0 we see that v1(t) cannot blow up as t → T , if T were finite. Also v3 cannot
blow up. This and the linearity of the second equation in (2.9) yield that T = +∞.

Now, let us establish that

v1(t) > 0 for ∀t ∈ (−∞,+∞). (2.33)

In fact, this is valid for t near −∞ since v1(t) → 1 as t → −∞. If inequality (2.33) does
not hold, then v1(t0) = 0 for some t0, and it follows from (2.32) that v1(t) = 0 for all t, a
contradiction.

Next, we prove that

lim sup
t→+∞

v2(t) = 0. (2.34)

Indeed, suppose not, we assume that there is a small number δ > 0 such that v2(t) < −δ < 0
for all t. From the first equation in (2.9), we then get v′1(t) < (2 − δ)v1(t), so we have
v1(t) < v1(0)e

(2−δ)t for all t > 0. But by the third equation in (2.9), we have v3(t) = v3(0)e
2t.

Hence z(t) = v3(0)e
2t−2(N−2)v1(0)e

(2−δ)t ≥ 0 for some t > 0, which contradicts assumption
(2.30).
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From (2.31) and (2.34), there exists a sequence (tk) with tk → +∞ as k → +∞, such
that

v′2(tk) > 0, and v2(tk) → 0 as k → +∞.

Moreover, by the second equation in (2.9) we have 0 > z(tk) = v′2(tk) + (N − 2)v2(tk) >
(N − 2)v2(tk). Therefore,

z(tk) → 0 as k → +∞. (2.35)

From (2.9), we have z′(t)− 2z(t) = −2(N − 2)v1(t)v2(t). Multiplying by e−2t and integrating
from t to tk, we get

z(tk) = e2(tk−t)

(
z(t)− 2(N − 2)e2t

∫ tk

t

e−2sv1(s)v2(s)ds

)
(2.36)

From (2.31), (2.33), (2.35) and (2.36) we have that∫ +∞

t

e−2sv1(s)|v2(s)|ds < +∞ for any t < +∞. (2.37)

Note that v1(t) =
v3(t)−z(t)
2(N−2)

and hence

z′(t)− 2z(t) = (z(t)− v3(t))v2(t).

Multiplying by e−2t and integrating from 0 to tk, we find

z(tk) = e2tk
(
z(0) +

∫ tk

0

e−2sz(s)v2(s)ds−
∫ tk

0

e−2sv2(s)v3(s)ds

)
.

Since z(0) < 0,
∫ tk
0
e−2sz(s)v2(s)ds and −

∫ tk
0
e−2sv2(s)v3(s)ds are positive, we get∫ +∞

0

e−2s|v2(s)|v3(s)ds < +∞. (2.38)

Since v3(t) = v3(0)e
2t, (2.38) implies that∫ +∞

0

|v2(s)|ds < +∞. (2.39)

Since z(t) < 0 by assumption, we have v2(s) ≤ v2(0)e
−(N−2)s for s ≥ 0. Then for t ≥ 0,∫ +∞

t

e−2sv1(s)|v2(s)|ds = −
∫ +∞

t

e−2sv1(s)v2(s)ds

≥ −v2(0)
∫ +∞

t

e−Nsv1(s)ds. (2.40)
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Integrating by parts and using (2.9) we get∫ ∞

t

e−Nsv1(s) ds =
1

N
e−Ntv1(t) +

1

N

∫ ∞

t

e−Nsv′1(s) ds

=
1

N
e−Ntv1(t) +

2

N

∫ ∞

t

e−Nsv1(s) ds+
1

N

∫ ∞

t

e−Nsv1(s)v2(s) ds

and we deduce∫ ∞

t

e−Nsv1(s) =
1

N − 2
e−Ntv1(t) +

1

N − 2

∫ ∞

t

e−Nsv1(s)v2(s) ds.

Hence for t > 0, and since v2(s) < 0∫ ∞

t

e−Nsv1(s) ≥
1

N − 2
e−Ntv1(t) +

1

N − 2

∫ ∞

t

e−2sv1(s)v2(s) ds. (2.41)

From (2.40) and (2.41) we have∫ +∞

t

e−2sv1(s)|v2(s)|ds ≥ − v2(0)

N − 2
v1(t)e

−Nt +
v2(0)

N − 2

∫ +∞

t

v1(s)|v2(s)|e−2sds,

which implies that∫ +∞

t

e−2sv1(s)|v2(s)|ds ≥
−v2(0)

N − 2− v2(0)
v1(t)e

−Nt. (2.42)

Now, from (2.35) and (2.36) we have

−z(t) = 2(N − 2)e2t
∫ +∞

t

e−2sv1(s)|v2(s)|ds. (2.43)

From(2.43) and (2.42), we observe that

−z(t) ≥ −2(N − 2)v2(0)

N − 2− v2(0)
v1(t)e

(−N+2)t. (2.44)

Moreover, using (2.39)

v1(t) = v1(0)e
2te

∫ t
0 v2(s)ds = v1(0)e

2te−
∫ t
0 |v2(s)|ds ≥ v1(0)e

−Ce2t (2.45)

for some constant C > 0. Hence,

−z(t) ≥ −2(N − 2)v1(0)v2(0)

N − 2− v2(0)
e−Ce(4−N)t := C1e

(4−N)t, (2.46)

for C1 > 0, which is a contradiction with (2.35) for N = 3, 4.
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From now on we assume N > 4. By the second equation in (2.9) and z(t) = v3(t)−2(N−
2)v1(t), we get that

−v2(t) = −v2(0)e(2−N)t + e(2−N)t

∫ t

0

(−z(s))e(N−2)sds.

By (2.46) we have

|v2(t)| = −v2(t) ≥ −v2(0)e(2−N)t + C1e
(2−N)t

∫ t

0

e2sds

≥ C1

2
e(2−N)t(e2t − 1) ≥ C2e

(4−N)t,

for t > 1 where C2 is a positive constant. Therefore,∫ +∞

t

e−2sv1(s)|v2(s)|ds ≥ C2

∫ +∞

t

e(2−N)sv1(s)ds, (2.47)

while, for N > 4 and t > 0∫ +∞

t

e(2−N)sv1(s)ds

=
1

N − 2
v1(t)e

(2−N)t − 1

N − 2

∫ +∞

t

e(2−N)sv1(s)|v2(s)|ds

+
2

N − 2

∫ +∞

t

e(2−N)sv1(s)ds

≥ 1

N − 2
v1(t)e

(2−N)t − 1

N − 2

∫ +∞

t

e−2sv1(s)|v2(s)|ds

+
2

N − 2

∫ +∞

t

e(2−N)sv1(s)ds.

So, ∫ +∞

t

e(2−N)sv1(s)ds ≥
1

N − 4
v1(t)e

(2−N)t − 1

N − 4

∫ +∞

t

e−2sv1(s)|v2(s)|ds. (2.48)

Combining (2.47) and (2.48), we get∫ +∞

t

e−2sv1(s)|v2(s)|ds ≥
C2

N − 4 + C2

v1(t)e
(2−N)t. (2.49)

Then, from (2.43), (2.45) and (2.49) we obtain that

−z(t) ≥ 2(N − 2)C2v1(0)e
−C

N − 4 + C2

e(6−N)t := C3e
(6−N)t, (2.50)

for C3 > 0, which is a contradiction with (2.35) for N = 5, 6.

Starting with (2.50) we can do the same process and obtain a contradiction for all N ≥ 3.
This ends the proof of the proposition.
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Proposition 2.17. At any point of W u (P2)∩{v3 = 2(N−2)v1} the intersection is transver-
sal.

Proof. Let V (t) = (v1, v2, v3) be a trajectory in W u(P2) with t in some interval (−∞, T ) and
limt→−∞ V (t) = P2. Suppose that t1 is such that v3(t1) = 2(N − 2)v1(t1). By contradiction,
assume that V ′(t1) is not transversal to the plane {v3(t) = 2(N − 2)v1(t)}, that is,

V ′(t1) ∈ {v3 = 2(N − 2)v1}.

Then, v3(t1) = 2(N − 2)v1(t1), v
′
3(t1) = 2(N − 2)v′1(t1). From (2.9) we get v2(t1) = 0. Let

z(t) = v3(t)− 2(N − 2)v1(t). The ODE (2.9) implies that

v′2 = z − (N − 2)v2, z′ = 2z − 2(N − 2)v1v2.

Treating v1 as a given function, we see that v2, z satisfy a first order non-autonomous linear
ODE and the initial condition v2(t1) = 0, z(t1) = 0. Since v2 = z = 0 is a solution of the
ODE with the same initial condition, by uniqueness we deduce v2(t) = 0 for all t where it is
defined. This contradicts limt→−∞ v2(t) = −2.

Proof of Theorem 2.4. The existence of some λ∗ > 0 such that (2.1) has a singular solution
is a consequence of Proposition 2.16. Indeed, let V (t) = (v1(t), v2(t), v3(t)) : (−∞, T ) → R3

be the trajectory in W u(P2) such that v′3(t) > 0 as t → −∞, where T is the maximal time
of existence. Then there exists some t < T such that v3(t) ≥ 2(N − 2)v1(t). Let t1 be the
first time such that v3(t1) = 2(N − 2)v1(t1). Because the system (2.9) is autonomous, by
shifting time, we can assume t1 = 0. Let P ∗ = V (0) be the point of intersection, and write
P ∗ = (P ∗

1 , P
∗
2 , P

∗
3 ). Then

u(r) = −2 log(r) + log

(
2(N − 2)v1(log(r))

λ∗

)
is a singular solution of (2.1) for λ∗ = P ∗

3 .

The uniqueness of λ∗ such that a singular solution of (2.1) exists is a consequence of Corol-
lary 2.15, which says that singular solutions must be associated to trajectories in W u(P2),
and the trajectory in W u(P2) with tangent vector close (1, 2, 4(N − 1)) as it approaches P2

is unique except a shift in time. This also yields the uniqueness of the singular solution.

2.5 Multiplicity result: proof of Theorem 2.5

In this section, we assume that 3 ≤ N ≤ 9 and prove multiplicity of solutions to problem
(2.1). Let P1 = (0, 0, 0) and P2 = (1,−2, 0) be the stationary points of (2.9). We recall
that P1 has a 2-dimensional unstable manifold W u(P1) and 1-dimensional stable manifold
W s(P1), while P2 has a 1-dimensional unstable manifold W u(P2) and a 2-dimensional stable
manifold W s(P2).
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From Corollary 2.15 it follows that each regular radial solution of (2.1) corresponds to
exactly one point in W u(P1) ∩ {v3 = 2(N − 2)v1}. By Proposition 2.17, we define λ∗ to be
the height v3 = λ∗ where W

u (P2) first intersects the plane {v3 = 2(N−2)v1}, and we denote
this intersection point by

P ∗ = (P ∗
1 , P

∗
2 , P

∗
3 ) = (

λ∗
2(N − 2)

, P ∗
2 , λ∗). (2.51)

Let V0 : R → R3 be the heteroclinic connection from P1 to P2 contained in {v3 = 0} as
stated in Proposition 2.7 and let V̂0 = V0(−∞,+∞). Then V̂0 is contained in both W u(P1)
and W s(P2).

Lemma 2.18. W u(P1) and W
s(P2) intersect transversally on points of V̂0. More precisely,

for points Q ∈ V̂0 sufficiently close to P2, there are directions in the tangent plane to W u(P1)
which are almost parallel to v(1), the tangent vector to W u(P2) at P2.

Proof. Let uβ be the solution of the following initial value problem{
−∆uβ(r) = 2(N − 2)euβ(r) − β for 0 < r < R(β),

uβ(0) = 0, u′β(0) = 0,
(2.52)

where β ∈ R is a parameter and R(β) > 0 is the maximal time of existence. We claim that
R(β) = +∞. Indeed, assume R(β) < +∞ and fix r0 < R(β). Then for r ∈ [r0, R(β)), from
equation (2.52) we get

u′β(r) = rN−1
0 u′β(r0)r

1−N − r1−N

∫ r

r0

tN−1
(
2(N − 2)euβ(t) − β

)
dt, (2.53)

and this implies

u′β(r) ≤ rN−1
0 u′β(r0)r

1−N +
|β|
N

(r − r1−NrN0 ) for r0 ≤ r < R(β).

Integrating we see that
lim sup
r→R(β)

uβ(r) < +∞.

Since uβ is bounded above in [r0, R(β)), using again (2.53) we obtain

rN−1
0 u′β(r0)r

1−N − C(r − r1−NrN0 ) ≤ u′β(r) for r0 ≤ r < R(β),

and this shows that
lim inf
r→R(β)

uβ(r) > −∞.

Control of uβ as r → R(β) also yields control of u′β by (2.53) and this contradicts that R(β)
is the maximal time of existence. Therefore the solution uβ(r) of (2.52) is defined for all
r > 0.
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Let vβ(t) = uβ(r) with r = et for t ∈ (−∞,+∞) and set

v1,β(t) = evβ(t)+2t, v2,β = v′β(t), v3,β(t) = βe2t.

Then v1,β, v2,β, v3,β satisfies system (2.9). Let Vβ = (v1,β, v2,β, v3,β). We have created in this
way a family of trajectories in W u(P1) with β as a parameter. Note that for β = 0, V0 is just
the heteroclinic connection of system (2.9) from P1 to P2 contained in the plane {v3 = 0}
described in Proposition 2.7.

Define X = ∂V
∂β

|β=0. Then X satisfies

X ′ = (M2 +R(t))X (2.54)

where M2 is the matrix defined in (2.11) and

R(t) =

v2,0(t) + 2 v1,0(t)− 1 0
0 0 0
0 0 0

 .
Note that there exist C,α > 0, such that |V0(t)−P2| ≤ Ce−αt for all t ≥ 0, which follows for
example from Lemma 2.8. Therefore |R(t)| ≤ Ce−αt for all t ≥ 0. Recall that the eigenvalues
of M2 are ν1 > 0 and ν2, ν3, which are complex conjugates with negative real part. Let
v(k) ∈ C3 be the eigenvector associated to νk. By Theorem 8.1 of Chapter 3 in [27], there are
solutions ψk to

ψ′
k = (M2 +R(t))ψk, for t > 0

such that limt→∞ ψk(t)e
−νkt = v(k). Then

X(t) =
3∑

k=1

ckψk

for some constants c1, c2, c3 ∈ C. Since ν2, ν3 have negative real parts, ψk(t) → 0 as t → ∞,

for k = 2, 3. If c1 = 0 then X(t) → 0 as t → ∞ and this contradicts
∂v3,β
∂β

|β=0(t) = e2t > 0
for all t ≥ 0. So c1 ̸= 0 and therefore

X(t) = c1v
(1)eν1t + o(eν1t) as t→ ∞.

This shows X(t) is almost parallel to v(1) as t → ∞. Since v(1) is the tangent vector to
W u(P2), then X(t) is not tangent to W s(P2) for t large. On the other hand, X = ∂V

∂β
|β=0 is

tangent to W u(P1). This implies W s(P2) and W
u(P1) intersect transversally on points of V̂0

close to P2. Since the flow is invertible near V̂0, W
u(P1) and W

s(P2) intersect transversally
at every point of V̂0.

We write (v1, v2, v3) as points in the phase space R3 and let {e1, e2, e3} denote the canonical
basis of R3.

We call S ⊂ R3 a spiral around P ∗ if there exist independent vectors σ1, σ2 ∈ R3, a
continuous positive function ρ : [0,∞) → R with ρ(t) → 0 as t→ ∞, and ω ∈ R such that

S = {P ∗ + ρ(t) cos(ωt)σ1 + ρ(t) sin(ωt)σ2 + o(ρ(t)) : t ≥ 0}.
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Lemma 2.19. W u(P1) ∩ {v3 = 2(N − 2)v1} contains a spiral S around the point P ∗.

Proof. The linearization of (2.9) at P2 is given by the system
v̄′1 = v̄2,

v̄′2 = −2(N − 2)v̄1 + (2−N)v̄2 + v̄3,

v̄′3 = 2v̄3,

which is represented by the matrix M2. Let M̄2 denote the matrix

M̄2 =

Re(ν2) −Im(ν2) 0
Im(ν2) Re(ν2) 0

0 0 ν1


where ν1, ν2 are the eigenvalues (2.12). By Lemma 2.8, system (2.9) is C1-conjugate in a
neighborhood of P2 to the flow generated by M̄2 around 0. More precisely, let Xt denote the
flow generated by (2.9) and Yt = eM̄2t. Then there are open neighborhoods U of P2 and V
of Ō = (0, 0, 0), and a C1 diffeomorphism Φ : U → V such that Yt(x) = Φ ◦ Xt ◦ Φ−1(x)
whenever x ∈ V and Φ−1(x) ∈ U .

Let D be the 2-dimensional disk

D = {V = (v1, v2, v3) : v3 = 2(N − 2)v1, |V − P ∗| < r0} ,

where r0 > 0 is fixed and small, so thatW u(P2)∩{v3 = 2(N−2)v1} contains only the point P ∗.
This r0 > 0 exists by Proposition 2.17. Also by this proposition, D is transversal to W u(P2).
Let Bs ⊂ W s(P2) ∩ U ⊂ {v3 = 0} ∩ U be an open neighborhood of P2 relative to W s(P2),
which is diffeomorphic to a 2-dimensional disk. Define Dt as the connected component of
Xt(D) ∩ U that contains Xt(P

∗). We choose U smaller if necessary so that by the λ-Lemma
of Palis [95], Dt is a C1 manifold, which is C1 close to Bs for t sufficiently negative. More
precisely, let ε > 0 be small to be fixed later on. Then there exists t0 < 0, |t0| large, such
that for all t ≤ t0, there is a diffeomorphism ηt : Dt → Bs such that ∥i′ ◦ ηt − i∥C1(Dt) ≤ ε
where i, i′ denote the inclusion maps. From now on we let M = Dt0 .

We fix Q ∈ V̂0 such that Q ∈ U is sufficiently close to P2. From Lemma 2.18, we can find
a C1 curve Γ contained in W u(P1) of the form Γ = {γ(s) : |s| < δ0} with γ : (−δ0, δ0) → R3

a C1 function such that γ(0) = Q and γ′(0) not tangent toW s(P2) at Q. We can also assume
that Γ is contained in U by taking δ0 small. Choosing ε > 0 smaller if necessary we can
assume that Γ intersects M.

We want to prove that for t > 0 large, there is a point Pt ∈ Xt(Γ) ∩ M and that the
collection of points Pt describes a spiral around the point Xt0(P

∗).

By the conjugation Φ, we will assume that P2 is at the origin and near the origin the flow
is given by Yt = eM̄2t. Thus the image of W s(P2) ∩ U through Φ is {(y1, y2, y3) : y3 = 0},
which is inside V , and the image of Bs is {(y1, y2, y3) : y3 = 0, |y| < δ} for some δ > 0.
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Choosing ε small in the λ-Lemma, we can assume that the normal vector of M̃ := Φ(M)

near Φ(P ∗) is almost parallel to e3 = (0, 0, 1). Thus by taking a subset of M̃, we may assume

that M̃ is a C1 graph with respect to the variables (y1, y2), that is, there exists a C
1 function

φ : {ỹ = (y1, y2) ∈ R2, |ỹ| < δ} → R such that

M̃ = {(ỹ, φ(ỹ)) : ỹ ∈ R2, |ỹ| < δ}.

Since γ′(0) is not tangent to W s(P2) at γ(0), we have γ′3(0) ̸= 0. We may assume that
φ(ỹ) > 0 for ỹ near the origin and γ′3(0) > 0.

We claim that for all t > 0 large there is a unique s = s(t) > 0 small so that Yt(γ(s)) ∈ M̃.
Indeed, this condition is equivalent to

eν1tγ3(s) = φ(eν2t(γ1(s) + iγ2(s))). (2.55)

Let τ = 1/t > 0 and define, for (τ, s) ∈ (0, δ1)× (−δ1, δ1) (δ1 > 0 a small fixed number)

F (τ, s) = γ3(s)− e−ν1/τφ(eν2/τ (γ1(s) + iγ2(s))).

Then, since ν1 > Re(ν2), F admits a C1 extension to τ = 0 and

F (0, s) = γ3(s),
∂F

∂τ
(0, s) = 0,

∂F

∂s
(0, s) = γ′3(s).

Since F (0, 0) = 0 and ∂F
∂s
(0, 0) > 0, by the implicit function theorem, given t > 0 large there

is a unique s small so that F (1/t, s) = 0. We obtain a C1 function s(t) > 0 defined for all t

large such that Yt(γ(s(t))) ∈ M̃. Using (2.55) we see that

s(t) =
e−ν1t

γ′3(0)
φ(0)(1 + o(1))

as t→ ∞. Writing ν2 = α+ iω, the point of intersection has the form

P̃t = Yt(γ(s(t))) = (0, 0, φ(0, 0)) + eαt cos(ωt)σ̃1 + eαt sin(ωt)σ̃2 + o(eαt),

where

σ̃1 =

(
γ1(0), γ2(0),

∂φ

∂y1
(0, 0)γ1(0) +

∂φ

∂y2
(0, 0)γ2(0)

)
,

σ̃2 =

(
−γ2(0), γ1(0),−

∂φ

∂y1
(0, 0)γ2(0) +

∂φ

∂y2
(0, 0)γ1(0)

)
.

Therefore the curve {P̃t, : t > t1}, where t1 > 0 is large, defines a spiral contained in M̃.
Applying the conjugation Φ−1 we obtain a collection of points Pt = Φ−1(P̃t) in M∩ Xt(Γ)
that forms a spiral around Xt0(P

∗). Applying the flow X−t0 we see that

S = {Xt−t0(γ(s(t))) : t ≥ t1}

with t1 > 0 large has the structure of a spiral around P ∗. By construction S is contained in
W u(P1) ∩ {v3 = 2(N − 2)v1}.
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Proof of Theorem 2.5. Let us define λ∗ to be the height v3 = λ∗, whereW
u(P2) first intersects

the boundary plane {v3 = 2(N − 2)v1}. Define Hλ = {v3 = λ}. If λ = λ∗, we know
that P ∗ lies on the line {v3 = λ∗, v3 = 2(N − 2)v1}. From Lemma 2.19, W u(P1) ∩ {v3 =
2(N − 2)v1} contains a spiral S around the point P ∗. Since the plane Hλ is transversal to
{v3 = 2(N − 2)v1}, it is possible to show that Hλ∗ and S intersect an infinite number of
times, which means that problem (2.1) has infinitely many radial regular solutions; see for
example Lemma 4 in [49]. If λ ̸= λ∗, but λ is close to λ∗, we have that Hλ ∩ S contains a
large number of points, which means that problem (2.1) has a large number of radial regular
solutions.

2.6 Estimate the Morse index: proof of Theorem 2.6

In this section we always assume that N ≥ 10 and prove Theorem 2.6. First we give the
asymptotic behavior of a radial singular solution to problem (2.1) near the origin.

Lemma 2.20. Assume that (λ∗, u∗) is a radial singular solution of (2.1). Then

u∗(r) = −2 log r + log
2(N − 2)

λ∗
+ r2 + o(r2) as r → 0. (2.56)

Proof. By Theorem 2.3, u∗ is a weakly singular radial solution of (2.1). Define v(t) = u∗(r)
with r = et, and v1, v2, v3 are given by (2.8). Therefore, from Corollary 2.15,

lim
t→−∞

(v1, v2, v3) = (1,−2, 0).

By Lemma 2.8 and Lemma 2.9, we have

(v1, v2, v3) = (1,−2, 0) + (1, 2, 4(N − 1))e2t
(
1 + o(eδt)

)
as t→ −∞,

with δ > 0 small. We then get

u∗(r) = v(t) = −2t+ log
2(N − 2)v1(t)

λ∗

= −2 log r + log
2(N − 2)

(
1 + e2t + o(e(2+δ)t)

)
λ∗

= −2 log r + log
2(N − 2)

λ∗
+ log(1 + r2 + o(r2+δ))

= −2 log r + log
2(N − 2)

λ∗
+ r2 + o(r2) as r → 0.
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For λ > 0, let us define

w(r) = −2 log r + log
2(N − 2)

λ
+

λ

2N
r2, (2.57)

Let ρ > 0 be a small number, which will be fixed later and let us write cρ = w(ρ). Then w
satisfies {

−∆w ≤ λ(ew − 1) in Bρ,

w(ρ) = cρ on ∂Bρ,
(2.58)

where Bρ is a ball with radius ρ and center at the origin.

We have the following stability property of w.

Lemma 2.21. Suppose N ≥ 10 and let w be defined in (2.57). There exists ρ ∈ (0, 1) small,
such that w is stable in Bρ, in the sense that∫

Bρ

|∇φ|2 ≥ λ

∫
Bρ

ewφ2 for all φ ∈ C∞
c (Bρ). (2.59)

Proof. Write A = λ
2N

. Since N ≥ 10,∫
Bρ

|∇φ|2 − λewφ2 =

∫
Bρ

|∇φ|2 − 2(N − 2)
φ2

r2
eAr2

=

∫
Bρ

(
|∇φ|2 − 2(N − 2)

φ2

r2

)
− 2(N − 2)(A+ o(1))

∫
Bρ

φ2

≥
∫
Bρ

(
|∇φ|2 − (N − 2)2

4

φ2

r2

)
− 2(N − 2)(A+ o(1))

∫
Bρ

φ2,

where o(1) → 0 as ρ→ 0. Let us recall the following improved Hardy’s inequality from [15]:
for φ ∈ C∞

c (Bρ) ∫
Bρ

(
|∇φ|2 − (N − 2)2

4

φ2

r2

)
≥ H2ρ

−2

∫
Bρ

φ2,

where the constant H2 is the first eigenvalue of the Laplacian in the unit ball in N = 2, hence
it is positive and independent of N .

Choose ρ > 0 such that 2(N − 2)(A+ o(1)) ≤ H2ρ
−2. Then (2.59) holds.

Lemma 2.22. Let ρ ∈ (0, 1) be small and satisfy Lemma 2.21. Then for any radial regular
solution u of (2.1) we have

u(r) ≤
{
w(r) in Bρ

cρ in B\Bρ,
(2.60)

where w(r) is defined in (2.57).
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Proof. Arguing by contradiction, suppose there exists r0 ∈ (0, ρ), such that u(r0) = w(r0).
Then 

−∆u = λ(eu − 1) in Br0 ;

−∆w ≤ λ(ew − 1) in Br0 ;

u = w on ∂Br0 .

(2.61)

Therefore, {
−∆(w − u) ≤ λ (ew − eu) in Br0 ,

w − u = 0 on ∂Br0 .
(2.62)

Multiplying by (w − u)+ and integrating in (2.62), we obtain∫
Br0

|∇(w − u)+|2 ≤ λ

∫
Br0

(ew − eu)(w − u)+. (2.63)

From Lemma 2.21, w is stable in Br0 , by taking φ = (w − u)+ in (2.59), we then have∫
Br0

|∇(w − u)+|2 − λew((w − u)+)2 ≥ 0. (2.64)

Combining (2.63) and (2.64), we get

λ

∫
Br0

ew((w − u)+)2 ≤ λ

∫
Br0

(ew − eu)(w − u)+.

We rewrite it as ∫
Br0

[
(ew − eu)(w − u)+ − ew((w − u)+)2

]
≥ 0.

By convexity, the integrand is nonpositive, therefore,

(ew − eu)(w − u)+ − ew((w − u)+)2 = 0 a.e. in Br0 ,

then
(w − u)+ = 0 a.e. in Br0 .

It implies that w ≤ u in Br0 , which is impossible because u is a radial regular solution. Then
u(r) ≤ w(r) for r ∈ (0, ρ).

Since u is a radially decreasing regular solution, u ≤ cρ in B\Bρ.

Now, let (λ, uλ) be any radial solution to (2.1) (regular or singular), and define the
operator Lγ as

Lγ(ϕ) = −∆ϕ− λeuλϕ+ γϕ

with γ > 0 large but fixed. We have the following Lemma.
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Lemma 2.23. If γ > 0 is fixed large enough, we have:
(a) for N ≥ 11, ⟨Lγ(ϕ), ϕ⟩ ≥ C1∥ϕ∥2H1

0 (B)
for all ϕ ∈ C∞

c (B);

(b) for N = 10, ⟨Lγ(ϕ), ϕ⟩ ≥ C2∥ϕ∥2L2(B) for all ϕ ∈ C∞
c (B),

where C1 and C2 are positive constants.

Proof. For ρ > 0 small given in Lemma 2.21, from Lemmas 2.20 and 2.22, we have

⟨Lγ(ϕ), ϕ⟩ =
∫
B

Lγ(ϕ)ϕ =

∫
B

(
|∇ϕ|2 − λeuλϕ2 + γϕ2

)
=

∫
B

|∇ϕ|2 −
∫
Bρ

λeuλϕ2 −
∫
B\Bρ

λeuλϕ2 +

∫
B

γϕ2

≥
∫
B

|∇ϕ|2 − 2(N − 2)

∫
Bρ

ϕ2

r2
(1 + Ar2 + o(r2))− C

∫
B\Bρ

ϕ2 +

∫
B

γϕ2

≥
∫
B

(
|∇ϕ|2 − 2(N − 2)

ϕ2

r2

)
+ [γ −max{2(N − 2)(A+ o(1)), C}]

∫
B

ϕ2,

where A = λ
2N

for a radial regular solution uλ, A = 1 for a radial singular solution uλ, and
o(1) → 0 as ρ → 0. Choose γ large such that the second term of above is nonnegative, we
then get the conclusion by Hardy’s inequality.

We now define

∥ϕ∥2H :=

∫
B

(
|∇ϕ|2 − λeuλϕ2 + γϕ2

)
which is a norm on C∞

c (B) with associated inner product

(ϕ, φ)H =

∫
B

(∇ϕ∇φ− λeuλϕφ+ γϕφ)

Completing C∞
c (B) with respect to this norm we obtain a Hilbert space H. We denote by

H∗ the dual of H. We have H1
0 (B) ⊂ H ⊂ L2(B) and therefore L2(B) ⊂ H∗ ⊂ H−1(B).

Actually by Lemma 2.23, if N ≥ 11, the space H is just H1
0 (B).

Given h ∈ L2(B) ⊂ H∗ we consider the following problem

Lγϕ = h in B, and ϕ = 0 on ∂B. (2.65)

We say that ϕ ∈ H is a weak solution of problem (2.65) if

(ϕ, φ)H = ⟨h, φ⟩H∗,H for all φ ∈ H.

By the Lax-Milgram theorem, for h ∈ L2(B), problem (2.65) has a unique weak solution
ϕ ∈ H.

Lemma 2.24. Let T : L2(B) → L2(B) be the operator defined by Th = ϕ, where ϕ is the
solution of (2.65). Then T is compact and the natural embedding H ↩→ L2(B) is compact.
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Proof. For N ≥ 11, both statements hold since T : L2(B) → H = H1
0 (B) and H1

0 (B) ↩→
L2(B) is compact, by the Rellich-Kondrachov theorem. For N = 10, we observe that Lγ

satisfies
⟨Lγ(ϕ), ϕ⟩ ≥ cr∥ϕ∥2Lr(B) ∀ϕ ∈ C∞

c (B)

for 2 ≤ r < 2N
N−2

where cr > 0, thanks to an improved Hardy’s inequality of Brezis and
Vázquez [15]. Then the statements are proved in [36].

Proposition 2.25. The radial singular solution (λ∗, u∗) of (2.1) has a finite Morse index.

Proof. By Lemma 2.24, if γ > 0 is large, (−∆ − λ∗e
u∗ + γ)−1 is well defined and compact

from L2(B) into itself, and hence its spectrum except 0 consists of eigenvalues, and these
eigenvalues form a sequence that converges to 0. Hence −∆− λ∗e

u∗ is negative definite on a
finite dimensional space only.

Next we prove a bound for the Morse index of any radial regular solution of (2.1).

Proposition 2.26. There is an integer K ≥ 1 independent of λ, such that for any radial
regular solution uλ of (2.1) we have

1 ≤ m(uλ) ≤ K, (2.66)

where m(uλ) denotes the Morse index of uλ.

Proof. From (2.1) we get ∫
B

|∇uλ|2 = λ

∫
B

(euλ − 1)uλ.

Therefore, ∫
B

(
|∇uλ|2 − λeuλu2λ

)
= λ

∫
B

(euλ − 1− euλuλ)uλ < 0,

so m(uλ) ≥ 1.

We prove the proposition by contradiction. Suppose that {(λn, un)} is a sequence of radial
regular solutions of problem (2.1) and assume that m(un) → ∞ as n → ∞. Let us write
m(un) = mn and

Ln = −∆− λne
un .

Let
En = span

{
φ ∈ L2(B) : φ is eigenvector of Ln with negative eigenvalue

}
so that dim(En) = mn. Since Ln is symmetric there exist eigenfunctions φ1,n, . . . φmn,n ∈ En,
namely {

Lnφi,n = µi,nφi,n in B,

φi,n = 0 on ∂B,
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with µi,n < 0, that form an orthonormal basis of En in L2(B) sense, that is∫
B

φi,nφj,n = δij for i, j ∈ {1, 2, · · · mn}, (2.67)

where δij is Kronecker’s delta.

Multiplying by φi,n and integrating on B, we find∫
B

(
|∇φi,n|2 − λne

unφ2
i,n

)
= µi,n

∫
B

φ2
i,n < 0.

Then ∫
B

|∇φi,n|2 <
∫
B

λne
unφ2

i,n =

∫
Bρ

λne
unφ2

i,n +

∫
B\Bρ

λne
unφ2

i,n

≤
∫
Bρ

λne
−2 log r+log

2(N−2)
λn

+Anr2φ2
i,n + C

∫
B\Bρ

φ2
i,n

= 2(N − 2)

∫
Bρ

φ2
i,n

r2
(1 + Anr

2 + o(r2)) + C

∫
B\Bρ

φ2
i,n

≤ 8

N − 2

∫
B

|∇φi,n|2 +max {2(N − 2)(An + o(1)), C}
∫
B

φ2
i,n.

If N ≥ 11 we deduce∫
B

|∇φi,n|2 ≤
N − 2

N − 10
max {2(N − 2)(An + o(1)), C} ,

where An = λn

2N
. Let us assume N ≥ 11 and leave the case N = 10 for later. Thus (φi,n)n

is bounded in H1
0 (B). By a diagonal argument, there is a subsequence (which we write the

same), such that for each i ∈ {1, 2, . . .}, φi,n ⇀ φi weakly in H1
0 (B), φi,n → φi strongly in

L2(B) and almost everywhere in B as n→ +∞. Therefore for all i ≥ 1,

∥φi∥H1
0 (B) ≤ lim inf

n→+∞
∥φi,n∥H1

0 (B) ≤ C, ∥φi∥L2(B) = 1.

Moreover, taking n→ ∞ in (2.67)∫
B

φiφj = δij for i, j ≥ 1. (2.68)

Since (φi)i≥1 is bounded in H1
0 (B), there is a subsequence (φij)j of (φi) such that φij → φ

in L2(B) as j → +∞, and ∥φ∥L2(B) = 1. But from (2.68) we get∫
B

φijφim = 0 for j ̸= m.

44



CHAPTER 2. GELFAND-TYPE PROBLEM

Taking the limit, as j → +∞ and m→ +∞, we have∫
B

φ2 = 0,

which is a contradiction.

For N = 10, we define the Hilbert space H as the completion of C∞
c (B) with respect to

the norm

∥ϕ∥2H :=

∫
B

(
|∇ϕ|2 − λ∗e

u∗ϕ2 + γϕ2
)

with γ > 0 large but fixed and u∗ the radial singular solution of (2.1) with λ = λ∗. Then

∥φi,n∥2H =

∫
B

(
|∇φi,n|2 − λ∗e

u∗φ2
i,n

)
+ γ

∫
B

φ2
i,n

= µi,n

∫
B

φ2
i,n +

∫
B

(λne
un − λ∗e

u∗)φ2
i,n + γ

∫
B

φ2
i,n

<

∫
B

(λne
un − λ∗e

u∗)φ2
i,n + γ

∫
B

φ2
i,n.

Let ρ > 0 be as in Lemma 2.21. Let An = λn

2N
. From Lemma 2.20 and Lemma 2.22, we find∫

B

(λne
un − λ∗e

u∗)φ2
i,n =

∫
Bρ

(λne
un − λ∗e

u∗)φ2
i,n +

∫
B\Bρ

(λne
un − λ∗e

u∗)φ2
i,n

≤
∫
Bρ

(
λne

−2 log r+log
2(N−2)

λn
+Anr2 −λ∗e−2 log r+log

2(N−2)
λ∗

+r2+o(r2)
)
φ2
i,n

+ C

∫
B\Bρ

φ2
i,n

≤ C

∫
B

φ2
i,n.

Thus we get

∥φi,n∥2H ≤ (C + γ)

∫
B

φ2
i,n ≤ C.

That is, (φi,n)n is bounded in H. By Lemma 2.24, the natural embedding H ↩→ L2(B) is
compact, so using the same argument as the case N ≥ 11 we obtain a contradiction. This
ends the proof of Proposition 2.26.

Lemma 2.27. Suppose that u1, u2 are radial regular solutions of (2.1) associated to the same
parameter λ > 0. Then the graph of u1 must intersect with the graph of u2.

Proof. By contradiction, assume that u1(r) > u2(r) for any r ∈ (0, 1), and set v = u1 − u2.
By equation (2.1) we have

−∆v = λ(eu1 − eu2) > λeu2v in B;

v > 0 in B;

v = 0 on ∂B.

(2.69)
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We consider the following eigenvalue problem
−∆ψ = λeu2ψ + µψ in B;

ψ > 0 in B;

ψ = 0 on ∂B.

(2.70)

Multiplying by ψ and v in (2.69) and (2.70) respectively, and then integrating on B, we get

λ

∫
B

eu2ψv + µ

∫
B

ψv > λ

∫
B

eu2ψv,

so µ > 0, that is u2 is a stable radial regular solution. Then m(u2) = 0 and this contradicts
Proposition 2.26.

Proof of Theorem 2.6. The first part follows from Propositions 2.25 and 2.26.

Let K be an integer such that m(uλ) ≤ K for any radial regular solution uλ of (2.1) and
m(u∗) ≤ K. This integer exists by Propositions 2.25 and 2.26. Next we prove that the graph
of any radial regular solution uλ of (2.1) intersects with that of the radial singular solution
u∗ at most 2K + 1 times in (0, 1). We follow the idea of Theorem 1.2 in [71].

By contradiction, suppose that the graph of uλ intersects with the graph of u∗ at least
2K + 2 times in (0, 1). There are two cases: λ < λ∗ and λ ≥ λ∗.

For λ < λ∗, we can show m(uλ) ≥ K + 1, contradicting Proposition 2.26. Indeed, since
the graph of (λ, uλ) intersects with that of (λ∗, u∗) at least 2K + 2 times in (0, 1), there are
at least K + 1 intervals Ji ⊂ (0, 1) (i = 1, 2, · · · , K + 1) such that uλ > u∗ in Ji. Let

hi =

{
uλ − u∗ in Ji;
0 in (0, 1)\Ji.

Since uλ and u∗ satisfy equation (2.1), we have

−∆(uλ − u∗) = λ(euλ − 1)− λ∗(e
u∗ − 1)

< λ(euλ − eu∗) ≤ λeuλ(uλ − u∗).

Therefore

Quλ
(hi) =

∫
B

[|∇hi|2 − λeuλh2i ]dx < 0.

Since the functions hi, i = 1, . . . , K + 1 are linearly independent, we conclude that m(uλ) ≥
K + 1.

For λ ≥ λ∗, similarly we can obtain that m(u∗) ≥ K + 1. This contradicts Proposition
2.25. In fact, because the graph of uλ intersects with that of u∗ at least 2K + 2 times in
(0, 1), there are at least K + 1 intervals Jk ⊂ (0, 1) (k = 1, 2, · · · , K + 1) such that u∗ > uλ
in Jk. Let

hk =

{
u∗ − uλ in Jk;
0 in (0, 1)\Jk.
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Note that
−∆hk < λ∗e

u∗hk in Jk

and this implies

Qu∗(hk) =

∫
B

[|∇hk|2 − λ∗e
u∗h2k]dx < 0.

Therefore m(u∗) ≥ K + 1.

Next we prove that the number of regular solutions to (2.1) is bounded by (K + 1)2 for
each λ ∈ (λ0, µ1).

By contradiction, for each fixed λ ∈ (λ0, µ1), we suppose that there are at least (K +
1)2 + 1 radial regular solutions to (2.1), denoted by ui (i = 0, 1, · · · , (K + 1)2). Without
loss of generality, assume u0(0) > u1(0) > · · · > u(K+1)2(0). By Lemma 2.27, the graph of
ui, i = 1, · · · , (K + 1)2, must intersect with that of u0. Let ai be the first point such that
ui(ai) = u0(ai) for i = 1, · · · , (K + 1)2. Then there are the following two cases:
Case 1: There are at least (K + 1) different points ai such that u0 − ui > 0 in (0, ai) and
ui(ai) = u0(ai).
Case 2: There exists some point ai0 ∈ (0, 1), such that there are at least (K + 1) regular
solutions that intersect u0 at ai0 .
Case 1. We rearrange the indices so that a1 < · · · < aK+1. Now u1(0), . . . , uK+1(0) are not
necessarily ordered. Let φi = (u0 − ui)χ(0,ai). We claim that {φi : i = 1, 2, · · · , (K + 1)} is
linearly independent. Indeed, suppose that

K+1∑
i=1

ciφi = 0.

Since ai−1 < ai, there exists ri−1 ∈ (ai−1, ai), such that φ1(ri−1) = 0, φ2(ri−1) = 0, · · · , φi−1(ri−1) =
0, φi(ri−1) ̸= 0, then we can get ci = 0, for i = 1, 2, · · · , (K + 1). Then

Qu0(φi) =

∫
{|x|<ai}

[|∇φi|2 − λeu0φ2
i ]dx

= λ

∫
{|x|<ai}

[eu0 − eui − eu0(u0 − ui)](u0 − ui)dx < 0

by strict convexity and u0 − ui > 0 in {|x| < ai}. This implies that m(u0) ≥ K + 1,
contradicting Proposition 2.26.
Case 2. Rearranging indices, there are at least K + 1 solutions u1, · · · , uK+1 that satisfy
(u0(r) − uj(r)) > 0 for r ∈ (0, ai0) and uj(ai0) = u0(ai0), j = 1, · · · , K + 1. Set φj =
(u0 − uj)χ(0,ai0 )

, we claim that

{φj : j = 1, · · · , K + 1} is linearly independent. (2.71)

Claim (2.71) together with Qu0(φj) < 0 yields that m(u0) ≥ K + 1, contradicting 1 ≤
m(u0) ≤ K.
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Let us show that the claim (2.71) holds. From now on, we write r0 = ai0 . We assume
that there exist cj, j = 1, · · · , K + 1, such that

K+1∑
j=1

cjφj(r) = 0 for all r ∈ (0, r0],

that is,

K+1∑
j=1

cjuj(r) =

(
K+1∑
j=1

cj

)
u0(r) for all r ∈ (0, r0]. (2.72)

We will deduce c1 = · · · = cK+1 = 0 from the following assertion:

K+1∑
j=1

cj(u
′
j(r0))

n =

(
K+1∑
j=1

cj

)
(u′0(r0))

n, for all integers n ≥ 0. (2.73)

In the following we will establish (2.73). We denote g(n) the n−th derivative of g and set

f(u) := −λ(eu − 1), ∀u ∈ R; b = u0(r0).

Then f (n)(uj(r0)) = −λeb for any integer n ≥ 1.

In order to prove (2.73), we shall show that for each j ∈ {0, 1, 2, · · · , K + 1},

u
(n)
j (r0) = Pn(u

′
j(r0)) for any integer n ≥ 1, (2.74)

where Pn is a polynomial of degree 1 for n = 1, 2, and of degree n − 2 for n ≥ 3, whose
coefficients depend only on N , n, r0, and b.

Indeed, for n = 1, (2.74) is direct and for n = 2 this follows from equation (2.1). By
induction, assume that (2.74) holds for n = k ≥ 2. From equation (2.1), we have

(∆uj)
(k−1) = (f(uj))

(k−1). (2.75)

We see that for n ≥ 0,

(∆uj)
(n) = u

(n+2)
j +

N − 1

r
u
(n+1)
j − n

N − 1

r2
u
(n)
j

+n(n− 1)
N − 1

r3
u
(n−1)
j − · · ·

+(−1)n−1n!
N − 1

rn
u′′j + (−1)nn!

N − 1

rn+1
u′j, (2.76)

and by the formula for derivatives of a composition (e.g. Faà di Bruno [54]) we obtain

(f(uj))
(n) = −λeuj

∑
α1,...,αn

n!

α1!(1!)α1α2!(2!)α2 · · ·αn!(n!)αn

n∏
i=1

(u
(i)
j )αi , (2.77)
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where the sum ranges over integers α1 ≥ 0, · · · , αn ≥ 0 with α1+2α2+ · · ·+nαn = n. Using
(2.75)-(2.77) with n = k − 1 and r = r0, we get

u
(k+1)
j (r0) = −N − 1

r0
u
(k)
j (r0) + (k − 1)

N − 1

r20
u
(k−1)
j (r0)− · · ·

− (−1)k−2(k − 1)!
N − 1

rk−1
0

u′′j (r0)− (−1)k−1(k − 1)!
N − 1

rk0
u′j(r0)

− λeb
∑

α1,...,αk−1

(k − 1)!

α1!(1!)α1α2!(2!)α2 · · ·αk−1!((k − 1)!)αk−1

k−1∏
i=1

(u
(i)
j (r0))

αi ,

where the sum ranges over integers α1 ≥ 0, · · · , αk−1 ≥ 0 with α1+2α2+ · · ·+(k−1)αk−1 =

k − 1. By the induction assumption (2.74), we have
k−1∏
i=1

(u
(i)
j (r0))

αi is a polynomial in u′j(r0)

of degree at most α1 + α2 + α3 + 2α4 + 3α5 + · · · + (k − 3)αk−1 ≤ k − 1. Thus we see the
validity of (2.74).

Next we prove that (2.73) holds, again by induction. From (2.72), we have

K+1∑
j=1

cju
(n)
j (r0) =

(
K+1∑
j=1

cj

)
u
(n)
0 (r0) for any integer n ≥ 0, (2.78)

and so (2.73) holds for n = 0, 1. Suppose (2.73) holds for n = k. By equation (2.1), we get

(∆uj)
(n) = (f(uj))

(n). (2.79)

Since uj(r0) = u0(r0) for j = 1, 2, · · · , K + 1, from (2.76)-(2.79), we obtain for any integer
n ≥ 0,

K+1∑
j=1

cj
((
u′j(r0)

)n
+ Aj,n

)
=

(
K+1∑
j=1

cj

)(
(u′0(r0))

n
+ A0,n

)
(2.80)

where

Aj,n =
∑

α1,...,αn

n!

α1!(1!)α1α2!(2!)α2 · · ·αn!(n!)αn

n∏
i=1

(u
(i)
j (r0))

αi

and the sum ranges over integers 0 ≤ α1 < n, α2 ≥ 0, · · · , αn ≥ 0 with α1+2α2+· · ·+nαn = n.
In writing (2.80) we have used again the formula for the n-th order derivative of a composition,
where we have isolated one term. Consider (2.80) for n = k + 1. By (2.74) we know that
k+1∏
i=1

(u
(i)
j (r0))

αi is a polynomial in u′j(r0) of degree at most

α1 + α2 + α3 + 2α4 + 3α5 + · · ·+ (k − 1)αk+1.
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Since 0 ≤ α1 < k + 1, we see that

α1 + α2 + α3 + 2α4 + 3α5 + · · ·+ (k − 1)αk+1 < α1 + 2α2 + · · ·+ (k + 1)αk+1 = k + 1

and therefore Aj,n can be expressed as a polynomial in u′j(r0) of degree at most k. Thus by
the induction assumption, we have

K+1∑
j=1

cjAj,n =

(
K+1∑
j=1

cj

)
A0,n

and so (2.73) holds for any integer n ≥ 0.

Finally we turn to the proof of (2.71), namely the linear independence of φj, j =
1, · · · , K + 1. We denote u′0(r0) = d0, u

′
j(r0) = dj for j = 1, 2, · · · , K + 1. For n =

1, 2, · · · , K + 1, we can rewrite (2.73) as
d1 − d0 d2 − d0 · · · dK+1 − d0
d21 − d20 d22 − d20 · · · d2K+1 − d20
d31 − d30 d32 − d30 · · · d3K+1 − d30

...
...

. . .
...

dK+1
1 − dK+1

0 dK+1
2 − dK+1

0 · · · dK+1
K+1 − dK+1

0




c1
c2
c3
...

cK+1

 = 0. (2.81)

A calculation shows that the determinant of the coefficient matrix of (2.81) is equal to a
(K + 2)× (K + 2) Vandermonde determinant and the value is∏

0≤j<i≤K+1

(di − dj) ̸= 0.

Thus c1 = c2 = · · · = cK+1 = 0 and this ends the proof of Theorem 2.6.

2.7 Appendix

Proof of Proposition 2.1. Suppose u is a classical solution of (2.1). Let ϕ1 > 0 be the first
eigenfunction of −∆ corresponding to the first eigenvalue µ1. Multiplying problem (2.1) by
ϕ1 and integrating over B, we find

µ1

∫
B

uϕ1 = λ

∫
B

(eu − 1)ϕ1 > λ

∫
B

uϕ1.

Thus λ < µ1.

Multiplying problem (2.1) by x · ∇u, and integrating over B, we have

−
∫
B

∆u(x · ∇u) = λ

∫
B

(eu − 1)(x · ∇u). (2.82)
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But

−
∫
B

∆u(x · ∇u) = −1

2

∫
∂B

|∇u|2x · ν +
(
1− N

2

)∫
B

|∇u|2

≤
(
1− N

2

)∫
B

|∇u|2, (2.83)

since x · ν ≥ 0 on ∂B. Moreover,

λ

∫
B

(eu − 1)(x · ∇u) = −λN
∫
B

(eu − 1− u). (2.84)

From (2.82)-(2.84), we get(
N

2
− 1

)∫
B

|∇u|2 ≤ λN

∫
B

(eu − 1− u).

We rewrite the above inequality as

N − 2

4

∫
B

|∇u|2 ≤ λN

∫
B

(eu − 1− u)− N − 2

4

∫
B

|∇u|2.

Multiplying equation (2.1) by u and substituting we get

N − 2

4

∫
B

|∇u|2 ≤ λ

∫
B

[
N(eu − 1− u)− N − 2

4
(eu − 1)u

]
.

The integrand on the right hand is negative for u ≥ C0, with C0, a positive constant, so the
integral can be restricted to the region {x : u(x) ≤ C0} and in this region

N(eu − 1− u)− N − 2

4
(eu − 1)u ≤ C1u

2.

Thus

N − 2

4

∫
B

|∇u|2 ≤ λC1

∫
B

u2 ≤ λC2

∫
B

|∇u|2,

where C1 > 0, C2 > 0. This implies that u = 0 if 0 < λ < N−2
4C2

.
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Chapter 3

A new critical curve for the
Lane-Emden system

3.1 Introduction

We consider the Lane-Emden system{
−∆u = vp, u > 0 in RN ,

−∆v = uq, v > 0 in RN ,
(3.1)

where N ≥ 1 and p ≥ q ≥ 1. Introduced independently by Mitidieri [85] and Van der
Vorst [114], the Sobolev critical hyperbola plays a crucial role in the analysis of (3.1). In
particular, Mitidieri [86] (see also Serrin and Zou [109]) proved that (3.1) has a nontrivial
radially symmetric solution if and only if (p, q) lies on or above the hyperbola i.e. when

1

p+ 1
+

1

q + 1
≤ 1− 2

N
. (3.2)

The Lane-Emden conjecture states that such a result should continue to hold for any positive
solution (not necessarily radially symmetric). See Souplet [110] and the references therein
for the progress on this conjecture.

In this chapter we characterize the stability of radially symmetric solutions of the Lane-
Emden system (3.1). Let us now recall the definition of stable solution of system (3.1), see
also Definition 1.15.

Definition 3.1. A solution (u, v) to (3.1) is stable if there exists a positive supersolution of
the linearized system i.e. if there exists (ϕ, ψ) ∈ C2(RN)2 such that

−∆ϕ ≥ pvp−1ψ in RN ,

−∆ψ ≥ quq−1ϕ in RN ,

ϕ, ψ > 0 in RN .
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Let us also recall that if (3.2) holds, then

(us, vs) = (a|x|−α, b|x|−β), x ∈ RN \ {0} (3.3)

is a weak solution of (3.1) provided

α =
2(p+ 1)

pq − 1
, β =

2(q + 1)

pq − 1
(3.4)

and a = (ST p)
1

pq−1 , b = (SqT )
1

pq−1 , S = α(N − 2− α) , T = β(N − 2− β).

Our main result states that the stability of a radial solution of the Lane-Emden system is
determined by the position of the exponents (p, q) with respect to a new critical curve, which
we call “Joseph and Lundgren”, since the exponent introduced by these authors in [73] is the
intersection of the curve with the diagonal p = q.

Theorem 3.2. Assume p ≥ q ≥ 1.

(i) If N ≥ 11 and (p, q) lies on or above the Joseph-Lundgren critical curve i.e.[(N − 2)2 − (α− β)2

4

]2
≥ pqαβ(N − 2− α)(N − 2− β), (3.5)

then any radially symmetric solution (u, v) of (3.1) is stable and satisfies

u < us and v < vs in RN \ {0},

where (us, vs) is the singular solution given by (3.3) and α, β are the scaling exponents given
by (3.4).

(ii) If N ≤ 10 or if N ≥ 11 and (3.5) fails, then there is no stable radially symmetric
solution of (3.1).

Remark 3.3. Equation (3.5) is derived by studying the stability of the singular solution
(us, vs) given by (3.3).

Remark 3.4. • The above theorem was first proved by Cowan for 1 ≤ N ≤ 10, p ≥ q ≥ 2
and (u, v) not necessarily radial. See [30].

• In the case p = q, using Remarks 1.1(a) and 2.1(a) of Souplet [110] and Farina’s
seminal work for the case of a single equation [55], part (ii) of the theorem readily follows.
The result continues to hold for possibly nonradial solutions, assumed to be stable only outside
a compact set.

• In the biharmonic case q = 1, the theorem was first proved by Karageorgis [74] using
the asymptotics found by Gazzola and Grunau in [63].

• In all the other cases, only partial results were known. To the authors knowledge, the
state of the art for nonradial solutions is contained in the following references: Wei and D.
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p1
JL

N+4
N−4

N+2
N−2

pp
JL

21

q

Figure 4: The stable region (shaded) for radially symmetric solutions of the Lane-Emden
system (3.1).

Ye [117], Wei, Xu and Yang [115], Hajlaoui, A. Harrabi and D. Ye [72] for the biharmonic
case, and Cowan [30] for the general case. We believe that the methods of the paper [52]
by Goubet, Warnault and two of the authors should slightly improve the known results (and
coincide with [72] in the biharmonic case).

• Our result does not cover the case where one of the exponents is less than 1.

• The left hand-side in (3.5) is related to the following Hardy-Rellich inequality:∫
RN

|x|2−γ|∆φ|2dx ≥ Cγ

∫
RN

|x|−2−γφ2dx. (3.6)

The optimal constant Cγ in the class of radially symmetric functions φ = φ(|x|) is given by

Cγ = inf
φ∈C∞

c (RN\{0})
0 ̸=φ=φ(|x|)

∫
Ω

|x|2−γ|∆φ|2dx∫
Ω

|x|−2−γφ2dx

=
[(N − 2)2 − γ2

4

]2
, (3.7)

and the above infimum is never achieved. See Caldiroli and Musina [20]. We remark that the
optimal constant Cγ in (3.7) corresponds to the left hand-side in (3.5) with γ = α−β ∈ [0, 2).

As an immediate corollary of Theorem 3.2 and standard blow-up analysis, we obtain the
following regularity result.
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Corollary 3.5. Let B denote the unit ball of RN , N ≥ 1, λ, µ > 0. Let f, g ∈ C1(R) be two
nondecreasing functions such that f(0) ≥ 0, g(0) > 0, f ′(0)g′(0) > 0 and

lim
t→+∞

f ′(t)

tp−1
= a, lim

t→+∞

g′(t)

tq−1
= b

for some a, b > 0, p ≥ q ≥ 1, pq > 1. Then, any extremal solution to the system
−∆u = λf(v), u > 0 in B,

−∆v = µg(u), v > 0 in B,

u = v = 0 on ∂B

(3.8)

is bounded if either N ≤ 10 or if N ≥ 11 and (p, q) lies below the Joseph-Lundgren critical
curve i.e. (3.5) fails.

For the notion of extremal solution for systems, we refer to Montenegro [88]. See also
Cowan [29] for partial results on general domains. The proof is a straightforward adaptation
of Theorem 1.9 in [37], using the version of the blow-up technique introduced by Polacik,
Quittner and Souplet [100], so we skip it.

3.2 Preliminary results

The following three results will serve for the purpose of comparing solutions. In the
lemma below, we say that a solution is strictly stable in a bounded region Ω ⊂ RN if the
principal eigenvalue of the linearized equation with Dirichlet boundary conditions in Ω is
strictly positive.

Lemma 3.6. Let (u, v) ∈ C2(RN)2 be a stable solution of (3.1). Then, given any bounded
domain Ω ⊂ RN , (u, v) is strictly stable in Ω. In particular, the linearized operator satisfies
the maximum principle, that is, any pair (ϕ, ψ) ∈ C2(Ω)2 such that

−∆ϕ ≥ pvp−1ψ in Ω,

−∆ψ ≥ quq−1ϕ in Ω,

ϕ, ψ ≥ 0 on ∂Ω,

satisfies ϕ, ψ ≥ 0 in Ω.

Proof. Since (u, v) is stable in RN , the linearized equation has a strict supersolution in Ω. As
observed by Sweers [111] and Busca-Sirakov [18], this implies in turn that the principal
eigenvalue of the linearized operator with Dirichlet boundary conditions in Ω is strictly
positive and equivalently that the maximum principle holds.

In the next lemma, we say that a solution is minimal if it lies below any (local) superso-
lution of the same equation. See e.g. [50] for the notion of minimal solution.
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Lemma 3.7. Assume p ≥ q ≥ 1 and let Ω ⊂ RN be a bounded domain, a, b ∈ C(∂Ω),
a, b ≥ 0. If (u, v) ∈ C2(Ω)2 is a strictly stable solution of

−∆u = vp in Ω,

−∆v = uq in Ω,

u = a(x) , v = b(x) on ∂Ω,

(3.9)

then (u, v) is minimal.

Proof. Assume that (u, v) is a strictly stable solution of (3.9). By the maximum principle,

u ≥ min
∂Ω

a , v ≥ min
∂Ω

b in Ω.

In particular, there exists the minimal solution (um, vm) of (3.9) and

u ≥ um ≥ min
∂Ω

a , v ≥ vm ≥ min
∂Ω

b in Ω.

Set ϕ = u− um, ψ = v − vm. Then, ϕ, ψ ≥ 0 in Ω and, since p ≥ q ≥ 1,
−∆ϕ = vp − vpm ≤ pvp−1ψ in Ω,

−∆ψ = uq − uqm ≤ quq−1ϕ in Ω,

ϕ = ψ = 0 on ∂Ω.

Since (u, v) is strictly stable, the maximum principle holds and implies that ϕ, ψ ≤ 0 in Ω.
It follows that ϕ ≡ ψ ≡ 0, that is, u = um and v = vm.

As an immediate consequence of the two previous lemmas, we obtain

Corollary 3.8. Let (u, v) ∈ C2(RN)2 be a stable solution of (3.1) and let (us, vs) be the
singular solution defined by (3.3). If there exists R > 0 such that u(R) ≤ us(R) and v(R) ≤
vs(R), then

u < us and v < vs in BR \ {0}.

Proof. Since us(0) = vs(0) = ∞, there exists r ∈ (0, R) such that

u < us and v < vs in Br \ {0}. (3.10)

We next apply Lemma 3.7 for Ω = BR \ Br, a(x) = u, b(x) = v. Thus (u, v) is the minimal
solution of (3.9) and u < us, v < vs in BR \ Br. This last inequality together with (3.10)
yield the conclusion.
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3.2.1 Stability of the singular solution.

In this part we investigate the stability of the singular solution (us, vs) given by (3.3).

Proposition 3.9. The following are equivalent:

(i) The singular solution (us, vs) is stable in RN \ {0};
(ii) The singular solution (us, vs) is stable outside of some compact set;

(iii) (p, q) satisfies (3.5).

Proof. Since the implication (i) ⇒ (ii) is trivial, we only need to prove the implications

(ii) ⇒ (iii) ⇒ (i)

Assume first that (ii) holds, that is, the singular solution (us, vs) is stable outside of a
compact set. Thus, (us, vs) is stable in RN \ Br for some r > 0. By scale invariance, (us, vs)
is stable in RN \Bρ for all ρ > 0.

Set γ = α− β, where α, β are the scaling exponents given by (3.4) and let K1, K2 be the
constants such that

pvp−1
s = K1|x|−2+γ and quq−1

s = K2|x|−2−γ.

Then, (p, q) satisfies (3.5) if and only if

Cγ ≥ K1K2,

where Cγ is given by (3.7). Assume by contradiction that (p, q) does not satisfy (3.5). Then,
we may find an open annular region Ω = BR1 \BR2 such that

λ := min
φ∈H\{0}

∫
Ω

|x|2−γ|∆φ|2dx∫
Ω

|x|−2−γφ2dx

< K1K2, (3.11)

where H is the space of radial functions φ such that
∫
Ω
|x|2−γ|∆φ|2dx < +∞ and φ = 0 on

∂Ω. Let φ > 0 be a minimizer of (3.11), so that letting ψ = |x|2−γ(−∆φ), we have
−∆φ = |x|−2+γψ, φ > 0 in Ω,

−∆ψ = λ|x|−2−γφ, ψ > 0 in Ω,

φ = ψ = 0 on ∂Ω.

Since (us, vs) is strictly stable in Ω, thanks to [111, Theorem 1.1], there also exists (φ̃, ψ̃) ∈
C2(Ω)2 such that 

−∆φ̃ = K1|x|−2+γψ̃, φ̃ > 0 in Ω,

−∆ψ̃ = K2|x|−2−γφ̃+ 1, ψ̃ > 0 in Ω,

φ̃ = ψ̃ = 0 on ∂Ω.
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A straightforward integration by part shows that φ and φ̃ satisfy

⟨φ, φ̃⟩ :=
∫
Ω

|x|2−γ∆φ∆φ̃dx ≤ 0

which is impossible, since both ψ and ψ̃ are positive. Hence (p, q) satisfies (3.5) and we have
proved that (ii) implies (iii).

Assume now (iii). It is easy to see that

ϕ(x) =
4K1

(N − 2− γ)(N − 2 + γ)
|x|−

N−2−γ
2 , ψ(x) = |x|−

N−2+γ
2 (3.12)

satisfy
−∆ϕ = pvp−1

s ψ

−∆ψ ≥ quq−1
s ϕ

(3.13)

in RN \ {0}, which means that (us, vs) is stable in RN \ {0}.

3.3 Proof of Theorem 3.2

We start this section with the following simple remark.

Remark 3.10. Let (u, v) be a radially symmetric solution of (3.1). Then

lim
r→∞

u(r) = lim
r→∞

v(r) = 0.

To see this, we first note that (u, v) satisfies{
−(rN−1u′)′ = rN−1vp for all r ≥ 0,

−(rN−1v′)′ = rN−1uq for all r ≥ 0.
(3.14)

This implies that r 7−→ rN−1u′(r) and r 7−→ rN−1v′(r) are decreasing on [0,∞) and so
u′, v′ ≤ 0 in [0,∞). Thus, u and v are decreasing in [0,∞). Hence, there exist

ℓ1 := lim
r→∞

u(r) ∈ [0,∞) , ℓ2 := lim
r→∞

v(r) ∈ [0,∞),

and u ≥ ℓ1, v ≥ ℓ2 in [0,∞).

If ℓ2 > 0, then the first equation in (3.14) implies

−(rN−1u′)′ ≥ CrN−1 for all r ≥ 0,

where C = ℓp2 > 0. Integrating twice over [0, r] in the above inequality we deduce

−u(r) + u(0) ≥ C

2N
r2 → ∞ as r → ∞,
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contradiction. Thus, ℓ2 = 0 and similarly ℓ1 = 0 which proves our claim.

Assume (p, q) satisfies (3.5). Then by Proposition 3.9, the singular solution (us, vs) is
stable in RN \ {0}.

Theorem 3.2(i) follows from the proposition below.

Proposition 3.11. Assume (p, q) satisfies (3.5). Then for any radially symmetric solution
(u, v) of (3.1), we have

u < us and v < vs in RN \ {0}. (3.15)

Proof. Assume by contradiction that there exists a radially symmetric solution (u, v) of (3.1)
for which (3.15) fails to hold and set

U = us − u , V = vs − v.

Since (3.15) is not fulfilled, U ′ and V ′ must change sign in (0,∞). Indeed, otherwise U ′ < 0
or V ′ < 0 in (0,∞) which implies (since U(∞) = V (∞) = 0) that us ≥ u or vs ≥ v in (0,∞).
Now, the maximum principle yields us ≥ u and vs ≥ v in (0,∞) and this contradicts our
assumption.

Let r1 > 0 (resp. r2 > 0) be the first zero of U ′ (resp. V ′). Thus

U ′ < 0 in (0, r1), U
′(r1) = 0, V ′ < 0 in (0, r2), V

′(r2) = 0.

Without losing the generality, we may assume r2 ≥ r1. Set next

r3 := inf{r > 0 : V (r) < 0} ∈ (0,∞]

and we claim that r3 < r1. If r3 ≥ r1 then V > 0 in (0, r1) which means

v < vs in (0, r1). (3.16)

Integrating in (3.1) and using (3.16) we find

(rN−1u′)′ = −rN−1vp > −rN−1vps = (rN−1u′s)
′ in (0, r1).

Integrating the above inequality over [0, r1] we find u
′(r1) > u′s(r1) which contradicts U ′(r1) =

0. Hence r3 ∈ (0, r1). Similarly we define

r4 := inf{r > 0 : U(r) < 0} ∈ (0,∞]

and as before we deduce r4 ∈ (0, r2). In fact, we show that r4 ≤ r1. Assuming the contrary,
that is, r4 > r1, we find r1 < r4 < r2. Further, since V ′ < 0 in (0, r2) we deduce V (r) <
V (r3) = 0 for all r ∈ (r3, r2) so vs < v in (r3, r2). Therefore,

(rN−1u′)′ = −rN−1vp < −rN−1vps = (rN−1u′s)
′ in (r3, r2).
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Integrating over [r1, r], r1 < r < r2, and using U ′(r1) = 0 we obtain u′(r) < u′s(r) for all
r ∈ (r1, r2). This means that U is increasing in (r1, r2). In particular, U(r1) < U(r4) = 0.
On the other hand, from the definition of r4 we have U(r1) > 0, contradiction. We have thus
obtained r3 < r1, r4 ≤ r1 ≤ r2 which yield

U(r1) ≤ 0, U ′(r1) = 0, V (r1) < 0, V ′(r1) ≤ 0. (3.17)

Next, let (ϕ, ψ) be defined by (3.12) and recall that (ϕ, ψ) solves the linearized equation
(3.13) in RN \ {0}. Also, since p ≥ q ≥ 1, (U, V ) satisfies{

−∆U ≤ pvp−1
s V

−∆V ≤ quq−1
s U

in RN \ {0}. (3.18)

We multiply the equations in (3.13) by V and U , and the two equations in (3.18) by ψ and
ϕ respectively. Integrating over Br, r > 0, we find∫

Br

(−∆U)ψ ≤
∫
Br

(−∆ϕ)V and

∫
Br

(−∆V )ϕ ≤
∫
Br

(−∆ψ)U.

Adding the above inequalities we deduce∫
Br

(
V∆ϕ− ϕ∆V

)
+

∫
Br

(
U∆ψ − ψ∆U

)
≤ 0 for all r > 0,

that is, ∫
∂Br

(
V
∂ϕ

∂ν
− ϕ

∂V

∂ν

)
+

∫
∂Br

(
U
∂ψ

∂ν
− ψ

∂U

∂ν

)
≤ 0 for all r > 0.

Since U, V, ϕ, ψ are radially symmetric, this yields

V ϕ′ − ϕV ′ + Uψ′ − ψU ′ ≤ 0 in (0,∞). (3.19)

Now, let us remark that ϕ, ψ > 0 and ϕ′, ψ′ < 0 in (0,∞). Combining this fact with (3.17)
we deduce that (3.19) does not hold ar r = r1, a contradiction. Hence u < us and v < vs in
RN \ {0}.

Assume next that (3.5) fails to hold. We establish first the following result.

Proposition 3.12. Assume (p, q) does not satisfy (3.5). Then, for any stable solution (u, v)
of (3.1) we have

u < us and v < vs in RN \ {0}.

Proof. Assume by contradiction that u − us changes sign in RN \ {0}. Then v − vs also
changes sign in RN \ {0} for otherwise v − vs ≤ 0 in RN \ {0} implies

−∆(u− us) = vp − vps ≤ 0 in RN \ {0}.
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Also u−us < 0 in a neighborhood of the origin and by Remark 3.10 we have u(x)−us(x) → 0
as |x| → ∞. By the maximum principle, we deduce u−us ≤ 0 in RN \{0} which contradicts
our assumption.

Hence u − us and v − vs change sign on (0,∞). Denote by r1 (resp. r2) the first sign-
changing zero of u− us (resp. v − vs). From Corollary 3.8, u − us (resp. v − vs) cannot be
zero in a whole neighborhood of r1 (resp. r2). Without losing generality, we may assume
that r1 ≤ r2.

We claim that u − us has a second sign-changing point r3 > r1. Indeed, otherwise
u− us ≥ 0 in RN \Br1 which by the maximum principle implies that v− vs ≥ 0 in RN \Br2 .
Therefore, u ≥ us, v ≥ vs in RN \ Br2 which implies that (us, vs) is a stable solution of
(3.1) in RN \Br2 and thus, contradicts Proposition 3.9. Hence, there exists r3 > r1 a second
sign-changing point of u − us. Further, we must have r3 ≥ r2 for otherwise r1 < r3 < r2.
Then u(r3) = us(r3) and v(r3) < vs(r3) which by Corollary 3.8 yields u < us, v < vs in
Br3 \ {0}. But this is impossible since u(r1) = us(r1). Thus, r3 ≥ r2.

We next claim that v − vs has a second sign-changing point r4 > r2. As before, if this is
not true, then v − vs ≥ 0 in RN \ Br2 and by the maximum principle we find u − us ≥ 0 in
RN \Br3 . Then u ≥ us, v ≥ vs in RN \Br3 , so (us, vs) is stable in RN \Br3 which contradicts
Proposition 3.9.

We show next that r4 ≥ r3. Assuming the contrary we have r2 < r4 < r3. At this stage,
two cases may occur:

Case 1: v ≤ vs in (r4, r3). Remark that u(r3) = us(r3) and v(r3) ≤ vs(r3). By Corollary 3.8
we deduce u < us in Br3 which is impossible since u(r1) = us(r1).

Case 2: v − vs has a third sign-changing point ρ ∈ (r4, r3). Then v − vs > 0 on (r2, r4) and
v − vs < 0 on (r4, ρ). On the other hand,

−∆(v − vs) = uq − uqs ≥ 0 in Bρ \Br4

and v − vs = 0 on ∂(Bρ \ Br4). The maximum principle yields v − vs > 0 on (r4, ρ), a
contradiction. We have proved that r4 ≥ r3.

We claim that u− us has a third sign-changing point r5 > r3. Indeed, if this is not true,
then u− us ≤ 0 in RN \Br3 and by the maximum principle we have v − vs ≤ 0 in RN \Br4 .
Hence u ≤ us, v ≤ vs in RN \ Br4 which combined with Corollary 3.8 produces u < us,
v < vs in Br4 . This is clearly impossible since u(r1) = us(r1). Hence, u − us has a third
sign-changing point r5 > r3.

If r5 ≤ r4 then
−∆(u− us) = vp − vps ≥ 0 in Br5 \Br3

and u − us = 0 on ∂(Br5 \ Br3). By the maximum principle we infer that u − us ≥ 0 in
Br5 \ Br3 which implies u − us ≥ 0 in Br5 \ Br1 . This contradicts the fact that r3 ∈ (r1, r5)
is a sign-changing point of u− us.
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If r5 > r4 then u(r4) ≤ us(r4) and v(r4) = vs(r4). By Corollary 3.8 we deduce u < us,
v < vs in Br4 which is again a contradiction.

We are now ready to complete the proof of Theorem 3.2(ii). We adapt an idea introduced
in [39]. Assume there exists a positive stable radially symmetric solution (u, v) of (3.1) and
set

M1 = sup
r∈(0,∞)

u(r)

us(r)
, M2 = sup

r∈(0,∞)

v(r)

vs(r)
.

By Proposition 3.12 we have M1,M2 ≤ 1. Since limr→∞ u(r) = 0, u coincides with the
Newtonian potential of vp. Hence

u(x) = cN

∫
RN

|x− y|2−Nvp(y)dy

≤Mp
2

{
cN

∫
RN

|x− y|2−Nvps(y)dy

}
=Mp

2us(x).

Thus,M1 ≤Mp
2 and similarlyM2 ≤M q

1 . It follows thatM1 ≤Mpq
1 . So, since pq > 1 we have

either M1 = 0 or M1 = 1. If M1 = 0 then u ≡ 0 and this yields v ≡ 0 which is impossible.
Therefore M1 = 1 and similarly M2 = 1, i.e.

sup
r∈(0,∞)

u(r)

us(r)
= sup

r∈(0,∞)

v(r)

vs(r)
= 1.

By the strong maximum principle, (u, v) cannot touch (us, vs), so there exists a sequence
{Rk} converging to +∞ such that

lim
k→∞

u(Rk)

us(Rk)
= 1. (3.20)

Define
uk(r) = Rα

ku(Rkr) , vk(r) = Rβ
kv(Rkr) r ≥ 0.

By scale invariance we have

0 < uk < us , 0 < vk < vs in RN \ {0} (3.21)

and (uk, vk) solves the Lane-Emden system (3.1) in RN \{0}. By elliptic regularity, {(uk, vk)}
converges uniformly in C2

loc(RN \ {0}) to a solution (ũ, ṽ) of (3.1) which, in view of (3.21),
also satisfies

0 ≤ ũ ≤ us , 0 ≤ ṽ ≤ vs in RN \ {0}.
Let us remark that by (3.20) we have

ũ(1) = lim
k→∞

uk(1) = lim
k→∞

Ra
ku(Rk) = lim

k→∞
Ra

kus(Rk) = us(1).

On the other hand, {
−∆(ũ− us) = ṽp − vps ≤ 0 in RN \ {0},

lim
|x|→0

(ũ− us) ≤ 0 , lim
|x|→∞

(ũ− us) ≤ 0.

By the strong maximum principle we deduce that ũ ≡ us in RN \ {0}. This is impossible,
since ũ is a stable solution by construction while us is unstable when (3.5) fails.
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Chapter 4

Multiplicity of solutions to nearly
critical elliptic equation in the
bounded domain of R3

4.1 Introduction

We are interested in the following semilinear elliptic boundary value problem{
−∆u = up + λuq, u > 0 in Ω;

u = 0 on ∂Ω,
(4.1)

where Ω is a smooth bounded domain in R3, λ is a positive parameter and p > q > 1.

Existence and multiplicity of solutions to (4.1) have been studied intensively by many
authors for the exponents p and q in different ranges. Ambrosetti, Brézis and Cerami [2],
using the method of sub and super solutions, established that for 0 < q < 1 and p > 1
arbitrary, there exists Λ > 0 such that problem (4.1) has a minimal solution uλ for λ ∈ (0,Λ),
and uλ is increasing with respect to λ; for λ = Λ, problem (4.1) has at least one weak soltuion;
for all λ > Λ, problem (4.1) has no solution. Moreover, using variational tools, the authors
[2] also showed that if 0 < q < 1 < p ≤ 5, for all λ ∈ (0,Λ), problem (4.1) has a second
solution.

Let us also mention the question of existence and multiplicity of solutions to (4.1) for
q = 1.

(a) If 1 < p < 5, for 0 < λ < µ1, where µ1 is the first eigenvalue of −∆ under Dirich-
let boundary condition, a solution can be found by the standard constrained minimization
procedure thanks to compactness of Sobolev embedding H1

0 (Ω) ↩→ Lp+1(Ω).

(b) If p ≥ 5, this case is more delicate, since for p = 5 the Sobolev embedding loses
compactness while for p > 5 Sobolev embedding fails. Pohozaev [99] proved that if Ω
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is strictly star-shaped, then there is no solution of (4.1) if λ ≤ 0 and p ≥ 5. For the
supercritical case, del Pino, Dolbeault and Musso [44], established existence and multiplicity
of solutions to problem (4.1) when p is supercritical but sufficiently close to 5. For p = 5, the
great contribution to this case was the pioneering work of Brézis and Nirenberg [14]. They
obtained that if q = 1, (4.1) has a solution if and only if λ ∈ (1

4
µ1, µ1) when Ω is a ball.

Brézis and Nirenberg [14] obtained the following results for the case q > 1: if 1 < q ≤ 3,
there exists a solution if and only if λ > 0 is large enough. If 3 < q < 5, (4.1) has a solution
for every λ > 0. In addition, when Ω is a ball, they gave the following conjecture, which
based on numerical computations.

If q = 3, there is some λ̃ such that

• for λ > λ̃, there is a unique solution of (4.1);

• for λ ≤ λ̃, there is no solution of (4.1).

If 1 < q < 3, there is some λ̃ such that

• for λ > λ̃, there are two solutions of (4.1);

• for λ = λ̃, there is a unique solution of (4.1);

• for λ < λ̃, there is no solution of (4.1).

Afterwards, Atkinson and Peletier [6] proved the nonuniqueness of solutions to (4.1)
conjectured by Brézis and Nirenberg for N = 3, p = 5 and 1 < q < 3. Not restricting to
integer values of N , they established for 2 < N < 4, p = N+2

N−2
and 1 < q < 6−N

N−2
, then

there exists some λ̃ > 0 such that (4.1) has at least two solutions for any λ > λ̃, and it
has no solution for λ < λ̃. Rey [103] provided another partial answer to above conjecture.
He obtained that for p = 5 and 2 < q < 3, λ > 0 large enough, problem (4.1) has at least
Cat(Ω)+1 solutions, where Ω is any smooth and bounded domain in R3 and Cat(Ω) denotes
Ljusternik-Schnirelman category of Ω.

The purpose of this chapter is to establish multiplicity of solutions to problem (4.1) when
p approaches to the critical exponent from below. Namely, we consider{

−∆u = u5−ε + λuq, u > 0 in Ω;

u = 0 on ∂Ω,
(4.2)

where Ω is a smooth bounded domain in R3, 1 < q < 3, λ > 0 and ε > 0. In the following,
we write p = 5− ε. It is known that the solutions to problem (4.2) correspond to the critical
points of the following functional

J(u) =
1

2

∫
Ω

|∇u|2 − 1

p+ 1

∫
Ω

|u|p+1 − λ

q + 1

∫
Ω

|u|q+1, u ∈ H1
0 (Ω). (4.3)

In order to state our results, we introduce some notations. Let us consider Green’s function
G(x, y), solution for any given y ∈ Ω of{

−∆xG(x, y) = δy(x) in Ω;

G(x, y) = 0 on ∂Ω,
(4.4)
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and its regular part H(x, y) = 1
4π|x−y| −G(x, y). Then H(x, y) satisfies{
−∆xH(x, y) = 0 in Ω;

H(x, y) = 1
4π|x−y| on ∂Ω.

(4.5)

The Robin’s function of Ω is defined as R(x) = H(x, x), where H(x, y), x, y ∈ Ω is given
by (4.5), so R(x) is smooth, R(x) → +∞ as x → ∂Ω, and it is positive by the maximum
principle. Thus R(x) has a minimum in Ω, and hence it has at least one critical point ξ0 ∈ Ω.

Regarding ε > 0 as a small parameter, we construct a large solution. Our results can be
stated as follows.

Theorem 4.1. Let 1 < q < 3, there exists λ0 > 0, depending on Ω, q, and ε0 > 0, such that
for any given λ ≥ λ0, ε ∈ (0, ε0), problem (4.2) has at least two solutions. One of them is
the mountain pass solution u1, the other one is the large solution u2, which has the form of

u2(x) = 3
1
4

(Λ∗ε)
1
2

((Λ∗ε)2 + |x− ξ∗|2)
1
2

(1 + o(1)), (4.6)

satisfying

J(u2) =

√
3

4
π2 − a2ε log ε+O(ε), (4.7)

where a2 > 0 and Λ∗ > 0 and ξ∗ → ξ0, o(1) → 0 uniformly in Ω̄ as ε→ 0.

Next, we use λ as parameter to construct a third solution for 2 < q < 3.

Theorem 4.2. Assume that 2 < q < 3. There exist λ̂ ≥ λ0 and δ0 > 0, such that for any
λ ≥ λ̂ satisfying

0 < ελ
2

3−q log λ < δ0, (4.8)

then for all sufficiently small ε > 0, problem (4.2) has at least three solutions.

In the case 1 < q ≤ 2, it is also possible to find a third solution but the proof is more
delicate and will be addressed in future work.

We now mention some contributions to multiplicity of solutions to equations with two
powers in the whole space RN with N ≥ 3. Recently, Dávila, del Pino and Guerra [35]
studied nonuniqueness of positive solution of the following problem

−∆u+ u = up + λuq, u > 0 in R3; u(z) → 0 as |z| → ∞. (4.9)

More precisely, the authors obtained at least three solutions to problem (4.9) if 1 < q < 3,
λ > 0 is sufficiently large and fixed, and p < 5 is close enough to 5.

This chapter is organized as follows, in Section 4.2, we compute the energy asymptotic
expansion. We build the large solution in Section 4.3 and prove Theorem 4.1. We prove
Theorem 4.2 in Section 4.4.
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4.2 The asymptotic expansion

We recall that, according to [19], the functions

wµ,ξ(x) = 3
1
4

µ
1
2

(µ2 + |x− ξ|2) 1
2

µ > 0, ξ ∈ R3,

are the only solutions (except translations) of the problem

−∆w = w5, w > 0 in R3. (4.10)

As ξ ∈ Ω and µ goes to zero, these functions provide us with approximate solutions to the
problem that we are interested in. However, in view of the Dirichlet boundary condition, the
approximate solution needs to be improved.

From now on we assume that ξ ∈ Ω and is far from the boundary of Ω, that is, there
exists δ > 0 such that

d(ξ, ∂Ω) ≥ δ. (4.11)

Let Uµ,ξ(x) be the unique solution of{
−∆Uµ,ξ = w5

µ,ξ in Ω;

Uµ,ξ = 0 on ∂Ω.
(4.12)

We have the following estimates.

Lemma 4.3. Let d(ξ, ∂Ω) ≥ δ for some δ > 0, for µ > 0 small enough, one has
(a) 0 < Uµ,ξ(x) ≤ wµ,ξ(x),

(b) Uµ,ξ(x) = wµ,ξ(x)− 4π3
1
4µ

1
2H(x, ξ) +O(µ

5
2 ).

Proof. By the maximum principle, we obtain (a). Now we define

D(x) = Uµ,ξ(x)− wµ,ξ(x) + 4π3
1
4µ

1
2H(x, ξ).

Observe that for x ∈ ∂Ω, as µ→ 0,

D(x) = Uµ,ξ(x)− wµ,ξ(x) + 4π3
1
4µ

1
2H(x, ξ)

= 3
1
4µ

1
2

[
1

|x− ξ|
− 1

(µ2 + |x− ξ|2) 1
2

]
∼ µ

5
2 |x− ξ|−3.

Then D(x) satisfies {
−∆D = 0 in Ω;

D = O(µ
5
2 ) as µ→ 0 on ∂Ω.

(4.13)

Therefore (b) follows from the maximum principle.
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In the following we write U = Uµ,ξ, we now compute the energy expansion J(U), where
J(u) is defined by (4.3).

Lemma 4.4. Let d(ξ, ∂Ω) ≥ δ, assume that µ > 0 is small enough, then we have if 2 < q < 3,

J(U) = a0 + a1µH(ξ, ξ)− a2ε log µ+ a3ε− λa4µ
5−q
2 +O(λµ

q+1
2 ) +O(µ2) + o(ε). (4.14)

If q = 2,

J(U) = a0 + a1µH(ξ, ξ)− a2ε log µ+ a3ε− λa5µ
3
2 log µ+O(λµ

3
2 ) +O(µ2) + o(ε). (4.15)

If 1 < q < 2,

J(U) = a0 + a1µH(ξ, ξ)− a2ε log µ+ a3ε− λa6µ
q+1
2 +O(λµ

5−q
2 ) +O(µ2) + o(ε), (4.16)

where o(ε) is uniform in the C1-sense on the point ξ satisfying (4.11) as ε → 0, and ai,
i = 0, 1, . . . , 6, are some constants.

Proof. We write J(U) = J5(U) + (Jp(U)− J5(U)) + Jλ(U), where

Jp(U) =
1

2

∫
Ω

|∇U |2 − 1

p+ 1

∫
Ω

Up+1 and Jλ(U) = − λ

q + 1

∫
Ω

U q+1.

Since U satisfies −∆U = w5
µ,ξ in Ω and U = 0 on ∂Ω, we write U = πµ,ξ + wµ,ξ, then

J5(U) =
1

2

∫
Ω

|∇U |2 − 1

6

∫
Ω

U6 =
1

2

∫
Ω

w5
µ,ξU − 1

6

∫
Ω

U6

=
1

2

∫
Ω

w5
µ,ξ (πµ,ξ + wµ,ξ)−

1

6

∫
Ω

(πµ,ξ + wµ,ξ)
6

=
1

3

∫
Ω

w6
µ,ξ −

1

2

∫
Ω

w5
µ,ξπµ,ξ −

1

6

∫
Ω

[
(πµ,ξ + wµ,ξ)

6 − w6
µ,ξ − 6w5

µ,ξπµ,ξ
]

:= I − II +R1. (4.17)

By the mean theorem, we find

R1 = −1

6

∫
Ω

[
(πµ,ξ + wµ,ξ)

6 − w6
µ,ξ − 6w5

µ,ξπµ,ξ
]
dx

= −5

∫
Ω

∫ 1

0

(wµ,ξ + tπµ,ξ)
4π2

µ,ξ(1− t) dtdx = O(µ2).

Now we expand the other two terms in the right hand side of (4.17).

I =
1

3

∫
Ω

w6
µ,ξ dx =

1

3

(∫
R3

3
3
2

1

(1 + |z|2)3
dz −

∫
R3\Ω−ξ

µ

3
3
2

1

(1 + |z|2)3
dz

)
= a0 +O(µ3),
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where a0 =
√
3π2

4
. Moreover from Lemma 4.3, we have

II =
1

2

∫
Ω

w5
µ,ξπµ,ξ dx =

1

2
µ

1
2

∫
Ω−ξ
µ

3
5
4

1

(1 + |z|2) 5
2

πµ,ξ(µz + ξ) dz

=
1

2

∫
Ω−ξ
µ

w5
1,0(z)

[
−4π3

1
4µ [H(ξ, ξ) +O(µ|z|) + o(µ)] +O(µ3)

]
dz

= −µH(ξ, ξ)a1 +R2,

where a1 = 2π3
1
4

∫
R3 w

5
1,0(z) dz = 8

√
3π2 and

R2 = 2π3
1
4

(
µH(ξ, ξ)

∫
R3\Ω−ξ

µ

w5
1,0(z) dz −O(µ2)

∫
Ω−ξ
µ

w5
1,0(z)|z|

−
∫

Ω−ξ
µ

w5
1,0(z)[o(µ

2) +O(µ3)]

)
dz = O(µ2).

Thus we get the following expansion

J5(U) = a0 + a1µH(ξ, ξ) +O(µ2). (4.18)

By Taylor expansion in p, we get

Jp(U)− J5(U) =
1

6

∫
Ω

U6 − 1

6− ε

∫
Ω

U6U−ε

=
1

6

∫
Ω

U6 −
[
1

6
+

1

36
ε+ o(ε)

] ∫
Ω

U6 (1− ε logU + o(ε))

= ε

[
1

6

∫
Ω

U6 logU − 1

36

∫
Ω

U6

]
+ o(ε)

= ε

[
1

6

∫
Ω

w6
µ,ξ logwµ,ξ −

1

36

∫
Ω

w6
µ,ξ +O(µ log µ)

]
+ o(ε)

= (−a2 log µ+ a3)ε+ o(ε), (4.19)

where a2 =
1
12

∫
R3 w

6
1,0(z) dz =

√
3π2

16
and a3 =

1
36

∫
R3 w

6
1,0(z)[6 log(w1,0(z))− 1] dz.

Finally we compute Jλ(U). If 2 < q < 3,

Jλ(U) = − λ

q + 1

∫
Ω

U q+1 dx = − λ

q + 1

∫
Ω

wq+1
µ,ξ dx+O(λµ

q+1
2 )

= −λµ
5−q
2

[
1

q + 1

∫
R3

3
q+1
4

1

(1 + |z|2) q+1
2

− 1

q + 1

∫
R3\Ω−ξ

µ

3
q+1
4

1

(1 + |z|2) q+1
2

]
+O(λµ

q+1
2 )
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= −λa4µ
5−q
2 +O(λµ

q+1
2 ), (4.20)

where a4 =
1

q+1

∫
R3 w

q+1
1,0 (z) dz =

3
q+1
4 π

3
2 Γ( q−2

2
)

(q+1)Γ( q+1
2

)
. If q = 2,

Jλ(U) = −λ
3
µ

3
2

∫
Ω−ξ
µ

3
3
4

1

(1 + |z|2) 3
2

dz +O(λµ
3
2 )

= −λa5µ
3
2 log µ+O(λµ

3
2 ), (4.21)

where a5 = −2π3−
1
4 , here we use the fact

∫ a

0
r2

(1+r2)3/2
dr = log(a +

√
1 + a2) − a√

1+a2
. If

1 < q < 2,

Jλ(U) = − λ

q + 1

∫
Ω

[
wµ,ξ(x)− 4π3

1
4µ

1
2H(x, ξ) +O(µ

5
2 )
]q+1

= −µ
q+1
2

λ

q + 1

∫
Ω

{
3

1
4

[
1

(µ2 + |x− ξ|2) 1
2

− 1

|x− ξ|

]
+4π3

1
4G(x, ξ) +O(µ2)

}q+1

= −λµ
q+1
2 a6 +O(λµ

5−q
2 ), (4.22)

where a6 = 1
q+1

(4π3
1
4 )q+1

∫
Ω
Gq+1(x, ξ) dx. From (4.18)- (4.22), we obtain C0−estimate of

the energy expansion. By the same way we can get the C1−estimate also holds.

4.3 Construct the large solution

In this section, by Lyapunov-Schmidt reduction procedure, we build a large solution for
λ ≥ 0 given and ε > 0 small enough. Then we prove Theorem 4.1.

4.3.1 The first approximate solution and the linearized problem

If u is a solution of (4.1), via the change of variables

v(y) = εκu(εy), κ =
2

p− 1
, y ∈ Ωε,

where Ωε =
Ω
ε
. Then v(y) satisfies{

−∆v = fε(v), v > 0 in Ωε;

v = 0 on ∂Ωε,
(4.23)

where and in the following we denote fε(v) = vp + λεαvq with α = 2(p−q)
p−1

.
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Define the function

V (y) ≡ VΛ,ξ′(y) = ε
1
2Uµ,ξ(εy), Λ =

µ

ε
, ξ′ =

ξ

ε
, y ∈ Ωε, (4.24)

where Uµ,ξ is the solution of (4.12). Then V (y) satisfies{
−∆V (y) = w5

Λ,ξ′(y) in Ωε;

V (y) = 0 on ∂Ωε.

We note that assumption (4.11) is equivalent to

d(ξ′, ∂Ωε) ≥
δ

ε
. (4.25)

We assume that

δ̂ < Λ <
1

δ̂
, (4.26)

with δ̂ > 0 small but fixed.

From Lemma 4.3, for ξ′ and Λ satisfying (4.25) and (4.26), we have

0 < V (y) ≤ wΛ,ξ′(y) in Ωε. (4.27)

V (y) = wΛ,ξ′(y)− 4π3
1
4Λ

1
2 εH(εy, εξ′) +O(ε3) in Ωε, as ε→ 0. (4.28)

We next look for a solution of (4.23) of the form

v(y) = V (y) + ϕ(y),

where V is given by (4.24) and ϕ is a small term. We can rewrite (4.23) as{
Lε(ϕ) = N(ϕ) +R in Ωε;

ϕ = 0 on ∂Ωε,
(4.29)

where

Lε(ϕ) = −∆ϕ− f ′
ε(V )ϕ, N(ϕ) = fε(V + ϕ)− fε(V )− f ′

ε(V )ϕ, R = ∆V + fε(V ).

We first consider the linearized problem at V and we invert it in an orthogonal space.
More precisely, we consider the following problem: h ∈ L∞(Ωε) being given, find a solution
ϕ which satisfies

−∆ϕ− (5− ε)V 4−εϕ− λqεαV q−1ϕ = h+
3∑

i=0

ciw
4
Λ,ξ′Zi in Ωε;

ϕ = 0 on ∂Ωε;∫
Ωε
ϕw4

Λ,ξ′Zi = 0 i = 0, 1, 2, 3,

(4.30)
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for some numbers ci (i = 0, 1, 2, 3), where Zi are defined by

Z0 =
∂V

∂Λ
, Zi =

∂V

∂ξ′i
, i = 1, 2, 3.

Then Zi(i = 0, 1, 2, 3) satisfy{
−∆Zi = 5w4

Λ,ξ′Z̃i in Ωε;

Zi = 0 on ∂Ωε.

with Z̃0 =
∂wΛ,ξ′

∂Λ
, and Z̃i =

∂wΛ,ξ′

∂ξ′i
for i = 1, 2, 3.

Our next aim is to prove that problem (4.30) has a unique solution with uniform bounds in
some appropriate norms. For f a function in Ωε, we define the following weighted L∞−norms

∥f∥∗ = sup
y∈Ωε

(1 + |y − ξ′|2)
θ−2
2 |f(y)|, (4.31)

and

∥f∥∗∗ = sup
y∈Ωε

(1 + |y − ξ′|2)
θ
2 |f(y)|, (4.32)

where θ satisfies

2 < θ < 3. (4.33)

Observe that the first norm ∥ · ∥∗ is equivalent to ∥w−(θ−2)
Λ,ξ′ f∥∞ and the second norm ∥ · ∥∗∗

is equivalent to ∥w−θ
Λ,ξ′f∥∞ uniformly with respect to Λ and ξ′.

Proposition 4.5. Let λ > 0 be fixed and ξ′,Λ satisfy (4.25), (4.26), then there exists ε0 > 0
and a constant C > 0, such that for all 0 < ε < ε0 and all h ∈ L∞(Ωε) with ∥h∥∗∗ < +∞,
problem (4.30) has a unique solution ϕ := Tε(h) with ∥ϕ∥∗ < +∞. Moreover,

∥ϕ∥∗ ≤ C∥h∥∗∗, |ci| ≤ C∥h∥∗∗. (4.34)

The argument of its proof follows from the ideas of M. del Pino et al. in [45] and Rey et
al. in [105].

We first prove a priori estimate for solutions of the following problem
−∆ϕ− (5− ε)V 4−εϕ = h+

3∑
i=0

ciw
4
Λ,ξ′Zi in Ωε;

ϕ = 0 on ∂Ωε;∫
Ωε
ϕw4

Λ,ξ′Zi = 0 i = 0, 1, 2, 3.

(4.35)
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Lemma 4.6. Under the conditions of Proposition 4.5, then there exists C > 0 such that if
ε > 0 is sufficiently small, for any h, ϕ satisfying (4.35), we have

∥ϕ∥∗ ≤ C∥h∥∗∗, |ci| ≤ C∥h∥∗∗.

Proof. The proof follows from the following lemma.

Lemma 4.7. Assume ϕε solves (4.35) for h = hε. If ∥hε∥∗∗ → 0 as ε→ 0, then ∥ϕε∥∗ → 0.

Proof. For 0 < ρ < θ − 2, we define

∥f∥ρ = sup
y∈Ωε

(1 + |y − ξ′|2)
θ−2−ρ

2 |f(y)|.

Claim: ∥ϕε∥ρ → 0 as ε→ 0.

Indeed, by contradiction, we may assume that ∥ϕε∥ρ = 1. Multiplying the first equation
in (4.35) by Zj and integrating on Ωε, we get∫

Ωε

(
−∆Zj − (5− ε)V 4−εZj

)
ϕε −

∫
Ωε

hεZj =
3∑

i=0

ci

∫
Ωε

w4
Λ,ξ′ZiZj.

Since ∫
Ωε

(
−∆Zj − (5− ε)V 4−εZj

)
ϕε =

∫
Ωε

(
5w4

Λ,ξ′Z̃j − (5− ε)V 4−εZj

)
ϕε

=

∫
Ωε

[
5w4

Λ,ξ′Z̃j − (5− ε)
(
w4−ε

Λ,ξ′ +O(ε)
) (
Z̃j +O(ε)

)]
ϕε

= O(ε)∥ϕε∥ρ
∫
Ωε

1

(1 + |y − ξ′|2) 5−ε
2

1

(1 + |y − ξ′|2) θ−2−ρ
2

= o(∥ϕε∥ρ),

∫
Ωε

hεZj ≤ ∥hε∥∗∗
∫
Ωε

wθ
Λ,ξ′(Z̃j +O(ε)) = O(∥hε∥∗∗),

and ∫
Ωε

w4
Λ,ξ′ZiZj = δij

∫
Ωε

w4
Λ,ξ′(Z̃i +O(ε))2 = δij(γi + o(1)),

where δij is Kronecker’s delta and γi (i = 0, 1, 2, 3) are strictly positive constants. Conse-
quently, inverting the quasi-diagonal linear system solved by the ci’s, we find

ci = O(∥hε∥∗∗) + o(∥ϕε∥ρ). (4.36)
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In particular, ci = o(1) as ε→ 0. Moreover, the first equation in (4.35) can be written as

ϕε(x) =

∫
Ωε

Gε(x, y)

[
(5− ε)V 4−ε(y)ϕε(y) + hε(y) +

3∑
i=0

ciw
3
Λ,ξ′(y)Zi(y)

]
dy,

(4.37)

where Gε(x, y) is the Green’s function of −∆ in Ωε with Dirichlet boundary condition, which
satisfies

Gε(x, y) = εG(εx, εy) ≤ C

|x− y|
.

In the following, we use the following basic estimate, which was proved in the Appendix B
[116]: for any 0 < σ < 1, there is a constant C > 0 such that∫

R3

1

|z − y|
1

(1 + |y|)2+σ dy ≤ C

(1 + |z|)σ
.

Hence we have∣∣∣∣∫
Ωε

Gε(x, y)V
4−ε(y)ϕε(y) dy

∣∣∣∣ ≤ C

∫
Ωε

1

|x− y|
∣∣w4−ε

Λ,ξ′(y)ϕε(y)
∣∣ dy

≤ C∥ϕε∥ρ
∫
Ωε

1

|x− y|
1

(1 + |y − ξ′|2)
1
2
(4−ε)

1

(1 + |y − ξ′|2)
θ−2−ρ

2

dy

≤ C∥ϕε∥ρ
∫
Ωε

1

|(x− ξ′)− (y − ξ′)|
1

(1 + |y − ξ′|)2+θ−2

1

(1 + |y − ξ′|)2−ρ−ε dy

≤ C∥ϕε∥ρ
∫
R3

1

|(x− ξ′)− (y − ξ′)|
1

(1 + |y − ξ′|)2+θ−2
dy

≤ C∥ϕε∥ρ
(
1 + |x− ξ′|2

)− θ−2
2 , (4.38)

∣∣∣∣∫
Ωε

Gε(x, y)hε(y) dy

∣∣∣∣ ≤ C∥hε∥∗∗
∫
Ωε

1

|x− y|
1

(1 + |y − ξ′|2)
θ
2

dy

≤ C∥hε∥∗∗
∫
R3

1

|(x− ξ′)− (y − ξ′)|
1

(1 + |y − ξ′|)2+θ−2
dy

≤ C∥hε∥∗∗
(
1 + |x− ξ′|2

)− θ−2
2 , (4.39)

and ∣∣∣∣∫
Ωε

Gε(x, y)w
4
Λ,ξ′(y)Zi(y) dy

∣∣∣∣ ≤ C

∫
Ωε

1

|x− y|
1

(1 + |y − ξ′|2)
5
2

dy

≤ C

∫
Ωε

1

|x− y|
1

(1 + |y − ξ′|)2+θ−2

1

(1 + |y − ξ′|)5−θ
dy
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≤ C
(
1 + |x− ξ′|2

)− θ−2
2 . (4.40)

Then from (4.37)-(4.40), we get

|ϕε(x)| ≤ C (∥ϕε∥ρ + ∥hε∥∗∗ + |ci|)
(
1 + |x− ξ′|2

)− θ−2
2 , (4.41)

which yields that (
1 + |x− ξ′|2

) θ−2−ρ
2 |ϕε(x)| ≤ C

(
1 + |x− ξ′|2

)− ρ
2 . (4.42)

Moreover, ∥ϕε∥ρ = 1 and (4.42) imply that there exist R > 0, γ > 0 independent of ε such
that

∥ϕε∥L∞(BR(ξ′)) > γ. (4.43)

Set ϕ̄ε(y) = ϕε(y − ξ′), by local elliptic estimate, passing to a subsequence of (ϕ̄ε)ε, still
denote (ϕ̄ε)ε, such that (ϕ̄ε)ε converges uniformly on any compact set of R3 to a nontrivial
solution of

−∆ϕ̄ = 5w4
Λ,0ϕ̄ for some Λ > 0.

It is well known that [104],

ϕ̄ = α0
∂wΛ,0

∂Λ
+

3∑
i=1

αi
∂wΛ,0

∂yi
.

Recall that ∫
Ωε

ϕεw
4
Λ,ξ′Zi = 0 for i = 0, 1, 2, 3.

By dominated convergence, we find that

α0

∫
R3

(
∂wΛ,0

∂Λ

)2

w4
Λ,0 = 0 and αi

∫
R3

(
∂wΛ,0

∂yi

)2

w4
Λ,0 = 0, for i = 1, 2, 3.

So αi = 0 for i = 0, 1, 2, 3 and ϕ̄ = 0, this contradicts (4.43). Therefore we get ∥ϕε∥ρ → 0 as
ε→ 0. Finally, from (4.36) and (4.41), we have

∥ϕε∥∗ ≤ C(∥hε∥∗∗ + ∥ϕε∥ρ).

Hence ∥ϕε∥∗ → 0 as ε→ 0.

Lemma 4.8. Let λ > 0 be fixed and ξ′,Λ satisfy (4.25), (4.26), there exists C > 0 such that
if ε > 0 is sufficiently small, for any h, ϕ satisfying (4.30), we have

∥ϕ∥∗ ≤ C∥h∥∗∗, |ci| ≤ C∥h∥∗∗.
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Proof. We claim that ∥V q−1ϕ∥∗∗ ≤ Cεq−3∥ϕ∥∗. Since V ≤ wΛ,ξ′ , we only need to show that

∥wq−1
Λ,ξ′ϕ∥∗∗ ≤ Cεq−3∥ϕ∥∗.

In fact,

∥wq−1
Λ,ξ′ϕ∥∗∗ = sup

y∈Ωε

(1 + |y − ξ′|2)
θ
2 |wΛ,ξ′(y)|q−1|ϕ(y)|

≤ ∥ϕ∥∗ sup
y∈Ωε

(1 + |y − ξ′|2)|wΛ,ξ′(y)|q−1

≤ ∥ϕ∥∗ sup
y∈Ωε

(1 + |y − ξ′|2)1−
q−1
2

≤ ∥ϕ∥∗ sup
y∈Ωε

|y − ξ′|3−q ≤ Cεq−3∥ϕ∥∗

By the first estimate in Lemma 4.6, we get

∥ϕ∥∗ ≤ C∥h∥∗∗ + Cεα∥V q−1ϕ∥∗∗ ≤ C∥h∥∗∗ + Cεα+q−3∥ϕ∥∗.

Recall that α = 5−q
2

+O(ε), we have that α + q − 3 > 0. Thus we get ∥ϕ∥∗ ≤ C∥h∥∗∗.
Similarly, we obtain |ci| ≤ C∥h∥∗∗.

Proof of Proposition 4.5. By Lemma 4.8, we get the estimates in (4.34). Now we prove
existence and uniqueness of solution to (4.30). We consider the Hilbert space

H =

{
ϕ ∈ H1

0 (Ωε) :

∫
Ωε

ϕw4
Λ,ξ′Zi = 0, i = 0, 1, 2, 3

}
with inner product

⟨ϕ, ψ⟩ =
∫
Ωε

∇ϕ∇ψ.

Then problem (4.30) is equivalent to find ϕ ∈ H such that

⟨ϕ, ψ⟩ =
∫
Ωε

[
(5− ε)V 4−εϕ+ λqεαV q−1ϕ+ h

]
ψ, for ∀ψ ∈ H. (4.44)

By the Riesz representation theorem, (4.44) is equivalent to solve

ϕ = K(ϕ) + h̃ (4.45)

with h̃ ∈ H depending linearly on h, and K : H → H being a compact operator. Fredholm’s
alternative guarantees that there is a unique solution to problem (4.45) for any h provided
that

ϕ = K(ϕ) (4.46)

has only the zero solution in H. (4.46) is equivalent to problem (4.30) with h = 0. If h = 0,
the first estimate in (4.34) implies that ϕ = 0. This completes the proof.

For later purpose, it is important to understand the differentiability of the operator Tε
with respect to Λ, ξ′. Consider the L∞

∗ (resp. L∞
∗∗) functions defined on Ωε with ∥ · ∥∗ norm

(resp. ∥ · ∥∗∗ norm). We have the following result.
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Proposition 4.9. Under the conditions of Proposition 4.5, the map (Λ, ξ′) 7→ Tε(h) is C1

with respect to Λ, ξ′ in the considered region and the L∞
∗ norm. Moreover,

∥∂ΛTε(h)∥∗ ≤ C∥h∥∗∗, ∥∂ξ′Tε(h)∥∗ ≤ C∥h∥∗∗. (4.47)

Proof. Tε is C
1 with respect to Λ and ξ′ follows from the smoothness of K and h̃, which occur

in the implicit definition (4.45) of ϕ = Tε(h), with respect to these variables. Differentiating
(4.30) with respect to ξ′k(k = 1, 2, 3), set ϕ = Tε(h), Y = ∂ξ′kϕ and di = ∂ξ′kci, k = 1, 2, 3,
then Y satisfies−∆Y − (5− ε)V 4−εY − λqεαV q−1Y = h̄+

3∑
i=0

diw
4
Λ,ξ′Zi in Ωε;

Y = 0 on ∂Ωε;
∫
Ωε

[
ϕ ∂ξ′k

(
w4

Λ,ξ′Zi

)
+ Y w4

Λ,ξ′Zi

]
= 0 i = 0, · · · , 3,

(4.48)

where

h̄ = (5− ε)(4− ε)V 3−εZiϕ+ λq(q − 1)εαV q−2Ziϕ+
3∑

i=0

ci∂ξ′k
(
w4

Λ,ξ′Zi

)
.

Set η = Y −
3∑

j=0

bjZj, where bj ∈ R is chosen such that

∫
Ωε

ηw4
Λ,ξ′Zi = 0,

that is, bj satisfies

3∑
j=0

bj

∫
Ωε

w4
Λ,ξ′ZiZj =

∫
Ωε

Y w4
Λ,ξ′Zi. (4.49)

Since this system is almost diagonal, it has a unique solution and we have

|bj| ≤ C∥ϕ∥∗. (4.50)

Moreover, η satisfies
−∆η − (5− ε)V 4−εη − λqεαV q−1η = g +

3∑
i=0

diw
4
Λ,ξ′Zi in Ωε;

η = 0 on ∂Ωε;∫
Ωε
ηw4

Λ,ξ′Zi = 0 i = 0, 1, 2, 3,

(4.51)

with

g =
3∑

j=0

bj
[
−∆Zj − (5− ε)V 4−εZj − λqεαV q−1Zj

]
+ h̄.
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By Proposition 4.5, we have that η = Tε(g) and

∥η∥∗ ≤ C∥g∥∗∗. (4.52)

On the other hand, we have

∥g∥∗∗ ≤
3∑

j=0

|bj|
∥∥−∆Zj − (5− ε)V 4−εZj − λqεαV q−1Zj

∥∥
∗∗

+C∥V 3−εZiϕ∥∗∗ + Cεα∥V q−2Ziϕ∥∗∗

+
3∑

i=0

|ci|
∥∥∂ξ′k (w4

Λ,ξ′Zi

)∥∥
∗∗ .

Now we estimate all terms in the right hand side in above inequality. We have∥∥−∆Zj − (5− ε)V 4−εZj − λqεαV q−1Zj

∥∥
∗∗

≤ C
∥∥w−θ

Λ,ξ′

[
−∆Zj − (5− ε)V 4−εZj − λqεαV q−1Zj

]∥∥
∞ ≤ C,

∥∥V 3−εZiϕ
∥∥
∗∗ ≤ C

∥∥w−θ
Λ,ξ′V

3−εZiϕ
∥∥
∞ ≤ C∥ϕ∥∗∥w1−ε

Λ,ξ′Zi∥∞ ≤ C∥ϕ∥∗,

and

εα∥V q−2Ziϕ∥∗∗ ≤ Cεα
∥∥w−θ

Λ,ξ′V
q−2Ziϕ

∥∥
∞ ≤ Cεα+q−3∥ϕ∥∗ = o(∥ϕ∥∗).

From (4.34), we find

3∑
i=0

|ci|
∥∥∂ξ′k (w4

Λ,ξ′Zi

)∥∥
∗∗ ≤ C∥h∥∗∗∥w−θ

Λ,ξ′∂ξ′k
(
w4

Λ,ξ′Zi

)
∥∞ ≤ C∥h∥∗∗.

Thus we get

∥η∥∗ ≤ C∥h∥∗∗. (4.53)

By (4.50), (4.53) and ∥Zj∥∗ ≤ C, we obtain that

∥∂ξ′kϕ∥∗ ≤
3∑

j=0

|bj|∥Zj∥∗ + ∥η∥∗ ≤ C(∥ϕ∥∗ + ∥h∥∗∗) ≤ C∥h∥∗∗.

Similarly, we can get the estimate for ∥∂Λϕ∥∗ in (4.47).
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4.3.2 The nonlinear problem

In this subsection, our purpose is to study the nonlinear problem. First, we estimate
∥R∥∗∗, ∥∂ΛR∥∗∗ and ∥∂ξ′R∥∗∗.

Lemma 4.10. Assume 1 < q < 3, let λ > 0 be fixed and ξ′,Λ satisfy (4.25), (4.26), then
choosing 2 < θ < 3 appropriately in the norms (4.31), (4.32), there exists a constant C > 0
independent of ξ′,Λ, such that

∥R∥∗∗ ≤ Cε, ∥∂ΛR∥∗∗ ≤ Cε, ∥∂ξ′R∥∗∗ ≤ Cε, (4.54)

for ε > 0 small enough.

Proof. Recall that R = V 5−ε − w5
Λ,ξ′ + λεαV q. By (4.28), V = wΛ,ξ′ +O(ε). Consequently,

|V 5−ε − w5
Λ,ξ′ | ≤ |V 5−ε − w5−ε

Λ,ξ′ |+ |w5−ε
Λ,ξ′ − w5

Λ,ξ′ |
≤ Cε

(
w4−ε

Λ,ξ′ + w5
Λ,ξ′| logwΛ,ξ′|

)
.

Thus for 2 < θ < 3,

∥V 5−ε − w5
Λ,ξ′∥∗∗ ≤ C∥w−θ

Λ,ξ′(V
5−ε − w5

Λ,ξ′)∥∞
≤ Cε sup

Ωε

w−θ
Λ,ξ′(w

4−ε
Λ,ξ′ + w5

Λ,ξ′| logwΛ,ξ′ |) ≤ Cε.

Moreover,

∥λεαV q∥∗∗ ≤ Cλεα∥w−θ
Λ,ξ′V

q∥∞ ≤ Cλεα sup
Ωε

|wq−θ
Λ,ξ′ | ≤

{
Cλεα if q > θ;

Cλεα+q−θ if q ≤ θ.

Note that α = 5−q
2

+ O(ε), we choose 2 < θ < 3+q
2
, so α + q − θ > 1. Therefore we get the

first estimate in (4.54). Furthermore

∂ΛR = (5− ε)V 4−εZ0 − 5w4
Λ,ξ′Z̃0 + λqεαV q−1Z0,

and
∂ξ′iR = (5− ε)V 4−εZi − 5w4

Λ,ξ′Z̃i + λqεαV q−1Zi, i = 1, 2, 3.

By similar computations, we can get the rest estimates in (4.54).

Now we consider the following problem
−∆ϕ− (5− ε)V 4−εϕ− λqεαV q−1ϕ = N(ϕ) +R +

3∑
i=0

ciw
4
Λ,ξ′Zi in Ωε;

ϕ = 0 on ∂Ωε∫
Ωε
ϕw4

Λ,ξ′Zi = 0 i = 0, 1, 2, 3.

(4.55)
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Proposition 4.11. There exists C > 0 independent of ξ′,Λ satisfying (4.25), (4.26), such
that for ε > 0 small enough, there exists a unique solution ϕ = ϕ(Λ, ξ′) of problem (4.55),
satisfying

∥ϕ∥∗ ≤ Cε. (4.56)

Proof. By Proposition 4.5, problem (4.55) can be written as the fixed point problem

ϕ = Tε(N(ϕ) +R) := Aε(ϕ).

Define
FM = {ϕ ∈ H1

0 (Ωε) ∩ L∞(Ωε) : ∥ϕ∥∗ ≤Mε}

with M > 0 large but fixed which will be chosen later. Then Aε sends FM into itself.

Indeed, we have

∥Aε(ϕ)∥∗ = ∥Tε(N(ϕ) +R)∥∗ ≤ C(∥N(ϕ)∥∗∗ + ∥R∥∗∗). (4.57)

Moreover,

∥N(ϕ)∥∗∗ =
∥∥∥∥∫ 1

0

[f ′
ε(V + tϕ)− f ′

ε(V )]ϕ dt

∥∥∥∥
∗∗

≤ C

∥∥∥∥w−2
Λ,ξ′

∫ 1

0

|f ′
ε(V + tϕ)− f ′

ε(V )| dt
∥∥∥∥
∞
∥ϕ∥∗

≤ C
(∥∥w−2

Λ,ξ′ [(V + |ϕ|)4−ε − V 4−ε]
∥∥
∞ + λεα

∥∥w−2
Λ,ξ′ [(V + |ϕ|)q−1 − V q−1]

∥∥
∞

)
∥ϕ∥∗.

(4.58)

Since ∥∥w−2
Λ,ξ′ [(V + |ϕ|)4−ε − V 4−ε]

∥∥
∞ ≤ C

∥∥w−2
Λ,ξ′

(
w3−ε

Λ,ξ′ |ϕ|+ |ϕ|4−ε
)∥∥

∞

≤ C
∥∥wθ−1−ε

Λ,ξ′

∥∥
∞ ∥ϕ∥∗ + C

∥∥∥w(θ−2)(4−ε)−2
Λ,ξ′

∥∥∥
∞
∥ϕ∥4−ε

∗

≤ Cεθ−1−ε∥ϕ∥∗ + Cεmin{(θ−2)(4−ε)−2,0}∥ϕ∥4−ε
∗ . (4.59)

On the other hand, by Lemma 2.2 in [77], we have

||V + ϕ|q−1 − |V |q−1| ≤ C

{
|V |q−2|ϕ|+ |ϕ|q−1 if 2 ≤ q < 3;

min{|V |q−2|ϕ|, |ϕ|q−1} if 1 < q < 2.

Thus for 1 < q < 2,∥∥w−2
Λ,ξ′ [(V + |ϕ|)q−1 − V q−1]

∥∥
∞ ≤ Cmin

{
∥wΛ,ξ′∥q−4+θ−2

∞ ∥ϕ∥∗, ∥wΛ,ξ′∥(θ−2)(q−1)−2
∞ ∥ϕ∥q−1

∗
}

≤ Cmin
{
εq+θ−6∥ϕ∥∗, ε(θ−2)(q−1)−2∥ϕ∥q−1

∗
}
. (4.60)
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For 2 ≤ q < 3,∥∥w−2
Λ,ξ′ [(V + |ϕ|)q−1 − V q−1]

∥∥
∞ ≤ C

∥∥w−2
Λ,ξ′ [w

q−2
Λ,ξ′ |ϕ|+ |ϕ|q−1]

∥∥
∞

≤ Cεq+θ−6∥ϕ∥∗ + Cε(θ−2)(q−1)−2∥ϕ∥q−1
∗ . (4.61)

From (4.58)-(4.61), if 1 < q < 3, for ϕ ∈ FM , then we have

∥N(ϕ)∥∗∗ ≤ Cετ∥ϕ∥∗, with some τ > 0. (4.62)

Thus by (4.54), (4.57) and (4.62), we find for ϕ ∈ FM ,

∥Aε(ϕ)∥∗ ≤ C(ετ∥ϕ∥∗ + ε) ≤ C(Mετ + 1)ε.

Choosing M large such that C(Mετ + 1) ≤M . It implies that Aε(FM) ⊂ FM .

Next we show that Aε is a contraction map. For ϕ1, ϕ2 ∈ FM ,

∥Aε(ϕ1)− Aε(ϕ2)∥∗ ≤ C∥N(ϕ1)−N(ϕ2)∥∗∗
= C∥[f ′

ε(V + tϕ1 + (1− t)ϕ2)− f ′
ε(V )](ϕ1 − ϕ2)∥∗∗

= ∥[f ′
ε(V + ϕ̃)− f ′

ε(V )](ϕ1 − ϕ2)∥∗∗
≤ C

∥∥∥w−θ
Λ,ξ′ [f

′
ε(V + ϕ̃)− f ′

ε(V )](ϕ1 − ϕ2)
∥∥∥
∞

≤ C
∥∥∥w−2

Λ,ξ′ [f
′
ε(V + ϕ̃)− f ′

ε(V )]
∥∥∥
∞
∥ϕ1 − ϕ2∥∗,

where ϕ̃ = tϕ1 + (1− t)ϕ2 ∈ FM for t ∈ (0, 1). It can be easily checked that

∥Aε(ϕ1)− Aε(ϕ2)∥∗ ≤ Cετ∥ϕ1 − ϕ2∥∗, with some τ > 0.

It yields that Aε has a unique fixed point in FM . Hence problem (4.55) has a unique solution
ϕ such that ∥ϕ∥∗ ≤ Cε, for some C > 0.

Proposition 4.12. The solution ϕ(Λ, ξ′) constructed in Proposition 4.11 is C1 with respect
to Λ and ξ′ in the considered region. Moreover,

∥∂Λϕ∥∗ ≤ Cε, ∥∂ξ′ϕ∥∗ ≤ Cε. (4.63)

Proof. We write

B(Λ, ξ′, ϕ) = ϕ− Tε(N(ϕ) +R), (4.64)

we have

B(Λ, ξ′, ϕ) = 0, (4.65)

and

∂ϕB(Λ, ξ′, ϕ)[ψ] = ψ − ∂ϕ[Tε(N(ϕ) +R)]ψ = ψ − Tε[∂ϕ(N(ϕ))ψ]. (4.66)
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By a direct calculation, we get

∥Tε[∂ϕ(N(ϕ))ψ]∥∗ ≤ C∥∂ϕ(N(ϕ))ψ∥∗∗ ≤ C∥w−2
Λ,ξ′∂ϕ(N(ϕ))∥∞∥ψ∥∗ ≤ Cετ∥ψ∥∗.

with τ > 0. Therefore
∥∂ϕB(Λ, ξ′, ϕ)[ψ]∥∗ ≤ (1 + Cετ )∥ψ∥∗.

It follows that for ε > 0 small enough, ∂ϕB(Λ, ξ′, ϕ) is invertible in ∥ · ∥∗ with uniformly
bounded inverse. It also depends continuously on its parameters. Let us differentiate (4.64)
with respect to ξ′ and by (4.66), we have

∂ξ′B(Λ, ξ′, ϕ) = −(∂ξ′Tε)(N(Λ, ξ′, ϕ) +R)− Tε((∂ξ′N)(Λ, ξ′, ϕ) + ∂ξ′R), (4.67)

where all the previous expressions depend continuously on their parameters. Hence the
implicit function theorem implies that ϕ = ϕ(Λ, ξ′) is C1 with respect to Λ, ξ′ in the considered
region.

Moreover, differentiating (4.65) with respect to ξ′, we get

∂ξ′ϕ = −(∂ϕB(Λ, ξ′, ϕ))−1∂ξ′B(Λ, ξ′, ϕ).

By (4.67), (4.47) and (4.34), we get

∥∂ξ′ϕ∥∗ ≤ C(∥N(ϕ)∥∗∗ + ∥R∥∗∗ + ∥(∂ξ′N)(Λ, ξ′, ϕ)∥∗∗ + ∥∂ξ′R∥∗∗) ≤ Cε.

Similarly, we can get ∥∂Λϕ∥∗ ≤ Cε.

4.3.3 The reduced functional

We have solved the nonlinear problem (4.55). In order to find a solution to problem
(4.23), we need to find Λ and ξ′ such that

ci(Λ, ξ
′) = 0 for i = 0, 1, 2, 3. (4.68)

The energy functional to problem (4.23) is given by

I(v) =
1

2

∫
Ωε

|∇v|2 − 1

p+ 1

∫
Ωε

|v|p+1 − λ
εα

q + 1

∫
Ωε

|v|q+1

Set

I(Λ, ξ′) = I (VΛ,ξ′(y) + ϕΛ,ξ′(y)) , (4.69)

where VΛ,ξ′ is defined in (4.24) and ϕΛ,ξ′ is solved by Proposition 4.11. We have the following
fact.

Lemma 4.13. Let ξ′ and Λ satisfy (4.25) and (4.26). Then the functional I(Λ, ξ′) is of class
C1. Moreover, for all ε > 0 sufficiently small, the function v(y) = VΛ,ξ′(y) + ϕΛ,ξ′(y) is a
solution to problem (4.23) if and only if (Λ, ξ′) is a critical point of I(Λ, ξ′).
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Proof. As a consequence of Proposition 4.12, we can get the map (Λ, ξ′) 7→ I(Λ, ξ′) is of class
C1. For k ∈ {1, 2, 3}, we have

∂ξ′kI(Λ, ξ
′) = DI(VΛ,ξ′ + ϕΛ,ξ′)

[
∂VΛ,ξ′

∂ξ′k
+
∂ϕΛ,ξ′

∂ξ′k

]
=

3∑
i=0

ci

∫
Ωε

w4
Λ,ξ′Zi

[
∂VΛ,ξ′

∂ξ′k
+
∂ϕΛ,ξ′

∂ξ′k

]

=
3∑

i=0

ci

∫
Ωε

w4
Λ,ξ′ZiZk (1 + o(1)) ,

here we use the fact that ∥∂ξ′kϕΛ,ξ′∥∗ = O(ε). Similarly, we find

∂ΛI(Λ, ξ′) =
3∑

i=0

ci

∫
Ωε

w4
Λ,ξ′ZiZ0 (1 + o(1)) ,

where o(1) → 0 as ε → 0 uniformly for the norm ∥ · ∥∗. It defines an almost diagonal linear
equation system for ci. Thus (Λ, ξ′) is a critical point of I(Λ, ξ′) if and only if ci = 0 for
i = 0, 1, 2, 3. This ends the proof of Lemma.

Lemma 4.14. As ε→ 0, we have the following expansion

I(Λ, ξ′)− I(VΛ,ξ′) = o(ε),

where o(ε) is in the C1− sense uniformly on ξ′, Λ satisfying (4.25),(4.26).

Proof. For notation simplicity, we write VΛ,ξ′ by V , and ϕΛ,ξ′ by ϕ. By the Taylor expansion
and the fact that DI(VΛ,ξ′ + ϕΛ,ξ′)[ϕ] = 0, we have

I(Λ, ξ′)− I(VΛ,ξ′)

= I (V + ϕ)− I(V ) =

∫ 1

0

D2I (V + tϕ) [ϕ, ϕ]t dt

=

∫ 1

0

[∫
Ωε

(
|∇ϕ|2 − p(V + tϕ)p−1ϕ2 − λεαq(V + tϕ)q−1ϕ2

)
dy

]
t dt

=

∫ 1

0

{∫
Ωε

(
p
[
V p−1 − (V + tϕ)p−1

]
ϕ2 + [R +N(ϕ)]ϕ

+λεαq
[
V q−1 − (V + tϕ)q−1

]
ϕ2
)
dy
}
t dt

≤ C

∫
Ωε

|V p−1 − (V + ϕ)p−1|ϕ2 dy + Cλεα
∫
Ωε

|V q−1 − (V + ϕ)q−1|ϕ2 dy

+

∫
Ωε

|R| |ϕ| dy +
∫
Ωε

|N(ϕ)| |ϕ| dy

:= I1 + I2 + I3 + I4, (4.70)
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where

I1 ≤ C

∫
Ωε

(V 3−ε|ϕ|+ |ϕ|4−ε)ϕ2 dy ≤ C

∫
Ωε

(w3−ε
Λ,ξ′ |ϕ|

3 + |ϕ|6−ε) dy

≤ C∥ϕ∥3∗
∫
Ωε

w
3−ε+3(θ−2)
Λ,ξ′ dy + C∥ϕ∥6−ε

∗

∫
Ωε

w
(6−ε)(θ−2)
Λ,ξ′ dy

≤ C∥ϕ∥3∗ ≤ Cε3 = o(ε),

I2 = Cλεα
∫
Ωε

|V q−1 − (V + ϕ)q−1||ϕ|2 dy

≤ Cλεα


∥ϕ∥3∗

∫
Ωε
w

q−2+3(θ−2)
Λ,ξ′ dy + ∥ϕ∥q+1

∗
∫
Ωε
w

(q+1)(θ−2)
Λ,ξ′ dy if 2 ≤ q < 3;

min
{
∥ϕ∥3∗

∫
Ωε
w

q−2+3(θ−2)
Λ,ξ′ dy, ∥ϕ∥q+1

∗
∫
Ωε
w

(q+1)(θ−2)
Λ,ξ′ dy

}
if 1 < q < 2.

≤ Cλεmin{α+q−2+3(θ−2), α+q−2+(q+1)(θ−2)} = o(ε),

since ∥R∥∗∗ ≤ Cε, ∥N(ϕ)∥∗∗ ≤ Cετ∥ϕ∥∗ and ∥ϕ∥∗ ≤ Cε, we get

I3 =

∫
Ωε

|R| |ϕ| dy =

∫
Ωε

w−θ
Λ,ξ′|R|w

−(θ−2)
Λ,ξ′ |ϕ|w2θ−2

Λ,ξ′ dy

≤ C∥R∥∗∗∥ϕ∥∗
∫
Ωε

w2θ−2
Λ,ξ′ dy ≤ Cε2θ−5∥R∥∗∗∥ϕ∥∗ ≤ Cε2θ−3 = o(ε),

and

I4 =

∫
Ωε

|N(ϕ)| |ϕ| dy =

∫
Ωε

w−θ
Λ,ξ′ |N(ϕ)|w−(θ−2)

Λ,ξ′ |ϕ|w2θ−2
Λ,ξ′ dy

≤ C∥N(ϕ)∥∗∗∥ϕ∥∗
∫
Ωε

w2θ−2
Λ,ξ′ dy

≤ Cε2θ−5∥N(ϕ)∥∗∗∥ϕ∥∗ ≤ Cε2θ+τ−3 = o(ε).

Therefore,
I(Λ, ξ′)− I(VΛ,ξ′) = o(ε).

where o(ε) is uniform in the C1−sense for ξ′, Λ satisfying (4.25),(4.26). By a similar way, we
can obtain

D(Λ,ξ′) (I(Λ, ξ′)− I(V )) = o(ε).

This ends the proof of Lemma.

Lemma 4.15. Under the change of variable (4.24), as ε→ 0, we have

I(VΛ,ξ′) = J(Uµ,ξ) + c0ε log ε+ o(ε), (4.71)

where o(ε) is in the C1− sense uniformly on ξ′, Λ satisfying (4.25),(4.26), c0 is a positive
constant.
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Proof. In fact,

I(VΛ,ξ′) =
1

2

∫
Ωε

|∇VΛ,ξ′(y)|2dy −
1

p+ 1

∫
Ωε

|VΛ,ξ′(y)|p+1dy − λ
εα

q + 1

∫
Ωε

|VΛ,ξ′(y)|q+1dy

=
1

2
ε3
∫
Ωε

|∇Uµ,ξ(εy)|2dy −
ε

p+1
2

p+ 1

∫
Ωε

|Uµ,ξ(εy)|p+1dy − λ
εα+

q+1
2

q + 1

∫
Ωε

|Uµ,ξ(εy)|q+1dy

=
1

2

∫
Ω

|∇Uµ,ξ(x)|2dx−
1

p+ 1
ε

p+1
2

−3

∫
Ω

|Uµ,ξ(x)|p+1dx− λ
εα+

q+1
2

−3

q + 1

∫
Ω

|Uµ,ξ(x)|q+1dx

=
1

2

∫
Ω

|∇Uµ,ξ(x)|2dx−
ε−

ε
2

p+ 1

∫
Ω

|Uµ,ξ(x)|p+1dx− λ
ε

1−q
2

ε
4−ε

q + 1

∫
Ω

|Uµ,ξ(x)|q+1dx

=
1

2

∫
Ω

|∇Uµ,ξ(x)|2 dx−
1

p+ 1

∫
Ω

Uµ,ξ(x)
p+1 dx− λ

q + 1

∫
Ω

Uµ,ξ(x)
q+1 dx

+
1

p+ 1

[
1− ε−

ε
2

] ∫
Ω

Uµ,ξ(x)
p+1 dx+

λ

q + 1

[
1− ε

1−q
2

ε
4−ε

] ∫
Ω

Uµ,ξ(x)
q+1 dx

= J(Uµ,ξ) +
1

p+ 1

[
1− ε−

ε
2

] ∫
Ω

Uµ,ξ(x)
p+1 dx+

λ

q + 1

[
1− ε

1−q
2

ε
4−ε

] ∫
Ω

Uµ,ξ(x)
q+1 dx.

While,

1

p+ 1

[
1− ε−

ε
2

] ∫
Ω

Uµ,ξ(x)
p+1 dx =

(
1

6
+

1

36
ε+ o(ε)

)[
1

2
ε log ε+ o(ε log ε)

]
×
∫
Ω

Uµ,ξ(x)
6 [1− ε logUµ,ξ(x) + o(ε)]

=
1

12
ε log ε

∫
Ω

Uµ,ξ(x)
6dx+ o(ε)

= c0ε log ε+ o(ε),

with c0 =
1
12

∫
R3 wµ,ξ(x)

6dx. Moreover,

λ

q + 1

[
1− ε

1−q
2

ε
4−ε

] ∫
Ω

Uµ,ξ(x)
q+1 dx

=
λ(q − 1)

8(q + 1)
ε log ε

∫
Ω

wµ,ξ(x)
q+1dx+ o(ε) = o(ε),

where o(ε) is in the C1− sense uniformly on ξ′, Λ satisfying (4.25),(4.26). Thus (4.71)
holds.

Proof of Theorem 4.1. Since p = 5− ε with ε > 0 is the subcritical exponent and Ω is a
smooth bounded domain, for λ > 0 fixed, by the mountain pass theorem [102, Theorem 2.2],
problem (4.2) has a mountain pass solution, denoted u1. The mountain pass critical value is
given by

0 < cm = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),
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where
Γ =

{
γ ∈ C([0, 1], H1

0 (Ω)) : γ(0) = 0, γ(1) = e
}

with e ∈ H1
0 (Ω) such that J(e) < 0. Moreover we have the following assertion:

there exists λ0 > 0, depending on Ω, q, such that for any λ ≥ λ0 and ε ≥ 0, we have
J(u1) <

√
3
4
π2.

Indeed fixed u0 ∈ H1
0 (Ω) \ {0} with u0 ≥ 0 in Ω, we have

J(tu0) =
t2

2

∫
Ω

|∇u0|2 −
tp+1

p+ 1

∫
Ω

|u0|p+1 − λtq+1

q + 1

∫
Ω

|u0|q+1.

First note that limt→+∞ J(tu0) = −∞, thus there exists tλ ≥ 0 such that J(tλu0) =
max
t≥0

J(tu0). Moreover tλ satisfies

t2λ

∫
Ω

|∇u0|2 = tp+1
λ

∫
Ω

|u0|p+1 + λtq+1
λ

∫
Ω

|u0|q+1

≥ tp+1
λ

∫
Ω

|u0|p+1, (4.72)

which implies that tλ ≤
{ ∫

Ω |∇u0|2∫
Ω |u0|p+1

} 1
p−1

. It follows that

lim
λ→+∞

tλ = 0 (4.73)

If (4.73) fails, then there exists some sequence tλn → t0 > 0 as λn → +∞. By the first
equality in (4.72), we get

lim
n→+∞

t2λn

∫
Ω

|∇u0|2 = lim
n→+∞

(
tp+1
λn

∫
Ω

|u0|p+1 + λnt
q+1
λn

∫
Ω

|u0|q+1

)
= +∞,

which leads to a contradiction, since {tλn} is bounded.

Therefore, there exists λ0 > 0, which depends on Ω, q, by Lemma 4.18 and (4.73), for
λ ≥ λ0, we have

0 < cm ≤ max
t≥0

J(tu0) = J(tλu0)

=
t2λ
2

∫
Ω

|∇u0|2 −
tp+1
λ

p+ 1

∫
Ω

|u0|p+1 − λtq+1
λ

q + 1

∫
Ω

|u0|q+1

≤ t2λ
2

∫
Ω

|∇u0|2 −
tp+1
λ

p+ 1

∫
Ω

|u0|p+1 → 0.

In particular, J(u1) <
√
3
4
π2.

Next we prove existence of the large solution of (4.2). By Lemma 4.13, we know that
u(εy) = ε−κ (VΛ,ξ′(y) + ϕΛ,ξ′(y)) is a solution to problem (4.2) if and only if (Λ, ξ′) is a critical
point of I(Λ, ξ′). So we have to prove existence of the critical point of I(Λ, ξ′).
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From Lemma 4.14 and (4.71), we have

I(Λ, ξ′) = J(Uµ,ξ) + c0ε log ε+ o(ε).

This together with Lemma 4.4 yields that for 2 < q < 3,

I(Λ, ξ′) = a0 + εφ(Λ, ξ) + a3ε+ o(ε), (4.74)

where
φ(Λ, ξ) = a1ΛH(ξ, ξ)− a2 log Λ,

with constants a1, a2 > 0 being given in Lemma 4.4, and o(ε) is uniform in the C1 sense for
ξ′, Λ in the considered region.

Define

Ĩ(Λ, ξ′) = 1

ε
I(Λ, ξ′)− a0

ε
− a3.

Then we have

Ĩ(Λ, ξ′) = φ(Λ, ξ) + o(1), (4.75)

where ξ′ = ξ
ε
and o(1) is in the C1− sense uniformly on ξ′, Λ satisfying (4.25),(4.26). Since

the function H(ξ, ξ) has at least one critical point, denoted by ξ0, with H(ξ0, ξ0) > 0, then
(Λ0, ξ0), with Λ0 =

a2
a1H(ξ0,ξ0)

, is a nondegenerate critical point of φ(Λ, ξ). It follows that the

local degree deg(∇φ(Λ, ξ),O, 0) is well defined and is nonzero, where O is arbitrary small

neighborhood of (Λ0, ξ0). So deg(∇Ĩ(Λ, ξ′),O, 0) ̸= 0 for ε > 0 small enough. Hence we find

a critical point (Λ∗, ξ
′
∗) of Ĩ(Λ, ξ′), such that (Λ∗, ξ

′
∗) → (Λ0, ξ

′
0) with ξ

′
0 =

ξ0
ε
as ε→ 0. Then

(Λ∗, ξ
′
∗) is also a critical point of I(Λ, ξ′). Thus we get that

u2(x) = ε−κ
(
VΛ∗,ξ′∗ + ϕΛ∗,ξ′∗

)
(
x

ε
)

is the solution of problem (4.2). Recalling that κ = 2
p−1

= 1
2
+ 1

8
ε + o(ε), then by above

construction and Lemma 4.4, we get (4.6) and (4.7).

Similarly, we can get existence of the large solution to problem (4.2) for q = 2 and
1 < q < 2.

4.4 Proof of Theorem 4.2

In this section, we assume 2 < q < 3, the aim is to construct the third solution by
regarding λ > 0 as a large parameter. Set

ϱ = λ−
2

3−q .

We observe that ϱ→ 0 as λ→ ∞. Taking the following change of variable

w̃(y) = ϱ
2

4−εu(ϱy).
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If u is a solution of problem (4.2), then w̃ satisfies{
−∆w̃ = w̃5−ε + λϱmw̃q, w > 0 in Ωϱ;

w̃ = 0 on ∂Ωϱ,
(4.76)

where Ωϱ =
Ω
ϱ
and m = 2(1−q)

4−ε
+ 2 = 5−q

2
+ 1−q

8
(1 + o(1))ε. We observe that

λϱm = λϱ
5−q
2

+ 1−q
8

(1+o(1))ε ≤ Cϱ→ 0 as λ→ ∞. (4.77)

For ε > 0 small and λ > 0 large enough, (4.10) is the limit equation of problem (4.76).

Let Uµ,ξ(x) be the unique solution of (4.12), we define in Ωϱ the function

W̃Λ,ξ′(y) = ϱ
1
2Uµ,ξ(ϱy), Λ =

µ

ϱ
, ξ′ =

ξ

ϱ
. (4.78)

Then W̃Λ,ξ′(y) satisfies

−∆W̃Λ,ξ′(y) = w5
Λ,ξ′(y), in Ωϱ; W̃Λ,ξ′(y) = 0 on ∂Ωϱ.

We assume that, for δ > 0 small but fixed,

d(ξ′, ∂Ωϱ) ≥
δ

ϱ
and δ < Λ <

1

δ
. (4.79)

From Lemma 4.3, we have

W̃Λ,ξ′(y) = wΛ,ξ′(y)− 4π3
1
4Λ

1
2ϱH(ϱy, ϱξ′) +O(ϱ3) in Ωϱ, as ϱ→ 0.

We will look for a solution of (4.76) of the form

w̃(y) = W̃Λ,ξ′(y) + ϕ̃(y),

where W̃Λ,ξ′(y) is defined by (4.78) and ϕ̃ is a small term. Then problem (4.76) becomes{
L1(ϕ̃) = N1(ϕ̃) +R1 in Ωϱ;

ϕ̃ = 0 on ∂Ωϱ,
(4.80)

where

L1(ϕ̃) = −∆ϕ̃− g′(W̃Λ,ξ′)ϕ̃, with g(w) = w5−ε + λϱmwq. (4.81)

N1(ϕ̃) = g(W̃Λ,ξ′ + ϕ̃)− g(W̃Λ,ξ′)− g′(W̃Λ,ξ′)ϕ̃, R1 = ∆W̃Λ,ξ′ + g(W̃Λ,ξ′) (4.82)

Next, we search for ϕ̃ by the fixed point argument. For f a function in Ωϱ, we define the
same weighted L∞−norms as (4.31) and (4.32). Namely,

∥f∥∗,ϱ = sup
y∈Ωϱ

(1 + |y − ξ′|2)
θ−2
2 |f(y)|, (4.83)
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and

∥f∥∗∗,ϱ = sup
y∈Ωϱ

(1 + |y − ξ′|2)
θ
2 |f(y)|, (4.84)

where θ satisfies

2 < θ < q. (4.85)

Then we can get

∥R1∥∗∗,ϱ ≤ Cϱ, ∥D(Λ,ξ′)R1∥∗∗,ϱ ≤ Cϱ. (4.86)

In fact, we note that W̃Λ,ξ′(y) = wΛ,ξ′(y) +O(ϱ),

∥R1∥∗∗,ϱ =
∥∥∥∆W̃Λ,ξ′ + W̃ 5−ε

Λ,ξ′ + λϱmW̃ q
Λ,ξ′

∥∥∥
∗∗,ϱ

=
∥∥∥W̃ 5−ε

Λ,ξ′ − w5
Λ,ξ′(y) + λϱmW̃ q

Λ,ξ′

∥∥∥
∗∗,ϱ

≤ Cϱ∥wΛ,ξ′(y)
4∥∗∗,ϱ + Cε∥wΛ,ξ′(y)

5 log (wΛ,ξ′(y)) ∥∗∗,ϱ + λϱm
∥∥wq

Λ,ξ′

∥∥
∗∗,ϱ

≤ Cϱ∥wΛ,ξ′(y)
4−θ∥∞ + Cε∥wΛ,ξ′(y)

5−θ log (wΛ,ξ′(y)) ∥∞ + Cλϱm
∥∥∥wq−θ

Λ,ξ′

∥∥∥
∞

≤ Cϱϱ4−θ + Cεϱ5−θ| log ϱ|+ Cλϱmϱq−θ ≤ Cϱ,

since 2 < θ < q. We get the first estimate in (4.86). By similar computations, we can get
∥D(Λ,ξ′)R1∥∗∗,ϱ ≤ Cϱ.

Now we consider the following problem
−∆ϕ̃− g′(W̃Λ,ξ′)ϕ̃ = N1(ϕ̃) +R1 +

3∑
i=0

diw
4
Λ,ξ′Z̄i in Ωϱ;

ϕ̃ = 0 on ∂Ωϱ;∫
Ωϱ
ϕ̃w4

Λ,ξ′Z̄i = 0 i = 0, 1, 2, 3,

(4.87)

for some numbers di (i = 0, 1, 2, 3), where Z̄i are defined by

Z̄0 =
∂W̃Λ,ξ′

∂Λ
, Z̄i =

∂W̃Λ,ξ′

∂ξ′i
, i = 1, 2, 3.

By similar processes in Section 4.3, we have the following result.

Proposition 4.16. Assume Λ and ξ′ satisfy (4.79), for λ > 0 large enough, there exists
a unique solution ϕ̃ = ϕ̃(Λ, ξ′) of problem (4.87), which is C1 with respect to Λ and ξ′.
Moreover,

∥ϕ̃∥∗,ϱ ≤ Cϱ, ∥D(Λ,ξ′)ϕ̃∥∗,ϱ ≤ Cϱ. (4.88)
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In order to find solutions to problem (4.76), we only need to find Λ and ξ′ such that

di(Λ, ξ
′) = 0 for i = 0, 1, 2, 3. (4.89)

The energy functional of problem (4.76) is given by

E(w̃) =
1

2

∫
Ωϱ

|∇w̃|2 − 1

6− ε

∫
Ωϱ

|w̃|6−ε − λϱm
1

q + 1

∫
Ωϱ

|w̃|q+1

Set

E(Λ, ξ′) = E
(
W̃Λ,ξ′(y) + ϕ̃Λ,ξ′(y)

)
, (4.90)

where W̃Λ,ξ′(y) is defined by (4.78) and ϕ̃Λ,ξ′ is the solution to problem (4.87), which is solved
by Proposition 4.16.

Lemma 4.17. Under the assumptions of Proposition 4.16, E(Λ, ξ′) is of class C1. Moreover,

for all λ > 0 sufficiently large, the function w̃(y) = W̃Λ,ξ′(y)+ϕ̃Λ,ξ′(y) is a solution to problem
(4.76) if and only if (Λ, ξ′) is a critical point of E(Λ, ξ′).

The proof of this lemma is similar to Lemma 4.13. Using the same arguments as Lemma
4.14 and (4.71), we can obtain as λ→ ∞,

E(Λ, ξ′) = J(Uµ,ξ) + o(ϱ), (4.91)

where o(ϱ) is in the C1− sense uniformly on ξ′, Λ satisfying (4.79).

Proof of Theorem 4.2. Suppose (4.79) holds, recall that µ = Λϱ and ξ = ϱξ′ ∈ Ω. Then
for ε and λ satisfying (4.8), from Lemma 4.4 and (4.91), we obain

E(Λ, ξ′) = a0 + ψq(Λ, ξ)ϱ+ o(ϱ), (4.92)

where

ψq(Λ, ξ) := a1H(ξ, ξ)Λ− a4Λ
5−q
2 for 2 < q < 3

with a1 > 0, a4 > 0 being given in Lemma 4.4.

Define

Ẽ(Λ, ξ′) = 1

ϱ
[E(Λ, ξ′)− a0] .

Then we have
Ẽ(Λ, ξ′) = ψq(Λ, ξ) + o(1),

with o(1) → 0 as λ→ ∞, uniformly in the C1− sense for ξ′, Λ satisfying (4.79).

Next we find the critical point of E(Λ, ξ′). Since for 2 < q < 3,

Λ0,q :=

(
2a1H(ξ, ξ)

a4(5− q)

) 2
3−q
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satisfies ∂Λψq(Λ, ξ)|Λ=Λ0,q = 0. Moreover, H(ξ, ξ) has a critical point ξ0, with H(ξ0, ξ0) > 0,
then (Λ0,q, ξ0) is a nondegenerate critical point of ψq(Λ, ξ). Thus there is a critical point
(Λ1, ξ

′
1) of E(Λ, ξ′), such that (Λ1, ξ

′
1) → (Λ0,q, ξ

′
0) with ξ

′
0 =

ξ0
ϱ
. Therefore, by Lemma 4.17,

u3(x) = ϱ−
2

4−ε

(
W̃Λ1,ξ′1

(
y

ϱ

)
+ ϕ̃Λ1,ξ′1

(
y

ϱ

))
is a solution of (4.2). By above construction, we have

u3(x) = 3
1
4

(Λ1λ
− 2

3−q )
1
2

((Λ1λ
− 2

3−q )2 + |x− ξ1|2)
1
2

(1 + o(1)), (4.93)

where o(1) → 0 uniformly in Ω̄ when λ is large enough and satisfies (4.8), and (Λ1, ξ1) →
(Λ0,q, ξ0). Moreover J(u3) >

√
3
4
π2. In fact, we can easily check that

J(u3(x)) = a0 + ψq(Λ0,q, ξ0)ϱ+ o(ϱ),

where

ψq(Λ0,q, ξ0) = a1H(ξ0, ξ0)Λ0,q − a4Λ
5−q
2

0,q

= a1H(ξ0, ξ0)

(
2a1H(ξ0, ξ0)

a4(5− q)

) 2
3−q

− a4

((
2a1H(ξ0, ξ0)

a4(5− q)

) 2
3−q

) 5−q
2

= a1H(ξ0, ξ0)

(
2a1H(ξ0, ξ0)

a4(5− q)

) 2
3−q 3− q

5− q
> 0.

So we get

J(u3) > a0 =

√
3

4
π2.

Basing on Theorem 4.1 which provides two solutions, by comparing the energy of these
solutions, we conclude the result.

4.5 Appendix

Lemma 4.18. For all ε > 0, we have

cm = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) = inf
u∈N (Ω)

J(u) = inf
u∈H1

0 (Ω)\{0}
max
t≥0

J(tu),

where N (Ω) =
{
u ∈ H1

0 (Ω) :
∫
Ω
|∇u|2 =

∫
Ω
|u|p+1 + λ

∫
Ω
|u|q+1

}
.
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Proof. The argument follows from [118]. For the reader’s convenience, we prove it here. Let
ε > 0 be fixed, we claim

inf
u∈N (Ω)

J(u) = inf
u∈H1

0 (Ω)\{0}
max
t≥0

J(tu). (4.94)

Let u ∈ H1
0 (Ω) \ {0} be fixed, define Φ(t) = J(tu) for t ≥ 0. Then we have that Φ(0) = 0,

Φ(t) > 0 for small t > 0 and Φ(t) < 0 for t > 0 large enough. Thus max
[0,+∞)

Φ(t) is achieved.

We observe that Φ′(t) = 0 implies

∥u∥2H1
0 (Ω) = tp−1

∫
Ω

|u|p+1 + λtq−1

∫
Ω

|u|q+1.

Set ψ(t) = tp−1
∫
Ω
|u|p+1 + λtq−1

∫
Ω
|u|q+1, obviously, ψ(t) is an increasing function of t.

Therefore there is a unique point t=t(u) such that Φ′(t(u)) = 0 and t(u)u ∈ N (Ω). Now
we prove that N (Ω) is radially homeomorphic to H1

0 (Ω) \ {0}. It is enough to prove that
t : H1

0 (Ω) \ {0} → R+ is continuous. Indeed, assume that un → u in H1
0 (Ω) \ {0}, then

un → u in H1
0 (Ω) and un → u in Ls(Ω) for s ≤ 6. Moreover,∫

Ω

|∇un|2 = tp−1(un)

∫
Ω

|un|p+1 + λtq−1(un)

∫
Ω

|un|q+1, (4.95)

thus {t(un)}n is bounded in R+, then there exists a subsequence of {t(un)}n, still denoted by
{t(un)}n, such that t(un) → t0 as n→ +∞. By taking the limit in (4.95), we get∫

Ω

|∇u|2 = tp−1
0

∫
Ω

|u|p+1 + λtq−1
0

∫
Ω

|u|q+1.

Hence t(u) = t0, where t0u ∈ N (Ω).

Since J(tu) < 0 for u ∈ H1
0 (Ω) \ {0} and t is large, we obtain

inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≤ inf
u∈H1

0 (Ω)\{0}
max
t≥0

J(tu).

Finally, we show that
inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≥ inf
u∈N (Ω)

J(u).

It is sufficient to prove that γ([0, 1]) ∩N (Ω) ̸= ∅ for all γ ∈ Γ. In fact,

Ψ(u) : =

∫
Ω

|∇u|2 −
∫
Ω

|u|p+1 − λ

∫
Ω

|u|q+1

= 2J(u) +
1− p

p+ 1

∫
Ω

|u|p+1 + λ
1− q

q + 1

∫
Ω

|u|q+1.

It is easy to check that there exists ρ0 > 0 such that

Ψ(u) > 0 for all 0 < ∥u∥H1
0 (Ω) ≤ ρ0.

For any γ ∈ Γ, we have Ψ(γ(0)) = 0 and Ψ(γ(1)) < 2J(γ(1)) < 0. Therefore there exists
t1 ∈ [0, 1], such that ∥γ(t1)∥H1

0 (Ω) > ρ0 and Ψ(γ(t1)) = 0. So γ(t1) ∈ γ([0, 1]) ∩ N (Ω). We
complete the proof.
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Chapter 5

Bubble tower solutions for
supercritical elliptic problem in RN

5.1 Introduction

We are interested in the elliptic equation{
−∆u+ u = up + λuq, u > 0 in RN ,

u(x) → 0 as |x| → ∞,
(5.1)

where N ≥ 3, λ > 0 and 1 < q < p. This problem arises in the study of standing waves of
a nonlinear Schrödinger equation with two power type nonlinearities, see for example Tao,
Visan and Zhang [113].

If p = q, equation (5.1) reduces to{
−∆u+ u = up, u > 0 in RN ,

u(x) → 0 as |x| → ∞,
(5.2)

after a suitable scaling.

Thanks to the classical result of Gidas, Ni and Nirenberg [68], solutions of (5.1) and (5.2)
are radially symmetric about some point, which we will assume is always the origin.

It is well known that problem (5.2) has a solution if and only if 1 < p < N+2
N−2

. Existence
was proved by Berestycki and Lions [10], while non-existence from the Pohozaev identity [99].
Uniqueness also holds and was fully settled by Kwong [76], after a series of contributions
[22, 80, 96, 97, 94, 93]. See also Felmer, Quaas, Tang and Yu [57] for further properties.

Concerning (5.1), the work of Berestycki and Lions [10] is still applicable if 1 < q < p <
N+2
N−2

, and one obtains existence of a solution. If p, q ≥ N+2
N−2

there is no solution, again from
the Pohozaev identity.
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Recently, Dávila, del Pino and Guerra [35] proved that uniqueness does not hold in general
for (5.1), if 1 < q < p < N+2

N−2
. More precisely if N = 3, the authors obtained at least three

solutions to problem (5.1) if 1 < q < 3, λ > 0 is sufficiently large and fixed, and p < 5 is
close enough to 5.

Let us mention some contributions to the question of existence for (5.1) when one exponent
is subcritical and other is critical or supercritical. If 1 < q < p = N+2

N−2
in (5.1), Alves, de

Morais Filho and Souto [1] proved:

• when N ≥ 4, there exists a nontrivial classical solution for all λ > 0 and 1 < q < N+2
N−2

;

• when N = 3, there exists a nontrivial classical solution for all λ > 0 and 3 < q < 5;

• when N = 3, there exists a nontrivial classical solution for λ > 0 large enough and
1 < q ≤ 3.

Moreover, Ferrero and Gazzola [56] proved that for q < N+2
N−2

≤ p, there exists λ̄ > 0,

such that if λ > λ̄, then (5.1) has at least one solution, while for q < N+2
N−2

< p, there exists

0 < λ < λ̄ such that if λ < λ, then there is no solution.

In this chapter, we are interested in multiplicity of solutions of (5.1), and for this we take
an asymptotic approach, that is, we consider{

−∆u+ u = up + λuq, u > 0 in RN ;

u(z) → 0 as |z| → ∞,
(5.3)

where p = p∗ + ε, with p∗ = N+2
N−2

, λ > 0 and ε > 0 are parameters, and q satisfies

1 < q <
N + 2

N − 2
if N ≥ 4; 3 < q < 5 if N = 3. (5.4)

Our result can be stated as follows.

Theorem 5.1. Let λ > 0 and let q satisfy (5.4). Given an integer k ≥ 1, then there exists
ε0 > 0 such that for any ε ∈ (0, ε0), there is a solution uε(z) of problem (5.3) of the form

uε(z) = (N(N − 2))
N−2

4

k∑
j=1

ε−[(j−1)+ 2
p∗−q

](Λ∗
j)

−N−2
2(

1 + ε−
4

N−2
[(j−1)+ 1

p∗−q
](Λ∗

j)
−2|z|2

)N−2
2

(1 + o(1)), (5.5)

where the constants Λ∗
j > 0, j = 1, 2, . . . , k, can be computed explicitly and depend on k,N, q.

Remark 5.2. The expansion (5.5) is valid if

1

C
ε

2
N−2

[(i−1)+ 1
p∗−q

] ≤ |z| ≤ Cε
2

N−2
[(i−1)+ 1

p∗−q
],

with some i ∈ {1, 2, · · · , k}, and o(1) → 0 uniformly as ε→ 0 in this region.
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The solutions described in this result behave like a superposition of “bubbles” of different
blow-up orders centered at the origin, and hence have been called bubble-tower solutions.
By bubbles we mean the functions

wµ(z) = αN
µ

N−2
2

(µ2 + |z|2)N−2
2

, with αN = (N(N − 2))
N−2

4 ,

where µ > 0, which are the unique positive solutions of

−∆w = wp∗ in RN ,

(except translations). Based on numerical simulations, in Figures 5 and 6, we describe
qualitatively the bifurcation diagrams of solutions for problem (5.3) where q satisfies (5.4).
The solutions from Theorem 5.1 (for k = 1, 2), are also marked in the diagrams.

Bubble-tower solutions were found by del Pino, Dolbeault and Musso [43] for a slightly
supercritical Brezis-Nirenberg problem in a ball, and after that have been studied intensively
[21, 44, 46, 48, 64, 65, 83, 89, 91, 98]. In particular we mention the work of Campos [21] who
considered the existence of bubble-tower solutions to a problem related to ours:{

−∆u = up
∗±ε + uq, u > 0 in RN ;

u(z) → 0 as |z| → ∞,

with N
N−2

< q < p∗ = N+2
N−2

, N ≥ 3.

The proof of our result starts with a variation of the so-called Emden-Fowler transfor-
mation, which reduces the problem of finding k-bubble solution to the problem of finding a
k-bump solution of a second-order ordinary differential equation in R. After a Lyapunov-
Schmidt reduction procedure, see for example [58, 83, 21], the problem becomes to find a
critical point of some functional depending on k real parameters.

In Section 5.2, we give Emden-Fowler transformation for problem (5.3) and build the
first approximate solution to the ODE. We study the linearized problem at an approximate
solution and nonlinear problem in Sections 5.3 and 5.4. In Section 5.5, we study the finite-
dimensional variational reduction problem and prove Theorem 5.1. We leave some of the
estimates in the Appendix.
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bc

bc

k = 1

k = 2

p

u(0) = ∥u∥∞

p∗

Figure 5: Bifurcation diagram u(0) vs. p for solutions of (5.3) for λ sufficiently large and
fixed, and q satisfying (5.4).

bc

bc

λ

u(0) = ∥u∥∞

0

k = 1

k = 2

Figure 6: Bifurcation diagram u(0) vs. λ for solutions of (5.3) with p = p∗ + ε, ε > 0 small
and fixed, and q satisfying (5.4).
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5.2 The first approximate solution

In this section, we build the first approximate solution to (5.3). In order to do this, we
introduce the solutions of problem

−∆w = wp∗ in RN ,

which are given by

wµ(z) = αN
µ

N−2
2

(µ2 + |z|2)N−2
2

with αN = (N(N − 2))
N−2

4 and any parameter µ > 0.

Let us define Uµ as the unique solution of the following problem{
−∆Uµ + Uµ = wp∗

µ in RN ;

Uµ(z) → 0 as |z| → ∞.
(5.6)

We write
Uµ(z) = wµ(z) +Rµ(z).

Then Rµ(z) satisfies {
−∆Rµ(z) +Rµ(z) = −wµ(z) in RN ;

Rµ(z) → 0 as |z| → ∞.
(5.7)

We have the following result, whose proof is postponed to the Appendix.

Lemma 5.3. Assume 0 < µ ≤ 1, we have

(a) 0 < Uµ(z) ≤ wµ(z) , for z ∈ RN .

(b) One has

Uµ(z) ≤ Cµ
N−2

2 |z|−(N+2), for |z| ≥ R,

where R is a large positive number but fixed.

(c)Given any µ > 0 small, we have

(i) If |z| ≥ 1, then

|Rµ(z)| ≤ C
µ

N−2
2

|z|N−2
for N ≥ 3. (5.8)

(ii) If |z| ≤ µ
2
, then

|Rµ(z)| ≤ C


µ−N−6

2 for N ≥ 5;

µ log 1
µ

for N = 4;

µ
1
2 for N = 3.

(5.9)
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If µ
2
≤ |z| ≤ 1, then

|Rµ(z)| ≤ C


µ−N−6

2
1

(1+| z
µ
|2)

N−4
2

for N ≥ 5;

µ log 1
|z| for N = 4;

µ
1
2 for N = 3.

(5.10)

We define the following Emden-Fowler transformation

v(x) = T (u(r)) =

(
p∗ − 1

2

) 2
p∗−1

r
2

p∗−1u(r) (5.11)

with

r = |z| = e−
p∗−1

2
x, x ∈ (−∞,+∞). (5.12)

Using this transformation, finding a radial solution u(r) to problem (5.3) corresponds to that
of solving the problem

L0(v) = αεe
εxvp

∗+ε + λβNe
−(p∗−q)xvq in (−∞,+∞);

v(x) > 0 for x ∈ (−∞,+∞);

v(x) → 0 as |x| → ∞,

(5.13)

where

L0(v) = −v′′ + v +

(
2

N − 2

)2

e−
4

N−2
xv, (5.14)

αε =

(
p∗ − 1

2

)− 2ε
p∗−1

, βN =

(
p∗ − 1

2

) 2(p∗−q)
p∗−1

.

We observe that L0 is the transformed operator associated to −∆+ Id. Moreover,

W (x− ξ) = T (wµ)(r) =

(
4N

N − 2

)N−2
4

e−(x−ξ)
(
1 + e−

4
N−2

(x−ξ)
)−N−2

2

with µ = e−
2

N−2
ξ, is the unique solution of the problem

W ′′ −W +W p∗ = 0 in (−∞,+∞);

W ′(0) = 0;

W (x) > 0, W (x) → 0 as |x| → ∞.

(5.15)

Note that W (x) = O(e−|x|).

Define the function

Vξ(x) = T (Uµ)(r), with r = e−
p∗−1

2
x, µ = e−

2
N−2

ξ.
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Then Vξ(x) is the solution of the problem{
L0Vξ(x) = W (x− ξ)p

∗
in (−∞,+∞);

Vξ(x) → 0 as |x| → ∞.
(5.16)

We write

Vξ(x) = W (x− ξ) +Rξ(x), (5.17)

where Rξ(x) = T (Rµ)(r). By the Emden-Fowler transformation and as a consequence of
Lemma 5.3, we have the following estimates.

Lemma 5.4. For ξ > 0, we have

(a) 0 < Vξ(x) ≤ W (x− ξ) = O(e−|x−ξ|), for x ∈ R.

(b)

Vξ(x) ≤ Ce
N+6
N−2

xe−ξ, for −∞ < x ≤ −N − 2

2
logR, (5.18)

for R > 0 is a fixed large number as in Lemma 5.3.

(c) For N ≥ 3, there is a positive constant C, such that

|Rξ(x)| ≤ C

{
e−|x−ξ| if x ≤ 0;

e−|x−ξ|e−
2

N−2
min{x,ξ} if x ≥ 0.

(5.19)

Define
Zξ(x) := ∂ξVξ(x) = ∂ξW (x− ξ) + ∂ξRξ(x).

Note that ∂ξW (x− ξ) = O(e−|x−ξ|) and

∂ξW (x− ξ) = − 2

N − 2
µT (∂µwµ(r)) , (5.20)

Zξ(x) = − 2

N − 2
µT
(
Z̃µ(r)

)
with Z̃µ(z) = ∂µUµ(z), (5.21)

∂ξRξ(x) = − 2

N − 2
µT (∂µRµ(r)) . (5.22)

Then from (5.102), (5.22) and Lemma 5.4 (c), we have for N ≥ 3,

|∂ξRξ(x)| ≤ C

{
e−|x−ξ| if x ≤ 0;

e−|x−ξ|e−
2

N−2
min{x,ξ} if x ≥ 0.

(5.23)
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Therefore

Zξ(x) = O(e−|x−ξ|) for ∀ x ∈ R. (5.24)

Moreover, from (5.103) and (5.21), we find

|Zξ(x)| ≤ Ce
N+6
N−2

xe−ξ, for −∞ < x ≤ −N − 2

2
logR, (5.25)

for R > 0 is a fixed large number.

Let η > 0 be a small but fixed number. Given an integer number k, let Λj, for j = 1, · · · , k,
be positive numbers and satisfy

η < Λj <
1

η
. (5.26)

Set

µ1 = ε
2

(N+2)−(N−2)qΛ1 and µj = ε
2

N−2
(j−1)+ 2

(N+2)−(N−2)qΛj (5.27)

for j = 2, · · · , k. We observe that

µj+1

µj

= ε
2

N−2
Λj+1

Λj

, j = 1, · · · , k − 1. (5.28)

Define k points in R as

µj = e−
2

N−2
ξj , j = 1, . . . , k.

Then we have that
0 < ξ1 < ξ2 < · · · < ξk.

and {
ξ1 = − 1

p∗−q
log ε− N−2

2
log Λ1,

ξj − ξj−1 = − log ε− N−2
2

log
Λj

Λj−1
, j = 2, . . . , k,

(5.29)

Set

Wj = W (x− ξj), Rj = Rξj(x), Vj = Wj +Rj, V =
k∑

j=1

Vj. (5.30)

We look for a solution of (5.3) of the form u =
k∑

j=1

Uµj
+ψ corresponding to find a solution

of (5.13) of the form
v = V + ϕ,
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where V is given by (5.30) and ϕ = T (ψ) is a small term. Thus problem (5.13) becomes
Lε(ϕ) = N(ϕ) + E in (−∞,+∞);

ϕ(x) > 0 for x ∈ (−∞,+∞);

ϕ(x) → 0 as |x| → ∞,

(5.31)

where

Lε(ϕ) = L0(ϕ)− αε(p
∗ + ε)eεxV p∗+ε−1ϕ− λqβNe

−(p∗−q)xV q−1ϕ, (5.32)

N(ϕ) = αεe
εx
[
(V + ϕ)p

∗+ε − V p∗+ε − (p∗ + ε)V p∗+ε−1ϕ
]

+λβNe
−(p∗−q)x

[
(V + ϕ)q − V q − qV q−1ϕ

]
, (5.33)

and

E = αεe
εxV p∗+ε − L0(V ) + λβNe

−(p∗−q)xV q

= αεe
εxV p∗+ε −

k∑
j=1

W p∗

j + λβNe
−(p∗−q)xV q, (5.34)

where L0 is defined by (5.14).

5.3 The linear problem

In order to solve problem (5.31), we consider first the following problem: given points
ξ = (ξ1, . . . , ξk), finding a function ϕ such that for certain constants c1, c2, . . . , ck,

Lε(ϕ) = N(ϕ) + E +
k∑

j=1

cjZj in (−∞,+∞);

lim
|x|→∞

ϕ(x) = 0;∫
R Zjϕ = 0, ∀ j = 1, . . . , k,

(5.35)

where Zj(x) = Zξj(x) = ∂ξjVξj(x) for j = 1, 2, · · · , k.
To solve (5.35), it is important to understand its linear part, thus we consider the following

problem: given a function h, finding ϕ such that
Lε(ϕ) = h+

k∑
j=1

cjZj in (−∞,+∞);

lim
|x|→∞

ϕ(x) = 0;∫
R Zjϕ = 0, ∀ j = 1, . . . , k,

(5.36)

for certain constants cj.
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Now we analyze invertibility properties of the operator Lε under the orthogonality con-
ditions. Let σ satisfy

0 < σ < min

{
q − 1, 1,

(N + 2)(2q − 1)

N + 6
,
3q − p∗

2

}
. (5.37)

We define the real number M as follows

M =

{
0 if 1 ≥ 4

N−2
+ σ;

max{0, γ} if 1 ≤ 4
N−2

+ σ,
(5.38)

where γ satisfies (
1−

(
4

N − 2
+ σ

)2
)
e−

4
N−2

γ = −1

2

(
2

N − 2

)2

.

We define the following norms for a function φ defined on R,

∥φ∥∗ = sup
x≤−M

e−( 4
N−2

+σ)xeσξ1 |φ(x)|+ sup
x∈R

(
k∑

j=1

e−σ|x−ξj |

)−1

|φ(x)|, (5.39)

and

∥φ∥∗∗ = sup
x∈R

(
k∑

j=1

e−σ|x−ξj |

)−1

|φ(x)|. (5.40)

The following result holds.

Proposition 5.5. There exist positive numbers ε0, and C > 0 such that if the points 0 <
ξ1 < ξ2 < . . . < ξk satisfy (5.29), then for all 0 < ε < ε0 and all functions h ∈ C(R;R) with
∥h∥∗∗ < +∞, problem (5.36) has a unique solution ϕ =: Tε(h) with ∥ϕ∥∗ < +∞. Moreover,

∥ϕ∥∗ ≤ C∥h∥∗∗ and |cj| ≤ C∥h∥∗∗. (5.41)

We first consider a simpler problem
L0(ϕ)− αε(p

∗ + ε)eεxV p∗+ε−1ϕ = h+
k∑

j=1

cjZj in (−∞,+∞);

lim
|x|→∞

ϕ(x) = 0;∫
R Zjϕ = 0, ∀ j = 1, . . . , k,

(5.42)

for certain constants cj, here L0 is defined by (5.14).

Lemma 5.6. Under the assumptions of Proposition 5.5, then for all 0 < ε < ε0 and any h,
ϕ solution of (5.42), we have

∥ϕ∥∗ ≤ C∥h∥∗∗, (5.43)

and

|cj| ≤ C∥h∥∗∗. (5.44)
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Proof. To prove (5.43), by contradiction, we suppose that there exist sequences ϕn, hn, εn
and cnj that satisfy (5.42), with

∥ϕn∥∗ = 1, ∥hn∥∗∗ → 0, εn → 0.

We get a contradiction by the following steps.

Step 1: cnj → 0 as n→ +∞.

Multiplying (5.42) by Zn
i and integrating by parts twice, we get that

k∑
j=1

cnj

∫
R
Zn

j Z
n
i

= −
∫
R
hnZ

n
i +

∫
R

[
L0(Z

n
i )− αεn(p

∗ + εn)e
εnxV p∗+εn−1Zn

i

]
ϕn. (5.45)

Note that ∫
R
Zn

j Z
n
i = Cδij + o(1), (5.46)

where δij is Kronecker’s delta. Then (5.45) defines a linear system in the c′js which is almost
diagonal as n→ ∞.

Since Zn
i (x) = ∂ξni Vξni (x) = O(e−|x−ξni |), we then have∣∣∣∣∫

R
hnZ

n
i

∣∣∣∣ ≤ C∥hn∥∗∗
∫
R

(
k∑

j=1

e−σ|x−ξnj |

)
e−|x−ξni |dx

≤ Ck∥hn∥∗∗
∫
R
e−|y|dy ≤ C∥hn∥∗∗. (5.47)

Moreover, Zn
i satisfy

L0(Z
n
i ) = p∗W p∗−1(x− ξni )∂ξni W (x− ξni ),

so we get∣∣∣∣∫
R

[
L0(Z

n
i )− αεn(p

∗ + εn)e
εnxV p∗+εn−1Zn

i

]
ϕn

∣∣∣∣
=

∣∣∣∣∫
R

[
p∗W (x− ξni )

p∗−1∂ξni W (x− ξni )− αεn(p
∗ + εn)e

εnxV p∗+εn−1∂ξni W (x− ξni )
]
ϕn

+

∫
R
[αεn(p

∗ + εn)e
εnxV p∗+εn−1∂ξni Rξni

(x)]ϕn

∣∣∣∣
= o(1)∥ϕn∥∗. (5.48)

From (5.45)-(5.48), we obtain

|cnj | ≤ C∥hn∥∗∗ + o(1)∥ϕn∥∗. (5.49)
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Thus lim
n→∞

cnj = 0.

Step 2: For any L > 0, any l ∈ {1, 2, · · · , k}, we have

sup
x∈[ξnl −L,ξnl +L]

|ϕn(x)| → 0, as n→ ∞. (5.50)

Indeed, suppose not, we assume that there exist L > 0 and some l ∈ {1, 2, · · · , k} such that

|ϕn(xn,l)| ≥ c > 0, for some xn,l ∈ [ξnl − L, ξnl + L].

By elliptic estimates, there is a subsequence of ϕn converging uniformly on compact sets to
a nontrivial bounded solution ϕ̃ of

L0(ϕ̃) = p∗W p∗−1(x− ξl)ϕ̃,

where ξl = lim
n→∞

ξnl . By nondegeneracy [104], it is well known that ϕ̃ = cZl for some constant

c ̸= 0. But taking the limit in the orthogonality condition
∫
R Z

n
l ϕn = 0, we obtain ϕ̃ = 0,

which is a contradiction. Thus (5.50) holds.

Step 3: We prove that ∥ϕn∥∗ → 0 as n→ ∞.

Claim: For any L > 0 and j ∈ {1, 2, · · · , k}, we have

sup
R\∪k

j=1[ξ
n
j −L,ξnj +L]

(
k∑

j=1

e−σ|x−ξnj |

)−1

|ϕn(x)| → 0, (5.51)

and

sup
x≤−M

e−( 4
N−2

+σ)xeσξ
n
1 |ϕn(x)| → 0, (5.52)

as n→ +∞.

By the definition of ∥ · ∥∗ in (5.39), using (5.50), (5.51) and (5.52), we get that ∥ϕn∥∗ → 0
as n→ ∞.

Now we prove the above claim. We note that

hn +
k∑

j=1

cnjZ
n
j ≤ (C0∥hn∥∗∗ + o(∥ϕn∥∗))

k∑
j=1

e−σ|x−ξnj |,

where C0 is a positive constant.

For x ∈ R\ ∪k
j=1 [ξ

n
j − L, ξnj + L], let us define

ψ̃n(x) =

(
C0∥hn∥∗∗ + eσL sup

∪k
j=1[ξ

n
j −L,ξnj +L]

|ϕn(x)|+ o(∥ϕn∥∗)

)
k∑

j=1

e−σ|x−ξnj |
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+ϱ
k∑

j=1

e−σ̄|x−ξnj |

with ϱ > 0 small but fixed and 0 < σ̄ < σ. Then by choosing suitable large L > 0, we get

L0(ψ̃n(x))− αεn(p
∗ + εn)e

εnxV p∗+εn−1ψ̃n(x)

≥ L0(ϕn(x))− αεn(p
∗ + εn)e

εnxV p∗+εn−1ϕn(x).

On the other hand, we have that for any L > 0 and j ∈ {1, 2, · · · , k},

ψ̃n(ξ
n
j − L) ≥ ϕn(ξ

n
j − L) and ψ̃n(ξ

n
j + L) ≥ ϕn(ξ

n
j + L).

Moreover, there exists R > 0 large enough, such that

ψ̃n(R) ≥ ϕn(R),

and
ψ̃n(−R) ≥ ϕn(−R).

By the maximum principle, we get

ϕn(x) ≤ ψ̃n(x) for x ∈ [−R,R]\ ∪k
j=1 [ξ

n
j − L, ξnj + L].

Similarly, we obtain ϕn(x) ≥ −ψ̃n(x) for x ∈ [−R,R]\ ∪k
j=1 [ξ

n
j − L, ξnj + L]. Thus

|ϕn(x)| ≤ ψ̃n(x) for x ∈ [−R,R]\ ∪k
j=1 [ξ

n
j − L, ξnj + L].

Letting R → +∞, we get

|ϕn(x)| ≤ ψ̃n(x) for x ∈ R\ ∪k
j=1 [ξ

n
j − L, ξnj + L].

Letting ϱ→ 0, for x ∈ R\ ∪k
j=1 [ξ

n
j − L, ξnj + L], we have that

|ϕn(x)| ≤

(
C0∥hn∥∗∗ + eσL sup

∪k
j=1[ξ

n
j −L,ξnj +L]

|ϕn(x)|+ o(∥ϕn∥∗)

)
k∑

j=1

e−σ|x−ξnj |.

So (5.51) holds.

For x ≤ −M , let ρ > 0 small and C1 > 0 be chosen later, we define

ψn(x) = C1 (C0∥hn∥∗∗ + o(∥ϕn∥∗)) e(
4

N−2
+σ)xe−σξn1 + ρe

4
N−2

x.

According to the definition of M in (5.38), we then have

L0(ψn(x))− αεn(p
∗ + εn)e

εnxV p∗+εn−1ψn(x)

≥ 1

2

(
2

N − 2

)2
1

k
C1(C0∥hn∥∗∗ + o(∥ϕn∥∗))

k∑
j=1

e−σ|x−ξnj |.
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Choosing C1 such that 1
2

(
2

N−2

)2 1
k
C1 ≥ 1. then

L0(ψn(x))− αεn(p
∗ + εn)e

εnxV p∗+εn−1ψn(x)

≥ (C0∥hn∥∗∗ + o(∥ϕn∥∗))
k∑

j=1

e−σ|x−ξnj | ≥ hn +
k∑

j=1

cnjZ
n
j

= L0(ϕn(x))− αεn(p
∗ + εn)e

εnxV p∗+εn−1ϕn(x).

Moreover, by (5.51), we can find

ψn(−M) ≥ ϕn(−M),

and there exists R > 0 large enough, such that

ψn(−R) ≥ ϕn(−R).

By the maximum principle, we get

ϕn(x) ≤ ψn(x) for x ∈ [−R,−M ].

By a similar argument, we obtain ϕn(x) ≥ −ψ(x) for x ∈ [−R,−M ]. Thus

|ϕn(x)| ≤ ψn(x) for x ∈ [−R,−M ].

Let R → +∞, we get
|ϕn(x)| ≤ ψn(x) for x ∈ [−∞,−M ].

Let ρ→ 0, we have

|ϕn(x)| ≤ C1 (C0∥hn∥∗∗ + o(∥ϕn∥∗)) e(
4

N−2
+σ)xe−σξn1 for x ∈ [−∞,−M ].

So we obtain that (5.52) holds.

Moreover, estimate (5.44) follows from (5.49) and (5.43).

Proof of Proposition 5.5. From Lemma 5.6, for ϕ and h satisfying (5.36), we then have

∥ϕ∥∗ ≤ C
(
∥h∥∗∗ + ∥e−(p∗−q)xV q−1ϕ∥∗∗

)
. (5.53)

and

|cj| ≤ C
(
∥h∥∗∗ + ∥e−(p∗−q)xV q−1ϕ∥∗∗

)
. (5.54)

In order to establish (5.41), it is sufficient to show that

∥e−(p∗−q)xV q−1ϕ∥∗∗ ≤ o(1)∥ϕ∥∗. (5.55)
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Indeed,

∥e−(p∗−q)xV q−1ϕ∥∗∗ ≤ sup
x≤−M

(
k∑

j=1

e−σ|x−ξj |

)−1 ∣∣e−(p∗−q)xV q−1ϕ
∣∣

+ sup
x≥−M

(
k∑

j=1

e−σ|x−ξj |

)−1 ∣∣e−(p∗−q)xV q−1ϕ
∣∣

: = Q1 +Q2. (5.56)

Now we estimate Q1 and Q2 respectively, we first have

Q1 ≤ C sup
x≤−M

eσ|x−ξ1||ϕ(x)|e−(p∗−q)xV q−1

≤ C sup
x≤−M

e−( 4
N−2

+σ)xeσξ1 |ϕ(x)|e
4

N−2
xe−(p∗−q)x

k∑
j=1

e−(q−1)|x−ξj |

≤ C sup
x≤−M

e−( 4
N−2

+σ)xeσξ1 |ϕ(x)|e2(q−1)xe−(q−1)ξ1

≤ Ce−(q−1)ξ1 sup
x≤−M

e−( 4
N−2

+σ)xeσξ1 |ϕ(x)|. (5.57)

For Q2, if −M ≤ x ≤ ξ1, then we have

e−(p∗−q)xV q−1 ≤
k∑

j=1

e−(p∗−q)xe−(q−1)|x−ξj | ≤ Ce(2q−p∗−1)xe−(q−1)ξ1

≤ Cmax
{
e−(p∗−q)ξ1 , e−(q−1)ξ1

}
.

If x ≥ ξ1, then we have

e−(p∗−q)xV q−1 ≤
k∑

j=1

e−(p∗−q)xe−(q−1)|x−ξj | ≤ Ce−(p∗−q)x ≤ Ce−(p∗−q)ξ1 .

Thus we find

Q2 ≤ Cmax
{
e−(p∗−q)ξ1 , e−(q−1)ξ1

}
sup

x≥−M

(
k∑

j=1

e−σ|x−ξj |

)−1

|ϕ(x)|. (5.58)

From (5.56)-(5.58), we get

∥e−(p∗−q)xV q−1ϕ∥∗∗ ≤ Cmax
{
e−(p∗−q)ξ1 , e−(q−1)ξ1

}
∥ϕ∥∗ = o(1)∥ϕ∥∗.

So estimate (5.55) holds.

We now prove existence and uniqueness of solution to (5.36). Consider the Hilbert space

H =

{
ϕ ∈ H1(R) :

∫
R
Zjϕ = 0, ∀ j = 1, 2, . . . , k

}
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with inner product

⟨ϕ, ψ⟩ =
∫
R
(ϕ′ψ′ + ϕψ)dx.

Then problem (5.42) is equivalent to find ϕ ∈ H such that

⟨ϕ, ψ⟩ =

∫
R

[
αε(p

∗ + ε)V p∗+ε−1ϕ+ λqβNe
−(p∗−q)xV q−1ϕ

+

(
2

N − 2

)2

e−
4

N−2
xϕ+ h

]
ψdx (5.59)

for all ψ ∈ H. By the Riesz representation theorem, (5.59) is equivalent to solve

ϕ = K(ϕ) + h̃ (5.60)

with h̃ ∈ H depending linearly on h, and K : H → H being a compact operator. Fredholm’s
alternative yields there is a unique solution to problem (5.60) for any h provided that

ϕ = K(ϕ) (5.61)

has only the zero solution in H. (5.61) is equivalent to problem (5.36) with h = 0. If h = 0,
estimate (5.41) implies that ϕ = 0. This ends the proof.

Now we study the differentiability of the operator Tε with respect to ξ = (ξ1, . . . , ξk).
Consider the Banach space

C∗ = {f ∈ C(R) : ∥f∥∗∗ <∞}

endowed with the ∥ · ∥∗∗ norm. The following result holds.

Proposition 5.7. Under the assumption of Proposition 5.5, the map ξ 7→ Tε is of class C1.
Moreover,

∥DξTε(h)∥∗ ≤ C∥h∥∗∗ (5.62)

uniformly on the vectors ξ which satisfy (5.29).

Proof. Fix h ∈ C∗ and let ϕ = Tε(h) for ε < ε0. Let us recall that ϕ satisfies
Lε(ϕ) = h+

k∑
j=1

cjZj in (−∞,+∞);

lim
|x|→∞

ϕ(x) = 0;∫
R Zjϕ = 0, ∀ j = 1, . . . , k,

for certain constants cj. Differentiating above equation with respect to ξl, l ∈ {1, . . . , k}. Set
Y = ∂ξlϕ and dj = ∂ξlcj, we have

Lε(Y ) = h+
k∑

j=1

djZj in (−∞,+∞);

lim
|x|→∞

Y (x) = 0;∫
R Y Zj + ϕ∂ξlZj = 0, ∀ j = 1, . . . , k,
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where

h = αε(p
∗ + ε)(p∗ + ε− 1)eεxV p∗+ε−2Zlϕ

+λq(q − 1)βNe
−(p∗−q)xV q−2Zlϕ+ cl∂ξlZl.

Let η = Y −
k∑

i=1

biZi, where bi ∈ R is chosen such that

∫
R
ηZj = 0,

that is,

k∑
i=1

bi

∫
R
ZiZj =

∫
R
Y Zj =

∫
R
∂ξlϕZj = −

∫
R
ϕ∂ξlZj. (5.63)

This is an almost diagonal system, it has a unique solution and we have

|bi| ≤ C∥ϕ∥∗. (5.64)

Moreover, η satisfies 
Lε(η) = g +

k∑
j=1

djZj in (−∞,+∞);

lim
|x|→∞

η(x) = 0;∫
R ηZj = 0, ∀ j = 1, . . . , k,

(5.65)

with

g = h−
k∑

i=1

biLε(Zi).

From Proposition 5.5, there is a unique solution η = Tε(g) to (5.65) and

∥η∥∗ ≤ C∥g∥∗∗. (5.66)

On the other hand, we have

∥g∥∗∗ ≤ C∥eεxV p∗+ε−2Zlϕ∥∗∗ + C∥e−(p∗−q)xV q−2Zlϕ∥∗∗

+∥cl∂ξlZl∥∗∗ +
k∑

i=1

|bi|∥Lε(Zi)∥∗∗

≤ C(∥ϕ∥∗ + |cl|+ |bi|) ≤ C∥h∥∗∗, (5.67)

because |bi| ≤ C∥ϕ∥∗, ∥ϕ∥∗ ≤ C∥h∥∗∗, |cl| ≤ C∥h∥∗∗ and

∥Lε(Zi)∥∗∗ =
∥∥p∗W (x− ξi)

p∗−1∂ξiW (x− ξi)
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−αε(p
∗ + ε)eεxV p∗+ε−1Zi − λqβNe

−(p∗−q)xV q−1Zi

∥∥
∗∗

≤ C∥W (x− ξi)
p−1∂ξiW (x− ξi)∥∗∗

+C∥eεxV p∗+ε−1Zi∥∗∗ + C∥e−(p∗−q)xV q−1Zi∥∗∗
≤ C.

By (5.64), (5.66), (5.67) and ∥Zi∥∗ ≤ C, we obtain that

∥∂ξlϕ∥∗ ≤ ∥η∥∗ +
k∑

i=1

|bi|∥Zi∥∗ ≤ C∥h∥∗∗.

Besides ∂ξlϕ depends continuously on ξ in the considered region for this norm.

5.4 The nonlinear problem

In this section, our purpose is to study the nonlinear problem. We first have the validity
of the following result.

Lemma 5.8. We have

∥N(ϕ)∥∗∗ ≤ C
(
∥ϕ∥min{p∗,2}

∗ + ∥ϕ∥min{q,2}
∗

)
; (5.68)

and

∥∂ϕN(ϕ)∥∗∗ ≤ C
(
∥ϕ∥min{p∗−1,1}

∗ + ∥ϕ∥min{q−1,1}
∗

)
. (5.69)

Proof. We have

N(ϕ) = αεe
εx
[
(V + ϕ)p

∗+ε − V p∗+ε − (p∗ + ε)V p∗+ε−1ϕ
]

+λβNe
−(p∗−q)x

[
(V + ϕ)q − V q − qV q−1ϕ

]
= αεe

εx(p∗ + ε)

∫ 1

0

[
(V + tϕ)p

∗+ε−1 − V p∗+ε−1
]
ϕ dt

+λqβNe
−(p∗−q)x

∫ 1

0

[
(V + tϕ)q−1 − V q−1

]
ϕ dt.

Then

∥N(ϕ)∥∗∗

= αε(p
∗ + ε) sup

x∈R

(
k∑

j=1

e−σ|x−ξj |

)−1

eεx
∣∣∣∣∫ 1

0

[
(V + tϕ)p

∗+ε−1 − V p∗+ε−1
]
ϕ dt

∣∣∣∣
+λqβN sup

x∈R

(
k∑

j=1

e−σ|x−ξj |

)−1

e−(p∗−q)x

∣∣∣∣∫ 1

0

[
(V + tϕ)q−1 − V q−1

]
ϕ dt

∣∣∣∣
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:= N1 +N2.

We assume that ∥ϕ∥∗ ≤ 1, by Lemma 5.15 in the Appendix, if p∗ ≥ 2, we have

N1 ≤ C sup
x∈R

(
k∑

j=1

e−σ|x−ξj |

)−1

eεxV p∗+ε−2|ϕ|2 + C sup
x∈R

(
k∑

j=1

e−σ|x−ξj |

)−1

eεx|ϕ|p∗+ε

≤ C sup
x≤−M

eσ|x−ξ1|eεxV p∗+ε−2e(
8

N−2
+2σ)xe−2σξ1

[
e−( 4

N−2
+σ)xeσξ1 |ϕ|

]2
+C sup

x≥−M

(
k∑

j=1

e−σ|x−ξj |

)
eεxV p∗+ε−2

( k∑
j=1

e−σ|x−ξj |

)−1

|ϕ|

2

+C sup
x≤−M

eσ|x−ξ1|eεxe(
4

N−2
+σ)(p∗+ε)xe−(p∗+ε)σξ1

[
e−( 4

N−2
+σ)xeσξ1 |ϕ|

]p∗+ε

+C sup
x≥−M

(
k∑

j=1

e−σ|x−ξj |

)p∗+ε−1

eεx

( k∑
j=1

e−σ|x−ξj |

)−1

|ϕ|

p∗+ε

≤ C∥ϕ∥2∗ + C∥ϕ∥p∗+ε
∗ ≤ C∥ϕ∥2∗.

Similarly, if 1 < p∗ < 2, we find that

N1 ≤ C∥ϕ∥p∗∗ .

Thus we get
N1 ≤ C∥ϕ∥min{p∗,2}

∗ .

Moreover, we can conclude that
N2 ≤ C∥ϕ∥min{q,2}

∗ .

Thus we get (5.68).

We differentiate N(ϕ) with respect to ϕ, we have

∂ϕN(ϕ) = αε(p
∗ + ε)eεx

[
(V + ϕ)p

∗+ε−1 − V p∗+ε−1
]

+λβNqe
−(p∗−q)x

[
(V + ϕ)q−1 − V q−1

]
.

By a similar argument as ∥N(ϕ)∥∗∗, (5.69) holds.

Lemma 5.9. Let σ be a positive number which satisfies (5.37) and 0 < ξ1 < ξ2 < . . . < ξk
satisfying (5.29). If q satisfies (5.4), then there exist τ ∈ (1

2
, 1) and a constant C > 0, such

that

∥E∥∗∗ ≤ Cετ , ∥∂ξE∥∗∗ ≤ Cετ . (5.70)
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Proof. We have

E = αεe
εxV p∗+ε −

k∑
j=1

W p∗

j + λβNe
−(p∗−q)xV q

= αεe
εx
(
V p∗+ε − V p∗

)
+ (αεe

εx − 1)V p∗ +

V p∗ −

(
k∑

j=1

Wj

)p∗


+

( k∑
j=1

Wj

)p∗

−
k∑

j=1

W p∗

j

+ λβNe
−(p∗−q)xV q

:= E1 + E2 + E3 + E4 + E5. (5.71)

Estimate of E1:

|E1| =
∣∣αεe

εx
(
V p∗+ε − V p∗

)∣∣ = ∣∣∣∣εαεe
εx

∫ 1

0

V p∗+tε log V dt

∣∣∣∣
≤ CεeεxV εV p∗| log V | ≤ CεV p∗ | log V | ≤ Cε

k∑
j=1

e−σ|x−ξj |. (5.72)

Estimate of E2: by the Taylor expansion, we have

|E2| =
∣∣(αεe

εx − 1)V p∗
∣∣ = ∣∣∣∣∣

((
p∗ − 1

2

)− 2ε
p∗−1

eεx − 1

)
V p∗

∣∣∣∣∣
=

∣∣∣∣[(1− ε
2

p∗ − 1
log

p∗ − 1

2
+ o(ε)

)
eεx − 1

]
V p∗
∣∣∣∣

=

(
εx

∫ 1

0

etεx dt+O(ε)eεx
)
V p∗−σV σ

≤ Cε| log ε|
k∑

j=1

e−σ|x−ξj |. (5.73)

Estimate of E3: since

|E3| =

∣∣∣∣∣∣V p∗ −

(
k∑

j=1

Wj

)p∗
∣∣∣∣∣∣ ≤ CV p∗−1

k∑
j=1

|Rξj(x)|.

Thanks to Lemma 5.4, for x ≤ 0, we have

|E3| ≤ CV p∗−1

k∑
j=1

e−|x−ξj | ≤ CV p∗−1e−ξ1 ≤ Cε
1

p∗−q

k∑
j=1

e−σ|x−ξj |.
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For 0 ≤ x ≤ ξ1,

|E3| ≤ CV p∗−1

k∑
j=1

e−|x−ξj |e−
2

N−2
min{x,ξj}

≤ C

k∑
j=1

e−σ|x−ξj |

ε
2

N+2−(N−2)q if N ≥ 4;

ε
1

5−q if N = 3.

If x ≥ ξ1, for 0 < σ < p∗ − 1, we have

|E3| ≤ CV p∗−1

k∑
j=1

e−|x−ξj |e−
2

N−2
min{x,ξj}

≤ CV p∗−1e−
2

N−2
ξ1 ≤ Cε

2
N+2−(N−2)q

k∑
j=1

e−σ|x−ξj |.

Therefore, for x ∈ R, we get

|E3| ≤ C
k∑

j=1

e−σ|x−ξj |

ε
2

N+2−(N−2)q if N ≥ 4;

ε
1

5−q if N = 3.
(5.74)

Estimate of E4: if −∞ < x ≤ ξ1+ξ2
2

, we have

|E4| =

∣∣∣∣∣∣
(

k∑
j=1

Wj

)p∗

−W p∗

1 −
k∑

j=2

W p∗

j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
(

k∑
j=1

W (x− ξj)

)p∗

−W (x− ξ1)
p∗

∣∣∣∣∣∣+
∣∣∣∣∣

k∑
j=2

W (x− ξj)
p∗

∣∣∣∣∣
≤ p∗

(
k∑

j=1

W (x− ξj)

)p∗−1 k∑
j=2

W (x− ξj) +
k∑

j=2

W (x− ξj)
p∗

= p∗

(
k∑

j=1

W (x− ξj)

)p∗−1−θ( k∑
j=1

W (x− ξj)

)θ k∑
j=2

W (x− ξj) +
k∑

j=2

W (x− ξj)
p∗

with θ satisfying 0 < θ < p∗ − 1− σ. Since(
k∑

j=1

W (x− ξj)

)θ k∑
j=2

W (x− ξj) ≤
k∑

j=1

W (x− ξj)
θ

k∑
j=2

W (x− ξj)

≤ C
k∑

j=1

e−θ|x−ξj |
k∑

j=2

e−|x−ξj | ≤ Ce−θ|x−ξ1|
k∑

j=2

e−|x−ξj |
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= C

k∑
j=2

e−θ|x−ξ1|e−θ|x−ξj |e−(1−θ)|x−ξj |

= C

k∑
j=2

e−θ(|x−ξ1|+|x−ξj |)e−(1−θ)|x−ξj | ≤ C

k∑
j=2

e−θ|ξ1−ξj |e−(1−θ)
ξ2−ξ1

2

≤ Ce−θ(ξ2−ξ1)e−(1−θ)
ξ2−ξ1

2 = Ce−
1+θ
2

(ξ2−ξ1) ≤ Cε
1+θ
2 .

Here we use |x − ξ1| ≤ |x − ξj|, |x − ξj| ≥ ξ2−ξ1
2

and |ξ1 − ξj| ≥ ξ2 − ξ1 for j = 2, · · · , k.
Moreover,

k∑
j=2

W (x− ξj)
p∗ ≤ C

k∑
j=2

e−p∗|x−ξj | = C
k∑

j=2

e−σ|x−ξj |e−(p∗−σ)|x−ξj |

≤
k∑

j=2

e−σ|x−ξj |e−(p∗−σ)
ξ2−ξ1

2

≤ Cε
p∗−σ

2

k∑
j=1

e−σ|x−ξj |.

Thus

|E4| ≤ Cε
1+θ
2

k∑
j=1

e−σ|x−ξj |, for −∞ < x ≤ ξ1 + ξ2
2

,

Similarly, for ξl−1+ξl
2

≤ x ≤ ξl+ξl+1

2
with l = 2, · · · , k − 1, and x ≥ ξk−1+ξk

2
, we get

|E4| ≤ Cε
1+θ
2

k∑
j=1

e−σ|x−ξj |.

Therefore, for x ∈ R, we have

|E4| ≤ Cε
1+θ
2

k∑
j=1

e−σ|x−ξj |, (5.75)

with 0 < θ < p∗ − 1− σ.

Estimate of E5:

|E5| =
∣∣λqβNe−(p∗−q)xV q

∣∣ ≤ CV σe−(p∗−q)xV q−σ.

If−∞ < x ≤ −N−2
2

logR with R > 0 large but fixed as in Lemma 5.3, for 0 < σ < (N+2)(2q−1)
N+6

,
from (5.18), we have

|E5| ≤ CV σe−(p∗−q)x

(
k∑

j=1

e
N+6
N−2

xe−ξj

)q−σ

113



CHAPTER 5. BUBBLE TOWER SOLUTIONS

≤ CV σe−(q−σ)ξ1 ≤ Cε
q−σ
p∗−q

k∑
j=1

e−σ|x−ξj |.

If −N−2
2

logR ≤ x ≤ ξ1, we have

|E5| ≤ CV σe−(p∗−q)xe−(q−σ)|x−ξ1|

≤ CV σ

{
e(p

∗−2q+σ)N−2
2

logRe−(q−σ)ξ1 if p∗ − 2q + σ ≥ 0;

e−(p∗−2q+σ)ξ1e−(q−σ)ξ1 if p∗ − 2q + σ < 0.

≤ Cmax{ε, ε
q−σ
p∗−q }

k∑
j=1

e−σ|x−ξj |.

If x ≥ ξ1, we find

|E5| ≤ CV σe−(p∗−q)xV q−σ ≤ CV σe−(p∗−q)ξ1 ≤ Cε

k∑
j=1

e−σ|x−ξj |.

Thus, for x ∈ R, we get that

|E5| ≤ Cmax{ε, ε
q−σ
p∗−q }

k∑
j=1

e−σ|x−ξj |. (5.76)

From (5.71)-(5.76), for 0 < θ < p∗ − 1− σ and σ satisfying (5.37), we have

∥E∥∗∗ ≤ C

max
{
ε| log ε|, ε

2
N+2−(N−2)q , ε

1+θ
2 , ε

q−σ
p∗−q

}
if N ≥ 4;

max
{
ε| log ε|, ε

1
5−q , ε

1+θ
2 , ε

q−σ
p∗−q

}
if N = 3.

Therefore, if q satisfies (5.4), we find that there exists τ ∈ (1
2
, 1) such that

∥E∥∗∗ ≤ Cετ .

Differentiating E with respect to ξi (i = 1, 2 · · · , k), we have

∂ξiE = αε(p
∗ + ε)eεxV p∗+ε−1∂ξiV − p∗

k∑
j=1

W (x− ξj)
p∗−1∂ξiW (x− ξj)

+λβNqe
−(p∗−q)xV q−1∂ξiV

The proof of estimate for ∥∂ξE∥∗∗ is similar to ∥E∥∗∗.

Proposition 5.10. Assume that 0 < ξ1 < ξ2 < . . . < ξk satisfy (5.29), then there exists
C > 0 such that for ε > 0 small enough, there exists a unique solution ϕ = ϕ(ξ) to problem
(5.35) with

∥ϕ∥∗ ≤ Cετ , (5.77)
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for some τ ∈ (1
2
, 1), satisfying Lemma 5.9. Moreover, the map ξ 7→ ϕ(ξ) is of class C1 for

the ∥ · ∥∗ norm and

∥∂ξϕ∥∗ ≤ Cετ . (5.78)

Proof. Problem (5.35) is equivalent to solve a fixed point problem

ϕ = Tε(N(ϕ) + E) := Aε(ϕ).

We will show that the operator Aε is a contraction map in a proper region. Set

Fγ = {ϕ ∈ C(R) : ∥ϕ∥∗ ≤ γετ}

where γ > 0 will be chosen later.

For ϕ ∈ Fγ, by Lemmas 5.68 and 5.9, we get

∥Aε(ϕ)∥∗ = ∥Tε(N(ϕ) + E)∥∗ ≤ C∥N(ϕ)∥∗∗ + ∥E∥∗∗
≤ C

(
(γετ )min{p∗,2} + (γετ )min{q,2} + ετ

)
= C

(
γmin{p∗,2}εmin{p∗−1,1}τ + γmin{q,2}εmin{q−1,1}τ + 1

)
ετ .

Then we have Aε(ϕ) ∈ Fγ for ϕ ∈ Fγ, by choosing γ large enough but fixed.

Moreover, for ϕ1, ϕ2 ∈ Fγ , by writing

N(ϕ1)−N(ϕ2) =

∫ 1

0

N ′(ϕ2 + t(ϕ1 − ϕ2))dt(ϕ1 − ϕ2).

By Proposition 5.5, using (5.69) we find

∥Aε(ϕ1)− Aε(ϕ2)∥∗ ≤ C∥N(ϕ1)−N(ϕ2)∥∗∗

≤ C

((
max
i=1,2

∥ϕi∥∗
)min{p∗−1,1}

+

(
max
i=1,2

∥ϕi∥∗
)min{q−1,1}

)
∥ϕ1 − ϕ2∥∗

≤ Cεκ∥ϕ1 − ϕ2∥∗

with κ > 0, this yields that Aε is a contraction map from Fγ to Fγ. Thus Aε has a unique
fixed point in Fγ.

Now we consider the differentiability of ξ 7→ ϕ(ξ). We write

B(ξ, ϕ) := ϕ− Tε(N(ϕ) + E).

First we observe that B(ξ, ϕ) = 0. Moreover,

∂ϕB(ξ, ϕ)[θ] = θ − Tε(θ(∂ϕ(N(ϕ)))) ≡ θ +M(θ),

where
M(θ) = −Tε(θ(∂ϕ(N(ϕ)))).

115



CHAPTER 5. BUBBLE TOWER SOLUTIONS

By a direct computation, we get

∥M(θ)∥∗ ≤ C∥θ(∂ϕ(N(ϕ)))∥∗∗ ≤ Cεκ∥θ∥∗.

So for ε small enough, the operator ∂ϕB(ξ, ϕ) is invertible with uniformly bounded inverse
in ∥ · ∥∗. It also depends continuously on its parameters. Let us differentiate with respect to
ξ, we have

∂ξB(ξ, ϕ) = −(∂ξTε)(N(ϕ) + E)− Tε((∂ξN)(ξ, ϕ) + ∂ξE),

where all these expressions depend continuously on their parameters. The implicit function
theorem yields that ϕ(ξ) is of class C1 and

∂ξϕ = −(∂ϕB(ξ, ϕ))−1[∂ξB(ξ, ϕ)]

so that
∥∂ξϕ∥∗ ≤ C (∥N(ϕ)∥∗∗ + ∥E∥∗∗ + ∥(∂ξN)(ξ, ϕ)∥∗∗ + ∥∂ξE∥∗∗) ≤ Cετ ,

since

∂ξN(ξ, ϕ) = αε(p
∗ + ε)eεx

[
(V + ϕ)p

∗+ε−1 − V p∗+ε−1 − (p∗ + ε− 1)V p∗+ε−2ϕ
]
∂ξV

+λβNqe
−(p∗−q)x

[
(V + ϕ)q−1 − V q−1 − (q − 1)V q−2ϕ

]
∂ξV,

then it is easily checked that

∥∂ξN(ξ, ϕ)∥∗∗ ≤ C∥ϕ∥∗ ≤ Cετ .

5.5 The finite dimensional variational reduction

According to the results of the previous section, our problem has been reduced to find
points ξ = (ξ1, ξ2, · · · , ξk) such that

cj(ξ) = 0 for all j = 1, . . . , k. (5.79)

If (5.79) holds, then v = V + ϕ is a solution to (5.13), and u =
k∑

j=1

Uµj
+ ψ is the solution to

problem (5.3), with ψ = T −1(ϕ).

Define the function Iε : (R+)k → R as

Iε(ξ) := Iε(V + ϕ).

where V is defined by (5.30) and Iε is the energy functional of (5.13) defined as

Iε(v) =
1

2

∫ +∞

−∞
(|v′(x)|2 + |v|2)dx+ 1

2

(
2

N − 2

)2 ∫ +∞

−∞
e−

4
N−2

xv2dx

− 1

p∗ + ε+ 1
αε

∫ +∞

−∞
eεx|v|p∗+ε+1dx− 1

q + 1
λβN

∫ +∞

−∞
e−(p∗−q)x|v|q+1dx.

We have the following fact.
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Lemma 5.11. The function V + ϕ is a solution to (5.13) if and only if ξ = (ξ1, . . . , ξk) is a
critical point of Iε(ξ), where ϕ = ϕ(ξ) is given by Proposition 5.10.

Proof. For s ∈ {1, 2, . . . , k}, we have

∂ξsIε(ξ) = ∂ξs(Iε(V + ϕ)) = DIε(V + ϕ)[∂ξsV + ∂ξsϕ]

=
k∑

j=1

cj

∫
R
Zj[∂ξsV + ∂ξsϕ]

=
k∑

j=1

cj

(∫
R
ZjZsdx+ o(1)

)
where o(1) → 0 as ε→ 0 uniformly for the norm ∥ · ∥∗. This implies that the above relations
define an almost diagonal homogeneous linear equation system for the cj. Thus ξ is the
critical point of Iε if and only if cj = 0 for all j = 1, 2, . . . , k.

Lemma 5.12. The following expansion holds

Iε(ξ) = Iε(V ) + o(ε),

as ε→ 0, o(ε) is uniform in the C1-sense on the vectors ξ satisfying (5.29).

Proof. By the fact that DIε(V + ϕ)[ϕ] = 0 and using the Taylor expansion, we have

Iε(ξ)− Iε(V ) = Iε(V + ϕ)− Iε(V ) =

∫ 1

0

D2Iε(V + tϕ)[ϕ2]tdt

=

∫ 1

0

tdt

∫ +∞

−∞
(N(ϕ) + E)ϕdx

+(p∗ + ε)αε

∫ 1

0

tdt

∫ +∞

−∞
eεx
[
V p∗+ε−1 − (V + tϕ)p

∗+ε−1
]
ϕ2dx

+λβNq

∫ 1

0

tdt

∫ +∞

−∞
e−(p∗−q)x

[
V q−1 − (V + tϕ)q−1

]
ϕ2dx

and since ∥ϕ∥∗ ≤ Cετ and ∥E∥∗∗ ≤ Cετ with τ > 1
2
, we get

Iε(ξ)− Iε(V ) = O(ε2τ ) = o(ε)

uniformly on the points ξ satisfying (5.29).

Moreover, differentiating with respect to ξs, we have

∂ξs (Iε(ξ)− Iε(V )) =

∫ 1

0

∫ +∞

−∞
∂ξs [(N(ϕ) + E)ϕ]tdxdt

+αε(p
∗ + ε)

∫ 1

0

tdt

∫ +∞

−∞
eεx∂ξs

([
V p∗+ε−1 − (V + tϕ)p

∗+ε−1
]
ϕ2
)
dx
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+λβNq

∫ 1

0

tdt

∫ +∞

−∞
e−(p∗−q)x∂ξs

([
V q−1 − (V + tϕ)q−1

]
ϕ2
)
dx.

By the fact that ∥∂ξϕ∥∗ ≤ Cετ and ∥∂ξE∥∗∗ ≤ Cετ with τ > 1
2
, we deduce that

∂ξs (Iε(ξ)− Iε(V )) = O(ε2τ ) = o(ε).

Now we consider the energy functional of problem (5.3), which is defined by

J(u) =
1

2

∫
RN

(|∇u|2 + u2)− 1

p∗ + 1 + ε

∫
RN

|u|p∗+1+ε − λ

q + 1

∫
RN

|u|q+1.

By a direct calculation, we have that

Iε(V ) =

(
2

N − 1

)N−1
1

ωN−1

J(U), (5.80)

where V is defined by (5.30), ωN−1 is the volume of the unit sphere in RN , and

U(z) =
k∑

j=1

Uµj
(z),

with Uµj
satisfying (5.6).

We give the following expansion of J(U), whose proof is in the Appendix.

Lemma 5.13. Assume that (5.26) and (5.29) hold, then we have the following expansion:

J(U) = a1 + a2ε− φ(Λ1, · · · ,Λk)ε+ a3ε log ε+ o(ε), (5.81)

where

φ(Λ1, · · · ,Λk) = a4Λ
N+2−(N−2)q

2
1 − a5

k∑
i=1

log Λi + a6

k−1∑
l=1

(
Λl+1

Λl

)N−2
2

, (5.82)

and as ε→ 0, o(ε) is uniform in the C1-sense on the Λi’s satisfying (5.26), and

a1 =
k

N
αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz,

a2 =
k

(p∗ + 1)2
αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz

− k

p∗ + 1
αp∗+1
N

∫
RN

1

(1 + |z|2)N
log

αN

(1 + |z|2)N−2
2

dz,

a3 =
(N − 2)2

4N

(
αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz

)
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×
k∑

i=1

(
2(i− 1)

N − 2
+

2

N + 2− (N − 2)q

)
,

a4 =
λ

q + 1

∫
RN

1

(1 + |z|2)
(N−2)(q+1)

2

dz,

a5 =
(N − 2)2

4N

(
αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz

)
,

a6 = αp∗+1
N

∫
RN

1

(1 + |z|2)N+2
2

1

|z|N−2
dz.

Proof of Theorem 5.1. Thanks to Lemma 5.11, we know that

u =
k∑

j=1

Uµj
+ ψ with ψ = T −1(ϕ)

is a solution to problem (5.3) if and only if ξ is a critical point of Iε(ξ), where the existence
of ϕ is guaranteed by Proposition 5.10.

Finding a critical point of Iε(ξ) is equivalent to find that of Ĩε(ξ), which is defined as

Ĩε(ξ) = −
(
N − 1

2

)N−1
ωN−1

ε
Iε(ξ) +

a1
ε

+ a2 + a3 log ε.

On the other hand, from Lemmas 5.12 and 5.13, using (5.80), we have

Iε(ξ) = Iε(V ) + o(ε) =

(
2

N − 1

)N−1
1

ωN−1

J(U) + o(ε)

=

(
2

N − 1

)N−1
1

ωN−1

[a1 + a2ε− φ(Λ1, · · · ,Λk)ε+ a3ε log ε] + o(ε),

as ε→ 0, where φ(Λ) is defined by (5.82) and o(ε) is uniform in the C1-sense. Then we have

Ĩε(ξ) = φ(Λ) + o(1), (5.83)

where o(1) is uniform in the C1-sense as ε→ 0.

We set s1 = Λ1, sj =
Λj

Λj−1
, then we can write φ(Λ1, · · · ,Λk) as

φ(s1, · · · , sk) = a4s
N+2−(N−2)q

2
1 − a5 log s1 − a5

k∑
j=2

log Λj + a6

k∑
j=2

s
N−2

2
j

= a4s
N+2−(N−2)q

2
1 − a5k log s1

−
k∑

j=2

[
a5(k − j + 1) log sj − a6s

N−2
2

j

]
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:= φ̃1 −
k∑

j=2

φ̃j,

with

φ̃1 = a4s
N+2−(N−2)q

2
1 − a5k log s1

and

φ̃j = a5(k − j + 1) log sj − a6s
N−2

2
j , j = 2, . . . , k.

We note that

s̄1 =

(
2a5k

a4(N + 2− (N − 2)q)

) 2
N+2−(N−2)q

(5.84)

is the critical point of φ̃1, and

s̄j =

(
2a5(k − j + 1)

(N − 2)a6

) 2
N−2

, j = 2, · · · , k, (5.85)

is the critical point of φ̃j. Moreover

φ̃′′
1(s̄1) < 0, φ̃′′

j (s̄j) < 0, j = 2, · · · , k.

So (s̄1, s̄2, . . . , s̄k) is a nondegenerate critical point of φ(s1, · · · , sk). Thus

Λ∗ := (s̄1, s̄2s̄1, s̄3s̄2s̄1, · · · , s̄k × · · · × s̄2s̄1)

is a nondegenerate critical point of φ(Λ). It follows that the local degree deg(∇φ(Λ),O, 0) is
well defined and is nonzero, here O is an arbitrarily small neighborhood of Λ∗. Hence from
(5.83), for ε small enough, we have that

deg(∇ξĨε(ξ), Ō, 0) ̸= 0,

with Ō is a small neighborhood of ξ∗ = (ξ∗1 , . . . , ξ
∗
k), where

ξ∗j =

[
(j − 1) +

1

p∗ − q

]
log

1

ε
− N − 2

2
log (s̄j s̄j−1 · · · s̄1) , for ∀ j = 1, . . . , k.

So ξ∗ is a critical point of Ĩε(ξ), which implies there is a critical point of Iε.

Furthermore, if for some i, |x−ξi| ≤ C0 with some C0 > 0, then we have |ϕ| = o(W (x−ξi)).
Thus ψ(|z|) = T −1(ϕ(x)) = o(wµi

) for 1
C
µi ≤ |z| ≤ Cµi. Moreover, from (c) of Lemma 5.3,

we get that Rµi
= o(wµi

) for 1
C
µi ≤ |z| ≤ Cµi. Therefore we obtain (5.5) holds with

Λ∗
j = s̄j s̄j−1 · · · s̄1, j = 1, . . . , k,

where s̄j are given by (5.84) and (5.85). This finishes the proof.
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5.6 Appendix

5.6.1 Some useful tools

In this subsection, we first give some useful Lemmas here, we use them for the later
purpose.

Lemma 5.14. [116] For any 0 < σ < N − 2, there is a constant C > 0 such that∫
RN

1

|y − z|N−2

1

(1 + |y|)2+σ dy ≤ C

(1 + |z|)σ
.

Lemma 5.15. For any a ∈ R and b ∈ R, we have

||a+ b|q − |a|q| ≤ C

{
|a|q−1|b|+ |b|q if q ≥ 1;

min{|a|q−1|b|, |b|q} if 0 < q < 1.

5.6.2 Proof of Lemma 5.3

In order to prove Lemma 5.3, we introduce the Green function. For a fixed z ∈ RN , let
G(z, y) be the Green function of −∆+ Id, which satisfies

−∆G(z, y) +G(z, y) = δz(y) in RN

G(z, y) → 0 |y| → ∞.

We have the following result.

Lemma 5.16. We have

|G(z, y)| ≤ C

|y − z|N−2
for 0 < |y − z| ≤ 1, (5.86)

and

|G(z, y)| ≤ C|y − z|
1−N

2 e−|y−z| for |y − z| ≥ 1. (5.87)

Proof. By radial symmetry, we can write G(z, y) = G(r) with r = |y − z|. Since G(r) is
singular at zero and tends to zero at infinity, we can verify that G is given by

G(r) =
N − 2

(2π)
N
2 Γ(N

2
)2
r

2−N
2 KN−2

2
(r),

where KN−2
2
(r) is a Modified Bessel Function of the Second Kind, see [68]. For N = 3,

the function G has the explicit form G(r) = e−r

4πr
. In general, we have that KN−2

2
(r) ∼

Γ(N−2
2

)

2
(2
r
)
N−2

2 for r close to 0, and KN−2
2
(r) ∼

√
π
2r
e−r for r large. Using these estimates, we

obtain the result.
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Proof of Lemma 5.3. (a) It is a direct consequence of the maximum principle.

(b) Define the barrier function Q(z) = µ
N−2

2 |z|−(N+2). It satisfies −∆Q(z) + Q(z) ≥
cµ

N−2
2 |z|−(N+2) for all |z| ≥ R with R > 0 a large constant, here c is positive constant. Since

Q(z) = µ
N−2

2 R−(N+2) for |z| = R and Uµ(z) ≤ wµ(z) ≤ αNµ
N−2

2 |z|−(N−2) for all |z| ≥ 0. Set
φ(z) = AQ(z)−Uµ(z) for some constant A > 0, we then have −∆φ(z)+φ(z) ≥ 0 for |z| ≥ R,
and φ(z) ≥ 0 for |z| = R by choosing suitable constant A. By the maximum principle we

get Uµ(z) ≤ AQ(z) = Aµ
N−2

2 |z|−(N+2) for |z| ≥ R.

(c) Set B1(z) = {y : |y − z| ≤ 1}, by Lemma 5.16, we have

|Rµ(z)| ≤
∫
RN

|G(y − z)|wµ(y)dy

≤ C

∫
B1(z)

1

|y − z|N−2

µ
N−2

2

(µ2 + |y|2)N−2
2

dy

+C

∫
RN\B1(z)

|y − z|
1−N

2 e−|y−z| µ
N−2

2

(µ2 + |y|2)N−2
2

dy

:= I1(z) + I2(z). (5.88)

(i) We may assume that |z| ≥ 2, we first estimate I1(z). For y ∈ B1(z), we have |y| ≥
|z| − 1 ≥ |z|

2
. Therefore

I1(z) ≤ C
µ

N−2
2

(µ2 + | z
2
|2)N−2

2

∫
B1(z)

1

|y − z|N−2
dy

= C
µ

N−2
2

(µ2 + | z
2
|2)N−2

2

∫
B1(0)

1

|z|N−2
dz

≤ C
µ

N−2
2

(µ2 + | z
2
|2)N−2

2

≤ C
µ

N−2
2

|z|N−2
. (5.89)

Now let us estimate I2. Set ỹ = y
µ
, z̃ = z

µ
and d = 1

2
|z̃|, we have

I2(z) = Cµ
N+2

2

∫
RN\B 1

µ
(z̃)

|µ(ỹ − z̃)|
1−N

2 e−µ|ỹ−z̃| 1

(1 + |ỹ|2)N−2
2

dỹ

≤ Cµ
N+2

2

∫
Bd(0)

|µ(ỹ − z̃)|
1−N

2 e−µ|ỹ−z̃| 1

(1 + |ỹ|)N−2
dỹ

+Cµ
N+2

2

∫
Bd(z̃)\B 1

µ
(z̃)

|µ(ỹ − z̃)|
1−N

2 e−µ|ỹ−z̃| 1

(1 + |ỹ|)N−2
dỹ

+Cµ
N+2

2

∫
RN\(Bd(z̃)∪Bd(0))

|µ(ỹ − z̃)|
1−N

2 e−µ|ỹ−z̃| 1

(1 + |ỹ|)N−2
dỹ

:= I2,1 + I2,2 + I2,3. (5.90)
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Note that for |y − z| ≥ 1, we have |y − z| 1−N
2 e−|y−z| ≤ 1

|y−z|s for any s > 0. If ỹ ∈ Bd(0), we

have |ỹ − z̃| ≥ |z̃| − |ỹ| ≥ d, then

I2,1 ≤ Cµ
N+2

2

∫
Bd(0)

1

µN |ỹ − z̃|N
1

(1 + |ỹ|)N−2
dỹ

≤ Cµ
N+2

2
1

µNdN

∫
Bd(0)

1

(1 + |ỹ|)N−2
dỹ

≤ C
µ

N−2
2

|z|N−2
. (5.91)

If ỹ ∈ Bd(z̃)\B 1
µ
(z̃), we have 1 + |ỹ| > |ỹ| = |z̃ + ỹ − z̃| ≥ |z̃| − |ỹ − z̃| ≥ d, thus

I2,2 ≤ Cµ
N+2

2

∫
Bd(z̃)\B 1

µ
(z̃)

1

µN+1|ỹ − z̃|N+1

1

(1 + |ỹ|)N−2
dỹ ≤ C

µ
N−2

2

|z|N−2
. (5.92)

If ỹ ∈ RN\(Bd(z̃) ∪ Bd(0)), we have |ỹ − z̃| ≥ d = 1
2
|z̃|, |ỹ| ≥ d = 1

2
|z̃|. We find that if

|ỹ| ≥ 2|z̃|, then |ỹ − z̃| ≥ |ỹ| − |z̃| ≥ 1
2
|ỹ|. If 1

2
|z̃| ≤ |ỹ| ≤ 2|z̃|, then |ỹ − z̃| ≥ d = 1

2
|z̃| ≥ 1

4
|ỹ|.

Thus,

I2,3 ≤ Cµ
N+2

2

∫
RN\(Bd(z̃)∪Bd(0))

1

µN |ỹ − z̃|N
1

(1 + |ỹ|)N−2
dỹ ≤ C

µ
N−2

2

|z|N−2
. (5.93)

From (5.90)-(5.93), we obtain that

I2 ≤ C
µ

N−2
2

|z|N−2
.

Combing this with (5.89), we get that (5.8).

(ii) First we suppose that |z| ≤ µ
2
,

I1(z) = C

∫
B1(z)

1

|y − z|N−2

µ
N−2

2

(µ2 + |y|2)N−2
2

dy

= Cµ−N−6
2

∫
B 1

µ
(0)

1

|ỹ|N−2

1

(1 + |ỹ + z̃|)N−2
dỹ

≤ Cµ−N−6
2

∫
B 1

µ
(0)

1

|ỹ|N−2

1

(1 + |ỹ|)N−2
dỹ

≤ C


µ−N−6

2 if N ≥ 5;

µ log 1
µ

if N = 4;

µ
1
2 if N = 3.

(5.94)

We now assume µ
2
≤ |z| ≤ 1, we have

I1 = Cµ−N−6
2

∫
B 1

µ
(z̃)

1

|ỹ − z̃|N−2

1

(1 + |ỹ|)N−2
dỹ (5.95)
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with z̃ = z
µ
. Let d = 1

2
|z̃|, then

B 1
µ
(z̃) = Bd(z̃) ∪

(
B 1

µ
(z̃) ∩Bd(0)

)
∪
(
B 1

µ
(z̃)\(Bd(z̃) ∪Bd(0))

)
.

For ỹ ∈ Bd(z̃), we have |ỹ − z̃| ≤ d, |ỹ| ≥ |z̃| − |z̃ − ỹ| ≥ d, so

µ−N−6
2

∫
Bd(z̃)

1

|ỹ − z̃|N−2

1

(1 + |ỹ|)N−2
dỹ

≤ Cµ−N−6
2

1

dN−2

∫
Bd(z̃)

1

|ỹ − z̃|N−2
dỹ ≤ Cµ−N−6

2
1

dN−4
. (5.96)

Moreover, if ỹ ∈ Bd(0), then |ỹ − z̃| ≥ |z̃| − |ỹ| ≥ d. Thus

µ−N−6
2

∫
Bd(0)

1

|ỹ − z̃|N−2

1

(1 + |ỹ|)N−2
dỹ

≤ Cµ−N−6
2

1

dN−2

∫
Bd(0)

1

(1 + |ỹ|)N−2
dỹ ≤ Cµ−N−6

2
1

dN−4
. (5.97)

Finally, if ỹ ∈ B 1
µ
(z̃)\(Bd(z̃) ∪Bd(0)), then we have |ỹ − z̃| ≥ C|ỹ|. As a result,

Cµ−N−6
2

∫
B 1

µ
(z̃)\(Bd(z̃)∪Bd(0))

1

|ỹ − z̃|N−2

1

(1 + |ỹ|)N−2
dỹ

≤ Cµ−N−6
2

∫
B 1

µ
(z̃)\Bd(0)

1

|ỹ|N−2

1

(1 + |ỹ|)N−2
dỹ

≤ C


µ−N−6

2
1

(1+| z
µ
|2)

N−4
2

if N ≥ 5;

µ log 1
|z| if N = 4;

µ
1
2 (1− |z|) if N = 3.

(5.98)

Now we estimate I2(z) for |z| ≤ 1. We assume that |y − z| ≥ 2, then |y| ≥ 1. Therefore∫
RN\B2(z)

|y − z|
1−N

2 e−|y−z| µ
N−2

2

(µ2 + |y|2)N−2
2

dy ≤ Cµ
N−2

2 (5.99)

From (5.94) and (5.99), we get (5.9). (5.10) follows from (5.95)-(5.99).

Set
Z̃µ(z) = ∂µUµ(z), Zµ(z) = ∂µwµ(z),

then Z̃µ(z) satisfies −∆Z̃µ + Z̃µ = N+2
N−2

w
4

N−2
µ Zµ in RN ;

Z̃µ(z) → 0 as |z| → ∞.
(5.100)
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We can write
Z̃µ(z) = Zµ(z) + ∂µRµ(z),

then ∂µRµ(z) satisfies{
−∆(∂µRµ(z)) + ∂µRµ(z) = −∂µwµ(z) in RN ;

∂µRµ(z) → 0 as |z| → ∞.
(5.101)

We observe that | − ∂µwµ(z)| ≤ Cµ−1wµ, then we have

Corollary 5.17. One has

|∂µRµ(z)| ≤ Cµ−1|Rµ(z)| for ∀ z ∈ RN . (5.102)

Moreover, by the maximum principle, we have that

|Z̃µ(z)| ≤ Cµ
N−4

2 |z|−(N+2), for |z| ≥ R, (5.103)

where R is a large positive number but fixed in Lemma 5.3.

5.6.3 Expansion of energy

Finally, we compute the expansion of energy functional J(U).

Proof of Lemma 5.13.

J(U) =

[
1

2

∫
RN

(|∇U |2 + U2)− 1

p∗ + 1

∫
RN

Up∗+1

]
+

[
1

p∗ + 1

∫
RN

Up∗+1 − 1

p∗ + 1 + ε

∫
RN

Up∗+1+ε

]
− λ

q + 1

∫
RN

U q+1

:= J1 + J2 + J3, (5.104)

where U =
k∑

j=1

Uµj
with Uµj

= wµj
+Rµj

.

Step 1.We expand J1.

J1 =
1

2

∫
RN

(|∇U |2 + U2)− 1

p∗ + 1

∫
RN

Up∗+1

=
1

2

∫
RN

∣∣∣∣∣∇
(

k∑
j=1

Uµj

)∣∣∣∣∣
2

+

(
k∑

j=1

Uµj

)2
− 1

p∗ + 1

∫
RN

(
k∑

j=1

Uµj

)p∗+1

=
1

2

k∑
j=1

∫
RN

(|∇Uµj
|2 + U2

µj
) +

k∑
i,j=1, i>j

∫
RN

(∇Uµj
∇Uµi

+ Uµj
Uµi

)
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− 1

p∗ + 1

∫
RN

(
k∑

j=1

Uµj

)p∗+1

=
1

2

k∑
j=1

∫
RN

wp∗

µj
Uµj

dz +
k∑

i,j=1, i>j

∫
RN

wp∗

µi
Uµj

dz

− 1

p∗ + 1

∫
RN

( k∑
j=1

Uµj

)p∗+1

−
k∑

j=1

Up∗+1
µj

− (p∗ + 1)
k∑

i,j=1, i>j

Up∗

µi
Uµj

 dz
− 1

p∗ + 1

k∑
j=1

∫
RN

Up∗+1
µj

dz −
k∑

i,j=1, i>j

∫
RN

Up∗

µi
Uµj

dz

=
k∑

j=1

[
1

2

∫
RN

wp∗

µj
Uµj

dz − 1

p∗ + 1

∫
RN

Up∗+1
µj

dz

]
−

k∑
i,j=1, i>j

∫
RN

(
Up∗

µi
− wp∗

µi

)
Uµj

dz

− 1

p∗ + 1

∫
RN

( k∑
j=1

Uµj

)p∗+1

−
k∑

j=1

Up∗+1
µj

− (p∗ + 1)
k∑

i,j=1, i>j

Up∗

µi
Uµj

 dz
:= J1,1 + J1,2 + J1,3. (5.105)

Now we estimate each term J1,i, i = 1, 2, 3.

J1,1 =
k∑

j=1

[
1

2

∫
RN

wp∗+1
µj

dz +
1

2

∫
RN

wp∗

µj
Rµj

dz − 1

p∗ + 1

∫
RN

wp∗+1
µj

dz

− 1

p∗ + 1

∫
RN

(Up∗+1
µj

− wp∗+1
µj

)dz

]
=

k∑
j=1

[
1

N

∫
RN

wp∗+1
µj

dz +
1

2

∫
RN

wp∗

µj
Rµj

dz − 1

p∗ + 1

∫
RN

(Up∗+1
µj

− wp∗+1
µj

)dz

]
,

(5.106)

where ∫
RN

wp∗+1
µj

= αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz, (5.107)

and from Lemma 5.3 and (5.27), if N ≥ 5, for j ∈ {1, · · · , k}, then we have∫
RN

wp∗

µj
(z)Rµj

(z)dz ≤
∫
RN

wp∗

µj
(x)|Rµj

(z)|dz

≤ Cµ
−N−6

2
j

∫
|z|≤

µj
2

µ
N+2

2
j

(µ2
j + |z|2)N+2

2

dz + C

∫
µj
2
≤|z|≤1

µ
N+2

2
j

(µ2
j + |z|2)N+2

2

µ
−N−6

2
j

(1 + | z
µj
|2)N−4

2

dz
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+C

∫
|z|≥1

µ
N+2

2
j

(µ2
j + |z|2)N+2

2

µ
N−2

2
j

|z|N−2
dz

≤ Cµ2
j = o(ε).

If N = 4, for 1 < q < 3, we have∫
RN

wp∗

µj
(z)Rµj

(z)dz

≤ Cµ2
j log

1

µj

∫
|z|≤ 1

2

1

(1 + |z|2)3
dz + Cµ2

j

∫
1
2
≤|z|≤ 1

µj

1

(1 + |z|2)3
log

1

µj|z|
dz

+C

∫
|z|≥ 1

µj

1

(1 + |z|2)3
1

|z|2
dz

≤ Cµ2
j log

1

µj

= o(ε).

If N = 3, for 3 < q < 5, we get∫
RN

wp∗

µj
(z)Rµj

(z)dz ≤ Cµ
1
2
j

∫
|z|≤1

µ
5
2
j

(µ2
j + |z|2) 5

2

dz + C

∫
|z|≥1

µ
5
2
j

(µ2
j + |z|2) 5

2

µ
1
2
j

|z|
≤ Cµj = o(ε).

As a result, if q satisfies (5.4), then we have

k∑
j=1

∫
RN

wp∗

µj
Rµj

dz = o(ε). (5.108)

Moreover, by Lemma 5.15 and Lemma 5.3, a simple calculation yields that∫
RN

(Up∗+1
µj

− wp∗+1
µj

)dz ≤ C

∫
RN

[
wp∗

µj
|Rµj

|+ |Rµj
|p∗+1

]
dz = o(ε). (5.109)

Thus from (5.106)-(5.109), we find

J1,1 =
k

N
αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz + o(ε). (5.110)

Estimate of J1,2. From Lemma 5.3 and (5.27), for i > j, we obtain∫
RN

(Up∗

µi
− wp∗

µi
)Uµj

≤
∫
RN

∣∣|wµi
+Rµi

|p∗ − wp∗

µi

∣∣ (wµj
+ |Rµj

|)dz

≤ C

∫
RN

(
|wµi

|p∗−1|Rµi
|+ |Rµi

|p∗
)
(wµj

+ |Rµj
|)dz

≤ C

∫
RN

|wµi
|p∗−1wµj

|Rµi
|dz + C

∫
RN

|wµi
|p∗−1|Rµi

||Rµj
|dz
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+C

∫
RN

wµj
|Rµi

|p∗dz + C

∫
RN

|Rµi
|p∗ |Rµj

|dz = o(ε).

So

J1,2 = o(ε). (5.111)

Next we estimate J1,3.

Given δ > 0 small but fixed. Let µ1, · · · , µk be given by (5.26), and set µ0 = δ2

µ1
and

µk+1 = 0. Define the following annulus

Ai := B(0,
√
µiµi−1)\B(0,

√
µiµi+1), for i = 1, · · · , k.

We observe that B(0, δ) =
∪k

i=1Ai. On each Ai, the leading term in
k∑

j=1

Uµj
is Uµi

.

−(p∗ + 1)J1,3 =
k∑

l=1

∫
Al

( k∑
j=1

Uµj

)p∗+1

−
k∑

j=1

Up∗+1
µj

− (p∗ + 1)
k∑

i,j=1, i>j

Up∗

µi
Uµj

 dz
+

∫
RN\B(0,δ)

( k∑
j=1

Uµj

)p∗+1

−
k∑

j=1

Up∗+1
µj

− (p∗ + 1)
k∑

i,j=1, i>j

Up∗

µi
Uµj

 dz
:= L1 + L2, (5.112)

where

L2 =

∫
RN\B(0,δ)

( k∑
j=1

Uµj

)p∗+1

−
k∑

j=1

Up∗+1
µj

− (p∗ + 1)
k∑

i,j=1, i ̸=j

Up∗

µi
Uµj

 dz
+(p∗ + 1)

k∑
i,j=1, i<j

∫
RN\B(0,δ)

Up∗

µi
Uµj

dz.

Since

k∑
i,j=1, i<j

∫
RN\B(0,δ)

Up∗

µi
Uµj

dz ≤
k∑

i,j=1, i<j

∫
RN\B(0,δ)

wp∗

µi
wµj

dz

≤ C

k∑
i,j=1, i<j

(
µj

µi

)N−2
2

∫
RN\B(0, δ

µi
)

1

(1 + |z|2)N+2
2

1

((
µj

µi
)2 + |z|2)N−2

2

dz

= o(ε),

128



CHAPTER 5. BUBBLE TOWER SOLUTIONS

and ∫
RN\B(0,δ)

( k∑
j=1

Uµj

)p∗+1

−
k∑

j=1

Up∗+1
µj

− (p∗ + 1)
k∑

i,j=1, i ̸=j

Up∗

µi
Uµj

 dz
≤ C

k∑
j=1

∫
RN\B(0,δ)

Up∗+1
µj

dz + C
k∑

i,j=1

∫
RN\B(0,δ)

Up∗

µi
Uµj

dz ≤ CµN
1 = o(ε).

Thus

L2 = o(ε). (5.113)

On the other hand, let us estimate each integral on Al, we have∫
Al

(Uµl
+

k∑
j=1,j ̸=l

Uµj

)p∗+1

− Up∗+1
µl

−
k∑

j=1,j ̸=l

Up∗+1
µj

− (p∗ + 1)
k∑

i,j=1, i>j

Up∗

µi
Uµj

 dz
=

∫
Al

(Uµl
+

k∑
j=1,j ̸=l

Uµj

)p∗+1

− Up∗+1
µl

− (p∗ + 1)Up∗

µl

k∑
j=1,j ̸=l

Uµj

 dz
−

k∑
j=1,j ̸=l

∫
Al

Up∗+1
µj

dz − (p∗ + 1)

∫
Al

[
k∑

i,j=1, i>j

Up∗

µi
Uµj

− Up∗

µl

k∑
j=1,j ̸=l

Uµj

]
dz

:= L1,1 + L1,2 + L1,3. (5.114)

We estimate L1,i for i = 1, 2, 3 in (5.114). We first estimate L1,2.

|L1,2| =
k∑

j=1,j ̸=l

∫
Al

Up∗+1
µj

dz ≤
k∑

j=1,j ̸=l

∫
Al

wp∗+1
µj

dz

=

{
O(( µl

µj
)
N
2 ) if j ≤ l − 1 < l;

O((
µj

µl
)
N
2 ) if j ≥ l + 1 > l.

= o(ε). (5.115)

Moreover,

− 1

p∗ + 1
L1,3 =

∫
Al

[
k∑

i,j=1, i>j

Up∗

µi
Uµj

− Up∗

µl

k∑
j=1,j ̸=l

Uµj

]
dz

= −
k∑

j=1, j>l

∫
Al

Up∗

µl
Uµj

dz +
k∑

i,j=1, i ̸=l,i>j

∫
Al

Up∗

µi
Uµj

dz

= −
k∑

j=1, j>l

∫
Al

(Up∗

µl
− wp∗

µl
)Uµj

dz −
k∑

j=1, j>l

∫
Al

wp∗

µl
Uµj

dz
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+
k∑

i,j=1, i ̸=l,i>j

∫
Al

Up∗

µi
Uµj

dz

= −
k∑

j=1, j>l

∫
Al

(Up∗

µl
− wp∗

µl
)wµj

dz −
k∑

j=1, j>l

∫
Al

wp∗

µl
wµj

dz

−
k∑

j=1, j>l

∫
Al

Up∗

µl
Rµj

dz +
k∑

i,j=1, i ̸=l,i>j

∫
Al

Up∗

µi
Uµj

dz

:= M1 +M2 +M3 +M4. (5.116)

First, we have

−M1 =
k∑

j=1, j>l

∫
Al

(Up∗

µl
− wp∗

µl
)wµj

dz

≤
k∑

j=1,j>l

∫
Al

∣∣|wµl
+Rµl

|p∗ − wp∗

µl

∣∣wµj
dz

≤
k∑

j=1,j>l

∫
Al

(
wp∗−1

µl
wµj

|Rµl
|+ wµj

|Rµl
|p∗
)
dz = o(ε). (5.117)

Moreover,

−M2 =
k∑

j=1, j>l

∫
Al

wp∗

µl
wµj

dz

=
k∑

j=1, j>l

αp∗+1
N

(
µj

µl

)N−2
2

∫
√

µl+1
µl

≤|z|≤
√

µl−1
µl

1

(1 + |z|2)N+2
2

1

((
µj

µl
)2 + |z|2)N−2

2

dz

=
k∑

j=1, j>l

(
µj

µl

)N−2
2

[
αp∗+1
N

∫
RN

1

(1 + |z|2)N+2
2

1

|z|N−2
dz + o(1)

]
. (5.118)

Next, it holds

−M3 =
k∑

j=1, j>l

∫
Al

Up∗

µl
Rµj

dz ≤
k∑

j=1, j>l

∫
Al

wp∗

µl
|Rµj

|dz = o(ε). (5.119)

Finally, we have

M4 =
k∑

i,j=1, i ̸=l,i>j

∫
Al

Up∗

µi
Uµj

dz ≤
k∑

i,j=1, i̸=l,i>j

∫
Al

wp∗

µi
wµj

dz = o(ε). (5.120)
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In fact, if i > j,∫
Al

wp∗

µi
wµj

= αp∗+1
N

∫
√
µlµl+1≤|z|≤√

µlµl−1

µ
N+2

2
i

(µ2
i + |z|2)N+2

2

µ
N−2

2
j

(µ2
j + |z|2)N−2

2

dz

= αp∗+1
N

(
µi

µj

)N−2
2

∫
√

µlµl+1
µi

≤|z|≤
√

µlµl−1
µi

1

(1 + |z|2)N+2
2

1

(1 + ( µi

µj
)2|z|2)N−2

2

dz.

≤ C

(
µi

µj

)N−2
2


(

µlµl−1

µ2
i

)N
2

if i ≤ l − 1 < l;(
µ2
i

µlµl−1
− µ2

i

µlµl+1

)
if i ≥ l + 1 > l,

= o(ε). (5.121)

Thus, by (5.116)-(5.120) and (5.27), we obtain

L1,3 =


(p∗ + 1)ε

(
Λl+1

Λl

)N−2
2
αp∗+1
N

∫
RN

1

(1+|z|2)
N+2

2

1
|z|N−2dz + o(ε)

if l = 1, · · · , k − 1;

o(ε) if l = k.

(5.122)

Now we estimate L1,1 in (5.114). By the mean value theorem, for some t ∈ [0, 1], we have

L1,1 =

∫
Al

(Uµl
+

k∑
j=1,j ̸=l

Uµj

)p∗+1

− Up∗+1
µl

− (p∗ + 1)Up∗

µl

k∑
j=1,j ̸=l

Uµj


=

p∗(p∗ + 1)

2

∫
Al

(
Uµl

+ t

k∑
j=1,j ̸=l

Uµj

)p∗−1( k∑
j=1,j ̸=l

Uµj

)2

≤ C
k∑

j=1,j ̸=l

∫
Al

wp∗−1
µl

w2
µj

+ C
k∑

i,j=1, i,j ̸=l

∫
Al

wp∗−1
µi

w2
µj

≤ C
k∑

j=1,j ̸=l

(∫
Al

wp∗

µl
wµj

) p∗−1
p∗
(∫

Al

wp∗+1
µj

) 1
p∗

+ C

k∑
i,j=1, i,j ̸=l

(∫
Al

wp∗+1
µi

) p∗−1
p∗+1

(∫
Al

wp∗+1
µj

) 2
p∗+1

= o(ε). (5.123)

Therefore, by (5.112)-(5.115), (5.122) and (5.123), we have

J1,3 = −ε
k−1∑
l=1

(
Λl+1

Λl

)N−2
2

αp∗+1
N

∫
RN

1

(1 + |z|2)N+2
2

1

|z|N−2
dz + o(ε). (5.124)
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From (5.105), (5.110), (5.111) and (5.124), we get

J1 =
k

N
αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz

−ε
k−1∑
l=1

(
Λl+1

Λl

)N−2
2

αp∗+1
N

∫
RN

1

(1 + |z|2)N+2
2

1

|z|N−2
dz + o(ε). (5.125)

Step 2. We estimate J2.

The Taylor expansion gives that

J2 =
1

p∗ + 1

∫
RN

Up∗+1 − 1

p∗ + 1 + ε

∫
RN

Up∗+1+ε

=
1

p∗ + 1

∫
RN

Up∗+1 −
(

1

p∗ + 1
− 1

(p∗ + 1)2
ε+ o(ε)

)∫
RN

Up∗+1(1 + ε logU + o(ε))

= ε

[
1

(p∗ + 1)2

∫
RN

Up∗+1 − 1

p∗ + 1

∫
RN

Up∗+1 logU

]
+ o(ε), (5.126)

where ∫
RN

Up∗+1 = kαp∗+1
N

∫
RN

1

(1 + |z|2)N
+ o(ε), (5.127)

and ∫
RN

Up∗+1 logU =
k∑

l=1

∫
Al

(
k∑

j=1

wµj

)p∗+1

log

(
k∑

j=1

wµj

)

+
k∑

l=1

∫
Al

( k∑
j=1

Uµj

)p∗+1

log

(
k∑

j=1

Uµj

)

−

(
k∑

j=1

wµj

)p∗+1

log

(
k∑

j=1

wµj

)
+

∫
RN\B(0,δ)

Up∗+1 logU := D1 +D2 +D3. (5.128)

Since

D1 =
k∑

l=1

∫
Al

(
wµl

+
k∑

j=1,j ̸=l

wµj

)p∗+1

log

(
wµl

+
k∑

j=1,j ̸=l

wµj

)

= αp∗+1
N

k∑
l=1

µ−N
l

∫
Al

 1

(1 + | z
µl
|2)N−2

2

+ µ
N−2

2
l

k∑
j=1,j ̸=l

µ
N−2

2
j

(µ2
j + |z|2)N−2

2

p∗+1
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× log

αNµ
−N−2

2
l

 1

(1 + | z
µl
|2)N−2

2

+ µ
N−2

2
l

k∑
j=1,j ̸=l

µ
N−2

2
j

(µ2
j + |z|2)N−2

2

 dz
= αp∗+1

N

k∑
l=1

∫
√

µl+1
µl

≤|z|≤
√

µl−1
µl

 1

(1 + |z|2)N−2
2

+ µ
N−2

2
l

k∑
j=1,j ̸=l

µ
N−2

2
j

(µ2
j + µ2

l |z|2)
N−2

2

p∗+1

× log

αNµ
−N−2

2
l

 1

(1 + |z|2)N−2
2

+ µ
N−2

2
l

k∑
j=1,j ̸=l

µ
N−2

2
j

(µ2
j + µ2

l |z|2)
N−2

2

 dz
= −N − 2

2

(
αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz

) k∑
l=1

log µl

+kαp∗+1
N

∫
RN

1

(1 + |z|2)N
log

αN

(1 + |z|2)N−2
2

dz +O(ε| log ε|). (5.129)

By the mean value theorem, we have

D2 ≤
k∑

l=1

∫
Al

(
k∑

j=1

wµj

)p∗ [
(p∗ + 1) log

(
k∑

j=1

wµj

)
+ 1

]
k∑

j=1

Rµj
dz = O(ε| log ε|). (5.130)

Moreover,

D3 ≤ C
k∑

j=1

∫
RN\B(0,δ)

wp∗+1
µj

log(wµj
+

k∑
i=1,i̸=j

wµi
)dz = O(ε| log ε|). (5.131)

Thus from (5.126)-(5.131), we get

J2 = ε
k

(p∗ + 1)2
αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz

−ε k

p∗ + 1
αp∗+1
N

∫
RN

1

(1 + |z|2)N
log

αN

(1 + |z|2)N−2
2

dz

+ε
(N − 2)2

4N

(
αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz

) k∑
i=1

log Λi

+
(N − 2)2

4N

(
αp∗+1
N

∫
RN

1

(1 + |z|2)N
dz

)
×

k∑
i=1

(
2(i− 1)

N − 2
+

2

N + 2− (N − 2)q

)
ε log ε+ o(ε). (5.132)

Step 3. Let us estimate J3.

−(q + 1)J3 = λ
k∑

l=1

∫
Al

(Uµl
+

k∑
j=1,j ̸=l

Uµj

)q+1

− U q+1
µl

− (q + 1)U q
µl

k∑
j=1,j ̸=l

Uµj


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+λ
k∑

l=1

∫
Al

U q+1
µl

+ λ(q + 1)
k∑

l=1

∫
Al

k∑
j=1,j ̸=l

U q
µl
Uµj

+ λ

∫
RN\B(0,δ)

(
k∑

j=1

Uµj

)q+1

:= J3,1 + J3,2 + J3,3 + J3,4.

By the mean value theorem, for some t ∈ [0, 1], we have

J3,1 = λ
q(q + 1)

2

∫
Al

(
Uµl

+ t

k∑
j=1,j ̸=l

Uµj

)q−1( k∑
j=1,j ̸=l

Uµj

)2

≤ Cλ
k∑

j=1,j ̸=l

∫
Al

wq−1
µl

w2
µj

+ Cλ
k∑

i,j=1, i,j ̸=l

∫
Al

wq−1
µi

w2
µj
.

Since

k∑
j=1,j ̸=l

∫
Al

wq−1
µl

w2
µj

=
k∑

j=1,j ̸=l

∫
Al

(wq−1
µl

w
q−1
q

µj )w
q+1
q

µj

≤
k∑

j=1,j ̸=l

(

∫
Al

(wq
µl
wµj

)
q−1
q (

∫
Al

wq+1
µj

)
1
q , (5.133)

and

k∑
i,j=1, i,j ̸=l

∫
Al

wq−1
µi

w2
µj

≤
k∑

i,j=1, i,j ̸=l
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If j > l, then
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If l < j, then
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For i ̸= l, we have∫
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(5.137)

From (5.133)-(5.137), (5.4) and (5.27), we get J3,1 = o(ε).

Moreover,
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Since by (5.27), we have
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and From Lemma 5.15 and Lemma 5.3, we can easily check that∫
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From (5.135) and (5.136), we have
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Finally,
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Thus we get
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From (5.104), (5.125), (5.132) and (5.139), we obtain (5.81) holds.
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