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Resumen

En este trabajo buscamos obtener imágenes de las distribuciones internas de fuentes ra-
dioactivas y mapa de atenuación para el procedimiento médico usado en tomografía SPECT,
usando mediciones balísticas y de primer orden de scattering.

Con este objetivo, modelamos matemáticamente el problema tridimensionalmente uti-
lizando la ecuación de transferencia radiativa, logrando explicitar el operador no-lineal que
entrega las mediciones en función de la distribución de fuentes radioactivas y mapa de aten-
uación. Derivando direccionalmente el operador no-lineal, obtuvimos un operador lineal que
de�ne el problema inverso linealizado. Bajo hipótesis de regularidad sobre la distribución
de fuentes radioactivas y mapa de atenuación y, considerando baja atenuación, se demostró
rigurosamente que el operador lineal es invertible y se calculó explícitamente su inversa.

La demostración de la invertibilidad del operador linealizado consta de varias etapas. En
una primera etapa se descompone el operador en una parte L invertible y una perturbación
Q que sea pequeña para pequeñas atenuaciones en el espacio funcional adecuado. En una
segunda etapa, se estudian las propiedades de regularidad de L y Q mediante métodos
que incluyen estimaciones sobre la inversa de la transformada de Radon atenuada y de la
transformada de Radon con pesos como operadores integrales en espacios de Sobolev con
exponente fraccionario. Finalmente se concluye la invertibilidad de L+Q acotando la norma
de L−1Q y usando series de Neumann.

Usando el resultado previo de inversión para el operador lineal, se plantearon en este
trabajo nuevos tipos de algoritmos iterativos de recuperación de fuentes y atenuación para
la tomografía SPECT. Estos algoritmos incluyen un algoritmo para el problema inverso
linealizado usando series de Neumann, un algoritmo para el problema inverso no-lineal us-
ando el método de Newton-Raphson y un algoritmo heurístico para el no-lineal el cual fue
implementado numéricamente.

El análisis teórico del problema linealizado provisto por este estudio representa un paso
previo fundamental para el estudio de la convergencia de los algoritmos numéricos antes
propuestos.

Al comparar el algoritmo heurístico implementado en este trabajo con la metodología
tradicional de SPECT, tanto en experimentos con datos reales como sintéticos, se observa
una mejora en la recuperación de fuentes, además de contar con la reconstrucción adicional
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del mapa de atenuación del medio.
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Abstract

In this work we seek to obtain images of the internal distributions of radioactive sources and
attenuation map for the medical procedure used in SPECT tomography, using ballistic and
�rst order scattering external measurements.

With this objective, we modeled mathematically the problem three-dimensionally using
the radiative transfer equation, obtaining explicitly the non-linear operator that gives the
measurements as a function of the radioactive source distribution and attenuation map.
Directionally deriving the non-linear operator we obtained a linear operator that de�nes
the linearized inverse problem. Under hypothesis of regularity for the radioactive source
distribution and attenuation map and, considering low attenuation, we rigorously proved
that the linear operator is invertible and we computed explicitly its inverse.

The proof of the invertibility of the linearized operator consists of several steps. In the
�rst step we decomposed the operator in an invertible part L and a perturbation Q to be
small for small attenuation in the appropiate functional space. In the second step, we study
the regularity properties of L and Q with methods that includes estimates over the inverse
of the attenuated Radon transform and the weighted Radon transform as integral operators
in Sobolev spaces with fractional exponent. Finally we conclude the invertibility of L +Q
bounding the norm of L−1Q and using Neumann series.

Using the previous inversion result for the linear operator, we propose in this work a new
type of iterative algorithms for radioactive source and attenuation map recovery for SPECT
tomography. These algorithms include an algorithm for the linearized inverse problem using
Neumann series, an algorithm for the non-linear inverse problem using the Newton-Raphson
method and an heuristic algorithm using the Banach �xed-point for the non-linear case which
was implemented numerically.

The theoretical analysis for the linearized problem provided in this study represents a
fundamental previous step for the study of the convergence of the proposed numerical algo-
rithms.

Comparing the implemented heuristic algorithm in this work with the standard method
used in SPECT, on experiments with real and synthetic data, we observe and improvement
in the source recovery, in addition to recovery of the attenuation map of the medium.
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Introduction

0.1 Inverse problems and medical imaging

An inverse problem is a general framework that is used to obtain, through observed indirect
measurements, information about a physical object or system that we are interested in. In
medicine, such problems appear when we want to create an image of internal organs or
tissues of a patient. Since that information can be di�cult to obtain directly, we must rely
on external measurements that allow us to reconstruct an image of the object in study.

To do this, we �rst need a mathematical model that explains the available measurements
as a function of the physical properties that we are interested in, and then seek the best
reconstruction that �ts the observed data. For example, if we have a model that explains
the decay of X-ray photons intensity traversing an object as a function of the object's density,
we can expose a patient to X-rays and measure the intensity of exiting X-ray beams to acquire
information about the density of internal tissues.

There are many types of medical imaging techniques such as Computerized Tomography
(CT), Magnetic Resonance Imaging (MRI), Positron Emition Tomography (PET), among
others (see [21]). In this work we deal with a speci�c method called Single-Photon Emission
Computed Tomography (SPECT).

0.2 Single-Photon Emission Computed Tomography (SPECT)

0.2.1 General description

The SPECT method is a nuclear medicine tomographic imaging technique using gamma rays,
the idea is to deliver into a patient a gamma-emitting radioisotope (typically technetium-
99m) that is designed to get attached to certain types of tissues, thus, after the patient
has been inyected, the especi�c tissue will start to emit gamma rays (for reference see [11],
Chapter 2). This radiation can be measured, outside the patient, by a device called gamma
camera which can identify the direction and energy level of the gamma rays. With the
information gathered, the goal is to reconstruct the distribution of the radioisotope inside
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the patient, hence obtaining an image of the desired speci�c tissue in study.

The mathematical model commonly used to describe the external measured photons re-
quire two physical parameters, the radioactive source map f and the attenuation map a. The
attenuation map represents the capacity of the medium to absorb photons and is, given the
medical procedure, an unknown value. The radioactive source map represents the capacity
of the medium to radiate photons, and is the function to be obtained.

We consider that generated photons travel in straight lines, thus to obtain the information
of a cross-sectional slice of f , say f ∣

P
= {f(x), x ∈ P}, it is enough to measure the photons

exiting the patient body and travelling in the P plane. This information can be represented
as the operator Ra∣P [f ∣P] called the attenuated Radon transform of f ∣

P
with attenuation

a∣
P
.

a|
P

f|
P

Figure 1: A representation of cross-sections a∣
P
and f ∣

P
, the arrows symbolize photons

moving in the P plane

0.2.2 SPECT Inverse Problem

Since the data that can be measured in a given plane P can be represented as an explicit
operator, the inverse problem that arises is to reconstruct the value of f ∣

P
with the informa-

tion of the attenuated Radon transform Ra∣P [f ∣P]. Given that the values of a∣
P
are mixed

in the operator with the information of f ∣
P
, we have 2 cases.

● a∣
P
is known

This case was solved by Novikov in 2000 [23] and obtained an explicit formula for the
inverse of the attenuated Radon transform.

● a∣
P
is unknown

Up to this date there are no explicit reconstruction methods when a∣
P
is unknown, al-

though there are some interesting results, for instance see [29]. A commonly used procedure
to approximate the values of f ∣

P
is to assume a known value of a∣

P
and reconstruct using

2



the inverse of the attenuated Radon transform, as is comented in page 42 of book [18].

There is another inverse problem that contains the case in which a∣
P
is unknown, this is

to reconstruct both the attenuation and source map a∣
P
and f ∣

P
respectively using the

information given by the attenuated Radon transform Ra∣P [f ∣P]. This problem is known in
the literature as the identi�cation problem for SPECT.

0.3 Our inverse problem

Our main goal is to reconstruct both the attenuation and source maps of an unknown object
using the SPECT setting, although this is the same objective as in the identi�cation prob-
lem, we tackle a di�erent inverse problem by using aditional measurements by considering
assumptions and extensions of the underlying mathematical model.

The model is extended by considering scattering e�ects, this introduces an unknown
coe�cient that describes the scattering behavior of photons inside the object in study, the
made asumption relates this scattering coe�cient to the attenuation coe�cient and the
additional information is gathered by measuring scattered photons outside the object in
study.

When a photon scatters it reduces its energy level, and since gamma cameras can dis-
criminate the energy level of photons, we can measure separately the gamma rays exiting
the patient that have not scattered (ballistic photons) and the gamma rays exiting the pa-
tient that have scattered, particularly we are interested in measuring photons that just have
scattered once (�rst order scattering photons), hence, we can gather more information using
the same medical procedure described for the SPECT method and without the addition of
new parameters.

The new information given by �rst order scattering photons travelling in a P plane con-
tains information of the whole three dimentional body, because unlike ballistic photons,
scattered photons do not, by de�nition, travel in straight line from the source to the gamma
camera, see �gure 2. Hence, to use the information there is a need of measuring along
a family (Pz)z∈R of planes such that their information allows us to reconstruct both the
attenuation map and source map of the whole three dimensional body.

Explicitly, consider Pz = {(y, z) ∈ R3, y ∈ R2} an horizontal plane at height z ∈ R, and for
a function f de�ned on R3 let fz(y) = f(y, z), y ∈ R2 be its restriction to the Pz plane. If
we have an attenuation map a and a source map f (both functions de�ned on R3), then the
measurements of ballistic photons in the Pz plane gives us the information of

Raz[fz](s, θ) = ∫
R
fz(tθ + sθ

�)e− ∫
∞
0 az(tθ+τθ+sθ�)dτdt ∀s ∈ R, θ ∈ S1,

where S1 = {θ ∈ R2, ∣θ∣ = 1} is the unit sphere in R2, θ� is a counterclockwise rotation of
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f

P

Figure 2: A representation of how measuring the scattering photons in a P plane, contains
information of a the whole three dimentional object.

vector θ (i.e. θ� = (
0 −1
1 0

) θ ) and every pair (s, θ) ∈ R × S1 represents a directed line in

R2, so Raz[fz] is obtained by measuring at every position and planar direction at height z
outside a patient. Observe that this is the same operator for the SPECT inverse problem
and, to our knowledge, there is no inversion formula to obtain both az and fz from it.

Let M[a, f](x) be a function that gives the total ammount of ballistic photons passing
by the spatial point x ∈ R3

M[a, f](x) = ∫
S2
∫

∞

0
f(x + tφ)e− ∫

t
0 a(x+τφ)dτdtdφ, S2 = {φ ∈ R3, ∣φ∣ = 1}.

Then measuring the �rst order scattering photons in the Pz plane gives us information of

Raz[az ⋅Mz[a, f]](s, θ) = ∫
∞

0
az(tθ+sθ

�)Mz[a, f](tθ+sθ
�)e− ∫

∞
0 az(tθ+τθ+sθ�)dτdt ∀s ∈ R, θ ∈ S1.

In this case, although we are just using the information ofM[a, f] restricted to the Pz plane,
we have that at each point this function contains data of the whole three dimentional object,
thus to use the �rst order scattering measurements we need to reconstruct the whole three
dimentional object attenuation and source map.

Taking all this into account, our inverse problem can be formulated as obtaining both the
attenuation and radioactive source map a and f de�ned on R3, from the knowledge of

Raz[fz](s, θ) ∀s, z ∈ R, θ ∈ S1

Raz[az ⋅Mz[a, f]](s, θ) ∀s, z ∈ R, θ ∈ S1.

0.3.1 Main Objectives

There are three main objectives in this work, the �rst one is to derive an inverse problem that
consider scattering e�ects in the standard mathematical model of SPECT that describes the
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behavior of photons in a medium, this by means of suitable assumptions that allows us to
deal with the gathered information from the ballistic and �rst order scattering photons.

The second goal is to reconstruct both the attenuation and source map from the available
data. To achieve this goal we study the operator that describes the external measurements
by means of a linearization process.

The third objective is to tackle numerically the deduced inverse problem, this is, to develop
algorithms that use the ballistic and �rst order scattering photon infomation to reconstruct
both the attenuation and source map of an unknown object.

0.4 Previous results

The Attenuated Radon transform (AtRT) plays a central role in the SPECT inverse problem,
and particularly in the extension made in this work, hence all signi�cant previous results are
about this transform.

The inversion formula with known attenuation was obtained by Novikov in [23] deriving
an explicit inverse operator, although from a slightly previous work [2] it can be deduced.
There are several generalization for this result, for instance if we integrate along geodesics
[27], if the coe�cients are complex valued [33] or using more general weight functions [8, 7].
There are also invertibility and stability results for partial measurements, for instance in [19]
inyectivity is obtained measuring in an arbitrarily small open set of angles, stability for the
direct and inverse problem can be found at [26] and inversion of data in [3].

Regarding the identi�cation problem, �rst approximations were obtained by assuming a
constant attenuation map, this process reduces the operator to one called the Exponential
Radon transform which arises a di�erent problem [16, 15, 28], in [28] there are non uniqueness
results for speci�c attenuation and source pairs. Similarly if axial symetry is assumed for
the attenuation map, there is also an inversion result [24].

Another approach to study the identi�cation problem is by characterizing the range of
the AtRT. In [22] there is a necessary and su�cient condition for the range of the AtRT,
restrictions over the attenuation as a function of the range can be found in [18]. Recently
in [29, 5], these compatibility conditions and their linearization are used to obtain more
information regarding the attenuation map and the identi�cation problem.

Numerical algorithms to compute the inverse of the AtRT can be found in [20, 17, 13].
In [6] there is a fast implementation for partial measurements. Regarding the identi�cation
problem, some numerical algorithms focuses on getting a good approximation of the attenu-
ation map �rst instead of treating (a, f) as a pair, see for example [14, 32, 25], these methods
are often called attenuation correction algorithms.

For the mathematical model, the equation that describes the scattering behavior has
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a general form called the Radiative Transfer Equation, an extensive survey by Bal of the
subject can be found in [4].
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Chapter 1

Preliminaries

1.1 Basic Concepts

1.1.1 Fourier Trasform

Named after Joseph Fourier, this transform is of great importance in engineering and math-
ematics, it will be used through the whole text because is highly related to the Radon Trans-
form, and its usefull properties to analyze stability, invertibility and more. For references
see [30].

De�nition 1.1 (Fourier transform) Let f be integrable (i.e. ∫Rn ∣f(x)∣dx <∞ ) or square
integrable (i.e. ∫Rn ∣f(x)∣

2dx <∞) then we can de�ne the Fourier transform of f as

Ff(ξ) = f̂(ξ) = ∫
Rn

e−ix⋅ξf(x)dx.

If f is a Tempered Distribution (see de�nition 1.12), its Fourier transform is de�ned by

⟨Ff, φ⟩ = ⟨f,Fφ⟩ ∀φ ∈ S(Rn),

and if f is angularly dependant (say f ∶ Rn × Sm → R with Sm = {x ∈ Rm+1, ∣x∣ = 1}), we
de�ne its Fourier transform as the Fourier transform taken on the spatial variable (as long
as it is a.e. integrable or square integrable)

Ff(ξ, φ) = ∫
Rn

e−ix⋅ξf(x,φ)dx a.e. φ ∈ Sm.

There are various standard de�nitions of the Fourier transform which di�er in constants
added for di�erent purposes, this de�nition is generally called the "non unitary Fourier
transform". Recall some properties of general knowledge whose demonstration will be omit-
ted.
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Theorem 1.2 (Inverse of the Fourier transform ) Let f be a function that is integrable
and such that its Fourier transform f̂ is also integrable, then we have the inversion formula

F−1f̂(x) = f(x) =
1

(2π)n ∫Rn
eix⋅ξf(x)dx

if f is square integrable, this formula holds for almost every x ∈ Rn.

Proposition 1.3 (Partial derivative formula ) Let f be a function such that ∂nxif(x)
has a well de�ned Fourier transform, then

F(
∂

∂xj
f)(ξ) = iξj f̂(ξ) j ∈ {1,2, ..n}.

Proposition 1.4 (Convolution formula ) Let f and g be integrable, then their convolu-
tion f ∗ g(y) = ∫Rn f(y − x)g(x)dx is well de�ned, is integrable and satis�es

F(f ∗ g)(ξ) = F(f) ∗F(g)(ξ).

Theorem 1.5 (Plancherel's theorem ) Let f be integrable and square integrable, then

∫
Rn

∣f(x)∣2dx = (2π)n∫
Rn

∣f̂(ξ)∣2dξ.

1.1.2 Function spaces and norms

Now we will establish certain spaces and norms that will be used along the text.

De�nition 1.6 (Space of continuous functions ) Let Ω ⊂ Rn be any set, then

C0(Rn) = {f ∶ Rn → R, f is continuous },

C0(Ω) = {f ∈ C0(Rn), supp(f) = {x ∈ Rn, f(x) ≠ 0} ⊂ Ω},

for angularly dependant functions we de�ne

C0(Ω × Sm) = {f ∶ Rn × Sm → R, f is continuous and supp(f) ⊂ Ω × Sm} m ∈N.

Observation There are no needed properties for the set Ω since it just de�nes a restriction
over the support of the functions and not over the domain of the spatial variable.

De�nition 1.7 (Space of in�nitely di�erentiable functions )

C∞(Rn) = {f ∶ Rn → R, is f in�nitely di�erentiable }

C∞(Rn × Sm) = {f ∶ Rn × Sm → R, is f in�nitely di�erentiable }

C∞
0 (Rn) = {f ∈ C∞(Rn), f has compact support}

C∞
0 (Rn × Sm) = {f ∈ C∞(Rn × Sm), f has compact support}
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for Ω ⊂ Rn we de�ne

C∞(Ω) = {f ∈ C∞(Rn), supp(f) ⊂ Ω}

C∞(Ω × Sm) = {f ∈ C∞(Rn × Sm), supp(f) ⊂ Ω}

C∞
0 (Ω) = {f ∈ C∞(Ω), f has compact support}

C∞
0 (Ω × Sm) = {f ∈ C∞(Ω × Sm), f has compact support}

De�nition 1.8 (Lp spaces )We de�ne Lp(Rn) and ∣∣ ⋅ ∣∣Lp(Rn) with p ∈ [1,∞] by the clasical
way

∣∣f ∣∣Lp(Rn) = (∫
Rn

∣f(x)∣pdx)
1/p

p ∈ [1,∞), ∣∣f ∣∣∞ = ess supx∈Rn ∣f(x)∣.

For Ω ⊂ Rn, p ∈ [1,∞] we de�ne

Lp(Ω) = {f ∈ Lp(Rn), f(x) = 0 x ∉ Ω a.e. }.

Observation Since Ω is a restriction over the support of f and not over the domain, we
have that if K ⊂ K̃ then L2(K) ⊂ L2(K̃).

Proposition 1.9 (Density in Lp spaces ) Let Ω ⊂ Rn be any set and p ∈ [1,∞), then

C∞
0 (Ω)

∣∣⋅∣∣Lp(Rn)
⊂ Lp(Ω) p ∈ [1,∞).

De�nition 1.10 (Schwartz space )

S(Rn) = {f ∈ C∞(Rn), sup ∣xβ∂αf ∣ <∞ ∀multi-indexes α,β ∈Nm,m ∈N}.

De�nition 1.11 (Schwartz space topology ) We say that φj → 0 in S(Rn) if for all
multi-indices α and β we have xβ∂αφj → 0 uniformly on Rn

De�nition 1.12 (Tempered distribution space ) S ′(Rn) is the set of sequentially con-
tinuous linear functionals on the space S(Rn)

De�nition 1.13 (Sobolev space Hs ) For s ∈ R and f ∈ S ′(Rn) such that f̂ can be
represented as a function, we de�ne the Sobolev norm

∣∣f ∣∣Hs(Rn) = ∣∣f ∣∣s = (∫
Rn

∣f̂(ξ)∣2(1 + ∣ξ∣2)sdξ)
1/2

.

Then for Ω ⊂ Rn

Hs(Rn) = {f ∈ S ′(Rn), ∣∣f ∣∣Hs(Rn) <∞},

Hs(Ω) = {f ∈Hs(Rn), supp(f) ⊂ Ω},
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if we have a angularly dependant function, such that f(⋅, θ) ∈Hs(Rn) a.e. θ ∈ Sm we de�ne
its Hs(Rn × Sm) norm as

∣∣f ∣∣Hs(Rn×Sm) = (∫
Sm

∣∣f(⋅, φ)∣∣2sdφ)
1/2

,

and for Ω ⊂ Rn the spaces

Hs(Rn × Sm) = {f ∈ S ′(Rn × Sm), ∣∣f ∣∣Hs(Rn×Sm) <∞},

Hs(Ω × Sm) = {f ∈Hs(Rn × Sm), supp(f) ⊂ Ω × Sm}.

Note that all these spaces with their respective norms are Banach spaces.

Proposition 1.14 (Inclusion of Hs(Rn) spaces ) If s < l in R then

H l(Rn) ⊂Hs(Rn)

Proposition 1.15 (Regularity loss of derivatives in Hs(R) spaces ) For s ∈ R, f ∈

Hs(Rn) (Resp. f ∈ Hs(Rn × Sm)) and α a multi-index such that ∣α∣ = l then we have
that ∂αf ∈ Hs−l(Rn) (Resp. ∂αf ∈ Hs−l(Rn × Sm), with this derivative taken in the spatial
variable) and the following inequalities

∣∣∂αf ∣∣Hs−l(Rn) ≤ ∣∣f ∣∣Hs(R) ∀ multi-index α such that ∣α∣ = l,

∣∣∂αf ∣∣Hs−l(Rn×Sm) ≤ ∣∣f ∣∣Hs(R×Sm) ∀ multi-index α such that ∣α∣ = l.

Proposition 1.16 (Density of C∞
0 (Rn) on Hs(Rn) ) For any s ∈ R, and Ω ⊂ Rn then

C∞
0 (Ω)

∣∣⋅∣∣Hs(Rn)
=Hs(Ω).

Proposition 1.17 (Duality inequality of Hs spaces ) Let s > 0 be a positive real, then
H−s(Rn) (resp. H−s(R×Sm)) can be identi�ed with the dual space of Hs(Rn) (resp. Hs(R×

Sm)) and we have the following inequalities for the duality product ⟨⋅, ⋅⟩ ( in Hs(R×Sm) the
duality product is ⟨f, g⟩ = ∫Sm ⟨f(⋅, θ), g(⋅, θ)⟩dθ with f(⋅, θ) ∈Hs(Rn), g(⋅, θ) ∈H−s(Rn) a.e.
θ ∈ Sm).

∣ ⟨f, g⟩ ∣ ≤ C ∣∣f ∣∣H−s(Rn)∣∣g∣∣Hs(Rn) ∀f ∈H−s(Rn), g ∈Hs(Rn),

∣ ⟨f, g⟩ ∣ ≤ C ∣∣f ∣∣H−s(Rn×Sm)∣∣g∣∣Hs(Rn×Sm) ∀f ∈H−s(Rn × Sm), g ∈Hs(Rn × Sm).

Proof. The �rst inequality is classical, the second one follows directly from the de�nition
and the �rst inequality

∣ ⟨f, g⟩ ∣ ≤ ∫
Sm

∣⟨f(⋅, θ), g(⋅, θ)⟩∣dθ

≤ C ∫
Sm

∣∣f(⋅, θ)∣∣H−s(Rn)∣∣g(⋅, θ)∣∣Hs(Rn)dθ

≤ C

√

∫
Sm

∣∣f(⋅, θ)∣∣2
H−s(Rn)dθ

√

∫
Sm

∣∣g(⋅, θ)∣∣2
Hs(Rn)

dθ

= C ∣∣f ∣∣H−s(Rn×Sm)∣∣g∣∣Hs(Rn×Sm).
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De�nition 1.18 (Hölder Space ) For 0 < α ≤ 1 and a function f on Rn we de�ne its
Hölder norm as

∣∣f ∣∣Cα(Rn) = sup
x

∣f(x)∣ + sup
x≠y

∣f(x) − f(y)∣

∣x − y∣α
,

its Hölder seminorm

∣f ∣Cα(Rn) = sup
x≠y

∣f(x) − f(y)∣

∣x − y∣α
,

and for Ω ⊂ Rn the Hölder space

Cα(Rn) = {f ∈ C0(Rn), ∣∣f ∣∣Cα(Rn) <∞},

Cα(Ω) = {f ∈ Cα(Rn), supp(f) ⊂ Ω}.

If we have f de�ned on Rn × Sm then we de�ne its Hölder norm as

∣∣f ∣∣Cα(Rn×Sm) = sup
θ

∣∣f(⋅, θ)∣∣Cα(Rn),

and for Ω ⊂ Rn we de�ne the space

Cα(Rn × Sm) = {f ∈ C0(Rn × Sm), ∣∣f ∣∣Cα(Rn)×Sm <∞},

Cα(Ω × Sm) = {f ∈ Cα(Rn × Sm), supp(f) ⊂ Ω × Sm}.

And �nally, a theorem that connects these spaces.

Theorem 1.19 (Sobolev Embedding Theorem ) Let s, n be integers, α ∈ R2, if (s −
α)/n < 1/2 then

Hs(Rn) ⊂ Cα(Rn),

and the inclusion is continuous.

1.1.3 Hilbert Transform

This transform is widely used in signal analysis, one of its most useful properties is its
behavior under the Fourier transform, for further references see [31].

De�nition 1.20 (Hilbert Transform ) For f ∈ Lp(R), p > 1, denoting P.V. 1/x a dis-
tribution that satis�es ⟨P.V.1/x, f⟩ = limε→0+ ∫R/(−ε,ε) f(x)/x dx then we de�ne the Hilbert
transform as

Hf(x) = f ∗ (P.V.
1

πx
) ,

where ∗ stands for the convolution operator.
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Observation The Hilbert transform can be rewritten as

Hf(x) = f ∗ (P.V.
1

πx
)

=
1

π
lim
ε→0+

(∫

x−ε

−∞

f(t)

x − t
dt + ∫

∞

x+ε

f(t)

x − t
dt)

=
−1

π
lim
ε→0+∫

∞

ε

f(x + t) − f(x − t)

t
dt.

Proposition 1.21 (Hilbert transform in Lp(R) space ) If f ∈ Lp(R), p > 1 the Hilbert
transform is well de�ned a.e. and

∣∣Hf ∣∣Lp(R) ≤ Cp∣∣f ∣∣Lp(R)

The demostration will be omitted since is quite technical, it can be seen at [31] chapter
3.

Proposition 1.22 (Hilbert transform under Fourier transform ) For f ∈ L2(R) the
Hilbert transform satis�es

F(Hf)(ξ) = −i sgn(ξ)f̂ ,

where

sgn(ξ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if ξ > 0
0 if ξ = 0
−1 if ξ < 0

.

Proof. Formally

F(Hf)(ξ) = F(P.V.
1

πx
∗ f)(ξ)

=
1

π
F(

1

x
)(ξ)f̂(ξ)

= −i sgn(ξ)f̂(ξ).

One of the details in this proof is the use of the convolution property in a convolution with
principal value, this is basically an exchange of limit with an integration, which is a valid
exchange since we can use the dominated convergence theorem.

The other detail is in the calculation of the Fourier transform of 1/x, to this we need to
know that ∫R sin(x)/x dx = limR→∞ ∫(−R,R)

sin(x)/x dx = π, since it follows straight forward
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that

F (
1

x
) (ξ) = ∫

R
eixξ 1

x
dx

= ∫
R

cos(xξ)/xdx − i∫
R

sin(xξ)/xdx

= 0 − i∫
R

sin(xξ)/(xξ)(ξdx)

= −iπ sgn(ξ).

Corollary 1.23 (Hilbert transform in Hs(R) spaces ) Consider f ∈ Hs(R) with s ∈ R
then Hf ∈Hs(R) and

∣∣f ∣∣Hs(R) = ∣∣Hf ∣∣Hs(R).

Proof. Recalling the de�nition of the Hs(R) norm,

∣∣Hf ∣∣Hs(R) = ∫
R
(1 + ∣ξ∣2)s∣Ĥf(ξ)∣2dξ

= ∫
R
(1 + ∣ξ∣2)s∣ − i sgn(ξ)f̂(ξ)∣2dξ

= ∫
R
(1 + ∣ξ∣2)s∣f̂(ξ)∣2dξ = ∣∣f ∣∣Hs(R).

Proposition 1.24 (Conmutativity of the Hilbert trasnform with derivatives ) Con-
sider f ∈H1(R) then

d

dx
Hf =H

d

dx
f a.e. in R.

Proof. It is just necessary to take the Fourier transform and to use its inyectivity in L2 to
conclude,

F(
d

dx
Hf)(ξ) = iξ(−i) sgn(ξ)f̂(ξ)

= −i sgn(ξ)iξf̂(ξ)

= F(H
d

dx
f)(ξ).
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1.2 The Radon Transform

1.2.1 Radon Transform

This transform is the most important mathematical object in this thesis. It is the simplest
form of the attenuated Radon Transform, which we will present in detail in the next chapters.
This transform and its invertibility was �rst studied by the Austrian mathematician Johann
Radon in 1917, for further references see [19].

De�nition 1.25 (Radon transform ) Given f ∈ S(Rn), we de�ne

Rf[ρ, θ] = ∫
x⋅θ=ρ

f(x)dl(x), θ ∈ Sn−1, ρ ∈ R,

where x ⋅θ = ∑
n
i=1 xiθi is the classical product in Rn and dl(x) is the Lebesgue measure in the

n − 1 dimensional hyperplane {x ∈ Rn, x ⋅ θ = ρ}.

This transform corresponds to integrate over hiperplanes, orthogonal to θ and at a distance
ρ from the origin. The main interest in developing a theory of this transformation is that
it has many applications in tomography, some of these applications will be detailed in the
next chapter.

Notation: since the Radon transform has 2 variables, whenever we take a convolution,
a Hilbert transform or a Fourier transform, this will be done with respecto to the one
dimentional spatial variable ρ for θ �xed.

Theorem 1.26 (Fourier slice theorem ) Consider f ∈ S(Rn) then

F(Rf)(ρ, θ) = f̂(ρθ), θ ∈ Sn−1, ρ ∈ R.

Proof.

F(Rf)(ρ, θ) = ∫
R

e−isρ[Rf](s, θ)ds

= ∫
R

e−isρ
∫
x⋅θ=ρ

f(x)dl(x)ds

= ∫
R
∫
x⋅θ=ρ

e−i(x⋅θ)ρf(x)dl(x)ds

= ∫
Rn

e−i(x⋅θ)ρf(x)dx (1.1)

= F(f)(ρθ).
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Proposition 1.27 (Partial derivative of the Radon transform ) Let f ∈ S(Rn) be a
smooth function, then

θj∂ρRf(ρ, θ) = R[∂xjf](ρ, θ) j ∈ {1,2, ...n}.

Proof. Applicating the Fourier transform to the left hand term and using the Fourier slice
theorem 1.26 yields

F(θj∂ρRf(ρ, θ)) = θjiξF(Rf(ξ, θ))

= θjiξf̂(ξθ), ∀ξ ∈ R, θ ∈ Sn−1.

And doing the same to the right hand term

F(R[∂xjf](ξ, θ)) = ∂̂xjf(ξθ)

= i(ξθ)j f̂(ξθ)

= iξθj f̂(ξθ), ∀ξ ∈ R, θ ∈ Sn−1.

We conclude using the inyectivity of the Fourier transform.

Corollary 1.28 For f ∈ S(Rn) we have that

∂2
ρRf(ρ, θ) = R[∆f](ρ, θ).

This corollary follows directly from the previous proposition. One of its principal advan-
tages is that it can transform n-dimensional PDE's to 1 dimensional PDE's.

De�nition 1.29 (Formal Transpose of R, R∗ ) For g(ρ, θ) ∈ C∞
0 (R × Sn−1), we de�ne

R∗g(x) = ∫
Sn−1

g(x ⋅ θ, θ)dθ.

The formal adjoint of the Radon transform that satis�es

⟨Rf, g⟩L2(R×Sn−1) = ⟨f,R∗g⟩L2(Rn) .

Proof. Let f ∈ C∞
0 (Rn) and g ∈ C∞

0 (R × Sn−1), then

⟨Rf, g⟩L2(R×Sn−1) = ∫Sn−1 ∫RRf(ρ, θ)g(ρ, θ)dρdθ

= ∫Sn−1 ∫R ∫x⋅θ=ρ f(x)g(ρ, θ)dl(x)dρdθ

= ∫Sn−1 ∫Rn f(x)g(x ⋅ θ, θ)dxdθ
= ∫Rn f(x) ∫Sn−1 g(x ⋅ θ, θ)dθdx
= ⟨f,R∗g⟩L2(Rn) .
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Proposition 1.30 LetK ⊂ Rn be a compact set and f ∈ L2(K), then Rf(⋅, θ) is well de�ned
as a L2(R) function for all θ and satis�es

∣∣Rf(⋅, θ)∣∣L2(R) ≤ C(K)∣∣f ∣∣L2(Rn) ∀θ ∈ Sn−1,

with C(K) a constant depending only in the compact set K.

Proof. Let g ∈ C∞
0 (Rn) with supp(g) ⊂K and lets de�ne the indicatrix function

1K(x) = {
1 if x ∈K
0 if x ∉K

,

then

∣∣Rg(s, θ)∣∣2L2(R)
= ∫

R
(∫

x⋅θ=s
g(x)dl(x))

2

ds

= ∫
R
(∫

x⋅θ=s
g(x)1K(x)dl(x))

2

ds

≤ ∫
R
(∫

x⋅θ=s
(g(x))2dl(x))(∫

x⋅θ=s
12
K(x)dl(x))ds

≤ diam(K)n−1
∫
R
∫
x⋅θ=s

(g(x))2dl(x)ds

= diam(K)n−1
∫
R2

(g(x))2dx

= diam(K)n−1∣∣g∣∣2L2(R2)
,

and thus by density of C∞
0 (K) in L2(K) we can conclude by extending the de�nition of the

Radon transform for f ∈ L2(K).

Corollary 1.31 Let K ⊂ Rn be a compact set and f ∈Hk(K), k ≥ 0, then

∣∣Rf(⋅, θ)∣∣Hk(R) ≤ C(K)∣∣f ∣∣Hk(Rn) ∀θ ∈ Sn−1,

with C(K) a constant depending only in the compact K.

Proof. Lets us prove it for k=1. We already have the inequality for the L2(R) norm, hence
let us prove it for the seminorm. Let g ∈ C∞

0 (K), using proposition 1.27 we have that

∣∣θi∂sRg(⋅, θ)∣∣L2(R) = ∣∣R[∂xig](⋅, θ)∣∣L2(R)

≤ C(K)∣∣∂xig∣∣L2(Rn)

≤ C(K)∣∣g∣∣H1(Rn).
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Thus we have that

∣∣∂sRg(⋅, θ)∣∣
2
L2(R)

= ∫
R
∣∂sRg(s, θ)∣

2ds

= ∫
R

n

∑
i=1

θ2
i ∣∂sRg(s, θ)∣

2ds

=
n

∑
i=1
∫
R
∣θi∂sRg(s, θ)∣

2ds

=
n

∑
i=1

∣∣θi∂sRg(⋅, θ)∣∣
2
L2(R)

≤
n

∑
i=1

C(K)∣∣g∣∣2H1(Rn)

≤ nC(K)∣∣g∣∣2H1(Rn)
.

Thus by density we conclude the result for k = 1. Now using induction assume we have
the property for all f ∈Hk(K), then if we take g ∈Hk+1(K) we have that ∂xig ∈H

k(K) and
thus

∣∣R[∂xig](⋅, θ)∣∣Hk(R) ≤ C(K)∣∣∂xig∣∣Hk(Rn) ≤ C(K)∣∣g∣∣Hk+1(Rn)

We conclude the result for all k ∈N.

Theorem 1.32 (Inverse of the Radon Transform ) Let f ∈ C∞
0 (Rn) be a smooth

function, then

f(x) = cn {
R∗H∂n−1

ρ Rf(x) if n is even
R∗∂n−1

ρ Rf(x) if n is odd

with cn =
1

2
(2π)1−n {

(−1)(n−2)/2 if n is even
(−1)(n−1)/2 if n is odd

,

where ∂ρ is the derivative taken in the spatial variable of Rf .

Proof. Consider f ∈ C∞
0 , then

f(x) =
1

(2π)n ∫Rn
eixξf̂(ξ)dξ

changing to polar coordinates, choosing ρ = ∣ξ∣ and θ = ξ/∣ξ∣

f(x) =
1

(2π)n ∫
∞

0
∫
Sn−1

eρθ⋅xf̂(ρθ)ρn−1dθdρ

Now we want to extend the integral from [0,∞] to R, to do this we need to separate in
cases depending on the dimension of the space.
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● n odd case:
We can extend the integral without problems, because ρn−1 does not change the sign, and
the ρθ product is not an issue since we can just �ip θ without changing the integration set
(since it is symmetric).

f(x) =
1

2(2π)n ∫R∫Sn−1
eiρθ⋅xf̂(ρθ)ρn−1dθdρ

=
1

2(2π)n ∫R∫Sn−1
eiρθ⋅x 1

in−1
Fρ[∂

n−1
ρ Rf](ρ, θ)dρdθ

=
in−1

2(2π)n−1 ∫Sn−1

1

2π ∫R
eiρθ⋅xFρ[∂

n−1
ρ Rf](ρ, θ)

=
in−1

2(2π)n−1 ∫Sn−1
∂n−1
ρ Rf(θ ⋅ x, θ)dθ

= cnR
∗∂n−1

ρ Rf(x).

● n even case:
Now we have a change of sign to extend the integral, to �x this we use the sgn(x) function,
and we replicate the last procedure, the only change is the appearance of the Hilbert
transform when we introduce the sign function into the Fourier transform.

f(x) =
1

2(2π)n ∫R∫Sn−1
eiρθ⋅xf̂(ρθ) sgn(ρ)ρn−1dθdρ

=
1

2(2π)n ∫R∫Sn−1
eiρθ⋅xiFρ[Hρ(Rf)](ρ, θ)ρ

n−1dθdρ

=
1

2(2π)n ∫R∫Sn−1
eiρθ⋅x i

in−1
Fρ[∂

n−1
ρ Hρ(Rf)](ρ, θ)dθdρ

=
in−2

2(2π)n−1
R∗Hρ∂

n−1
ρ Rf(x)

1.2.2 Beam Transform

This transform is useful to de�ne the attenuated Radon transform and has many properties
that will be used in the next chapters

De�nition 1.33 (Beam Transform ) Let a ∈ C0(Rn) be a continuous function with com-
pact support, then the beam transform is the integral from one point x ∈ Rn in a straight
line in the θ ∈ Sn−1 direction.

(Ba)(x, θ) = ∫
∞

0
a(x + tθ)dt x ∈ Rn, θ ∈ Sn−1.
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Proposition 1.34 Let R > 0 be a positive number such that ∀x ∈ supp(a), ∣x∣ ≤ R, then :

1. θ ⋅ ∂xBa = −a,

2. Ba = 0 for x ⋅ θ > R ,

3. Ba = R0[a] for x ⋅ θ < −R .

Proof. The �rst one is obtained by cosidering g(t) = a(x + tθ), then d
dtg(t) = θ ⋅ ∂xa(x + tθ)

thus the result is obtained since a has compact support so we can exchange the derivative
with the integral. We conclude by using the fundamental theorem of calculus and that
a(x + tθ)∣t=∞ = 0.

The second one is obtained because a has compact support and because the Beam Trans-
form takes into account the mass from a point and moving forward ( θ direction ) if x ⋅ θ > R
the integral will be out of the support of a. For the third one the explanation is similar.

Proposition 1.35 Let a ∈ Cα(Rn) with compact support K, then Ba(x, θ) ∈ Cα(Rn×Sn−1)

with ∣Ba∣Cα ≤ C(K)∣a∣Cα , where C(K) stands for a constant depending only in the support.

Proof.

∣Ba(x, θ) −Ba(y, θ)∣ ≤ ∫
∞

0
∣a(x + tθ) − a(y + tθ)∣dt

≤ ∫

∞

0
∣a(x + tθ) − a(y + tθ)∣(1K(x + tθ) + 1K(y + tθ))dt

≤ ∫

∞

0
∣a∣Cα ∣x +��tθ − y −��tθ∣

α(1K(x + tθ) + 1K(y + tθ))dt

= ∣a∣Cα ∣x − y∣
α
∫

∞

0
(1K(x + tθ) + 1K(y + tθ))dt

≤ 2∣a∣Cα ⋅ diam(K)∣x − y∣α.

Proposition 1.36 Let a ∈ C0(Rn), with compact support K then

∣Ba(x, θ)∣ ≤ CK ∣∣a∣∣∞ ∀x ∈ Rn,∀θ ∈ Sn−1.

Proof.

∣Ba(x, θ)∣ = ∣∫

∞

0
a(x + tθ)dt∣

≤ ∣∣a∣∣∞∣∫

∞

0
1K(x + tθ)dt∣

≤ diam(K)∣∣a∣∣∞.
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Proposition 1.37 Let a ∈H1(R2) ∩ C0(R2) with compact support K, then

∣Ba(x, θ)∣ ≤ C ∣∣a∣∣H1(R) ∀x ∈ R2, θ ∈ S1.

Proof. Set x = sθ + τθ� then

∣Ba(x, θ�)∣ = ∣∫

∞

0
a(sθ + (τ + t)θ�)dt∣

≤ ∫
R
∣a(sθ + tθ�)∣dt

= R[ ∣a∣ ](s, θ).

Using the Sobolev embbeding H1(R) ⊂ L∞(R) we obtain

∣Ba(x, θ�)∣ ≤ C ∣∣R[ ∣a∣ ](⋅, θ)∣∣H1(R) ∀x ∈ R2, θ ∈ S1

And using Corollary 1.31 we get

∣Ba(x, θ�)∣ ≤ C(K)∣∣ ∣a∣ ∣∣H1(R2) ∀x ∈ R2, θ ∈ S1

And �nally, we use that ∣∣ ∣a∣ ∣∣H1(Rn) ≤ ∣∣a∣∣H1(R2), this property can be found in [12] in page
152, thus

∣Ba(x, θ�)∣ ≤ C(K)∣∣a∣∣H1(R2), ∀x ∈ R2,∀θ ∈ S1.

1.2.3 Attenuated Radon transform

To de�ne the attenuated Radon transform we will just consider the 2 dimensional case.

De�nition 1.38 (Attenuated Radon Transform (AtRT) ) Let a, f ∈ C0(R2) be con-
tinuous functions, then

Raf(s, θ) = ∫
R
f(sθ� + tθ)e−(Ba)(sθ

�+tθ,θ)dt, s ∈ R, θ ∈ S1.

The AtRT can be understood as an integral of f(x) in the line parallel to θ and at distance
s from the origin, weighted with the exponential term e−(Ba)(sθ

�+tθ,θ) that basically integrates
along the same line, but starting from sθ� + tθ.

Observation Some authors de�ne the AtRT as

R̃af(s, θ) = ∫
x⋅θ=s

f(x)e−(Ba)(x,θ
�)dl(x), s ∈ R, θ ∈ S1

that is quite the same functional, related byRaf(s, θ) = R̃af(−s,−θ�) or conversely R̃af(s, θ) =
Raf(−s, θ�)
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Theorem 1.39 (Inverse of the attenuated Radon transform ) Let a, f ∈ C1(R2) be
di�erentiable functions, then the next formula holds pointwise

f(x) =
1

4π
Re div∫

S1
θeBa(x,θ

�)(e−hHehR̃af)(x ⋅ θ, θ)dθ,

where h(s, θ) = 1
2(I + iH)Ra(s, θ) and, as in the inverse of the Radon Transform, the Hilbert

transform is taken in the spatial variable.

The deduction of this inversion formula can be found in [23].

Observation 1 This last inversion formula is for the R̃af version of the AtRT, to obtain
an inversion formula for Raf it is enough to de�ne Gg(s, θ) = g(−s, θ�) and then the formula
becomes

f(x) =
1

4π
Re div∫

S1
θeBa(x,θ

�)(e−hHehGRaf)(x ⋅ θ, θ)dθ.

Observation 2 This formula also holds in a distributional sense.

1.2.4 Weighted Radon Transform

This transform is a more general form of the Radon Transform that integrates in hyperplanes
with an arbitrary weight function, we will only consider the two dimensional case here.

De�nition 1.40 (Weighted Radon transform ) Let f ∈ L2(R2) be a function with
compact support and w ∈ C0(R2 × S1) a weight function, then

Iwf(s, θ) = ∫
R
w(sθ� + tθ, θ)f(sθ� + tθ)dt.

Observation Given the required regularity for f , Iw(⋅, θ) is well de�ned as an L2(R) func-
tion for all θ (the proof of this is analogous to the proof of Proposition 1.30).

Lemma 1.41 Let K ⊂ R2 be a compact set, f ∈ L2(K) and w ∈ C0(Rn × Sn−1) a weight
function, then there exists a compact K̃ ⊂ R2 independent of θ such that

Iwf(s, θ) = 1K̃(s)Iwf(s, θ) ∀s ∈ R, θ ∈ Sn−1.

Proof. Let R > 0 such that K ⊂ B(0,R), then we have that f(x) = 1B(0,R)(x)f(x) thus

Iwf(s, θ) = ∫
R
w(sθ� + tθ, θ)f(sθ� + tθ)1B(0,R)(sθ

� + tθ)dt,

we can see that if s > R then ∀t ∈ R sθ� + tθ ∉ B(0,R), so

Iwf(s, θ) = 1[−R,R](s)Iwf(s, θ).
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Theorem 1.42 If 0 ≤ k < 1/2, k + 1/2 < α ≤ 1, f ∈ Hk(R2) with compact support and
w(x, θ) ∈ Cα(R2 × S1) then

∣∣Iwf ∣∣Hk+1/2(R×S1) ≤ C ∣∣w∣∣Cα(R2×S1)∣∣f ∣∣Hk(R2).

This is Theorem 1 in [26], we will omit the proof.
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Chapter 2

Mathematical Models

2.1 Mathematical Models

The mathematical models that will be shown are stationary three dimentional models of
photon propagation in space, considering attenuation, radiation and scattering properties of
the medium. We will consider

u ∶ R3 × S2 → R

as the intensity of photons in the spatial point x ∈ R3 travelling in the direction φ ∈ S2.

2.1.1 Free Transport Equation

In vacuum, photons propagate in a striaght line by conserving its intensity, which can be
written as

φ ⋅ ∇xu(x,φ) = 0 ∀x ∈ R3, φ ∈ S2

where φ ⋅ ∇xu(x,φ) is the spatial directional derivative of the intensity of photons. All
solutions of this equation satisfy

u(x + sφ,φ) = u(x,φ), ∀s ∈ R, x ∈ R3, φ ∈ S2

i.e. the intensity of photons travelling in direction φ remain constant along the line of
direction φ.

2.1.2 Linear Transport Equation with attenuation and without source

Adding attenuation to the model, if photons pass through some medium, we expect the
intensity of photons to decrease according to its attenuation properties. This can be written
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as

φ ⋅ ∇xu(x,φ) = −a(x)u(x,φ), (2.1)

where a(x) ∶ R3 → R stands for the attenuation coe�cient of the modeled element. We
assume an isotropic medium (i.e. the attenuation map does not depend on the direction).

Proposition 2.1 u(x,φ) = Ce− ∫
0
−∞ a(x+tφ)dt satis�es the equation 2.1 for all C ∈ R.

Proof. Given x ∈ R3, let {φ,φ�1, φ
�
2} be an orthonormal basis of R3, we can write x for unique

s, τ1, τ2 ∈ R as x = sφ + τ1φ
�
1 + τ2φ

�
2, thus

φ ⋅ ∇xu(x,φ) = ∂su(sφ + τ1φ
�
1 + τ2φ

�
2, φ)

= ∂s (Ce− ∫
0
−∞ a((s+t)φ+τ1φ

�
1+τ2φ

�
2)dt)

= ∂s (Ce− ∫
s
−∞ a(tφ+τ1φ

�
1+τ2φ

�
2)dt)

= (Ce− ∫
s
−∞ a(tφ+τ1φ

�
1+τ2φ

�
2)dt) (−a(sφ + τ1φ

�
1 + τ2φ

�
2))

= − (Ce− ∫
0
−∞ a(x+tφ)dt)a(x)

= −u(x,φ)a(x).

2.1.3 Linear Transport Equation with attenuation and source

To model the behavior of photons in presence of attenuation and photon-emiting sources,
we consider the following equation

φ ⋅ ∇xu(x,φ) + a(x)u(x,φ) = f(x) ∀x ∈ R3, φ ∈ S2,

lim
t→∞

u(x − tφ, φ) = 0 ∀x ∈ R3, φ ∈ S2,
(2.2)

where f ∶ R3 → R stands for the source map distribution, there is no angular dependence in
this function since we assume it emits uniformly in all directions. The boundary condition
states that there are no external radiation sources.

Proposition 2.2 If the source map f and the attenuation map a are integrable in each line
in R3 (i.e. ∫R ∣f(x + tφ)∣dt <∞ ∀x ∈ R3, φ ∈ S2 ) the unique solution for the equation (2.2)
is

u(x,φ) = ∫
0

−∞
f(x + tφ)e− ∫

0
t a(x+sφ)dsdt.
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Proof.

Set x = ηφ + ϕ, with ϕ ∈ {w ∈ R3, w ⋅ θ = 0}, η ∈ R, then φ ⋅ ∇xu(x,φ) = ∂ηu(ηφ + ϕ,φ),
and

φ ⋅ ∇xu(x,φ) = ∂η (∫
0

−∞
f((η + t)φ + ϕ)e− ∫

0
t a((η+s)φ+ϕ)dsdt)

= ∂η (∫
η

−∞
f(tφ + ϕ)e− ∫

0
t−η a((η+s)φ+ϕ)dsdt)

= ∂η (∫
η

−∞
f(tφ + ϕ)e− ∫

η
t a(sφ+ϕ)dsdt)

Since
∂η ∫

η

0
g(t, η)dt = g(η, η) + ∫

η

0
∂ηg(t, η)dt

we have that

φ ⋅ ∇xu(x,φ) = f(ηφ + ϕ)(((
((((e− ∫

η
η a(sφ+ϕ)ds + ∫

η

−∞
f(tφ + ϕ)e− ∫

η
t a(sφ+ϕ)ds(−a(ηφ + ϕ))dt

= f(x) − a(x)u(x,φ).

There is uniqueness because taking x = ηφ+ϕ and Φ(η) = u(ηφ+ϕ,φ) reduces the equation
to

∂ηΦ(η) + a(ηφ + ϕ)Φ(η) = f(ηφ + ϕ)

lim
η→−∞

Φ(η) = 0,

which for each φ and ϕ is an ordinary di�erential equation and has unique solution.

2.1.4 Radiative Transfer Equation (including Scattering)

Let s(x,φ, φ′) be a scattering kernel that gives us the distribution according to wich photons
at the spatial point x ∈ R3, coming from direction φ ∈ S2 are scattered in the direction
φ′ ∈ S2. The equation that we use to model the propagation of photons with attenuation,
source and scattering is, for all x ∈ R3 and φ ∈ S2

φ ⋅ ∇xu(x,φ) + a(x)u(x,φ) + ∫
S2
u(x,φ)s(x,φ, φ′)dφ′ = f(x) + ∫

S2
u(x,φ′′)s(x,φ′′, φ)dφ′′

lim
t→∞

u(x − tφ, φ) = 0.

(2.3)

The term ∫S2 u(x,φ)s(x,φ, φ′)dφ′ corresponds to the e�ect of photons that are scattered
away from the path de�ned by (x,φ), term ∫S2 u(x,φ′′)s(x,φ′′, φ)dφ′′ is the opposite, gamma
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Figure 2.1: In both images the lines represent photons, the dotted line is the line de�ned
by the point x and direction φ, the left handed image corresponds to a scattering e�ect in
wich photons are scattered away from the path de�ned by x and φ and the right hand image
corresponds to the oposite, photons that by scattering efects in x take the direction de�ned
by the dotted line.

rays travelling in the spatial point x ∈ R3 but coming from any direction that by a scattering
process take the path de�ned by (x,φ), see Figure 2.1

Assuming isotropy of the scattering kernel, we can write s(x,φ, φ′) = s(x,φ ⋅ φ′) i.e. the
scattering process just depend on the angle at which photons are scattered, hence we can
reduce the equation (2.3).

φ ⋅ ∇xu(x,φ) + a(x)u(x,φ) + ∫
S2
u(x,φ)s(x,φ ⋅ φ′)dφ′ = f(x) + ∫

S2
u(x,φ′′)s(x,φ′′ ⋅ φ)dφ′′

⇔φ ⋅ ∇xu(x,φ) + a(x)u(x,φ) + u(x,φ)∫
S2
s(x,φ ⋅ φ′)dφ′ = f(x) + ∫

S2
u(x,φ′′)s(x,φ′′ ⋅ φ)dφ′′

⇔φ ⋅ ∇xu(x,φ) + aT (x)u(x,φ) = f(x) + ∫
S2
u(x,φ′′)s(x,φ′′ ⋅ φ)dφ′′ x ∈ R3, φ ∈ S2 (2.4)

with aT (x) = a(x) + ∫
S2
s(x,φ ⋅ φ′)dφ′.

Let us de�ne ui(x,φ) a function denoting the intensity of photons that have scattered i times,
thus we can decompose the total intensity as

u(x,φ) =
∞

∑
i=0

ui(x,φ),
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(for further reference in this decomposition see [4] page 9) and equation (2.4) becomes
system

φ ⋅ ∇xu0(x,φ) + aT (x)u0(x,φ) = f(x) ∀x ∈ R3, φ ∈ S2

φ ⋅ ∇xui(x,φ) + aT (x)ui(x,φ) = ∫
S2
s(x,φ ⋅ φ′)ui−1(x,φ

′)dφ′ ∀i ≥ 1, x ∈ R3, φ ∈ S2

lim
t→∞

ui(x − tφ, φ) = 0, ∀i ≥ 0, x ∈ R3, φ ∈ S2

(2.5)

and lastly we separate variables for the scattering kernel (i.e. s(x, θ ⋅ θ′) = s(x)k(θ ⋅ θ′)), we
asume that the function s(x) is proportional to the attenuation map (i.e. ∃C̃ such that C̃s(x) =
a(x)) and for the angular variable we assume the scattering kernel is independent of the scat-
tering angle (i.e. k(θ ⋅ θ′) = 1/4π ∀θ ⋅ θ′ ∈ [0,1]). With these asumptions we have that

aT (x) = a(x) + ∫
S2
s(x)k(θ ⋅ θ′)dφ′ = s(x)(C̃ + 1)

thus de�ning C = (4π(1 + C̃))−1 the system (2.5) becomes

φ ⋅ ∇xu0(x,φ) + aT (x)u0(x,φ) = f(x) ∀x ∈ R3, φ ∈ S2

φ ⋅ ∇xui(x,φ) + aT (x)ui(x,φ) = CaT (x)∫
S2
ui−1(x,φ

′)dφ′ ∀i ≥ 1, x ∈ R3, φ ∈ S2

lim
t→∞

ui(x − tφ, φ) = 0. ∀i ≥ 0, x ∈ R3, φ ∈ S2

(2.6)

Proposition 2.3 If f and a are uniformly line integrable (i.e. ∃D > 0, ∫R ∣f(x + tφ)∣dt <
D, ∀x ∈ R3, φ ∈ S2 ) The system (2.6) has as unique solution

u0(x,φ) = ∫
0

−∞
f(x + tφ)e− ∫

0
t aT (x+sφ)dsdt

ui(x,φ) = C ∫
0

−∞
aT (x + tφ)∫

S2
ui−1(x + tφ, φ

′)dφ′e− ∫
0
t aT (x+sφ)dsdt.

Observation The uniform line integrable condition can be obtained, for example, by con-
sidering f, a ∈ C0(K) with K ⊂ R3 some compact set.

Proof. To solve the system we use proposition 2.2 in each equation, it is just needed to
prove that the functions Ca(x) ∫S2 ui(x,φ′)dφ′ are line integrable.

It is direct to see that the equation for u0 satisfy the hypothesis since a and f are line
integrable, hence, the solution formula is valid for u0 and

∣u0(x,φ)∣ ≤ ∫
0

−∞
∣f(x + tφ)e− ∫

0
t aT (x+sφ)ds∣dt

≤ e∫R ∣aT (x+sφ)∣ds
∫
R
∣f(x + tφ)∣dt

≤DeD ∀x ∈ R3, φ ∈ S2,

27



then

∫
R
∣Ca(x + tφ)∫

S2
u0(x + tφ, φ

′)dφ′∣dt ≤DeD ∫
R
∣a(x + tφ)∣dt

≤DeD

<∞ ∀x ∈ R3, φ ∈ S2.

Thus we have the uniform line integrability for the right hand term of the equation for
u1 and the solution formula is valid. We can iterate this steps by induction to prove that
∀i ≥ 0 the equations satisfy the hypothesis of Proposition 2.2.

2.2 Inverse Problem Measurements

To establish the measurements that will be used for the inverse problem, we will assume
compact support for the attenuation a and the source f , and for simplicity the T subscript
in the aT function will be omitted.

We will measure the information given by u0 the ballistic photons, and u1 the �rst order
scattering photons at points outside of the support of a and f . Recalling proposition 2.3,
assuming that we have the hypothesis to use it and de�ning M[a, f](x) = ∫S2 u0(x,φ′)dφ′,
we have the expressions

u0(x,φ) = ∫
0

−∞
f(x + tφ)e− ∫

0
t a(x+sφ)dsdt ∀x ∈ R3, φ ∈ S2,

u1(x,φ) = C ∫
0

−∞
a(x + tφ)M[a, f](x + tφ)e− ∫

0
t a(x+sφ)dsdt ∀x ∈ R3, φ ∈ S2.

The information of the photons corresponds to the measurement of u0 and u1 outside the
support of the attenuation a and source map f , for each oriented line de�ned by (x,φ) ∈

R3 × S2 (i.e. the set {x + tφ, t ∈ R} but with orientation). Thus de�ning A0 and A1 as the
measured information, they can be written as

A0(x,φ) = ∫
∞

−∞
f(x + tφ)e− ∫

∞
t a(x+sφ)dsdt ∀x ∈ R3, φ ∈ S2,

A1(x,φ) = C ∫
∞

−∞
a(x + tφ)M[a, f](x + tφ)e− ∫

∞
t a(x+sφ)dsdt ∀x ∈ R3, φ ∈ S2.

Observation 1 These function represents the measured information on each oriented line
(i.e. (x,φ) ∈ R3 × S2 de�ne an oriented line), and thus there is no restriction to choose x
and phi, because it is assumed that the measurements are taken outside the support of the
attenuation and source maps.
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Observation 2 Note that the oriented line de�ned by (x,φ) is the same as the one de�ned
by (x+τφ,φ) ∀τ ∈ R, hence, the measures are obtained by evaluating u0 and u1 in (x+τφ,φ)
and taking the limit τ →∞.

Now we consider only horizontal measurements, this is the same as setting a height z ∈ R
and taking data with planar angles φ = (θ1, θ2,0)t. De�ning

fz(y) = f(y, z), az(y) = a(y, z), Mz(x) =M(y, z) ∀z ∈ R, y ∈ R2

we have that the observed data at height z ∈ R is

Az0(y, θ) = ∫
∞

−∞
fz(y + tθ)e

− ∫
∞
t az(y+sθ)dsdt ∀y ∈ R2, θ ∈ S1

Az1(y, θ) = C ∫
∞

−∞
az(y + tθ)Mz[a, f](y + tθ)e

− ∫
∞
t az(y+sθ)dsdt ∀y ∈ R2, θ ∈ S1

Note that there is a redundancy in the data because each planar oriented line de�ned by
(y, θ) ∈ R2 × S1 is equal to (y + τθ, θ), thus to get rid of this redundancy we consider the
oriented lines de�ned by (sθ�, θ), s ∈ R, θ ∈ S1 with θ� a counterclockwise rotation of θ (i.e.
if θ = (θ1, θ2)

t then θ� = (θ2,−θ1)
t, see �gure 2.2). Thus, abusing the notation, we write the

measurements at height z as

Az0(s, θ) = ∫
∞

−∞
fz(tθ + sθ

�)e− ∫
∞
t az(τθ+sθ�)dτdt ∀s ∈ R, θ ∈ S1,

Az1(s, θ) = C ∫
∞

−∞
az(tθ + sθ

�)Mz[a, f](tθ + sθ
�)e− ∫

∞
t az(τθ+sθ�)dτdt ∀s ∈ R, θ ∈ S1.

Recalling the de�nition of the Attenuated Radon transform in 1.38 and changing variables

θ θ

z

θ θ

z a

0

s
z a

Figure 2.2: A representation of how the variables are choosed.

τ → τ + t we write the total information, at all heighs, for the inverse problems as

Az0(s, θ) = Raz[fz](s, θ) ∀z, s ∈ R, θ ∈ S1

Az1(s, θ) = Raz[C ⋅ az ⋅Mz[a, f]](s, θ) ∀z, s ∈ R, θ ∈ S1 (2.7)
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2.2.1 The M[a, f](x) function

Recall the de�nition of M[a, f](x)

M[a, f](x) = ∫
S2
u0(x,φ

′)dφ′.

This function is the sum of all the intensity of the ballistic photons with any direction in
the spatial point x, since we have an explicit formula for u0 we can express this function in
terms of a and f

M[a, f](x) = ∫
S2
u0(x,φ

′)dφ′

= ∫
S2
∫

0

−∞
f(x + tφ)e− ∫

0
t a(x+sφ)dsdtdφ

= ∫
S2
∫

∞

0
f(x + tφ)e− ∫

t
0 a(x+sφ)dsdtdφ.

Observation Note that M[a, f](x) uses all the three dimentional information of a and f ,
even if we consider Mz[a, f](y) =M[a, f](y, z), y ∈ R2, z ∈ R .
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Chapter 3

Theoretical analysis of the linearized

inverse problem

The main objective in this chapter is to present a linear approximation of the measurements
given by equations (2.7) and using that information, reconstruct the attenuation map a and
source map f . More precisely, given the equations:

Az0(s, θ) = Raz[fz](s, θ) s, z ∈ R, θ ∈ S1

Az1(s, θ) = Raz[C ⋅ az ⋅Mz[a, f]](s, θ) s, z ∈ R, θ ∈ S1

with

● a, f ∶ R3 → R the attenuation map and source map respectively, both with compact
support.

● az(y) = a(y, z), fz(y) = f(y, z) with y ∈ R2, z ∈ R, these are horizontal slices of a and f .

● M[a, f](x) = ∫S2 ∫
∞

0 f(x + tφ)e− ∫
t
0 a(x+sφ)dsdtdφ with x ∈ R3 and

Mz[a, f](y) =M[a, f](y, z) ∀y ∈ R2, z ∈ R

● Raz[fz] denotes the AtRT of fz with attenuation az.

● Az0 and Az1 are the information that can be obtained by measuring in the
Pz = {(y, z)t ∈ R3, y ∈ R2} horizontal plane, thus are known values.

The main objective is to linearize the measurements (Az0)z∈R and (Az1)z∈R around known
attenuation and source, ă and f̆ respectively, and we will obtain an inversion formula for the
resulting linear operator.

To simplify, we will consider C = 1, this is not an issue since the attenuated Radon
transform is linear in that variable.
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3.1 Linearization of the inverse problem

The information Az0 and Az1 will be linearly approximated for every z ∈ R. This assumes
the unknown values a and f are close in some sense to some given known source and att
enuation f̆ and ă, i.e.

f = f̆ + δf,

a = ă + δa,

with δf, δa small in some sense that we will precise later, and

Az0 ≈ Răz[f̆ z] +DRăz[f̆ z](δfz, δaz),

Az1 ≈ Răz[az ⋅Mz[ă, f̆]] +D (Răz[az ⋅Mz[ă, f̆]]) (δfz, δaz).

Proposition 3.1 The directional derivative of the attenuated Radon transform is given by

DRăz[f̆ z](δaz, δfz) = Iw[ăz ,f̆z]
[δaz] +Răz[δfz],

with

w[ăz, f̆ z](y, θ) = −∫
0

−∞
e−Băz(y+τθ,θ)f̆ z(y + τθ)dτ y ∈ R2, θ ∈ S1.

Proposition 3.2 The directional derivative of the operator Răz[ăz ⋅Mz[ă, f̆]] that gives the
�rst order scattering measures is given by

DRăz(ăz ⋅Mz[ă, f̆])(δa, δf) =Iw[ăz ,ăz ⋅Mz[ă,f̆]]
δaz +Răz(δaz ⋅Mz[ă, f̆])

+Răz(ăz ⋅ ∂ăMz[ă, f̆]δa) +Răz(ăz ⋅Mz[ă, δf]),

with

∂ăMz[ă, f̆]δa(y) = −∫
S2
∫

∞

0
f̆((y, z)t+tφ)e− ∫

t
0 ă((y,z)

t+τφ)dτ
∫

t

0
δa((y, z)t+sφ)dsdtdφ y ∈ R2.

Proof. Of Proposition 3.1
This proof was adapted from [29], let us consider the Beam transform

Băz(y, θ) = ∫
∞

0
ăz(y + tθ)dt y ∈ R2, θ ∈ S1.

Using Proposition 1.34 for y = tθ + sθ� and ăz with compact support contained in B(0,R),
with R > 0, gives:

1. θ ⋅ ∂yBăz(y, θ) = ∂tBăz(tθ + sθ�, θ) = −ăz(tθ + sθ�),
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2. Băz(y, θ) = 0 for y ⋅ θ > R then Băz(tθ + sθ�, θ) = 0 for t > R,

3. Băz(y, θ) = R0[ăz](y ⋅ θ�, θ) for y ⋅ θ < −R
then Băz(tθ + sθ�, θ) = R0[ăz](s, θ) = ∫R ăz(τθ + sθ

�)dτ for t < −R.

Consider
Răz+ηδaz f̆z(s, θ) = ∫

R
e−B[ăz+ηδaz](tθ+sθ�,θ)f̆z(tθ + sθ

�)dt,

thus

d

dη
∣
η=0
Răz+ηδaz f̆z(s, θ) = ∫

R
e−Băz(tθ+sθ

�,θ)f̆z(tθ + sθ
�) (−B[δa](tθ + sθ�, θ))dt.

Using Property 1.34.1, we write e−Băz(tθ+sθ
�)f̆z(tθ + sθ�) = −∂tB[e−Băz(⋅,θ)f̆z(⋅)](tθ + sθ�, θ),

obtaining

d

dη
∣
η=0
Răz+ηδaz f̆z(s, θ) = ∫

R
∂tB[e−Băz(⋅,θ)f̆z(⋅)](tθ + sθ

�, θ)B[δaz](tθ + sθ
�, θ)dt,

integrating by part we get

d

dη
∣
η=0
Răz+ηδaz f̆z(s, θ) = −∫

R
B[e−Băz(⋅,θ)f̆z(⋅)](tθ + sθ

�, θ)∂tB[δaz](tθ + sθ
�, θ)dt

+B[e−Băz(⋅,θ)f̆z(⋅)](tθ + sθ
�, θ)B[δaz](tθ + sθ

�, θ)∣
t=∞

t=−∞

and using all properties of Proposition 1.34

d

dη
∣
η=0
Răz+ηδaz f̆z(s, θ) = ∫

R
B[e−Băz(⋅,θ)f̆z(⋅)](tθ + sθ

�, θ)δaz(tθ + sθ
�)dt

− ∫
R

e−Băz(τθ+sθ
�,θ)f̆z(τθ + sθ

�)dτ ∫
R
δaz(tθ + sθ

�)dt

= ∫
R
(B[e−Băz(⋅,θ)f̆z(⋅)](tθ + sθ

�, θ) − ∫
R

e−Băz(τθ+sθ
�,θ)f̆z(τθ + sθ

�)dτ) δaz(tθ + sθ
�)dt.

Notice that

B[e−Băz(⋅,θ)f̆z(⋅)](tθ + sθ
�, θ) − ∫

R
e−Băz(τθ+sθ

�,θ)f̆z(τθ + sθ
�)dτ

= ∫

∞

0
e−Băz(tθ+τθ+sθ

�,θ)f̆z(tθ + τθ + sθ
�)dτ − ∫

R
e−Băz(τθ+sθ

�,θ)f̆z(τθ + sθ
�)dτ

= −∫

0

−∞
e−Băz(tθ+τθ+sθ

�,θ)f̆z(tθ + τθ + sθ
�)dτ,
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hence
d

dη
∣
η=0
Răz+ηδaz f̆z(s, θ) = ∫

R
(−∫

0

−∞
e−Băz(tθ+τθ+sθ

�,θ)f̆z(tθ + τθ + sθ
�)dτ) δaz(tθ + sθ

�)dt,

and de�ning w[ăz, f̆z](y, θ) = − ∫
0

−∞
e−Băz(y+τθ,θ)f̆z(y + τθ)dτ, we can write the directional

derivative as a weighted Radon transform

d

dη
∣
η=0
Răz+ηδaz f̆z(s, θ) = Iw[ăz ,f̆z]

δaz(s, θ).

Finally, using the linearity of the operator in the other coordinate we obtain the directional
derivative of the attenuated Radon transform at the point (ă, f̆) in the direction (δa, δf) ∶.

DRăz[f̆ z](δaz, δfz) = Iw[ăz ,f̆z]
[δaz] +Răz[δfz].

Proof. Of Proposition 3.2

We want to compute the derivate of the operator Răz[ăz ⋅Mz[ă, f̆]], thus we proceed by
using proposition 3.1 and the chain rule after, denoting ∂ă(⋅)δa as the directional derivative
of the attenuation with direction δa, we obtain

∂ă(Răz(ăz ⋅Mz[ă, f̆]))δa = Iw[ăz ,ăz ⋅Mz[ă,f̆]
δaz +Răz(δaz ⋅Mz[ă, f̆]) +Răz(ăz ⋅ ∂ăMz[ă, f̆]δa).

So we conclude that the directional derivative of the operator at the pair ă and f̆ in the
direction (δa, δf) is

DRăz(ăz ⋅Mz[ă, f̆])(δa, δf) =Iw[ăz ,ăz ⋅Mz[ă,f̆]]
δaz +Răz(δaz ⋅Mz[ă, f̆])

+Răz(ăz ⋅ ∂ăMz[ă, f̆]δa) +Răz(ăz ⋅M[ă, δf]).

The value of ∂ăM[ă, f̆]δa is obtained in a similar way.

3.2 Analysis of the linear problem. Main results

Recapitulating, ă, f̆ are known functions and the goal is to obtain a and f by solving system
(3.1) with δa = ă−a and δf = f̆ −f as unknowns (all these functions have compact support),
denoting M̆ =Mz[ă, f̆] the linearized system can be written as

Az0 −Răz(f̆ z) ≈ Iw[ăz ,f̆z]
[δaz] +Răz[δfz],

Az1 −Răz(ăz ⋅ M̆) ≈ Iw[ăz ,ăz ⋅M̆z]
δaz +Răz(δaz ⋅ M̆z) +Răz(ăz ⋅ ∂aM̆zδa) +Răz(ăz ⋅Mz[ă, δf]).

(3.1)
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The �rst one is the information given by the ballistic measures, and the second one is the
information given by the �rst order scattering measures, both measured at the horizontal
plane Pz.

By composing with R−1
ăz

the terms at the system (3.1), yields

R−1
ăz

(Az0 −Răz(f̆ z)) ≈R
−1
ăz
Iw[ăz ,f̆z]

[δaz] + δfz,

R−1
ăz

(Az1 −Răz(ăz ⋅ M̆)) ≈R−1
ăz
Iw[ăz ,ăz ⋅M̆z]

δaz + δaz ⋅ M̆z + ăz ⋅ ∂aM̆zδa + ăz ⋅Mz[ă, δf].
(3.2)

Let K ⊂ R be a compact set such that supp(f̆) ∪ supp(ă) ∪ supp(δa) ∪ supp(δf) ⊂ K3 =

K ×K ×K, notice this compact also satis�es supp(f̆z) ∪ supp(ăz) ∪ supp(δaz) ∪ supp(δfz) ⊂
K2 =K ×K ∀z ∈ R, and for every z ∈Kc, f̆z, ăz, δaz, δfz = 0.

Since we have compact support for all the terms in the system (3.2) except for the ones
involving the R−1

ăz
operator, we can multiply both equations by a smooth cut-o� function χ

(independent of z) with compact support contained in K̃ × K̃ (with K̃ dependending on K)
such that χ(y) = 1,∀y ∈K2 and ∣χ∣ ≤ 1, obtaining

Ãz0 = χR
−1
ăz
Iw[ăz ,f̆z]

[δaz] + δfz,

Ãz1 = χR
−1
ăz
Iw[ăz ,ăz ⋅M̆z]

δaz + δaz ⋅ M̆z + ăz ⋅ ∂aM̆zδa + ăz ⋅Mz[ă, δf].
(3.3)

where Ãz0 and Ãz1 are de�ned in terms of the original data Az0, A
z
1, as

χR−1
ăz
Az0 − f̆ z ≈ Ã

z
0

χR−1
ăz
Az1 − ăz ⋅ M̆z ≈ Ã

z
1.

Notice that this cut-o� function satis�es K2 ⊂ supp(χ). Let us formally de�ne for z ∈ R

Lz[ă, f̆],Qz[ă, f̆] ∶ L
2(K̃3) ×L2(K̃3)→ L2(K̃2) ×L2(K̃2),

Lz[ă, f̆](δa, δf) = (
χR−1

ăz
Iw[ăz ,f̆z]

[δaz] + δfz

δaz ⋅ M̆z

) ,

Qz[ă, f̆](δa, δf) = (
0

χR−1
ăz
Iw[ăz ,ăz ⋅M̆z]

[δaz] + (ăz ⋅ ∂aM̆zδa) + (ăz ⋅Mz[ă, δf])
) .

Observation Since δa, δf ∈ L2(K3), K3 ⊂ R3, we have that az, fz are de�ned for almost
every z ∈ R and az, fz ∈ L2(K2), thus these operators Lz,Qz are de�ned for almost every
z ∈ R.

With this notation, system (3.3), for δa, δf ∈ L2(K̃3) can be written as

(Lz +Qz)[ă, f̆](δa, δf) = (
Ãz0
Ãz1

) a.e. z ∈ R.
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Observation We are extending the posible values for δa, δf by considering a bigger support,
i.e. δa, δf ∈ L2(K̃3), this is not an issue since L2(K) ⊂ L2(K̃).

Now de�ning the operators that gives all the measurements

L[ă, f̆],Q[ă, f̆] ∶ L2(K̃3) ×L2(K̃3)→ L2(K̃;L2(K̃2) ×L2(K̃2)),

L[ă, f̆](δa, δf) = (Lz[ă, f̆](δa, δf))z∈R ,

Q[ă, f̆](δa, δf) = (Qz[ă, f̆](δa, δf))z∈R .

System (3.3), describing the model for the measured data, becomes

(L +Q)[ă, f̆](δa, δf) = (
Ãz0
Ãz1

)
z∈R

. (3.4)

Observation The image of L and Q will be justi�ed later in Theorem 3.5.

Thus the linearization of our inverse problem, consisting in the reconstruction of both the
attenuation and source maps, reduces to the invertibility of the operator (L +Q)[ă, f̆].

Lemma 3.3 Consider ă, f̆ ∈ C0(K3) if ∃C > 0 such that M[ă, f̆](x) ≥ C ∀x ∈ K̃3 then the
operator L[ă, f̆] is left.invertible, with left inverse

L−1[ă, f̆] ∶ L2(K̃;L2(K̃2) ×L2(K̃2))→ L2(K̃;L2(K̃2) ×L2(K̃2)) ≅ L2(K̃3) ×L2(K̃3)

(3.5)

L−1[ă, f̆] (
g
h

) = (hz/M̆z, gz − χR
−1
ăz
Iw[ăz ,f̆z]

[hz/M̆z])
z∈K

(3.6)

Observation 1 A simple way to ensure that ∃C > 0 such that M[ă, f̆](x) ≥ C ∀x ∈ K̃3 is
considering f̆ ≥ 0, f /≡ 0 (notice that since ă and f̆ are continuous, M[ă, f̆] is also continuous
and is de�ned everywhere).

Observation 2 The image and domain of this operator is justi�ed later in Theorem 3.5.

Proof. Since ă, f̆ ∈ C0(K3), then M̆z(y), ăz(y) and f̆z(y) are well de�ned for all z ∈K,y ∈K2,
now lets de�ne L−1

z [ă, f̆] such that

L−1
z [ă, f̆] ∶ L2(K̃2) ×L2(K̃2)→ L2(K̃2) ×L2(K̃2)

L−1
z [ă, f̆] (

gz
hz

) = (hz/M̆z, gz − χR
−1
ăz
Iw[ăz ,f̆z]

[hz/M̆z]) gz, hz ∈ L
2(K̃2)

Notice that since M[ă, f̆](x) ≥ C > 0 ∀x ∈ K̃3, there are no problems in dividing by M̆ . Set
z ∈K such that δaz, δfz are well de�ned ( and thus δaz, δfz ∈ L2(K2) ), then
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L−1
z [ă, f̆]Lz[ă, f̆](δa, δf) = L

−1
z [ă, f̆] (

χR−1
ăz
Iw[ăz ,f̆z]

[δaz] + δfz

δaz ⋅ M̆z

)

= ( δaz ⋅��
��M̆z/M̆z, δfz +((((

((((
(

R−1
ăz
Iw[ăZ ,f̆z]

[δaZ] −
((((

((((
((((

(
R−1
ăz
Iw[ăz ,f̆z]

[δaz ⋅��
��M̆z/M̆z])

= (δaz, δfz)z∈R

= (δa, δf)

thus, by de�ning

L−1[ă, f̆] (
g
h

) = (L−1
z (

gz
hz

))
z∈K̃

,

we get that
L−1[ă, f̆]L[ă, f̆](δa, δf) = (δaz, δfz)z∈K̃ = (δa, δf).

Where the last equality is a.e. z ∈ R.

Proof. of the �rst observation of Lemma 3.3 If f̆ ≥ 0, f̆ /≡ 0 then ∣∣f̆ ∣∣∞ > 0 and there
exists a set A with positive measure such that

f̆(x) ≥ 1A(x)
∣∣f̆ ∣∣∞

2
∀x ∈ K̃3

⇒M[ă, f̆](x) = ∫
S2
∫

∞

0
f̆(x + tφ)e− ∫

t
0 ă(x+sφ)dsdtdφ

≥ e−diam(K3)∣∣ă∣∣∞
∫
S2
∫

∞

0
f̆(x + tφ)dtdφ

≥ e−diam(K3)∣∣ă∣∣∞ ∣∣f̆ ∣∣∞
2 ∫

S2
∫

∞

0
1A(x + tφ)dtdφ

≥ e−diam(K3)∣∣ă∣∣∞ ∣∣f̆ ∣∣∞
2

min
x∈K̃3
∫
S2
∫

∞

0
1A(x + tφ)dtdφ

> 0.

Where the minimum in x is attained because we are minimizing a continuous function over
a compact set.

Proposition 3.4 (zero attenuation case)
If ă = 0, f̆ ∈ C0(K3) and ∃C > 0 such that M(x) ≥ C ∀x ∈ K̃3, then the operator Q[ă, f̆] = 0
and thus (L +Q)[ă, f̆] is invertible.

Proof. We already have the hypothesis to use Lemma 3.3 to invert L[ă, f̆], to conclude we
need to check that Q[ă, f̆] = 0, this is directly since ă = 0⇒ ăz = 0, hence

ăz ⋅ ∂aM̆zδa = 0,

ăz ⋅Mz[ă, δf] = 0,
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and
w[ăz, ăz ⋅ M̆z] = w[0,0] = 0,

⇒ Iw[0,0]δaz(s, θ) = ∫
R
w[0,0](sθ� + tθ, θ)δaz(sθ

� + tθ)dt = 0.

Since Qz[ă, f̆] is the addition of all these vanishing terms, Qz[ă, f̆] = 0 and thus Q[ă, f̆] =
(Qz[ă, f̆])z∈K = 0.

Theorem 3.5 Let K, K̃ ⊂ R be compact set such that K ⊂ K̃ , ă ∈ H5/2(K3), f̆ ∈ Cα(K3)

with α > 1/2, f̆ ≥ 0, f̆ /≡ 0 and χ ∈ C∞
0 (K̃2) whose norms depend only on K, then L−1 and Q

are well de�ned linear operators in the Banach spaces

L−1[ă, f̆] ∶ L2(K̃;L2(K̃2) ×L2(K̃2))→ L2(K̃;L2(K̃2) ×L2(K̃2))

Q[ă, f̆] ∶ L2(K̃3) ×L2(K̃3)→ L2(K̃;L2(K̃2) ×L2(K̃2))

and there exists D > 0 such that the operator (L +Q)[ă, f̆] de�ned on L2(K̃3) × L2(K̃3) is
invertible for all ă ∈H5/2(K3) satisfying ∣∣ă∣∣H5/2(R3) <D. The inverse is given by

(L +Q)−1[ă, f̆] = L−1[ă, f̆]
∞

∑
k=0

(−(QL−1)[ă, f̆])
k
.

3.3 Proof of the inversion theorem

The idea of this proof is a standar argument for a perturbation of an invertible linear operator.
From now on will consider ă and f̆ with support contained in K̃, this does not change
the Theorem since with our de�nition of the spaces H5/2(K3) ⊂ H5/2(K̃3) and Cα(K3) ⊂

Cα(K̃3).

3.3.1 Part 1: estimates for the operators Iw[ă,f̆] and Iw[ă,ă⋅M̆]

Lemma 3.6 Let Ω ⊂ Rn be any set and f ∈ Cα(Ω). For each �xed z ∈ R de�ne fz(y) =

f(y, z), y ∈ Rn−1 and Ωz = {y ∈ Rn−1, (y, z) ∈ Ω} then fz ∈ Cα(Ωz) and

∣fz ∣Cα(Rn−1) ≤ ∣f ∣Cα(Rn),

∣∣fz ∣∣Cα(Rn−1) ≤ ∣∣f ∣∣Cα(Rn).

Proof. It follows from the fact that ∣∣fz ∣∣∞ ≤ ∣∣f ∣∣∞ and

∣fz(y1) − fz(y2)∣ = ∣f(y1, z) − f(y2, z)∣

≤ ∣f ∣Cα ∣(y1, z) − (y2, z)∣
α

≤ ∣f ∣Cα ∣y1 − y2∣
α.
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Lemma 3.7 Let Ω ⊂ RN be any set and f1, f2 ∈ Cα(Ω), then f1 ⋅ f2 ∈ Cα(Ω) and

∣f1 ⋅ f2∣Cα(Rn) ≤ 2∣∣f1∣∣Cα(Rn)∣∣f2∣∣Cα(Rn),

∣∣f1 ⋅ f2∣∣Cα(Rn) ≤ 3∣∣f1∣∣Cα(Rn)∣∣f2∣∣Cα(Rn).

Proof.

∣f1f2(x) − f1f2(y)∣ = ∣f1(x)(f2(x) − f2(y)) − f2(y)(f1(y) − f1(x))∣

≤ ∣∣f1∣∣∞∣f2∣Cα ∣x − y∣
α + ∣∣f2∣∣∞∣f1∣Cα ∣x − y∣

α

≤ 2∣∣f1∣∣Cα ∣∣f2∣∣Cα ∣x − y∣
α,

and since

∣∣f1f2∣∣∞ ≤ ∣∣f1∣∣∞∣∣f2∣∣∞ ≤ ∣∣f1∣∣Cα ∣∣f2∣∣Cα ,

then

∣∣f1f2∣∣Cα(Rn) ≤ 3∣∣f1∣∣Cα(Rn)∣∣f2∣∣Cα(Rn).

Lemma 3.8 Let K̃ ⊂ R be a compact set and ă, f̆ ∈ Cα(K̃3), then M[ă, f̆] ∈ Cα(R3) and

∣∣M[ă, f̆]∣∣Cα(R3) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα(R3))∣∣f̆ ∣∣Cα(R3),

with C(K̃) a constant depending only in the compact K̃.

Proof. Recall the de�nition of M[ă,f̆ ]

M[ă, f̆](x) = ∫
S2
∫

∞

0
f̆(x + tφ)e− ∫

t
0 ă(x+sφ)dsdtdφ.

Let us de�ne ăt,φ(x) = e− ∫
t
0 ă(x+sφ)ds, using the mean value theorem we obtain

∣ăt,φ(x) − ăt,φ(y)∣ ≤ eC(K̃)∣∣ă∣∣∞ ∣∫

t

0
−ă(x + sφ) + ă(y + sφ)ds∣

≤ eC(K̃)∣∣ă∣∣∞
∫

t

0
∣ă∣Cα ∣x − y∣

α∣1K̃3(x + sφ) + 1K̃3(y + sφ)∣ds

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ ∣ă∣Cα ∣x − y∣
α,

it is easy to verify that ∣ăt,φ(x)∣ ≤ eC(K̃)∣∣ă∣∣∞ , thus

∣∣ăt,φ∣∣Cα(R3) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα(R)).
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By de�ning f̆t,φ(x) = f̆(x + tφ) we know it is a Hölder continuous function the with same
Hölder norm as f̆ , hence

∣M[ă,f̆](x) −M[ă, f̆](y)∣

≤ ∫
S2
∫

∞

0
∣f̆t,φăt,φ(x) − f̆t,φăt,φ(y)∣ (1K̃3(x + tφ) + 1K̃3(y + tφ))dtdφ

≤ 2∫
S2
∫

∞

0
∣∣f̆ ∣∣Cα ∣∣ăt,φ∣∣Cα (1K̃3(x + tφ) + 1K̃3(y + tφ))dtdφ∣x − y∣α

≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα)∣∣f̆ ∣∣Cα ∫
S2
∫

∞

0
(1K̃3(x + tφ) + 1K̃3(y + tφ))dtdφ∣x − y∣α

≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα)∣∣f̆ ∣∣Cα ∣x − y∣
α,

since we have a uniform bound over M

∣M[ă, f̆](x)∣ ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ ∣∣f̆ ∣∣∞ ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ ∣∣f̆ ∣∣Cα ,

we conclude the result

∣∣M[ă, f̆]∣∣Cα(R3) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα)∣∣f̆ ∣∣Cα .

Lemma 3.9 Let K̃ ⊂ R be a compact set and ă, f̆ ∈ Cα(K̃3) then w[ăz, ăz ⋅ M̆z],w[ăz, f̆z] ∈
Cα(R2 × S1) and ∀z ∈ K̃

∣∣w[ăz, f̆z]∣∣Cα(R2×S1) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα(R3))∣∣f̆ ∣∣Cα(R3),

∣∣w[ăz, ăz ⋅ M̆z]∣∣Cα(R2×S1) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα(R3))
2∣∣ă∣∣Cα(R3)∣∣f̆ ∣∣Cα(R3),

with C(K̃) a constant depending only on the compact K̃.

Proof. Recall the de�nition of w[ăz, f̆ z]

w[ăz, f̆ z](y, θ) = −∫
0

−∞
e− ∫

∞
0 ăz(y+tθ+τθ)dτfz(y + tθ)dt y ∈ R2, θ ∈ S1.

In Lemma 3.8 we had in shape a similar operator, the inequality for the Hölder norm is the
same obtained with the same process, hence

∣∣w[ă, f̆]∣∣Cα(R2×S1) ≤ 2πC(K̃)eC(K̃)∣∣ăz ∣∣∞(1 + ∣ăz ∣Cα)∣∣f̆z ∣∣Cα ,

using Lemma 3.6 we obtain

∣∣w[ă, f̆]∣∣Cα(R2×S1) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα)∣∣f̆ ∣∣Cα .

For w[ăz, ăz ⋅ M̆z] = w[ăz, ăz ⋅Mz[ă, f̆]] we use the above result to get

∣∣w[ă, ă ⋅ M̆]∣∣Cα(R×S1) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα)∣∣ă ⋅ M̆ ∣∣Cα(R3),
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and using Lemmas 3.8 and 3.7, we obtain

∣∣w[ă, ă ⋅ M̆]∣∣Cα(R×S1) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα)∣∣ă∣∣Cα ∣∣M̆ ∣∣Cα

≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα)
2∣∣ă∣∣Cα ∣∣f̆ ∣∣Cα .

Proposition 3.10 Let K̃ ⊂ R be a compact set, ă, f̆ ∈ Cα(K̃3) with α > 1/2 then for all
z ∈ K̃

Iw[ăz ,f̆z]
, Iw[ăz ,ăz ⋅Mz[ă,f̆]]

∶ L2(K̃2)→H1/2(R × S1),

and ∀δaz ∈ L2(K̃2)

∣∣Iw[ăz ,f̆z]
[δaz]∣∣H1/2(R×S1) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣ă∣Cα(R3)) ∣∣f̆ ∣∣Cα(R3)∣∣δaz ∣∣L2(R2),

∣∣Iw[ăz ,ăz ⋅Mz[ă,f̆]]
[δaz]∣∣H1/2(R×S1) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣ă∣Cα(R3))

2
∣∣ă∣∣Cα(R3)∣∣f̆ ∣∣Cα(R3)∣∣δaz ∣∣L2(R2).

Proof. By Lemma 3.9 we have that both weights w[ăz, f̆z],w[ăz, ăz ⋅Mz[ă, f̆]] ∈ Cα(R2×S1)

and we have estimates for their Hölder norms, also since δaz has compact support then we
can use Theorem 1.42 to obtain inequalities for both operators

∣∣Iw[ăz ,f̆z]
[δaz]∣∣H1/2(R×S1) ≤ ∣∣w[ăz, f̆z]∣∣Cα(R2×S1)∣∣δaz ∣∣L2(R2)

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣ă∣Cα(R3)) ∣∣f̆ ∣∣Cα(R3)∣∣δaz ∣∣L2(R2),

∣∣Iw[ăz ,ăz ⋅Mz[ă,f̆]]
[δaz]∣∣H1/2(R×S1) ≤ ∣∣w[ăz, ăz ⋅Mz[ă, f̆]]∣∣Cα(R2×S1)∣∣δaz ∣∣L2(R2)

≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα(R3))
2∣∣ă∣∣Cα(R3)∣∣f̆ ∣∣Cα(R3)∣∣δaz ∣∣L2(R2).

3.3.2 Part 2: Estimates for the operators χR−1
ăz
Iw[ăz,f̆z] and χR

−1
ăz
Iw[ăz,ăz ⋅M̆z]

Lemma 3.11 Let K̃ ⊂ R be a compact set and ă ∈ Cα(K̃3), then for each z ∈ K̃ the function
kz(y, θ) = eBăz(y,θ

�), y ∈ R2, θ ∈ S1 is an α Hölder continuous function with Hölder norm
∣∣kz ∣∣Cα(R2×S1) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣ă∣Cα(R3)) ∀z ∈ K̃, where C(K̃) is a constant depending

only in the compact set K̃.

Proof. This proof is analogous to the proof of Lemma 3.8, we obtain

∣kz(x, θ) − kz(y, θ)∣ ≤ C(K̃)eC(K̃)∣∣ăz ∣∣∞ ∣ăz ∣Cα(R2)∣x − y∣
α,

and since ∣∣kz(⋅, ⋅)∣∣∞ ≤ eC(K̃)∣∣ăz ∣∣∞ , ∣ăz ∣∞ ≤ ∣ă∣∞, then

∣∣kz ∣∣Cα(R2×S1) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞(1 + ∣ă∣Cα(R3)) ∀z ∈ K̃.
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Lemma 3.12 If f ∈H1/2(R) and g ∈Hs(R), s > 1, then f ⋅ g ∈H1/2(R) and we have that

∣∣fg∣∣H1/2(R) ≤ C ∣∣g∣∣Hs(R)∣∣f ∣∣H1/2(R).

Proof. First notice that

∣∣f ⋅ g∣∣L2(R) ≤ ∣∣f ∣∣L2(R)∣∣g∣∣L∞ ≤ C ∣∣f ∣∣H1/2(R)∣∣g∣∣Hs(R),

where the constant C comes from the Sobolev embedding Theorem Hs(R) ⊂ L∞(R).

Now we compute the value of the semi-norm, we need to prove that ∣ξ∣1/2f̂ ⋅ g(ξ) ∈ L2(R)

thus

∣∣ξ∣
1
2 f̂ g(ξ)∣

2
= ∣∣ξ∣

1
2 [f̂ ∗ ĝ](ξ)∣

2

= ∣ξ∣ ∣∫
R
f̂(ξ − t)ĝ(t)dt∣

2

= ∣ξ∣ ∣∫
R
f̂(ξ − t)

1

(1 + ∣t∣s)
(1 + ∣t∣s)ĝ(t)dt∣

2

≤ ∣ξ∣∫
R
∣f̂(ξ − t)

1

(1 + ∣t∣s)
∣

2

dt∫
R
∣(1 + ∣t∣s)ĝ(t)∣

2
dt

= ∣∣g∣∣2Hs(R)∫
R
∣f̂(ξ − t)∣2

∣ξ∣

(1 + ∣t∣s)2
.

Thus, taking the L2 norm, we obtain

∣∣ ∣ξ∣
1
2 f̂ g∣∣2

L(R)
= ∫

R
∣∣ξ∣

1
2 f̂ g(ξ)∣

2
dξ

≤ ∣∣g∣∣2Hs(R)∫
R
∫
R
∣f̂(ξ − t)∣2

∣ξ∣

(1 + ∣t∣s)2
dtdξ ( c.v.ξ → y + t)

= ∣∣g∣∣2Hs(R)∫
R
∫
R
∣f̂(y)∣2

∣y + t∣

(1 + ∣t∣s)2
dtdy

≤ ∣∣g∣∣2Hs(R)∫
R
∣f̂(y)∣2 (∫

R

∣y∣ + ∣t∣

(1 + ∣t∣s)2
dt)dy

≤ ∣∣g∣∣2Hs(R)
C ∫

R
∣f̂(y)∣2(∣y∣ + 1)dy

≤ C ∣∣g∣∣2Hs(R)∫
R
∣f̂(y)∣2(∣y∣

1
2 + 1)2dy

≤ C ∣∣g∣∣2Hs(R)
∣∣f ∣∣2

H1/2(R),

where we used that (1 + ∣t∣s)−2 and ∣t∣(1 + ∣t∣s)−2 are integrable, which is true for s > 1.

42



Lemma 3.13 Let K̃ ⊂ R be a compact set and ă ∈ H5/2(K̃3) then de�ning hz(s, θ) =
1
2(I + iH)Răz(s, θ) and taking χ a smooth cut-o� function depending on the compact K̃ (say

∣∣χ(s)∣∣W 2,∞ + ∣∣χ(s)∣∣W 2,2 ≤ C(K̃), with C(K̃) a constant depending only on K̃), we have that
χ(⋅)ehz(⋅,θ) ∈H2(R) ∀z ∈ K̃ and

∣∣χ(⋅)e±hz(⋅,θ)∣∣H2(R) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3))
2

∀θ ∈ S1, z ∈ K̃.

Proof. Since ă ∈ H5/2(K̃3), using the trace theorem we have that ăz ∈ H2(K̃2) and that
∣∣ăz ∣∣H2(R2) ≤ C ∣∣ă∣∣H5/2(R3), also using Property 1.31 we know that Răz(⋅, θ) ∈H2(R) and

∣∣Răz(⋅, θ)∣∣H2(R) ≤ C(K̃)∣∣ăz ∣∣H2(R2) ≤ C(K̃)∣∣ă∣∣H5/2(R3) ∀θ ∈ S1, z ∈ K̃,

since the Hilbert transform is a unitary isometry from Hk(Rn) onto itself (Corollary 1.23),
we have that hz(s, θ) = 1

2(I + iH)Răz(s, θ) is a complex valued function that satis�es

∣∣hz(⋅, θ)∣∣H2(R) ≤ C(K̃)∣∣ă∣∣H5/2(R3) ∀θ ∈ S1, z ∈ K̃.

Hence ehz(s,θ) has the desired regularity, and by multipliying by χ(s) it is integrable after
imposing a compact support, hence χ(⋅)ehz(⋅,θ) ∈H2(R). To derive a bound for the norm we
need some inequalities:

● χ(s), ∂sχ(s), ∂2
sχ(s) ≤ C(K̃) ∀s ∈ R,

● ∣∣χ∣∣L2(R), ∣∣∂sχ∣∣L2(R), ∣∣∂2
sχ∣∣L2(R) ≤ C(K̃),

● ∣ehz(s,θ)∣ = e1/2Răz(s,θ) ≤ eC(K̃)∣∣ă∣∣∞ ∀s ∈ R, θ ∈ S1,

● ∣∂shz(s, θ)∣ ≤ ∣∣∂shz(⋅, θ)∣∣H1(R) ≤ ∣∣hz(⋅, θ)∣∣H2(R) ≤ C(K̃)∣∣ă∣∣H5/2(R3) ∀s ∈ R, θ ∈ S1.

These bounds in the L∞ norms allows us to take out these terms from inside the L2(R)

norms, thus computing the derivatives of χ(s)ehz(s,θ) we obtain the following estimates

∣∣χ(⋅)ehz(⋅,θ)∣∣L2(R) ≤ eC(K̃)∣∣ă∣∣∞ ∣∣χ∣∣L2(R) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ ,

∣∣∂s (χ(⋅)e
hz(⋅,θ)) ∣∣L2(R) ≤ ∣∣∂sχ(⋅)e

hz(⋅,θ)∣∣L2(R) + ∣∣χ(⋅)ehz(⋅,θ)∂shz(⋅, θ)∣∣L2(R)

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (∣∣∂sχ∣∣L2(R) + ∣∣∂shz(⋅, θ)∣∣L2(R))

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3)) ,

∣∣∂2
s (χ(⋅)e

hz(⋅,θ)) ∣∣L2(R) ≤ ∣∣∂2
sχ(⋅)e

hz(⋅,θ)∣∣L2(R) + 2∣∣∂sχ(⋅)e
hz(⋅,θ)∂shz(⋅, θ)∣∣L2(R)

+ ∣∣χ(⋅)ehz(⋅,θ) (∂shz(⋅, θ))
2
∣∣L2(R) + ∣∣χ(⋅)ehz(⋅,θ)∂2

shz(⋅, θ)∣∣L2(R)

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (∣∣∂2
sχ∣∣L2 + ∣∣∂shz(⋅, θ)∣∣L2

+∣∣(∂shz(⋅, θ))
2∣∣L2 + ∣∣∂2

shz(⋅, θ)∣∣L2)

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3))
2
.
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We have repeatedly used that ∣∣fg∣∣L2 ≤ ∣∣f ∣∣L∞ ∣∣g∣∣L2 , in particular ∣∣f 2∣∣L2 ≤ ∣∣f ∣∣L∞ ∣∣f ∣∣L2 . We
conclude

∣∣χ(⋅)ehz(⋅,θ)∣∣H2(R) ≤ C(K̃)eC(K̃) (1 + ∣∣ă∣∣H5/2(R3))
2

∀θ ∈ S1, z ∈ K̃.

The case in which we take −h is the same process and yields the same estimate.

Proposition 3.14 Let K̃ ⊂ R be a compact set, ă ∈ H5/2(K̃3), J ∈ H1/2(R × S1) and
χ ∈ C∞

0 (R2), η ∈ C∞
0 (R) smooths functions whose norms depend only on K̃ then

∣∣χR−1
ăz
[ηJ]∣∣L2(R2) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3))

5
∣∣J ∣∣H1/2(R×S1) ∀z ∈ K̃.

Proof. De�ne J̃ = ηJ and take z ∈ K̃ arbitrary, we know an expression for operator R−1
ăz
given

by Theorem 1.39, ( we will omit the G operator given in the Observation 1 of Theorem 1.39
since the result is the same) consider hz(s, θ) = 1/2(I + iH)Răz(s, θ), with I the indentity
operator and H the Hilbert transform applied in the space variable s, we will compute the
L2(R2) norm of the operator χR−1

ăz
[J̃] by duality. Applying it to g ∈ C∞

0 (R2) yields

⟨χR−1
ăz
[J̃], g⟩

L2(R2)

=
1

4π
⟨χ Re div∫

1

S
θe(Băz)(y,θ

�) (e−hzHehz J̃) (y ⋅ θ, θ)dθ, g⟩
L2(R2)

=
1

4π
⟨ Re div∫

1

S
θe(Băz)(y,θ

�) (e−hzHehz J̃) (y ⋅ θ, θ)dθ,χg⟩
L2(R2)

, (3.7)

de�ne g̃ = χg (observe that ∣∣g̃∣∣L2 ≤ ∣∣g∣∣L2 and that supp(g̃) depends only on K̃), since g̃ has
a compact support, we can write g̃(y) = χB(0,R)(y)g̃(y) with R > 0 such that K̃2 ∪ supp(g̃) ⊂
B(0,R) and χB(0,R) ∈ C

∞
0 (R2) a radial cut-o� function such that χB(0,R)(y) = 1∀y ∈ B(0,R).

In this way, we have that

∇y(g̃(y)χB(0,R)(y)) = ∇yg̃(y)χB(0,R)(y) +
��

���
���

��:0
g̃(y)∇yχB(0,R)(y).

By integrating by parts in (3.7) and passing the cut-o� function back to the other side we
obtain

⟨χR−1
ăz
[J̃], g⟩

L2(R2)
=

1

4π
Re ⟨∫

S1
χB(0,R)(y)θe

(Băz)(y,θ�) (e−hzHehz J̃) (y ⋅ θ, θ)dθ,∇g̃(y)⟩
L2(R2)

,

since χB(0,R) is radial, we can de�ne a cut-o� function χ̃ ∈ C∞
0 (R) that satis�es

χB(0,R)(y) = χ̃(y ⋅ θ) ∀y ∈ R2, θ ∈ S1,

hence replacing it and de�ning Fz(s, θ) = χ̃(s)e−hzHehz J̃(s, θ) yields

⟨χR−1
ăz
[J̃], g⟩

L2(R2)
=

1

4π
Re∫

R2
∫
S1
θeBăz(y,θ

�)Fz(y ⋅ θ, θ)dθ ⋅ ∇g̃(y)dy.
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Now, by interchanging integrals and parametrizing the integration in R2 we get

⟨χR−1
ăz
[J̃], g⟩

L2(R2)
=

1

4π
Re∫

S1
∫
R
∫
y⋅θ=s

θ ⋅ ∇yg̃(y)e
(Băz)(y,θ�)dl(y)Fz(s, θ)dsdθ

=
Re
4π

⟨∫
y⋅θ=s

θ ⋅ ∇(g̃(y)e(Băz)(y,θ
�))dl(y) − ∫

y⋅θ=s
g̃(y)θ ⋅ ∇ye

(Băz)(y,θ�)dl(y), Fz⟩
L2(R×S1)

,

and taking the absolute value gives the inequality

∣< χR−1
ăz
[J̃], g >L2(R2)∣ ≤ C ∣⟨∫

y⋅θ=s
θ ⋅ ∇y(g̃(y)e

(Băz)(y,θ�))dl(y), Fz⟩
L2(R×S1)

∣ (3.8)

+C ∣⟨∫
y⋅θ=s

g̃(y)θ ⋅ ∇ye
(Băz)(y,θ�)dl(y), Fz⟩

L2(R×S1)

∣ . (3.9)

In order to estimate the term (3.9), we have that

θ ⋅ ∇ye
Băz(y,θ�) = eBăz(y,θ

�)B[θ ⋅ ∇az](y, θ).

Using the Beam transform Properties 1.36 and 1.37, where C(K̃) stands for a constant
depending only on compact K̃, we obtain

∣θ ⋅ ∇ye
Băz(y,θ�)∣ ≤ C(K̃)eC(K̃)∣∣ăz ∣∣∞ ∣B[θ ⋅ ∇az](y, θ)∣

≤ C(K̃)eC(K̃)∣∣ăz ∣∣∞ ∣∣∇ăz ∣∣H1(R2)

≤ C(K̃)eC(K̃)∣∣ăz ∣∣∞ ∣∣ăz ∣∣H2(R2) ∀y ∈ R2, θ ∈ S1.

Hence we can deduce an estimate for (3.9) as follows

∣∫
S1
∫
R
∫
y⋅θ=s

g̃(y)θ ⋅ ∇ye
Băz(y,θ�)dl(y)Fz(s, θ)dsdθ∣

≤ ∫
S1
∫
R
∫
y⋅θ=s

∣g̃(y)∣ ∣θ ⋅ ∇ye
Băz(y,θ�)∣dl(y)∣Fz(s, θ)∣dsdθ

≤ C(K̃)eC(K̃)∣∣ăz ∣∣∞ ∣∣ăz ∣∣H2(R2)∫
S1
∫
R
∫
y⋅θ=s

∣g̃(y)∣dl(y)∣Fz(s, θ)∣dsdθ

≤ C(K̃)eC(K̃)∣∣ăz ∣∣∞ ∣∣ăz ∣∣H2(R2) ⟨R∣g̃∣(s, θ), ∣Fz(s, θ)∣⟩L2(R×S1)

≤ C(K̃)eC(K̃)∣∣ăz ∣∣∞ ∣∣ăz ∣∣H2(R2)∣∣R∣g̃∣(s, θ)∣∣L2(R×S1)∣∣Fz(s, θ)∣∣L2(R×S1)

≤ C(K̃)eC(K̃)∣∣ăz ∣∣∞ ∣∣ăz ∣∣H2(R2)∣∣g̃∣∣L2(R2)∣∣Fz(s, θ)∣∣L2(R×S1),

where we used Proposition 1.30 in the last inequality.

For the right hand term in (3.8), the directional derivative θ ⋅ ∇y can be taken out of the
integral as a partial derivative using Property 1.27, thus

⟨∫
y⋅θ=s

θ ⋅ ∇(g̃(y)e(Băz)(y,θ
�))dl(y), Fz⟩

L2(R×S1)

= ⟨∂s∫
y⋅θ=s

g̃(y)e(Băz)(y,θ
�)dl(y), Fz⟩

L2(R×S1)

.

(3.10)
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By de�ning kz(y, θ) = e(Băz)(y,θ
�) we can rewrite (3.10) using the weighted Radon transform

de�ned on 1.40 and obtain an estimate using the duality inequality (1.17) and the Property
1.15 for Hs spaces

∣⟨∂s∫
y⋅θ=s

g̃(y)e(Băz)(y,θ
�)dl(y), Fz⟩

L2(R×S1)

∣ = ∣ ⟨∂sIkz g̃(s, θ), F (s, θ)⟩ ∣L2(R×S1)

≤ ∣∣∂sIkz g̃∣∣H−1/2(R×S1)∣∣F ∣∣H1/2(R×S1)

≤ ∣∣Ikz g̃∣∣H1/2(R×S1)∣∣F ∣∣H1/2(R×S1).

Since ă ∈ H5/2(R) using the Sobolev embedding theorem we have that ă ∈ Cα(K̃3) with
α > 1/2, thus using Lemma 3.11 we deduce kz ∈ Cα(R2 × S1) and an estimate for its Hölder
norm, then with the Theorem 1.42 we obtain

∣∣Ikz g̃∣∣H1/2(R×S1) ≤ C(K̃)∣∣kz ∣∣Cα(R2×S1)∣∣g̃∣∣L2(R2)

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣ă∣Cα(R3)) ∣∣g̃∣∣L2(R2).

At this point, let us make an important observation: the constant is independent of the
support of g since we control its support with the cut-o� function χ. The Sobolev embedding
theorem gives the inequality ∣ă∣Cα(R3) ≤ ∣∣ă∣∣H5/2(R3), with which we obtain

⟨∫
y⋅θ=s

θ ⋅ ∇(g̃(y)e(Băz)(y,θ
�))dl(y)⟩ ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3)) ∣∣g̃∣∣L2(R2).

Using the inequalities derived for both term (3.9) and the right hand term in (3.8), we
deduce the following estimate

∣ ⟨χR−1
ăz
J̃ , g⟩ ∣ ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R2)) ∣∣g̃∣∣L2(R2)∣∣Fz ∣∣H1/2(R×S1).

Recall Fz(s, θ) = χ̃(s)e−hz(s,θ)Hehz(s,θ)η(s)J(s, θ), using Lemma 3.13 we have that χ̃(⋅)e±hz(⋅,θ) ∈
H2(R), with the aid of Lemma 3.12 and the Hilbert transform Property 1.23 we proceed;

∣∣Fz(s, θ)∣∣
2
H1/2(R×S1)

= ∫
S1

∣∣χ̃(⋅)e−hz(⋅,θ)Hehz(⋅,θ)η(⋅)J(⋅, θ)∣∣2
H1/2(R)

dθ

≤ ∫
S1

∣∣χ̃(⋅)e−hz(⋅,θ)∣∣2H2(R)
∣∣Hehz(⋅,θ)η(⋅)J(⋅, θ)∣∣2

H1/2(R)
dθ

= ∫
S1

∣∣χ̃(⋅)e−hz(⋅,θ)∣∣2H2(R)
∣∣ehz(⋅,θ)η(⋅)J(⋅, θ)∣∣2

H1/2(R)
dθ

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R2))
4

∫
S1

∣∣ehz(⋅,θ)η(s)J(⋅, θ)∣∣2
H1/2(R)

dθ

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R2))
8

∫
S1

∣∣J(⋅, θ)∣∣2
H1/2(R)

dθ

= C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R2))
8
∣∣J ∣∣2

H1/2(R×S1)
,
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hence

∣ ⟨χR−1
ăz
ηJ, g⟩

L2(R2)
∣ ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3))

5
∣∣J ∣∣H1/2(R×S1)∣∣g̃∣∣L2(R2)

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3))
5
∣∣J ∣∣H1/2(R×S1)∣∣g∣∣L2(R2),

where the constant C(K̃) depends only on the compact K̃ (i.e. independent of z and g),
since this inequality holds ∀g ∈ C∞

0 (R2) a density argument implies the same inequality
holds g ∈ L2(R2). Also since we took z ∈ K̃ arbitrary, we conclude the bound for all z ∈ K̃

∣∣χR−1
ăz
ηJ ∣∣L2(R2) ≤ eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3))

5
∣∣J ∣∣H1/2(R×S1) ∀z ∈ K̃.

Proposition 3.15 Let K̃ ⊂ R be a compact set, ă ∈ H5/2(K̃3) with ∣∣ă∣∣H5/2(R3) < D, f̆ ∈

Cα(K̃3) with α > 1/2 and χ ∈ C∞
0 (K̃2) whose norms depend only in K̃, then

∣∣χR−1
ăz
Iw[ăz ,f̆z]

∣∣
L(L2(

˜̃K2),L2(
˜̃K2))

≤ C(K̃,D)∣∣f̆ ∣∣Cα(R3) ∀z ∈ K̃

∣∣χR−1
ăz
Iw[ăz ,ăz ⋅Mz[ă,f̆]]

∣∣
L(L2(

˜̃K2),L2(
˜̃K2))

≤ C(K̃,D)∣∣ă∣∣H5/2(R3)∣∣f̆ ∣∣Cα(R3) ∀z ∈ K̃,

with C(K̃,D) a constant only depending on K̃ and D, and non-decreasing with respect to
D.

Proof. Since δaz ∈ L2(K̃2), then Iw[ăz ,f̆z]
, Iw[ăz ,ăz ⋅Mz[ă,f̆]]

∈H1/2(R×S1) (by Proposition 3.10)
and has compact support (by Lemma 1.41), thus there exists B ⊂ R, a compact set, such
that

Iw[ăz ,f̆z]
[δaz](s, θ) = 1B(s)Iw[ăz ,f̆z]

[δaz](s, θ) ∀s, z ∈ R, θ ∈ S1

, Iw[ăz ,ăz ⋅Mz[ă,f̆]]
[δaz](s, θ) = 1B(s)Iw[ăz ,ăz ⋅Mz[ă,f̆]]

[δaz](s, θ) ∀s, z ∈ K̃, θ ∈ S1,

using Proposition 3.14 we obtain

∣∣χR−1
ăz
Iw[ăz ,f̆z]

[δaz]∣∣L2(R2) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3))
5
∣∣Iw[ăz ,f̆z]

[δaz]∣∣H1/2(R×S1),

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3))
5
(1 + ∣ă∣Cα(R3)) ∣∣f̆ ∣∣Cα(R3)∣∣δaz ∣∣L2(R2),

∣∣χR−1
ăz
Iw[ăz ,ăz ⋅Mz[ă,f̆]]

[δaz]∣∣L2(R2) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3))
5
∣∣Iw[ăz ,ăz ⋅M̆z]

[δaz]∣∣H1/2(R×S1),

≤ C(K̃)eC(K̃)∣∣ă∣∣∞ (1 + ∣∣ă∣∣H5/2(R3))
5
(1 + ∣ă∣Cα(R3))

2
∣∣ă∣∣Cα(R3)∣∣f̆ ∣∣Cα(R3)∣∣δaz ∣∣L2(R2).

Using the Sobolev embedding Theorem 1.19 we have that ∣∣ă∣∣Cα(R3) ≤ C ∣∣ă∣∣H5/2(R3) for α >

1/2, and that ∣∣ă∣∣∞ ≤ ∣∣ă∣∣H5/2(R3), thus if ∣∣ă∣∣H5/2(R3 ≤D then

∣∣χR−1
ăz
Iw[ăz ,f̆z]

[δaz]∣∣L2(R2) ≤ C(K̃,D)∣∣f̆ ∣∣Cα(R3)∣∣δaz ∣∣L2(R2) ∀z ∈ K̃,

∣∣χR−1
ăz
Iw[ăz ,ăz ⋅Mz[ă,f̆]]

[δaz]∣∣L2(R2) ≤ C(K̃,D)∣∣ă∣∣H5/2(R3)∣∣δaz ∣∣L2(R2) ∀z ∈ K̃.
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It is clear that the image of this operators are functions with support contained in K̃2 since
supp(χ) ⊂ K̃2, also given the dependence of constant C(K̃,D) it is straightforward to notice
its monotone behavior with respect to D.

3.3.3 Part 3: Estimates for the operators L−1[ă, f̆], Q[ă, f̆] and proof
of the inversion theorem

Proposition 3.16 Let K̃ ⊂ R be a compact set and ă ∈H5/2(K̃3), f̆ ∈ Cα(K̃3) with α > 1/2,
χ ∈ C∞

0 (K̃2) whose norm depends only in K̃ and ∣∣ă∣∣H5/2(R3) <D, then

Q[ă, f̆] ∶ L2(K̃3) ×L2(K̃3)→ L2(K̃;L2(K̃2) ×L2(K̃2)),

de�ned by
Q[ă, f̆](δa, δf) = (Qz[ă, f̆](δa, δf))z∈R ,

with Qz de�ned almost everywhere by

Qz[ă, f̆] ∶ L
2(K̃3) ×L2(K̃3)→ L2(K̃2) ×L2(K̃2),

Qz[ă, f̆](δa, δf) = (
0

χR−1
ăz
Iw[ăz ,ăz ⋅M̆z]

δaz + (ăz ⋅ ∂aM̆zδa) + (ăz ⋅Mz[ă, δf])
) ,

sati�es
∣∣Q[ă, f̆]∣∣ ≤ C(K̃,D)(1 + ∣∣f̆ ∣∣Cα(R3))∣∣ă∣∣H5/2(R3),

with ∣∣ ⋅ ∣∣ the operator norm for linear operators between Banach spaces.

Proof. Fix δa, δf ∈ L2(K̃3) set z ∈ K̃ such that δaz ∈ L2(K̃2) ( possible almost everywhere
on z), hence Qz is well de�ned and

∣∣Qz[ă, f̆](δa, δf)∣∣(L2(R2))2 ≤ ∣∣χR−1
ăz
Iw[ăz ,ăz ⋅M̆z]

[δaz]∣∣L2(R2)

+ ∣∣ăz ⋅ ∂aM̆z[δa]∣∣L2(R2) + ∣∣ăz ⋅Mz[ă, δf]∣∣L2(R2).

We already know from Proposition 3.15 that

∣∣χR−1
ăz
Iw[ăz ,ăz ⋅M̆z]

[δaz]∣∣L2(R2) ≤ C(K̃,D)∣∣ă∣∣H5/2(R3)∣∣f̆ ∣∣Cα(R3)∣∣δaz ∣∣L2(R2) ∀z ∈ K̃.

Also, if z ∉ K̃ both terms in the inequality vanish, thus the inequality holds for all z ∈ R, i.e.

∣∣χR−1
ăz
Iw[ăz ,ăz ⋅M̆z]

[δaz]∣∣L2(R2) ≤ C(K̃,D)∣∣ă∣∣H5/2(R3)∣∣f̆ ∣∣Cα(R3)∣∣δaz ∣∣L2(R2) ∀z ∈ R,

and if we square it and integrate over z ∈ R

∫
R
∣∣χR−1

ăz
Iw[ăz ,ăz ⋅M̆z]

[δaz]∣∣
2
L2(R2)

dz ≤ C(K̃,D)∣∣ă∣∣2
H5/2(R3)

∣∣f̆ ∣∣2Cα(R3)∫
R
∣∣δaz ∣∣

2
L2(R2)

dz

≤ C(K̃,D)∣∣ă∣∣2
H5/2(R3)

∣∣f̆ ∣∣2Cα(R3)∫
R
∫
R2

(δa(y, z))
2
dydz

≤ C(K̃,D)∣∣ă∣∣2
H5/2(R3)

∣∣f̆ ∣∣2Cα(R3)
∣∣δa∣∣L2(R3).

Now we proceed to prove the inequalities for the other terms:
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● The operator ăz ⋅ ∂aM̆z[⋅]

∣ăz ⋅ ∂aM̆zδa(y)∣ = ∣ăz(y)∫
S2
∫

∞

0
f̆((y, z) + tφ)e− ∫

t
0 ă((y,z)+τφ)dτ ∫

t

0
δa((y, z) + sφ)dsdtdφ∣

≤ ∣∣ă∣∣∞1K̃3(y, z)∫
S2
∫

∞

0
∣f̆((y, z) + tφ)∣e− ∫

t
0 ă((y,z)+τφ)dτdt∫

R
∣δa((y, z) + sφ)∣dsdφ.

Since we have the indicatrix over K̃3 for (y, z) then the integration variables τ, t, s can be
taken in the [−diam(K̃3),diam(K̃3)] = J(K̃) interval, hence

∣ăz ⋅ ∂aM̆zδa(y)∣ ≤ C(K̃)∣∣ă∣∣∞eC(K̃)∣∣ă∣∣∞ ∣∣f̆ ∣∣∞1K̃3(y, z)∫
S2
∫
J(K̃)

∣δa((y, z) + sφ)∣dsdφ,

using the Sobolev embedding Theorem we obtain that ∣∣ă∣∣∞ ≤ C ∣∣ă∣∣H5/2(R3) ≤ C ⋅D, and

by de�nition ∣∣f̆ ∣∣∞ ≤ ∣∣f̆ ∣∣Cα(R3), hence

∣ăz ⋅ ∂aM̆zδa(y)∣ ≤ C(K̃,D)∣∣ă∣∣H5/2(R3)∣∣f̆ ∣∣Cα(R3)1K̃3(y, z)∫
S2
∫
J(K̃)

∣δa((y, z) + sφ)∣dsdφ,

so taking the square of the L2 norm yields

∣∣ăz ⋅ ∂aM̆zδa∣∣
2
L2(R2)

≤ C(K̃,D)∣∣ă∣∣25/2∣∣f̆ ∣∣
2
Cα1K̃(z)∫

K̃2
(∫

S2
∫
J(K̃)

∣δa((y, z) + sφ)∣dsdφ)
2

dy

≤ C(K̃,D)∣∣ă∣∣25/2∣∣f̆ ∣∣
2
Cα1K̃(z)∫

K̃2
∫
S2
∫
J(K̃)

(δa((y, z) + sφ))
2
dsdφdy.

Now if we integrate over z we obtain

∫
R
∣∣ăz ⋅ ∂aM̆zδa∣∣

2
L2(R2)

≤ C(K̃,D)∣∣ă∣∣25/2∣∣f̆ ∣∣
2
Cα ∫

K̃
∫
K̃2
∫
S2
∫
J(K̃)

(δa((y, z) + sφ))
2
dsdφdydz

= C(K̃,D)∣∣ă∣∣25/2∣∣f̆ ∣∣
2
Cα ∫

S2
∫
J(K̃)
∫
K̃
∫
K̃2

(δa((y, z) + sφ))
2
dydzdsdφ

= C(K̃,D)∣∣ă∣∣25/2∣∣f̆ ∣∣
2
Cα ∫

S2
∫
J(K̃)

∣∣δa∣∣2L2(R2)
dsdφ

≤ C(K̃,D)∣∣ă∣∣2
H5/2(R3)

∣∣f̆ ∣∣2Cα(R3)
∣∣δa∣∣2L2(R2)

.

● The operator ăz ⋅Mz[ă, ⋅]:
The proof of this inequality is nearly the same as the previous one, therefore some steps
will be omitted

∣ăz ⋅Mz[ă, δf](y)∣ = ∣ă(y, z)∫
S2
∫

∞

0
δf((y, z) + tφ)e− ∫

∞
0 ă((y,z)+τφ)dτdtdφ∣

≤ eC(K̃)∣∣ă∣∣∞ ∣∣ă∣∣∞1K̃3(y, z)∫
S2
∫
J(K̃)

∣δf((y, z) + tφ)∣dtdφ

≤ C(K̃,D)∣∣ă∣∣H5/2(R3)1K̃3(y, z)∫
S2
∫
J(K̃)

∣δf((y, z) + tφ)∣dtdφ.
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So, taking the squared L2 norm as a function of y

∣∣ăz ⋅Mz[ă, δf]∣∣
2
L2(R2)

≤ C(K̃,D)∣∣ă∣∣25/21K̃(z)∫
K̃2

(∫
S2
∫
J(K̃)

∣δf((y, z) + tφ)∣dtdφ)
2

dy

≤ C(K̃,D)∣∣ă∣∣25/21K̃(z)∫
K̃2
∫
S2
∫
J(K̃)

(δf((y, z) + tφ))
2
dtdφdy,

and integrating z ∈ R we obtain

∫
R
∣∣ăz ⋅Mz[ă, δf]∣∣

2
L2(R2)

dz ≤ C(K̃,D)∣∣ă∣∣25/2∫
K̃
∫
K̃2
∫
S2
∫
J(K̃)

(δf((y, z) + tφ))
2
dtdφdydz

= C(K̃,D)∣∣ă∣∣25/2∫
S2
∫
J(K̃)
∫
K̃
∫
K̃2

(δf((y, z) + tφ))
2
dydzdtdφ

≤ C(K̃,D)∣∣ă∣∣2
H5/2(R3)

∣∣δf ∣∣L2(R3).

Finally let us obtain the estimates for the norm of Q

∣∣Q[ă, f̆](δa, δf)∣∣L2(R;L2(R2)×L2(R2)) = ∫
R
∣∣Qz[ă, f̆](δa, δf)∣∣

2
L2(R2)×L2(R2)

dz

≤ ∫
R
∣∣χR−1

ăz
Iw[ăz ,ăz ⋅M̆z]

[δaz]∣∣
2
L2(R2)

+ ∣∣ăz ⋅ ∂aM̆zδa∣∣
2
L2(R2)

+ ∣∣ăz ⋅Mz[ă, δf]∣∣
2
L2(R2)

dz

≤ C(K̃,D)∣∣ă∣∣2
H5/2(R3)

(∣∣f̆ ∣∣2Cα(R3)
∣∣δa∣∣2L2(R3)

+ ∣∣δf ∣∣2L2(R3)
) ∀δa, δf ∈ L2(K̃3),

hence

∣∣Q[ă, f̆]∣∣ ≤ C(K̃,D)∣∣ă∣∣H5/2(R3)(1 + ∣∣f̆ ∣∣Cα(R3)).

Also,notice that the image of Q is contained in L2(K̃,L2(K̃2) × L2(K̃2)), because if z ∉ K̃
then ∣∣Qz[ă, f̆](δa, δf)∣∣ = 0 ∀δa, δf ∈ L2(K̃2) and it is trivial to notice that Qz[ă, f̆](δa, δf) ∈

(L2(K̃2))
2
almost everywhere on z.

Lemma 3.17 Let K̃ ⊂ R be a compact set, ă ∈ C0(K̃3), f̆ ∈ Cα(K̃3) with f̆ ≥ 0 and f̆ /≡ 0,
then

M[ă, f̆](x) ≥ C(K̃)e−C(K̃)∣∣ă∣∣∞
⎛

⎝

∣∣f̆ ∣∣∞

∣f̆ ∣Cα(R3)

⎞

⎠

3/α

∣∣f̆ ∣∣∞ ∀x ∈ K̃3.

Proof. Since f̆ is continuous and non-negative with compact support, then there exists
x ∈ K̃3 such that f̆(x) = ∣∣f̆ ∣∣∞ > 0 . Let us de�ne

A = {x ∈ K̃3, f̆(x) ≥
∣∣f̆ ∣∣∞

2
},
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then, using that f̆ is Hölder continuous, we have that

∣f̆(x) − f̆(y)∣ ≤ ∣f̆ ∣Cα ∣x − y∣
α ∀y ∈ Ac

⇒
∣∣f̆ ∣∣∞

2
≤ ∣f̆ ∣Cα ∣∣x − y∣

α ∀y ∈ Ac

⇒R ∶= (
∣∣f̆ ∣∣∞

2∣f̆ ∣Cα
)

1/α

≤ dist(x,Ac).

(notice that ∣f̆ ∣Cα ≠ 0 because f̆ has compact support and f̆ /≡ 0) Then B(x,R) ⊂ A thus

f̆(x) ≥
∣∣f̆ ∣∣∞

2
∀x ∈ B(x,R)

⇒f̆(x) ≥
∣∣f̆ ∣∣∞

2
1B(x,R)(x) ∀x ∈ K̃3.

Hence for M̆ and x ∈ K̃3

M[ă, f̆](x) = ∫
S2
∫

∞

0
f(x + tφ)e− ∫

t
0 a(x+sφ)dsdtdφ

≥ e−C(K̃)∣∣ă∣∣∞
∫
S2
∫

∞

0
f(x + tφ)dtdφ

≥ e−C(K̃)∣∣ă∣∣∞ ∣∣f̆ ∣∣∞
2 ∫

S2
∫

∞

0
1B(x,R)(x + tφ)dtdφ,

notice that if t > diam(K̃3) then (x + tφ) ∉ B(x,R)∀x ∈ K̃3, φ ∈ S2 because B(x,R) ⊂ K̃3,
hence

M[ă, f̆](x) ≥ e−C(K̃)∣∣ă∣∣∞ ∣∣f̆ ∣∣∞
2 ∫

S2
∫

diam(K̃3)

0
1B(x,R)(x + tφ)dtdφ

= e−C(K̃)∣∣ă∣∣∞ ∣∣f̆ ∣∣∞
2 ∫

S2
∫

diam(K̃3)

0
1B(x,R)(x + tφ)

t2

t2
dtdφ

≥ e−C(K̃)∣∣ă∣∣∞ ∣∣f̆ ∣∣∞

2diam(K̃3)2 ∫S2
∫

diam(K̃3)

0
1B(x,R)(x + tφ)t

2dtdφ

= e−C(K̃)∣∣ă∣∣∞ ∣∣f̆ ∣∣∞

2diam(K̃3)2 ∫R3
1B(x,R)(x)dx

= e−C(K̃)∣∣ă∣∣∞ ∣∣f̆ ∣∣∞

2diam(K̃3)2
4πR3

≥ C(K̃)e−C(K̃)∣∣ă∣∣∞
⎛

⎝

∣∣f̆ ∣∣∞

∣f̆ ∣Cα(R3)

⎞

⎠

3/α

∣∣f̆ ∣∣∞ ∀x ∈ K̃3.
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Proposition 3.18 Let K̃ ⊂ R be a compact set and let ă ∈ H5/2(K̃3), f̆ ∈ Cα(K̃3) with
α > 1/2 and f̆ /≡ 0, f̆ ≥ 0. Let χ ∈ C∞

0 (K̃2) be a smooth cut-o� function whose norm depends
only in K̃ and ∣∣ă∣∣H5/2(R3) <D. Then

L−1[ă, f̆] ∶ L2(K̃2 × K̃) ×L2(K̃2 × K̃)→ L2(K̃;L2(K̃2) ×L2(K̃2)),

de�ned by

L−1[ă, f̆] (
g
h

) = (L−1
z [ă, f̆] (

g
h

))
z∈R

,

where L−1
z is de�ned almost everywhere as

L−1
z [ă, f̆] ∶ L2(K̃2 × K̃) ×L2(K̃2 × K̃)→ L2(K̃2) ×L2(K̃2)

L−1
z [ă, f̆] (

g
h

) = (hz/M̆z, gz − χR
−1
ăz
Iw[ăz ,f̆z]

[hz/M̆z]) ,

sati�es

∣∣L−1[ă, f̆]∣∣ ≤ 1 +C(K̃,D)(1 + ∣∣f̆ ∣∣Cα(R3))
∣f̆ ∣

3/α

Cα(R3)

∣∣f̆ ∣∣
3/α+1
∞

,

where ∣∣ ⋅ ∣∣ is the operator norm for linear operators between Banach spaces.

Proof. Given g, h ∈ L2(K̃3) gz, hz ∈ L2(K̃3) a.e. z ∈ R, then

∣∣L−1
z [ă, f̆] (

g
h

) ∣∣2
(L2(R2))

2 ≤ ∣∣hz/M̆z ∣∣
2
L2(R2)

+ ∣∣gz ∣∣
2
L2(R2)

+ ∣∣χR−1
ă Iw[ă,f̆][hz/M̆z]∣∣

2
L2(R2)

.

Then, using Proposition 3.15, we have that

∣∣χR−1
ăz
Iw[ăz ,f̆z]

[hz/M̆z]∣∣L2(R2) ≤ C(K̃,D)∣∣f̆ ∣∣Cα(R3)∣∣hz/M̆z ∣∣L2(R2) ∀z ∈ K̃,

and both sides vanish for z ∉ K̃, hence the inequality remains valid for all z ∈ R, i.e.

∣∣χR−1
ăz
Iw[ăz ,f̆z]

[hz/M̆z]∣∣L2(R2) ≤ C(K̃,D)∣∣f̆ ∣∣Cα(R3)∣∣hz/M̆z ∣∣L2(R2) ∀z ∈ R.

By Lemma 3.17 we have that

∣∣hz/M̆z ∣∣L2(R2) ≤ C(K̃)eC(K̃)∣∣ă∣∣∞
⎛

⎝

∣f̆ ∣Cα(R3)

∣∣f̆ ∣∣∞

⎞

⎠

3/α

1

∣∣f̆ ∣∣∞
∣∣hz ∣∣L2(R2)

≤ C(K̃,D)
⎛

⎝

∣f̆ ∣Cα(R3)

∣∣f̆ ∣∣∞

⎞

⎠

3/α

1

∣∣f̆ ∣∣∞
∣∣hz ∣∣L2(R2),
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hence a.e. for z ∈ R, we have that

∣∣L−1
z [ă, f̆] (

g
h

) ∣∣2
(L2(R2))

2 ≤ ∣∣gz ∣∣
2
L2(R2)

+ (1 +C(K̃,D)∣∣f̆ ∣∣Cα) ∣∣hz/M̆z ∣∣L2(R2)

≤ ∣∣gz ∣∣
2
L2(R2)

+C(K̃,D)(1 + ∣∣f̆ ∣∣Cα)
∣f̆ ∣

3/α
Cα

∣∣f̆ ∣∣
3/α+1
∞

∣∣hz ∣∣L2(R2).

Since ∫R ∣∣gz ∣∣2L2(R2)
= ∫R ∫R2 g(y, z)2dydz = ∣∣g∣∣L2(R3) (and the same for hz), then we can

obtain the estimate for the norm of L−1[ă, f̆] by integrating over z:

∣∣L−1[ă, f̆] (
g
h

) ∣∣L2(R;L2(R2)) = ∫
R
∣∣L−1

z [ă, f̆] (
g
h

) ∣∣2
(L2(R2))

2dz

≤ ∫
R
∣∣gz ∣∣

2
L2(R2)

+C(K̃,D)(1 + ∣∣f̆ ∣∣Cα)
∣f̆ ∣

3/α
Cα

∣∣f̆ ∣∣
3/α+1
∞

∣∣hz ∣∣L2(R2)dz

≤ ∣∣g∣∣L2(R3) +C(K̃,D)(1 + ∣∣f̆ ∣∣Cα)
∣f̆ ∣

3/α
Cα

∣∣f̆ ∣∣
3/α+1
∞

∣∣h∣∣L2(R3),

thus

∣∣L−1[ă, f̆]∣∣ ≤ 1 +C(K̃,D)(1 + ∣∣f̆ ∣∣Cα(R3))
∣f̆ ∣

3/α

Cα(R3)

∣∣f̆ ∣∣
3/α+1
∞

.

It is easy to see that the image of the operator L−1[ă, f̆] is contained in L2(K̃;L2(K̃2) ×

L2(K̃2)), since we are considering the domain L2(K̃3) then for z ∉ K̃ gz, hz, fz ≡ 0 almost
everywhere, and thus all the terms in L−1

z [ă, f̆] are equal to 0, while for z ∈ K̃ we have that
gz, hz, ∈ L2(K̃2) and the last term in L−1

z [ă, f̆] is square integrable and it is multiplied by a
smooth function χ with support in K̃2, hence the support of all terms is contained in K̃2.

Proof of Theorem 3.5 Let K̃ ⊂ R be a compact set, let f̆ ∈ Cα(K̃3) with α > 1/2 and
f̆ /≡ 0, f̆ ≥ 0, χ ∈ C∞

0 (K̃2) whose norms depend only in K̃. Then exists D̃ > 0 such that the op-
erator (L+Q)[ă, f̆] de�ned on L2(K̃3)×L2(K̃3) is invertible for all ă ∈H5/2(K̃3), ∣∣ă∣∣H5/2(R3) <

D̃, and its inverse is

(L +Q)−1[ă, f̆] = L−1[ă, f̆]
∞

∑
k=0

(−(QL−1)[ă, f̆])
k
.

Proof. To achieve this we will use Neumann series. Since L is invertible by Lemma 3.3, we
have that

(L +Q)[ă, f̆] = (I +QL−1)L[ă, f̆].
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If ∣∣QL−1[ă, f̆]∣∣ < 1, then we can invert the operator (I +QL−1)L with inverse

((I +QL−1)L)
−1
= L−1 (I +QL−1)

−1
= L−1 (

∞

∑
k=0

(−1)k (QL−1)
k
) .

(This can be done because these operators are in a Banach space, the norm condition ensures
the convergence of the sum ).

First of all, the composition (QL−1)[ă, f̆] is well de�ned as an operator from L2(K̃2 ×

K̃)×L2(K̃2 × K̃) to L2(K̃;L2(K̃2)×L2(K̃2)) because the image of L−1[ă, f̆] is contained in
L2(K̃,L2(K̃2) × L2(K̃2)) but this space is isometric to L2(K̃3) × L2(K̃3). So, we need just
to verify that exists D̃ > 0 such that if ∣∣ă∣∣H5/2(R3) ≤ D̃ then ∣∣(QL−1)[ă, f̆]∣∣ < 1.

Using the Propositions 3.16 and 3.18 we have that for ∣∣ă∣∣H5/2(R3) ≤D

∣∣Q[ă, f̆]∣∣ ≤ C(K̃,D)∣∣ă∣∣H5/2(R3)(1 + ∣∣f̆ ∣∣Cα(R3)),

∣∣L−1[ă, f̆]∣∣ ≤ 1 +C(K̃,D)(1 + ∣∣f̆ ∣∣Cα(R3))
∣f̆ ∣

3/α

Cα(R3)

∣∣f̆ ∣∣
3/α+1
∞

≤ C(K̃,D)(1 + ∣∣f̆ ∣∣Cα(R3))
⎛
⎜
⎝

1 +
∣f̆ ∣

3/α

Cα(R3)

∣∣f̆ ∣∣
3/α+1
∞

⎞
⎟
⎠
,

with C(K̃,D) > 0 a constant depending only in K̃, D. Thus we have that

∣∣(QL−1)[ă, f̆]∣∣ ≤ ∣∣Q[ă, f̆]∣∣∣∣L−1[ă, f̆]∣∣

≤ C(K̃,D)∣∣ă∣∣H5/2(R3)(1 + ∣∣f̆ ∣∣Cα(R3))
2
⎛
⎜
⎝

1 +
∣f̆ ∣

3/α)

Cα(R3)

∣∣f̆ ∣∣
3/α+1
∞

⎞
⎟
⎠
.

Since C(K̃,D) > 0 is non-decreasing with respect to D we can choose D̃ > 0 such that

D̃ <
⎛
⎜
⎝
C(K̃, D̃)(1 + ∣∣f̆ ∣∣Cα(R3))

2
⎛
⎜
⎝

1 +
∣f̆ ∣

3/α

Cα(R3)

∣∣f̆ ∣∣
3/α+1
∞

⎞
⎟
⎠

⎞
⎟
⎠

−1

,

hence
∣∣(QL−1)[ă, f̆]∣∣ < 1 ∀ă such that ∣∣ă∣∣H5/2(R3) ≤ D̃,

concluding the invertibility by Neumann series.
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Chapter 4

Application to SPECT

4.1 Numerical algorithms in the linearized and non-linear

cases

Let us review some numerical algorithms that could be applied in our setting.

4.1.1 Banach �xed-point method

This is a method to �nd �xed-points of operators (i.e. x such that T (x) = x). Let T be an
operator such that T ∶ X → X with X a banach space and T a contraction i.e. ∃C ∈ (0,1)
such that

∣∣T (x) − T (y)∣∣ ≤ C ∣∣x − y∣∣ ∀x, y ∈X,

then there exists x ∈X such that T (x) = x and an algorithm to �nd x is given by the steps

choose any x0 ∈X;

let xn+1 = T (xn) n ∈N. (4.1)

The existence of solution and convergence of the algorithm is given by the following theorem

Theorem 4.1 (Banach �xed-point theorem ) Let X be a Banach space and let T ∶X →
X be a contraction, then T admits a unique �xed-point x ∈X. Furthermore, x can be found
with Algorithm (4.1) and we have an estimate for the error

∣∣x − xn∣∣ ≤ C
n∣∣x − x0∣∣,

with C ∈ (0,1) the Lipschitz constant of the operator T .
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4.1.2 Neumann series

A Neumann series is a mathematical series of the form ∑∞
k=0 S

k where S is a linear operator
and Sk are k compositions of the operator. A su�cient condition for the convergence of the
series is considering S ∶X →X with X a Banach space and such that ∣∣S∣∣ < 1.

These series are useful to invert perturbations of invertible linear operators. Let T ∶X →X
be a linear operator with X a Banach space such that T = I −S with I the identity and S a
linear operator, then if ∣∣S∣∣ < 1, T is invertible and

T −1 =
∞

∑
k=0

Sk.

An algorithm derived from this formula is an iteration to approximate T −1 with the partial
sums ∑mk=0 S

k. For �xed x, the steps of the algorithm to invert T (x) (i.e. to obtain a sequence
xn → x) are

x0 = T (x),

xn+1 = Sxn + xn.

From the previous algorithm steps it is easy to see that xn = (∑
n
k=0 S

k)T (x) and we have an
estimate of the error

∣∣xn − x∣∣ = ∣∣ (
n

∑
k=0

Sk)T (x) − x∣∣

= ∣∣ (
∞

∑
k=0

Sk)T (x) − x − (
∞

∑
k=n+1

Sk)T (x)∣∣

= ∣∣ (
∞

∑
k=n+1

Sk)T (x)∣∣

≤
∞

∑
k=n+1

∣∣S∣∣k∣∣T ∣∣ ∣∣x∣∣

=
∣∣S∣∣m+1

1 − ∣∣S∣∣
∣∣T ∣∣ ∣∣x∣∣.

4.1.3 Newton-Raphson method

The Newton-Raphson method is a technique for �nding successively better approximations
to the zeroes of a function ( or operator ), Let F ∶ X → Y be an operator with X and Y
Banach spaces, the iteration algorithm consists in taking

x0 such that F (x0) ≈ 0,

xn+1 = xn − [F ′(xn)]
−1F (xn),
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where F ′(xn) is the Fréchet derivative computed at xn. The Newton-Kantorovich theorem
gives a su�cient condition for the convergence of the Newton-Raphson method.

Theorem 4.2 (Newton-Kantorovich theorem ) Let X and Y be Banach spaces and
F ∶D ⊂X → Y . Suppose that on an open convex set D0 ⊂D, F is Fréchet di�erentiable and

∣∣F ′(x) − F ′(y)∣∣ ≤K ∣∣x − y∣∣ ∀x, y ∈D0.

For some x0 ∈ D0, assume that Γ0 = [F ′(x0)]
−1 is de�ned on all Y and that h = βKη ≤ 1/2

where ∣∣Γ0∣∣ ≤ β and ∣∣Γ0Fx0∣∣ ≤ η. Set

t∗ =
1

βK
(1 −

√
1 − 2h) , t∗∗ =

1

βK
(1 +

√
1 − 2h) ,

and supppose that S = {x ∈ X, ∣∣x − x0∣∣ ≤ t∗} ⊂ D0. Then the Newton-Raphson iterates
xn are well de�ned, lie in S and converge to a solution x∗ of Fx = 0 wich is unique in
D0 ∩ {x ∈ X, ∣∣x − x0∣∣ ≤ t∗∗}. Moreover, if h < 1/2 the order of convergence is at least
quadratic.

4.2 SPECT: recovering of source and attenuation

4.2.1 Discretization of the measurements

Given the model derived in Chapter 2, for an attenuation map a and source map f both
de�ned on R3 and with compact support, the operator that gives the external measurements
is

F [a, f](s, θ, z) = (
Raz[fz](s, θ)

C̃Raz[azMz[a, f]](s, θ)
) s, z ∈ R, θ ∈ S1, (4.2)

where C̃ is a �xed constant,

M[a, f](x) = ∫
S2
∫

∞

0
f(x + tφ)e− ∫

t
0 a(x+τφ)dτdtdφ, x ∈ R3

az(y) = a(y, z) fz(y) = f(y, z) Mz[a, f](y) =M[a, f](y, z), ∀y ∈ R2, z ∈ R

and the variables θ and s are the angular variable and the spatial translation variable re-
spectively, z is the height variable.

Let Θ ⊂ [0,2π] be the set of �nite angular measurements, Σ ⊂ R the set of �nite spa-
tial translation measurements and H ⊂ R the set of �nite height measurements, then the
discretization of F [a, f] is given by

F [a, f](s, θ, z) = (
Raz[fz](s, θ)

C̃Raz[azMz[a, f]](s, θ)
) s ∈ Σ, z ∈H,θ ∈ Θ.
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Observation The validity of the representation of this operator by �nite values (in the
angular and spatial translation variables) is studied in [19] Chapter 3, but roughly speaking
it is given by the Shannon sampling theorem (described in [19]) which for �nite measurements
allows a reconstruction of a regularized version of the function in study, this also holds for
the height variable.

It is also of fundamental importance to have an algorithm to compute accurately the
operator R−1

a , there are several algorithms to achieve this, see for example [13, 17, 20]. In
our heuristic method we used the algorithm given by Natterer in [20] and implemented by
Francois Monard (extracted from his webpage [1]).

4.2.2 Guideline for an algorithm for the linearized inverse problem

We will proceed to describe how to obtain an algorithm to solve our inverse problem in the
linearized setting, this has not been implement and for a convergence result it requires many
unproven assumptions.

For the linearized inverse problem (recall Chapter 3), we assume known reference atten-
uation and source map ă ∈ H5/2(K3), f̆ ∈ Cα(K3), α > 1/2 with K ⊂ R a compact set and
unknown perturbations δa, δf ∈ L2(K3), the measurements that the algorithm can use are
expressed as F [ă + δa, f̆ + δf] with F de�ned in (4.2).

Assume the operator F ∶ H5/2(K3) ×Cα(K3) → Y = (Y1 × Y2)z∈R is Fréchet di�erentiable
and for some Banach space (Y1 × Y2)z∈R . Hence we have that

F [ă + δa, f̆ + δf] = F [ă, f̆] +DF [ă, f̆](δa, δf) + o(δa, δf).

Let K̃ ⊂ R be a compact set such that K ⊂ K̃ and consider a cut-o� function χ ∈ C∞(K̃2)

whose norms depend only on the compact K, then taking the inverse on the attenuated
Radon transform and multiplying by χ at each height and component of (Y1 × Y2)z∈R (the
notation for this will be χR−1

ă [(f, g)z] = (χR−1
ăz
fz,R−1

ăz
gz)z∈R), yields

χR−1
ă [F [ă + δa, f̆ + δf] − F [ă, f̆]] = χR−1

ă [DF [ă, f̆](δa, δf)] +R−1
ă [o(δa, δf)]

= (L +Q)[ă, f̆](δa, δf) +R−1
ă [o(δa, δf)], (4.3)

where L and Q are the operators studied in Theorem 3.5, hence assuming f̆ ≥ 0, f̆ /≡ 0 and
∣∣ă∣∣H5/2(R3) su�cient small, we have an inversion formula. Applying it to equation (4.3) and

denoting ε = (L +Q)−1[ă, f̆] (R−1
ă [o(δa, δf)]) we obtain

(L +Q)−1[ă, f̆] (χR−1
ă [F [ă + δa, f̆ + δf] − F [ă, f̆]]) = (δaz, δfz)z∈R + ε

⇔ L−1[ă, f̆]
∞

∑
k=0

(−(QL−1)[ă, f̆])
k
(χR−1

ă [F [ă + δa, f̆ + δf] − F [ă, f̆]]) = (δaz, δfz)z∈R + ε.
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Finally, assuming that if ∣∣(δa, δf)∣∣L2(R3)×L2(R3) → 0 then ∣∣R−1
ă o(∣∣δa∣∣+∣∣δf ∣∣)∣∣L2(R;L2(R2)×L2(R2)) →

0, we obtain an algorithm to approximate the unknown small perturbations δa, δf ∈ L2(K3)

by approximating the series by its partial sum and computing each term on the left hand
side of the equation.

Observation Under assumptions of the Theorem 3.5, we have an inverse of operatorDF [ă, f̆]
given by

(DF [ă, f̆])
−1
= L−1[ă, f̆]

∞

∑
k=0

(−(QL−1)[ă, f̆])
k
χR−1

ă .

4.2.3 Formal guideline to solve the non-lineal inverse problem with
the Newton-Raphson method

We will describe how to use the Newton-Raphson method to obtain an algorithm to approx-
imate the values of ă, f̆ for the non-linear setting. This section is formal since we do not give
conditions for the algorithm to converge.

For the non-linear inverse problem the avaliable information is expressed as F [ă, f̆] with
F determined in (4.2). Consider forK ⊂ R a compact set the unknown values ă, f̆ ∈H5/2(K3)

and GK ∶ L2(K3)→H5/2(K3) an invertible bounded linear operator with bounded inverse (
for notational simplicity, if a, f ∈ L2(R3) we de�ne GK(a, f) ∶= (GK(a),GK(f)) ), consider

F̃ ∶ L2(K3) ×L2(K3)→ Y = (Y1, Y2)z∈R

F̃ (a, f) = F [GK(a, f)] − F [ă, f̆].

Finding a zero of this functional is the same as �nding a, f ∈ L2(K3) such that F [GK(a, f)] =
F [ă, f̆], thus assuming inyectivity of the operator F , we get that GK(a, f) = (ă, f̆) which
solves our inverse problem. To achieve this we use the Newton-Raphson method, as pre-
sented in Section 4.2, we need (among other requirements) the operator F̃ to be Fréchet
di�erentiable and invertible.

Under the hypothesis and de�nitions for the linearized inverse problem in Subsection
4.2.2, we have an inverse for operator DF [GK(a, f)] given by

(DF [GK(a, f)])
−1
= L−1 (

∞

∑
k=0

(−QL−1)k[GK(a, f)])χR−1
GK(a).

Thus, for the operator F̃ , we deduce

DF̃ (a, f) =DF [GK(a, f)] ○GK

⇒ (DF̃ (a, f))
−1
= G−1

K ○ (DF [GK(a, f)])
−1

= G−1
K L

−1 (
∞

∑
k=0

(−QL−1)k[GK(a, f)])χR−1
GK(a),
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and we can implement the Newton-Raphson method

(an+1, fn+1) = (an, fn) −G−1
K L

−1 (
∞

∑
k=0

(−QL−1)k[GK(a, f)])χR−1
GK(a)F (GK(an, fn)).

There are several conditions that must hold to ensure the success of this method, partic-
ularly, the hypothesis over GK(an) and GK(fn) needed for Theorem 3.5 must be controled
for each n for the convergence of the series.

Observation An example of operator GK is taking GK(a) = ã where ã is the solution of
the problem

(I + ε (−∆)
5/4

) ã = a ∀x ∈K3

ã = 0 ∀x ∈ ∂K3,

for su�ciently small ε > 0 (the operator (−∆)p is the p-laplacian). This is a computable
invertible bounded linear operator that regularizes functions and thus can be used for the
algorithm.

4.2.4 Heuristical Banach �xed point method results

We developed and programed a �xed-point algorithm to obtain both the attenuation and
source for our inverse problem, but we did not demonstrated a convergence condition for the
algorithm, thus is purely heuristical.

For a �xed attenuation map a and source map f both de�ned on R3 and with compact
support. Recall that the ballistic measurements at height z ∈ R are given by

Az0 = Raz[fz],

and that the �rst order scattering measurements at height z ∈ R are given by

Az1 = C̃Raz[az ⋅Mz[a, f]].

The algorithm consists in an iterative update of the attenuation and source maps using
the information given by the measurements. We start with a known attenuation a0 de�ned
on R3, then using the ballistic measurements at every height we can reconstruct a source
map f 0, and using both functions and the �rst order scattering measurements we update
the value of the attenuation map to a1. Following this process we iterate to obtain ai and f i

for i ∈N.
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Mathematically, for i ∈ N, to obtain the source map f i from the attenuation map ai and
the ballistic measurements A0 we use the inverse of the attenuated Radon transform at each
height

f i(y, z) = R−1
aiz
[Az0](y) y ∈ R2, z ∈ R.

Observation Note that if ai = a then, recalling the de�nition of A0, we obtain directly the
source function f .

For i ∈N, to update the attenuation map from ai to ai+1, using the information of the �rst
order scattering measurements A1 and the source function f i, we �rst computeM[ai, f i] and
then obtain ai+1 using this formula

ai+1(y, z) =
R−1
aiz
[ 1
C̃
Az1](y)

M[ai, f i](y, z)
y ∈ R2, z ∈ R.

Observation If ai = a and f i = f then, recalling the de�nition of A1, we have that ai+1 = a.
Also note that if ai, f i ≥ 0 and f > 0 in a set with positive measure, then M[ai, f i](y, z) ≥
C > 0 ∀y ∈ R2, z ∈ R for some constant depending on ai and f i.

Thus the operator that given ai returns ai+1 is

T [ai](y, z) =
R−1
aiz
[ 1
C̃
Az1](y)

M [ai,(R−1
ai
z′
[Az

′
0 ])

z′∈R
] (y, z)

y ∈ R2, z ∈ R. (4.4)

To obtain a convergence result, from the Banach �xed point method described in Sub-
section 4.1.1, it is needed to de�ne this operator in a suitable Banach space such that T is
a contraction.

Examples from synthetic SPECT data

This heuristical algorithm was implemented and tested in synthetic data corresponding to
three dimentional objects with attenuation and source distributions. The simulated photons
followed the radiative transfer equation derived in Chapter 2 (just ballistic and �rst order
scattering photons were simulated), the constant C̃ was considered equal to 1 in both the
algorithm and the synthetic data.

Regarding to the synthetic data, consider the cube [−1,1] × [−1,1] × [−1,1] discretized
with 128 × 128 × 128 pixels (the size of each pixel is 2/128 × 2/128 × 2/128), the synthetic
objects are contained the cube, particularly inside the cylinder of diameter 2 and height 2
centered in the origin. The measuring variables (angle, spatial translation and height) are all
taken 128 times, i.e. ∣Θ∣ = ∣Σ∣ = ∣H ∣ = 128, and uniformly distributed in a reasonable domain,
that is H = Σ = {(2j − 1)/128 − 1, i ∈ {1,2, ..128}},Θ = {2πj/128, j ∈ {0,1,2, ..127}} (See
Figure 4.1).
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Figure 4.1: Sketch of the measuring variables for �xed height. The grey area represents the
radioactive distribution and the parallel dotted lines represent the sector where the photons
are being measured.

Example 1: Simulated Thorax

Following the examples used in [9, 10], we constructed a three dimentional synthetic thorax
composed of simpli�ed lungs, heart, 5 ribs, vertebral column and a torso, with high radiactive
source located in the surface of the heart and low radiactive source in the rest of the object.

In Figure 4.2 we can see cross-sectional images of the example's attenuation and source
map. In Figure 4.3 we can see, for �xed angle, the simulated ballistic and �rst order scattering
measurements. In Figure 4.4 we present the obtained reconstructions and their respective
errors with three iterations of the algorithm.

To compare the results of our heuristic reconstruction with a standard source reconstruc-
tion method (that consists in applying the inverse of the Radon transform to the ballistic
measurements asuming a known constant attenuation), we test the algorithms in the next
cases:

● First test: The algorithm is tested over the displayed data in Figures 4.2, 4.3.

● Higher attenuation: The algorithm is tested over the same source map, but the
attenuation map is ampli�ed 10 times.

● 10% noise: The algorithm is tested over the same data of the �rst test, but we add
white noise to the measurements, with values from 0 to 0.1.
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Attenuation map

h 
= 

0

Radioactive Source Dist.

h 
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0.
55

Figure 4.2: Cross-sectional views of the synthetic thorax. At the left hand side there are two
views of the attenuation map. At the right hand side there are two views of the radioactive
source map. The top images are at height 0 (the circle in the right hand image corresponds
to the surface of the heart). The bottom images are at height 0.55.

● 20% noise: The setting is the same than the previous one, but the noise has values from
0 to 0.2.

The results are sumarized in Table 4.1.

Regarding the convergence of the algorithm, in Table 4.2 we can see the relative error of
the algorithm at each iteration in the �rst test.
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Ballistic Measurements First Order Scattering Meas.

Figure 4.3: For �xed angle (i.e. a frontal view of the thorax), the ballistic and �rst order
scattering measurements. The images are normalized for better view.

Table 4.1: Relative L2 error of tested reconstructions

Obtained source Standard source Obtained attenuation
First test 0.110 1.029 0.171

Higher attenuation 0.568 0.932 1.000
10% noise 0.237 1.164 0.766
20% noise 0.430 1.429 1.314

Table 4.2: Relative L2 error for iterations of the algorithm

Number of iterations 1 2 3 4 5
Source reconstruction relat. errors 1.029 0.113 0.110 0.110 0.110

Attenuation reconstruction relat. errors 0.289 0.180 0.171 0.170 0.171

Example 2: Less regular object (LRO)

This example was constructed to test the algorithm with a less regular object compared to
the thorax example. The discretization and measuring setting is the same as the previous
one.

In the LRO, both the attenuation and source maps at each height z corresponds to
shepp-logan phantoms as it can be seen in Figure 4.5, the whole three dimentional object is
constructed by rotating constinuously these phantoms at each height, with both maps not
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Figure 4.4: For height h=0, the thorax reconstructions. At the top, both images correspond
to the reconstructed attenuation map and radioactive source distribution, at the bottom the
abolute value error of the reconstructions. As it can be seen, there is a smoothing e�ect in
the reconstruction.

rotating in the same direction. The measurements of the ballistic and �rst order scattering
photons can be seen at Figure 4.6.

In Figure 4.7 we present the obtained reconstructions and their respective errors with
three iterations of the algorithm, at the left hand side is the reconstructed attenuation map
and at the right hand side the source map reconstruction, the bottom images represent the
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Figure 4.5: A cross-section of the LRO, to the left hand side the attenuation map and to the
right hand side the radioactive source map.

respective absolute value error.

We tested the algorithm over the same tests done to the thorax example, the results can
be seen in Table 4.3

Regarding the convergence of the algorithm, in Table 4.4 we can see the relative L2 error
of the algorithm at each iteration.

Taking into account the results for synthetic data, the heuristic �xed-point algorithm gives
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Ballistic Measurements First Order Scattering Meas.

Figure 4.6: External measurements of the synthetic 3-D object at a �xed angle, to the left
hand side the ballistic measurements and to the right hand side the �rst order scattering
measurements

Table 4.3: Relative L2 error of tested reconstructions

Obtained source Standard source Obtained attenuation
First test 0.234 0.352 0.329

Higher attenuation 0.549 0.759 1
10% noise 0.351 0.366 0.38
20% noise 0.407 0.411 0.58

Table 4.4: Relative L2 error for iterations of the algorithm

Number of iterations 1 2 3 4 5
Source reconstruction relat. errors 0.3519 0.3308 0.3289 0.3287 0.3286

Attenuation reconstruction relat. errors 0.305 0.2389 0.2344 0.2345 0.2347

better approximations to the source map in contrast to a standard method of considering
constant attenuation. As it can be seen from Tables 4.4 and 4.2 it stabilizes at the third
iteration, but just can achieve a regularized version of the functions to reconstruct. As a
comment, although 3 iterations is fast, each iteration requires a lot of computing power,
since it must handle the entire three dimentional object and not just a 2 dimensional slice of
it. On average the standard method requires less than a minute to compute, our algorithm
takes 20 minutes per iteration (These times measured in a personal computer).
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Figure 4.7: The obtained reconstructions for a speci�c height, the images at the top are the
reconstructed maps az to the left hand side and fz to the right hand side, at the bottom
there are the respective error.

Example from real SPECT data

We also tried the heuristic algorithm with real data, the measures can be seen in Figure
4.8, these are lateral measurements of the ballistic and �rst order scattering photons of an
unknown object.

With regards to the data, it can be seen that has low resolution and high noise levels, the
total amount of angles measured is 128, the height and spatial measures are 128 each one,
thus ∣Θ∣ = ∣Σ∣ = ∣H ∣ = 128. These measurements were provided by the "Biomedical Imaging
Center of the Ponti�cia Universidad Católica de Chile".
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Figure 4.8: The above row are ballistic measurements of the object, the below row are �rst
order scattering measurements of the object

Since the object is unknown we dont know the accuracy of the obtained reconstructions,
thus we will only compare the results with the standard method of reconstruction.

The reconstructions of the source map can be seen in Figure 4.9, these are three di�er-
ent heights at which the reconstruction was made. The above images are the result of our
�xed-point algorithm and the below images are the reconstructions obtained using a con-
stant attenuation map. All measurements were smoothed for better visualization, also all
reconstructions were normalized, the constant C̃ from operator (4.4) was assumed equal to
1 and the starting value of the �xed-point algorithm was a constant attenuation map.

We observe that the apparent quality of the source reconstruction with the �xed-point
method is better than the standard reconstruction, the images have less noise and the details
are more clear.

Lastly, the reconstructed attenuation map obtained by our algorithm can be seen in Figure
4.10, these reconstructions seem to contain a large amount of noise and are very similar in
structure to the reconstructed source map, since we dont know exactly the attenuation map
and do not have a alternative method to compare with, we can not judge properly the results.
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Figure 4.9: These are source map reconstructions at di�erent heights, the above reconstruc-
tions corresponds to the �xed-point method, the below reconstructions are those obtained
with the standard reconstruction method.
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Figure 4.10: Reconstructed attenuation map obtained with the implemented �xed-point
algorithm.
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Conclusion

We have extended the standard mathematical model that explains the measurements used
for the inverse problem regarding the SPECT medical method. This extension is based
on considering scattering e�ects in the photon dynamics and assuming the possibility of
measuring scattered photons. To avoid the incorporation of more unknown variables to the
inverse problem it is also assumed a strong relation between the scattering properties of a
medium and its attenuation properties. As a result of this extension we obtained an inverse
problem that has more information available to reconstruct the same unknown variables as
the original problem (the identi�cation problem).

We have formally linearized the obtained equations and we have deduced an inversion
theorem for the resulting linear operator under small attenuation assumptions and su�cient
regularity of the reference attenuation and source map, this linearization was done by means
of taking the directional derivative of the operator that represents the available data for our
inverse problem

F [a, f](s, θ, z) = (
Raz[fz](s, θ)

C̃Raz[azMz[a, f]](s, θ)
) s, z ∈ R, θ ∈ S1

With the deduced theorem we have provided guidelines to implement algorithms to solve
the derived inverse problem for the linear and non-linear cases, althogh with no convergence
results. For the full non-linear case, we have implemented an heuristic algorithm that tested
over synthetic and real data works better than the standard inversion procedure, consisting
in assuming a constant attenuation map.

Here are some open problems that have arisen from the present work.

● Prove Fréchet di�erentiability of the operator F that represents the available information
for our inverse problem.

● Demonstrate a convergence result for the presented algorithms.

These problems are needed for a deeper understanding of the proposed algorithms.
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