
UNIVERSITY OF CHILE
FACULTY OF PHYSICS AND MATHEMATICS
DEPARTMENT OF MATHEMATICAL ENGINEERING

NEW COMPLEXITY BOUNDS FOR EVALUATING CRPQs WITH PATH
COMPARISONS

Submitted to the University of Chile in fulfillment of the thesis requirement to obtain
the degree of Engineer in Mathematics.

PABLO BENITO MUÑOZ FUENTES

ADVISOR:
PABLO BARCELÓ BAEZA

COMMITTE:
CLAUDIO GUTIERREZ GALLARDO

MARTIN MATAMALA VASQUEZ

SANTIAGO - CHILE
JANUARY 2014

Abstract

For many problems arising in the setting of querying data in graph databases (such as
finding semantic associations in RDF graphs, exact and approximate pattern matching,
sequence alignment, etc.) it is a common requirement to ask for entities joint by a se-
quence of relational labels conforming to some regular pattern. For this purpose, the query
language CRPQpSq have been proposed to extend the widely studied class of conjunctive
regular path queries (CRPQs), which is insufficient for this task, in order to compare
paths using relations on words from the class S.

Little is known about the precise computational complexity of evaluating queries from
CRPQpSq in large graph databases when S is a single relation of interest for its natural
appearance in database applications, such as subsequence (ĺss), suffix (ĺsuff) and subword
(ĺsw). This question is thus studied in this thesis, providing new bounds for the complex-
ity of evaluating queries in CRPQpĺssq, CRPQpĺsuffq and CRPQpĺswq. The first one is
shown to be impractical, by constructing a query which is NP-complete to evaluate. The
evaluation of the later two is shown to be PSpace-complete by reducing the problem to
word equations with regular constraints. The class CRPQpĺsuffq is shown to be practical,
by showing the evaluation of its queries to be in NLogSpace when these are considered
fixed, matching the complexity of standard query languages.

This thesis also raises interesting theoretical questions about word equations with
regular constraints. Namely, what is the complexity of solving fixed equations with con-
straints as input, which to the best of the author’s knowledge is an open question in
the literature. A result is established for the simplest case, showing that for a class of
equations satisfiability can be decided in NLogSpace.

ii

Resumen

En muchos problemas que surgen en el contexto de consultar información en bases de datos
estructuradas sobre grafos (como encontrar asociaciones semanticas en grafos RDF, en-
contrar emparejamientos exactos o aproximados the patrones de texto, realizar alineación
de secuencias de texto, etc.) es un requerimiento común el buscar entidades unidas por
secuencias de etiquetas relacionales de acuerdo a un patrón regular. Para este propósito,
el lenguaje de consulta CRPQpSq ha sido propuesto para extender la altamente estudiada
clase de consultas conjuntivas por caminos regulares (CRPQs por su sigla en inglés), la
cual es insuficiente para esta tarea, realizando comparación de caminos con relaciones en
la clase S.

Poco es conocido acerca de la complejidad computacional precisa de la evaluación de
consultas en CRPQpSq cuando S es una relación de interés por aparecer naturalmente
en aplicaciones en bases de datos, como lo son subsecuencia (ĺss), sufijo pĺsuffq y subpal-
abra (ĺsw). Esta pregunta es consecuentemente estudiada en esta tesis, proporcionando
nuevas cotas de complejidad para la evaluación de consultas en los lenguajes CRPQpĺssq,
CRPQpĺsuffq y CRPQpĺswq. Se muestra que el primer lenguaje es dificil de ser practi-
cable, construyendo una consulta en él cuya complejidad de evaluación es NP-completo.
Se muestra también que la evaluación de consultas en los últimos dos lenguajes puede
realizarse en PSpace, mediante la reducción del problema a ecuaciones de palabras con
restricciones regulares. Adicionalmente, se muestra que la classe CRPQpĺsuffq es práctica,
construyendo un algoritmo de evaluación cuya complejidad, cuando la consulta es con-
siderada una constante, está en NLogSpace , la cuál es una complejidad de evaluación
estandar en este contexto.

Esta tesis plantea además interesantes preguntas teóricas sobre ecuaciones de palabras
con restricciones regulares. Más precisamente, cuál es la complejidad de resolver ecua-
ciones fijas con restricciones como entrada, la cual es una pregunta abierta en la literatura
al leal saber y entendimiento del autor. Un resultado es establecido para el caso más sim-
ple, mostrando una clase de ecuaciones cuya satisfacibilidad con restricciones regulares
puede ser decidida en NLogSpace.

iii

Agradecimientos

Quiero agradecer en primer lugar a mi familia, por su apoyo incondicional durante todo
mi proceso de titulación.

Agradezco también al profesor Mart́ın Matamala por haber estado siempre disponible
para discutir dificultades que apareciesen durante mi trabajo.

Además, agradezco a mis compañeros del Departamento de Ingenieŕıa Matemática que
se mostraron disponibles para discutir problemas relacionados a mi memoria, y para in-
troducirme a ciertas herramientas de programación, en particular a Sebastian Bustamante.

Por último pero no menos importante, quisiera agradecer a mi profesor gúıa Pablo Barceló
por continuamente depositar su confianza en mi, junto con una buena cuota de exigencia
y motivación que fueron claves para el desarrollo de mi memoria.

iv

Contents

1 Introduction 1
1.1 Organization . 3

2 CRPQs with path comparisons 4
2.1 Preliminaries . 4

2.1.1 Computable string relations . 4
2.1.2 Complexity measures for database querying 6

2.2 Conjunctive regular path queries with path comparisons 7
2.3 Languages of the form CRPQpSq and open questions 9

3 A new link between CRPQpSq evaluation and word equations 12
3.1 Reducing to word equations . 12
3.2 Word equations with regular constraints 15
3.3 Relations expressible by word equations - EQ 15
3.4 EvalCRPQ pEQq is PSpace-complete . 16

4 Evaluating CRPQpĺsuffq queries 19
4.1 Working with EvalCRPQ pĺsuffq equations 19
4.2 Solving constrained equations with finite minimal solutions 21
4.3 Suffix-like equations . 24
4.4 The data complexity of EvalCRPQ pĺsuffq is in NLogSpace 30

5 A CRPQpĺssq query that is NP-hard to evaluate 35
5.1 Unshuffling a square . 35
5.2 Coding Square as an EvalCRPQ pĺssq instance 36

6 Conclusions and Further Research 42

Bibliography 44

v

Chapter 1

Introduction

Graph databases are mathematical objects able to describe real world entities and the re-
lations between them. A standard model for abstracting these is an edge-labelled directed
graph, whose vertices represent the entities, and whose edge labels indicate the type of
relation between them (see [5] for a survey). Many are the areas that motivate their
use and study, starting early in the 80s with hypertext systems [19, 54], semi-structured
data [2, 13] and object databases [28] in the 90s, and in the last decades including the
semantic web [7, 45], social networks [4, 23, 50, 51], biological networks [37, 38, 40] and
transportation networks [11], among many others (see [57] for a survey).

In these areas of application, data is required to be accessed in some particular way
in order to retrieve interesting information. Accordingly, querying tools and prototypes
are designed to match these requirements. These are named query languages, and the
main concern from a database point of view is to study at what extent they are expressive
enough for their intended purpose, and what is the computational cost of evaluating them
in large databases, or its data complexity [55].

For this reason, languages for querying graph databases have been developed and stud-
ied since the late 80s. They usually query the topology of the graph, often leaving data
that might be stored in its vertices to standard database engines. They are designed com-
bining various reachability patterns, according to the applications requirements intended
to be addressed.

A common requirement from graph database users, for instance, is to find pairs of
entities joint by a sequence of relational labels conforming to some specified pattern. This
gave origin to one of the main building blocks for query languages, which are regular path
queries, or RPQs [21, 20], in which this pattern is specified by a regular language. A
natural extension for these are the conjunctive regular path queries, or CRPQs [25, 15],
which use conjunction of RPQs along with existential quantification to create more com-
plex queries. These have been extensively studied, showing good properties such as their
low data complexity, which is in NLogSpace.

Despite such properties, the expressiveness of CRPQs became insufficient in applica-
tions such as the Semantic Web or biological networks, due to their inability to compare

1

Chapter 1

labelled paths joining entities. In these areas, it is a usual requirement to compare paths
based for instance on specific semantic association in the case of RDF languages [6], or
on similarity, trough their edit distance, for biological networks.

In order to address this limitation, an extension of CRPQs with relations that per-
mit to compare paths was proposed [10]. It used regular relations for comparing labelled
paths, which include equality, equal length, or fixed edit distance, among others. The
extension of CRPQs with this type of relations, or CRPQ(REG), was also shown to have
polynomial time data complexity.

The expressiveness of CRPQ(REG), however, was still short in many applications re-
quiring to compare paths based on richer relations. For instance, semantic associations
between paths in RDF applications often deal with relations such as subword or subse-
quence. Yet this kind of relations are not regular, but rational. Nevertheless, the use of
rational relations on query languages is to be done with extreme care, for simply changing
regular by rational in CRPQ(REG) makes query evaluation an undecidable problem [10].

According to this, several solutions were considered and studied to tackle this ex-
pressiveness limitation while keeping an acceptable complexity of query evaluation. The
most direct one, extending CRPQ(REG) with rational instead of regular general rela-
tions, makes query evaluation undecidable, as it was mentioned before. Another proposed
solution was to extend CRPQ(REG) with particular rational relations that are of interest
in practice, such as suffix, subword or subsequence. Nevertheless, the evaluation of such
queries remained either undecidable, or non-elementary in data complexity, and thus pro-
hibitively high [9]. By additionally restricting the syntactic shape of queries to satisfy
certain acyclic forms, the evaluation complexity can be shown to be in PTime. This,
however, is too restrictive for some important applications, since relations such as the
ones mentioned above do not naturally define acyclic patterns.

A query language that was shown to have a balanced trade-off between expressiveness
and complexity was obtained by extending CRPQs directly with specific binary rational
relations used in practice, such as suffix, subsequence and subword. This leads to the
following three query languages : CRPQ(ĺsuffq, CRPQ(ĺssq and CRPQ(ĺswq. The data
complexity of evaluation for the first two was shown to be in NP [9]. Some questions
about this query language, however, remained unanswered. They relate to the precise
complexity of evaluating these queries, asking if the given bounds were tight or if better
evaluation algorithms could be found. Moreover, the question about the decidability of
queries in CRPQ(ĺswq was left open. These questions are studied in detail in this thesis.

In particular, the following questions are studied:

1. What is the precise complexity of evaluation for queries in CRPQ(ĺsuffq, CRPQ(ĺssq

and CRPQ(ĺswq?

2. What are the limits of tractability for the different combination of features of the
query languages mentioned above?

The following results are established trough this work:

2

1.1. Organization Chapter 1

First, by reinterpreting the tools that have been used in the literature to study the
problem, it is shown that the evaluation of CRPQ(ĺsuffq and CRPQ(ĺswq queries is linked
to the problem of solving word equations with regular constraints [46]. This provides
new and strong combinatorial tools to the subject, and shows that the evaluation of
CRPQ(ĺswq queries is indeed decidable, and can be done in Pspace.

Secondly, the complexity of evaluating CRPQ(ĺsuff) queries is studied in depth, and
a better algorithm is constructed showing that their evaluation is in NLogSpace, hence
in PTime.

Finally, in the case of subsequence, the previously known NP algorithm for evaluating
queries in CRPQ(ĺss) is shown to be optimal by proving a matching NP lower bound.

These results show, first, that the previously known NP upper bound for evaluat-
ing CRPQ(ĺsuff) queries can be lowered to PTime. Consequently, it matches the data
complexity of standard query languages, such as CRPQs and CRPQ(REG). In contrast
to this, CRPQ(ĺssq queries are unlikely to be practical, since this class contains queries
which are NP-hard to evaluate. In the case of CRPQ(ĺswq, the question now is whether
the PSpace algorithm given for evaluation is optimal, or if better algorithms can be found.

Additionally, this work raises interesting theoretical questions about the tools used to
establish these results. These relate to the complexity of solving fixed word equations
with variable regular constraints, which to the best of the author’s knowledge is an open
question in the literature. A partial answer is given in the simplest case, showing that for
a class of equations satisfiability can be efficiently decided in NLogSpace.

1.1 Organization
In Chapter 2, the reader is introduced to the concepts used throughout this work: pre-
liminaries on formal languages, computable string relations, CRPQs and the main tools
used in their study, along with previous results concerning them. Chapter 3 is devoted to
study CRPQs comparing paths with a vast class of relations including suffix and subword,
for which their evaluation is shown to reduce to solving word equations with regular con-
straints, showing the complexity of their evaluation to be in PSpace. In Chapter 4, the
query language CRPQpĺsuffq is studied in depth, showing its data complexity of evalua-
tion to be in NLogSpace. It is also shown in Chapter 4 that for a class of word equations,
satisfiability of them with variable regular constraints is decidable in NLogSpace. In
Chapter 5 a query in CRPQpĺssq is constructed such that its data complexity of evalu-
ation is NP-hard. Finally, the results of this thesis are summarized in Chapter 6, which
also points out open questions that will be object of study in following research.

3

Chapter 2

CRPQs with path comparisons

In this chapter, the main problems studied in this thesis are presented, along with previ-
ous results obtained for them. After providing basic definitions and notation, the query
language of conjunctive regular path queries with path comparisons is defined. Its ability
to achieve its intended purpose is then put into context by providing some known results
about their evaluation when considering different classes of relations for comparing paths.
This leads to some open questions about their complexity of evaluation, which are finally
explained to establish the goals of this work.

2.1 Preliminaries
Throughout this work, capital greek letters Σ, Γ, Ψ shall be used for denoting finite
collections of symbols, or alphabets. The free monoid generated by Σ is the set pΣ˚, ¨, εq
of finite strings with symbols from Σ, along with the associative concatenation operator
¨ and the empty string ε. Given a string w P Σ˚, |w| denotes the number of symbols
conforming w. For a symbol a P Σ, |w|a counts the number of occurrences of symbol a in
w. For w P Σ˚, wri..js stands for the substring of w bounded by positions i, j, wris for
wri..is, and wri..s for wri..|w|s. For w P Σ˚, alphpwq Ď Σ, is the set of symbols appearing
in string w. Finally, for Σ0 Ĺ Σ and w P Σ˚, w|Σ0 stands for the string obtained from w
by removing any symbol not in Σ0. For an integer n P N, rns denotes the set t1, ..., nu.

2.1.1 Computable string relations
This work is inherently related to computable relations over Σ˚, and for complexity pur-
poses, they are classified according to the computing devices needed in order to recognize
them. Three classical classes of relations studied in this work are defined: recognizable
(REC), regular (REG), and rational (RAT) [12, 17]. When the arity of the relation is
relevant, it is added as subscript (e.g. the class of binary rational relations is RAT2).

Recognizable n-ary relations are subsets R Ď pΣ˚qn for which a finite monoid M and
a morphism f : pΣ˚qn ÑM exist, such that R “ f´1pM0q, for some M0 ĎM . Recogniz-
able relations are known to coincide with finite unions of sets L1 ˆ ¨ ¨ ¨ ˆ Ln, where each

4

2.1. Preliminaries Chapter 2

Li Ď Σ˚ is a regular language [12].

Regular n-ary relations are subsets R Ď pΣ˚qn recognized by a finite automaton A
over a padded alphabet Σn

K “ pΣ Y tKuqn, where K is symbol not in Σ. A string n-
tuple w̄ “ pw1, ..., wnq P pΣ˚qn can be seen as a string bw̄ P pΣn

Kq
˚, whose i-th symbol

āi “ pa
i
1, ..., a

i
nq P Σn

K is a tuple whose j-th element, aij, is the i-th symbol of wj, if i ď |wj|,
and K otherwise. Accordingly, A processes w̄ in a synchronous fashion (see Figure 2.1).

A

...

w1 :

w2 :

w3 :

a a b a a K K . . .

b a a K K K K . . .

b a b b K K K . . .

Figure 2.1: A finite automaton over pΣn
Kq
˚ reading a string bpaabaa, baa, babb, ...q.

Example 2.1.1. Examples of regular relations prevalent in database applications
are prefix, equal length and fixed edit distance. For instance, in the case of prefix, for a
given pair of strings pw1, w2q P Σ˚ˆΣ˚ it is easy to recognize w1 as a prefix of w2 with
a synchronous two-headed automaton, which simultaneously reads every symbol from
both strings rejecting whenever they are not equal and accepting if the first string
ends.

Rational n-ary relations are subsets R Ď pΣ˚qn that can be described by regular ex-
pressions with tuple symbols from pΣY tεuqn using the union, concatenation and Kleene
star operators. Equivalently, rational relations are languages recognized by n-tape au-
tomata, whose read-only-once heads can move independently in each step. In contrast
to regular relations, the automata recognizing rational relations processes strings tuples
asynchronously (see Figure 2.2).

A

a a b a a b b b a a . . .

b a a a b a b a a b . . .

b a b b b b a a b b . . .

w1 :

w2 :

w3 :

Figure 2.2: A finite automaton over pΣ˚q3 reading a string paabaabbbaa..., baaababaab..., babbbbaabb...q.

5

2.1. Preliminaries Chapter 2

Example 2.1.2. Examples of rational relations naturally appearing in database
applications are suffix (ĺsuff), subword (ĺsw) and subsequence (ĺss):

1. u ĺsuff v ô Dp P Σ˚, v “ pu

2. u ĺsw v ô Dp, s P Σ˚, v “ pus

3. u ĺss v ô u is obtained by removing some symbols from v.

These relations can be defined by the following regular expressions over pΣ Y tεuq ˆ
pΣY tεuq:

1. ĺsuff :“ p
Ť

aPΣpε, aqq
˚
¨ p
Ť

aPΣpa, aqq
˚

2. ĺsw :“ p
Ť

aPΣpε, aqq
˚
¨ p
Ť

aPΣpa, aqq
˚
¨ p
Ť

aPΣpε, aqq
˚

3. ĺss :“ p
Ť

aPΣtpε, aq, pa, aquq
˚

These three classes of regular relations are known to coincide when unary, that is
REC1 “ REG1 “ RAT1, but this is not the case for general arity. Indeed, for k ą
1, RECk Ĺ REGk Ĺ RATk [12]. For instance, ĺpref P REG2zREC2 and ĺsuff P

RAT2zREG2.

It is typically assumed that relations are given as input for a problem encoded by
the automata that defines them. Thus, for instance, a recognizable m-ary relation R “
Ť

i L
i
1ˆ¨ ¨ ¨ˆL

i
m, is given by the automata tN i

jpQ
i
j,Σ, δij, sij, F i

j qui,j (without ε-transitions)
each recognizing the regular language Lij.

2.1.2 Complexity measures for database querying
The standard model for a graph database (graph-db henceforth) is that of an edge-labelled
directed graph GpV,Eq with E Ď V ˆΣˆ V , for a fixed finite alphabet Σ [5]. A query is
defined by a logical sentence, and associates with each graph-db GpV,Eq a set of tuples of
vertices in V satisfying it. Query languages are henceforth classes of queries closed under
isomorphism. The query evaluation problem is: Given a graph-db G and query Q, does
Q hold in G? When this is so, it is denoted as G |ù Q.

From a standard complexity theory point of view, the cost of evaluating a query Q
over a graph-db G should be measured according to the size of the given input: |G| ` |Q|.
This approach is not conducive, however, in database applications, since as early noted
by theoreticians [55, 29, 16], the scales of the database and query sizes are incomparable;
databases in the real world are huge in size when compared to the size of the queries,
having different impacts in the complexity of the problem.

This observation led to distinguish the role of the query and the database when mea-
suring computational complexity. Accordingly, two measures of complexity have been
studied [55]: data complexity and combined complexity. For a query language L:

• Data complexity studies the problem t〈G〉 : G |ù Qu for a fixed query Q P L.
6

2.2. Conjunctive regular path queries with path comparisons Chapter 2

• Combined complexity studies the problem t〈G,Q〉 : G |ù Q, G graph-db and Q P Lu

2.2 Conjunctive regular path queries with path com-
parisons

Let GpV,Eq, with E Ď V ˆ Σ ˆ V and Σ a finite alphabet, be a graph-db. A path ρ
between vertices u and v in V is a sequence ρ “ v0a1v1a2v2 . . . amvm, such that v0 “ u,
vm “ v and for each i ă m, pvi, ai`1, vi`1q P E. The label of such a path ρ, denoted by
λpρq, is the string a1...am P Σ˚.

Queries over a graph-db are typically navigational, i.e. they allow to recursively tra-
verse the edges of a graph-db while checking a regular condition. The main building
block for navigational queries over graph-dbs is the class of regular path queries, or RPQs
[21, 20]. An RPQ is nothing else than a regular language over Σ. Formally, these are ex-
pressions of the form Qpx, yq : x L

ÝÑ y, for a regular language L Ď Σ˚, whose evaluation
over a graph-db G is the set

QpGq “ tpu, vq P V ˆ V : there exists ρ a path between u and v, such that λpρq P Lu

The cost of evaluating RPQs is low, since their data complexity is in NLogSpace.
When originally introduced, however, RPQs where argued to be too simple to be useful in
practice, lacking features as the possibility to ask for richer patterns through conjunction of
atoms [44]. The query language addressing this limitation is the closure under conjunction
and existential quantification of RPQs, which forms the class of conjunctive regular path
queries, or CRPQs [25, 15, 22]. A CRPQ φpx̄q is formally written as

φpx̄q : Dȳ
m
ľ

i“1
Qipui, u

1
iq, with Qipx, yq :“

´

x
Li
ÝÑ y

¯

for each 1 ď i ď m

For a given graph-db G, a vertex tuple ā, and φ P CRPQ, G |ù φpāq if and only if in G
there is a tuple of vertices b̄, and an identification vi, v

1
i of vertices from ā, b̄ interpreting

the variables ui, u1i from φ such that for every i ď m, pvi, v1iq P QipGq. The arity of the
query, i.e. the number of non-quantified variables in x̄, is denoted arpφq. Thus for a
CRPQ φ, its evaluation over G is

φpGq “ tā P V arpφq : G |ù φpāqu

When arpφq “ 0, meaning that all of its variables are quantified, the query is said to be
Boolean, and its evaluation φpGq equals 1 or 0 according to the truth value of G |ù φ.

Example 2.2.1. Let G0pV,E0q be a directed graph and s, t two of its vertices. Let
GpV,Eq be the graph-db obtained by labelling every edge in G with a symbol σ from
ta, b, cu such that

pu, σ, vq P E ô pu, vq P E0 ^ σ “

$

&

%

a if u “ s
b if u ‰ s ^ v ‰ t
c if v “ t

7

2.2. Conjunctive regular path queries with path comparisons Chapter 2

Consider now the Boolean CRPQ query φ : Dx, y, x L
ÝÑ y with L “ a ¨ pa ` bq˚ ¨ c.

It is easy to see from this construction that φpGq “ 1 if and only if t is reachable
from s in G0. From this, it follows that the data complexity of evaluation of CRPQs
is NLogSpace hard, since the query φ is independent from the reachability instance
〈G, s, t〉 ..

Similarly, the data complexity of CRPQs is in NLogSpace, and its queries are thus
practical to be evaluated. However, in order to be useful in some applications, more fea-
tures commonly required have to be considered. More precisely, the definition for CRPQs
does not allow comparisons of labelled paths joining different pairs of vertices pui, u1iq,
since these paths are not specified in the syntax of its queries. For instance, the CRPQ
query Qpx, zq : Dy,

´

x
L1
ÝÑ y

¯

^

´

y
L2
ÝÑ z

¯

asks for pairs of vertices pu, vq joint by a
labelled path with a first part conforming to L1 and the second to L2. Yet it would not
be possible to additionally ask in the query the label in L2 to be a suffix of the one in L1,
or any other string relation between them.

The class of conjunctive regular path queries with path comparisons, or CRPQpSq,
addresses this limitation by specifying in their syntax pairs of paths to be compared, and
a class S of binary relations over Σ˚, such as REG or RAT, used for this purpose [9].
Formally, φ P CRPQpSq if

φpx̄q : Dȳ

»

–

m
ľ

i“1

´

ui
χi : Li
ÝÑ u1i

¯

^
ľ

pi,jqPI

Si,jpχi, χjq

fi

fl

where I Ď rmsˆrms and for each pi, jq P I, Si,j is a relation in S. In this syntax, variables
χi have the role of representing paths between vertices ui and u1i in the graph-db. It is
important to note that for CRPQ(S) queries, the relations tSi,jupi,jqPI Ă S and the index
set I Ď rms ˆ rms are part of the query. Additionally, if the complexity of evaluation
when using a particular relation is to be studied, the class S could be a singleton, such as
tĺsuffu, in which case this class denoted CRPQ(ĺsuff).

For a graph-db G, a vertex tuple ā and a CRPQ(S) query φ, G |ù φpāq is true if and
only if in G there is a vertex tuple b̄, an identification vi, v1i of vertices from ā, b̄ interpret-
ing the variables ui, u1i, and paths ρi between vertices vi and v1i interpreting the variables
χi, such that for every i ď m, λpρiq P Li and for every pi, jq P I, pλpρiq, λpρjqq P Si,j.
Likewise, the arity of φ P CRPQpSq is the number of its non-quantified vertex variables
in x̄, and their evaluation over a graph-db φpGq is defined in the same way as for CRPQs.

Example 2.2.2. Consider a set 〈L1, ...Lm〉 of regular languages over an alphabet Σ.
Let G be the trivial graph-db Gptuu, Eq with E “ tpu, a, uq : a P Σu, and the index
set I “ tp1, 2q, p2, 4q, ..., pm ´ 1,mq, pm, 1qu with the edges of a directed cycle on m

8

2.3. Languages of the form CRPQpSq and open questions Chapter 2

vertices. Consider also the Boolean query in CRPQpĺswq given by

φ : Dx

»

–

m
ľ

i“1

´

x
χi : Li
ÝÑ x

¯

^
ľ

pi,jqPI

χi ĺsw χj

fi

fl

It is easy to see from this construction that φpGq “ 1 if and only if there is a string
in Σ˚ present in each language Li, since ĺsw is is transitive and anti-symmetric. It
follows from this that evaluation of CRPQpĺswq is PSpace-hard.

Example 2.2.3. Consider a graph-db GpV,Eq with ta, bu P Σ and the CRPQpĺssq

query Q given by:

Qpxq : Dy, y1
´

x
χ : Σ˚¨a
ÝÑ y

¯

^

´

x
χ1 : Σ˚¨b
ÝÑ y1

¯

^ pχ ĺss χ
1
q

The set QpGq contains all the vertices u in V such that there are two paths starting
from u, one ending with label a, the other ending with label b, and such that every
edge label appearing in the second also appears, in the same order, in the first.

The query evaluation problem, EvalCRPQ pSq, receives as input a tuple 〈G, v̄, φ〉 of
a graph database GpV,Eq, a vertex tuple v̄ P V arpφq and a query φ P CRPQpSq, asking if
v̄ P φpGq. This corresponds to the combined complexity of evaluation. When the query
φ P CRPQpSq is fixed, the problem is denoted EvalCRPQ pS, φq. This corresponds to
the data complexity of evaluation.

2.3 Languages of the form CRPQpSq and open ques-
tions

Languages that extend CRPQs with path comparisons come in different flavours. The
simplest such language is the class CRPQ(REG), also known as extended CRPQs [10].
Queries in this class use regular relations to compare paths, and were shown to have its
data complexity in NLogSpace, matching that of standard query languages previously
discussed.

Theorem 2.3.1 ([10]).
The problem EvalCRPQ pREGq is in PSpace, and for each query φ P CRPQpSq, the
problem EvalCRPQ pREG, φq is in NLogSpace.

Regular relations do not include, however, the relations such as Subword, Suffix or
Subsequence, introduced in Example 2.1.2. In order to overcome this limitation, lan-
guages extending CRPQ(REG) with rational features have been introduced. The most
direct solution would be extending the previous language with all rational relations, which
yields the class CRPQ(RAT). This however, has an immense cost on query evaluation,
which becomes undecidable.

9

2.3. Languages of the form CRPQpSq and open questions Chapter 2

Proposition 2.3.2 (Folklore).
EvalCRPQ pRATq is undecidable.

This situation could perhaps be avoided, if instead of using arbitrary rational relations,
CRPQ(REG) was extended with just an extra binary rational relation of practical inter-
est, such as ĺsuff, ĺsw and ĺss, yielding, for instance, the language CRPQ(REGY ĺsuff).
However, for ĺsuff and ĺsw the evaluation problem for the resulting language is still un-
decidable, while for ĺss it is decidable, but with prohibitive complexity.

Theorem 2.3.3 ([9]).

• There are queries φ P CRPQpREG Y tĺsuffuq and φ1 P CRPQpREG Y tĺswuq,
such that EvalCRPQ pREGY tĺsuffu, φq and EvalCRPQ pREGY tĺswu, φ

1q are
undecidable.

• There is a query φ P CRPQpĺssq such that EvalCRPQ pREG Y ĺss, φq is
decidable in non-elementary complexity.

A possible approach to find better complexity bounds is to further restrict the lan-
guage, by completely disallowing regular relations. This yields the classes CRPQ(ĺss),
CRPQ(ĺsw) and CRPQ(ĺsuff). What is known about the complexity of evaluating these
languages is the following :

Theorem 2.3.4 ([9]). The following is true for S P tĺss,ĺsuffu:

• The problem EvalCRPQ pSq is in NExpTime.

• For each φ P CRPQpSq, the problem EvalCRPQ pS, φq is in NP.

The table in Figure 6.1 summarizes what was previously known about CRPQ(S) query
evaluation.

Query S “ĺss S “ĺsuff S “ĺsw S P RAT
CRPQ(REG Y S) decidable, NEC undecidable undecidable undecidable

CRPQ(S) NP NP ? undecidable
CRPQ(S) NExpTime NExpTime ? undecidable

Figure 2.3: Upper bounds for data and combined complexity, respectively, of CRPQs comparing paths
with Subword, Suffix and Subsequence relations. NEC stands for non-elementary complexity.

The questions studied in this thesis are the following:

1. Is NP the optimal upper bound for the complexity of evaluating CRPQpĺssq and
CRPQpĺsuffq queries?

The known upper bounds for these evaluation problem were achieved with tech-
niques based on NFA-cutting properties allowing to show the existence of polynomi-
ally or exponentially sized membership witnesses. Other tools could be incorporated

10

2.3. Languages of the form CRPQpSq and open questions Chapter 2

to construct better evaluation algorithms, or instead, look for problems which could
be described by means of these relations in order to show the existence of queries
NP-hard to evaluate.

2. Is the evaluation of CRPQ(ĺsw) queries decidable? and if so, what is its data
complexity?

The techniques previously used to study this question, which worked for the
preceding two query languages, were unfruitful when working with ĺsw to find either
an upper or lower complexity bound. It would then seem necessary to look elsewhere
for tools to study this question.

11

Chapter 3

A new link between CRPQpSq
evaluation and word equations

In this chapter the combined complexity of evaluating CRPQpĺswq and CRPQpĺsuffq is
shown to be PSpace-complete, by establishing an unprecedented link between the eval-
uation of these query languages and the problem of solving word equations with regular
constraints.

First, the idea behind the reduction is suggested for the languages CRPQpĺswq and
CRPQpĺsuffq, which is then generalized to the class of CRPQs comparing paths with
relations expressible by word equations. In order to do so, word equations with regular
constraints are introduced, followed by the class EQ of relations over Σ˚ expressible by
word equations. Finally, the reduction for the language CRPQ(EQ) is given, along with
the consequences on the complexity of evaluating its queries.

3.1 Reducing to word equations
The first step when working with CRPQ(ĺsw) or CRPQ(ĺsuff) is an intermediary problem
which holds the essence of evaluating their queries. Before giving its definition, consider
the following example to introduce the idea.

Let Q P CRPQpĺswq be a binary query given by

Qpx, yq :
´

x
χ : Σ˚¨a
ÝÑ y

¯

^

´

y
χ1 : Σ˚¨b
ÝÑ x

¯

^ pχ ĺsw χ
1
q

with ta, bu Ă Σ. Let GpV,Eq be a graph-db with E Ď V ˆ Σ ˆ V , and pu, vq P V ˆ V a
pair of its vertices. According to the definition, 〈G, pu, vq, φ〉 P EvalCRPQ pĺswq if and
only if there is in G a path ρ between u and v whose final label is a, and a path ρ1 between
v and u whose final label is b, such that λpρq ĺsw λpρ

1q.

Another way to see this is to interpret the graph-db G as the transition function of
an NFA over Σ with states V , without specified starting and accepting states. Formally,
this transition function is δ : V ˆ Σ Ñ PpV q such that

@x, y P V, a P Σ, y P δpx, aq ô px, a, yq P E

12

3.1. Reducing to word equations Chapter 3

For instance, NpV,Σ, δ, u, tvuq is an automaton recognizing a string w P Σ˚ if and only if
a path exists between u and v in G whose label is precisely w. If in addition to this, A is
the NFA recognizing Σ˚ ¨ a, then a string w P Σ˚ is recognized by the product automaton
N ˆA if and only if a path whose final label is a exists between u and v in G. Similarly,
one can define the product automaton N 1 ˆA1 recognizing the labels of paths existing in
G between v and u ending with a b label.

If L and L1 are the regular languages defined by N ˆA and N 1 ˆA1, respectively, the
evaluation problem then translates into checking if a pair pw,w1q P LˆL1 exist, such that
w ĺsw w

1 ´ i.e. pw,w1q P pLˆ L1q
Ş

ĺsw. This is a particular instance of a broader prob-
lem known as the generalized intersection problem, and the extent to which this reduction
holds is far more general.

Formally, the generalized intersection problem, GenInt pREC˚,Sq, for a class S of
binary relations over Σ˚, receives as input a tuple 〈I, R, S〉 of an index set I Ď rmsˆ rms,
a recognizable m-ary relation R “ L1 ˆ ... ˆ Lm P REC˚ (where REC˚

Ă REC is the
subclass that does not consider unions of products of regular languages), and specified
relations S “ tSi,jupi,jqPI such that for each pi, jq P I, Si,j is in S. The problem asks
whether strings w1, ..., wm P Σ˚ exist such that for each i P rms, wi P Li, and for each
pi, jq P I, pwi, wjq P Si,j. The set of tuples in R satisfying these conditions will be hence-
forth denoted as R

Ş

I S. As in the case of CRPQs, when a single relation is to be studied
S can be a singleton. When only the recognizable part of the input is considered, and the
rest is fixed, this is indicated by subscripts, such as GenIntI,ĺsw pREC˚

q. The following
then holds:

Theorem 3.1.1 ([9]).

• The problem EvalCRPQ pSq reduces in polynomial space to GenInt pREC˚,Sq.

• For each query φ P CRPQpSq comparing paths specified by I Ď rms ˆ rms , the
problem EvalCRPQ pS, φq reduces in logarithmic space to GenIntI,S0 pREC˚

q.

With this result, upper bounds for the complexity of evaluating CRPQpĺswq and
CRPQpĺsuffq queries can be found by constructing algorithms deciding GenInt pREC˚,ĺswq

and GenInt pREC˚,ĺsuffq respectively. For these relations, these intersection problems
can be reduced to an equation on strings ranging in regular subsets of Σ˚. The following
example motivates this idea:

Example 3.1.2. Suppose now an instance is given for GenInt pREC˚,ĺsuffq: a
recognizable relation R “ L1 ˆ L2 ˆ L3 ˆ L4 over Σ˚ and an index set I “ tp1, 2q ,
p1, 3q, p2, 4q , p3, 4qu. The problem is to find out if strings w1, w2, w3, w4 exist in Σ˚, wi
belonging to Li for each i “ 1, 2, 3, 4, and such that w1 ĺsuff w2, w1 ĺsuff w3, ĺsuff w4,
w3 ĺsuff w4 (see figure 3.1).

13

3.1. Reducing to word equations Chapter 3

w1 P L1

w2 P L2

w3 P L3

w4 P L4

ĺsuff ĺ
suff

ĺsuffĺ
suff

Figure 3.1: A generalized intersection problem scheme.

According to this, w1 is not bounded to have as suffix any string. It must be a
suffix of w2 and w3, and these must be both suffixes of w4. This means that prefixes
p1,2, p1,3, p2,4, p3,4 P Σ˚ must exist such that

w1

w2 “ p1,2w1

w3 “ p1,3w3

w4 “

"

p2,4w2
p3,4w3

Additionally, strings wi are bounded to regular sets Li for each i “ 1, 2, 3, 4. The
entire problem can thus be rewritten as the following equation on strings:

w2 “ p1,2w1
w3 “ p1,3w1
w4 “ p2,4w2
w4 “ p3,4w3

s.t. @i “ 1, 2, 3, 4 wi P Li
@pi, jq P I pi,j P Σ˚

The response to the original problem is affirmative if and only if the preceding equation
has a solution.

This later problem corresponds to solve what is known as a word equation with regular
constraints. The fact that the reduction for this generalized intersection problem instance
holds is precisely because suffix is a relation expressible by a word equation, in the sense
that ĺsuff“ tpx, yq P Σ˚ ˆ Σ˚ : Dp P Σ˚, y “ pxu.

As will be shown in the following sections, any instance from GenInt pREC˚,Sq can
be reduced to such constraint equations on strings if S is a class of binary relations over
Σ˚ expressible by word equations. In order to achieve this, these concepts are formally
introduced.

14

3.2. Word equations with regular constraints Chapter 3

3.2 Word equations with regular constraints
Word equations is the problem of assigning strings to variables in order to satisfy a given
pattern. For instance, in an alphabet ta, bu, the equation

XaaXb “ aabXY

asks to find strings X, Y on ta, bu˚ making the left and right sides of it equal. They could
be X “ aab, Y “ b. If so, both sides of the equation correspond to the string aabaaaabb.

Formally, a word equation e consists of two strings L, R P pΓ Y Σq˚, where Γ is a set
of variables Γ, and Σ is a set of constants. This is typically written as te : L “ Ru. The
size of |e| is its denotational length, |L ¨ R|. A solution, or unifier, for the equation is a
morphism φ : ppΓ Y Σq˚, ¨, εq Ñ pΣ˚, ¨, εq such that φ|Σ “ id and for which φpLq “ φpRq.
Constraints can be added to the equation to specify subsets of Σ˚ where the strings range
in. This can be done by means of regular languages tLxuxPΓ, asking additionally that for
each x P Γ, φpxq P Lx. These are word equations with regular constraints. In this case,
the equation may be assumed to be constant free, that is, only symbols from Γ appear
in L and R, since a subword of LR over Σ can be replaced by variables restricted to the
regular language composed of that single subword.

The study of systems of word equations reduces to single word equations, since an
infinite system of word equations is equivalent to one of its finite subsystems [3], and
every finite system of word equations can be encoded in a single one [31]. One of the
most celebrated results in this area is due to Makanin [42], showing decidability of finite
systems of word equations. The complexity of his algorithm has currently been shown to
be in ExpSpace [52] and non primitive recursive [36]. Another method, using data com-
pression, was later proposed by Plandowski [46], showing that the problem is decidable
in PSpace, which is the best currently known bound. Gutiérrez et al. finally developed
a non-trivial extension from this, showing that solving word equations with regular con-
straints is PSpace-complete.

3.3 Relations expressible by word equations - EQ
Word equations can serve as means to express relations on strings. For instance, the
equation tXY “ Y Xu describes the set of pairs of strings pX, Y q P Σ˚ ˆ Σ˚ which com-
mute. This use of word equations has been applied by numerous authors [41, 18, 26]. In
[35] a general study of the expressive power of word-equations was first given, trying to
unify and systematize this topic. It also gives means for disproving relations from being
expressed by word equations, by providing pumping-like properties satisfied by them.

An m-ary relation R Ď pΣ˚qm is expressible by a word equation, if there exists an
equation e with t ě m variables over Σ such that R coincides with the projection of the
t-tuple solutions of e on a set of m fixed components. The class of finite-arity relations
expressible by a word equation will be denoted EQ. When the arity of such a relation is
fixed, it is denoted with a subscript (e.g. the class of binary relations expressible by word

15

3.4. EvalCRPQ pEQq is PSpace-complete Chapter 3

equations is EQ2).

Some relations with widespread applications on database problems are expressible by
word equations. This is the case for the Suffix and Subword relations :

1. ĺsuff“ tpX, Y q P Σ˚ ˆ Σ˚ : Dp P Σ˚, Y “ pXu

2. ĺsw“ tpX, Y q P Σ˚ ˆ Σ˚ : Dp, s P Σ˚, Y “ pXsu

Other relations have been negatively proven to be expressible by word equations. In
[32], the subsequence relation, was shown to be one of such. They also show that the
class of power-free strings (e.g, cube-free words on binary alphabets) is neither in EQ.
The equal-length relation was proven in [35] to belong outside of EQ as well. A work
that completely characterizes the complexity of languages expressed by equations on two
variables is [33], and with bounded number of variables is [34].

It is worth noting that RAT Ę EQ and EQ Ę RAT, since ĺss is rational yet not
expressible by word equations, and EQ contains relations not able to be recognized by
memory-limited sequential devices as automata, as tpx, yq P Σ˚ : Dz, y “ xzxu. Also,
REG Ę EQ, since REG contains the equal-length relation. Nevertheless, Plandowski’s
algorithm ensure that the recognition of EQ relations has PSpace complexity, that is,
the problem of deciding, for a given relation R P EQ and a string tuple w̄ P pΣ˚qarpRq, if
w̄ P R, is solvable in polynomial space.

3.4 EvalCRPQ pEQq is PSpace-complete
Queries from CRPQpEQq use binary relations expressible by word equations in order to
compare paths joining vertices in a graph-db. Now that the formal requirements have
been met, the reduction is given from EvalCRPQ pEQq to the problem of solving word
equations with regular constraints. The result follows from translating general intersection
problem instances into word equations.

Proposition 3.4.1. GenInt pREC˚,EQq reduces in logarithmic space to word equa-
tions with regular constraints.

The idea behind this proof was already presented in Example 3.1.2. The complete
proof is given now:

Proof for Proposition 3.4.1. Consider an input instance for GenInt pREC˚,EQq given
by 〈L, I, S〉, with L P REC˚, I Ď rms ˆ rms and S “ tSi,jupi,jqPI such that for each
pi, jq P I, Si,j is a binary relation in EQ. Assume L given by L “ L1 ˆ ¨ ¨ ¨ ˆ Lm, for
regular languages Li Ď Σ˚. The problem asks for the following : does w1, ..., wm P Σ˚
exist, such that for each i P rms, wi P Li, and for each pi, jq P I, pwi, wjq P Si,j?

For pi, jq P I, let e0
i,j : L0

i,j “ R0
i,j be the word equation describing Si,j. It will be as-

sumed that all these equation are written in the same alphabet. Variables X “ tX1, X2u

are assumed to be those variables projected onto the relations and Y “ tY1, ..., Ytu those
existentially quantified, with t the maximum number of quantified variables in the set

16

3.4. EvalCRPQ pEQq is PSpace-complete Chapter 3

tSi,jupi,jqPI . From this, L0
i,j and R0

i,j are strings from pXYY YΣq˚. The relations are then
described as Si,j “ tpX1, X2q P Σ˚ : DY1, ..., Yt P Σ˚, L0

i,j “ R0
i,ju.

A new set of variables is constructed. For each i P rms let Zi be a variable interpreting
wi. For each index pi, jq P I, variables Y i,j

1 , ..., Y i,j
t are defined. An unrestricted equation

ei,j : Li,j “ Ri,j is given for each index pi, jq P I : in order to obtain ei,j from e0
i,j, X1

is replaced by Zi, X2 is replaced by Zj, and for each l P rts, Yl is replaced by Y i,j
l . The

system of word equations eL,I,S is thus given by

eL,I,S

$

’

’

&

’

’

%

@pi, jq P I Li,j “ Ri,j

s.t @i P rms Zi P Li
@pi, jq P I, l P rts Y i,j

l P Σ˚

Claim 3.4.2. There is a solution for eL,I,S if and only if L
Ş

I S ‰ ∅.
For the if part, let pw1, ..., wmq P L

Ş

I S. Since for all pi, jq P I, pwi, wjq P Si,j,
by definition of Si,j, strings yi,j1 , ..., y

i,j
t P Σ˚ exist such that when replacing X1 Ñ wi,

X2 Ñ wj, and each Yl Ñ yi,jl , then the strings obtained ri,j, li,j are equal. The morphism
φ : ppZY ΓYΣq˚, ¨, εq Ñ pΣ˚, ¨, εq assigning with each Zi the string wi, and with each Y i,j

l

the string yi,jl , leaving the symbols of Σ invariant, is clearly a solution for eL,I,S, since for
each i P rms, wi P Li and the way the equation is defined. The converse part is analogous.

The variables and equations in eL,I,S depend exclusively on I and S. The number
of variables is m `

ř

pi,jqPI | 〈Si,j〉 |, and there are |I| equations of size | 〈Si,j〉 |, where
| 〈Si,j〉 | “ |L0

i,jR
0
i,j| is the size of its description. There are m restrictions t

Ťk
i“1 L

k
i uiPrms

and thus each of Op|L|q size, the others being Σ˚ and thus of constant size each. It follows
that |eL,I,S| “ Op|I||S||L|q. Also, it is important to notice that the equations are con-
structed by consecutively visiting each edge pair pi, jq P I, and this is done independently.
Consequently, the procedure and can be carried out in deterministic logarithmic space.
This concludes the proof.

Observation 3.4.3. It is important to notice that when the index set I and the relations
in S are fixed, the equations and variables are also fixed, and the input part of the
reduction is only the set of regular constraints.

As a corollary of this and Proposition 3.4.1, the following result is obtained:

Theorem 3.4.4. The following is true about EvalCRPQ pEQq:

• EvalCRPQ pEQq many-one reduces in polynomial space to solving word equations
with regular constraints.

• EvalCRPQ pEQq is PSpace-complete.

• For each query φ P CRPQpEQq, there is an unrestricted equation eφ, for which
the complexity of EvalCRPQ pEQ, φq is that of solving eφ with variable regular
constraints.

17

3.4. EvalCRPQ pEQq is PSpace-complete Chapter 3

Proof. The first item follows from EvalCRPQ pEQq reducing to GenInt pREC˚,EQq
in polynomial space, since this later problem reduces to word equations with regular con-
straints in logarithmic space.

The PSpace upper bound in item 2 follows from Plandowski’s algorithm for solving
word equations with regular constraints in polynomial space. For a lower bound, the
non-empty intersection problem for regular languages, which is PSpace-complete, was
reduced to the combined complexity of EvalCRPQ pEQq in Example 2.2.2 using the
ĺsw relation, which is in EQ. The same result holds when changing ĺsw by ĺsuff.

The final item follows directly from the proof of Proposition 3.4.1 and Observation
3.4.3.

As a consequence of this, the evaluation of queries in CRPQpĺswq is decidable in
PSpace, and the combined complexity of EvalCRPQ pĺsuffq can be lowered from NExpTime
to PSpace:

Corollary 3.4.5.
The combined complexity of EvalCRPQ pĺswq and EvalCRPQ pĺsuffq is PSpace-
complete.

It is worth noticing that the data complexity of evaluation of queries in CRPQpEQq
reduces to the problem of solving a fixed word equation on variable regular constraints.
This problem is, to the best of the author’s knowledge after personal communications with
Claudio Gutierrez and Volker Diekert, an open question in the literature. This question
has its own interest, but in this context, it will also serve to study in depth the data
complexity of EvalCRPQ pĺsuffq, for which the obtained equations share features that
allow to decide satisfiability with variable regular constraints in NLogSpace, as will be
shown in the following chapter.

18

Chapter 4

Evaluating CRPQpĺsuffq queries

In the preceding chapter it was shown that the data complexity of EvalCRPQ pSq re-
duces to solving fixed word equations with variable regular constraints when S is a subset
of EQ. In this chapter the equations obtained in the case of EvalCRPQ pĺsuffq are
studied in depth, recognizing shared patterns that allow to solve them in NLogSpace.
This result actually extends to any fixed word equation with variable regular constraints
admitting a finite number of minimal solutions.

4.1 Working with EvalCRPQ pĺsuffq equations
An equation obtained when working with ĺsuff is studied in this section to motivate the
algorithms further constructed in this chapter. In Example 3.1.2, the following equation
reducing EvalCRPQ pĺsuffq was shown

w2 “ p1,2w1
w3 “ p1,3w1
w4 “ p2,4w2
w4 “ p3,4w3

s.t. @i “ 1, 2, 3, 4 wi P Li
@pi, jq P I pi,j P Σ˚

The first thing to be noted, is that through direct substitution of variables, this equa-
tion is equivalent to the following

p2,4p1,2w1 “ p3,4p1,3w1 ^

w2 “ p1,2w1
w3 “ p1,3w1

w4 “ p2,4p1,2w1

s.t. @i “ 1, 2, 3, 4 wi P Li
@pi, jq P I pi,j P Σ˚

The new system has a non-trivial equation, tp2,4p1,2w1 “ p3,4p1,3w1u, and a set of triv-
ial equations whose solutions depend on the preceding one, tw2 “ p1,2w1, w3 “ p1,3w1,
w4 “ p2,4p1,2w1u. Actually, these are just variable assignations, but they need to be kept

19

4.1. Working with EvalCRPQ pĺsuffq equations Chapter 4

in the system for not losing information about the regular constraints.

Let Γ “ twiuiPr4s Y tpi,jupi,jqPI be the set of variables for this equation. Recall that a
solution for it is a morphism φ : pΓ˚, ¨, εq Ñ pΣ˚, ¨, εq satisfying the patterns in the equation
and the regular constraints. An approach to find such a solution is to first find a solution
φ1 : pΓ˚, ¨, εq Ñ pΨ˚, ¨, εq unifying the unrestricted equation on a intermediary variable
alphabet Ψ, and then find the appropriate strings in Σ˚, to associate with each x P Ψ,
matching the constraints. The later is a second morphism, φ2 : pΨ˚, ¨, εq Ñ pΣ˚, ¨, εq, such
that φ2 ˝ φ1 is a solution for the constrained equation. For instance, a solution φ1 for
the pattern equation tp2,4p1,2w1 “ p3,4p1,3w1u with variables from Ψ “ tX, Y, Zu can be
constructed as follows:

φ1pw1q “ X
φ1pp1,2q “ Y Z
φ1pp1,3q “ BY Z
φ1pp2,4q “ Y AB
φ1pp3,4q “ Y A

ñ
p2,4 ¨ p1,2 ¨ w1
p3,4 ¨ p1,3 ¨ w1

φ1
ÝÑ

Y AB ¨ Y Z ¨X
Y A ¨BY Z ¨X

In this setting φ2 should be a morphism such that φ2pXq P L1, φ2pY ZXq P L2, φ2pBY ZXq P
L3 and φ2pY ABY ZXq P L4. This observation actually extends to any word equation with
regular constraints :
Observation 4.1.1. Let e be an equation on variables Γ, and tLxuxPΓ a set of regular
languages over Σ. A solution for E with regular constraints tLxuxPΓ can be decomposed
in two morphisms φ1 : pΓ˚, ¨, εq Ñ pΨ˚, ¨, εq and φ2 : pΨ˚, ¨, εq Ñ pΣ˚, ¨, εq such that
φ “ φ2 ˝ φ1. This is because regardless of which strings on Σ solve the constraints, they
still have to match the patterns present in the unrestricted equation. Thus these patterns,
i.e. φ1, can be found within the strings. Additionally, φ1 can be supposed to be minimal:
if φ1 “ α˝φ11, for a non trivial morphism α : pΨ˚, ¨, εq Ñ pΨ̃˚, ¨, εq, this yields φ “ φ2˝α˝φ1,
remaining unchanged by renaming the composition φ̃2 Ð φ2 ˝ α : pΨ˚, ¨, εq Ñ pΣ˚, ¨, εq,
producing φ “ φ̃2 ˝φ

1
1. A minimal solution for an unrestricted equation is a solution such

that no decomposition φ1 “ α˝φ11 exists other than those obtained with trivial morphisms
α such as the identity or variable renaming.

In the previous example, φ1 is not minimal, since it can be obtained from morphisms
φ0 and α defined by

φ0pw1q “ X
φ0pp1,2q “ C
φ0pp1,3q “ BC
φ0pp2,4q “ AB
φ0pp3,4q “ A

ñ
p2,4 ¨ p1,2 ¨ w1
p3,4 ¨ p1,3 ¨ w1

φ0
ÝÑ

AB ¨ C ¨X
A ¨BC ¨X

αpAq “ Y A
αpBq “ B
αpCq “ Y Z
αpXq “ X

ñ
AB ¨ C ¨X
A ¨BC ¨X

α
ÝÑ

Y AB ¨ Y Z ¨X
Y A ¨BY Z ¨X

In other words, the approach to find solutions for the constrained equation is to first
construct a minimal pattern solving the unrestricted word equation, and then decide if

20

4.2. Solving constrained equations with finite minimal solutions Chapter 4

strings exist matching this pattern and the regular constraints. This approach may be
rather näıve since unrestricted word equations may have infinite and arbitrarily large
minimal solutions [1]. However, if the set of minimal solutions for an equation is finite,
the solutions for it with variable regular constraints can be found by iterating over all
the minimal patterns while deciding if strings solve the constrained equation according to
them through NFA-reachability analysis.

As a consequence, by affirmatively answering the next questions the result can be
concluded:

• Any fixed equation, with a finite number of minimal solutions, can be solved with
variable regular constraints in NLogSpace?

• Any equation obtained from EvalCRPQ pĺsuffq admits a finite number of minimal
solutions?

These are answered in the following sections.

4.2 Solving constrained equations with finite mini-
mal solutions

As it was suggested in the previous section, after constructing a string pattern satisfy-
ing a fixed word equation, the regular constraints could be met by performing a NFA-
reachability analysis. Consider the following example to clarify this idea:

Example 4.2.1. Suppose that an equation on variables tX, Y, Zu has been given
a solution mapping X Ñ ABC, Y Ñ B and Z Ñ AC. According to the previous
observations, to find a solution of the equation with regular constraints tLx, Ly, Lzu
satisfying this pattern the next step would be to associate strings wA, wB, wC P Σ˚
with A, B and C such that wAwBwC P Lx, wB P Ly and wAwC P Lz. If Nx, Ny, Nz

are the automata recognizing these regular languages, this means they are needed to
be somehow synchronized in order to prove, for instance, that wB is a string in Ly
while being a subword of a string in Lx.

One way to do so is to assign reachability tasks for each variable A,B,C. Each of
the strings to be associated with these variables is to perform an specific reachability
task in every automaton it is bounded to be recognized by (see Figure 4.1). More
precisely, these strings exist if there are states qx1 , qx2 P Qx, fx P Fx, fy P Fy, qz P Qz

and fz P Fz such that the following NFA-reachability problems are satisfiable

wA : psx, szq
NxˆNz
ÝÑ pqx1 , q

zq

wB : pqx1 , syq
NxˆNy
ÝÑ pqx2 , fyq

wC : pqx2 , q
zq

NxˆNz
ÝÑ pfx, fzq

where N ˆN 1 is the usual product automaton over Σ. .

21

4.2. Solving constrained equations with finite minimal solutions Chapter 4

wx : wA wB wC

sx qx1 qx2 fx
Nx

Figure 4.1: States of Automaton Nx when running on input wAwBwC .

If the set of minimal solutions for an equations is finite, the procedure can be carried out in
non-deterministic logarithmic space by checking all the patterns solving the unrestricted
equation and using the standard on-the-fly NFA-reachability algorithm to see if strings
exist satisfying the given pattern:

Proposition 4.2.2. Satisfiability of fixed word equations with variable regular con-
straints is in NLogSpace for equations with finite minimal solutions.

Proof. Let e be an equation whose minimal solutions are finite, and 〈L〉 “ tLxuxPΓ
a set of regular constraints. The algorithm picks one by one the minimal solutions
ψ : pΓ˚, ¨, εq Ñ pΨ˚, ¨, εq for e from the finite possibilities. Their quantity, range size
and images are constants to the algorithm since they depend exclusively on e.

For each minimal pattern solution ψ, a solution exists for the equation E with regular
constraints 〈L〉 “ tLxuxPΓ if a mapping φ0 : Ψ Ñ Σ˚ exists, whose canonical morphism
extension φ to Ψ˚ satisfies @x P Γ, φ pψpxqq P Lx. For x P Γ, let NxpQx,Σ, δx, sx, Fxq be
the automaton over Σ recognizing Lx and let nx “ |ψpxq|.

The algorithm non-deterministically chooses qx0 , ..., qxnx
P Qx, for each x P Γ, such that

qx0 “ sx and qxnx
P Fx (see Figure 4.1).

φpψpxqq : φpψpxqr1sq ¨ ¨ ¨ φpψpxqrnxsq

qx0 qx1 qxnx´1 qxnxNx

Figure 4.1: Guessing NFA states for each regular constrain.

For coding each one of these states, logp|Qx|q bits are needed. Hence, the whole col-
lection needs

ř

xPΓpnx` 1q logp|Qx|q bits. Since nx “ |ψpxq| is considered fixed, this takes
Opmaxx logp|Qx|qq “ Op| 〈L〉 |q bits.

Next, reachability tasks are defined for each symbol a P Ψ. For this, if a P Ψ, let
σpaq “ tpx, iq : ψpxqris “ au Ď Γˆrmaxx nxs be the set of pairs px, iq signalling variables
in x P Γ whose mapping ψpxq contains symbol a at the signalled position i. The product
automaton Qσpaq over Σ where a must perform its reachability task is defined as

Qσpaq “
ą

px,iqPσpaq

Nx

22

4.2. Solving constrained equations with finite minimal solutions Chapter 4

This definition allows a to perform multiple tasks in one single automaton by allowing it to
appear repeatedly in Qσpaq. Formally, a reachability task for a P Ψ, is a set of two σpaq-NFA
states tq̄0paq, q̄f paqu Ď Qσpaq. These tuples are filled in way that if q̄0paq “ tqx,iupx,iqPσpaq
and q̄f paq “ tq̃x,iupx,iqPσpaq then qx,i “ qxi´1 and q̃x,i “ qxi (see Figure 4.2). It is to be noted
that since trivially σpaq X σpbq “ ∅ for a, b P Ψ, there is no ambiguity in these naming of
variables.

φpψpxqq : ¨ ¨ ¨ φpaq ¨ ¨ ¨

qx0 qxi´1 qxi qxnx

q̄0paq : ¨ ¨ ¨ ¨ ¨ ¨qxi´1

px, iq ´ ith

q̄f paq : ¨ ¨ ¨ ¨ ¨ ¨qxi

px, iq ´ ith

Figure 4.2: Filling the reachability tasks

The algorithm then proceeds to verify if for each a P Ψ state q̄f paq is reachable from
state q̄ipaq in the automaton Qσpaq. This can be done with the standard on-the-fly algo-
rithm which requires non-deterministic space logarithmic in |Qσa | ď |σpaq|maxx |Qx| “

Op〈L〉q, since |σpaq| equals the number of total apparitions of a in tψpxquxPΓ , and is
thus constant. Also, |Ψ| is of constant size, since it is the number of symbols unifying E.
Hence, the entire procedure is carried out in non-deterministic logarithmic space. The
algorithm accepts if it gives an affirmative answer for each one of these problems, rejecting
otherwise.
Claim 4.2.3. The algorithm accepts if and only if there is a solution for E with regular
constraints 〈L〉.

Suppose for the only if part, that all the reachability tasks hold. Let φ0 : Ψ Ñ Σ˚
be the mapping assigning for each a P Ψ a string wa P Σ˚ for which q̃x,i P δxpqx,i, waq,
for all px, iq P σpaq. By the way these state-tuples where constructed, this means qxi P
δxpq

x
i´1, waq. Let φ : pΨ˚, ¨, εq Ñ pΣ˚, ¨, εq to be the canonical morphism extension of φ0.

Then for each x P Γ, φpψpxqq P Lx. This is proven by induction in the following invariant:
For each i P r|ψpxq|s, qxi P δx pqx0 , φpψpxqr1..isqq.

1. For i “ 1, this reduces to qx1 P δxpqx0 , φpaqq “ δxpq
x
0 , waq where a is the first symbol

of ψpxq. Accordingly, q̄0paqx,1 “ qx1 and q̄f paqx,1 “ qx0 . String wa being that which
fulfils a’s reachability tasks, this is indeed true.

2. For i ą 1, the i-th symbol of ψpxq is assumed to be a. Since φ is a morphism, then

qxi P δx pq
x
0 , φpψpxqr1..isqq

ô qxi P δx pq
x
0 , φpψpxqr1..i´ 1sq ¨ φpaqq

ô qxi P δx pq
x
0 , φpψpxqr1..i´ 1sq ¨ waq

This, in turn, is true if and only if a state q˚ P Qx exists, such that q˚ P δx pqx0 ,
φpψpxq r1..i´ 1sqq and qxi P δxpq˚, waq. By induction qxi´1 P δxpq

x
0 , φpψpxq r1..i´ 1sqq,

and since wa is the string fulfilling a’s reachability tasks, with a the i-th symbol of
ψpxq, qxi P δxpqxi´1, waq. The property is hence true.

23

4.3. Suffix-like equations Chapter 4

Consequently, qxnx
P δxpq

x
0 , φpψpxqqq. Since qx0 “ sx and qxnx

P Fx, it follows that φpψpxqq P
Lx. Since x P Γ was arbitrary, φ ˝ ψ solves E with regular constraints 〈L〉.

Conversely, suppose it is true that a solution exists for E with regular constraints 〈L〉.
By means of Observation 4.1.1, morphisms φ1, φ2 exists such that φ1 : Γ˚ Ñ Ψ˚ minimally
unifies E and φ2 : Ψ˚ Ñ Σ˚ solves the constraints over φ1pEq. Thus, the algorithm picks
ψ Ð φ1 in some iteration. It is straightforward to see from this proof that if φ2 solves the
regular constraints according to the pattern φ1, then for each x P Ψ states qx0 , ..., qxnx

must
exist in Qx sequentially reachable by means of the strings φ2pφ1pxqr1sq,...,φ2pφ1pxqrnxsq in
automaton Nx. Consequently, there is a non-deterministic branch of the algorithm that
successfully guesses these states and gives the thumbs-up for every reachability task. This
concludes the proof.

Remark 4.2.4. It is worth noting that the complexity obtained can only be achieved
by considering the equation fixed, for solving word equations with regular constraints
remain PSpace-hard on equations with a finite number of minimal solutions. Indeed,
an instance of the regular language intersection problem 〈R1, ..., Rm〉 is easily coded by
the equation tx1 “ ¨ ¨ ¨ “ xmu with constraints xi P Ri, which admits a finite number of
minimal solutions since any variable appears only once.

4.3 Suffix-like equations
In this section a procedure is given for enumerating all the minimal solutions for the class
of equations obtained when working with EvalCRPQ pĺsuffq. These equations share a
very rigid structure implying its minimal solution set to be always finite.

An equation system tEi : ei,1 “ ¨ ¨ ¨ “ ei,liu
n
i“1 Ď Γ˚ is said to be suffix-like, if it satisfies

the following properties:

(1) @a P Γ, i P rls, j P rlis, |ei,j|a ď 1. That is to say, in each line of the system, each
variable appears at most once.

(2) @a P Γ, i, i1 P rls, j P rlis, j1 P rli1s, if a P Γ and p, p1, s, s1 P Γ˚ exist such that
ei,j “ pas and ei1,j1 “ p1as1, then s “ s1. In other words, whenever two lines share a
symbol, their suffixes starting from that symbol are equal (see Figure 4.3).

ei,j : a sp

ei1,j1 : a s1p1

ñ s “ s1

Figure 4.3: Suffix-like equation condition.

The equations obtained when working with EvalCRPQ pĺsuffq share these properties:

24

4.3. Suffix-like equations Chapter 4

Lemma 4.3.1. The system of word equations obtained from the reduction in 3.4.1
from an instance 〈G, ā, φ〉 for EvalCRPQ pĺsuffq is equivalent to a system of suffix-like
equations.

Before giving the proof for this lemma, a procedure is given to show how this rigid
structure can be exploited to enumerate all the minimal solutions with a procedure known
as the pig-pug algorithm. This corresponds to non-deterministically guessing the length
of strings to be associated with variables in order to simplify them in a graphical fashion
[1]. First, the result for the base case with n “ 1 is given:

Lemma 4.3.2. Let φ : pΓ˚, ¨, εq Ñ pΨ˚, ¨, εq be a minimal solution for the suffix-like
equation tE : e1 “ ¨ ¨ ¨ “ elu Ă Γ˚. Then, φ satisfies the following:

1. |Ψ| ď |Γ|

2. @a P Ψ, |φpEq|a ď 1

Consequently, the set of minimal solutions for such an equation is finite, up to isomor-
phism.

Consider the following example to motivate the algorithm behind this characterization:
Example 4.3.3. Let tXY Z “ PQRSY Z “ ABCXY Z “ UVW u be a suffix-like
word equation system. Its minimal solutions can be enumerated by applying the
pig-pug method on :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

XY Z
PQRSY Z
ABCXY Z

UVW

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

These lines can be rearranged while recognizing repeating ending patterns which occur
in the system due condition p2q.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

XY Z
ABCXY Z
PQRSY Z

UVW

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

In this example, since the variables of line four are not repeated elsewhere, the pig-
pug can be first applied in the beginning three lines, and the result obtained combined
with line four:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

XY Z
ABCXY Z
PQRSY Z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

UVW

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

This correspond to solve first the equation tXY Z “ PQRSY Z “ ABCXY Zu.
This simplifies variables Y Z from being considered, since they appear in every line.

25

4.3. Suffix-like equations Chapter 4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

XY Z
ABCXY Z
PQRSY Z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

UVW

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÝÑ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X
ABCX
PQRS

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Y Z

UVW

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

This process can be applied again by recognizing the repeated pattern X that ap-
pears at the end of the first two lines. The following scheme summarizes the sequence
of equations to be solved :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

XY Z
ABCXY Z
PQRSY Z

UVW

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÝÑ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X
ABCX
PQRS

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Y Z

UVW

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÝÑ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ε
ABC

ˇ

ˇ

ˇ

ˇ

X

PQRS

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Y Z

UVW

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

The procedure corresponds to a right factorization of words enabling to solve the
system by only analysing word equations of variables appearing exactly once, whose
sets of minimal solutions are always finite [1, 39].

Observation 4.3.4. In the following proof, strings are to be accessed from right to left.
For this purpose, a convention is adopted for indexing strings with negative integers. For
a string w P Σ˚ and i P r|w|s, wr´is “ wrn´ i`1s, that is to say, wr´is is the i-th symbol
from right to left. Additionally, for any string w, wr0s “ ε, and wr´i..s “ wrn´ i` 1..s.

Proof for Lemma 4.3.2. Consider an equation tE : e1 “ ¨ ¨ ¨ “ elu, and let m “ max |ei|,
and consider

PpEq “ ti P rms : De, e1 P E, i ď mint|e|, |e1|u, er´i`1s “ e1r´i`1s ^ er´is ‰ e1r´isu|

Let T pEq “ |PpEq|. According to condition p2q, T pEq equals the number of times the
equation system is able to split as in Example 4.3.3, for it is the number of positions
where at least two lines stop being equal from right to left. Accordingly, indexes in PpEq
will be called split positions. The proof is by induction on T ě 0.

First, if T = 0, this means that either all the lines are suffixes of a fixed string e0 P Γ˚
or for each pair e, e1 P E, alphpeq X alphpe1q “ ∅. In the first case, the unique solution
for the system is that which trims all the lines, leaving only a quantity of their ending
symbols equal to the size of the minimum length line (see Figure 4.4). For this case, the
claim is straightforward.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

XY Z
AXY Z

Y Z
STAXY Z
TAXY Z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X���Y Z
AX���Y Z

��
�Y Z

STAX���Y Z
TAX���Y Z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

X
AX
ε

STAX
TAX

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ñ
Y, Z P Σ˚

S, T,A,X “ ε

Figure 4.4: Example of equation with T “ 0, all lines suffixes of a same string

26

4.3. Suffix-like equations Chapter 4

For the second case, this means that every line is conformed of unique symbols. Con-
sequently, from condition (1), every single variable in E appears only once. Accordingly,
the minimal solutions for E are a finite set. More precisely, its solutions are obtained by
non-deterministically guessing the order in size of the strings to be associated with each
variable. The number of minimal solutions is then bounded by the number of ways s “ |Γ|
unknown numbers can be ordered, distinguishing ă and “, which is at most p2s´1s!q. In
this case, Ψ corresponds to the partition obtained by projecting the endings of variables
onto the unified word (see Figure 4.5). Thus, in the worst case, where no two limits
coincide, the number of parts |Ψ| is limited by

ř

i |ei| “ |Γ|, since there are no repeated
variables. Also, in the unified word, every symbol from Γ appears only once since it corre-
sponds to the segment of the partition obtained under its associated string (see Figure 4.5).

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ABC
DE

FGHI

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ùñ

A B C

D E

F G H I

ó

z1 z2 z3 z4 z5 z6

Figure 4.5: A solution for tABC “ DE “ FGHIu with Ψ “ tz1, ..., z6u. For instance, φpBq “ z3z4 and
φpHq “ z3z4z5.

Now it is assumed the claimed property is true for suffix-like equations E 1 with T pE 1q ă
T pEq. The split position i˚ “ arg minPpEq ě 1 is defined to be the first position from
right to left where at least two lines have stopped being equal. A common suffix e0 P Γ˚
must exist for all lines, it is the string such that for each i P rls, e0 “ eir´i

˚ ` 1..s (which
may be empty, if i˚ “ 1.). Equation Ê “ tê1 “ ¨ ¨ ¨ “ êlu is the one obtained from E by
disposing its lines from their shared suffix e0. In other words, ei “ êie0 for each i P rls.
A relation on the lines of the trimmed equation system is defined according to their last
symbol (which is the symbol at position i˚ from right to left in the original equation):

@ê, ê1 P Ê, ê „ ê1 ô êr´1s “ ê1r´1s

It is straightforward to see that „ defines an equivalence relation on Ê. As such, a parti-
tion of subsystems of equations Ê|„ “ tE1, ..., Eru, Ei Ď Ê for i “ 1, ..., r ď l, is obtained.
For a subsystem Ei in E|„ let Γi Ď Γ be the set of variables appearing in it.

Claim 4.3.5. For each pair of distinct subsystems Ei, Ej in Ê|„ it is the case that
Γi X Γj “ ∅.

Proof. Indeed, suppose ad absurdum that this does not hold for a distinct pair Ei, Ej
and that there is a variable x˚ P Γ shared by them. Since these came from the partition
generated by „ on the trimmed equation system Ê, this forces the existence of two lines

27

4.3. Suffix-like equations Chapter 4

in the original system e, e1 P E, with ê P Ei and ê1 P Ej, for which a shared symbol x˚
appears farther from i˚ from right to left. By condition (2), this entails er´i˚s “ e1r´i˚s
(see figure 4.6). But if that is so, then the lines ê and ê1 belong to the same subsystem in
Ê|„, which is a contradiction.

e : x˚ e0er´i˚s

e1 : x˚ e0e1r´i˚s

ñ er´i˚s “ e1r´i˚s

Figure 4.6: Equations systems in Ê|„ do not share variables.

From this, it can be concluded that Γ “ alphpe0q 9Y

´

9
Ťr

i“1Γi
¯

. Consequently, by right-
factorizing e0, the pig-pug method applied to E is equivalent to:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|E1|
...
|Er|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

In other words, this gives an order to proceed with the pig-pug method, solving each
subsystem Ei independently first, since their variables do not intersect.

It is straightforward to see that for each i P rrs, T pEiq ď T pEq´1, since their lines are
prefixes of lines of E, all of them lacking at least one split position: i˚. Additionally, as
prefixes, they inherit its suffix-like properties. Thus by induction, every minimal solution
φi : pΓ˚i , ¨, εq Ñ pΨ˚

i , ¨, εq for Ei (and thus obtained by the pig-pug method) verifies
|Ψi| ď |Γi| and @a P Ψi, |φpEiq|a ď 1. Additionally, sets Ψi can be supposed disjoint:
a solution with intersection of them is not minimal since it can be later obtained by a
morphism identifying variables to be equal from disjoints Ψi’s. By substituting the unified
words solving each equation Ei in the pig-pug for E the following is obtained:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

|E1|
...
|Er|

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1pE1qe0
...

φrpErqe0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1pE1qAe0
...

φrpErqAe0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

φ1pE1q
...

φrpErq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Equation E has thus been reduced to solve an r-lines equation on variables 9
Ť

iΨi, where
each line has unique symbols, and each symbol appears at most once in each line. As
was previously discussed, a minimal solution for such equation φ : p 9

Ť

iΨi, ¨, εq Ñ pΨ˚, ¨, εq
satisfies

1. |Ψ| ď
řr
i“1 |φipEiq| “

řr
i“1 |Ψi| ď

řr
i“1 |Γi| ď |Γ|

2. @a P Ψ, |φpEq|a ď 1.

28

4.3. Suffix-like equations Chapter 4

Since any minimal solution for a suffix like equation φ : pΓ˚, ¨, εq Ñ pΨ˚, ¨, εq satisfies
|Ψ| ď |Γ|, the number of different minimal solutions, up to isomorphism, is finite. This
concludes the proof.

It easy to extend this base case to the general instance with n ą 1. The minimal
solutions are sought with the pig-pug method applied sequentially in each subsystem Ei,
substituting the variables from Ei appearing in Ej with j ą 1 with the solution obtained.
The key is that the solutions for each Ei are so rigid that in each iteration the updated
subsystems remain suffix-like:

Lemma 4.3.6. Any suffix-like equation tEi : ei,1 “ ¨ ¨ ¨ “ ei,liu
n
i“1 Ă Γ˚ has a finite

number of minimal solutions.
Proof. The result can be concluded with the following invariant:
Claim 4.3.7. For each i P rns, if φ0

i : pΓ˚i , ¨, εq Ñ pΨ, ¨, εq is a minimal solution for the
subsystem Ei, with ΨX Γ̄i “ ∅, and φi is its canonical morphism extension to Γ leaving
symbols from Γ̄i invariant, then the system tφipEjq : φipej,1q “ ¨ ¨ ¨ “ φipej,ljqujPrnsztiu Ă

pΓ̄i YΨq˚ remains suffix-like.

Proof. Fix an index i P rns, and let φi : pΓ˚, ¨, εq Ñ pΨ, ¨, εq be the extension to Γ of a
minimal solution for Ei Ď Γ˚i . Accordingly, φi satisfies the following

@a P Ψ, |φpEiq|a ď 1

Claim 4.3.8. For each j P rnsztiu, k P rljs, and a P Γ̄i 9YΨ, |φipej,kq|a ď 1.

Proof. Indeed. First, if ej,k P Γ̄˚i , the claim is trivial, since φipej,kq “ ej,k. Accordingly,
suppose there is a symbol x P Γi such that |ej,k|x “ 1. Let x be the first such symbol from
left to right appearing in ej,k. Since this symbol is in Γi because it is shared with a line
from equation Ei, then from condition p2q of suffix like systems it follows that there are
strings p P Γ̄˚i , s P Γ˚i , such that ej,k “ ps, with sr1s “ x, and s the suffix of a line e˚i P Ei.
Consequently, when φi is applied onto ej,k, the resulting string has a first part conformed
of symbols in Γ̄i, and a second part from symbols in a disjoint alphabet Ψ (see Figure 4.2).

ej,k : p P Γ̄˚i s P Γ˚i

x P Γi

ñ φipej,kq : p P Γ̄˚i φipsq P Ψ˚

φipxq P Ψ˚

Figure 4.2: Shape of string ej,k “ ps with p P Γ̄˚i , s P Γ˚i . Notice that φippq “ p.

Let a be a symbol in Γ̄i 9YΨ appearing in φipej,kq. If a P Γ̄i, then |p|a ě 1 and |φipsq|a “ 0.
Since p is a prefix of ej,k and this is a line of a suffix-like equation, then |p|a ď |ei,j|a ď 1,
thus |φipej,kq|a “ 1. Otherwise, if a P Ψ, then |p|a “ 0 and |φipsq|a ě 1. Since φi is a
minimal solution for Ei and s is the suffix of a line e˚i P Ei, it follows that |φipsq|a ď
|φipei,jq| ď 1. Consequently, |φipej,kq|a “ 1. This concludes the proof for Claim 4.3.8.

Claim 4.3.9. For each j, j1 P rnsztiu, k P rljs, k1 P rlj1s if strings p, s, p1, s1 P pΓ̄i 9YΨq˚
and a symbol a P Γ̄i 9YΨ exist such that φipej,kq “ pas and φipej1,k1q “ p1as1, then s “ s1.

29

4.4. The data complexity of EvalCRPQ pĺsuffq is in NLogSpace Chapter 4

Proof. Indeed. By using the exact same arguments from the proof for Claim 4.3.8, there
are strings x, x1 P Γ̄˚i , y, y1 P Γ˚i , such that ej,k “ xy and ej1,k1 “ x1y1. These strings y, y1
are suffixes of lines ei, e1i P Ei. Consequently, the obtained strings when applying φi onto
these are φipej,kq “ xφipyq and φipej1,k1q “ x1φipy

1q (see Figure 4.3).

φipej,kq : x P Γ̄˚i φipyq P Ψ˚
i φipej1,k1q : x1 P Γ̄˚i φipy

1q P Ψ˚

Figure 4.3: Shape of strings φipej,kq and φipej1,k1q according to suffix-like conditions.

Let a be a symbol in Γ̄i 9YΨ appearing both in φipej,kq and φipej1,k1q. If a P Γ̄i, then before
applying φi, these strings have the form

ej,k “ pas
loomoon

x

¨y ej1,k1 “ p1as1
loomoon

x1

¨y1

for p, s, p1, s1 P Γ̄i. Consequently, from condition (2) of suffix like systems, sy “ s1y1, and
as a consequence, after applying φi onto these strings, the suffixes of the resulting strings
starting from a are equal. Otherwise, if a P Ψ, then a appears in the portions φipyq and
φipy

1q of φipej,kq and φipej1,k1q, respectively. Notice that since y, y1 are suffixes of lines
ei, e

1
i P Ei and the fact that φi being a solution for Ei implies φipeiq “ φipe

1
iq, then φipyq

can be supposed to be a suffix of φipy1q without loss of generality. Consequently, when
a P Ψ, the claim holds. This concludes the proof Claim 4.3.9.

These claims prove that indeed when a system of suffix-like equations tEi : ei,1 “ ¨ ¨ ¨ “
ei,liu

n
i“1 Ă Γ˚ is updated with a minimal solution for one of its subsystems Ei, each line

in the resulting system tφipEjq : φipej,1q “ ¨ ¨ ¨ “ φipej,ljqujPrnsztiu Ă Γ˚ has at most one
appearance of each variable, and whenever two lines share a variable, the suffixes starting
from it are equal. The obtained system remains thus suffix-like. This concludes the proof
for Claim 4.3.7.

To conclude the proof of Lemma 4.3.6, the minimal solutions for a suffix like equation
tEi : ei,1 “ ¨ ¨ ¨ “ ei,liu

n
i“1 Ă Γ˚ can be obtained by sequentially applying the pig-pug

method on each one of its subsystems, with no particular order, since by doing so the
algorithm checks any possible combination of length of strings to be associated with
variables. Additionally, the solution for any subsystem Ei can be supposed to range in
symbols from Ψi disjoint from Γ, since a solution supposing intersection of Γ and Ψi is not
minimal: it can be obtained by first supposing disjoint sets of variables, and later applying
a morphism identifying variables to be equal. Consequently, the iterated minimal solutions
conforms to Claim 4.3.7, and in each step the updated system remains suffix-like. The
set of minimal solutions for such a system is thus always finite. This concludes the proof.

4.4 The data complexity of EvalCRPQ pĺsuffq is in
NLogSpace

Now, in order to conclude this chapter, the proof of Lemma 4.3.1 is given, showing the
equations obtained from instances for EvalCRPQ pĺsuffq are equivalent to a suffix-like

30

4.4. The data complexity of EvalCRPQ pĺsuffq is in NLogSpace Chapter 4

equation system trough variable substitution:

Proof of Lemma 4.3.1.

Let 〈R, I〉 be an instance for GenInt pREC˚,ĺsuffq. The index set I can be associated
with a directed graph on vertices rms, GIprms, Iq, whose edges are given by I. In this
context, GI can be supposed to form a directed acyclic graph without loss of generality,
since ĺsuff is a partial order [9]. Accordingly, let tv1, ..., vmu “ rms be a topological order
for GIprms, Iq. Consider R “ L1 ˆ ¨ ¨ ¨ ˆ Lm, and eI,R be the system of word equations
with regular constraints obtained by reduction 3.4.1 on 〈R, I,ĺsuff〉.

According to the proof for Proposition 3.4.1, since ĺsuff“ tpX, Y q P Σ˚ : Dp P Σ˚, Y “
pXu, the variables of eI,L are Γ “ tZ1, ..., Zmu and P “ tPi,jupi,jqPI , and its constraints
are tLiuxPΓYP . Thus eI,R can be seen as pΓ Y P , E, tLxuxPΓYPq, with E a system of un-
restricted constant-free equations on variables ΓYP and the regular constraints tLxuxPΓYP .

At first, eI,L is not in the correct form for being characterized as suffix-like. A process
of variable substitution is shown, following the topological order of GI , establishing its
equivalence to a system of suffix-like equations. Since the index set and the relations are
fixed, E is also fixed, and the variable part of this problem is the regular constraints. The
handling of these equations has thus no influence in the complexity of the problem.

Let F and F̄ be originally the empty set. At the end of the substitution process to be
explained in the following, F will be a suffix-like equation system and F̄ a set of trivial
equations, variable assignations actually, such that E is equivalent to F ^ F̄ , in the sense
that they share the same set of solutions. The following preamble will clarify the proce-
dure :

The vertices of GI are to be visited in the topological order. When visiting vi, a
morphism φi : ppΓ Y Pq˚, ¨, εq Ñ ppΓztZiu Y Pq˚, ¨, εq will be defined, with φipaq “ a
for any symbol other than Zi, being the variable substitution to be made. According to
this, φi is completely determined by φipZiq. Additionally, during this process E is to be
applied φi onto after visiting each vertex, that is to say, E Ð φipEq. For this purpose,
Φi “ φi´1 ˝ ¨ ¨ ¨ ˝ φ1 will denote the iterated resulting substitution performed after visiting
vi´1. Consequently, if vertex vj had originally an equation Zj “ Pi,jZi, for pi, jq P I, when
it is visited this equation will be Zj “ Pi,jΦjpZiq, since according to the preceding these
substitutions always leave symbols from P invariant, and the symbols changed are always
from vertices already visited by the process. Now the substitution φi for vi is defined,
according to its inner degree in GI :

1. If δ´
GI pviq “ 0, then φi “ id. That is, no substitution is to be made for this case.

2. If δ´
GI pviq “ 1, let vr be the only vertex in GI pointing at vi. As such, the only

equation with Zi at the left side is Zi “ Pr,iΦipZrq. In this case φipZiq is defined as
Pr,iΦipZrq. The equation tZi “ Pr,iΦipZrqu is added to F̄ and E is applied φi onto.
No equation is added to F .

31

4.4. The data complexity of EvalCRPQ pĺsuffq is in NLogSpace Chapter 4

3. If δ´
GI pviq “ d ą 1, let vi1 ă ¨ ¨ ¨ ă vid be the vertices pointing at vi in GI . Accord-

ingly, there are d equations with Zi at the left side:

tZi “ Pi1,iZi1u , ¨ ¨ ¨ , tZi “ Pid,iZidu

The substitution is defined with φipZiq “ Pi1,iΦipZi1q. The equation tZi “ Pi1,iΦipZi1qu
is added to F̄ , E is applied φi onto, and the equation tPi1,iΦipZi1q “ ¨ ¨ ¨ “ Pid,iΦipZidqu
is added to F .

Notice that for any i P rms such that δ´
GI pviq ą 0, with vr the earliest vertex in the

topological order pointing at vi, ΦjpZiq is given for any j P rms by

ΦjpZiq “

"

Zi j ă i
Pr,iΦipZrq j ě i

This is because each substitution φi only changes the variable Zi. Consequently, the
iterated substitution Φi, only changes symbols indexed by j ď i. The following claims
will conclude the rest of the proof:
Claim 4.4.1. After the process has ended, E is equivalent to F ^ F̄ .

Proof. This is proven by induction on the following invariant : for i P rms, let Ei to be the
subsystem of E with variables Zj, Pm,n, with j,m, n ď i. After visiting vertex vi, denote
Fi and F̄i to be the set of equations obtained up to that point. Then Ei is equivalent to
Fi ^ F̄i.

1. When i “ 1, v1 is a minimal vertex of GI . As such, δ´
GI pv1q “ 0. There are no

equations in E1 and F and F̄ are empty, so the claim is true.

2. Suppose now that Ei´1 is equivalent to Fi´1 ^ F̄i´1, and let vi be the vertex being
visited.

(a) If δ´
GI pviq “ 0, then Ei “ Ei´1, since no new equations are to be considered.

Also Fi “ Fi´1 and F̄i “ F̄i´1, so the claim holds.
(b) If δ´

GI pviq “ 1, then there is just one extra equation in Ei not in Ei´1, which is
Zi “ Pr,iZr, with pr, iq P I and r ă i. Accordingly, since Zr has already been
visited, there is an equation in F̄i´1 stated as Zr “ Pt,rΦrpZtq for some t ă r.
By induction, the equations in Ei´1 are consistent with this, and in the system
Ei, the equation Zi “ Pr,iZr can be replaced by Zi “ Pr,iPt,rΦrpZtq. But
according to the variable substitution process, ΦrpZrq is precisely Pt,rΦrpZtq.
Thus in Ei, Zi “ Pr,iPt,rΦrpZtq “ Pr,iΦrpZrq. Since the symbols appearing in
ΦrpZrq are all of the form Zj, Pm,n with j,m, n ď r and the substitutions later
than r only change symbols with greater indexes, ΦrpZrq “ ΦipZrq. Putting all
of this together, in Ei, Zi “ Pr,iZr is equivalent to Zi “ Pr,iΦipZrq. Conversely,
this is precisely the new equation to be put in F̄i after visiting vi. Since in this
case Fi “ Fi´1, it follows that Ei is equivalent to F̄i ^ Fi.

(c) If δIGI pviq “ d ą 1, let vi1 , ..., vid be the vertices pointing at vi. There are
exactly d new equations in Ei which are

tZi “ Pi1,iZi1u , ¨ ¨ ¨ , tZi “ Pid,iZidu

32

4.4. The data complexity of EvalCRPQ pĺsuffq is in NLogSpace Chapter 4

For the proof, one of these is picked arbitrarily, say Zi “ Pij ,iZij with j P rds.
By using the exact same arguments, in the system Ei this equation can be
replaced by Zi “ Pij ,iPt,ij ΦijpZtq for some t ă ij and consequently by Zi “
Pij ,iΦijpZijq. Which in turn, since ij ă i, is equal to Zi “ Pij ,iΦipZijq. This
holds for any j P rds, thus the new equation in Fi, tPi1,iΦipZi1q “ ¨ ¨ ¨ “

Pid,iΦipZidqu, and in particular Zi “ Pi1,iΦipZi1q which is the equation to be
put in F̄i after visiting vi, are implied by Ei.

Conversely, for j P rds, Zi “ Pij ,iΦipZijq will not appear in F̄i, but Zi “
Pi1,iΦipZi1q will. And additionally, in this case the equation tPi1,iΦipZi1q “
¨ ¨ ¨ “ Pid,iΦipZidqu is added to Fi. Thus, in Ei, Zi “ Pi1,jΦipZijq is implied by
Fi ^ F̄i for any j P rds. Thus Ei is equivalent to Fi ^ F̄i.

Claim 4.4.2. F is a suffix like equation system.

Proof. Let X “ tvi P rms : δ´
GI pviq ą 1u be the set of vertices of GI associated with equa-

tions to be put in F . Accordingly, the system F is given by F “ tFi : Pi1,iΦipZi1q “ ¨ ¨ ¨ “
Pi1,dΦipZidquviPX . For each vi P X, let ρpviq “ tpx1, x0q, px2, x1q, px3, x2q, ..., pxni

, xni´1qu Ď

I with x0 “ vi, be a sequence of edges of GI such that :

1. δ´
GI pxni

q “ 0.

2. For each j P rni ´ 1s, xj`1 “ arg minN´

GI pxjq.

In other words, for vi P rms, ρpviq is the set of edges pxi`1, xiq P I joining a sink xni

with vi, such that when traversing its edges backwards, the preceding vertex in the path
for any intermediary vertex is its earlier back-neighbour in the topological order. Notice
that this definition is correct, since there is only one such path. The following then holds:
Claim 4.4.3. For any i P rms such that δ´

GI pviq ą 0, with ρpviq “ tpx1, x0q, px2, x1q,
px3, x2q, ..., pxni

, xni´1qu, it is the case that ΦlpZiq “ Px1,x0Px2,x1 ¨ ¨ ¨Pxni´1,xni´2Zni
for any

l ě i.

Proof. Let vi P rms such that δ´
GI pviq ą 0. This is proven by induction on |ρpviq| ě 1.

First, if |ρpviq| “ 1, this means the earlier vertex in the topological order pointing at
vi in GI is one of its sinks s P rns. If δ´

GI pviq “ 1, then s is the only vertex pointing
at vi. Consequently, φipZiq “ Ps,iZs, so the claim holds. Otherwise, if δ´

GI pviq “ d ą 1,
vertices vi1 ă ¨ ¨ ¨ ă vid point at vi. If |ρpviq| “ 1, then vi1 is a sink of GI . In this case,
φipZiq “ Pi1,iZi1 , and so the claim holds.

Now let ρpviq “ tpx1, x0q, px2, x1q, px3, x2q, ..., pxni
, xni´1qu with vi “ x0 and ni ą 1.

Since x1 is the earliest vertex in the topological order pointing at x0 “ vi, it is the
case that φipZiq “ Px1,x0Φx0pZx1q, either if the inner degree of vi is 1 or greater. It is
straightforward to see that ρpx1q “ tpx2, x1q, px3, x2q, ..., pxni

, xni´1qu. Consequently,
|ρpx1q| ă |ρpviq|, so by induction, since x0 ą x1, Φx0pZx1q “ Px2,x1 ¨ ¨ ¨Pxni´1,xni´2Zni

. As a
result, φipZiq “ Px1,x0Φx1pZx1q “ Px1,x0Px2,x1 ¨ ¨ ¨Pxni´1,xni´2Zni

. This concludes the proof
for Claim 4.4.3.

33

4.4. The data complexity of EvalCRPQ pĺsuffq is in NLogSpace Chapter 4

Since all the lines of equations in F are of the form Pj,iΦipZjq for pj, iq P I, from Claim
4.4.3 they represent the unique path in I given by ρpviq between a sink node and the
vertex vi. Since in ρpviq no edge is repeated, each variable in Pj,iΦipZjq appears at most
once. Additionally, if two lines Pj,iΦipZjq and Pj1,i1Φi1pZj1q share a variable, is because the
sets ρpviq and ρpvi1q intersect at some edge. Since these sets represent the paths described
earlier, once an edge is shared, all the previous edges used in the path must coincide, and
consequently, the suffixes of both lines starting at the shared variable must do as well. In
other words, F is a suffix like equation system.

Claim 4.4.4. The minimal solutions for tF ^ F̄ u are determined by those for F .

Proof. It is straightforward to see from the variable substitution process that each equa-
tion in F̄ has the form Zi “ Pr,iΦipZrq for pr, iq P I and a vertex vi not a sink. Additionally,
every variable Zi associated with a vertex vi of inner degree greater than 0 is substituted
from E. Consequently, since there are no equations at all for variables associated with
sink vertices, the set of variables appearing at the left side of the equations in F̄ is disjoint
from those appearing at the right side. It is also disjoint for this same reason from the set
of variables in F . Since for each left-side variable Zi there is just one equation containing
it in F̄ , it follows that the solutions for F̄ are completely determined by F .

Summarizing, the system of word equations E obtained from an instance 〈R, I〉 for
GenInt pREC˚,ĺsuffq is equivalent trough variable substitution to the system F ^ F̄ .
The minimal solutions for the later are completely determined by F , which in turn is a
suffix-like equation system. This concludes the proof.

As a consequence of this, the following result is obtained

Theorem 4.4.5. For each query φ P CRPQpĺsuffq, the problem EvalCRPQ pĺsuff, φq
is in NLogSpace.

Proof. An instance 〈G, ā〉 for the evaluation problem EvalCRPQ pĺsuff, φq reduces in
logarithmic space, considering the query φ fixed, to the satisfiability problem of a fixed
word equation with variable regular constraints. From the preceding lemma, this word
equation is equivalent to a fixed system of suffix-like equations which admits a finite set of
minimal solutions. Consequently, satisfiability of it with variable regular constraints can
be decided in NLogSpace, since NLogSpace functions are closed under composition.

34

Chapter 5

A CRPQpĺssq query that is NP-hard
to evaluate

In this chapter it is shown that there exist CRPQpĺssq queries which are NP-hard to
evaluate. The conclusion follows from a recent result from [14] and [49] , in which NP-
hardness is proven for the problem of unshuffling a square string, which can be reduced
to EvalCRPQ ppq ĺss, φq for a fixed query φ P CRPQpĺssq.

5.1 Unshuffling a square
Let Σ be a fixed finite alphabet. If u, v, w are strings over Σ, for which strings x1, ..., xk,
y1, ..., yk P Σ˚ exist such that

v “ x1x2 ¨ ¨ ¨ xk u “ y1y2 ¨ ¨ ¨ yk and w “ x1y1 ¨ ¨ ¨ xkyk

then w is called a shuffle of u and v, written w “ u d v (see Figure 5.1). If w “ u d u,
then w is called a square string. The set of all square strings is denoted Square “ tw P
Σ˚ : Du P Σ˚, w “ ud uu.

u

x1 x2 x3

v

y1 y2 y3

d

x1 y1 x2 y2 x3 y3

Figure 5.1: A scheme for the shuffle ud v.

35

5.2. Coding Square as an EvalCRPQ pĺssq instance Chapter 5

The first appearances of the shuffle operator are from abstract formal languages in
[27]. From there, its applications on sequential execution of concurrent process made it
object of study by numerous authors [47, 53, 48]. Other studies focused on the shuffle
operator itself in a general fashion [43, 56]. Recently, the problem of deciding if an input
string is a square was received some attention [24, 30] . The problem is clearly in NP,
since a witness u P Σ˚ and its partition u “ x1...xk “ y1...yk exhibiting w “ u d u is of
linear size on |w|. After some partial answers [8], a proof yielding NP-hardness for the
problem by a many-one reduction from 3-Partition was given last year:

Theorem 5.1.1 ([14, 49]). The set Square is NP -complete. This is true even for
sufficiently large fixed alphabets.

This result shows NP-hardness for alphabets with at least 7 symbols, but the authors
conjecture it is valid even in binary alphabets (for unary alphabets Square equals the
set of even length strings, and can thus be solved in polynomial time).

5.2 Coding Square as an EvalCRPQ pĺssq instance
Before giving a fixed query that is NP-hard to evaluate on graph-dbs, the following in-
termediary result is given for the generalized intersection problem GenInt pREC˚,ĺssq,
which was presented in Section 3.1 when working with equations for EvalCRPQ pEQq
as a problem holding the essence of CRPQpSq query evaluation. Let Id “ tp1, 2q, p1, 3q,
p2, 4q, p3, 4qu.

Lemma 5.2.1. Square many-one reduces in polynomial time to GenIntId,ĺss pREC˚
q.

Before giving the proof, an example is shown to illustrate the main idea behind it.
Example 5.2.2. Consider u “ abaabca P ta, b, cu˚. There are several ways in which
u can be segmented to create square shuffles. For instance the following partition

u “ abaabca

x1 “ ab x2 “ aab x3 “ ca

y1 “ a y2 “ baa y3 “ bca

This setting engenders the shuffle w “ abaaabbaacabca. If given w, it would seem to
require some work to understand how w is build up from two partitions of u, even while
having seen u before. If one knew, however, from which partition each symbol came
from, then the problem would become trivial. By assigning the color blue for each
symbol coming from partition x1x2x3, and color red for those from y1y2y3, it becomes
evident that w is a square string, since by concatenating only the blue symbols one
would obtain the same as when concatenating the red ones:

w “ abaaabbaacabca

The notion of colouring symbols can be formalised by adding two new symbols to
the alphabet, say σb, σr. Each symbol from Σ in w is preceded and followed by σb if its

36

5.2. Coding Square as an EvalCRPQ pĺssq instance Chapter 5

colour is blue, or by σr, if it is red. The string ŵ, in an extended alphabet ΣYtσb, σru,
would be obtained from w:

ŵ “ pσbaσbqpσbbσbqpσraσrqpσbaσbq ¨ ¨ ¨ pσraσrq

The key behind the proof is that all the different two-colourings of w can be
encoded by a regular language of linear size on w easily constructed. By using the
structure given by Id and the subsequence relation, since σb, σr are symbols not in
Σ, u can be enforced to appear twice in w with two different colourings (see Figure 5.1).

Candidates

”Blue” candidates

”Red” candidates

Input colourings

ĺss ĺ
ss

ĺssĺ
ss

Figure 5.1: Coding Square in a GenIntId,ĺss

`

REC˚
˘

instance.

Proof of Lemma 5.2.1. Let w P Σ˚ be an instance input for Square. Assume, without
loss of generality, that |w| “ 2n (odd length inputs can always be ruled out, since a square
is always of even length). Consider new symbols σ1, σ2 R Σ. Four regular languages are to
be defined: L1, the language describing the root candidates for w; L2 and L3, the ”blue”
and ”red” colourings of the candidates described by L1; and L4, describing all the ways
in which w can be two-coloured. Formally, they are defined as follows:

1. L1 “ alphpwqn, the set of strings of exactly n symbols from those appearing in w.
|L1| “ n|alphpwq| “ Opn2q.

2. L2 “ pσ1 ¨ alphpwq ¨ σ1q
n, the set of strings of exactly 3n symbols, whose every

symbol from alphpwq is preceded and followed by σ1. |L2| “ Opnp2` |alphpwq|qq “
Opn2q

3. L3 “ pσ2 ¨ alphpwq ¨ σ2q
n, the set of strings of exactly 3n symbols, whose every

symbol from alphpwq is preceded and followed by σ2. |L3| “ Opnp2` |alphpwq|qq “
Opn2q

4. L4 “ rpσ1 ¨ w1 ¨ σ1q ` pσ2 ¨ w1 ¨ σ2qs ¨ ¨ ¨ rpσ1 ¨ w2n ¨ σ1q ` pσ2 ¨ w2n ¨ σ2qs the set of strings
ŵ of exactly 6n symbols from Σ

Ť

tσ1, σ2u such that û|Σ “ w, and whose each symbol
from Σ is preceded and followed by either σ1 or σ2. |L4| “ 2np13q “ Opnq.

Let R “ L1ˆL2ˆL3ˆL4. The notational length of R is polynomially sized on |w|, thus
the automata coding R are also of polynomial size on |w|.

Additionally, for the proof consider φ1, φ2 : pΣ˚, ¨, εq Ñ ppΣY tσ1, σ2uq
˚, ¨, εq to be the

canonical morphisms obtained by extending to Σ˚ the mappings

φipaq “ σiaσi @a P Σ, i “ 1, 2

37

5.2. Coding Square as an EvalCRPQ pĺssq instance Chapter 5

Observation 5.2.3. The following straightforward properties about these morphisms
and languages are to be noted:

1. For each x P Σ˚, φpxq|Σ “ x. Hence, if u ĺss v then u ĺss φipvq.

2. For each x P Σ˚, |φipxq| “ 3|x|

3. L2 “ tφ1pxq : x P L1u and L3 “ tφ2pxq : x P L1u

Claim 5.2.4. R
Ş

Id
ĺss‰ ∅ if and only if w P Square.

Indeed, for the if part, suppose w P Square. Hence, strings x1, ..., xk, y1, ..., yk P Σ˚
exist such that u :“ x1...xk “ y1...yk and w “ x1y1...xkyk. Let w1 “ u, w2 “ φ1puq,
w3 “ φ2puq and w4 “ φ1px1qφ2py1q ¨ ¨ ¨φ1pxkqφ1pykq. The following then holds

1. w1 P L1: If w1 “ u and w “ u d u, then |w1| “ |u| “
1
2 |w| “ n. Also, since w is a

square shuffle of u, they share the same symbols. Thus, alphpw1q Ď alphpwq.

2. w2 P L2 : Since w2 “ φ1pw1q and w1 P L1, then w2 P L2 from the previous
observation. Equivalently, w3 P L3.

3. w4 P L4: Since for each x P Σ˚, φipxq|Σ “ x, then w4|Σ “ x1y1...xkyk “ w. Also,
every symbol from Σ in w4 is either preceded and followed by σ1 or by σ2, since
w4 “ φ1px1qφ2py1q ¨ ¨ ¨φ1pxkqφ1pykq and the way morphisms φi are defined.

4. w1 ĺss w2 ^ w1 ĺss w3 : Since w2 “ φ1pw1q, then w2|Σ “ w1. Thus, w1 can be
obtained from w2 by removing the σ1 symbols. The same idea holds for w1 ĺss w3.

5. w2 ĺss w4 ^ w3 ĺss w4: If every φ2pyiq part from w4 is removed, then one obtains
φ1px1q...φ1pxkq “ φ1puq “ w2. By removing the φ1pxiq parts, one obtains w3.

From this, it follows that pw1, w2, w3, w4q P R
Ş

Id
ĺss.

Assume now, for the only if part that R
Ş

Id
ĺss‰ ∅ and let pw1, w2, w3, w4q P

R
Ş

Id
ĺss. First, it is always the case that w2 “ φ1pw1q and w3 “ φ2pw1q. Suppose

ad absurdum this does not hold, and w2 “ φ1pxq for a string x P L1 other than w1. Since
w1 ĺss w2, all of its n symbols must appear somewhere in w2. However, from the 3n
symbols occurring in w2, only n of them are from alphpwq, the others being σ1. Thus, if
w2 “ φpxq and x ‰ w1, this leaves no place for at least one symbol from w1 to appear in
w2, which is a contradiction. Analogously , w3 “ φ2pw1q.

Second, |w4|σ1 “ |w4|σ2 “ 2n. Indeed, from the 6n symbols in w4, 2n are symbols from
alphpw4q, and 4n are symbols ranging in tσ1, σ2u. Strings w2 and w3 contain exactly 2n
symbols σ1 and σ2 respectively. Since w2 ĺss w4 and w3 ĺss w4, it must be the case that
|w4|σ1 ě 2n and |w4|σ2 ě 2n. Consequently, since |w4|σ1, σ2 “ 4n, |w4|σ1 “ |w4|σ2 “ 2n.

Let x1, ..., xk be maximal subwords from w4 containing σ1 but no σ2 symbols, and
y1, ..., yk maximal subwords from w4 containing σ2 but no σ1 symbols, yielding, according
to the form of L4, w4 “ x1y1...xkyk (some of these may be empty strings, if w4 starts

38

5.2. Coding Square as an EvalCRPQ pĺssq instance Chapter 5

and ends with σ1 for instance). Let X “ x1...xk, Y “ y1...yk. Then, it must be the
case that X “ w2. First, the σ1 symbols of w2 contained in w4 must lie within X, since
|Y |σ1 “ 0. From this, since w2 ĺss w4, w2 is a subsequence of X: all the symbols from
Σ in w2 are preceded and followed by σ1, thus, they must form part of the maximal sub-
words x1, ..., xk due the definition of L4. Finally, |w4|σ1 “ 2n, thus |X|σ1 “ 2n, and those
maximal subwords must contain the symbols from Σ between consecutive σ1’s, enforcing
|X| “ 3n. Since w2 is a subsequence of X, and they have equal lengths, they must be
equal. Equivalently, Y “ w2.

This shows that w4 “ w2 d w3. Thus, w4|Σ “ w2|Σ d w3|Σ. But w4|Σ “ w and
w2|Σ “ w3|Σ “ w1. It follows that w “ w1dw1 P Square, which concludes the proof.

As a consequence of this result a fixed query Q in CRPQpĺssq can be constructed
such that for a given Square instance string w there is a graph-db G satisfying Q if and
only if w P Square:

Theorem 5.2.5. There is a query φ P CRPQpĺssq such that EvalCRPQ pĺss, φq is
NP´hard.

Proof. Consider a fixed alphabet Σ0 with at least 7 symbols and w P Σ˚0 an instance for
Square with |w| “ 2n. Let σ1, σ2 be symbols not in Σ0 and the regular languages Li
over Σ “ Σ0 Y tσ1, σ2u for i “ 1, 2, 3, 4 defined in the proof of Lemma 5.2.1

1. L1 “ alphpwqn

2. L2 “ pσ1 ¨ alphpwq ¨ σ1q
n

3. L3 “ pσ2 ¨ alphpwq ¨ σ2q
n

4. L4 “ rpσ1 ¨ w1 ¨ σ1q ` pσ2 ¨ w1 ¨ σ2qs ¨ ¨ ¨ rpσ1 ¨ w2n ¨ σ1q ` pσ2 ¨ w2n ¨ σ2qs

For i “ 1, 2, 3, 4, let NipQi,Σ, δi, si, Fiq be the NFA over Σ recognizing the language Li.
Also, consider the Σ-edge labelled graph GipQi, Eiq interpreting NFA Ni as a graph-db,
that is to say, whose edges are given by

@q, q1 P Qi, σ P Σ, pq, σ, q1q P Ei ô q1 P δipq, σq

Let t#, #̄u be additional symbols not in Σ, and let Ψ “ ΣYt#, #̄u . A new graph-db
GpV,Eq is constructed linking those given by Gi (see Figure 5.2). To that end, let v0,
v1, v2, v3, v4 and v5 be new vertices, and consider V “

`
Ť4
i“1Qi

˘

Y tv0, ..., v4u to be the
vertices of the new graph-db G. Its edges are given by E Ď V ˆΨˆ V such that

• For each i P r4s and each edge pq, σ, q1q in Ei, pq, σ, q1q P E.

• For each i P r4s, pvi´1,#, siq P E

• For each i P r4s and each final state f P Fi, (f, #̄, viq P E.

39

5.2. Coding Square as an EvalCRPQ pĺssq instance Chapter 5

Gi

¨ ¨ ¨

vi

#

fi #̄

si

L i

vi´1

#

Gi´1

fi´1
#̄

si´1
L i
´

1

¨ ¨ ¨

#

GpV,Eq

Figure 5.2: Linking NFAs as graph-dbs.

Observation 5.2.6. According to this construction, the only paths existing in G be-
tween vertices vi´1 and vi are of the form #w#̄ with w P Li Ď Σ˚, for any i P r4s.
Conversely, a path labelled with a string of the form #w#̄ with w P Σ˚ must join two
vertices vi´1 and vi for some i P r4s with w P Li, since # and #̄ are symbols not in Σ.

The fixed query in CRPQ(ĺss) with alphabet Ψ, which compares paths specified by
Id “ tp1, 2q, p1, 3q, p2, 4q, p3, 4qu, is the following:

Qpx0, x1, x3, x3, x4q :
«

4
ľ

i“1
xi´1

χi : L0
ÝÑ xi

ff

^

»

–

ľ

pi,jqPId

χi ĺss χj

fi

fl

with L0 “ # ¨ Σ˚ ¨ #̄

Notice that Ψ “ Σ0Ytσ1, σ2,#, #̄u is a fixed alphabet, thus this query is independent
from w. Consider now the recognizable relation L “ L1 ˆ L2 ˆ L3 ˆ L4.
Claim 5.2.7. G |ù Qpv0, v1, v2, v3, v4q if and only if L

Ş

Id
ĺss‰ ∅.

Proof. Suppose for the if part that strings wi P Li exist for i “ 1, 2, 3, 4 such that for
each pi, jq P Id, wi ĺss wj. According to this, for each i P r4s there is an accepting state
fi P Fi such that fi P δipsi, wiq. Equivalently, there is a path between si and fi in the
graph-db G whose label is the string wi. It follows from the construction of G that the
string ŵi “ #w#̄ is the label of a path ρi between vertices vi´1 and vi in G. In addition to
this, for each pi, jq P Id, wi ĺss wj, thus λpρiq “ #wi#̄ ĺss #wj#̄ “ λpρjq. Consequently,
G |ù Qpv0, v1, v2, v3, v4q.

For the only if part, suppose for each i P r4s there is a path ρi between vertices vi´1 and
vi in G, such that λpρiq “ #wi#̄, with wi P Σ˚, and for each pi, jq P Id, λpρiq ĺss λpρjq.
It follows from Observation 5.2.6 that wi is the label of a path between si and some
accepting state fi P Fi, and consequently, that wi P Li. Since λpρiq ĺss λpρjq means that
#wi#̄ ĺss #wj#̄, and the #, #̄ symbols cannot appear neither in wi nor wj, it follows
that wi ĺss wj. Consequently, pw1, w2, w3, w4q P L

Ş

Id
ĺss.

Finally, it is easy to see that G an the tuple v̄pv0, v1, v2, v3, v4q can be constructed in
polynomial time from the regular languages tL1, L2, L3, L4u, and these in turn are also

40

5.2. Coding Square as an EvalCRPQ pĺssq instance Chapter 5

constructed in polynomial time from |w| according to the proof of Lemma 5.2.1. Since
L
Ş

Id
ĺss‰ ∅ if and only if w P Square, this concludes the proof.

41

Chapter 6

Conclusions and Further Research

This work has been primarily focused in answering questions about the complexity of
evaluating CRPQs comparing paths with rational relations of interest for their natural
appearance in database applications: Subword, Suffix and Subsequence. The results
obtained here complete those presented in Section 2.3 and are summarized in the following
table.

Query S “ ĺss S “ĺsuff S “ĺsw
CRPQ(S) NP´complete NLogSpace PSpace
CRPQ(S) NExpTime PSpace´ complete PSpace´ complete

Figure 6.1: Upper bounds for data and combined complexity, respectively, of evaluating CRPQs compar-
ing paths with Subword, Suffix and Subsequence relations.

With respect to the subsequence relation, it was proven that there are queries in
CRPQpĺssq which are NP-hard to evaluate. In this sense, the NP evaluation algorithm
previously provided in [9] is optimal. This means that this query language is unlikely to
be practical.

Secondly, the combined complexity of evaluating CRPQs comparing paths with re-
lations such as suffix and subword was proven to be PSpace-complete. The extent to
which this holds is more general, including combinations of any relation expressible by
word equations, such as prefix, commutativity, and other relations not recognizable by
memory-limited sequential devices as automata.

In addition to this, the data complexity of evaluating CRPQs comparing paths with
suffix was shown to be in NLogSpace, proving it to be practical, since it matches the
complexity of standard query languages such as CRPQs and ECRPQs.

The means trough which these results were proven pointed out unanswered questions
in the literature about word equations with regular constraints, namely, what is the com-
plexity of solving them when the equation is fixed and the input to the problem are the
regular constraints. The simplest case of this question was answered, showing that sat-
isfiability is decidable in NLogSpace when the fixed equation has a finite number of

42

Chapter 6

minimal solutions.

This work leaves some open questions that will be studied in following research. These
are:

• Is the NExpTime upper bound for the combined complexity of evaluating CRPQ pĺssq

queries optimal?
This would be a generalisation of the NP-completeness result obtained for its

data complexity, and it would not be surprising, as this behaviour is common in
database problems [55].

• What is the data complexity of evaluating CRPQpĺswq queries?
An upper PSpace bound for it follows directly from its combined complexity.

The equations obtained when working with instances for this problem relate to the
equation tSXT “ UXV u, asking for pairs of strings sharing a common subword.
The minimal solutions for this equation are not finite, and so a different strategy
needs to be used for studying this question.

• Are there fixed word equations PSpace-hard to solve with variable regular con-
straints?

This relates to the preceding question. The minimal solutions for the equa-
tion tSXT “ UXV u can grow arbitrarily, presenting repeated patterns when the
common subword overlaps. This feature hints that it may be possible to code the
intersection of arbitrary regular languages in the solutions of this equation with the
correct regular constraints.

43

Bibliography

[1] Habib Abdulrab and Jean-Pierre Pécuchet. Solving word equations. Journal of
Symbolic Computation, 8(5):499–521, 1989.

[2] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L Wiener.
The lorel query language for semistructured data. International journal on digital
libraries, 1(1):68–88, 1997.

[3] Michael H. Albert and J Lawrence. A proof of ehrenfeucht’s conjecture. Theoretical
Computer Science, 41:121–123, 1985.

[4] Sihem Amer-Yahia, Laks Lakshmanan, and Cong Yu. Socialscope: Enabling infor-
mation discovery on social content sites. arXiv preprint arXiv:0909.2058, 2009.

[5] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Com-
puting Surveys (CSUR), 40(1):1, 2008.

[6] Kemafor Anyanwu and Amit Sheth. P-queries: enabling querying for semantic asso-
ciations on the semantic web. In Proceedings of the 12th international conference on
World Wide Web, pages 690–699. ACM, 2003.

[7] Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. An extension of sparql for rdfs.
In Semantic Web, Ontologies and Databases, pages 1–20. Springer, 2008.

[8] P. Austrin. How hard is unshuffling a string (reply). Theoretical Computer Science,
http://cstheory. stackexchange. com/q/34 (version: 2010-12-01), 2010.

[9] Pablo Barcelo, Diego Figueira, and Leonid Libkin. Graph logics with rational re-
lations and the generalized intersection problem. In Proceedings of the 2012 27th
Annual IEEE/ACM Symposium on Logic in Computer Science, pages 115–124. IEEE
Computer Society, 2012.

[10] Pablo Barcelo, Leonid Libkin, Anthony W Lin, and Peter T Wood. Expressive lan-
guages for path queries over graph-structured data. ACM Transactions on Database
Systems (TODS), 37(4):31, 2012.

[11] Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained path
problems. SIAM Journal on Computing, 30(3):809–837, 2000.

[12] Jean Berstel. Transductions and context-free languages, volume 4. Teubner Stuttgart,
1979.

44

Bibliography Bibliography

[13] Peter Buneman. Semistructured data. In Proceedings of the sixteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages 117–121.
ACM, 1997.

[14] Sam Buss and Michael Soltys. Unshuffling a square is np-hard. arXiv preprint
arXiv:1211.7161, 2012.

[15] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y Vardi.
Containment of conjunctive regular path queries with inverse. In KR, pages 176–185,
2000.

[16] Ashok Chandra and David Harel. Structure and complexity of relational queries.
Journal of Computer and system Sciences, 25(1):99–128, 1982.

[17] Christian Choffrut. Relations over words and logic: a chronology. 2006.

[18] Christian Choffrut and Juhani Karhumäki. Combinatorics of words. In Handbook of
formal languages, pages 329–438. Springer, 1997.

[19] Mariano P Consens and Alberto O Mendelzon. Expressing structural hypertext
queries in graphlog. In Proceedings of the second annual ACM conference on Hyper-
text, pages 269–292. ACM, 1989.

[20] Mariano P Consens and Alberto O Mendelzon. Graphlog: a visual formalism for
real life recursion. In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems, pages 404–416. ACM, 1990.

[21] Isabel F Cruz, Alberto O Mendelzon, and Peter T Wood. A graphical query language
supporting recursion. In ACM SIGMOD Record, volume 16, pages 323–330. ACM,
1987.

[22] Alin Deutsch and Val Tannen. Optimization properties for classes of conjunctive
regular path queries. In Database Programming Languages, pages 21–39. Springer,
2002.

[23] Anton Dries, Siegfried Nijssen, and Luc De Raedt. A query language for analyzing
networks. In Proceedings of the 18th ACM conference on Information and knowledge
management, pages 485–494. ACM, 2009.

[24] J Erickson. How hard is unshuffling a string. Theoretical Computer Science,
http://cstheory. stackexchange. com/q/34 (version: 2010-12-01), 2010.

[25] Daniela Florescu, Alon Levy, and Dan Suciu. Query containment for conjunctive
queries with regular expressions. In Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages 139–148.
ACM, 1998.

[26] Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin Rinard. What is
decidable about strings? 2011.

[27] Seymour Ginsburg and Edwin H Spanier. Mappings of languages by two-tape devices.
Journal of the ACM (JACM), 12(3):423–434, 1965.

45

Bibliography Bibliography

[28] Marc Gyssens, Jan Paredaens, and Dirk Van Gucht. A graph-oriented object database
model. In Proceedings of the ninth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems, pages 417–424. ACM, 1990.

[29] David Harel et al. Computable queries for relational data bases. Journal of Computer
and System Sciences, 21(2):156–178, 1980.

[30] Dane Henshall, Narad Rampersad, and Jeffrey Shallit. Shuffling and unshuffling.
arXiv preprint arXiv:1106.5767, 2011.

[31] Hmelevskĭı. Systems of equations in a free group. i.

[32] Lucian Ilie. Subwords and power-free words are not expressible by word equations.
Fundamenta Informaticae, 38(1):109–118, 1999.

[33] Lucian Ilie and Wojciech Plandowski. Two-variable word equations. RAIRO-
Theoretical Informatics and Applications, 34(06):467–501, 2000.

[34] Juhani Karhumäki and Wojciech Plandowski. On the expressibility of languages by
word equations with a bounded number of variables. 2001.

[35] Juhani Karhumäki, Wojciech Plandowski, and Filippo Mignosi. The expressibility of
languages and relations by word equations. Springer, 1997.

[36] Antoni Kościelski and Leszek Pacholski. Makanin’s algorithm is not primitive recur-
sive. Theoretical Computer Science, 191(1):145–156, 1998.

[37] Zoé Lacroix, Hyma Murthy, Felix Naumann, and Louiqa Raschid. Links and paths
through life sciences data sources. In Data Integration in the Life Sciences, pages
203–211. Springer, 2004.

[38] Woei-Jyh Lee, Louiqa Raschid, Padmini Srinivasan, Nigam Shah, Daniel Rubin, and
Natasha Noy. Using annotations from controlled vocabularies to find meaningful
associations. In Data Integration in the Life Sciences, pages 247–263. Springer, 2007.

[39] André Lentin. Equations dans les monöıdes libres, volume 16. Mouton, 1972.

[40] Ulf Leser. A query language for biological networks. Bioinformatics, 21(suppl 2):ii33–
ii39, 2005.

[41] M Lothaire. Combinatorics on words. Cambridge University Press, 1997.

[42] Gennady S Makanin. The problem of solvability of equations in a free semigroup.
Sbornik: Mathematics, 32(2):129–198, 1977.

[43] Anthony Mansfield. An algorithm for a merge recognition problem. Discrete Applied
Mathematics, 4(3):193–197, 1982.

[44] Tova Milo and Dan Suciu. Index structures for path expressions. In Database The-
ory—ICDT’99, pages 277–295. Springer, 1999.

46

Bibliography Bibliography

[45] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. nsparql: A navigational lan-
guage for rdf. Web Semantics: Science, Services and Agents on the World Wide Web,
8(4):255–270, 2010.

[46] Wojciech Plandowski. Satisfiability of word equations with constants is in pspace. In
Foundations of Computer Science, 1999. 40th Annual Symposium on, pages 495–500.
IEEE, 1999.

[47] William E Riddle. A method for the description and analysis of complex software
systems. In ACM SIGPLAN Notices, volume 8, pages 133–136. ACM, 1973.

[48] William E Riddle. An approach to software system modelling and analysis. Computer
Languages, 4(1):49–66, 1979.

[49] Romeo Rizzi and Stéphane Vialette. On recognizing words that are squares for
the shuflle product. In Computer Science–Theory and Applications, pages 235–245.
Springer, 2013.

[50] Royi Ronen and Oded Shmueli. Soql: A language for querying and creating data
in social networks. In Data Engineering, 2009. ICDE’09. IEEE 25th International
Conference on, pages 1595–1602. IEEE, 2009.

[51] Mauro San Martın, Claudio Gutierrez, and Peter T Wood. Snql: A social networks
query and transformation language. cities, 5:r5, 2011.

[52] Klaus U Schulz. Makanin’s algorithm for word equations-two improvements and a
generalization. In Word equations and related topics, pages 85–150. Springer, 1992.

[53] Alan C. Shaw. Software descriptions with flow expressions. Software Engineering,
IEEE Transactions on, (3):242–254, 1978.

[54] Frank Wm Tompa. A data model for flexible hypertext database systems. ACM
Transactions on Information Systems (TOIS), 7(1):85–100, 1989.

[55] Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the
fourteenth annual ACM symposium on Theory of computing, pages 137–146. ACM,
1982.

[56] Manfred K Warmuth and David Haussler. On the complexity of iterated shuffle.
Journal of Computer and System Sciences, 28(3):345–358, 1984.

[57] Peter T Wood. Query languages for graph databases. ACM SIGMOD Record,
41(1):50–60, 2012.

47

	Introduction
	Organization

	CRPQs with path comparisons
	Preliminaries
	Computable string relations
	Complexity measures for database querying

	Conjunctive regular path queries with path comparisons
	Languages of the form CRPQ(S) and open questions

	A new link between CRPQ(S) evaluation and word equations
	Reducing to word equations
	Word equations with regular constraints
	Relations expressible by word equations - EQ
	EvalCRPQ(EQ) is PSpace-complete

	Evaluating CRPQ(suff) queries
	Working with EvalCRPQ(suff) equations
	Solving constrained equations with finite minimal solutions
	Suffix-like equations
	The data complexity of EvalCRPQ(suff) is in NLogSpace

	A CRPQ(ss) query that is NP-hard to evaluate
	Unshuffling a square
	Coding Square as an EvalCRPQ(ss) instance

	Conclusions and Further Research
	Bibliography

