
 

  

  

 

TESIS PARA OPTAR AL GRADO DE DOCTOR EN CIENCIAS DE  

LA INGENIERÍA MENCIÓN MODELACIÓN MATEMÁTICA EN  

COTUTELA CON LA UNIVERSITÉ PIERRE ET MARIE CURIE  

 
Santiago de Chile 

2014 

  

UNIVERSIDAD DE CHILE   
FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS  
DEPARTAMENTO DE INGENIERÍA MATEMÁTICA  

  

  

  

  

STUDY OF DIFFERENT MODELS OF THE EVOLUTION AND  

MOTION OF CELL POPULATIONS  

  
  
  

  
  

KARINA ALEJANDRA VILCHES PONCE  

  PROFESOR GUÍA:   CARLOS   CONCA ROSENDE     

  

  

MIEMBROS DE LA COMISIÓN:   

BENOIT PERTHAME  
THIERRY CASENAVE  

EDUARDO ESPEJO ARENAS  
JUAN DÁVILA BONCZOS  

ALEXANDER QUASS BERGER  



RESUMEN DE LA TESIS PARA OPTAR AL 
GRADO: DOCTORADO EN CIENCIAS  DE LA  

INGENIERÍA MENCIÓN MODELACIÓN  
MATEMÁTICA 

POR: KARINA ALEJANDRA VILCHES PONCE 
FECHA: 17 DE ABRIL DE 2014 

PROFESOR GUÍA: CARLOS CONCA ROSENDE  

STUDY OF DIFFERENT MODELS ON THE MOTION AND EVOLUTIO N OF CELL 

POPULATIONS  

 

 

 

 

 

 

 

 

En el presente trabajo hemos estudiado dos modelos de Ecuaciones diferenciales parciales 
diferentes aplicados a la biomatemática. 

 En el primero consideramos un sistema de ecuaciones parabólicas para modelar la quimiotaxis 
positiva de dos poblaciones unicelulares, las cuales secretan un mismo quimio-atractante. 
Usando el método de los momentos y un funcional de energía, logramos dar las condiciones 
óptimas sobre las masas iniciales para la existencia global en tiempo y blow-up de soluciones 
del sistema.  

 El segundo modelo está en el marco de la Teoría de las dinámicas adaptativas, la cual modela a 
diferentes escalas la evolución fenotípica de poblaciones celulares. Hemos consideramos una 
ecuación de Transporte, para modelar la evolución genética en el tiempo de una población 
celular, en la cual existe una subpoblación resistente a las condiciones ambientales. 
Introduciendo un parámetro pequeño y usando una ecuación auxiliar, hemos logrado demostrar 
que el comportamiento asintótico de las soluciones de la ecuación de Transporte corresponde a 
una masa de Dirac parametrizada en una función Lipschitz continua.  

Hemos usado conceptos clásicos de la teoría de EDP para conseguir estos resultados, los cuales 
son: Funcional de Energía, Desigualdad de Hardy-Littlewood- Sobolev, Principio del Máximo, 
Subsolución y Supersolución.  
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Chapter 1

Modeling the phenotype evolution of cell
populations

1.1 Introduction
In this part, we study the evolution in time of some cell population characterized by a trait using
a Transport Equation, we describe and predict the phenotype evolution in time of an organisms
group differentiate by genetic trait. Mathematical equations that model phenotype structured pop-
ulations are considered part of Theory of Adaptive Dynamics.

The mathematical ecology was born from the need to prove different hypothesis proposed in
Biology over populations, which were confirmed using mathematical models, in particular differ-
ential equations. Differential equations, model a variety of ecological phenomena, for example
population growth, species interactions, among others. To readers more interested in this type of
models and their history, we invite them to see [6, 42, 45] and the reference therein.

Theory of Adaptive Dynamics appeared in the 70s and a first reference about mathematical
models in this subject has been supplied by Maynard and Price in [41], but the use of Adaptive
Dynamics as expression was introduced by Hofbauer-Sigmund in them book Evolutionary Games
and Population Dynamics. The paper [41] is very important, as provides the basis to analyze
mathematical models from Adaptive Dynamics point of view, because made the connection be-
tween biology and mathematical results. The formal definition of this theory is given in a large
number of papers and books, for example [10, 11, 41, 45] among others, but in my opinion the
easier to understand was exposed in [53] and it is defined as ”a theoretical approach for studying
some of the phenotype changes that take place, over time, in evolving populations”, this describe
which is the main objective of this type of models. The emergence of this theory comes from
the need to model the evolution in time of species having distinct genetic traits that allow them to
survive and be maintained over time in certain environmental conditions. These ideas expand The
Evolution Theory, which was proposed by Charles Darwin in 1838. Saying that expands the ideas
of Darwin, in the sense that the integration of mathematical models provides a fresh look at Natural
Selection Principle, since mathematics can anticipate future populations behaviors under certain
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environmental conditions, without being upon seeing what happens, giving formal experiments to
this theory. To work in Adaptive Dynamics, we must direct our efforts in a main purpose to prove
that after several reproduction cycles, total population should present the genetic or physiological
structure of the stronger individuals that are survivors. The specie adaptation occurs when envi-
ronmental conditions change radically and to survive, the individuals are forced to modify their
conduct, as a consequence of this natural process, take place variations in their physiological and
genetic structure. To model selection principle effect over population, we consider a mathematical
ecological model to individuals reproduction and one introduce a new variable x to represent the
phenotype diversity present in this community. To read more about Adaptive Dynamics we advise
to interested readers to see [4, 5, 10, 11, 17, 19, 39, 41, 45, 53] and the reference therein.

We take into account the following basics biological hypothesis:

1. Heritability principle: Parents give their traits to new individuals.

2. Selection principle: Reproduction favors traits that are fittest to environmental conditions.

3. Mutations o Variation principle: New individuals can have different traits that their par-
ents.

The combination of this three theoretical hypothesis is studied through Theory of Adaptive Dy-
namics, however in this work we only consider the first two.

The motivation to do this work, comes from to model a cell population for which some drug
therapy was applied and exists a sub-population where the treatment did not have an effect. In
medicine, these phenomena is called resistance. To obtain a model in Theory of Adaptive Dy-
namics, we should explain these circumstances assuming that there exists a sub-population, which
presents a phenotype best adapted to environmental conditions, in our case nutrients and drug
therapy. This resistant sub-population is selected when a drug targets a specific gene (Darwinian
process). There are different biological theories to explain this phenomenon in a molecular level,
to see more about this topic read [27, 39, 42] and the reference therein.

The resistance phenomenon is very common in different therapeutic process, for example in
cancer, antiviral, antimalarial, antibacterial, poison applications (rats), pesticide, among others. In
particular, in Chile, there are studies about this phenomenon, it has been found in antibacterial,
HIV therapies, among others and the studies show different causes, to read more about this prob-
lem in Chile see [1] and the reference therein. Therefore, is very common meet people where
a medical treatment did not produce the expected effect, for this the resistance phenomenon has
attracted the attention of medical doctors and human biologists, which have gathered observations
on the mechanisms explaining it.

Broadly speaking, we can explain this phenomenon considering that cell reproduction is very
fast and the common drugs applied can not select which type of individuals should inhibit. Thus,
based in The Evolution Theory, there is a high probability that survivors become immune to chem-
ical after a several reproductions times, proliferating in mass, which produce a malignant and fatal
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cancer. When exists several types of cells differentiate by a phenotype, there are more possibili-
ties to find a sub-populations resistant to drugs and these stronger cells reproduce uncontrollably
occupying the space that others have vacated developing a tumor. In [27], have been proposed two
mechanisms at which the cells can become cancerous. The first involves changes in your fitness
function losing your reproduction control, this is caused by the presence of phenotype resistant to
environmental conditions, as well as, the cells adapt and their proliferation is favored. The second
case, is the existence of a favorable environmental conditions where the cells proliferate and ac-
cumulate a sufficient number of individuals producing mutations. In this work, we only admit the
first instance in our model.

To obtain the renewal equation for this cell population, we need to define a suitable Fitness
function, since being the main ingredient to describe the behavior and evolution of some individu-
als, to read more about this see [53].

The fitness function has different definitions in Population dynamics, these depend on type of
organism that we model, but in general by its uses, we can infer that it gives a panoramic view of
how the population breeds, feeds, dies and changes in several aspects. It is why, the Fitness in our
equation should consider different variables that influence on cells evolution, thus we include in
this function the trait variable x representing that proliferation is favoring the best adapted trait and
to model environmental influence we incorporate a new term ρ. To defined ρ, we need to consider
that the total mass is one of the main factors that determine the environment in which the cells live,
therefore ρ should depend on total individuals mass in a period of time.

We can anticipate that in an extended period of time the population will be concentrated in the
best adapted gene, thus we must obtain a Dirac mass concentrated in a singular attribute as solution
representing the selection principle in this cell community.

To model the behavior of our cell population, we must consider the following biological hy-
pothesis:

1. Asexual reproduction process.

2. Offspring have the same trait that their parents.

3. Only one-dimension strategies are considered.

In resume, we consider that organism live in the same environmental conditions for some fixed
period of time where they compete for nutrients among themselves. In this first approximation, we
consider that offspring has the same trait as their parents, we also define a fitness function that is
trait and density dependent. In addition, we assumed there exists a unique trait best adapted at fixed
environmental conditions. This first approach will give us much information about the behavior of
the population and checking that the theory of evolution also applies on this scale.
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We start studying in Section 1.2 a ODE to model evolution in time of a cell population charac-
terized by a trait. Consider the follow equation

∂
∂t
n (x, t) =

[
r(x)

(1+ρ(t))α
− d− cη (x)

]
n (x, t) ,

n (0, x) = n0 (x) > 0 ,





(1.1)

where t ≥ 0 , x ∈ [0, 1] , α, c, d > 0, n0 ∈ L1 [0, 1] and define

ρ (t) =

1∫

0

n (x, t) dx . (1.2)

The biological meaning of the variables are:

• n(x, t) cell density with trait x in t.

• r(x)
(1+ρ(t))α

fitness function dependent on total density.

• d average mortality rate.

• cη(x) mortality caused by the medication to individuals with gene x.

We will prove that there is a unique positive solution of (1.1) using a fixed point method. We define
the solution as the pair (ρ, n), because there is an intrinsic relation between them.
In Section 1.3, we continue adding another cell population and study the following system

d
dt
nh (x, t) =

[
rh(x)

(1+ρ1(t))α
− dh − cηh (x)

]
nh (x, t) ,

d
dt
nc (x, t) =

[
rc(x)

(1+ρ2(t))α
− dc − cηc (x)

]
nc (x, t) ,

nh (0, x) = n0
h (x) > 0 , nc (0, x) = n0

c (x) > 0 ,





(1.3)

where t ≥ 0 , x ∈ [0, 1] , α, c, d > 0, n0
h, n

0
c ∈ L1 [0, 1], nh represent the healthy cells, in short

h-cells, analogously, nc are cancer cells, abbreviate c-cells. The biological meaning are:

• nh(x, t) h-cells density with trait x in t.

• nc(x, t) c-cells density with trait x in t.

• rh(x)
(1+ρ1(t))α

fitness function to h-cells density dependent.

• rc(x)
(1+ρ2(t))α

fitness function to c-cells density dependent.

• dh average mortality rate to h-cells.
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• dc average mortality rate to c-cells.

• cηh specific mortality for h-cells with gene x.

• cηc specific mortality for c-cells with gene x.

We define for i = 1, 2,

ρi (t) =

1∫

0

[nh (x, t) Ψih (x, t) + nc (x, t) Ψic (x, t)] dx , (1.4)

and

Mh (t) =

1∫

0

nh (x, t) dx , Mc (t) =

1∫

0

nc (x, t) dx . (1.5)

Using the same arguments as in Section 1.2, we will prove there is a unique solution to (9).

In Section 1.4, we study the Transport equation

nt(x, t)− [g(x)n(x, t)]x = R(x, ρ(t))n(x, t) ,

ρ(t) =
∫ +∞

0
n(x, t)dx ,

n(0, x) = n0(x) > 0 ,





(1.6)

where t > 0 , x ∈ [0,+∞) , n0 ∈ L1(R+) , g(0) = 0. The biological meaning of the variable are:

• x cell trait representing drug resistance.

• n(x, t) cell density in time t > 0 with trait x.

• ρ(t) total cell density in time t.

• g genetic velocity of change.

We are interesting in solutions to (1.21) such that

lim
x→∞

n(., x) = 0 , (1.7)

integrating (1.38), we obtain the follow ODE for ρ(t)

dρ(t)

dt
=

∫ +∞

0

n(x, t)R(x, ρ(t))dt . (1.8)

We study the equation (1.21) to model the genetic movement when there is a velocity of vari-
ation for each trait. In Section 1.4, we focus primarily in estimate the necessary conditions to
describe the asymptotic behavior for the solutions of (1.6). Based in the classical methods apply
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in PDE models, we will include a small ε parameter, which perturb our initial transport equation.
This change of variables will be biologically justifies and gives important information about the
cell population modeled. The classical examples about study the asymptotic behavior are showed
in [22, 45] and the reference therein. Following various works for example [4, 5, 10, 11, 17, 39, 40],
among others, our purpose is to prove that

nε(x, t) ⇀ ρ(t)δ0(x− x(t)) ,

as ε→ 0.

The method used consisted in applying the change of variables or WKB ansatz

nε(x, t) = e
uε(x,t)

ε ,

assuming that solutions are similar to a Gaussian function and it is simpler describes the properties
of uε. We will prove that (uε)ε is a decreasing (in linear order), equilipschitz sequence, then by
Ascoli’ Theorem, under a subsequence its limit exits. In addition, the limit of (uε) is decreasing
(in linear order), concave and nonpositive function, which allow us to elucidate the limit of nε, all
technical assumptions will be presented in Section 1.4.1.

In this theory, we find several different models, for example, with a diffusive and integral terms
[4, 5, 10, 11, 17, 39, 40] to model competition and populations mutations. In our cases, we start
modeling a simplest case and propose in future works incorporate more terms.

Among the future work that may arise in this model, we have the following:

1. What are the necessary conditions to describe the long-time behavior of asymptotic solutions
of (1.38)?

2. Consider the equation (1.21) under the mutation hypothesis, incorporating a diffusion term
∆n(x, t) or the probability kernel K(x, y) in equation (1.21). The diffusion in x represents
the genetic orderly movement, however the kernel models the aleatory mutation of cells with
trait x to y.

3. We can consider the competition between two populations, as we make in Sections 1.2-
1.3, but including a transport term. In this case we need change a fitness function to one
population, follow the paper [39].

4. Another possibility, it is investigating about the Control problem. Considering the same
transport equation present in (1.21) including in the fitness function two controls, that repre-
sent two different drugs. We expect to obtain a populations concentrate in two or more traits
best adapted to produce the branching in the evolution of this cell population.
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1.2 Cell growth model
Consider the differential equation

∂
∂t
n (x, t) =

[
r(x)

(1+ρ(t))α
− d− cη (x)

]
n (x, t) ,

n (0, x) = n0 (x) > 0 ,

}
(1.9)

where t ≥ 0 , x ∈ [0, 1] , α, c, d > 0, n0 ∈ L1 [0, 1] and

ρ (t) =

1∫

0

n (x, t) dx . (1.10)

Assume that,
0 ≤ ρ (0) ≤ ρM , (1.11)

with ρM holds

sup
x∈[0,1]

[
r(x)

(1 + ρM)α
− d− cη(x)

]
= 0 . (1.12)

We also suppose,
r (x) ≥ 0 , r′ (x) < 0 , η (x) ≥ 0 , η′ (x) < 0 . (1.13)

The solution to (2.98) is given by the representation formula

n (x, t) = n0 (x) exp

t∫

0

[
r (x)

(1 + ρ (s))α
− d− cη (x)

]
ds , (1.14)

for all (x, t) ∈ R+ × [0, 1]. Therefore, for all (x, t) ∈ R+ × [0, 1]

n (x, t) > 0 .

1.2.1 A priori estimates
Lemma 1 A solution to (2.98) satisfies,

0 ≤ ρ (t) ≤ ρM (1.15)

for all t ≥ 0 .

Proof. Integrating (2.98) we obtain

d

dt
ρ (t) =

1∫
0

r (x)n (x, t) dx

(1 + ρ (t))α
− dρ (t)− c

1∫

0

η (x)n (x, t) dx ,
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then
d

dt
ρ (t) ≤ sup

x∈[0,1]

[
r (x)

(1 + ρ (t))α
− d− cη (x)

]
ρ (t) . (1.16)

Assume that there exists t0 such that
ρ(t0) > ρM (1.17)

and by condition (1.12)

sup
x∈[0,1]

[
r(x)

(1 + ρ(t0))α
− d− cη(x)

]
< 0 ,

thus
d

dt
ρ(t0) < 0 .

In others words, for all t > 0 such that ρ(t) > ρM then

d

dt
ρ(t) < 0 ,

which is a contradiction. Therefore, for all t > 0 we have that ρ(t) < ρM .
On the other hand, by representation formula given in (1.14) we have that ρ(t) ≥ 0.

1.2.2 Existence and uniqueness of solution
Consider the Banach space

E = C [0, T ]

and the closed set

B =



u ∈ E : u (0) =

1∫

0

n0 (x) dx, 0 ≤ u (t) ≤MT



 , (1.18)

for some T fixed we consider

MT = ρM max
t∈[0,T ]

{
e[r(0)−d−cη(1)]t

}
.

Now, we define the operator F : B → B

F (u) (t) =

1∫

0

n0 (x) exp




t∫

0

(
r (x)

(1 + u (s))α
− d− cη (x)

)
ds


 dx . (1.19)

Then we have the following result,

Lemma 2 Under the assumptions (1.10), F satisfies,

1. F (B) ⊆ B.
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2. The contraction principle.

Proof. First, by (1.11) and (1.19) we have

F (u) (t) <

1∫

0

n0 (x) e[r(0)−d−cη(1)]tdx ≤ ρM max
t∈[0,T ]

{
e[r(0)−d−cη(1)]t

}
= MT .

On the other hand, we obtain

F (u) (t) >

1∫

0

n0 (x) e−[d+cη(0)]tdx ≥ 0 .

Therefore, 1 makes true.
Next, we prove the contraction property. Given u1, u2 ∈ B then

|F (u1) (t)− F (u2) (t)|

≤
1∫

0

n0 (x) e−[d+cη(1)]t

∣∣∣∣∣∣
exp

t∫

0

r (x)

(1 + u1 (s))α
ds− exp

t∫

0

r (x)

(1 + u2 (s))α
ds

∣∣∣∣∣∣
dx

≤
1∫

0

n0 (x)

∣∣∣∣∣∣
exp

t∫

0

r (x)

(1 + u1 (s))α
ds− exp

t∫

0

r (x)

(1 + u2 (s))α
ds

∣∣∣∣∣∣
dx .

We know that exponential function is lipschitz in bounded domains, therefore
∣∣∣∣∣∣
exp

t∫

0

r (x)

(1 + u1 (s))α
ds− exp

t∫

0

r (x)

(1 + u2 (s))α
ds

∣∣∣∣∣∣
≤ eT

t∫

0

∣∣∣∣
r (x)

(1 + u1 (s))α
− r (x)

(1 + u2 (s))α

∣∣∣∣ ds .

The function 1
(1+u(s))α

is lipschitz continuous too, thus

t∫

0

∣∣∣∣
1

(1 + u1 (s))α
− 1

(1 + u2 (s))α

∣∣∣∣ ds ≤ TA sup
t∈[0,T ]

|u1 − u2| .

Hence, we compute

sup
t∈[0,T ]

|F (u1)− F (u2)| ≤ r (0) eTρMTA sup
t∈[0,T ]

|u1 (t)− u2 (t)| ,

then we can choose T such that
r (0) eTρMTA < 1 . (1.20)
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Theorem 3 There exists an unique solution n ∈ C (R+ , L1 [0, 1]), for which (2.98) and (1.12)
makes true.

Proof. Using Lemma 2 and Banach-Picard fixed point theorem, there is a fixed point of F on [0, T ].
Additionally, we can iterate with the initial condition ρ (T ), since the choice of T is independent
of the initial condition, therefore we conclude there exists a unique fixed point such that

ρ (t) =

1∫

0

n0 (x) exp




t∫

0

(
r (x)

(1 + ρ (t))α
− d− cη (x)

)
ds


 dx ,

which is the solution (2.98) for all t > 0.

1.3 Cell growth model for two species
In this section, we consider the following system

d
dt
nh (x, t) =

[
rh(x)

(1+ρ1(t))α
− dh − cηh (x)

]
nh (x, t) ,

d
dt
nc (x, t) =

[
rc(x)

(1+ρ2(t))α
− dc − cηc (x)

]
nc (x, t) ,



 (1.21)

nh (0, x) = n0
h (x) > 0 , nc (0, x) = n0

c (x) > 0 , (1.22)

where nh is h-cells density, nc is c-cells density and n0
h (x) , n0

c (x) ∈ L1 ([0, 1]).
We also define for i = 1, 2,

ρi (t) =

1∫

0

[nh (x, t) Ψih (x, t) + nc (x, t) Ψic (x, t)] dx (1.23)

and

Mh (t) =

1∫

0

nh (x, t) dx , Mc (t) =

1∫

0

nc (x, t) dx . (1.24)

Furthermore, we assume that

0 ≤Mh (0) <
ρ1
M

Ψm

, 0 ≤Mc (0) <
ρ2
M

Ψm

, (1.25)

where

sup
x∈[0,1]

[
rh(x)

(1 + ρ1
M)α
− dh − ηh(x)

]
= 0 , sup

x∈[0,1]

[
rc(x)

(1 + ρ2
M)α
− dc − ηc(x)

]
= 0 , (1.26)

we define for i = 1, 2
0 < Ψm ≤ Ψih , Ψic ≤ ΨM . (1.27)
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We also suppose that

rh (x) ≥ 0 , r′h (x) < 0 , rc (x) ≥ 0 , r′c (x) < 0 , rc(x) > rh(x) , (1.28)

ηh (x) ≥ 0 , η′h (x) < 0 , ηc (x) ≥ 0 , η′c (x) < 0 , ηc(0) > ηh(0) , ηc(1) < ηh(1) . (1.29)

The solutions to (1.21) are given by the representation formula

nh (x, t) = n0
h (x) exp




t∫

0

[
rh (x)

(1 + ρ1 (s))α
− dh − cηh (x)

]
ds


 , (1.30)

nc (x, t) = n0
c (x) exp




t∫

0

[
rc (x)

(1 + ρ2 (s))α
− dc − cηc (x)

]
ds


 , (1.31)

therefore for all (x, t) ∈ R+ × [0, 1]

nh (x, t) > 0 , nc (x, t) > 0 .

1.3.1 A priori estimates
Lemma 4 The solution to (1.21) satisfies,

0 ≤Mh (t) <
ρ1
M

Ψm

, 0 ≤Mc (t) <
ρ2
M

Ψm

. (1.32)

Proof. Supposing that there exists t0 such that

Mh(t0) >
ρ1
M

Ψm

,

from (1.23) we have
ρ1(t0) > ρ1

M .

Integrating (1.21) at the point t0, we obtain

d

dt
Mh(t0) =

∫ 1

0

[
rh (x)

(1 + ρ1 (t0))α
− dh − cηh (x)

]
nh (x, t0) dx ,

then
d

dt
Mh(t0) ≤ sup

x∈[0,1]

[
rh (x)

(1 + ρ1 (t0))α
− dh − cηh (x)

]
Mh(t0) (1.33)

and thus by (1.26) and (1.33), we can conclude

d

dt
Mh(t0) < 0 .
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Consequently, if Mh(t) >
ρ1M
Ψm

we conclude that

d

dt
Mh(t) < 0 ,

it is not possible. Hence we get

Mh(t) ≤
ρ1
M

Ψm

.

Using an analog argument, we have

Mc(t) ≤
ρ2
M

Ψm

.

On the other hand, by (1.30) and (1.31)

Mh(t) ≥ 0 , Mc(t) ≥ 0.

Lemma 5 We have that ρi holds

0 ≤ ρi (t) <
ΨM

Ψm

[
ρ1
M + ρ2

M

]
, (1.34)

for i = 1, 2 .

Proof. By (1.23) , (1.29)

Ψm [Mh (t) +Mc (t)] < ρi (t) < ΨM [Mh (t) +Mc (t)]

and applying Lemma 4 we obtain the result.

1.3.2 Existence and uniqueness of solution
We define

E = C [0, T ] ,

for some T fixed and

B1 =



ρ ∈ E : ρ (0) =

1∫

0

[
n0
h (x) Ψ0

1h (x) + n0
c (x) Ψ0

1c (x)
]
dx , 0 ≤ ρ ≤MT



 ,

B2 =



ρ ∈ E : ρ (0) =

1∫

0

[
n0
h (x) Ψ0

2h (x) + n0
c (x) Ψ0

2c (x)
]
dx , 0 ≤ ρ ≤MT



 ,

where
MT = KTΨM

[
ρ1
M + ρ2

M

]
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and

KT = max

{
max
t∈[0,T ]

[exp (rh (0)− dh − cηh (1)) t] , max
t∈[0,T ]

[exp (rc (0)− dc − cηc (1)) t]

}

for i = 1, 2. Furthermore, consider the operator

F : B1 ×B2 → B1 ×B2

(ρ1, ρ2) → F (ρ1, ρ2) = (F1 (ρ1, ρ2) , F2 (ρ1, ρ2))
, (1.35)

where

Fi (ρ1, ρ2) (t) =

1∫

0

[nh (x, t) Ψih (x, t) + nc (x, t) Ψic (x, t)] dx , (1.36)

for i = 1, 2. Then, we have the following Lemma,

Lemma 6 Under the assumptions (1.26), (1.27), (1.28), F satisfies,

1. F (B1 ×B2) ⊂ B1 ×B2 .

2. The contraction principle.

Proof. First, we calculate

Fi (ρ1, ρ2)

≤
1∫

0

[
n0
h (x) Ψih (x, t) exp [rh (0)− dh − cηh (1)] t+ n0

c (x) Ψic (x, r) exp [rc (0)− dc − cηc (1)] t
]
dx

≤ MT .

On the other hand,

Fi (ρ1, ρ2)

> Ψm

1∫

0

{
n0
h (x) exp [(−dh − cηh (0)) t] + n0

c (x) exp [(−dc − cηc (0)) t]
}
dx

≥ Ψmρm

{
min
t∈[0,T ]

exp [(−dh − cηh (0)) t] + min
t∈[0,T ]

exp [(−dc − cηc (0)) t]

}

≥ 0 ,

for i = 1, 2. As conclusion, 1) makes true.
Next, we show that F holds the contraction property. For this purpose, consider the norm

‖(ρ1, ρ2)− (ρ′1, ρ
′
2)‖B1×B2

= sup
t∈[0,T ]

|ρ1 − ρ′1|+ sup
t∈[0,T ]

|ρ2 − ρ′2| .
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Given (ρ1, ρ2) , (ρ′1, ρ
′
2) ∈ B1 ×B2 then

|Fi (ρ1, ρ2)− Fi (ρ′1, ρ′2)| ≤
1∫
0

n0
h (x) Ψih (x, t)

∣∣∣∣exp

[
t∫

0

rh(x)
(1+ρ1(s))α

− dh − cηh (x) ds

]
− exp

[
t∫

0

rh(x)

(1+ρ′1(s))
α − dh − cηh (x) ds

]∣∣∣∣ dx

+
1∫
0

n0
c (x) Ψic (x, t)

∣∣∣∣exp

[
t∫

0

rc(x)
(1+ρ2(s))α

− dc − cηc (x) ds

]
− exp

[
t∫

0

rc(x)

(1+ρ′2(s))
α − dc − cηc (x) ds

]∣∣∣∣ dx .

Cosequently, we obtain

|Fi (ρ1, ρ2)− Fi (ρ′1, ρ′2)|

≤ rh (0) ρhMΨMe
TA |ρ1 (s)− ρ′1 (s)|+ rc (0) ρcMΨMe

TA |ρ2 (s)− ρ′2 (s)| ,

simultaneously it satisfies,

sup
r∈[0,R]

|Fi (ρ1, ρ2)− Fi (ρ′1, ρ′2)| ≤ CT ‖(ρ1, ρ2)− (ρ′1, ρ
′
2)‖B1×B2

,

where
CT = max

[
rh (0) ρhMΨMe

TA, rc (0) ρcMΨMe
TA
]

.

Hence, we choose T > 0 such that
CT < 1 , (1.37)

obtaining the result.

Theorem 7 There exist nc , nh ∈ C (R+ , L1 [0, 1]), unique solutions, for which (1.21) and (1.24)
makes true.

Proof. Using the Lemma 6 and Banach-Picard fixed point theorem there is a fixed point of F on
[0, T ] with T defined in (1.37). Additionally, one can iterate with the initial condition ρ (T ), since
the choice of T is not depending of the initial condition. Then we can conclude that there is a
unique fixed point such that

F (ρ1, ρ2) = (F1 (ρ1, ρ2) , F2 (ρ1, ρ2)) = (ρ1, ρ2) ,

for t > 0 and it is equivalent to

ρi (t) =

1∫

0

[nh (x, t) Ψih (x, t) + nc (x, t) Ψic (x, t)] dx ,

for i = 1, 2 and it is the solution of (14).
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1.4 Transport Equation to cell growth
In this section we study the Transport equation

∂tn(x, t)− ∂x[g(x)n(x, t)] = R(x, ρ(t))n(x, t) ,

ρ(t) =
∫ +∞

0
n(x, t)dx ,

n(0, x) = n0(x) > 0 ,





(1.38)

where (x, t) ∈ R+ × R+, n0 ∈ L1(R+), we do not need to impose a boundary condition at x = 0,
because we later assume that g(0) = 0.

1.4.1 Assumptions and Main results
The object in this section is to give several assumptions over coefficients and initial data, which
are necessaries to obtain the asymptotic behavior of (1.38).

Fitness function

The Fitness function R(x, ρ(t)) model the influence of the total population on the rate of repro-
duction and death, which varies continuously in the variable x. Other name for R is the invasion
exponent, since model the ability of individuals with trait x, best adapted to environmental condi-
tions ρ to invade all population. We assume that R ∈ C2 (R+ × R+) and this is a decreasing (in
linear order) function (see figure 1.1). In addition, we suppose that there exists ρM > 0 such that

max
x≥0

R(x, ρM) = 0 . (1.39)

We also require a positive constant K1 for which R satisfies,

∂

∂ρ
R(x, ρ) < −K1 . (1.40)

Genetic velocity of change

We define g ∈ C2(R+) as increasing bounded function (see figure 1.2) such that

g(0) = 0 , g ≤ gM , 0 ≤ g′(x) ≤ 1 , |g′′(x)| ≤ K
(1+x)2

, (1.41)

where K is a positive constant. We consider the condition g(0) = 0, because in the cases of closed
systems one can not have entering of cells with trait x = 0. The shape of this functions is explained
having in mind that at higher resistance (x large) implies faster velocity of change.
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Figure 1.1: Graphic representation of fitness function R for different values of ρ .

Figure 1.2: Graphic for g.
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WKB Ansatz

We consider a new variable of time
τ

ε
= t , (1.42)

then in this work we study the asymptotic behavior for Transport PDE in its conservative form

ε ∂
∂t
nε(x, t)− [εg(x)nε(x, t)]x = R(x, ρε(t))nε(x, t) , (x, t) ∈ R+ × R+ ,

ρε(t) =
∫ +∞

0
nε(x, t)dx , t > 0 ,

nε(x, t = 0) = n0
ε(x) , x > 0 ,





(1.43)

where 0 < ε < 1, then we arrive at singular perturb transport equation, following the language
using in [4.5, [22]].
We have in mind obtain a Gaussian type functions as solutions of (1.43), taking a initial data
concentrated as a Gaussian function in some x0

ε . We justify this change of variable having account
in (1.38) that the scale on time is different at scale on x, because evolutionary time is slower than
reproduction time. Using this principle, we applied the change of variable (1.42) balancing the
corresponding timescales. We also should multiplied by ε parameter g, since represent the genetic
velocity of change for individuals with trait x and it should decrease when time progresses faster.
Consider the WKB ansazt

nε(x, t) = e
uε(x,t)

ε ,

which is equivalent to
uε(x, t) = ε log(nε(x, t)) , (1.44)

where nε is a solution to (1.43). We replace (1.44) in (1.43), getting the Transport equation

∂
∂t
uε − g(x) ∂

∂x
uε = R(x, ρε(t)) + cεg′(x) ,

u0
ε(x) = ε log[n0

ε(x)] .



 (1.45)

To get the limit of nε, we prove that uε converges at some decreasing (in linear order), lipstchiz,
concave and non positive function, the fundamental tool used to obtain the results are The Max-
imum Principle Theorem, Section 1.5. We do not come back on the question of existence of
solutions nε(x, t), since we accept that there is a unique solution to (1.38) and for its re-scaled
version (1.43).

Initial data

We also take, along this work, an initial data n0 concentrated in x0. This trait is the fittest in
environmental conditions ρ0, therefore holds

R(x0, ρ0) = 0 , (1.46)
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where R was defined before. In addition, we consider a sequence (n0
ε , ρ

0
ε)ε which holds

ρm ≤
∫ ∞

0

n0
ε(x)dx = ρ0

ε ≤ ρM , (1.47)

for some ρm > 0. Simultaneously, this sequence satisfies,
∫ ∞

0

n0
ε(x)R(x, ρ0

ε(x))dx = 0 , (1.48)

n0
ε(x) ⇀ ρ0δ0(x− x0) , (1.49)

where
ρ0
ε → ρ0 . (1.50)

We should assume some technical conditions over initial data, these are very important to obtain
the estimates for solutions of (1.45). Here we enumerate all of them:

1. We define
u0
ε = ε log[n0

ε ] . (1.51)

2.
d

dt
ρε(t)|t=0 =

∫ +∞

0

n0
ε(x)R(x, ρ0

ε) = 0 . (1.52)

3. We choice a family (u0
ε)ε of initial data:

• for which there exist A0 , B0 , C0 positive constants such that

−C0(1 + x) ≤ u0
ε(x) ≤ B0 − A0x . (1.53)

• There exists D0 > 0 such that

−D0 ≤ ∂xu
0
ε ≤ D0 . (1.54)

• There exists a unique x0
ε > 0 such that

max
x∈R+

u0
ε(x) = u0

ε(x
0
ε) . (1.55)

Existence and Limit of ρε

To ρε solution of (1.8), we have the follow result:

Theorem 8 Under assumptions 1.4.1, ρε(t) satisfies,

1. ρm ≤ ρε(t) ≤ ρM , for all t > 0.

2. ρε(t) is non decreasing.

3. (ρε)ε is a bounded sequence in BV (R+).

As consequence there exists a sub-sequence (ρεk) such that

1. ρεk → ρ in L1
loc (R+).

2. d
dt
ρεk → d

dt
ρ as measure in Mloc (R+).
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Asymptotic Behavior

Theorem 9 Under assumptions 1.4.1. There exists a unique x(t) lipschitz continuous function
defined in [0, T ] such that

lim
ε→0

nε(x, t) = ρ(t)δ0(x− x(t)) , (1.56)

in the distribution sense and
R(x(t), ρ(t)) = 0 . (1.57)

1.4.2 BVloc(R+) estimates
The first step is to prove Theorem 32 then we can pass to the limit in (1.38) as ε→ 0. We assume
the existence of ρε in view of the methods showed in Sections 1.2-1.3.

Proof. Theorem 32 We don’t re-prove that ρε(t) ≤ ρM , which follows using the same arguments
than in Section 1.2-1.3. Next, we show that ρε(t) is non decreasing. We define

Jε(t) =
1

ε

∫ +∞

0

R(x, ρε(t))nε(x, t)dx , (1.58)

using equation (1.43), we compute

d
dt
Jε(t) = 1

ε
Jε(t)

∫ +∞
0

∂R
∂ρ
nεdx+ 1

ε

∫ +∞
0

R(x, ρε(t))
{

1
ε
R(x, ρε(t))nε + c[g(x)nε]x

}
dx

= 1
ε
Jε(t)

∫ +∞
0

∂R
∂ρ
nεdx+

∫ +∞
0

{
1
ε2
R(x, ρε(t))

2nε − c1
ε
Rx(x, ρε(t))g(x)nε

}
dx ,

hence
d

dt
Jε(t) ≥

1

ε
Jε

∫ +∞

0

∂R

∂ρ
nε . (1.59)

Applying conditions (1.48)-(1.52) in (1.59), we have that Jε(t) ≥ 0. As a consequence ρε(t) ≥ ρm
by (1.47).

1.4.3 Regularity properties for uε
In this subsection, we study the regularity for uε solution of (1.45), we prove that uε is bounded
by decreasing functions and estimate the bounds for ∂xuε. Then (uε) is an equilipschitz decreasing
sequence of functions in C0

loc (R+ × R+), thus by Ascoli’ Theorem, under a sub-sequence, its limit
exists.
By definition of R, we can assume there exist A1 , B1 , C1 , D1 positive constants such that for all
ρ ∈ [ρm, ρM ]

−C1(1 + x) ≤ R(x, ρ) + εcg′(x) ≤ B1 − A1x (1.60)

and
−D1 ≤ ∂x[R(x, ρ) + εcg′(x)] ≤ D1 . (1.61)

Theorem 10 Considering assumptions 1.4.1. Then uε solution of (1.45) satisfies,
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1. uε is uniformly lipschitz, uniformly locally bound and it has linear decay at infinity.

2. Under a sub sequence, uε → u in C0
loc (R+ × R+).

3. u solve,
∂u
∂t
− g(x)∂u

∂x
= R(x, ρ(t)) ,

u(x, t = 0) = u0(x) .



 (1.62)

4. u(x, .) solution of (1.62) belongs C1 (R+) .

Some estimates using the Characteristic Method

Consider the change of variable

Ẋ(t; y) = −g(X(t; y)) ,
X(t = 0; y) = y ,

}
(1.63)

replacing (1.63) in (1.45), we obtain

d

dt
[uε(t,X(t; y))] = R(X(t; y), ρ(t)) + εg′(X(t; y)) ,

therefore obtain the representation formula for uε

uε(X(t; y), t) = u0
ε(y) +

∫ t

0

R(X(s; y), ρ(s)) + εg′(X(s; y))ds . (1.64)

This representation formula is useful to observe that the comparison principle holds, for more de-
tails see Section 1.5. In a similar way, one can obtain the representation formula for u, concluding
that u ∈ C1, proving the statement 4.

L∞ and Lipstchitz estimates

Lemma 11 Under assumptions 1.4.1 , there are positive constants M0 , L0 , K0 , α0 , β0 such that

−M0(1 + x)eβ0t ≤ uε ≤ (L0 −K0x)(1 + α0t) , (1.65)

where uε is solution of (1.45) .

Proof.

First step: Subsolution. Defining

h(x, t) = −M0(1 + x)eβ0t (1.66)

31



and replacing in (1.45), we have

∂th− g (x) ∂xh− [R (x, ρε (t)) + εg′ (x)]

= −β0e
β0tM0(1 + x) + g(x)M0e

β0t −R (x, ρε (t))− εg′ (x)

≤ −β0e
β0tM0(1 + x) + g(x)M0e

β0t + C1(1 + x) ,

we should choose M0 , β0 such that

−β0M0 + C1 ≤ 0 ,

−β0e
β0tM0 + c‖g‖∞M0e

β0T + C1 ≤ 0 ,



 (1.67)

Consequently, by (1.60) and (1.67) we have that

−β0e
β0tM0(1 + x) + g(x)M0e

β0t −R (x, ρε (t))− εg′ (x) ≤ 0 ,

it follows that h is a subsolution of (1.45) and holds

∂t [h− uε]− g (x) ∂x [h− uε] ≤ 0 .

Using (1.53), we can apply Lemma 19 obtaining

h(x, t) ≤ uε (x, t) .

Second step: Supersolution. In the same way, we define

h(x, t) = (L0 −K0x)(1 + α0t) . (1.68)

Replacing in (1.45)

∂th− g (x) ∂xh− [R (x, ρε (t)) + εg′ (x)]

= α0(L0 −K0x) + g(x)K0(1 + α0t)− [R(x, ρε) + εcg′(x)]

≥ α0(L0 −K0x) + g(x)K0(1 + α0t)− [B1 − A1x] ,

we should choose α0 , L0 and K0 such that

α0L0 ≥ B1 , α0K0 ≤ A1 . (1.69)

Conditions (1.60)-(1.69) imply

α0(L0 −K0x) + g(x)K0(1 + α0t)− [B1 − A1x] ≥ 0 , (1.70)

resulting that h is a supersolution of (1.45) and holds

∂t
[
uε − h

]
− g (x) ∂x

[
uε − h

]
≤ 0 .

As consequence of (1.53), we can apply Lemma 19 concluding

uε(x, t) ≤ h(x, t) .
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Lemma 12 Under initial assumptions 1.4.1 , there are M1 , α1 such that

−M1e
α1t ≤ ∂xuε(x, t) ≤M1e

α1t , (1.71)

where uε is solution of (1.45).

Proof. Differentiating once in x (1.45) and calling vε = ∂xuε , we have

∂tvε − g(x)∂xvε − g′(x)vε − ∂x[R(x, ρε(t)) + εcg′(x)] = 0 . (1.72)

First step: Supersolution. We define

h(x, t) = M1e
α1t , (1.73)

replacing (1.73) in (1.72), we obtain the equality

∂th− g(x)∂xh− g′(x)h− ∂x[R(x, ρε(t)) + εcg′(x)]

= α1M1e
α1t − g′(x)M1e

α1t −D1 .
(1.74)

Then, we must choose α1 > 1 , M1 such that

α1M1e
α1t − g′(x)M1e

α1t −D1 ≥M1 (α1 − g′(x)) eα1t −D1 ≥ 0 . (1.75)

It suffices to conclude that h is a supersolution, by (1.54), we can apply Lemma 20, resulting
that

∂xuε(x, t) ≤M1e
α1t .

Second step: Subsolution. Defining

h(x, t) = −M1e
α1t , (1.76)

replacing (1.76) in (1.72), we have

∂th− g(x)∂xh− g′(x)h− ∂x[R(x, ρε(t)) + εcg′(x)]

= −α1M1e
α1t + g′(x)M1e

α1t +D1 ,
(1.77)

thus result the same condition obtaining before

−α1M1e
α1t + g′(x)M1e

α1t +D1 ≤ 0 .

Therefore h is a subsolution, then the result follows.
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Concavity estimates for u

We can assume that there exists K2 , H positive constants such that

Rxx(x, ρ) + cg′′(x)∂xu ≤ −K2

(1+x)2
,

u0
xx ≤ −H

(1+x)2
.

(1.78)

Lemma 13 Under assumptions 1.4.1 and (1.78), there is H positive constant such that

∂xxu(x, t) ≤ −H
(1 + x)2

. (1.79)

Proof. Differentiating once in (1.62) we have

∂t[∂xu]− g(x)∂xxu− g′(x)∂xu− ∂xR(x, ρ(t)) = 0,

differentiating once again, we get

∂t[∂xxu]− g′′(x)∂xu− g′(x)∂xxu− g′(x)∂xxu− g(x)∂x[∂xxu]−Rxx(x, ρ(t)) = 0

and naming ∂xxu = w, we have

∂tw − 2g′(x)w − g(x)∂xw − g′′(x)∂xu−Rxx(x, ρ(t)) = 0 . (1.80)

Let consider
w(x, t) =

−H
(1 + x)2

(1.81)

and replacing in (1.80) we have

−2g′(x)w − g(x)∂xw − g′′(x)∂xu−Rxx(x, ρ(t))

= 2g′(x)H
(1+x)2

− 2g(x)H
(1+x)3

− g′′(x)∂xu−Rxx(x, ρ(t))

≥ 2g′(x)H
(1+x)2

− 2g(x)H
(1+x)3

+ K2

(1+x)2

≥ −2g(x)H
(1+x)3

+ K2

(1+x)2

≥ −2g(x)H
(1+x)2

+ K2

(1+x)2
.

Then, if we choose H > 0 such that

g(x) ≤ K2

2H
,

w is a supersolution of (1.80) and we can apply Lemma 20 .
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1.4.4 Asymptotic behavior
Existence of an optimal trait

Lemma 14 Under assumptions (1.4.1). Then uε(x, t) solution of (1.45) satisfies,

lim
ε→0

max
x∈R+

uε(x, t) = 0 ,

for all t ∈ [0,+∞), thus maxx∈R+ u(x, t) = 0 and there is a unique x(t) such that

u (x(t), t) = 0 . (1.82)

Proof. Let us fix t > 0 and suppose

lim
ε→0

max
x∈R+

uε(x, t) = u(x(t), t) > 0 ,

thus there exists h > 0 such that
u(x, t) > 0 , (1.83)

for all x ∈ A = [x(t)−h, x(t)+h]. We know that (uε)ε is equilipstichiz, then, under a subsequence,
converges uniformly upon A. Hence by uniform convergence definition, there exists ε0 such that
for all ε < ε0 ,

uε0(x, t) > 0 .

for all x ∈ A. Resulting that,
∫

A

e
uε
ε dx ≤ |A|e

maxx∈A uε(x,t)
ε → +∞ . (1.84)

It is a contradiction, since ∫

A

e
uε
ε dx ≤ ρM .

On the other hand, assume that
lim
ε→0

max
x∈R+

uε(x, t) < 0 ,

then there exists ε0 such that
max
x∈R+

uε(x, t) < 0 ,

for all ε < ε0. Taking L large enough and by (1.65)
∫ +∞

L

e
uε(x,t)

ε dx ≤
∫ +∞

L

e
(L0−K0x)(1+α0)t

ε dx =
ε

(1 + α0t)K0

e
(L0−K0L)(1+α0)t

ε . (1.85)

Further, we have that ∫ L

0

e
uε(x,t)

ε dx ≤ Le
maxx>0 uε(x,t)

ε . (1.86)
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Now, by (1.85) - (1.86) it follows that

ρm ≤ lim
ε→0

∫ +∞

0

e
uε(x,t)

ε dx ≤ lim
ε→0

[
ε

(1 + α0t)K0

e
(L0−K0L)(1+α0)t

ε + Le
max

x∈R+ uε(x,t)

ε

]
= 0 .

It is a contradiction, since by definition ρm > 0 .

With Lemma 14, we conclude that the statement (1.57) in Theorem 9, which follows from standard
analysis of convergence to Dirac masses. Indeed nε(x, t) vanishes exponentially fast away from
x(t) . As consequence, we have the following result,

Lemma 15 Under assumptions 1.4.1 . The function u(x, t) solution of (1.62) satisfies,

∂xu (x(t), t) = 0 , ∂tu (x(t), t) = 0 (1.87)

a.e. in time. Then
R(x(t), ρ(t)) = 0 . (1.88)

a.e. in time.

Proof. We replace (1.87) in (1.62) obtaining (1.88).

In this part, we obtain a representation formula for x(t), calling Canonical equation in Adaptive
Dynamics, with which we can determinate that x(t) is a Lipschitz bounded function, obtaining the
result presented below.

Lemma 16 (Canonical equation) Under assumptions 1.4.1 , x(t) is a bounded Lipschitz function.

Proof. By property, we have that
∂xu(x(t), t) = 0 , (1.89)

differentiating in time (1.89) we have

d

dt
[∂xu(x(t), t)] = ∂t[∂xu(x(t), t)] + ∂xxu(x(t), t)ẋ(t) = 0 .

Next, differentiate in x (1.62) obtaining

∂t[∂xu(x, t)]− g′(x)∂xu(x, t)− g(x)∂xxu(x, t) = ∂xR(x, ρ(t)) .

Evaluating in x = x(t) we have

∂t[∂xu(x(t), t)]− g(x(t))∂xxu(x(t), t) = ∂xR(x(t), ρ(t)) .

Concluding that the Canonical equation for x(t) is

ẋ(t) = −g(x(t))− [∂xR(x(t), ρ(t))] [∂xxu(x(t), t)]−1 .
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By section 1.4.3 (uε)ε>0 under a subsequence has a limit. Its limit u(x, t) is non positive concave
function decreasing, at least in linear order, which has a unique maximum point x(t) for all t ≥ 0.
Then, for ε small enough uε is a concave function and we can applied the classical arguments to
conclude that

lim
ε→0

∫ +∞
0

e
uε(x,t)

ε φ(x)dx
∫ +∞

0
e
uε(x,t)

ε dx
= φ(x(t)) ,

in other words, as we anticipated

lim
ε→0

nε(x, t) = ρ(t)δ0(x− x(t)) .

Stationary Solution

In this part, the objective is to show the necessaries conditions, for which there is a unique solution
for the stationary problem of (1.38). We consider the stationary equation of (1.38)

−∂x [n (x) g (x)] = R(x, ρ)n (x) , } (1.90)

where ρ holds ∫ +∞

0

n(x)dx = ρ .

First, we define the weak solution of (1.90). Let φ ∈ C1 (R+) test function. Multiplying by φ and
integrating upon [0,+∞), result that

−
∫ +∞

0

∂x[n(x)g(x)]φ(x)dx =

∫ +∞

0

n(x)R(x, ρ)φ(x)dx . (1.91)

By initial assumptions (Section 1.4.1), we know that g(0) = 0. In addition, we search solutions
such that limx→+∞ n(x) = 0, thus using by parts integration formula in (1.91), we obtain

∫ +∞

0

n(x)g(x)φ′(x)dx =

∫ +∞

0

n(x)R(x, ρ)φ(x)dx . (1.92)

The equality (1.92) gives the definition to the weak solution of (1.90).

Lemma 17 Under hypothesis 1.4.1 and assuming that

max
x∈R+

R(x, ρM) = R(0, ρM) = 0 . (1.93)

Then, the function
n(x) = ρMδ0(x) , (1.94)

is the unique solution of (1.90).
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Proof. Taking a test function φ(x) ∈ C1 (R+) we have
∫ +∞

0

R(x, ρM)φ(x)n(x)dx = ρMR(0, ρM)φ(0) = 0 . (1.95)

On the other hand, by hypothesis over g (Section 1.4.1) we obtain

−c
∫ +∞

0

[g(x)n(x)]xφ(x)dx = cρMg(0)φ′(0) = 0 . (1.96)

Therefore, the pair (ρM , ρMδ0(x)) is a solution to (1.90) since holds (1.92).
Now, suppose there exists a solution for some ρ∗ < ρM . Consider n(x) = ρ∗δ0(x − xρ∗), where
xρ∗ satisfies

R(xρ∗ , ρ
∗) = 0 . (1.97)

By definition (1.92), xρ∗ must verify that

g(xρ∗) = 0 .

But, by hypothesis over g (Section 1.4.1), g(x) = 0 if and only if x = 0. Therefore n(x) =
ρ∗δ0(x− xρ∗) does not hold (1.92).

Remark 18 To obtain the long-time behavior of asymptotic solutions of (1.38), we need to give
stronger estimates upon ρ(t) and x(t), because we should control in some sense the following
limits

limt→+∞ ρ(t) ,

limt→+∞ x(t) ,

limt→+∞R(x(t), ρ(t)) ,

(1.98)

since we only have proved that: x(t) is a lipschitz, bounded function and ρ(t) is increasing,
bounded in BVloc (R+).

1.5 Maximum Principle
We need to apply the maximum principle in 1.4.3 to obtain some important estimations over uε
such as: regularity and convexity. Therefore in this section proceed to show this principle, which
are simple yet highly significant.

Theorem 19 Consider g ∈ C1(R+) increasing bounded positive function. Let v that satisfies

∂v
∂t
− g(x) ∂v

∂x
= f(x, t) ≤ 0 ,

v0(x) ≤ 0 .

}
(1.99)

Then, for all t ∈ [0, T ] we have that
v(x, t) ≤ 0 .
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Proof. Follow the method of characteristic, we considered the change of variable

dX

dt
= −g(X(t)) (1.100)

for some initial condition given. By Picard’s theorem there exits a unique solution in C1(0, T ) and
by Inverse function Theorem, this change of variable has a inverse, then we obtain

d
dt
v(X(t), t) = f(X(t), t) < 0 ,

v0(X(t)) ≤ 0 .

}

Therefore,
v(X(t), t) ≤ v0(X(t)) < 0

and the results follows.

Theorem 20 Consider g ∈ C1(R+) increasing bounded positive function. Let v which satisfies

∂v
∂t
− g(x) ∂v

∂x
− g′(x)v = f(x, t) < 0 ,
v0(x) ≤ 0 .

}
(1.101)

Then, for all t ∈ [0, T ] we have that
v(x, t) ≤ 0 .

Proof. Using the same change of variable defined by (1.100)

d
dt
v(X(t), t)− g′(X(t))v(X(t), t) = f(X(t), t) < 0 ,

v0(X(t)) ≤ 0 .

}

Therefore, applying Gronwall’s inequality

v(X(t), t) ≤ v0(x(0))ec
∫ t
0 g
′(X(s))ds < 0 .
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Chapter 2

Modeling two chemotactic species
interactions

2.1 Introduction
In this chapter, mainly studied the conditions for global existence and blow-up for solutions to
Keller- Segel type parabolic pde system in R2.

This chapter had been published in the following papers (see appendix):

• E. ESPEJO, K. VILCHES, C. CONCA (2012), Sharp conditon for blow-up and global exis-
tence in a two species chemotactic Keller-Segel system in R2 European J. Appl. Math

• C. CONCA, E. ESPEJO, K. VILCHES (2011), Remarks on the blow-up and global existence
for a two species chemotactic Keller-Segel system in R2. European J. Appl. Math, Available
on CJO 2011 doi:10.1017/S0956792511000258.

Motivation to study such models was born in 1960 where Evelyn Fox Keller joint with Lee
Segel, physicist and applied mathematician respectively, studied the behavior of very particular
amoeba, called Dictyostelium discoideum or Slime mold, which was discovered by K. B. Raper
in 1935. The Keller-Segel model was proposed to describe the behavior of this amoeba. The
slime mold is a unicellular organism that detects an extracellular signal and transforms it into an
intracellular. This signal activates oriented cell movement toward its gradient, which is known
as aggregation process. The signal is a chemical secreted by themselves called cyclic Adenosine
Mono phosphate (cAMP). Chemotaxis is the word used to describe this phenomenon and it makes
reference to the aggregation of organisms sensitive at gradient of a chemical substance.

We also found this kind of behavior: in mammals, fish, birds, bacteria, humans, etc., all species
tend to aggregate or repel depending on the environment where they are and their needs. For this
reason, with the help of the biologists, we could find new applications for the Keller-Segel model.
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Since its discovery, scientists have had an special interest in understand this type of organiza-
tion, because through comprehension of this amoebas could better perceive the emergence of life
millions of years ago. Adequately comprehension of these amoebae can help us to understand how
from simplest organisms higher intelligence and greater physiological complexity were formed.
The scientist believe that life as we know it arises from the existence of bacteria and by changes in
their environment, were forced to cluster forming more complex cells.

Biologists were believing that the organization of this amoeba existed leaders or pacemakers,
which have to decide when the movement would occur. They said that this particulars individuals
should define the direction followed by others. Although, experiments and observations showed
that the chemotaxis process was produced by changes in the environment, but the main cause ap-
parently was a very large number of individuals and this allowed to build a pseudoplasmoid, where
each individual is preserved and remain together to survive. E. Keller proposed a mathematical
model to prove that the movement was not directed by a particular amoeba, however, this is a
great example of an organization coordinate to survive. The fundamental condition that produces
Chemotaxis in this organization was discovered by mathematicians and there exists an important
relation between the quantity of chemical substances (cAMP) and initial total mass, which deter-
mines when aggregation occurs or not, in mathematical language this mean Blow-up or Existence
global in time of solutions.

The behavior of this organization has been described by the classical mathematical model in
chemotaxis introduced by E.F. Keller and L.A. Segel in [34] and it is the following parabolic
system:

ut = ∇ · (µ∇u− χu∇v) , x ∈ Ω , t > 0 ,
vt = γ∆v − βv + αu , x ∈ Ω , t > 0 ,

}
(2.1)

where the biological meaning of variables are:

• u(x, t) cell density

• v(x, t) concentration of the chemical at point x in time t

• χ chemotactic sensitivity

• γ diffusion coefficient of the chemo-attractant

• µ diffusion coefficient of the cell density

• β rate of consumption

• α rate of production

subject to homogeneous Neumann boundary conditions over Ω ⊂ RN , which has smooth boundary
∂Ω, positive initial data u(x, 0) = u0 and v(x, 0) = v0 is considered, furthermore all parameters
are positive.
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It was conjectured by S. Childress & J.K. Percus in [13], that in a two-dimensional domain
there exists a critical number C such that if

∫
u0(x)dx < C then the solution exists globally in

time and if
∫
u0(x)dx > C blow-up happens. To different versions of the Keller-Segel model the

conjecture has been essentially proved, finding the critical valueC = 8π/χ. To interest readers that
want to make a complete review of this topic we refer the papers [31, 32] and the references therein.

In the case of several chemotactic species a new question arises:

Is there a critical curve in the plane of initial masses θ1θ2 delimiting on one side global existence
and blow-up on the other side?

This question was already formulated by G.Wolansky in [54] and from Theorem 5 we have the
following result:

Theorem 21 Consider the system

∂tu1 = ∆u1 − χ1∇ · (u1∇v) ,
∂tu2 = µ2∆u2 − χ2∇ · (u2∇v) ,

0 = ∆v + u1 + u2 − v ,





along with Dirichlet boundary conditions for v and initial radial data: u1(0, ·) = ϕ, u2(0, ·) = ψ,
v(0, ·) = φ, with ϕ, ψ, φ ≥ 0 on the two-dimensional disc of radius 1. Further, let θ1, θ2 be the
total preserved masses of the chemotactic species. Also assume that

4πµθ1

χ1

+
4πθ2

χ2

− 1

2
(θ1 + θ2)2 > 0 , θ1 <

8π

χ1

, θ2 <
8π

χ2

. (2.2)

Then for (u1(0, .) , u2(0, .)) ∈ YN with

YN =

{
u1, u2 : B(0)→ R+ :

∫
ui = θi ,

∫

B1(0)

ui log ui <∞
}

,

there exists a global in time classical solution.

A lot of natural question arises from this last result, for example:

1. What happens if the inequalities (2.2) does not hold? Is it still possible to have global solu-
tions?

2. If we work in the hole space R2, What happens with the condition (2.2)?

3. Is it necessary consider radial initial conditions?

To answer this questions, we consider the follow parabolic system

∂tu1 = µ∆u1 − χ1∇ · (u1∇v) ,

∂tu2 = ∆u2 − χ2∇ · (u2∇v) ,

v(x, t) = − 1
2π

∫
R2 log |x− y| (u1(y, t) + u2(y, t)) dy ,

u1(x, 0) = u10 ≥ 0 , u2(x, 0) = u20 ≥ 0 ,





(2.3)

42



where t ≥ 0 , u1 and u2 are the density for the two different chemotaxis species and v is the chemo-
attractant, χ1 , χ2 , µ are positive constants and positive initial conditions u10 , u20 are given. In
[15] it was proved that if θ1 , θ2 satisfies any of the inequalities,

4πµθ1

χ1

+
4πθ2

χ2

− 1

2
(θ1 + θ2)2 < 0 , θ1 > µ

8π

χ1

, θ2 >
8π

χ2

,

then the solutions of (2.3) have a finite time of existence, in other words the system (2.3) blow-up.
For the global existence was proved also in [15] that the inequalities

θ1 + θ2 <
8π

χ2

, µ < 1 ,

θ1 + θ2 <
8π

χ2

µ , µ > 1 ,

guarantees global existence. This is a partial result, as we just handed the sharp condition for
blow-up, but not global existence in time. The tool used in the first article [15] was the Hardy-
Littlewood-Sobolev’ inequality for one equation, we used this inequality to bound entropy (2.3)
following the method applied in [8], but this does not provide the necessary condition.

To obtain the sharp condition and a threshold curve in [21], we used a Hardy-Litlewood-
Sobolev’ inequality for System proposed by Shafrir & Wolansky in [49], exposed after. We applied
this inequality and incorporate some parameters to conclude that condition give in [54] is sharp.

In the present chapter, our aim is to show a resume the most important step given in [15, 21] to
obtain the sharp condition for global existence and Blow-up for system (2.3), which is a general-
ization of the threshold number 8π/χ for the classical parabolic-elliptic Keller-segel system. The
curves that give The Sharp condition are

C1(θ1, θ1) = 4πµθ1
χ1

+ 4πθ2
χ2
− 1

2
(θ1 + θ2)2 ,

C2(θ1) = 8πµ
χ1
θ1 , C3(θ1) = 8π

χ2
θ2 ,

(2.4)

which are summaries in Figure 2.1 ,
One open question is to find out if the blow-up has to be simultaneous or not and also to describe
the asymptotic near the blow-up time. A first step in this direction was given in [20], where it was
shown that the blow-up has to be simultaneous in the radial case. Should it be the same in the
general case?, or, Should it depend on more specific information on the initial data?

A second open question is: What happen when the parabola,

4πµθ1

χ1

+
4πθ2

χ2

− 1

2
(θ1 + θ2)2 = 0 , (2.5)

intersects any of the line lines,

θ1 =
8π

χ1

or θ2 =
8π

χ2

. (2.6)
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Figure 2.1: Graphic of sharp condition to Global existence and blow-up.

It would be very interesting to study the behavior of the system (2.3) on this lines. One first
approximation of this response is given by the study of stationary model, but it has only been a
partial result. Another possible future work is the description of the asymptotic behavior in this
case seems to require rather different techniques to those used in the one specie case.

2.2 Some notable examples

2.2.1 Blow-up
There exist different definitions to Blow-up of solutions in differential equations. In our case, we
consider Blow-up when the existence time for solutions of a differential equation is finite. There
are different ways to prove this, here we will show some examples to ODE and PDE.

2.2.2 Blow-up in ODE
We consider the differential equation

ut = f(u) ,
u(0) = u0 ,

}
(2.7)

where t→ u(t) is a function defined over [0, T ] , with values on R .

Theorem 22 Let f a continuous, positive function in [u0 ,∞[ such that

t∗ =

∫ +∞

u0

ds

f(s)
< +∞ . (2.8)

The maximum time of existence to the solutions of (2.7) is t∗.
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Proof. We obtain from (2.7)
ut
f(u)

= 1 , (2.9)

integrating (2.9) ∫ t

0

uτ
f(u)

dτ = t . (2.10)

We applied the change of variable, s = u(t) in (2.10) and conclude that
∫ u(t)

u0

ds

f(s)
ds = t < t∗ =

∫ +∞

u0

ds

f(s)
ds . (2.11)

Further, we have by (2.11)

lim
t→t∗

∫ u(t)

u0

ds

f(s)
ds = t∗ .

Therefore, limt→t∗ u(t) =∞, since ε→
∫ ε
u0

ds
f(s)

is a bijection.

Example 23 We consider the ODE

ut = up ,
u(0) = u0 ,

}
(2.12)

for p > 1 , we can applied Theorem 22 and obtain t∗ = 1

(p+1)u
−(p+1)
0

.

Next, we consider the follow ODE

ut ≥ f(u) ,
u(0) = u0 .

}
(2.13)

Corollary 24 Let f continuous, positive function defined in [u0 , +∞) such that

t∗ =

∫ +∞

u0

ds

f(s)
< +∞. (2.14)

The solution of (2.13) has maximum existence time less than or equal to t∗.

Proof. Applied the same argument used in 22.

2.2.3 Blow-up in PDE
We consider the PDE

ut −4u = f(u) , Ω× (0, T ) ,
∂u
∂~n

= 0 , Γ× (0, T ) ,
u(., 0) = u0 , u0 ≥ 0 , u0 ∈ L2 (Ω) .



 (2.15)

45



Theorem 25 Let ū0 = 1
|Ω|
∫

Ω
u0(x)dx and f positive, convex function over [u0,+∞) such that

t∗ =

∫ +∞

u0

ds

f(s)
< +∞ . (2.16)

Then (2.15) does not have smooth solution after t∗.

Proof. Suppose there exists a solution to (2.15) over Ω. Integrating it follows (2.15) over Ω

∂t

[
1

|Ω|

∫

Ω

udx

]
− 1

|Ω|

∫

Ω

4udx =
1

|Ω|

∫

Ω

f(u)dx , (2.17)

applying Divergence Theorem in (2.17) we obtain

∂t

[
1

|Ω|

∫

Ω

udx

]
− 1

|Ω|

∫

∂Ω

∂u

∂~n
dA =

1

|Ω|

∫

Ω

f(u)dx . (2.18)

By Newmann condition give in (2.15) we have

∂t

[
1

|Ω|

∫

Ω

udx

]
=

1

|Ω|

∫

Ω

f(u)dx . (2.19)

Using Jensen’ inequality in (2.19) result that

∂t

[
1

|Ω|

∫

Ω

udx

]
≥ f

(
1

|Ω|

∫

Ω

udx

)
. (2.20)

Let v = 1
|Ω|
∫

Ω
udx and replacing in (2.20) we obtain

vt ≥ f(v) ,
v(0) =

∫
Ω
u(x, 0)dx > 0 .

}
(2.21)

Thus, we can applied the Corollary 24 to (2.21) concluding

v(t) =
1

|Ω|

∫

Ω

u(x, t)dx , (2.22)

it is defined all most for t∗. We can apply heat equation maximum principle, because

u0 ≥ 0 , f(u) ≥ 0 ,

then
max

Ω̄×[0,T ]
u = max

ΓT
u ≥ u0 .

We know that u(x, t) ≥ 0 , then we have u(x, t) all most to t = t∗.
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Now, we consider another example. Let p > 1 and take the follow PDE

ut −4u = up , (x, t) ∈ Ω× (0, T ) ,
u(., 0) = u0 , u0 ≥ 0 ,

}
(2.23)

where u(., t) ∈ H1
0(Ω) for all t ∈ (0, T ). Define φ such that,

−4φ = λ1φ on Ω , (2.24)

where φ > 0 in H1
0 and λ1 = minσ(−4), assume that

∫
Ω
φ = 1 .

Theorem 26 (Caplan Method) If
∫

Ω
u0φdx is large enough. Then (2.23) does not have a solution

defined for all t > 0.

Proof. Multiplying by φ and integrating upon Ω in (2.24), we have
(∫

Ω

uφdx

)

t

−
∫

Ω

4uφdx =

∫

Ω

upφdx . (2.25)

Applying integration by parts formula in (2.25), we obtain
(∫

Ω

uφdx

)

t

−
∫

Ω

u4φdx =

∫

Ω

upφdx . (2.26)

By (2.24) and Jensen’s inequality result that
(∫

Ω

uφdx

)

t

+ λ1

∫

Ω

uφdx ≥
(∫

Ω

uφdx

)p
. (2.27)

Defining the change of variable v =
∫

Ω
uφdx and replacing in (2.27), we conclude

vt ≥ vp − λ1v . (2.28)

By hypothesis v0 is large enough, then there exists c > 1 such that

vp

c
≤ vp − λ1v > 0 ,

thus we obtain ∫ +∞

v0

c

sp
ds ≥

∫ +∞

v0

1

sp − λ1s
ds . (2.29)

Therefore ∫ +∞

v0

1

sp − λ1s
ds < +∞ ,

finally we can applied Corollary 24.
The following example show a similar method applied in [8, 15, 21], among others, to obtain
Blow-up in the Keller-Segel system.
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Theorem 27 (Energy Method) Let uo such that

E (u0) =
1

2

∫

Ω

|∇u0|2dx−
1

p+ 1

∫

Ω

up+1
0 dx < 0 . (2.30)

Then equation (2.23) does not have a smooth solution defined for all t ≥ 0 .

Proof. Multiplying (2.23) by ut and integrating we get
∫

Ω

u2
tdx =

∫

Ω

ut4udx+

∫

Ω

utu
pdx , (2.31)

then applying integration by parts in (2.31), we conclude

−
∫

Ω

u2
tdx =

(
1

2

∫

Ω

|∇u|2dx−
∫

Ω

up+1

p+ 1
dx

)

t

. (2.32)

We define the Energy Functional

E(u) =
1

2

∫

Ω

|∇u|2dx−
∫

Ω

up+1

p+ 1
dx . (2.33)

Using the estimate (2.32),
d

dt
E(u) ≤ 0 ,

this last inequality implies
E(u) ≤ E(u0)

and therefore by (2.30) we have E(u) ≤ 0 . In the same way,
(

1

2|Ω|

∫

Ω

u2dx

)

t

=
1

|Ω|

∫

Ω

uutdx

=
1

|Ω|

∫

Ω

u (4u+ up) dx

=
1

|Ω|

∫

Ω

(
−|∇u|2 + up+1

)
dx

=
1

|Ω|

(
−2E − 2

p+ 1

∫

Ω

up+1dx+

∫

Ω

up+1dx

)
.

Calling v = 1
2|Ω|
∫

Ω
u2dx we have

vt ≥
1

|Ω|

(
1− 2

p+ 1

)∫

Ω

up+1dx

=
1

|Ω|

(
1− 2

p+ 1

)∫

Ω

(u2)
p+1
2 dx .
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Using Jensen’ inequality taking p+1
2
> 1 result that

vt ≥
(

1− 2

p+ 1

)(
1

|Ω|

∫

Ω

u2dx

) p+1
2

=

(
1− 2

p+ 1

)
v
p+1
2 .

We know that f(s) =
(

1− 2
p+1

)
s
p+1
2 is a convex function, the result is obtained as consequence

of Theorem 25.

2.2.4 Blow-up in Chemotaxis Model
In this part, we remember a results obtain to Keller-Segel model, this show the method of moments.
We first recall the Keller-Segel model, which is the system of partial equations

{
∂u
∂t

= ∇(µ∇u)−∇.(χ(u, v)∇v) +G(u, v) ,
∂v
∂t

= F (u, v) ,
(2.34)

for x ∈ Ω , ∂Ω ∈ C1. The biological meaning of variables are:

• u(x, t) density at x in time t

• v(x, t) chemical substance

• µ, r, χ, β positive constants

• G(u, v) fitness function

We assume that there are no deaths or births of individuals, i.e,

G(u, v) = 0 , (2.35)

after a change of variable, we obtain

∂u
∂t

= µ4u− χ∇(u∇v) ,
∂v
∂t

= r4u− µv + βu ,

}
(2.36)

with the following initial conditions

u(., 0) = u0 > 0 ,
v(., 0) = v0 > 0 ,

∂u
∂~n

(., t) = 0 , x ∈ ∂Ω ,
∂v
∂~n

(., t) = 0 , x ∈ ∂Ω .





(2.37)

Without loss of generality, we can make a rescaling in time and take µ = 1. Further, we define

w =
1

|Ω|

∫

Ω

wdx .

49



Multiplying the second equation in (2.36) by 1
r|Ω| and integrating on Ω , we get

1

r
∂tv =

µ

r
v +

β

r
u .

Divergence Theorem together with condition (2.37) imply
1

|Ω|

∫

Ω

4v = 0 ,

now rearranging the terms, we conclude that
1

r
(∂t − µ) v =

β

r
u . (2.38)

In the same way, multiplying again the second equation of (2.36) by 1
r

, we get

1

r
(∂t − µ) v = 4u+

β

r
u . (2.39)

We remember that4v = 0 and integrating on Ω the first equation of (2.36) , we have

∂tu = − χ

|Ω|

∫

Ω

∇ (u∇v) dx

= − χ

|Ω|

∫

∂Ω

u∇vdx .

Therefore, by initial conditions
∂tu = 0 .

Thus, we obtain mass conservation,
u(t) = u0 .

Next, denoting ṽ = v − v , α = β
r

, hence subtracting (2.38) and (2.39) result

1

r
(∂t − µ) ṽ = 4ṽ + α (u− u0) . (2.40)

Assuming r � 1 , finally we conclude

4ṽ + α (u− u0) = 0 . (2.41)

In conclusion, we can redefined (2.36)

∂tu = 4u− χ∇. (u∇v) ,
0 = 4v + α (u− u0) .

}
(2.42)

Finally, doing the change of variable v∗ = ṽ
αu0

, u∗ = ũ
αu0

, returining to u and v, whereby obtain

∂tu = 4u− χ∇. (u∇v) ,
−4v = α (u− 1) ,
u(., t) = u0 ≥ 0 ,
v(., t) = v0 ≥ 0 ,
∂v
∂−→n = ∂u

∂−→n = 0 ,





(2.43)

which is the simplified Keller-Segel system defined on Ω ⊆ R2, ∂Ω ∈ C1 , under mass conserva-
tion hypothesis.
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Theorem 28 Let consider
Θ

2π
(8π − χΘ) +

1

2π
χM(0) < 0 (2.44)

where

Θ =

∫

Ω

udx =

∫

Ω

u0dx , M(t) =

∫

Ω

u(x, t)|x|2dx ,

for x ∈ Ω = B(0, L), u0 ∈ C 2(Ω) and radial symmetric function. Then the solutions to (2.43)
have finite existence time.

Remark 29 1. If M(0) � 1, i.e, the first moment in 0 small, then condition 8π
χ
< Θ is neces-

sary and sufficient to obtain Blow-up. Biologically means close to zero if there is an initial
concentration of individuals, this condition persists at time.

2. Remember the following formulas:

• ∇w = wr
−→r
r

• 4w = 1
r
∂
∂r

(
r ∂w
∂r

)

• m(r) =
∫
B(0,r)

udx = 2π
∫ r

0
urdr

• ∂m
∂r

= 2πru

Proof. We consider a radial symmetric initial condition, then we have radial symmetric solution to
(2.43) obtaining

−1

r

∂

∂r
(rvr) = u− 1 , (2.45)

integrating

−
∫

Ω

1

r

∂

∂r
(rvr) dx =

∫

Ω

(u− 1) dx , (2.46)

using the radial formulas recalling in Remark 29, we have

−
∫ r

0

∂

∂r
(rvr) dr =

∫ r

0

r (u− 1) dr , (2.47)

it is equivalent to

−rvr =

∫ r

0

urdr − r2

2
, (2.48)

therefore
r
∂v

∂r
= − 1

2π

(
m− πr2

)
. (2.49)

On the other hand, from (2.42) we have

∂tu = 4u− χ∇ (u∇v) , (2.50)
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multiplying (2.50) by |x|2 and integrating
∫

Ω

∂t|x|2udx =

∫

Ω

|x|24udx− χ
∫

Ω

|x|2∇ (u∇v) dx . (2.51)

Thus,

∂tM(t) =

∫

Ω

|x|24udx− χ
∫

Ω

|x|2∇ (u∇v) dx

=

∫

Ω

4|x|2udx+

∫

∂Ω

(
|x|2 ∂u

∂−→n
− u∂|x|

2

∂−→n

)
ds+ χ

∫

Ω

∇|x|2 (u∇v) dx

= 4Θ− 2

∫

∂Ω

ux−→n ds− χ
(∫

Ω

∇
(
|x|2u∇v

)
dx−

∫

Ω

∇
(
|x|2
)
u∇vdx

)

= 4Θ− 2

∫

∂Ω

u|x|ds− χ
∫

∂Ω

|x|2u∇v.−→n dx+ 2χ

∫

Ω

u (x.∇v) dx

≤ 4Θ + 2χ2π

∫ L

0

urvrrdr ,

using (2.50) we conclude

∂tM(t) ≤ 4Θ− 2χ

∫ L

0

u
(
m− πr2

)
rdr

= 4Θ− 2χ

[∫ L

0

umrdr − π
∫ L

0

ur3dr

]

= 4Θ− 2χ

[
m

2π

∫ L

0

∂m

∂r
dr − 1

2
M

]

= 4Θ− 2χ

[
1

4π
Θ2 − 1

2
M

]
,

hence

∂tM(t) ≤ Θχ

2π

(
8π

χ
−Θ

)
+ χM . (2.52)

M is a decreasing function for all t, since by hypothesis

Θχ

2π

(
8π

χ
−Θ

)
≤ 0 .

Integrating in time (2.52), we obtain

M(t) ≤
[

Θχ

2π

(
8π

χ
−Θ

)
+ χM(0)

]
t+M(0) , (2.53)

therefore there exists t0 such that

M(t0) = 0 and M(t) ≤ 0 for all t > t0 ,
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consequently, ∫

Ω

u(x, t)|x|2dt = 0 , t ≥ t0 . (2.54)

Then (2.54) implies that u(x, t) = 0 , a.e for all t > t0, therefore Θ = 0 this is a contradiction with
the mass conservation.

2.3 Hardy-Littlewood-Sobolev’ inequality for systems
The most fundamental tool used through this work to prove the sharp condition for existence and
Blow-up of solutions to Keller-Segel system (2.3) is the logarithmic Hardy-Littlewood-Sobolev’
inequality for systems, which we proceed to recall now. First in [49], it is defined the space of
functions,

ΓM
(
R2
)

=



ρ̃ = (ρ̃i)i∈I : ρ̃i ≥ 0,

∫

R2

ρ̃i |log ρ̃i| dx <∞,
∫

R2

ρ̃i = Mi,

∫

R2

ρ̃i log
(
1 + |x|2

)
<∞ , ∀i ∈ I





where M = (Mi)i∈I is given. Next, we define the functional F : ΓM (R2)→ R by

F [ρ̃] =
∑

i∈I

∫

R2

ρ̃i log ρ̃idx+
1

4π

∑

j,i∈I
ai,j

∫

2

∫

R2

ρ̃i (x) log |x− y| ρ̃j (y) dxdy ,

together with the polynomial condition

ΛJ (M) = 8π
∑

i∈J
Mi −

∑

i,j∈J
aijMiMj ,

for all J 6= ∅ and J ⊆ I . Then we have the following result,

Theorem 30 Hardy-Litlewood-Sobolev’s inequality for systems
Let A = (aij) a symmetric matrix such that aij ≥ 0 for all i, j ∈ I and M ∈ Rn

+. Then

ΛI (M) = 0 , (2.55)

together with

ΛJ (M) ≥ 0 , for all J ⊆ I

if ΛJ (M) = 0 , for some J , then aii + ΛJ\{i} (M) > 0 , for all i ∈ J ,

are necessary and sufficient conditions for the boundlessness from below of F on ΓM (R2) . In
particular, there exists a minimize ρ of F over ΓM (R2) if and only if

ΛI (M) = 0 , and ΛJ (M) > 0 , for all J ⊂ I .

Proof. See [49], Th. 4.
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2.4 Blow-up and the threshold condition

2.4.1 Blow-up without radial initial condition
Lemma 31 Let u1 , u2 and v smooth solutions of (2.3) . Let define the second moment m(t) for
the whole population by,

m(t) :=
π

χ1

∫

R2

u1 |x|2 dx+
π

χ2

∫

R2

u2 |x|2 dx , (2.56)

then we have
d

dt
m(t) =

4πθ1

χ1

+
4πθ2

χ2

− 1

2
(θ1 + θ2)2 . (2.57)

Proof. Multiplying the first equation of (2.3) by |x|2 and integrating yields,

∂t

∫

R2

u1 |x|2 dx =

∫

R2

|x|2 ∆u1dx− χ1

∫

R2

|x|2∇ · (u1∇v)dx ,

then using Green’ first identity we obtain

∂t

∫

R2

u1 |x|2 dx = 4

∫

R2

u1dx+ 2χ1

∫

R2

u1(x · ∇v)dx .

From (2.3), we have that

∇v = − 1

2π

∫

R2

x− y
|x− y|2

(u1(y, t) + u2(y, t)) dy .

Next, we compute using mass conservation,

∂t

∫

R2

u1 |x|2 dx = 4θ1 −
χ1

π

∫

R2×R2

(
x · x− y
|x− y|2

u1(x, t) (u1(y, t) + u2(y, t))

)
dydx . (2.58)

Similarly,

∂t

∫

R2

u2 |x|2 dx = 4θ2 −
χ2

π

∫

R2×R2

(
x · x− y
|x− y|2

u2(x, t) (u1(y, t) + u2(y, t))

)
dydx . (2.59)

Adding (2.58) and (2.59), it follows

d

dt

(
π

χ1

∫

R2

u1 |x|2 dx+
π

χ2

∫

2

u2 |x|2 dx
)

=
4πθ1

χ1

+
4πθ2

χ2

−
∫

R2×R2

x · x− y
|x− y|2

(u1(x, t) + u2(x, t)) (u1(y, t) + u2(y, t)) dydx .
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After, using the symmetry in the variables x and y in the last integral we get,

d

dt

(
π

χ1

∫

R2

u1 |x|2 dx+
π

χ2

∫

R2

u2 |x|2 dx
)

=
4πθ1

χ1

+
4πθ2

χ2

− 1

2

∫

R2×R2

(x− y) · x− y
|x− y|2

(u1(x, t) + u2(x, t)) (u1(y, t) + u2(y, t)) dydx

=
4πθ1

χ1

+
4πθ2

χ2

− 1

2

∫

R2×R2

(u1(x, t) + u2(x, t)) (u1(y, t) + u2(y, t)) dydx

=
4πθ1

χ1

+
4πθ2

χ2

− 1

2
(θ1 + θ2)2 .

Therefore, if we have that the initial masses θ1 and θ2 satisfy,

4πθ1

χ1

+
4πθ2

χ2

− 1

2
(θ1 + θ2)2 < 0 (2.60)

we arrive at the conclusion that m(t) should become negative in finite time, which is impossible
since u1 and u2 are nonnegative. Consequently, there is a finite blow-up time T ∗. In fact being
as
∫
R2 ui |x|2 dx ≤ χi

π
m(t) both of the density variables u1 and u2 blows up. A straightforward

generalization of system (2.3) for n species show that in the region

4π
n∑

i=1

θi
χi
− 1

2

(
n∑

i=1

θi

)2

< 0 ,

therefore, there is Blow-up for the n density variables.

2.4.2 Blow-up in radial case
Consider u10 , u20 radial initial conditions. Let us define the accumulative mass variables for
system (2.3),

Mi(r, t) :=

∫

D(0,r)

ui(x, t) = 2π

∫ r

0

ui(ρ, t)ρdρ ,

for i = 1, 2 . We are going to prove that if enough species are concentrate at the origin (i.e we have
a small initial moment) then any of the inequalities

θ1 <
8π

χ
µ , θ2 <

8π

χ2

,

implies Blow-up. Multiplying the first equation of (2.3) by |x|2 and integrating on R2

d

dt

∫

R2

u1|x|2dx = µ

∫

R2

4u1|x|2dx− χ1

∫

R2

O · (u1Ov)dx , (2.61)
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then using the first Green’ identity in (2.61) , we obtain

d

dt

∫

R2

u1|x|2dx = µ

∫

R2

4u1|x|2dx− χ1

∫

R2

O · (u1Ov)dx . (2.62)

In cylindrical coordinates, the equation for chemical substance is

1

r

∂

∂r

(
r
∂v

∂r

)
+ u1 + u2 = 0 , (2.63)

multiplying by r and integrating upon (0, r) (2.63) , we have

r
∂v

∂r
= −

∫ r

0

ρu1dρ−
∫ r

0

ρu2dρ

= − 1

2π

∫

D(0,r)

u1(x, t)− 1

2π

∫

D(0,r)

u2(x, t)

= −M1 +M2

2π
.

Therefore,
∂v

∂r
= −M1 +M2

2πr
. (2.64)

Using (2.64) and the general identity for radial functions

x · Oφ(x) = r
∂φ

∂r
, (2.65)

we obtain the following calculation
∫

R2

u1 (x · Ov) dx = 2π

∫ +∞

0

u1ρ
∂v

∂ρ
ρdρ

= −2π

∫ +∞

0

u1
M1 +M2

2π
ρdρ

= −
∫ +∞

0

u1 (M1 +M2) ρdρ

≤ −
∫ +∞

0

u1M1ρ1dρ

= − 1

4π
θ1 .

From this last estimation and (2.62), we conclude

dm

dt
≤ 4µ

∫

R2

u1dx+ 2χ1

(
− 1

4π
θ2

1

)

= 4θ1µ

(
1− χ1θ1

8πµ

)
.

Applying a similar argument, we prove the other inequality. Finally, we obtain the finite time of
existence using the same argument for Blow-up in non radial case.
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2.5 Global Existence

2.5.1 Energy and Entropy estimates
Let us proceed formally to find a free energy functional in our system. First, we rewrite the equation
for u1 in (2.3) making the following estimations,

∂tu1 = µ4u1 − χ1∇. (u1∇v)

= ∇. [µ∇u1 − χ1(u1∇v)]

= ∇. [u1 (µ∇ log(u1)− χ1∇v)] ,

therefore
∂tu1 = ∇ · u1∇ (µ log u1 − χ1v) . (2.66)

Next, we multiply both sides of (2.66) by µ log u1 − χ1v and integrate to obtain,
∫

R2

u1t (µ log u1 − χ1v) dx =

∫

R2

(µ log u1 − χ1v)∇ · [u1∇ (µ log u1 − χ1v)]dx . (2.67)

Then, using mass conservation and assuming the necessaries conditions to applied integration by
parts formula, we see that (2.67) is equivalent to

d

dt

∫

R2

µu1 log u1dx− χ1

∫

R2

u1tvdx = −
∫

R2

u1 |∇ (µ log u1 − χ1v)|2 dx . (2.68)

Similarly, it holds that

d

dt

∫

R2

u2 log u2dx− χ2

∫

R2

u2tvdx = −
∫

R2

u2 |∇ (log u2 − χ2v)|2 dx . (2.69)

Now, multiplying by 1
χ1

(2.68) and by 1
χ2

(2.69), adding these results we get that

d

dt

{∫

R2

µ

χ1

u1 log u1dx+
1

χ2

∫

R2

u2 log u2dx

}
−
∫

R2

(u1t + u2t) vdx

= −
∫

R2

u1 |∇ (µ log u1 − χ1v)|2 dx−
∫

R2

u2 |∇ (log u2 − χ2v)|2 dx . (2.70)

Notice that by initial assumptions,
∫

R2

(u1t + u2t) vdx =
1

2

d

dt

∫

R2

(u1 + u2)vdx . (2.71)

As conclusion, we deduce from (2.70) and (2.71) that

d

dt

{∫

R2

µ

χ1

u1 log u1dx+
1

χ2

∫

R2

u2 log u2dx−
1

2

∫

R2

(u1 + u2)vdx

}
≤ 0 . (2.72)
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The equality (2.72) motivate us to define the free energy functional for system (2.3) as

E(t) :=
µ

χ1

∫

R2

u1 log u1dx+
1

χ2

∫

R2

u2 log u2dx−
1

2

∫

R2

u1vdx−
1

2

∫

R2

u2vdx . (2.73)

In order to validate our estimations, we suppose that,

u1, u2 ∈ C0(R+, L1(R2)) ∩ L2((0, T );H1(R2)) ,

u1(1 + |x|2) , u2(1 + |x|2) , u1 log u1 , u2 log u2 are bounded in L∞loc(R+, L1(R2)) ,

Additionally,
∇
√
u1 ,∇

√
u2 ∈ L1

loc(R+ , L1(R2))

and
∇v ∈ L∞loc(R+ × R2) .

Then, we have that

d

dt
E(t) = − 1

χ1

∫

R2

u1 |µ∇ log u1 −∇χ1v|2 dx−
1

χ2

∫

R2

u2 |∇ log u2 −∇χ2v|2 dx ≤ 0 . (2.74)

As a consequence of (2.74) and the Hardy-Littlewood-Sobolev’ inequality [8, 15] was obtained in
[15] a first non optimal result about entropy bound, which is summarized in the following theorem,

Theorem 32 If u1 and u2 are positive solutions of (2.3) on the interval [0, T ) and χ1 ≤ χ2 then
we have the following Entropy estimates

• if µ > 1 then

(
1− Mχ2

8π

)∫ T

0

∫

R2

(
1

χ1

u1(x, t) +
1

χ2

u2(x, t)

)
log

(
1

χ1

u1(x, t) +
1

χ2

u2(x, t)

)
dxdt ≤ CT

where CT is a constant depending on T and M = θ1 + θ2 .

• If µ ≤ 1 then
(

1− Mχ2

8πµ

)∫ T

0

∫

R2

(
1

χ1

u1(x, t) +
1

χ2

u2(x, t)

)
log

(
1

χ1

u1(x, t) +
1

χ2

u2(x, t)

)
dxdt ≤ CT

where CT is a constant depending on T and M = θ1 + θ2 .

Proof. To more details about this preliminary result to see [[15],Theorem 1] attached in the second
part of this thesis.

Theorem 32 gives bounds for the entropy which is the key tool for the proof of global existence
for system (2.3), but it is not sharp condition. In order to improve an optimal result, it would be
desirable to use the HLS inequality for systems developed by I. Shafrir & G. Wolansky in [49].
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However, as we will show after, a direct application of this tool in our system do not give the
expect optimal result that we are looking for. We will prove how an adequate introduction of some
auxiliary parameters in (2.74) allows us to improve the sharp result of global existence published
in [21], mainly, we will show that if θ1, θ2 satisfy,

4πµθ1

χ1

+
4πθ2

χ2

− 1

2
(θ1 + θ2)2 ≥ 0, θ1 < µ

8π

χ1

, θ2 <
8π

χ2

,

then exists global solution in time. No kind of radial symmetry initial condition is assumed.
The first result of this subsection gives us bounds for the entropy functional. We achieve our

aim through an appropriate use of the HLS inequality for systems, Th. 30. The main idea of the
proof read as follows: Given that a direct application of the HLS inequality would allows us to
get bounds only on a curve of the θ1θ2−plane for the entropy

∫
R2 ui(x, t) log ui(x, t)dx, i = 1, 2,

we introduce some parameters before apply the HLS inequality. Then we can ’move’, ’shrink’
and ’dilate’ this family of curves, in such a way, that the full region (2.79) is swept and therefore,
obtaining an estimation for (2.80) in this region.

We suppose in this part that,

u10 , u20 ∈ L1(R2, (1 + |x|2)dx) ,
u10 log u10 , u20 log u20 ∈ L1(R2, dx) .

}
(2.75)

Lemma 33 (Lower bound for the entropy functional) Consider a non-negative weak solution
of (2.3) , such that ui(1 + |x|2), i = 1, 2 are bounded in L∞loc(R+, L1(R2)). Then we have,

∫

R2

ui (x, t) log ui (x, t) ≥M logM −M log [π (1 + t)]− C , i = 1, 2 .

Proof. In the following C will denote a generic constant. We have from subsection (2.4),

d

dt

∫

R2

(
µ

χ1

u1(x, t) +
1

χ2

u2(x, t)

)
|x|2 dx =

4θ1

χ1

µ+
4θ2

χ2

− 1

2π
(θ1 + θ2)2 . (2.76)

We define
n =

µ

χ1

u1 +
1

χ2

u2 ,

K =
4θ1

χ1

µ+
4θ2

χ2

− 1

2π
(θ1 + θ2)2 .

Thus we obtain
∫

R2

n(x, t) |x|2 dx = Kt+

∫

R2

n(x, 0) |x|2 dx ≤ C(1 + t) , (2.77)
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where C = max

{
K,
∫
R2

n(x, 0) |x|2 dx

}
. From the inequality ui ≤ Cn, where i = 1, 2 and from

(2.77) we deduce that ∫

R2

ui(x, t) |x|2 dx ≤ C(1 + t) , i = 1, 2 .

Using the same idea presented in [8, Lemma 2.5] we observe that
∫
R2

ui (x, t) log ui (x, t) ≥ 1
1+t

∫
R2

ui (x, t) |x|2 − C +
∫
R2

ui (x, t) log ui (x, t)

=
∫
R2

ui (x, t) log

[
ui(x,t)

e
−|x|

2

1+t

]
− C .

(2.78)

Let us now define the variable α as follow

α (x, t) =
1

π (1 + t)
exp

(
− |x|

2

1 + t

)
.

We obtain then from (2.78) that
∫

R2

ui (x, t) log ui (x, t) ≥
∫

R2

ui (x, t) log

[
ui (x, t)

µ (x, t)

]
dx−M log [π (1 + t)]− C

=

∫

R2

ui (x, t)

µ (x, t)
log

[
ui (x, t)

α (x, t)

]
α (x, t) dx−M log [π (1 + t)]− C

where M = µ
χ1
θ1 + 1

χ2
θ2. Therefore, by Jensen’s inequality we get from (2.78) that

∫

R2

ui (x, t) log ui (x, t) ≥M logM −M log [π (1 + t)]− C .

Theorem 34 (Upper bound for the entropy functional) Consider a non-negative weak solution
of (2.3), such that ui

(
1 + |x|2

)
, ui log ui, i = 1, 2 are bounded in L∞loc(R+, L1(R2)). If θ1 , θ2

satisfy,

θ1 <
8π

χ1

µ , θ2 <
8π

χ2

, 8π

(
θ1

χ1

µ+
θ2

χ2

)
− (θ1 + θ2)2 > 0 . (2.79)

Then ∫

R2

ui(x, t) log ui(x, t)dx ≤ C , (2.80)

where i = 1, 2 and C is a constant depending only on the parameters θ1 , θ2 , µ , χ1 , χ2 and E(0).
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Proof. By (2.73) for all t > 0 , we have that

E (t) ≤ E (0) .

Consequently, we have the computation

µ

χ1

∫

R2

u1 (x, t) log u1 (x, t) dx+
1

χ2

∫

R2

u2 (x, t) log u2 (x, t) dx

≤ E (0)− 1

4π

∫

R2

∫

R2

u1 (x, t)u1 (y, t) log |x− y| dxdy − 1

4π

∫

R2

∫

R2

u1 (x, t)u2 (y, t) log |x− y| dxdy

− 1

4π

∫

R2

∫

R2

u2 (x, t)u1 (y, t) log |x− y| dxdy − 1

4π

∫

R2

∫

R2

u2 (x, t)u2 (y, t) log |x− y| dxdy .

Considering the two positives parameters a and b such that

a > χ1 , b > χ2 (2.81)

and including them in the last inequality we obtain

µ

χ1

∫

R2

u1 (x, t) log u1 (x, t) dx+
1

χ2

∫

R2

u2 (x, t) log u2 (x, t) dx

≤ E (0)− a2

µ24π

∫

R2

∫

R2

µu1 (x, t)

a

µu1 (y, t)

a
log |x− y| dxdy

− ab

µ4π

∫

R2

∫

R2

µu1 (x, t)

a

u2 (y, t)

b
log |x− y| dxdy

− ab

µ4π

∫

R2

∫

R2

u2 (x, t)

b

µu1 (y, t)

a
log |x− y| dxdy

− b
2

4π

∫

R2

∫

R2

u2 (x, t)

b

u2 (y, t)

b
log |x− y| dxdy . (2.82)

By doing so, we can apply now the HLS inequality for systems (Th.30) to the functions µu1
a

and
u2
b

on identity (2.82) getting that,

µ

χ1

∫

R2

u1 (x, t) log u1 (x, t) +
1

χ2

∫

R2

u2 (x, t) log u2 (x, t)

≤ E (0)− C +

∫

R2

µ
u1 (x, t)

a
log

(
µ
u1 (x, t)

a

)
dx+

∫

R2

u2 (x, t)

b
log

(
u2 (x, t)

b

)
dx ,
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where the conditions for the existence of the constant C given by Th.30 are

Λ{1} (M) = 8πµ
θ1

a
− a2

(
θ1

a

)2

≥ 0 ,

Λ{2} (M) = 8π
θ2

b
− b2

(
θ2

b

)2

≥ 0 ,

Λ{1,2} (M) = 8π

(
µ
θ1

a
+
θ2

b

)
− (a2 θ1

a

θ1

a
+ ab

θ1

a

θ2

b
+ b2 θ2

b

θ2

b
) = 0 .

Equivalently,

θ1 ≤ µ
8π

a
, θ2 ≤

8π

b
, 8π

(
µ
θ1

a
+
θ2

b

)
− (θ1 + θ2)2 = 0 . (2.83)

Notice that we have proved that conditions (2.83) imply,

µ

(
1

χ1

− 1

a

)∫

R2

u1 (x, t) log u1 (x, t) dx+

(
1

χ2

− 1

b

)∫

R2

u2 (x, t) log u2 (x, t) dx

≤ E (0)− C +
θ1µ

a
log

µ

a
+
θ2

b
log

1

b
. (2.84)

We have from Lemma 33 that the functional
∫
ui log uidx are bounded lowerly for i = 1, 2. In the

same way, each coefficient of the entropy functional in (2.84) is positive as long as a > χ1 and
b > χ2. Then, we take parameters a and b on the intervals (χ1,∞) and (χ2,∞), respectively. We
conclude that the estimates (2.80) on region (2.79) are true.

2.5.2 Weak Solution
In order, in this part we define the weak solution for (2.3). We start multiplying the first equation
of (2.3) by a test function ψ ∈ C∞0 (R2) and integrating, we get

d

dt

∫

R2

ψ(x)u1(x, t)dx

=

∫

R2

∆ψ(x)u1(x, t)dx

−χ1

4π

∫

R2×R2

∇ψ(x) · x− y
|x− y|2

(u1(x, t)u1(y, t) + u1(x, t)u2(y, t)) dxdy

=

∫

R2

∆ψ(x)u1(x, t)dx

−χ1

4π

∫

R2×R2

∇ψ(x) · x− y
|x− y|2

(u1(x, t)u1(y, t) + u1(x, t)u2(y, t)) dxdy .

Notice that,
∫

R2×R2

∇ψ(x) · x− y
|x− y|2

u1(x, t)u2(y, t)dxdy = −
∫

R2×R2

∇ψ(y) · x− y
|x− y|2

u1(y, t)u2(x, t)dxdy .
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Therefore, it follows
∫
∇ψ(x) · x− y

|x− y|2
u1(x, t)u2(y, t)dxdy

=
1

2

∫
x− y
|x− y|2

· (u1(x, t)u2(y, t)∇ψ(x)− u1(y, t)u2(x, t)∇ψ(y)) dxdy

=
1

2

∫
x− y
|x− y|2

· [u1(y, t)u2(x, t) (∇ψ(x)−∇ψ(y))− u1(y, t)u2(x, t)∇ψ(x) + u1(x, t)u2(y, t)∇ψ(x)] dxdy

=
1

2

∫
x− y
|x− y|2

· [u1(y, t)u2(x, t) (∇ψ(x)−∇ψ(y))− {u1(y, t)u2(x, t)− u1(x, t)u2(y, t)}∇ψ(x)] dxdy .

The expression

(∇ψ(x)−∇ψ(y)) · x− y
|x− y|2

,

is bounded. If we assume, a priori that u1 and u2 are Lipschitz, we observe

x− y
|x− y|2

{u1(y, t)u2(x, t)− u1(x, t)u2(y, t)}∇ψ(x)

=

{
[u1(y, t)− u1(x, t)]

|x− y|
u2(x, t) + u1(x, t)

[
u2(x, t)− u2(y, t)

|x− y|

]}
x− y
|x− y|

· ∇ψ(x)

is bounded too. Then, we define a weak solution for our system as a couple of functions (u1, u2) ∈
L∞(R+ , Lip(Rn)) which satisfies, for every test functions ψ , φ ∈ C∞0 (R2) the equality,

d

dt

∫

R2

ψ(x)u1(x, t)dx

=

∫

R2

∆ψ(x)u1(x, t)dx

− χ1

8π

∫

R2×R2

(∇ψ(x)−∇ψ(y)) · x− y
|x− y|2

(u1(x, t)u1(y, t) + u1(y, t)u2(x, t)) dxdy

+
χ1

8π

∫

R2×R2

x− y
|x− y|2

· {u1(y, t)u2(x, t)− u1(x, t)u2(y, t)}∇ψ(x)dxdy ,

follow the same argument, the equality for u2 and φ is obtained.

Using this last definition, we can prove that weak solutions are mass conservative. To prove,
this we take a test function ψ such that

ψ(r) =

{
1 , r ≤ 1/2 ,
0 , r ≥ 1 .
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Thus, we define ψR(x) = ψ(|x| /R). Then, there exists some constants C1 , C2 and C3 such that
∣∣∣∣
∫

R2

∆ψR(x)u1(x, t)dx

∣∣∣∣ ≤
C1

R2

∣∣∣∣
χ1

8π

∫

R2×R2

(∇ψR(x)−∇ψR(y)) · x− y
|x− y|2

(u1(x, t)u1(y, t) + u1(y, t)u2(x, t)) dxdy

∣∣∣∣ ≤
C2

R2

∣∣∣∣
χ1

8π

∫

R2×R2

x− y
|x− y|2

· {u1(y, t)u2(x, t)− u1(x, t)u2(y, t)}∇ψR(x)dxdy

∣∣∣∣ ≤
C3

R

Finally, passing to the limit as R→∞, we arrive at

d

dt

∫

R2

u1(x, t)dx = 0 .

A similar result follows for u2 . The conservation of mass for weak solutions, allows us to conclude,
using the same techniques, the weak solutions of (2.3) hold identity (2.76) .

2.5.3 Global Existence of Weak Solutions
Boundlessness of the entropy in the last Theorem, is the main tool that we will use to obtain the
following result of global existence.

Theorem 35 (Global Existence of Weak Solutions) Under assumption (2.75) and

8π

(
θ1

χ1

µ+
θ2

χ2

)
− (θ1 + θ2)2 > 0 , (2.85)

θ1 <
8π

χ1

µ , θ2 <
8π

χ2

, (2.86)

system (2.3) has a global weak non negative solution such that

(1 + |x|2 + |log ui|)ui ∈ L∞(0, T ; L1(R2))

and

− 1

χ1

∫ ∫

[0,T ]×R2

u1 |µ∇ log u1 −∇χ1v|2 dx−
1

χ2

∫ ∫

[0,T ]×R2

u2 |∇ log u2 −∇χ2v|2 dx <∞ .

Before showing the proof, let us first give some explanations on this result. Inequality (2.85)
corresponds to the interior of a rotated parabola in the plane θ1θ2. Choosing the parameters µ , χ1

and χ2 adequately condition (2.86) may be relevant or can be simply ignored. More precisely we
have the following two cases,
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Figure 2.2: Different configurations to parabola (2.87) .

• If the parabola,

8π

(
θ1

χ1

µ+
θ2

χ2

)
− (θ1 + θ2)2 = 0 (2.87)

intersects any of the lines θ1 = 8πµ/χ1 or θ2 = 8π/χ2 in the first quadrant of the θ1θ2 plane,
(which happens exactly when χ1 < µχ2/2 or χ1 > 2µχ2) and θ1, θ2 satisfies inequalities
(2.85) and (2.86) then system (2.3) has a global in time weak solution.

• However, if the parabola (2.87) do not intersect any of the lines θ1 = 8πµ/χ1 or θ2 = 8π/χ2

(when µχ2/2 ≤ χ1 ≤ 2µχ2) in the first quadrant of the θ1θ2 plane, and θ1, θ2 satisfies
inequality (2.85), then system (2.3) has a global in time weak solution.

This different options are summarized in the Figure 2.2
On the other hand, we point out that all of our results are formally so far. In order to give them

rigorousness, we should have a local existence result of smooth solutions. However, we will take
another strategy which will allow us to obtain directly global existence in time of weak solutions
with the corresponding mathematical rigorousness. In order to prove Th.35 , first, we modify the
convolution kernel k0(z) = − 1

2π
log |z| in (2.3), by truncating it around zero. This last will allows

us to get a regularized version of system (2.3), which is rather easier to work. After proving the
existence of global solutions of this last approximate problem, we look for uniform estimates of
the solutions and then pass to the limit will give us the result of global existence, we are looking
for. After getting this result we recover properties such as mass conservation or the second mo-
ment formula by ”testing” properly our weak solution. A similar technique was made in the one
chemotaxis species case (see [7, 8]), for this last, we only make an sketch to the proof.

Proof (Sketch). For the reader’s convenience, we divide the proof in four steps giving special
attention where technical difficulties arise in comparison to the single species case.
Step 1. Regularization of the system. We define Kε by Kε (z) := K1

(
z
ε

)
, where K1 is a radial

monotone non-decreasing smooth function satisfying,

K1 (z) =

{
− 1

2π
log |z| if |z| ≥ 4
0 if |z| ≤ 1,
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we also assume that ∣∣∇K1 (z)
∣∣ ≤ 1

2π |z|
,

K1 (z) ≤ − 1

2π
log |z| , −∆K1 (z) ≥ 0 ,

for all z ∈ R2 . Then, we obtain the following regularized version of system (2.3) ,




∂tu
ε
1 = ∆uε1 − χ1∇ · (uε1∇vε) , t ≥ 0 , x ∈ R2 ,

∂tu
ε
2 = ∆uε2 − χ2∇ · (uε2∇vε) ,

vε = Kε ∗ (uε1 + uε2) ,
(2.88)

which we interpret in the distribution sense. Since Kε(z) = K1( z
ε
), we also have

|∇Kε (z)| = 1

ε

∣∣∣∇K
(z
ε

)∣∣∣ ≤ 1

ε

1

2π |z/ε|
=

1

2π |z|
. (2.89)

The proof of global solutions in L2 (0, T ;H1(R2)∩C (0, T ;L2(R2)) for system (2.88) with initial
data in L2(R2) follows essentially the same lines as in [8, Prop. 2.8] and therefore we omit the
proof here.
Step 2. A prior estimates for the approximate solutions uε1 , uε2 and vε .
Consider a solution (uε1, u

ε
2) of the regularized system. If

θ1 <
8π

χ1

µ , θ2 <
8π

χ2

, 8π

(
θ1

χ1

µ+
θ2

χ2

)
− (θ1 + θ2)2 ≥ 0,

then, uniformly as ε→ 0, with bounds depending only upon
∫
R2

(
1 + |x|2

)
ui0dx and

∫
R2

ui0 log ui0dx

with i = 1, 2 , we have,

(i) The function (x, t)→ |x|2 (uε1 + uε2) is bounded in L∞
(
R+
loc;L

1 (R2)
)

.

(ii) The functions t →
∫
R2

uεj (x, t) log uεj (x, t) dx and t →
∫
R2

uεj (x, t) vε (x, t) dx are bounded

for j = 1, 2 .

(iii) The function (x, t) → uεj (x, t) log
(
uεj (x, t)

)
is bounded in L∞

(
R+
loc;L

1 (R2)
)

for j = 1, 2
.

(iv) The function (x, t)→ ∇
√
uεj (x, t) is bounded in L2

(
R+
loc × R2

)
for j = 1, 2 .

(v) The function (x, t)→ uεj (x, t) is bounded in L2
(
R+
loc × R2

)
for j = 1, 2 .

(vi) The function (x, t)→ uεj (x, t) ∆vε (x, t) is bounded in L1
(
R+
loc × R2

)
for j = 1, 2 .
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(vii) The function (x, t)→
√
uεj (x, t)∇vε (x, t) is bounded in L2

(
R+
loc × R2

)
for j = 1, 2 .

The proof of estimates (i)-(vii) follows essentially the same steps as in the one species case,
therefore, we remit the reader to [8, Lema 2.11]. In addition, we note that from Gagliardo-
Nierenberg-Sobolev inequality, for all p ∈ [2,∞)

‖g‖2
Lp(R2) ≤ C

(p)
GNS ‖∇g‖

2− 4
p

L2(R2) ‖g‖
4
p

L2(R2) , for all g ∈ H1
(
R2
)

,

taking g =
√
uεi we obtain,

∫

R2

|uεi |
p/2 dx ≤

(
C

(p)
GNS

) p
2
θi

∥∥∥∇
√
uεi

∥∥∥
p−2

L2(R2)
(2.90)

for any p > 2. Estimation (iv) along with (2.90) implies that uεi is uniformly bounded in
Lq
(
R+
loc × R2

)
for every q ∈ [1,∞). Therefore, we have proved the following result

(viii) The function (x, t)→ uεj (x, t) is bounded in Lp
(
R+
loc × R2

)
for j = 1, 2, p ≥ 1.

Step 3. Construction of a strong convergence subsequence in Lp: To achieve our aim in this
step we will apply the Aubin-Lions compactness Lemma.
First, we get a uniform bound on ‖∇uεi‖L2

loc((δ,T )×Bi). We observe that,

d

dt

∫

R2

|uε1|
2 dx = −2

∫

R2

|∇uε1|
2 dx+ 2χ1

∫

R2

uεi∇uεi · ∇vεdx

≤ −2

∫

R2

|∇uε1|
2 dx+ 2χ1



∫

R2

|∇uεi |
2




1/2

∫

R2

|uεi |
2 |∇vε|2 dx




1/2

≤ −2

∫

R2

|∇uε1|
2 dx+ 2χ1



∫

R2

|∇uε1|
2




1/2

∫

R2

|uε1|
3 dx




1/3

∫

R2

|∇vε|6 dx




1/6

,

where we have used Holder inequality in the last line. The classical Gagliardo-Nirenberg-Sobolev
inequality along with the Calderon-Zigmund inequality allow us to achieve that,



∫

R2

|∇vε|6 dx




1/6

≤ C



∫

R2

|∆vε|3/2 dx




2/3

. (2.91)
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From ineq. (2.91) and (2.91) we conclude that,

d

dt

∫

R2

|uε1|
2 dx

≤ −2

∫

R2

|∇uε1|
2 dx+ 2Cχ1



∫

R2

|∇uε1|
2




1/2

∫

R2

|uε1|
3 dx




1/3

∫

R2

|∆vε|3/2 dx




2/3

≤ −2

∫

R2

|∇uε1|
2 dx

+2Cχ1



∫

R2

|∇uε1|
2




1/2

∫

R2

|uε1|
3 dx




1/3





∫

R2

|uε1|
3/2 dx




2/3

+



∫

R2

|uε2|
3/2 dx




2/3

 .

Integrating respect to t and reordering last inequality we obtain now,

2

∫ T

δ

∫

R2

|∇uεi |
2 dxdt

− 2Cχ1





sup
t∈[δ,T ]

(∫

R2

|uε1|
3 dx

)1/3


 sup
t∈[δ,T ]



∫

R2

|uε1|
3/2 dx




2/3

+ sup
t∈[δ,T ]

(∫

R2

|uε2|
3/2 dx

)2/3








·
∫ T

δ

(∫

R2

|∇uε1|
2

)1/2

dt+

∫

R2

|uεi |
2 dx−

∫

R2

|uεi(x, 0)|2 dx ≤ 0 .

We observe now that,

∫ T

δ



∫

R2

|∇uε1|
2 dx




1/2

dt ≤ T 1/2

(∫ T

δ

∫

R2

|∇uεi |
2 dxdt

)1/2

.

Denoting by X := ‖∇uεi‖L2
loc((δ,T )×R2) and taking into account viii), we conclude from last in-

equality that for positive constants a , b and c we have that,

aX2 − bX + c ≤ 0 ,

in consequence X := ‖∇uεi‖L2
loc((δ,T )×R2) is bounded, i.e there exist a constant C such that,

‖∇uεi‖L2
loc((δ,T )×R2) ≤ C . (2.92)

Now, we obtain a bound for ‖duεi/dt‖L2((0,T );H−1(R2)). Let φ ∈ H1(R2) then we have,
∣∣∣∣
〈
duεi
dt
, φ

〉∣∣∣∣ = |〈∆ui −∇ · (ui∇vε) , φ〉| (2.93)

≤ |〈∇ui,∇φ〉|+ |〈ui∇vε,∇φ〉|
≤ ‖∇φ‖ ‖∇ui‖+ ‖∇φ‖ ‖ui∇vε‖ . (2.94)
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Thus,
∥∥∥∥
duεi
dt

∥∥∥∥
H−1(R2)

= sup
‖φ‖H1(R2)=1

∣∣∣∣
〈
duεi
dt
, φ

〉∣∣∣∣ ≤ ‖∇uεi‖L2(R2) + ‖uεi∇‖L2(R2) ≤ C .

From the last estimate it follows that,

∥∥∥∥
duεi
dt

∥∥∥∥
L2((δ,T );H−1(R2))

=

(∫ T

δ

∥∥∥∥
duεi
dt

∥∥∥∥
2

H−1(R2)

)1/2

≤ C(T ) . (2.95)

Compactness: In order to apply the Aubin-Lions’ Lemma, we define the spaces

B0 = H1(R2) ∩
{
f | |x|2 f ∈ L1(R2)

}
,

B := L2(R2)

and
B1 := B′0 .

Let {fi} and arbitrary bounded sequence in B, then we have that it is L2 equi-integrate at infinity
(cf.[3, Corollary 5.3.1]) as the following account shows:

∫

{|x|>R}
f 2
i dx ≤

1

R

∫

{|x|>R}

(
|x| f 1/2

i

)
f

3/2
i dx ≤ 1

R

(∫

{|x|>R}
|x|2 fidx

)1/2(∫

{|x|>R}
f 3
i dx

)1/2

≤ 1

R

(∫

R2

|x|2 fidx
)1/2(∫

R2

f 3dx

)1/2

.

Thus,

lim
R→+∞

∫

{|x|>R}
f 2
i dx = 0 , (2.96)

uniformly with respect to fi . From, the Rellich-Kondrakov Theorem (cf.[3, Corollary 5.3.1]) we
obtain the compact inclusion,

B0 ↪→↪→ B

Given that uεi satisfies (2.92) , (2.95) and (2.96) , we can invoke now the Aubin-Lions-Simon
theorem to conclude that uεi has a sub sequence which converge strongly inL2(0, T, B) . Therefore,
under a subsequence we have that,

uεi → ui a.e. in R2 × (δ, T ] . (2.97)

We also have proved uniformly boundlessness for ‖uεi‖Lp(R2)×[0,T ] , from this, estimation (2.97)
and Vitali’ theorem we obtain,

uεi → ui strongly in Lp(R2 × [0, T ]) for p ≥ 1 . (2.98)
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Step 4. Pass to the limit. We pass to the limit in the weak sense to obtain our result of global
existence. The most significant technical difficulty to show that u1, u2 solved (2.3) arise with the
nonlinear terms. In order to prove that

uεi∇vε ⇀ ui∇v, in D′(R+ × R2) . (2.99)

First, we notice that the expression uεi |∇vε| is integrate as estimate (vii), along with the following
estimate show,

(∫

[0,T ]×R2

uεi |∇vε| dxdt
)2

=

(∫

[0,T ]×R2

√
uεi
√
uεi |∇vε| dxdt

)2

≤
∫

[0,T ]×R2

uεidxdt

∫

[0,T ]×R2

uεi |∇vε|
2 dxdt ≤ θiT

∫

[0,T ]×R2

uεi |∇vε|
2 dxdt .

It follows that we can interpret uεi∇vε as an element of (C∞0 (R+ × R2))
′ and therefore it has sense

its divergence.
In order to prove that ‖∇vε‖Lr(Rn) ≤ C for r > 2, we recall the Hardy-Littelwood-Sobolev
inequality: For all f ∈ Lp(Rn), g ∈ Lq(Rn) , 1 < p, q < ∞ such that 1

p
+ 1

q
+ λ

n
= 2 and

0 < λ < n , there exists a constant C = C(p, q, λ) > 0 such that
∣∣∣∣∣

∫

Rn×Rn

1

|x− y|λ
f(x)g(y)dxdy

∣∣∣∣∣ ≤ C ‖f‖Lp(Rn) ‖g‖Lq(Rn) .

Taking the supreme over the ball ‖g‖Lq(Rn) = 1, on both sides of the last inequality we obtain,
∥∥∥∥∥

∫

Rn

1

|x− y|λ
f(x)dx

∥∥∥∥∥
L

q
q−1 (Rn)

≤ C ‖f‖Lp(Rn) . (2.100)

In particular, ∥∥∥∥
∫

Rn

1

|x− y|
f(x)dx

∥∥∥∥
L

q
q−1 (R2)

≤ C ‖f‖Lp(R2) ,

where 1 < p, q <∞ , 1/p+ 1/q + 1/2 = 2. Thus, we have that

‖∇vε‖Lr(Rn) = ‖∇Kε ∗ (uε1 + uε2)‖Lr(R2) (2.101)

≤
∥∥∥∥

1

2π

∫
1

|x− y|
(uε1 + uε2)dx

∥∥∥∥
Lr(R2)

(2.102)

≤ C
(
‖uε1‖Lp(R2) + ‖uε2‖Lp(R2)

)
≤ C , (2.103)

we have used step 2 (viii). From, r = q
q−1

and 1/p + 1/q + 1/2 = 2, we obtain that 1
r

= 1
p
− 1

2
.

In addition, p ∈ (1, 2) implies that r ∈ (2,∞). We conclude that (up to a subsequence) ∇vε ⇀ h,
where h is in Lr. In order to prove that actually h = ∇K ∗ n we have to do some extra work yet.
With this end in mind, we now propose us to show that,

∇vε → ∇v a.e. (2.104)
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We have that,

∇vε −∇v = − 1

2π

∫

R2

x− y
|x− y|2

((uε1 + uε2)− (u1 + u2)) (y, t) dy

+

∫

|x−y|≤2ε

(
1

ε
∇K1

(
x− y
ε

)
+
|x− y|

2π |x− y|2

)
(uε1 + uε2) (y, t)dy. (2.105)

From (2.98) and (2.100) , we deduce that (under a subsequence) the first integral in (2.105) con-
verges to zero a.e. On the other side, estimates (2.89) allows us to conclude that

∣∣∣∣∣∣∣

∫

|x−y|≤2ε

(
1

ε
∇K1

(
x− y
ε

)
+
|x− y|

2π |x− y|2

)
(uε1 + uε2) (y, t)dy

∣∣∣∣∣∣∣

≤
∫

|x−y|≤2ε

(
1

π |x− y|

)
(uε1 + uε2) (y, t)dy .

After change of variable to polar coordinates, we observe that last integral converges to 0 as ε→ 0.
Therefore, we conclude (2.104) and obtain from [24, Prop. 2.46 (i)] that ∇vε ⇀ ∇K ∗ n weakly
in Lr for r ≥ 2 . Finally we choose conjugate exponents r = 4 and p = 4/3 to conclude the
convergence (2.98).

2.6 Stationary Model
We start recalling the definition for Liouville type system. Let define the follow constants

−4ui = µiVi exp

(
n∑

j=1

aijuj

)
, (2.106)

for i = 1, .., n. To solve (2.106) we need obtain a pair (µi, ui) such that holds (2.106) and simulta-
neously satisfy

Mi = µi

∫

R2

Vi exp

(
n∑

j=1

aijuj

)
(2.107)

this is for all i = 1, .., n and (Mi)
n
i=1 are positives constants. In R2 we define the polynomial

condition in R2

∧J(M) = 8π
∑

i∈J
Mi −

∑

i∈J

∑

j∈J
aijMiMj , (2.108)

where J ⊆ I .
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Theorem 36 Let A a no symmetric positive matrix and assume that

Vi ≡ 1 (2.109)

a.e. Then there exists a entire solution (2.106) that holds (2.108) if

AI(M) = 0 (2.110)

and
AJ(M) > 0 (2.111)

for all J ⊂ I with J 6= Φ.

Proof. See[14]
We have in mind to apply Th.36 in our stationary system problem, thus we get a condition over

intial mass. On this way, the first step is reduce the initial stationary system and obtain a Liouville
type system Consider the stationary problem to (2.3)

−4u1 + χ1∇.(u1∇v) = 0 ,
−4u2 + χ2∇.(u2∇v) = 0 ,
−4v − (u1 + u2) = 0 .



 (2.112)

We applied the Schaaf’s [46] method to system (2.112), in which the equations are manipulated to
obtain a Liouville system, thus we have the follow estimations

∇.(−∇u1 + χ1(u1∇v)) = 0 , (2.113)

it is equivalent at
∇[u1(−∇ log u1 + χ1∇v)] = 0 , (2.114)

multiplying (1.89) by − log u1 + χ1v and integrating over R2 we have
∫

R2

u1 | ∇(− log u1) + χ1∇v |2 dx = 0 , (2.115)

concluding that
| ∇(− log u1) + χ1∇v |2= 0 . (2.116)

A priori assume u1 (x) > 0 then

∇(− log u1) + χ1∇v = 0 ,

therefore
log u1 − χ1v = K1 ,

as consequence we obtain that
u1 = C1 exp(χ1v). (2.117)

Using the same estimations, we conclude

u2 = C2 exp(χ2v). (2.118)
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Hence we get,
ui (x, t) > 0 , i = 1, 2 .

The system (2.112) has been reduced to the equation

−4v = C1 exp(χ1v) + C2 exp(χ2v). (2.119)

Next, if we consider the follow system

−4v1 =
C1

α
exp[αχ1v1 + βχ1v2] , (2.120)

−4v2 =
C2

β
exp[αχ2v1 + βχ2v2] , (2.121)

if there exists v1, v2 such that solve (2.120)-(2.121), respectively, for all x ∈ R2 then

v = αv1 + βv2

solve (2.119). We can applied Th.36 to (2.120)-(2.121) and obtain the condition for existence of
solutions. We have in (2.120)-(2.121)

Q =

(
αχ1 βχ1

αχ2 βχ2

)
.

Q should be symmetric matrix α and β, then we have the follow condition

αχ2 = βχ1 . (2.122)

We also obtain that
µ1 =

C1

α
, µ2 =

C2

β

and

M1 =
C1

α

∫

R2

exp [αχ1v1 + βχ1v2] dx ,

M2 =
C2

β

∫

R2

exp [αχ2v1 + βχ2v2] dx ,

we need consider that ∫

R2

uidx = θi , i = 1, 2

therefore
C1 =

θ1∫
R2 exp [αχ1v1 + βχ1v2]

,

in the same way we conclude

C2 =
θ2∫

R2 exp [αχ2v1 + βχ2v2]
,
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thus
M1 =

θ1

α
, M2 =

θ2

β
,

then there exists a solution to (2.120), if and only if

Λ{1} (M) = 8π
θ1

α
− αχ1

(
θ1

α

)2

> 0 ,

Λ{2} (M) = 8π
θ2

β
− βχ2

(
θ2

β

)2

> 0 ,

Λ{1,2} (M) = 8π

(
θ1

α
+
θ2

β

)
− χ1

α
θ2

1 −
χ1

α
θ1θ2 −

χ2

β
θ1θ2 −

χ2

β
θ2

2 = 0 .

By hypothesis (2.122), we have that

8π

(
θ1

α
+
θ2

β

)
− χ1

α
θ2

1 −
χ1

α
θ1θ2 −

χ2

β
θ1θ2 −

χ2

β
θ2

2

= 8π

(
θ1

α
+
θ2

β

)
− χ1

α
θ1 (θ1 + θ2)− χ2

β
θ2 (θ1 + θ2)

= 8π

(
θ1

α
+
θ2

β

)
−
(
χ1

α
θ1 +

χ2

β
θ2

)
(θ1 + θ2)

= 8π

(
θ1

α
+
θ2

β

)
−K (θ1 + θ2)2 .

Hence the condition to existence of solutions to (2.112) is

8π

K

(
θ1

α
+
θ2

β

)
− (θ1 + θ2)2 = 0 (2.123)

and by condition (2.122)
Kα = χ1 , Kβ = χ2 ,

therefore we obtain the follow condition to the existence of a entire solution for (2.120)-(2.121)

8π

(
θ1

χ1

+
θ2

χ2

)
− (θ1 + θ2)2 = 0 .

74



 



Bibliography

[1] A. AFANI et all Primary resistance to antiretroviral therapy in patients with HIV/AIDS in
Chile Rev Méd Chile 2005; 133: 295-301

[2] L. AMBROSIO, N. FUSCO , D. PALLARA , Functions of Bounded Variation and Free
Discontinuity Problems. Oxfor Mathematical Monographs.

[3] H. ATTOUCH, G. BUTTAZZO, G. MICHAILLE (2006). Variational Analysis in Sobolev
and BV Spaces: Applications to PDEs and Optimization. MPS-SIAM Series on optimization.

[4] G. BARLES, B. PERTHAME ,Dirac concentrations in Lotka-Volterra parabolic PDEs. Indi-
ana Univ. Math. J. 57(7) 2008, 3275–3301

[5] G. BARLES, S.MIRRAHIMI , B. PERTHAME, Concentration in Lotka-Volterra parabolic
or integral equations: a general convergence result.

[6] N.BACAER, A short history of Mathematical Populations Dynamics.

[7] A. BLANCHET, J. CARRILLO, N. MASMOUDI (2008). Infinite Time Aggregation for the
Critical Patlak-Keller-Segel Model in R2 . Communications on Pure and Applied Mathemat-
ics, LXI, pp. 1449-1481.

[8] A. BLANCHET, J. DOLBEAULT, B. PERTHAME (2006), Two-dimensional Keller-Segel
model: Optimal critical mass and qualitative properties of the solutions, Electron. J. Diff.
Eqns. 44, pp. 1–32.

[9] P. BILER (1998), Local and global solvability of some parabolic systems modelling chemo-
taxis, Adv. Math. Sci. Appl. 8, pp. 715–743.

[10] A. CALSINA, S. CUADRADO, Small mutation rate and evolutionary stable strategies in
infinite dimensional adaptive dynamics. J. Math. Biol. 48, 135-159 (2004).

[11] S. CUADRADO, Adaptive dynamics in an infinite dimensional setting. PHD Thesis.

[12] E. CARLEN, M. LOSS (1992), Competing symmetries, the logarithmic HLS inequality and
Onofri´s inequality on Sn, Geom. Funct. Anal. 2, pp. 90–104.

[13] S. CHILDRESS, J.K. PERCUS (1984), Chemotactic collapse in two dimensions, Lecture
Notes in Biomathematics 56, pp. 217–237.

76



[14] M. CHIPOT, I. SHAFRIR, G.WOLANSKY (1997), On the solutions of Liouville systems. J.
Differential Equations 1, 59–105.

[15] C. CONCA, E. ESPEJO, K. VILCHES (2011), Remarks on the blowup and global existence
for a two species chemotactic Keller-Segel system in R2. European J. Appl. Math, Available
on CJO 2011 doi:10.1017/S0956792511000258.

[16] E. M. C. D’AGATA , M. DUPONT ROUSEYROL, M. PIERRE, D. OLIVIERS, and
S.RUAN. The impact of different antibioticregimens on the emergence of antimicrobial-
resistant bacteria. PLoS One 3(12): es4036 (2008).

[17] L. DESVILLETTES, P. E. JABIN, S. MISCHELER , On selection dynamics for continuous
structured populations. Commun. Math. Sci. Vol. 6, N. 3, pp. 729-747.

[18] O. DIEKMANN, P. E. JABIN, S. MISCHLER AND B. PERTHAME, The dynamics of
adaptation: An illuminating example and a Hamilton-Jacobi approach. Th. Pop. Biol., 67(4)
(2005) 257-271.

[19] J. DOLBEAULT, B. PERTHAME (2004), Optimal critical mass in the two-dimensional
Keller-Segel model in R2, C. R. Math. Acad. Sci. Paris Serie I 339, pp. 611–616.
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1Departamento de Ingenieŕıa Matemática (DIM) and Centro de Modelamiento Matemático (CMM),
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For the Keller–Segel model, it was conjectured by Childress and Percus (1984, Chemotactic

collapse in two dimensions. In Lecture Notes in Biomath. Vol. 55, Springer, Berlin-Heidelberg-

New York, 1984, pp. 61–66) that in a two-dimensional domain there exists a critical number

C such that if the initial mass is strictly less than C , then the solution exists globally in time

and if it is strictly larger than C blowup happens. For different versions of the Keller–Segel

model, the conjecture has essentially been proved. The case of several chemotactic species

introduces an additional question: What is the analogue for the critical mass obtained for the

single species system? In this paper, we investigate for a two-species model for chemotaxis

in �2 the conditions on the initial data, which determine blowup or global existence in time.

Specifically, we find a curve in the plane of masses such that outside of it there is blowup

and inside of it global existence in time is proved when the initial masses satisfy a threshold

condition. Optimality of this condition is discussed through an analysis in the radial case.

Finally, we show in the case of blowup for general data how it is possible to obtain a balance

between entropies and prove what species should aggregates first.

Key words: Chemotaxis; Multi-component Keller–Segel model; Blowup of solutions.

1 Introduction

Chemotaxis is one of the simplest mechanisms for the aggregation of species. It makes

reference to the aggregation of organisms sensitive to a gradient of a chemical substance.

A classical model in chemotaxis was introduced by Keller and Segel [14]. With the cell

density u(x, t) and the concentration of the chemical v(x, t) at point x and time t, the

Keller–Segel model is

ut = ∇ · (µ∇u− χu∇v), x ∈ Ω, t > 0,

vt = γ∆v − βv + αu, x ∈ Ω, t > 0,
(1.1)
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subject to homogeneous Neumann boundary conditions and positive initial data u(x, 0) =

u0 and v(x, 0) = v0. In this model, χ is the chemotactic sensitivity, γ is the diffusion

coefficient of the chemoattractant and µ is the diffusion coefficient of the cell density, β is

the rate of consumption and α is the rate of production, all are positive parameters, and Ω

⊂ �N has smooth boundary ∂Ω. It was conjectured by Childress and Percus [4] that in a

two-dimensional domain there exists a critical number C such that if
∫
u0(x)dx < C then

the solution exists globally in time, and if
∫
u0(x)dx > C blowup happens. For different

versions of the Keller–Segel model, the conjecture has been essentially proved, finding the

critical value C = 8π/χ; for a complete review of this topic, we refer the reader to the

papers [12, 13] and the references therein, particularly [1, 2, 9, 17, 20].

The case of several chemotactic species introduces an additional question: What is the

analogue for the critical mass obtained for the self-attracting single species system? This

question was already formulated by Wolansky in [21]. The aim of the present paper is

to investigate Wolansky’s question and to start looking for an answer to his question in

case of two species and one diffusive chemoattractant. Our starting point is the following

two-species model:

∂tU1 = µ∗
1∆U1 − χ∗

1∇ · (U1∇V ),

∂tU2 = µ∗
2∆U2 − χ∗

2∇ · (U2∇V ),

∂tV (x, t) =D∗∆V + α∗
1U1 + α∗

2U2.

Making a dimensional analysis like in Espejo et al. [6], Section 2 , it reduces to

∂tu1 = µ∆u1 − χ1∇ · (u1∇v),
∂tu2 = ∆u2 − χ2∇ · (u2∇v),

ε∂tv(x, t) = ∆v + u1 + u2,

where ε = µ
D
. On the other side, assuming that molecular diffusion is much faster than cell

diffusion (µ � D), it is natural to approximate ε � 0 and obtain the following reduced

system:

∂tu1 = µ∆u1 − χ1∇ · (u1∇v),
∂tu2 = ∆u2 − χ2∇ · (u2∇v),

0 = ∆v + u1 + u2.

Another assumption we introduce is the fact that we will study this system in the whole of

�2 because an explicit elementary solution for the Laplace operator is available here; this

will allows us to treat general data without any symmetry assumptions. In consequence,

we will deal through out this paper with the following simplified two species Keller–Segel

model in �2:

∂tu1 = µ∆u1 − χ1∇ · (u1∇v),
∂tu2 = ∆u2 − χ2∇ · (u2∇v),
v(x, t) = − 1

2π

∫

�2

log |x− y| (u1(y, t) + u2(y, t)) dy,

u1(x, 0) = u10 � 0, u2(x, 0) = u20 � 0,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.2)
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where t � 0, u1 and u2 are the density variables for the two different chemotaxis species

and v is the chemoattractant, χ1, χ2, µ are positive constants and positive initial conditions

u10, u20 are given.

In the first part of this paper, we give a partial answer to Wolansky’s question finding

a region in the plane of masses in which there is blowup. More precisely, we prove that if

the following condition is satisfied:

4πµθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 < 0, (1.3)

where θ1, θ2 denote the total initial mass of u1 and u2, respectively, then blowup happens.

As we will show, model (1.2) preserves both masses, so we have

θ1 :=

∫

�2

u10(x)dx =

∫

�2

u1(x, t)dx θ2 :=

∫

�2

u20(x)dx =

∫

�2

u2(x, t)dx.

The proof is based in a suitable adaptation of the moments technique for a multi-species

system like equation (1.2). As is proved is Section 2, the curve defined by the equal sign

instead of lower than in equation (1.3) determines two regions in the plane of masses

where the total moment of system (1.2), defined by

m(t) :=
π

χ1

∫

�2

u1 |x|2 dx+
π

χ2

∫

�2

u2 |x|2 dx, (1.4)

is decreasing or increasing, respectively; it is strictly decreasing in the region defined by

equation (1.3) and monotonically increasing otherwise. In this latter case, one could expect

to have global existence. However, we show in Section 4 that one can find initial data

such that blowup happens and still the total moment is increasing.

At this point, a natural question arises, namely which is an optimal condition (or region)

where global existence is guaranteed? Inspired from Blanchet et al. [1], our strategy to

tackle this question consists in proposing a suitable free energy functional for system (1.2).

The diffusion coefficient µ, as well as χ2, plays a key role in the energy functional because

both appear in a non-symmetric way in the first two equations in equation (1.2). Precisely,

assuming χ1 � χ2, we prove that any of the following inequalities

∫

�2

u10dx+

∫

�2

u20dx <
8π

χ2
, if µ � 1,

∫

�2

u10dx+

∫

�2

u20dx <
8π

χ2
µ, if µ < 1,

yields global existence. The proof uses the energy functional that provides a priori bounds

for the entropy of system (1.2). In its turn, these bounds yield the appropriate estimates

on which existence is based.

In the second part of this paper, we discuss the optimality of our results concerning

global existence and blowup for system (1.2). With this end in mind, we analyse first the

radial case. This approach will allow us to show that system (1.2) can blowup even in the

region where the total moment m(t) is increasing. Since this seems not to agree completely

with the intuition, it suggests us that the moment of one species could probably increase
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meanwhile the other one is decreasing but in such a way that the total moment m(t)

increases. This last statement opens interesting questions, for which a numerical approach

would be a first appropriate strategy to consider.

We have also studied in the general case the following question: Which of the chemotactic

species will blowup first in time? Intuitively, one could at least think that blowup should

happen first for the species with the larger chemotactic χ. However, a mathematical proof

of this fact can be difficult. We show how the techniques from Jäger and Luckhaus [9]

along with the work by Blanchet et al. [1] can be used to obtain a balance between

entropies and prove what species should blowup first. Precisely, we prove that bounds

for the entropy corresponding to the species with the larger chemotactic coefficient yields

bounds for the entropy of the other one.

We feel now worth mentioning that Wolansky’s question has already been studied

by Horstmann [10] and Horstmann and Lucia [11]. These authors first considered the

stationary case in a smooth bounded domain with Neumann boundary conditions. Several

Lyapunov functionals for different multi-species chemotactic systems are introduced in

these papers. These functionals provide tools to study the stationary problem and gives an

interesting clue for a possible threshold curve in the case of multi-species. The existence

condition they obtained is similar to ours (see, e.g. Theorem 4.2 in [10]); the main difference

being the fact that our conditions are both independent of the smallest chemoatractant

coefficient. In addition, they consider the blow-up phenomenon in the case χ1 = χ2.

In this sense, our results can be seen as a generalisation that allows us to understand

the interplay between both chemotaxis coefficients whenever blowup happens. For other

general multi-component Keller–Segel models in stationary regime, we refer again the

interested reader to Wolansky [21].

The plan of this paper is the following: Section 2 deals with the blow-up existence for

system (1.2) for arbitrary positive parameters χ1 � χ2. Section 3 is devoted to prove global

existence in time results. The main novelty is an extension of the free energy functional

for the one species Keller–Segel system (cf. [1]) to the case of two species. In Section 4,

we improve our results of blowup by considering the radial case. Finally, Section 5 is

concerned with the question on which of the species should aggregates first.

2 Blowup for positive arbitrary parameters χ1, χ2

Our purpose in this section is to derive sufficient conditions for having blowup for

system (1.2). In order to do this, we define adequately the second moment for the

whole population, which will allows us to generalise the usual technique of the moments

(cf. [1,2,17]) for proving blowup for one chemotaxis species to our system of two species.

Theorem 1 Let u1, u2, v ∈ H2(�2) be non-negative smooth solutions of eqaution (1.2) such

that ui(1 + |x|2), i = 1, 2 are bounded in L∞
loc(R

+, L1(�2)). Let the second moment m(t) for

the whole population defined by

m(t) :=
π

χ1

∫

�2

u1(x, t) |x|2 dx+
π

χ2

∫

�2

u2(x, t) |x|2 dx,
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then we have

d

dt
m(t) =

4πµθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2. (2.1)

Proof Multiplying the first equation of equation (1.2) by |x|2 and integrating yields

∂t

∫

�2

u1 |x|2 dx = µ

∫

�2

|x|2 ∆u1dx− χ1

∫

�2

|x|2 ∇ · (u1∇v)dx,

then using Greens first identity we obtain

∂t

∫

�2

u1 |x|2 dx = 4µ

∫

�2

u1dx+ 2χ1

∫

�2

u1(x · ∇v)dx.

From equation (1.2), we have that ∇v = − 1
2π

∫
�2

x−y
|x−y|2 (u1(y, t) + u2(y, t))dy. Next, we

compute using mass conservation

∂t

∫

�2

u1 |x|2 dx = 4µθ1 − χ1

π

∫

�2×�2

(
x · x− y

|x− y|2
u1(x, t) (u1(y, t) + u2(y, t))

)
dydx. (2.2)

Similarly,

∂t

∫

�2

u2 |x|2 dx = 4θ2 − χ2

π

∫

�2×�2

(
x · x− y

|x− y|2
u2(x, t) (u1(y, t) + u2(y, t))

)
dydx. (2.3)

From equations (2.2) and (2.3), it follows that

d

dt

(
π

χ1

∫

�2

u1 |x|2 dx+
π

χ2

∫

�2

u2 |x|2 dx
)

=
4πµθ1

χ1
+

4πθ2

χ2
−

∫

�2×�2

(
x · x− y

|x− y|2
(u1(x, t) + u2(x, t)) (u1(y, t) + u2(y, t))

)
dydx.

After using the symmetry in the variables x and y in the last integral, we get

d

dt

(
π

χ1

∫

�2

u1 |x|2 dx+
π

χ2

∫

�2

u2 |x|2 dx
)

=
4πµθ1

χ1
+

4πθ2

χ2
− 1

2

∫

�2×�2

(
(x− y) · x− y

|x− y|2
(u1(x, t) + u2(x, t)) (u1(y, t) + u2(y, t))

)
dydx

=
4πµθ1

χ1
+

4πθ2

χ2
− 1

2

∫

�2×�2

((u1(x, t) + u2(x, t)) (u1(y, t) + u2(y, t))) dydx

=
4πµθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2.

In consequence, we have proved equation (2.1). �
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Therefore, if we have that the initial masses θ1 and θ2 satisfy

4πµθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 < 0, (2.4)

we arrive at the conclusion that m(t) should become negative in finite time that is

impossible since u1 and u2 are non-negative. As a consequence, there is a finite blow-up

time T ∗. In fact, being as
∫

�2 ui|x|2dx � χi
π
m(t) both of the density variables u1 and u2

blowup. As a consequence, we obtain the following blow-up result.

Theorem 2 Let u1, u2, v ∈ H2(�2) be non-negative smooth solutions of equation (1.2) such

that ui(1 + |x|2), i = 1, 2 are bounded in L∞(�+, L1(�2)), and let [0, T ∗) be the maximal

interval of existence. If the inequality

4πµθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 < 0,

is satisfied then T ∗ < ∞.

Remark Alternatively, one can rewrite the hypotheses on the last theorem following the

ideas of the paper from Kurokiba and Ogawa [15] to obtain the same conclusion, changing

the hypotheses on u1, u2, v by working on the space

L2
s (�

2) = {f ∈ L1
loc(�

2); (1 + |x|2)s/2f(x) ∈ L2(�2)}, s > 1,

as the space of solutions for our system.

3 Global existence conditions

Our purpose at this section is to investigate if on the region where the second moment

m(t) is increasing

4πµθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 > 0, (3.1)

there exist global bounded solutions u1 and u2. In the case of bounded domains and

Dirichlet boundary conditions on the chemical concentration, sufficient conditions on the

initial masses for having global existence were given by Wolansky [21]. In contrast, we

are going to consider �2 as our domain and discuss throughout this paper the possibility

of an optimal region where blow-up phenomena happens. We assume without loss of

generality that χ2 � χ1. In addition, we suppose that

χ1 � χ2, u10, u20 ∈ L1(�2, (1 + |x|2)dx),
u10 log u10, u20 log u20 ∈ L1(�2, dx).

}
(3.2)

Using the entropy method from [5], we will give a partial proof of this showing that in

the region

θ1 + θ2 <
8π

χ2
, (3.3)
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there is global existence for system (1.2) when µ > 1; however, we will show that when

µ � 1 then the region of existence also depends on µ. Specifically, we will prove in the

last case that the condition for global existence is

θ1 + θ2 < µ
8π

χ2
. (3.4)

Then, we will show that equation (3.1) is not enough to guarantee global existence by

working with initial radial conditions.

Throughout this paper, we adopt the convention that all of the calculations will

exclusively concern locally smooth solutions.

On the basis of [5, 21], we define the free energy for our system (1.2) like

E(t) :=
µ

χ1

∫

�2

u1 log u1dx+
1

χ2

∫

�2

u2 log u2dx− 1

2

∫

�2

u1vdx− 1

2

∫

�2

u2vdx. (3.5)

For one chemotactic species, the free energy functional is a well-known tool and has

been introduced for Keller–Segel models and gravitational models (see [2, 8, 18]. For a

discussion on the multi-species case (see [21]). In spite of the apparent similarity of

equation (3.5) with the energy in the case of one species used in [5], a generalisation for

this kind of functionals for n species is not a straightforward task. Specifically, the use of

the right coefficient in the entropy plays a fundamental roll in order to obtain the right

monotony in the time variable as the proof of the following lemma shows.

Lemma 3 Let u1, u2 ∈ C0(�+, L1(�2)) solutions of equation (1.2) such that u1(1 + |x|2),
u2(1 + |x|2), u1 log u1 and u2 log u2 are bounded in L∞

loc(�
+, L1(�2)), ∇√

u1,∇
√
u2 ∈

L1
loc(�

+, L1(�2)) and ∇v ∈ L∞
loc(�

+ × �2). Then,

d

dt
E(t) = − 1

χ1

∫

�2

u1 |µ∇ log u1 − ∇χ1v|2 dx− 1

χ2

∫

�2

u2 |∇ log u2 − ∇χ2v|2 dx � 0. (3.6)

Proof Using the equations in equation (1.2) and the Green identities, one gets

d

dt

∫

�2

u1 log u1dx=

∫

�2

(u1t log u1 + u1t) dx =

∫

�2

(log u1 + 1) u1tdx

=

∫

�2

(log u1 + 1) (µ∆u1 − χ1∇ · (u1∇v)) dx

=

∫

�2

(∇ log u1) (−µ∇u1 + χ1u1∇v) dx

=

∫

�2

u1 (∇ log u1)

(
−µ∇u1

u1
+ χ1∇v

)
dx

=

∫

�2

−u1 (∇ log u1) (µ∇ log u1 − χ1∇v) dx, (3.7)
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equivalently

d

dt

(
µ

(
1 +

χ2

χ1

)∫

�2

u1 log u1dx

)
=

∫

�2

−u1 (µ∇ log u1) (∇ (µ log u1 − χ1v)) dx

+
χ2

χ1

∫

�2

−u1 (µ∇ log u1) (∇ (µ log u1 − χ1v)) dx, (3.8)

in a similar way

d

dt

((
1 +

χ1

χ2

)∫

�2

u2 log u2dx

)
=

∫

�2

−u2 (∇ log u2) (∇ (log u2 − χ2v)) dx

+
χ1

χ2

∫

�2

−u2 (∇ log u2) (∇ (log u2 − χ2v)) dx. (3.9)

Now, we calculate the derivative for the potential energy terms in equation (3.5)

d

dt

(
−χ1

2

∫

�2

u1vdx

)

= −χ1

2

∫

�2

(u1tv + u1vt) dx = −χ1

2

∫

�2

(u1tv + (−∆v − u2) vt) dx

= −χ1

2

∫

�2

(u1tv − (∆v) vt − u2vt) dx = −χ1

2

∫

�2

(u1tv − v∆vt − u2vt) dx

= −χ1

2

∫

�2

(
u1tv + v

d

dt
(u1 + u2) − u2vt

)
dx = −χ1

2

∫

�2

(2u1tv + vu2t − u2vt) dx

= −χ1

2

∫

�2

(2v(µ∆u1 − χ1∇ · (u1∇v)) + vu2t − u2vt) dx

= −χ1

2

∫

�2

2∇v(−µ∇u1 + χ1u1∇v)) + vu2t − u2vtdx

= −χ1

2

∫

�2

2u1∇v(−µ∇ log u1 + χ1∇v)) + vu2t − u2vtdx

=

∫

�2

u1∇χ1v(µ∇ log u1 − χ1∇v)) − χ1

2
vu2t +

χ1

2
u2vtdx

=

∫

�2

u1∇χ1v(µ∇ log u1 − χ1∇v)) − χ1

2
v(∆u2 − χ2∇ · (u2∇v)) +

χ1

2
u2vtdx

=

∫

�2

u1∇χ1v(µ∇ log u1 − χ1∇v)) − χ1

2
v∇ · (∇u2 − χ2u2∇v)) +

χ1

2
u2vtdx

=

∫

�2

u1∇χ1v(µ∇ log u1 − χ1∇v)) +
χ1

2
∇v (∇u2 − χ2u2∇v)) +

χ1

2
u2vtdx

=

∫

�2

u1∇χ1v(µ∇ log u1 − χ1∇v)) +
χ1

2
u2∇v (∇ log u2 − χ2∇v)) +

χ1

2
u2vtdx. (3.10)

Analogously, we have

d

dt

(
−χ2

2

∫

�2

u2vdx

)

=

∫

�2

u2∇χ2v(∇ log u2 − χ2∇v)) +
χ2

2
u1∇v (µ∇ log u1 − χ1∇v)) +

χ2

2
u1vtdx. (3.11)



Remarks on the blowup and global existence 561

Otherwise, we have the following expressions for the potential energy terms in equation

(3.5) too:

d

dt

(
−χ1

2

∫

�2

u2vdx

)

=

∫

�2

(
−χ1

2
u2vt − χ1

2
u2tv

)
dx =

∫

�2

(
−χ1

2
u2vt − χ1

2
(∆u2 − χ2∇ · (u2∇v))v

)
dx

=

∫

�2

(
−χ1

2
u2vt +

χ1

2
(∇u2 − χ2u2∇v)∇v

)
dx

=

∫

�2

(
−χ1

2
u2vt +

χ1

2
u2∇v(∇ log u2 − χ2∇v)

)
dx, (3.12)

and

d

dt

(
−χ2

2

∫

�2

u1vdx

)
=

∫

�2

(
−χ2

2
u1vt − χ2

2
u1tv

)

dx =

∫

�2

(
−χ2

2
u1vt +

χ2

2
u1∇v(µ∇ log u1 − χ1∇v)

)
dx. (3.13)

Adding equation (3.7) to equations (3.8)–(3.13), we get

d

dt

(
µ

(
1 +

χ2

χ1

)∫

�2

u1 log u1dx+

(
1 +

χ1

χ2

) ∫

�2

u2 log u2dx

−χ1 + χ2

2
×

∫

�2

u1vdx− χ1 + χ2

2

∫

�2

u2vdx

)

=

∫

�2

−u1 (µ∇ log u1 − ∇χ1v) (∇ (µ log u1 − χ1v)) dx

+

∫

�2

−u2 (∇ log u2 − ∇χ2v) (∇ (log u2 − χ2v)) dx

+
χ1

χ2

∫

�2

−u2 (∇ log u2 − χ2∇v) (∇ (log u2 − χ2v)) dx

+
χ2

χ1

∫

�2

−u1 (∇µ log u1 − χ1v) (∇ (log µu1 − χ1v)) dx,

or

d

dt
((χ1 + χ2)E(t)) = −

∫

�2

u1 |µ∇ log u1 − ∇χ1v|2 dx−
∫

�2

u2 |∇ log u2 − ∇χ2v|2 dx

−χ1

χ2

∫

�2

u2 |∇ log u2 − χ2∇v|2 dx− χ2

χ1

∫

�2

u1 |µ∇ log u1 − χ1v|2 dx.

In consequence, the energy function (3.5) satisfies equation (3.6). �

Lemma 4 Let u1, u2 positive solutions of equation (1.2) then for 0 � t � T and a,b positive

constants there exists a bound Ca,b(T ) such that

∫

au1+bu2�1

(au1 + bu2) |log (au1 + bu2)| dx � Ca,b(T ). (3.14)
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Proof We observe first that the function x → x| log x| is increasing on the interval (0, e−1).

On the region
{
x : au1(x, t) + bu2(x, t) � e−1

}
,

we have that

∫

au1+bu2�e−1

(au1 + bu2) |log (au1 + bu2)| dx

=

∫

au1+bu2�e−|x|2
(au1 + bu2) |log (au1 + bu2)| dx

+

∫

e−|x|2 �au1+bu2�e−1

(au1 + bu2) |log (au1 + bu2)| dx

�

∫

au1+bu2�e−|x|2
e−|x|2 | log e−|x|2 |dx+

∫

e−|x|2 �au1+bu2�e−1

(au1 + bu2) | log e−|x|2 |dx

=

∫

au1+bu2�e−|x|2
e−|x|2 |x|2 dx+

∫

e−|x|2 �au1+bu2�e−1

(au1 + bu2) |x|2 dx

=

∫

�2

e−|x|2 |x|2 dx+

∫

�2

(au1 + bu2) |x|2 dx

=

∫

�2

e−|x|2 |x|2 dx+ a

∫

�2

u1 |x|2 dx+ b

∫

�2

u2 |x|2 dx. (3.15)

Now, from equation (2.1), we have that m(t) is bounded on [0, T ] then using that

0 �
∫

�2 ui|x|2dx � χim(t) we get from equation (3.15) that

∫

au1+bu2�e−1

(au1 + bu2) |log (au1 + bu2)| dx �

∫

�2

e−|x|2 |x|2 dx

+a sup
0�t�T

∫

�2

u1 |x|2 dx+ b sup
0�t�T

∫

�2

u2 |x|2 dx,

on the other hand using that x → | log x| is decreasing on (0, 1) we get

∫

e−1<au1+bu2<1

(au1 + bu2) |log (au1 + bu2)| dx

�

∫

e−1<au1+bu2<1

(au1 + bu2)
∣∣log e−1

∣∣ dx =

∫

e−1<au1+bu2<1

(au1 + bu2) dx

�

∫

�2

(au1 + bu2) dx = aθ1 + bθ2.

In consequence for the constant

Ca,b(T ) : =

∫

�2

e−|x|2 |x|2 dx+ a sup
0�t�T

∫

�2

u1 |x|2 dx

+b sup
0�t�T

∫

�2

u2 |x|2 dx+ aθ1 + bθ2,

we have equation (3.14). �
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Lemma 5 (Logarithmic Hardy–Littlewood–Sobolev inequality, cf. [3]) Let f be a non-

negative function in L1(�2) such that f log f and f log(1 + |x|2) belong to L1(�2). If∫
�2 fdx = M∗, then

M∗
2

∫

�2

f log fdx+

∫ ∫

�2×�2

f(x)f(y) log |x− y| dxdy � C(M∗) :=
M2

∗
2

(1+log π+logM∗).

The following theorem gives bounds for the entropy and is the key of the proof of

global existence for system (1.2). As we will see that the size of the coefficient of diffusion

µ plays a significant role in this result.

Theorem 6 If u1 and u2 are positive solutions of equation (1.2) on the interval of the time

[0, T ] and χ1 � χ2 then we have the following entropy estimates:

(1) If µ > 1 then

(
1 − Mχ2

8π

)∫

�2

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx � CT ,

(3.16)

where CT is a constant depending on T and M = θ1 + θ2.

(2) If µ � 1 then

(
1 − Mχ2

8πµ

)∫

�2

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx � CT ,

(3.17)

where CT is a constant depending on T and M = θ1 + θ2.

Proof Using (χ1 + χ2)E(t) � (χ1 + χ2)E(0), we obtain

µ

(
1 +

χ2

χ1

)∫

�2

u1(x, t) log u1dx+

(
1 +

χ1

χ2

)∫

�2

u2(x, t) log u2(x, t)dx

� (χ1 + χ2)E(0) +
χ1 + χ2

2

∫

�2

u1(x, t)v(x, t)dx+
χ1 + χ2

2

∫

�2

u2(x, t)v(x, t)dx

= (χ1 + χ2)E(0) +
χ1 + χ2

2

∫

�2

(u1(x, t) + u2(x, t))v(x, t)dx

= (χ1 + χ2)E(0) − χ1 + χ2

4π

∫

�2

(u1(x, t) + u2(x, t))

∫

�2

log |x− y| (u1(y, t) + u2(y, t)) dydx

= (χ1 + χ2)E(0) − χ1 + χ2

4π

∫ ∫
(u1(x, t) + u2(x, t)) (u1(y, t) + u2(y, t)) log |x− y| dydx,
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applying now the logarithmic Hardy–Littlewood–Sobolev inequality, we get

µ

(
1 +

χ2

χ1

)∫

�2

u1 log u1dx+

(
1 +

χ1

χ2

) ∫

�2

u2 log u2dx

� (χ1 + χ2)E(0) +
χ1 + χ2

4π

(
M

2

∫

�2

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx− C(M)

)

= (χ1+χ2)E(0)+
χ1 + χ2

8π
M

∫

�2

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx−χ1 + χ2

4π
C(M)

� (χ1 + χ2)E(0) − χ1 + χ2

4π
C(M)

+
χ1 + χ2

8π
M

∫

u1+u2�1

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx

+
χ1 + χ2

8π
M

∫

u1+u2>1

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx. (3.18)

In order to estimate last integral in equation (3.18), we recall that χ1 � χ2, so we can write

that

u1(x, t) + u2(x, t)< χ2

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
(if µ > 1), (3.19)

u1(x, t) + u2(x, t)<
χ2

µ

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
(if µ � 1). (3.20)

Taking into account that f(x) = x log x is increasing in x � 1, using µ > 1 and equation

(3.19) yields

∫

u1+u2>1

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx

� χ2

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log χ2

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx

= χ2

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log χ2dx

+ χ2

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx

� χ2 log χ2

(
µθ1

χ1
+
θ2

χ2

)

+ χ2

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx. (3.21)
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On the other hand, using again that f(x) = x log x is increasing in x � 1 and choosing

now µ < 1 and equation (3.20), we get that

∫

u1+u2>1

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx

�
χ2

µ

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

χ2

µ

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx

=
χ2

µ

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

χ2

µ
dx

+
χ2

µ

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx

�
χ2

µ
log

χ2

µ

(
µθ1

χ1
+
θ2

χ2

)

+
χ2

µ

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx. (3.22)

It follows then from equations (3.18) and (3.21) that

µ

(
1 +

χ2

χ1

)∫

�2

u1 log u1dx+

(
1 +

χ1

χ2

) ∫

�2

u2 log u2dx

� (χ1 + χ2)E(0) − χ1 + χ2

4π
C(M) + χ2

(
µθ1

χ1
+
θ2

χ2

)
χ1 + χ2

8π
M log χ2

+
χ1 + χ2

8π
M

∫

u1+u2�1

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx

+
χ1 + χ2

8π
Mχ2

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx.

After dividing by χ1 + χ2 and simplifying, we get

µ

χ1

∫

�2

u1 log u1dx+
1

χ2

∫

�2

u2 log u2dx

� E(0) − 1

4π
C(M) + χ2

(
µθ1

χ1
+
θ2

χ2

)
1

8π
M log χ2

+
1

8π
M

∫

u1+u2�1

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx

+
1

8π
Mχ2

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx. (3.23)
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Similarly, for µ < 1, we have that

µ

χ1

∫

�2

u1 log u1dx+
1

χ2

∫

�2

u2 log u2dx

� E(0) − 1

4π
C(M) + χ2

(
θ1

χ1
+
θ2

χ2

)
1

8π
M log χ2

+
1

8π
M

∫

u1+u2�1

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx

+
1

8π
M
χ2

µ

∫

u1+u2>1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)) log(

µ

χ1
u1(x, t) +

1

χ2
u2(x, t))dx. (3.24)

Using the convexity of the function f(x) = x log x, we observe that

1
µ
χ1

+ 1
χ2

(
µ

χ1
u1 +

1

χ2
u2

)
log

[
1

µ
χ1

+ 1
χ2

(
µ

χ1
u1 +

1

χ2
u2

)]
�

1
µ
χ1

+ 1
χ2

(
µ

χ1
u1 log u1 +

1

χ2
u2 log u2

)

or

(
µ

χ1
u1 +

1

χ2
u2

)
log

(
µ

χ1
u1 +

1

χ2
u2

)
−

(
µ

χ1
u1 +

1

χ2
u2

)
log

(
µ

χ1
+

1

χ2

)

�
µ

χ1
u1 log u1 +

1

χ2
u2 log u2. (3.25)

In case µ > 1 from equations (3.23) and (3.25), we get

∫

�2

(
µ

χ1
u1 +

1

χ2
u2

)
log

(
µ

χ1
u1 +

1

χ2
u2

)
dx−

∫

�2

(
µ

χ1
u1 +

1

χ2
u2

)
log

(
µ

χ1
+

1

χ2

)
dx

� E(0) − 1

4π
C(M) + χ2

(
µθ1

χ1
+
θ2

χ2

)
1

8π
M log χ2

+
1

8π
M

∫

u1+u2�1

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx

+
1

8π
Mχ2

∫

u1+u2>1

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx.

After reorganising this inequality, we obtain

∫

�2

(
µ

χ1
u1 +

1

χ2
u2

)
log

(
µ

χ1
u1 +

1

χ2
u2

)
dx � E(0) − 1

4π
C(M)

+χ2

(
θ1

χ1
+
θ2

χ2

)
1

8π
M log χ2 +

1

8π
M

∫

u1+u2�1

(u1(x, t) + u2(x, t)) log((u1(x, t) + u2(x, t)) dx

+
1

8π
Mχ2

∫

�2

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx

− 1

8π
Mχ2

∫

u1+u2<1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx.
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In case µ � 1, we obtain in a like manner from equations (3.24) and (3.25) the estimative

∫

�2

(
µ

χ1
u1 +

1

χ2
u2

)
log

(
µ

χ1
u1 +

1

χ2
u2

)
dx � E(0) − 1

4π
C(M)

+χ2

(
θ1

χ1
+
θ2

χ2

)
1

8π
M log χ2 +

1

8π
M

∫

u1+u2�1

(u1(x, t) + u2(x, t)) log((u1(x, t) + u2(x, t)) dx

+
1

8π
M
χ2

µ

∫

�2

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx

− 1

8π
M
χ2

µ

∫

u1+u2<1

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
µ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx.

In conclusion from the last inequality and taking into account Lemma 4 we find that

(
1 − Mχ2

8π

)∫

�2

(
µ

χ1
u1 +

1

χ2
u2

)
log

(
µ

χ1
u1 +

1

χ2
u2

)
dx�CT if µ > 1, (3.26)

(
1 − Mχ2

8πµ

)∫

�2

(
µ

χ1
u1 +

1

χ2
u2

)
log

(
µ

χ1
u1 +

1

χ2
u2

)
dx�CT if µ � 1, (3.27)

where

CT := E(0) − 1

4π
C(M) + χ2

(
µθ1

χ1
+
θ2

χ2

)
1

8π
M log χ2

+
1

8π
M sup

0�t�T

∫

u1+u2�1

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx

− 1

8π
Mχ2 inf

0�t�T

∫

u1+u2<1

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx.

and

CT :=E(0) − 1

4π
C(M) +

χ2

µ

(
θ1

χ1
+
θ2

χ2

)
1

8π
M log χ2

+
1

8πµ
M sup

0�t�T

∫

u1+u2�1

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx

− 1

8πµ
Mχ2 inf

0�t�T

∫

u1+u2<1

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dx.

�

Using the techniques from [1], we obtain from Theorem 6 and the identity (2.1) the

following existence result for system (1.2).

Theorem 7 Under hypotheses (3.2), µ > 1 and

M = θ1 + θ2 <
8π

χ2
, (3.28)
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the system (1.2) has a global smooth non-negative solution such that

− 1

χ1

∫ ∞

0

∫

�2

u1 |µ∇ log u1 − ∇χ1v|2 dx− 1

χ2

∫ ∞

0

∫

�2

u2 |∇ log u2 − ∇χ2v|2 dxdt < ∞,

(1 + |x|2 + |log u1|)u1, (1 + |x|2 + |log u2|)u2 ∈ L∞([0, T ] ;L1(�2)).

On other hand if µ � 1, under hypotheses (3.17) and

M = θ1 + θ2 <
8π

χ2
µ, (3.29)

system (1.2) has a global smooth non-negative solution such that

− 1

χ1

∫ ∞

0

∫

�2

u1 |µ∇ log u1 − ∇χ1v|2 dx− 1

χ2

∫ ∞

0

∫

�2

u2 |∇ log u2 − ∇χ2v|2 dxdt < ∞,

(1 + |x|2 + |log u1|)u1, (1 + |x|2 + |log u2|)u2 ∈ L∞([0, T ] ;L1(�2)).

Proof From Theorem 6 and Lemma 4, we deduce that each of the entropies
∫
u1 log u1dx

and
∫
u2 log u2 is upper bounded on M < 8π

χ2
. We prove the equi-integrability for ( µ

χ1
u1 +

1
χ2
u2) log( µ

χ1
u1 + 1

χ2
u2). From Theorem 6, we have an upper bound for

∫

�2

(
µ

χ1
u1 +

1

χ2
u2

)
log

(
µ

χ1
u1 +

1

χ2
u2

)
.

We can also see that
∫

( 1
χ1
u1 + 1

χ2
u2) log( 1

χ1
u1 + 1

χ2
u2)dx is bounded from below. Let

n :=
µ

χ1
u1 +

1

χ2
u2.

By identity (2.1), we have that

1

1 + t

∫
|x|2 n(x, t)dx � K ∀t > 0.

From this, we can mimic the proof of the last part of [1], Lemma 2.5 getting that

∫

�2

(
µ

χ1
u1 +

1

χ2
u2

)
log

(
µ

χ1
u1 +

1

χ2
u2

)
dx

�

(
θ1

χ1
+
θ2

χ2

)
log

(
θ1

χ1
+
θ2

χ2

)
− 1

1 + t

(
K +

1

π

(
θ1

χ1
+
θ2

χ2

))
.

Regularisation and proof of space time compactness are now essentially the same as in [1]

with small modifications. �

4 Blowup under increasing total moment

Condition (3.29) for global existence seems to agree with the intuition in the sense that

it can be paraphrase as ‘the smaller the coefficient of diffusion the smaller the region
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of global existence’. However, in case µ � 1, condition (3.29) does not depends on µ

making an interesting contrast. Our purpose in this section is to research the optimality

of condition (3.28) to guarantee global existence in time for system (1.2). With this end

in mind, we will consider from now on only initial radial conditions u10, u20, v0. Let us

define the cumulative mass variables for system (1.2) by

M1(r, t) : =

∫

�2

u1(x, t)dx = 2π

∫

�2

u1(ρ, t)ρdρ,

M2(r, t) : =

∫

�2

u2(x, t)dx = 2π

∫

�2

u2(ρ, t)ρdρ (4.1)

We are going to prove that if enough species are concentrate at the origin (i.e. we have a

small initial moment) then any of the inequalities

θ1 >
8π

χ1
µ (where µ � 1) (4.2)

θ2 >
8π

χ2
(4.3)

implies blowup.

Theorem 8 Let u1, u2 and v smooth solutions of equation (1.2). Let the second moment

m(t) defined by

m1(t) :=

∫

�2

u1 |x|2 dx, (4.4)

then we have
dm

dt
� 4θ1

(
1 − χ1θ1

8πµ

)
. (4.5)

In a like manner defining

m̃(t) :=

∫

�2

u2 |x|2 dx, (4.6)

then we have
dm̃

dt
� 4θ2

(
1 − χ2θ2

8π

)
. (4.7)

Proof Multiplying the first equation of equation (1.2) by |x|2 and integrating yield

d

dt

∫

�2

u1 |x|2 dx =

∫

�2

µ |x|2 ∆u1dx− χ1

∫

�2

|x|2 ∇ · (u1∇v)dx,

then using Greens first identity, we obtain

d

dt

∫

�2

u1 |x|2 dx = 4µ

∫

�2

u1dx+ 2χ1

∫

�2

u1(x · ∇v)dx. (4.8)

In cylindrical coordinates, the equation for the concentration of the chemical is

0 =
1

r

∂

∂r

(
r

∂v

∂r

)
+ u1 + u2,
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multiplying by r and integrating on (0, r), we find that

rvr = −
∫ r

0

ρu1dρ−
∫ r

0

ρu2dρ

= − 1

2π

∫

D(0,r)

ρu1dρ− 1

2π

∫

D(0,r)

ρu2dρ = −M1 +M2

2π
.

Therefore,

∂v

∂r
= −M1 +M2

2πr
. (4.9)

Using now equation (4.9) and the general identity

x · ∇φ = r
∂φ

∂r
,

we obtain that
∫

�2

u1(x · ∇v)dx

= 2π

∫ ∞

0

u1ρ
∂v

∂ρ
ρdρ = −2π

∫ ∞

0

u1

(
M1 +M2

2π

)
ρdρ

= −
∫ ∞

0

(M1 +M2) u1ρdρ

� −
∫ ∞

0

M1u1ρdρ

= − 1

4π
θ2

1 . (4.10)

From equations (4.8) and (4.10), we get

dm

dt
� 4µ

∫

�2

u1dx+ 2χ1

(
− 1

4π
θ2

1

)

= 4θ1µ

(
1 − χ1θ1

8πµ

)
.

In a similar way, we can prove inequality (4.7). �

As a consequence, if we have that if the masses satisfy equation (4.2) or equation (4.3)

then some of the moment variables m or m̃ will become identically zero in a finite time

T ∗. It follows that u will become zero too in a finite time contradicting the conservation

of the mass. In conclusion Tmax < T ∗and there is blowup for system (1.2).

Figure 1 illustrates the regions of global existence and blowup giving by equations (2.4),

(3.28), (4.2) and (4.3).

5 What species blowup first?

We return to system (1.2) and formulate us now the following question: What of the

chemotactic species will blowup first? In the radial case, it happens to be simultaneously
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θ2

θ1

Region 3

New points of blowup

Region 1

Global
existence

Region 2

µ → 1 with µ > 1

8π θ1
χ1

µ + θ2
χ2

− (θ1 + θ2)
2 < 0

Blow-up region

Region 4

8πµ/χ18π/χ2

8π/χ2

θ2 = 8π
χ2

Figure 1. Regions of global existence and blowup.

(cf. [6]). An answer for the general case is unknown. Intuitively, one could at least think

that blowup should happen first for the species with the bigger chemotactic coefficient χ.

However, a mathematical proof of this fact can be difficult. Next lemma will allow us to

prove this assertion for masses θ1 and θ2 that are relatively ‘close’ to our threshold curve

4πµθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 = 0.

In order to simplify the exposition, we set µ = 1. We point out that all the results below

are made before a possible time of blowup happens. Therefore, no problems with a

prolongation of the solution after a blowup need to be approached.

Lemma 9 If u1 and u2 are solutions of equation (1.2) then we have estimate

(
1

χ1
− M

8π

)∫

�2

u1 log u1dx+

(
1

χ2
− M

8π

)∫

�2

u2 log u2dx � E(0)−C(M)

4π
+

1

8π
M (θ1 + θ2) log 2.

(5.1)

Proof From equation (3.18) in the proof of Theorem 6, we know that

(
1 +

χ2

χ1

) ∫

�2

u1 log u1dx+

(
1 +

χ1

χ2

)∫

�2

u2 log u2dx

� E(0) +
χ1 + χ2

8π
M

∫

�2

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t))dx− χ1 + χ2

4π
C(M). (5.2)

The convexity of the function f(x) = x log x yields

(u1(x, t) + u2(x, t)) log(u1(x, t) + u2(x, t)) � u1 log 2u1 + u2 log u2. (5.3)
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Also, from equations (5.2) and (5.3), it follows that

(
1 +

χ2

χ1

)∫

�2

u1 log u1dx+

(
1 +

χ1

χ2

) ∫

�2

u2 log u2dx

� E(0) − χ1 + χ2

4π
C(M)

+
χ1 + χ2

8π
M

∫

�2

(u1(x, t) log 2u1(x, t) + u2(x, t) log 2u2(x, t)) dx

= E(0) − χ1 + χ2

4π
C(M)

+
χ1 + χ2

8π
M

∫

�2

(u1(x, t) (log 2 + log u1(x, t)) + u2(x, t) (log 2 + log u2(x, t))) dx

= E(0) − χ1 + χ2

4π
C(M)

+
χ1 + χ2

8π
M

∫

�2

(u1(x, t) log 2 + u1(x, t) log u1(x, t) + u2(x, t) log 2 + u2(x, t) log u2(x, t)) dx

= E(0) − χ1 + χ2

4π
C(M)

+
χ1 + χ2

8π
M

∫

�2

(u1(x, t) + u2(x, t)) log 2 + u1(x, t) log u1(x, t) + u2(x, t) log u2(x, t)dx

= E(0) − χ1 + χ2

4π
C(M) +

χ1 + χ2

8π
M (θ1 + θ2) log 2

+
χ1 + χ2

8π
M

∫

�2

(u1(x, t) log u1(x, t) + u2(x, t) log u2(x, t)) dx

= E(0) − χ1 + χ2

4π
C(M) +

χ1 + χ2

8π
M (θ1 + θ2) log 2

+
χ1 + χ2

8π
M

∫

�2

(u1(x, t) log u1(x, t) + u2(x, t) log u2(x, t)) dx.

In consequence,

(
1

χ1
− M

8π

)∫

�2

u1 log u1dx+

(
1

χ2
− M

8π

) ∫

�2

u2 log u2dx �
E(0)

χ1 + χ2
− 1

4π
C(M)

+
1

8π
M (θ1 + θ2) log 2.

Equivalently,

(
1

χ1
− M

8π

)∫

�2

u1 log u1dx+

(
1

χ2
− M

8π

)∫

�2

u2 log u2dx � E(0)−C(M)

4π
+

1

8π
M (θ1 + θ2) log 2.

�

Theorem 10 For system (1.2) suppose that

4πθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 < 0,
1

χ1
− M

8π
> 0,

1

χ2
− M

8π
< 0.
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θ2

θ1

u2 blowsup first than u1

Global
existence

Blowup

8πµ/χ1

8πµ/χ1

8π/χ2

8π/χ2

Figure 2. Region where u2 blowup first than u1.

If u1 blowup at t = T1 and u2 blowup at t = T2, then T2 � T1.

Proof Let T be a constant such that T < T2. Then, we have sup0�t�T ‖u2‖∞ < ∞, and

therefore,

∣∣∣∣
∫

�2

u2 log u2dx

∣∣∣∣ �

∫

�2

u2 |log u2| dx �

∫

u2<1

u2 |log u2| dx+

∫

u2>1

u2 |log u2| dx.

The first integral is bounded by Lemma 4. For the second one, we observe that

∫

u2>1

u2 |log u2| dx=

∫

u2>1

u2 log u2dx � log ‖u2‖∞

∫

u2>1

u2dx

� log ‖u2‖∞

∫

�2

u2dx = log ‖u2‖∞ θ1.

In consequence,
∫

�2 u2 log u2dx is finite for t ∈ [0, T ].

Let us now show that entropy of u1 is bounded too. A lower estimate for
∫

�2 u1 log u1dx

of the form

C(1 + t) �

∫

�2

u1 log u1dx (5.4)

can be found using the same argument like in Theorem 6. From equations (5.1) and (5.4),

C(1 + t) �

∫

�2

u1 log u1dx �
1

1
χ2

− M
8π

(
E(0) − C(M)

4π
−

(
1

χ1
− M

8π

) ∫

�2

u2 log u2dx

)
< ∞.

(5.5)

Using equation (5.5) and the technique from [9], we will show that the Lp norms of u1

are bounded for every p > 1.

From equation (1.2), we have that

∂tu1 = ∆u1 − χ1∇ · (u1∇v), . (5.6)
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Let k � 0. Multiplying equation (5.6) by (u1 − k)p−1
+ (p > 1) and integrating,

∫

�2

(u1 − k)p−1
+ ∂t (u1 − k) dx =

∫

�2

(u1 − k)p−1
+ ∆u1dx− χ1

∫

�2

(u1 − k)p−1
+ ∇ · (u1∇v)dx.

Applying integration by parts, we obtain

∫

�2

(u1 − k)p−1
+ ∂tu1 = −

∫

�2

∇ (u1 − k)p−1
+ · ∇u1dx− χ1

∫

�2

(u1 − k)p−1
+ ∇ · (u1∇v)dx,

or

1

p

d

dt

∫

�2

(u1 − k)p+ dx = −
∫

�2

∇ (u1 − k)p−1
+ · ∇(u1 − k)dx− χ1

∫

�2

(u1 − k)p−1
+ ∇ · (u1∇v)dx,

equivalently

1

p

d

dt

∫

�2

(u1 − k)p+dx= −
∫

�2

∇(u1 − k)p−1
+ · ∇(u1 − k)dx− χ1

∫

�2

(u1 − k)p−1
+ ∇·((u1 − k)∇v)dx

−kχ1

∫

�2

(u1 − k)p−1
+ ∇ · ∇vdx = I1 + I2 + I3. (5.7)

We can now follow some similar techniques like in [1, 5] and [9] to obtain the following:

I1 =

∫

�2

∇ (u1 − k)p−1
+ · ∇(u1 − k)dx = (p− 1)

∫

�2

(u1 − k)p−2
+ ∇ (u1 − k)+ · ∇(u1 − k)dx

= (p− 1)

∫

�2

(u1 − k)
p−2
2

+ ∇ (u1 − k)+ · (u1 − k)
p−2
2

+ ∇(u1 − k)dx

=
2(p− 1)

p

∫

�2

∇ (u1 − k)
p
2
+ · ∇(u1 − k)

p
2
+dx

=
2(p− 1)

p

∫

�2

∣∣∣∇ (u1 − k)
p
2
+

∣∣∣
2

dx,

I2 =

∫

�2

(u1 − k)p−1
+ ∇ · ((u1 − k)∇v)dx =

∫

�2

(u1 − k)p−1
+ [∇(u1 − k) · ∇v + (u1 − k)∆v)] dx

=

∫

�2

(u1 − k)p−1
+ ∇(u1 − k) · ∇vdx+

∫

�2

(u1 − k)p−1
+ (u1 − k)∆v)dx

=
1

p

∫

�2

∇(u1 − k)p+ · ∇vdx+

∫

�2

(u1 − k)p+ ∆vdx

= −1

p

∫

�2

(u1 − k)p+∆vdx+

∫

�2

(u1 − k)p+ ∆vdx

= −
(

1 − 1

p

)∫

�2

(u1 − k)p+(u1 + u2)dx

= −
(

1 − 1

p

)∫

�2

(u1 − k)p+ [(u1 − k) + (u2 + k)] dx

= −
(

1 − 1

p

)∫

�2

(u1 − k)p+1
+ dx−

(
1 − 1

p

) ∫

�2

(u1 − k)p+ (u2 + k) dx,
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I3 =

∫

�2

(u1 − k)p−1
+ ∇ · ∇vdx = −

∫

�2

(u1 − k)p−1
+ ∆vdx = −

∫

�2

(u1 − k)p−1
+ (u1 + u2)dx

= −
∫

�2

(u1 − k)p+dx−
∫

�2

(u1 − k)p−1
+ (u2 + k) dx.

Therefore, equation (5.7) becomes

1

p

d

dt

∫

�2

(u1 − k)p+ dx= −2(p− 1)

p

∫

�2

∣∣∣∇ (u1 − k)
p
2
+

∣∣∣
2

dx

−χ1

(
−

(
1 − 1

p

) ∫

�2

(u1 − k)p+1
+ dx

−
(

1 − 1

p

)∫

�2

(u1 − k)p+ (u2 + k) dx

)

−kχ1

(
−

∫

�2

(u1 − k)p+dx−
∫

�2

(u1 − k)p−1
+ (u2 + k) dx

)
,

or

1

p

d

dt

∫

�2

(u1 − k)p+ dx= −2(p− 1)

p

∫

�2

∣∣∣∇ (u1 − k)
p
2
+

∣∣∣
2

dx

+χ1

(
1 − 1

p

) ∫

�2

(u1 − k)p+ (u2 + k) dx+ kχ1

∫

�2

(u1 − k)p+dx

+kχ1

∫

�2

(u1 − k)p−1
+ (u2 + k) dx+ χ1

(
1 − 1

p

) ∫

�2

(u1 − k)p+1
+ dx.

(5.8)

The term
∫

�2 (u1 − k)p−1
+ (u2 + k)dx is estimate as follows:

∫

�2

(u1 − k)p−1
+ (u2 + k) dx�

(
|u2|∞ + k

) ∫

�2

(u1 − k)p−1
+ dx

=
(
|u2|∞ + k

)(∫

0�u1−k�1

(u1 − k)p−1
+ dx+

∫

u1−k>1

(u1 − k)p−1
+ dx

)

=
(
|u2|∞ + k

)(∫

0�u1−k�1

1dx+

∫

u1−k>1

(u1 − k)p−1
+ (u1 − k)dx

)

=
(
|u2|∞ + k

)(∫

0�u1−k�1

1dx+

∫

u1−k>1

(u1 − k)p−1
+ (u1 − k)+dx

)

=
(
|u2|∞ + k

)(∫

0�u1−k�1

u1

k
dx+

∫

u1−k>1

(u1 − k)p+dx

)

=
(
|u2|∞ + k

)(
θ1

k
+

∫

�2

(u1 − k)p+dx

)
.

In order to estimate the difference

χ1

(
1 − 1

p

)∫

�2

(u1 − k)p+1
+ dx− 2(p− 1)

p

∫

�2

∣∣∣∇ (u1 − k)
p
2
+

∣∣∣
2

dx, (5.9)
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we apply the Gagliardo–Nirenberg–Sobolev inequality

‖u‖p∗ � C ‖Du‖Lp , 1 � p < n,

with p = 1, n = 2 (⇒ p∗ = 2). We get then that

∫
u2dx � C

(∫
|∇u| dx

)2

and obtain

∫

�2

(u1 − k)p+1
+ dx�C

(∫

�2

∣∣∣∇ (u1 − k)
p+1
2

+

∣∣∣ dx
)2

=C

(∫

�2

∣∣∣∣∇ (u1 − k)
p
2 (1+ 1

p
)

+

∣∣∣∣ dx
)2

=C

(∫

�2

∣∣∣∣∇
{

(u1 − k)
p
2
+

}(1+ 1
p
)
∣∣∣∣ dx

)2

=C

((
1 +

1

p

)∫

�2

∣∣∣∣(u1 − k)
p
2 (1+ 1

p
−1)

+ ∇ (u1 − k)
p
2
+

∣∣∣∣ dx
)2

=C

(
1 +

1

p

)2 (∫

�2

∣∣∣(u1 − k)
1
2
+ ∇ (u1 − k)

p
2
+

∣∣∣ dx
)2

=C

(
1 +

1

p

)2 (∫

�2

∣∣∣(u1 − k)
1
2
+ ∇ (u1 − k)

p
2
+

∣∣∣ dx
)2

�C

(
1 +

1

p

)2 (∫

�2

(u1 − k)+ dx

) (∫

�2

∣∣∣∇ (u1 − k)
p
2
+

∣∣∣
2

dx

)
. (5.10)

From equations (5.9) and (5.10),

χ1

(
1 − 1

p

)∫

�2

(u1 − k)p+1
+ dx− 2(p− 1)

p

∫

�2

∣∣∣∇ (u1 − k)
p
2
+

∣∣∣
2

dx

�

(
Cχ1

(
1 − 1

p

) (
1 +

1

p

)2 (∫

�2

(u1 − k)+ dx

)
− 2(p− 1)

p

)∫

�2

∣∣∣∇ (u1 − k)
p
2
+

∣∣∣
2

dx.

Also, we get from equation (5.8) that

1

p

d

dt

∫

�2

(u1 − k)p+ dx�

(
χ1

(
1 − 1

p

)(
‖u2‖∞ + k

)
+ kχ1

)∫

�2

(u1 − k)p+dx

+ kχ1

(
‖u2‖∞ + k

) ∫

�2

(u1 − k)p−1
+ dx

+

{
χ1

(
1 − 1

p

) ∫

�2

(u1 − k)p+1
+ dx− 2(p− 1)

p

∫

�2

∣∣∣∇ (u1 − k)
p
2
+

∣∣∣
2

dx

}

�

(
χ1

(
1 − 1

p

)(
‖u2‖∞ + k

)
+ kχ1

)∫

�2

(u1 − k)p+dx
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+ kχ1

(
‖u2‖∞ + k

) (
‖u2‖∞ + k

)(
θ1

k
+

∫

�2

(u1 − k)p+dx

)

+

(
Cχ1

(
1 − 1

p

)(
1 +

1

p

)2 (∫

�2

(u1 − k)+ dx

)
− 2(p− 1)

p

)

×
∫

�2

∣∣∣∇ (u1 − k)
p
2
+

∣∣∣
2

dx

=C1(p, k, χ1, ‖u2‖∞)

∫

�2

(u1 − k)p+dx

+C2(p, k, χ1, ‖u2‖∞)

+

(
Cχ1

(
1 − 1

p

)(
1 +

1

p

)2 (∫

�2

(u1 − k)+ dx

)
− 2(p− 1)

p

)

×
∫

�2

∣∣∣∇ (u1 − k)
p
2
+

∣∣∣
2

dx.

We observe here that

∫

�2

(u1 − k)+ dx=

∫

u1−k>0

(u1 − k) dx �

∫

u1−k>0

u1dx

�

∫

u1>k

u1dx �
1

K

∫

u1>k

u1 log u1dx �
1

K

∫

u1>k

|u1 log u1| dx.

In consequence, we can make the integral
∫

�2 (u1 − k)+dx as small as we want uniformly

in t, taking k big enough. Summarising for any p > 1, we can find k big enough such that

1

p

d

dt

∫

�2

(u1 − k)p+ dx � C1(p, k, χ1, ‖u2‖∞)

∫

�2

(u1 − k)p+dx+ C2(p, k, χ1, ‖u2‖∞). (5.11)

Gronwall inequality shows that
∫

�2 (u1 − k)p+dx is finite on [0, T ].

Using the inequality

xp �

(
λ

λ− 1

)p−1

(x− 1)p for any x � λ > 1,

we can deduce that
∫
u1>k

u
p
1dx is finite (for details see [1], p. 20). Now, we use that

∫

�2

u
p
1dx=

∫

u1�k
u
p
1dx+

∫

u1<k

u
p
1dx

�Kp−1

∫

u1�k
u1dx+

∫

u1>k

u
p
1dx

�Kp−1M +

∫

u1<k

u
p
1dx,

to conclude that u1 ∈ Lp for every p > 1.

Using regularity results for PDE´s, we conclude that in fact u1 is bounded in �2 × [0, T ].

�
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6 Concluding remarks, open questions and comments on the steady state case

Some generalisations of the Keller–Segel model have been studied, in order to include

several chemotactic populations (cf. [7, 15, 16, 21]). In case of blowup, the nature of the

domain can play an important role to describe the blow-up phenomena (cf. [8]).

We have proved that the total moment

m(t) :=
π

χ1

∫

�2

u1 |x|2 dx+
π

χ2

∫

�2

u2 |x|2 dx (6.1)

can be increasing and system (1.2) can still blowup. This situation is illustrated by region

number 3 in Figure 1. We are not in a position to describe the nature of the blowup in

this region. We do not know if one species can blowup and the other one could remain

bounded globally in time (non-simultaneous blowup). This feature of the blowup suggests

us that the moment of one species could probably increase meanwhile the other one

is decreasing, in such a way that the total moment m(t) increases. This opens several

interesting questions. In particular, to find sharp conditions for initial data in region 3 of

Figure 1 providing a full description of the behaviour of both species’ densities.

As we mentioned in the Introduction, Wolansky’s question was already studied by

Horstmann [10] and Horstmann and Lucia [11] in the stationary case and for a bounded

domain with Neumann boundary conditions. This approach is important because it allows

us to have a first idea about the optimal region of existence for system (1.2) in the plane

of masses. The main difference between their conclusions and ours is the dependence on

the chemoattractant coefficients; our conditions of global existence depend only on χ2.

Let us now briefly discuss the stationary model associate with system (1.2), which is

0 = µ∆u1 − χ1∇ · (u1∇v) in �2,

0 = ∆u2 − χ2∇ · (u2∇v) in �2, (6.2)

0 = ∆v + u1 + u2 in �2.

Through a variational formulation, Horstmann [11], Theorem 4.2, analyses a system

similar to equation (6.2), in a two-dimensional disk and Neumann boundary conditions.

As pointed out by this author, it would be interesting to know which are the optimal

conditions on the parameters θ1, θ2 that allows us to conclude the existence of blowup or

global existence in time. When considered in �2, these problems have interesting relations

to Moser–Trudinger-like type inequalities for systems (see, for example the paper from

Shafrir and Wolansky [19]. Another interesting question is: In case of blowup, should this

be simultaneous or not? In the radial symmetrical case, it was shown that it has to be

simultaneous (see Espejo et al. [6]), in the general, non-radial case the question remains

open up to our knowledge.

On the other side, Horstmann [10] studies some blow-up results for a system similar

to equation (1.2) on a bounded domain in case χ1 = χ2. The corresponding result of our

Theorems 2 and 7 in case χ1 = χ2 and µ = 1 reads as follows: There exist positive initial

data ( u10, u20, v0) satisfying

χ1

∫

�2

(u10 + u20)dx > 8π
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θ2

θ1

Blowup
for radial initial data

Global existence

Blowup for general initial data

8πµ/χ1

8π/χ2

Figure 3. In the middle gray region, the time behaviour of the solutions should not only depend

on the coordinates (θ1, θ2) but on more specific information about u10 and u20.

such that

lim sup ‖u1(t) + u2(t)‖L∞(Ω) = ∞ as t → Tmax,

where Tmax denotes the maximal time of existence and (u1(t), u2(t), v(t)) is a solution of

equation (1.2). However, if

χ1

∫

�2

(u10 + u20)dx < 8π,

then the corresponding solution ((u1(t), u2(t), v(t)) of equation (1.2) exists globally in time

and is uniformly bounded.

This is exactly the analogue to what is stated in Theorem 8.2 of [10]. In this sense, our

results can be regarded as generalising the case χ1 = χ2 when working in �2. As observed

by Horstmann, this latter situation is very special, since the whole system can be reduced

to the classical one species system. However, if χ1 � χ2, there is no way to reduce the

multi-species chemotaxis model to a single species model.

Before concluding, let us mention that our results suggest a partial answer to Wolansky’s

question. Namely, the case of two chemotaxis species in �2 would have a threshold curve

that divide the plane of masses in two regions corresponding to different behaviours of

the solutions as illustrated in Figure 3.
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For the parabolic–elliptic Keller–Segel system in �2 it has been proved that if the initial mass

is less than 8π/χ, a global solution exists, and in case the initial mass is larger than 8π/χ,

blow-up happens. The case of several chemotactic species introduces an additional question:

What is the analog for the critical mass obtained for the single species system? We find a

threshold curve in the two species case that allows us to determine if the system is a blow-up

or a global in time solution. No radial symmetry is assumed.

Key words: chemotaxis, multicomponent Keller–Segel model, sharp conditions

1 Introduction

The Keller–Segel model describes the aggregation of living organisms like cells, bacteria

or amoebae. This is the simplest mechanism of aggregation. The most famous example in

nature for this type of cell motion is the Dictyostelium discoideum or Slime mould; this

amoeba was discovered in the first half of the 20th century. The slime mould is a unicellular

organism that detect an extracellular signal and transforms it into an intracellular signal.

These signal activates oriented cell movement towards a signal, this is an aggregation

process. The signal is a chemical secreted by themselves and is called cyclic Adenosine

Monophosphate (cAMP).

A classical mathematical model in chemotaxis was introduced by Keller and Segel in

1971 [12]. The Keller–Segel model is as follows:

ut = ∇ · (μ∇u− χu∇v) x ∈ Ω, t > 0,

vt = γΔv − βv + αu x ∈ Ω, t > 0,
(1)

where u(x, t) is the cell density and v(x, t) is the concentration of chemical at point x and

time t subject to the homogeneous Neumann boundary conditions and positive initial
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data u(x, 0) = u0 and v(x, 0) = v0. In this model, χ is the chemotactic sensitivity, γ is the

diffusion coefficient of the chemo-attractant, μ is the diffusion coefficient of cell density, β

is the rate of consumption and α is the rate of production, all are positive parameters, and

Ω ⊂ �N has smooth boundary ∂Ω. It was conjectured by Childress and Percus [5] that

in a two-dimensional domain there exists a critical number C such that if
∫
u0(x)dx < C

then the solution exists globally in time, and if
∫
u0(x)dx > C , then blow-up happens. For

different versions of the Keller–Segel model, the conjecture has been essentially proved,

finding the critical value C = 8π/χ; for a complete review of this topic, we refer readers

to [9, 10] and the references therein, and [2, 4, 11, 13, 15].

In the case of several chemotactic species, a new question arises, namely: Is there a

critical curve in the plane of initial masses θ1θ2 delimiting on one side global existence and

blow-up on the other side? This question was previously formulated by Wolansky in [16],

and from Theorem 5 of this last paper we readily deduce the following result.

Theorem 1 Consider the system

∂tu1 = μΔu1 − χ1∇ · (u1∇v)
∂tu2 = Δu2 − χ2∇ · (u2∇v)

0 = Δv + u1 + u2 − v,

along with Dirichtlet boundary conditions for v and initial radial data: u1(0, ·) = ϕ, u2(0, ·) =

ψ, v(0, ·) = φ, with ϕ,ψ, φ � 0 on the two-dimensional disc of radius 1. Further, let θ1, θ2

be the total preserved masses of the chemotactic species. Assume further that

4πμθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 > 0, θ1 < 8πμ/χ1, θ2 < 8π/χ2 . (2)

Then for (u1(0,·), u2(0,·)) ∈ YN with

YN =

{
u1, u2 : B(0) → �+ :

∫
ui = θi,

∫

B1(0)

ui log ui < ∞
}
,

there exists a global in time classical solution.

A natural question arises from this last result. What happens if inequalities (2) do not

hold? Is it still possible to have global solutions? With regard to this question it is worth

recalling here a result from Conca et al. [6], who considered the following system in the

whole space in two dimensions:

∂tu1 = μΔu1 − χ1∇ · (u1∇v), x ∈ �2, t > 0

∂tu2 = Δu2 − χ2∇ · (u2∇v), x ∈ �2, t > 0

v(x, t) = − 1
2π

∫
�2 log |x− y| (u1(y, t) + u2(y, t)) dy, x ∈ �2, t > 0

u1(x, 0) = u10 � 0, u2(x, 0) = u20 � 0, x ∈ �2, t > 0

⎫
⎪⎪⎬
⎪⎪⎭
, (3)

where u1 and u2 are the density variables for two different chemotaxis species and v is the

chemoattractant, χ1, χ2, μ are positive constants and positive initial conditions u10, u20 are
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θ2

θ1

Blow-up
for radial initial data

Global existence

Blow-up for general initial data

8πμ/χ1

8π/χ2

Figure 1. Regions of global existence in time and blow-up.

given. In their last paper it was proved that if θ1, θ2 satisfy any of the inequalities

4πμθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 < 0, θ1 > μ
8π

χ1
, θ2 >

8π

χ2
,

then system (3) can blow up. It was also proved in [6] that the inequalities

θ1 + θ2 <
8π

χ2
, μ � 1

θ1 + θ2 <
8π

χ2
μ, μ < 1

guarantee global existence.

In the present paper we aim to give a step further improving the results of global

existence from [6] and to prove that even in the non-radial case, inequalities (2) guarantee

global existence for system (3). In consequence, we give a generalization of the threshold

number 8π/χ for the classical parabolic–elliptic Keller–Segel system in �2 to a curve for

the two species system. The global existence in time results of the present paper along

with the blow-up results from [6] are summarised in Figure 1.

2 Preliminaries

Let us proceed formally to find a free energy functional for our system. First we write the

equation for u1 in (3) in the form

∂tu1 = ∇ · u1∇ (μ log u1 − χ1v) . (4)

Next, we multiply both sides of (4) by μ log u1 − χ1v and integrate to obtain

∫

�2

u1t (μ log u1 − χ1v) dx =

∫

�2

(μ log u1 − χ1v) ∇ · u1∇ (μ log u1 − χ1v) dx. (5)
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Then using mass conservation and integrating by parts, we see that (5) is equivalent to

d

dt

∫

�2

μu1 log u1dx− χ1

∫

�2

u1tvdx = −
∫

�2

u1 |∇ (μ log u1 − χ1v)|2 dx. (6)

Similarly,

d

dt

∫

�2

u2 log u2dx− χ2

∫

�2

u2tvdx = −
∫

�2

u2 |∇ (log u2 − χ2v)|2 dx. (7)

Now we add 1
χ1

(6) and 1
χ2

(7) to obtain

d

dt

{∫

�2

μ

χ1
u1 log u1dx+

1

χ2

∫

�2

u2 log u2dx

}
−

∫

�2

(u1t + u2t) vdx

= −
∫

�2

u1 |∇ (μ log u1 − χ1v)|2 dx−
∫

�2

u2 |∇ (log u2 − χ2v)|2 dx. (8)

We observe at this point that

∫

�2

(u1t + u2t) vdx= − 1

2π

∫

�2

(u1(x, t) + u2(x, t))t

∫

�2

log |x− y| (u1(y, t) + u2(y, t)) dydx

= − 1

4π

d

dt

∫

�2×�2

(u1(x, t) + u2(x, t)) (u1(y, t) + u2(y, t)) log |x− y| dydx

=
1

2

d

dt

∫

�2

(u1 + u2)vdx. (9)

In conclusion, we deduce from (8) and (9) that

d

dt

{∫

�2

μ

χ1
u1 log u1dx+

1

χ2

∫

�2

u2 log u2dx− 1

2

∫

�2

(u1 + u2)vdx

}
� 0. (10)

Result (10) motivates us to define the free energy functional for system (3) as

E(t) :=
μ

χ1

∫

�2

u1 log u1dx+
1

χ2

∫

�2

u2 log u2dx− 1

2

∫

�2

u1vdx− 1

2

∫

�2

u2vdx. (11)

In order to give validity to our calculations, we suppose not only that u1, u2 ∈
C0(�+, L1(�2)) ∩ L2((0, T );H1(�2)) but also that u1(1 + |x|2), u2(1 + |x|2), u1 log u1 and

u2 log u2 are bounded in L∞
loc(�

+, L1(�2)). In addition, ∇√
u1,∇

√
u2∈ L1

loc(�
+, L1(�2)) and

∇v ∈ L∞
loc(�

+ × �2).

Then we have that

d

dt
E(t) = − 1

χ1

∫

�2

u1 |μ∇ log u1 − ∇χ1v|2 dx− 1

χ2

∫

�2

u2 |∇ log u2 − ∇χ2v|2 dx � 0. (12)

As a consequence of (12) and the Hardy–Littlewood–Sobolev (HLS) inequality [5, 9], the

following entropy bound was obtained in [6].

Theorem 2 If u1 and u2 are positive solutions of (3) on the interval [0, T ) and χ1 � χ2,

then we have the following entropy estimates:
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• If μ > 1, then

(
1 − Mχ2

8π

)∫ T

0

∫

�2

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dxdt � CT ,

where CT is a constant depending on T and M = θ1 + θ2.

• If μ � 1, then

(
1 − Mχ2

8πμ

) ∫ T

0

∫

�2

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
log

(
1

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
dxdt � CT ,

where CT is a constant depending on T and M = θ1 + θ2.

Theorem 2 gives bounds for the entropy which is a key tool for the proof of global

existence for system (3). In order to improve this last result, it would be desirable to use

the HLS inequality for systems developed by Shafrir and Wolansky in [14]. However, as

we will show in Section 2, a direct application of this tool to our system does not give

the optimal result that we are looking for. We will show how an adequate introduction

of some auxiliary parameters in (12) allows us to improve the result of global existence

obtained in [6], namely we will show that if θ1, θ2 satisfy

4πμθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 > 0, θ1 < μ
8π

χ1
, θ2 <

8π

χ2

then global solutions in time exist. No kind of radial symmetry is assumed.

The most fundamental tool used through this paper is the logarithmic HLS’s inequality

for systems, which we proceed to recall now. Following the notation in [14] we define the

space

ΓM
(
�2

)
=

{
ρ̃ = (ρ̃i)i∈I : ρ̃i � 0,

∫

�2

ρ̃i |log ρ̃i| dx < ∞,
∫

�2

ρ̃i = Mi,

∫

�2

ρ̃i log
(
1 + |x|2

)
< ∞, ∀i ∈ I

}
,

where M = (Mi)i∈I is given. Next we define the functional F : ΓM(�2) → R by

F [ρ̃] =
∑

i∈I

∫

�2

ρ̃i log ρ̃idx+
1

4π

∑

j,i∈I
ai,j

∫

�2

∫

�2

ρ̃i (x) log |x− y| ρ̃j (y) dxdy

and the polynomial

ΛJ (M) = 8π
∑

i∈J
Mi −

∑

i,j∈J
aijMiMj, ∀�� J ⊆ I.

Then we have the following.
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Theorem 3 Hardy–Litlewood–Sobolev’s inequality for systems

Let A =
(
aij

)
a symmetric matrix such that aij � 0 for all i, j ∈ I and M ∈ �n

+. Then:

ΛI (M) = 0 and

ΛJ (M) � 0, for all J ⊆ I

if ΛJ (M) = 0 for some J, then aii + ΛJ\{i} (M) > 0, ∀i ∈ J

are necessary and sufficient conditions for the boundedness from below of F on ΓM(�2).

There exists a minimizer ρ of F over ΓM(�2) if and only if

ΛI (M) = 0, and ΛJ (M) > 0, for all J � I

Proof See [30, Theorem 4]. �

3 Global existence

The first result of this section gives us bounds for entropy functionals. We achieve our

aim through an appropriate use of the HLS inequality for systems, Theorem 3. The

main idea of the proof reads as follows: Given that a direct application of the HLS

inequality would allow us to get bounds only on a curve of the θ1θ2-plane for the entropies∫
�2 ui(x, t) log ui(x, t)dx, i = 1, 2, we introduce some parameters before applying the HLS

inequality. This step will allows us ‘to move’, ‘to shrink’ and ‘to dilate’ this curve in such

a way the the full region (18) is swept and therefore obtain estimate (19) in this region.

We suppose throughout this paper that

u10, u20 ∈ L1(�2, (1 + |x|2)dx),
u10 log u10, u20 log u20 ∈ L1(�2, dx)

}
. (13)

Lemma 4 (Lower bound for the entropy functionals) Consider a non-negative weak solu-

tion of (3) such that ui(1 + |x|2), i = 1, 2 are bounded in L∞
loc(�

+, L1(�2)). Then we have

∫

�2

ui (x, t) log ui (x, t) � M logM −M log [π (1 + t)] − C, i = 1, 2.

Proof In the following, C will denote a generic constant. We have from [6, Theorem 1]

that

d

dt

∫

�2

(
μ

χ1
u1(x, t) +

1

χ2
u2(x, t)

)
|x|2 dx =

4θ1

χ1
μ+

4θ2

χ2
− 1

2π
(θ1 + θ2)

2 . (14)

We define

n :=
μ

χ1
u1 +

1

χ2
u2;

and

K :=
4θ1

χ1
μ+

4θ2

χ2
− 1

2π
(θ1 + θ2)

2 .
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Thus, we obtain

∫

�2

n(x, t) |x|2 dx = Kt+

∫

�2

n(x, 0) |x|2 dx � C(1 + t), (15)

where C := max{K,
∫

�2 n(x, 0) |x|2 dx}. From the inequality ui � Cn, where i = 1, 2 and

(15) we deduce that ∫

�2

ui(x, t) |x|2 dx � C(1 + t), i = 1, 2.

Using the same idea presented in [4, Lemma 2.5], we observe that

∫

�2

ui (x, t) log ui (x, t) � 1
1+t

∫

�2

ui (x, t) |x|2 − C +

∫

�2

ui (x, t) log ui (x, t)

=

∫

�2

ui (x, t) log

[
ui (x, t)

e− |x|2
1+t

]
− C.

(16)

Let us now define the variable μ as

μ (x, t) =
1

π (1 + t)
exp

(
− |x|2

1 + t

)
.

We then obtain from (16) that

∫

�2

ui (x, t) log ui (x, t) �

∫

�2

ui (x, t) log

[
ui (x, t)

μ (x, t)

]
dx−M log [π (1 + t)] − C

=

∫

�2

ui (x, t)

μ (x, t)
log

[
ui (x, t)

μ (x, t)

]
μ (x, t) dx−M log [π (1 + t)] − C, (17)

where M = μ
χ1
θ1 + 1

χ2
θ2. Using Jensen’s inequality we get from (17) that

∫

�2

ui (x, t) log ui (x, t) � M logM −M log [π (1 + t)] − C.
�

Theorem 5 (Upper bound for entropy functionals) Consider a non-negative weak solution

of (3) such that ui(1 + |x|2), ui log ui, i = 1, 2 are bounded in L∞
loc(�

+, L1(�2)). If (θ1, θ2)

satisfies

θ1 <
8π

χ1
μ; θ2 <

8π

χ2
; 8π

(
θ1

χ1
μ+

θ2

χ2

)
− (θ1 + θ2)

2 > 0, (18)

then we have ∫

�2

ui(x, t) log ui(x, t)dx � C, (19)

where i = 1, 2 and C is a constant depending only on the parameters θ1 and θ2, μ, χ1, χ2,

E(0).

Proof From (12) we have that

E (t) � E (0) , ∀t > 0.
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In consequence, we have the following estimate:

μ

χ1

∫

�2

u1 (x, t) log u1 (x, t) dx+
1

χ2

∫

�2

u2 (x, t) log u2 (x, t) dx

� E (0) − 1

4π

∫

�2

∫

�2

u1 (x, t) u1 (y, t) log |x− y| dxdy

− 1

4π

∫

�2

∫

�2

u1 (x, t) u2 (y, t) log |x− y| dxdy

− 1

4π

∫

�2

∫

�2

u2 (x, t) u1 (y, t) log |x− y| dxdy − 1

4π

∫

�2

∫

�2

u2 (x, t) u2 (y, t) log |x− y| dxdy.

We introduce positive parameters a and b in the last inequality in the following way

μ

χ1

∫

�2

u1 (x, t) log u1 (x, t) dx+
1

χ2

∫

�2

u2 (x, t) log u2 (x, t) dx

� E (0) − a2

μ24π

∫

�2

∫

�2

μu1 (x, t)

a

μu1 (y, t)

a
log |x− y| dxdy

− ab

μ4π

∫

�2

∫

�2

μu1 (x, t)

a

u2 (y, t)

b
log |x− y| dxdy

− ab

μ4π

∫

�2

∫

�2

u2 (x, t)

b

μu1 (y, t)

a
log |x− y| dxdy

− b2

4π

∫

�2

∫

�2

u2 (x, t)

b

u2 (y, t)

b
log |x− y| dxdy. (20)

By doing so, we can now apply the HLS inequality for systems (Theorem 3) to the

functions μu1/a and u2/b in identity (20) getting that

μ

χ1

∫

�2

u1 (x, t) log u1 (x, t) +
1

χ2

∫

�2

u2 (x, t) log u2 (x, t)

� E (0) − C +

∫

�2

μ
u1 (x, t)

a
log

(
μ
u1 (x, t)

a

)
dx+

∫

�2

u2 (x, t)

b
log

(
u2 (x, t)

b

)
dx,

where the conditions for the existence of the constant C given by Theorem 3 are

Λ{1} (M) = 8πμ
θ1

a
− a2

(
θ1

a

)2

� 0;

Λ{2} (M) = 8π
θ2

b
− b2

(
θ2

b

)2

� 0;

Λ{1,2} (M) = 8π

(
μ
θ1

a
+
θ2

b

)
−

(
a2 θ1

a

θ1

a
+ 2ab

θ1

a

θ2

b
+ b2 θ2

b

θ2

b

)
= 0.

Equivalently,

θ1 � μ 8π
a
, θ2 � 8π

b

8π
(
μθ1

a
+ θ2

b

)
− (θ1 + θ2)

2 = 0

}
. (21)
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In conclusion we have proved that condition (21) implies

μ

(
1

χ1
− 1

a

)∫

�2

u1 (x, t) log u1 (x, t) +

(
1

χ2
− 1

b

)∫

�2

u2 (x, t) log u2 (x, t)

� E (0) − C +
θ1μ

a
log

μ

a
+
θ2

b
log

1

b
. (22)

We have from Lemma 4 that the functionals
∫
ui log uidx are bounded below for i = 1, 2.

On the other hand, each of the coefficients of the entropy functionals in (22) are positive

as long as a > χ1 and b > χ2. Then we take parameters a and b on the intervals (χ1,∞)

and (χ2,∞) respectively We conclude that estimate (19) hold on region (18). �

Boundedness of entropies in the last theorem is the main tool that we will use to obtain

the following result of global existence.

Theorem 6 (Global existence of weak solutions) Under assumption (13) and

8π

(
θ1

χ1
μ+

θ2

χ2

)
− (θ1 + θ2)

2 > 0, (23)

θ1 <
8π

χ1
μ; θ2 <

8π

χ2
, (24)

system (3) has a global weak non-negative solution such that

(1 + |x|2 + |log ui|)ui ∈ L∞(0, T ;L1(�2))

and

− 1

χ1

∫ ∫

[0,T ]×�2

u1 |μ∇ log u1 − ∇χ1v|2 dx− 1

χ2

∫ ∫

[0,T ]×�2

u2 |∇ log u2 − ∇χ2v|2 dx < ∞.

Before giving the proof, let us first give some explanation of this result. Inequality

(23) corresponds to the interior of a rotated parabola in the plane θ1θ2. Choosing the

parameters μ, χ1 and χ2 appropriately, condition (24) may be relevant or can be simply

ignored. Next, Figure 2 illustrates the two possible cases:

More precisely we have that,

• if the parabola

8π

(
θ1

χ1
μ+

θ2

χ2

)
− (θ1 + θ2)

2 = 0 (25)

intersects either of the lines θ1 = 8πμ/χ1 or θ2 = 8π/χ2 in the first quadrant of the

θ1θ2 plane (which happens exactly when χ1 < μχ2/2 or χ1 > 2μχ2), then system (3) has

global existence in time weak solutions as long as the initial masses satisfy inequalities

(23) together with (24).

• However, if the parabola (25) does not intersect either of the lines θ1 = 8πμ/χ1 or

θ2 = 8π/χ2 (when μχ2/2 � χ1 � 2μχ2) in the first quadrant of the θ1θ2 plane, then

inequality (23) is enough to guarantee that system (3) has a global in time weak solution.
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8π/χ2

8πμ/χ1

Figure 2. Two basic configurations of parabola (25).

On the other hand, we should point out that all of our results are formal so far. In

order to make them rigorous, we should have a local existence result of smooth solutions.

However, we will take another strategy which will allow us to obtain directly global

existence in time of weak solutions with the corresponding mathematical rigour. In order

to prove Theorem 6, we first modify the convolution kernel k0(z) = − 1
2π

log |z| in (3) by

truncating it around zero. This last will allow us to get a regularized version of system (3),

which is rather easier to work. After proving the existence of global solutions of this last

approximate problem, we look for uniform estimates of solutions and then pass to the

limit that will give us the result of global existence we are looking for. After getting this

result we recover properties such as mass conservation or the second moment formula by

testing properly our weak solution. A similar technique was made in the one chemotaxis

species case (see [4, 5]).

Proof (Sketch) For the reader’s convenience, we divide the proof into four steps giving

special attention where technical difficulties arise in comparison to the single species case.

Step 1. Regularization of the system. We define Kε by Kε (z) := K1
(
z
ε

)
, where K1 is a

radial monotone non-decreasing smooth function satisfying

K1 (z) =

{
− 1

2π
log |z| if |z| � 4

0 if |z| � 1
.

Assume also that
∣∣∇K1 (z)

∣∣ �
1

2π |z|

K1 (z) � − 1

2π
log |z| ; − ΔK1 (z) � 0; ∀z ∈ �2

for any z ∈ �2. Then we consider the following regularized version of system (3)

⎧
⎨
⎩

∂tu
ε
1 = Δuε1 − χ1∇ · (uε1∇vε), t � 0, x ∈ �2

∂tu
ε
2 = Δuε2 − χ2∇ · (uε2∇vε), t � 0, x ∈ �2

vε = Kε ∗
(
uε1 + uε2

)
, t � 0, x ∈ �2

, (26)
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which we interpret in the sense of distributions. Since Kε(z) = K1( z
ε
), we also have

|∇Kε (z)| =
1

ε

∣∣∣∇K
(z
ε

)∣∣∣ �
1

ε

1

2π |z/ε| =
1

2π |z| . (27)

The proof of global solutions in L2(0, T ;H1(�2) ∩ C
(
0, T ;L2(�2

)
) for system (26) with

initial data in L2(�2) follows essentially the same lines as in [4, Proposition 2.8] and

therefore we omit the proof here.

Step 2. A priori estimates for the approximate solutions uε1, u
ε
2 and vε.

Consider a solution
(
uε1, u

ε
2

)
of the regularized system. If

θ1 <
8π

χ1
μ; θ2 <

8π

χ2
; 8π

(
θ1

χ1
μ+

θ2

χ2

)
− (θ1 + θ2)

2 > 0,

then, uniformly as ε → 0, with bounds depending only upon
∫

�2 (1 + |x|2)ui0dx and∫
�2 ui0 log ui0dx with i = 1, 2, we have the following estimates:

(i) The function (x, t) → |x|2
(
uε1 + uε2

)
is bounded in L∞ (

�+
loc;L

1(�2)
)
.

(ii) The functions t →
∫

�2 u
ε
j (x, t) log uεj (x, t) dx and t →

∫
�2 u

ε
j (x, t) vε (x, t) dx are

bounded for j = 1, 2.

(iii) The function (x, t) → uεj (x, t) log
(
uεj (x, t)

)
is bounded in L∞ (

�+
loc;L

1(�2)
)

for j =

1, 2.

(iv) The function (x, t) → ∇
√
uεj (x, t) is bounded in L2

(
�+
loc × �2

)
for j = 1, 2.

(v) The function (x, t) → uεj (x, t) is bounded in L2
(
�+
loc × �2

)
for j = 1, 2.

(vi) The function (x, t) → uεj (x, t) Δvε (x, t) is bounded in L1
(
�+
loc × �2

)
for j = 1, 2.

(vii) The function (x, t) →
√
uεj (x, t)∇vε (x, t) is bounded in L2

(
�+
loc × �2

)
for j = 1, 2.

The proof of estimates (i)–(vii) follows essentially the same steps as in the one species

case and therefore we refer the reader to [4, Lema 2.11].

As a consequence of estimate (ii), the first two equations of system (3) have the

hyper-contractivity property [4, Theorem 3.5], i.e. for any 1 < p < ∞, there exists a

continuous function hjp : (0, T ) → � such that
∥∥uεj (·, t)

∥∥
Lp(�2)

� hjp(t), j = 1, 2. Hence,

uεj ∈ L∞((δ, T ), Lp(�2)), p ∈ (1,∞) for any δ ∈ (0, T ). Therefore, we have the following

result:

(viii) The function (x, t) → uεj (x, t) is bounded in L∞((δ, T ), Lp(�2)) for j = 1, 2, p > 1.

Step 3. Construction of a strong convergence subsequence in Lp. To achieve our aim in

this step we will apply the Aubin–Lions compactness lemma.
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First we get a uniform bound on ‖∇uεi ‖L2
loc((δ,T )×�2). We observe that

d

dt

∫

�2

|uεi |
2
dx= −2

∫

�2

|∇uεi |
2
dx+ 2χ1

∫

�2

uεi ∇uεi · ∇vεdx � −2

∫

�2

|∇uεi |
2
dx

+ 2χ1

( ∫

�2

|∇uεi |
2

)1/2 ( ∫

�2

|uεi |
2 |∇vε|2 dx

)1/2

� −2

∫

�2

|∇uεi |
2
dx

+ 2χ1

( ∫

�2

|∇uεi |
2

)1/2 ( ∫

�2

|uεi |
3
dx

)1/3 ( ∫

�2

|∇vε|6 dx
)1/6

, (28)

where we have used the Hölder inequality in the last line. The classical Gagliardo–

Nirenberg–Sobolev inequality along with the Calderon–Zigmund inequality allow us to

conclude that (∫

�2
|∇vε|6 dx

)1/6

� C

(∫

�2
|Δvε|3/2 dx

)2/3

. (29)

From inequalities (28) and (29) we deduce that

d

dt

∫

�2

|uεi |
2
dx

� −2

∫

�2

|∇uεi |
2
dx+ 2Cχ1

( ∫

�2

|∇uεi |
2

)1/2 ( ∫

�2

|uεi |
3
dx

)1/3 ( ∫

�2

|Δvε|3/2 dx
)2/3

� −2

∫

�2

|∇uεi |
2
dx+ 2Cχ1

( ∫

�2
|∇uεi |

2

)1/2 ( ∫

�2

|uεi |
3
dx

)1/3

×
( (∫

�2
|uε1|3/2 dx

)2/3

+

( ∫

�2

|uε2|3/2 dx
)2/3

)
.

Integrating with respect to t and reordering last inequality, we now obtain

2

∫ T

δ

∫

�2

|∇uεi |
2
dxdt− 2Cχ1

{
sup
t∈[δ,T ]

(∫

�2
|uεi |

3
dx

)1/3
(

sup
t∈[δ,T ]

(∫

�2
|uε1|3/2 dx

)2/3

+ sup
t∈[δ,T ]

(∫

�2
|uε2|3/2 dx

)2/3
)}∫ T

δ

(∫

�2
|∇uεi |

2

)1/2

dt+

∫

�2

|uεi |
2
dx−

∫

�2

|uεi (x, 0)|2 dx � 0.

We observe now that

∫ T

δ

(∫

�2
|∇uεi |

2
dx

)1/2

dt � (T − δ)1/2
(∫ T

0

∫

�2

|∇uεi |
2
dxdt

)1/2

.

Denoting by X := ‖∇uεi ‖L2
loc((δ,T )×�2) and taking into account (viii), we conclude from last

two estimates that for positive constants a, b and c we have that

aX2 − bX + c � 0,

in consequence X := ‖∇uεi ‖L2
loc((δ,T )×�2) is bounded, i.e there exists a constant C such

that

‖∇uεi ‖L2
loc((δ,T )×�2) � C. (30)
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Now we obtain a bound for ‖duεi /dt‖L2((δ,T );H−1(�2)) . First of all we notice that in the

middle of the proof of estimation (30) we have proved that

‖ui∇vε‖L2(�2) �

( ∫

�2
|uεi |

3
dx

)1/3
( (∫

�2
|uε1|3/2 dx

)2/3

+

( ∫

�2

|uε2|3/2 dx
)2/3

)
. (31)

It follows from the last estimate and (viii) that for some constant C we have

‖ui∇vε‖L2(�2) � C. (32)

Let φ ∈ H1(�2), then we have

|〈duεi /dt, φ〉| = |〈Δui − ∇ · (ui∇vε) , φ〉| � |〈∇ui,∇φ〉| + |〈ui∇vε,∇φ〉|
� ‖∇φ‖L2(�2) ‖∇ui‖L2(�2) + ‖∇φ‖L2(�2) ‖ui∇vε‖L2(�2) . (33)

Thus,

‖duεi /dt‖H−1(�2) = sup
‖φ‖

H1(�2)=1

|〈duεi /dt, φ〉| � ‖∇uεi‖L2(�2) + ‖uεi∇vε‖L2(�2) .

From the last estimate and taking into account (30) and (32), it follows that

‖duεi /dt‖L2((δ,T );H−1(�2)) =

(∫ T

δ

‖duεi /dt‖
2
H−1(�2) dt

)1/2

� C. (34)

Compactness: In order to apply the Aubin–Lions Lemma, we define the spaces B0 =

H1(�2) ∩ {f| |x|2 f ∈ L1(�2)}, B := L2(�2) and B1 := B′
0. Let {fi} be an arbitrary

bounded sequence in B0, then we have L2equi-integrability at infinity (cf. [1, Corollary

5.3.1]) as the following account shows:

∫

{|x|>R}
f2
i dx�

1

R

∫

{|x|>R}

(
|x| f1/2

i

)
f

3/2
i dx �

1

R

(∫

{|x|>R}
|x|2 fidx

)1/2 (∫

{|x|>R}
f3
i dx

)1/2

�
1

R

(∫

�2

|x|2 fidx
)1/2 (∫

�2

f3dx

)1/2

.

Thus,

lim
R→+∞

∫

{|x|>R}
f2
i dx = 0 uniformly with respect to fi. (35)

From the Rellich–Kondrakov Theorem (cf. [1, Corollary 5.3.1] we obtain the compact

inclusion

B0 ↪→↪→ B.

Given that uεi satisfies (30), (34) and (35), we can now invoke the Aubin–Lions–Simon

theorem to conclude that uεi has a subsequence that converge strongly in L2(δ, T , B).

Therefore, up to a subsequence we have that

uεi → ui a.e. in �2 × [δ, T ]. (36)
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We have also proved uniformly boundedness for ‖uεi ‖Lp(�2)×[δ,T ] , from this, estimation

(36) and the Vitali theorem, we obtain

uεi → ui strongly in Lp(�2 × [0, T ]) for p � 1. (37)

Step 4. Pass to the limit. We pass now to the limit in the weak sense to obtain our result

of global existence. The most significant technical difficulty to show that u1, u2 solved (3)

arise with the nonlinear terms. In order to prove that

uεi ∇vε ⇀ ui∇v, in D′(�+ × �2), (38)

we first notice that the expression uεi |∇vε| is integrable as estimate (vii) of part 2 along

with the following estimate shows

(∫

[0,T ]×�2

uεi |∇vε| dxdt
)2

=

(∫

[0,T ]×�2

√
uεi

√
uεi |∇vε| dxdt

)2

�

∫

[0,T ]×�2

uεi dxdt

∫

[0,T ]×�2

uεi |∇vε|2 dxdt � θiT

∫

[0,T ]×�2

uεi |∇vε|2 dxdt.

It follows that we can interpret uεi ∇vε as an element of
(
C∞

0

(
�+ × �2

))′
and therefore

its divergence is defined.

In order to prove that ‖∇vε‖Lr(�n) � C for r > 2, we recall the HLS inequality: For all

f ∈ Lp(�n), g ∈ Lq(�n), 1 < p, q < ∞, such that 1/p+1/q+ λ/n = 2 and 0 < λ < n, there

exists a constant C = C(p, q, λ) > 0 such that

∣∣∣∣∣

∫

�n×�n

1

|x− y|λ
f(x)g(y)dxdy

∣∣∣∣∣ � C ‖f‖Lp(�n) ‖g‖Lq(�n) .

Taking the supremum over the ball ‖g‖Lq(�n) = 1 on both sides of the last inequality, we

obtain ∥∥∥∥∥

∫

�n

1

|x− y|λ
f(x)dx

∥∥∥∥∥
L

q
q−1 (�n)

� C ‖f‖Lp(�n) . (39)

In particular

∥∥∥∥
∫

�n

1

|x− y|f(x)dx
∥∥∥∥
L

q
q−1 (�2)

� C ‖f‖Lp(�2) where 1 < p, q < ∞, and 1/p+ 1/q + 1/2 = 2.

Thus, we have that

‖∇vε‖Lr(�n) = ‖∇Kε ∗ (uε1 + uε2)‖Lr(�n) (40)

�

∥∥∥∥
1

2π

∫
1

|x− y| (u
ε
1 + uε2)dx

∥∥∥∥
Lr(�n)

� C
(

‖uε1‖Lp(�2) + ‖uε2‖Lp(�2)

)
� C, (41)

where we have used step 2 (viii). From r = q
q−1

and 1/p+ 1/q + 1/2 = 2 we obtain that
1
r

= 1
p

− 1
2
. In addition, p ∈ (1, 2) implies that r ∈ (2,∞). We conclude that (up to a
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subsequence) ∇vε ⇀ h, where h is in Lr. In order to prove that actually h = ∇K ∗ n we

have to do some extra work yet. With this end in mind, we now propose to show that

∇vε → ∇v a.e. (42)

We have that

∇vε − ∇v = − 1

2π

∫

�2

x− y

|x− y|2
((
uε1 + uε2

)
− (u1 + u2)

)
(y, t) dy

+

∫

|x−y|�2ε

(
1

ε
∇K1

(x− y

ε

)
+

|x− y|
2π |x− y|2

)
(
uε1 + uε2

)
(y, t)dy. (43)

We deduce from (37) and (39) that (up to a subsequence) the first integral in (43) converges

to zero a.e. On the other hand, estimates (27) allows us to conclude that

∣∣∣∣∣

∫

|x−y|�2ε

(
1

ε
∇K1

(x− y

ε

)
+

|x− y|
2π |x− y|2

)
(
uε1 + uε2

)
(y, t)dy

∣∣∣∣∣

�

∫

|x−y|�2ε

(
1

π |x− y|

)(
uε1 + uε2

)
(y, t)dy.

Last integral converges to 0 as ε → 0, therefore we conclude (42).

We therefore obtain from [8, Prop. 2.46 (i)] that ∇vε ⇀ ∇K ∗ n weakly in Lr for r � 2.

Finally, we choose conjugate exponents r = 4 and p = 4/3 to conclude the convergence

(38). �

4 Conclusions and open questions

It has been proved in this paper that system (3) has a threshold curve that determines

global existence or blow-up. A more difficult task is to find out if the blow-up has to

be simultaneous or not and also to describe the asymptotics near the blow-up time. A

first step in this direction was given by Espejo et al. in [7], where it was shown that the

blow-up has to be simultaneous in the radial case. Should it be the same in the general

case? Or should it depend on more specific information on the initial data? With regard

to this point it is worth recalling that according to [6] it is possible to have blow-up even

in the case that the total moment

m(t) :=
π

χ1

∫

�2

u1(x, t) |x|2 dx+
π

χ2

∫

�2

u2(x, t) |x|2 dx (44)

is increasing, that is when we have

4πμθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 > 0.

This opens up a new possibility: The density of one chemotactic species could be increasing

meanwhile the other decreases. That is to say, the question of a simultaneous blow-up or

not as well as a possible collapse mass separation could eventually not only depend on

the radial symmetry of the initial data but also on the L1 size of the initial data.
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On the other hand, if the parabola

4πμθ1

χ1
+

4πθ2

χ2
− 1

2
(θ1 + θ2)

2 = 0 (45)

intersects any of the lines

θ1 =
8π

χ1
or θ2 =

8π

χ2
, (46)

it would be very interesting to study the behaviour of system (3) on this lines. Here

it is worth recalling that the proof of convergence towards a delta function at T = ∞
in the one species case, when total mass is exactly 8π/χ, uses in a essential way that the

second moment is preserved (see, for instance, [3]). In contrast, for the two species case,

the rotated parabola (45) can intersect any of the lines (46) and then we obtain threshold

lines on which the second moment is not preserved. A description of the asymptotic

behaviour in this case seems to require rather different techniques to those used in the

one species case.
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