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PROFESOR GUÍA: MANUEL DEL PINO MANRESA

MÉTRICAS CONFORMES CON CURVATURA GAUSSIANA PRESCRITA
CON CAMBIO DE SIGNO Y UN PROBLEMA DE NEUMANN CRÍTICO

En esta memoria se estudian dos problemas semilineales elípticos clásicos en la literatura:
el problema de la curvatura Gaussiana prescrita en dimensión 2, y el problema de Lin-Ni-
Takagi con exponente crítico en dimensión 3. En ambos se encuentran soluciones con reviente
cuando el valor de un parámetro involucrado se aproxima a cierto valor crítico.

En el primer capítulo se estudia el siguiente problema: Dada una función escalar κ(x),
su�cientemente regular, de�nida en una variedad Riemanniana compacta (M,g) de dimen-
sión 2, se desea saber si κ puede corresponder a la curvatura Gaussiana de M para una
métrica g1, que es adicionalmente conforme a la métrica inicial g, es decir, g1 = eug para
alguna función escalar u en M . Sea f una función regular en M tal que

f ≥ 0, f /≡ 0, min
M

f = 0.

Sean p1, . . . , pn una colección de puntos cualesquiera en los que f(pi) = 0 y D2f(pi) es no
singular. Se demuestra que para todo λ > 0 su�cientemente pequeño, existe una familia de
metricas conformes de tipo burbuja gλ = euλg tal que su curvatura Gaussiana está dada por
la función que cambia de signo Kgλ = −f + λ2. Más aún, la familia uλ satisface

uλ(pj) = −4 logλ − 2 log( 1√
2

log
1

λ
) +O(1), λ2euλ ⇀ 8π

n

∑
i=1

δpi ,

donde δp corresponde a la masa de Dirac en el punto p.

En el segundo capítulo se considera el problema

−∆u + λu − u5 = 0, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

donde Ω ⊂ R3 es un dominio acotado con frontera regular ∂Ω, λ > 0 and ν denota la normal
unitaria exterior a ∂Ω. Se demuestra que cuando λ se apoxima por arriba a cierto valor
explícitamente caracterizado en términos de funciones de Green, una familia de soluciones
con reviente en un cierto punto interior del dominio existe.
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LARGE CONFORMAL METRICS WITH PRESCRIBED SIGN-CHANGING
GAUSS CURVATURE AND A CRITICAL NEUMANN PROBLEM

In this thesis we present a study of two semi-linear elliptic problems classical in the
literature: the prescribed Gaussian curvature problem in dimension 2, and the Lin-Ni-Takagi
problem with critical exponent in dimension 3. In both problems we �nd solutions with
�bubbling� as a certain parameter involved in the problem approaches a critical value.

In the �rst chapter we study the following problem: Given a real-valued function κ(x),
su�ciently smooth, de�ned on a two dimensional compact Riemannian manifold (M,g), we
want to know if κ can be realized as the Gaussian curvature of M for a metric g1, which is
in addition conformal to g, namely, g1 = eug for some scalar function u on M . Let f be a
smooth function on M such that

f ≥ 0, f /≡ 0, min
M

f = 0.

Let p1, . . . , pn be any set of points at which f(pi) = 0 and D2f(pi) is non-singular. We
prove that for all su�ciently small λ > 0 there exists a family of �bubbling� conformal
metrics gλ = euλg such that their Gauss curvature is given by the sign-changing function
Kgλ = −f + λ2. Moreover, the family uλ satis�es

uλ(pj) = −4 logλ − 2 log( 1√
2

log
1

λ
) +O(1), λ2euλ ⇀ 8π

n

∑
i=1

δpi ,

where δp designates Dirac mass at the point p.

In the second chapter we consider the problem

−∆u + λu − u5 = 0, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, λ > 0 and ν denotes the unit
normal to ∂Ω. We prove that when λ approaches from a above a certain value, explicitly
characterized in terms of Green's functions, a family of solutions with blow-up around an
interior point of the domain exists.
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Chapter 1

Large conformal metrics with prescribed

sign-changing Gauss curvature

1.1 Introduction

Let (M,g) be a two-dimensional compact Riemannian manifold. We consider in this work
the classical prescribed Gaussian curvature problem: Given a real-valued, su�ciently smooth
funtion κ(x) de�ned on M , we want to know if κ can be realized as the Gaussian curvature
Kg1 of M for a metric g1, which is in addition conformal to g, namely g1 = eug for some
scalar function u on M .

It is well known, by the uniformization theorem, that without loss of generality we may
assume that M has constant Gaussian curvature for g, Kg =∶ −α. Besides, the relation
Kg1 = κ is equivalent to the following nonlinear partial di�erential equation

∆gu + κ eu + α = 0, in M, (1.1)

where ∆g is the Laplace Beltrami operator on M . There is a considerable literature on
necessary and su�cient conditions on the function κ for the solvability of the PDE (1.1).
We refer the reader in particular to the classical references [5, 9, 18, 19, 20, 25] and to [7]
for a recent review of the state of the art for this problem.

Integrating equation (1.1), assuming that M has surface area equal to one, and using the
Gauss-Bonet formula we obtain

∫
M
κeudµg = ∫

M
Kgdµg = −α = 2πχ(M), (1.2)

where χ(M) is the Euler characteristic of the manifold M .

In what follows we shall assume that the surfaceM has genus g(M) greater than one,
so that χ(M) = 2(1 − g(M)) < 0 and hence

−Kg = α > 0.
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Then (1.2) tells us that a necessary condition for existence is that κ(x) be negative somewhere
on M . More than this, we must have that

∫
M
κdµg < 0.

Indeed testing equation (1.1) against e−u we get

∫
M
κdµg = −∫

M
(∣∇gu∣2 + α)e−udµg < 0. (1.3)

Solutions u to equation (1.2) correspond to critical points in the Sobolev space H1(M,g)
of the energy functional

Eκ(u) =
1

2 ∫M
∣∇gu∣2dµg − α∫

M
udµg − ∫

M
κeudµg.

As observed in [5], since α > 0, we have that If κ ≤ 0 and κ /≡ 0, then this functional is
strictly convex and coercive in H1(M,g). It thus have a unique critical point which is a
global minimizer of Eκ.

A natural question to ask is what happens when f changes sign. A drastic change in fact
occurs. If supM κ > 0, then the functional Eκ is no longer bounded below, hence a global
minimizer cannot exist. On the other hand, intuition would tell us that if κ is �not too
positive" on a set �not too big", then the global minimizer should persist in the form of a
local minimizer. This is in fact true, and quantitative forms of this statement can be found
in [3, 6].

We shall focus in what follows in a special class of functions κ(x) which change sign being
nearly everywhere negative. Let f be a function of class C3(M) such that

f ≥ 0, f /≡ 0, min
M

f = 0.

For λ > 0 we let
κλ(x) = −f(x) + λ2.

so that our problem now reads

∆gu − feu + λ2eu + α = 0, in M. (1.4)

In [15], Ding and Liu proved that the global minimizer of Eκ0 persists as a local minimizer
uλ of Eκλ for any 0 < λ < λ0. From (1.3) we see that

λ0 < (∫
M
f)

1/2

.

Moreover, they established the existence of a second, non-minimizing solution uλ in this
range. Uniqueness of the solution u0 for λ = 0, and its minimizing character, tell us that we

2
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Figure 1.1: Bifurcation diagram for solutions of Problem (1.4)

must have uλ → u0 as λ→ 0 while uλ must become unbounded. The situation is depicted as
a bifurcation diagram in Figure 1.1.

The proof in [15] does not provide information on its asymptotic blowing-up behavior or
about the number of such �large" solutions. Borer, Galimberti and Struwe [7] have recently
provided a new construction of the mountain pass solution for small λ, which allowed them
to identify further properties of it under the following generic assumption: points of global
minima of f are non-degenerate. This means that if f(p) = 0 then D2f(p) is positive de�nite.
In [7] it is established that blowing-up of the family of large solutions uλ occurs only near
zeros of f , and the associated metric exhibits �bubbling behavior", namely Euclidean spheres
emerge around some of the zero-points of f . In fact, the mountain-pass characterization let
them estimate the number of bubbling points as no larger than four. More precisely, they
�nd that along any sequence λ = λk → 0, there exist points pk1, . . . , p

k
n, 1 ≤ n ≤ 4, converging

to p1, . . . , pn points of global minima of f such that one of the following holds

(i) There exist ε1
λ, . . . , ε

k
λ, such that εi

λ/λ → 0, i = 1, . . . , k, and in local conformal coordi-
nates around pi there holds

uλ(εi
λx) − uλ(0) + log 8→ w(x) ∶= log

8

(1 + ∣x∣2)2
, (1.5)

smoothly locally in R2. We note that

∆w + ew = 0.

3



(ii) In local conformal coordinates around pi, with a constant ci there holds

un(λx) + 4 log(λ) + ci → w∞(x),

smoothly locally in R2, where w∞ satis�es

∆gw∞ + [1 − (Ax,x)]ew∞ + α = 0

where A = 1
2D

2f(pi).

In this work we will substantially clarify the structure of the set of large solutions of problem
(1.4) with a method that yields both multiplicity and accurate estimates of their blowing-up
behavior. Roughly speaking we establish that for any given collection of non-degenerate
global minima of f , p1, . . . , pk, there exist a solution uλ blowing-up in the form (1.5) exactly
at those points. Moreover

εi
λ ∼

λ

∣ logλ∣
, uλ(pi) = −4 logλ − 2 log( 1√

2
log

1

λ
) +O(1).

In particular if f has exactly m non-degenerate global minimum points, then 2m distinct
large solutions exist for all su�ciently small λ.

In order to state our main result, we consider the singular problem

∆gG − feG + 8π
n

∑
i=1

δpi + α = 0, in M, (1.6)

where δpi designates the Dirac mass at the point pi. We have the following result.

Lemma 1.1 Problem (2.7) has a unique solution G which is smooth away from the singu-
larities and in local conformal coordinates around pi it has the form

G(x) = −4 log ∣x∣ − 2 log( 1√
2

log
1

∣x∣
) + H(x), (1.7)

where H(x) ∈ C(M).

Our main result is the following.

Theorem 1.2 Let p1, . . . , pn be points such that f(pi) = 0 and D2f(pi) is positive de�nite
for each i. Then, there exists a family of solutions uλ to (1.4) with

λ2euλ ⇀ 8π
n

∑
i=1

δpi , as λ→ 0,

and uλ → G uniformly in compacts subsets of M ∖ {p1, . . . , pk}. We de�ne

ci =
1

2
eH(pi)/2, δi

λ =
ci

∣ logλ∣
, εi

λ = λδi
λ

4



where H is de�ned near pi by relation (1.10). In local conformal coordinates around pi, there
holds

uλ(εi
λx) + 4 logλ + 2 log δi

λ → log
8

(1 + ∣x∣2)2
,

uniformly on compact sets of R2 as λ→ 0.

Our proof consists of the construction of a suitable �rst approximation of a solution as
required, and then solving by linearization and a suitable Lyapunov-type reduction There is a
large literature in Liouville type equation in two-dimensional domains or compact manifold,
in particular concerning construction and classi�cation of blowing-up families of solutions.
See for instance [8, 14, 16, 21, 24, 30] and their references.

We shall present the detailed proof of our main result in the case of one bubbling point
n = 1. In the last section we explain the necessary (minor, essentially notational) changes
for general n. Thus, we consider the problem

∆gu − feu + λ2eu + α = 0, in M, (1.8)

under the following hypothesis: there exists a point p ∈M such that f(p) = 0 and D2f(p) is
positive de�nite.

1.2 A nonlinear Green's function

We consider the singular problem

∆gG − feG + 8πδp + α = 0, in M (1.9)

where δp is the Dirac mass supported at p, which is assume to be a point of global non-
degenerate minimum of f . In this section we will establish the following result, which
corresponds to the case n = 1 in Lemma 2.6

Lemma 1.3 Problem (1.9) has a unique solution G which is smooth away from the singu-
larities and in local conformal coordinates around p it has the form

G(x) = −4 log ∣x∣ − 2 log( 1√
2

log
1

∣x∣
) + H(x), (1.10)

where H(x) ∈ C(M).

Proof. In order to construct a solution to this problem, we �rst consider the equation, in
local conformal coordinates around p, for γ ≪ 1

∆Γ − feΓ + 8πδ0 = 0, in B(0, γ). (1.11)

5



Since
−∆ log

1

∣x∣4
= 8πδ0,

we look for a solution of (1.11) of the form Γ = −4 log ∣x∣ + h(x), where h satis�es

∆h − f(x) 1

∣x∣4
eh = 0, in B(0, γ). (1.12)

Since p is a non-degenerate point of minimum of f , we may assume that, in local conformal
coordinates around p, there exist positive numbers β1, β2, γ such that

β1∣x∣2 ≤ f(x) ≤ β2∣x∣2, (1.13)

for all x ∈ B(0, γ). Letting r = ∣x∣, it is thus important to consider the equation

∆V − 1

r2
eV = 0, in B(0, γ). (1.14)

For a radial function V = V (r), this equation becomes

V ′′(r) + 1

r
V ′(r) − 1

r2
eV (r) = 0, 0 < r < γ. (1.15)

We make the change of variables r = et, v(t) = V (r), so that equation (1.15) transforms into

d2

dt2
v(t) = ev(t), −∞ < t < log γ.

from where it follows that
d

dt
(v

′(t)2

2
− ev(t)) = 0,

or v′(t)2 = 2(ev +C), for some constant C. Choosing C = 0, we have

d

dt
(e−v(t)/2) = − 1√

2
.

Integrating and coming back to the original variable, we deduce that

V (r) = −2 log( 1√
2

log
1

r
)

is a radial solution of equation (1.14). From condition (1.13) we readily �nd that h1(x) =
V (∣x∣) − logβ1 is a supersolution of (1.12), while h2(x) = V (∣x∣) − logβ2 is a subsolution of
(1.12). This suggest us to look a solution to (1.12) of the form V (∣x∣) +O(1).

Now we deal with existence of a solution of problem (1.9). The previous analysis suggest
that the singular part of the Green's function, in local conformal coordinates around p, is

Γ(x) ∶= −4 log ∣x∣ + V (∣x∣),

6



so we look for a solution of (1.9) of the form u = ηΓ+H, where η is a smooth cut-o� function
such that η ≡ 1 in B(0, γ2) and η ≡ 0 in R2 ∖B(0, γ). Therefore, H satis�es the equation

∆gH − feηΓeH + α = −ηfeΓ − 2∇gη∇gΓ − Γ∆gη =∶ Θ, in M. (1.16)

Observe that feηΓ ∈ L1(B(0, γ)). Next we �nd ordered global sub and supersolutions for
(1.16). Let us consider the problem

−∆gh0 + fh0 = 1, in M,

which has a unique non-negative solution of class C2,β,0 < β < 1. Observe that

∆gβh0 − feηΓeβh0 + α −Θ = −β + fβh0 − feηΓeβh0 + α −Θ,

so if we choose β = β1 < 0 small enough, then H ∶= β1h0 is a subsolution of (1.16), while if
we choose β = β2 > 0 large enough, then H ∶= β2h0 is a supersolution of (1.16).

We consider the space

X = {H ∈H1(M,g) ∫
M
feηΓeH < ∞} ,

and the energy functional

E(H) = 1

2 ∫M
∣∇gH ∣2 + ∫

M
feηΓF (H) + ∫

M
(−α +Θ)H, (1.17)

where

F (H(x)) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

eH(x)(H −H(x)) H <H(x),
eH − eH(x) H ∈ [H(x),H(x)],

eH(x)(H −H(x)) H >H(x).

Observe that since h0 ∈ L∞(M,g) and feηΓ ∈ L1(B(p, γ)), then H,H ∈X, which means that
the functional E is well de�ned in X. Since

∫
M
−∆g(ηΓ) = − lim

a→0
∫
∂B(p,a)

∂Γ

∂r
= 8π,

we conclude that

∫
M

Θ = ∫
M
(−∆g(ηΓ) − 8πδp) = 0.

Besides α > 0, so the functional E is coercive in X. We claim that E attains a minimum
in X. In fact, taking Hn ∈X such that

lim
n→∞

E(Hn) = inf
H∈X

E(H) > −∞,

and passing to a subsequence if necessary, we obtain

Hn →H ∈X (in L2), ∇gHn ⇀ ∇gH (weakly in L2), E(H) = inf
H∈X

E(H).

7



Observe that if we take ϕ ∈ C∞(M) then H + ϕ ∈X, we can di�erentiate and obtain

∂

∂t
E(H + tϕ)∣

t=0

= 0, for all ϕ ∈ C∞(M,g)

or

∫
M
∇gH ⋅ ∇gϕ + ∫

M
feηΓG(H)ϕ + ∫

M
(−α +Θ)ϕ = 0, (1.18)

where

G(H) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

eH(x) H <H(x),
eH H ∈ [H(x),H(x)],

eH(x) H >H(x).

By suitably approximating H1 = (H − H)+, we can use it as a test function in (1.18) and
obtain

∫
M
∇gH ⋅ ∇gH1 + ∫

M
feηΓG(H)H1 + ∫

M
(−α +Θ)H1 = 0.

Since H is a subsolution for Equation (1.16), we have

∫
M
∇gH ⋅ ∇gH1 + ∫

M
feηΓeHH1 + ∫

M
(−α +Θ)H1 ≤ 0.

Observe that

∫
M
feηΓG(H)H1 = ∫

M
feηΓeHH1.

From the above calculations we deduce

∫
M

∣∇gH1∣2 ≤ 0,

hence H1 ≡ C for some constant C. If C > 0, necessarily C ≡H1 ≡H −H almost everywhere.
Thus, H = H +C, and (1.18) traduces into

∫
M
∇gH ⋅ ∇gϕ + ∫

M
feηΓeHϕ + ∫

M
(−α +Θ)ϕ = 0,

for all ϕ ∈ C∞(M), which contradicts the fact that H solves

−∆gH + fH = 1,

or in other words, the fact that H is not a solution of problem (1.16). Hence H1 ≡ 0, which
implies H ≤ H. In a similar way, we �nd H ≤H and hence

H(x) ≤ H(x) ≤H(x), a.e. x ∈M.

Note that

∫
M
∇gH ⋅ ∇gϕ + ∫

M
feηΓeHϕ + ∫

M
(−α +Θ)ϕ = 0, (1.19)

for all ϕ ∈ C∞(M,g). Besides, since the functional E is strictly convex and coercive, we
conclude that H is the unique minimizer in X.
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So far we have proven that Problem (1.9) has a unique solution G which is smooth away
from the singularity point p and in local conformal coordinates around p it has the form

G(x) = η [−4 log ∣x∣ − 2 log( 1√
2

log
1

∣x∣
)] +H(x),

where H ∈X ∩L∞(M,g), is the unique minimizer of the functional E de�ned in X by (1.17).

Next we will further study the form of H near p, which in particular yields its continuity
at p. For this purpose we use local conformal coordinates around p.

Let us consider the problem

{ −∆gJ = α in B(0, γ2),
J = H on ∂B(0, γ2).

This problem has a unique solution J , which is smooth in B(0, γ2). So we can expand J as

J =
∞

∑
k=0

bkr
k = b0 +O(r).

We write H = J +F , therefore F solves

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆gF + f

r4

2

log2 r
eJ eF − 1

r2

2

log2 r
= 0 in B(0, γ2),

F = 0 on ∂B(0, γ2),

because ηΓ ≡ Γ in B(0, γ2). Since F ∈ L2(B(0, γ2)) we can expand it as

F(r, θ) =
∞

∑
k=0

ak(r)eikθ.

Observe that

f(x)
r2

= κ1r2 cos2(θ) + κ2r2 sin2(θ) + κ3r2 sin θ cos θ

r2
+O(r) = a(θ) +O(r),

for r ≠ 0. Besides, β1 ≤ a(θ) ≤ β2. Thus

f(x)
r4

2

log2 r
eJ eF − 1

r2

2

log2 r
= 1

r2

2

log2 r
[(a(θ) +O(r))eJ+F − 1] .

Moreover, since H ∈ L∞(B(0, γ2)) we have eJ+F ∈ L2(B(0, γ2)), so

1

r2

2

log2 r
[(a(θ) +O(r))eJ+F − 1] =

∞

∑
k=0

mk(r)eikθ,
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where

∣mk(r)∣ ≤
C

r2

1

log2 r
, ∀k ≥ 0,

for a constant C independent of k. Now, we study the behavior of the coe�cients ak(r). For
this purpose let us remember that

∆u(r, θ) = ∂
2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
.

For k ≥ 1, we see that ak(r) satis�es the ordinary di�erential equation

−∂
2ak
∂r2

(r) − 1

r

∂ak
∂r

(r) + k
2

r2
ak(r) =mk(r), 0 < r < γ

2
, (1.20)

under the conditions
ak (

γ

2
) = 0, ak(r) ∈ L∞ ([0, γ

2
]) . (1.21)

We recall that the L∞-condition comes from the fact that F ∈ L∞(B(0, γ2)). Let us make the
change of variables r = et, Ak(t) = ak(et), Mk(t) =mk(et), so the previous problem transform
into

−d2Ak
dt2

(t) + k2Ak(t) =Mk(t), −∞ < t < log
γ

2
, (1.22)

under the conditions
Ak (log

γ

2
) = 0, Ak ∈ L∞ ((−∞, log

γ

2
]) . (1.23)

Besides, ∣Mk(t)∣ ≤ Ct−2 for all k ≥ 1. All the solutions of the homogeneous equation are
given by linear combinations of ekt and e−kt and a particular solution Apartk of the non-
homogeneous equation (1.22) is given by the variation of parameter formula. We conclude
that this problem has a solution of the form

C1ekt +C2e−kt +Apartk .

By the L∞-condition we conclude that C2 = 0 and by the boundary condition in (1.23) we
deduce C1 = 0. This implies that the null function is the only solution of the homogeneous
equation under condition (1.23). Hence, this problem has a unique solution Ak(t). We claim
that for a constant C independent of k we have

∣Ak(t)∣ ≤ C
1

k2t2
. (1.24)

The proof of this fact is based on maximum principle: Observe that since k2 > 0, the operator

− d2

dt2
+ k2

satis�es the weak maximum principle on bounded subsets of (−∞, log γ
2 ]. Let us prove that

φ = C1

k2t2 + ρe−kt is a non-negative supersolution for this problem. Observe �rst that since
Ak(t) is bounded, there exist τρ such that

Ak(t) ≤ φ(t), for all t ∈ (−∞, τρ].
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Besides,

(− d2

dt2
+ k2)φ = −6C1

1

k2t4
+C1

1

t2
≥Mk(t), ∀t ∈ (τρ, log

γ

2
) ,

where the last inequality is valid if we choose C1 large enough. Observe also that φ(t) ≥ Ak(t)
for t = τρ, log γ

2 . Hence, by weak maximum principle we conclude that for all ρ > 0

Ak(t) ≤
C1

k2t2
+ ρe−kt, ∀t ∈ (−∞, log

γ

2
] .

Taking the limit ρ → 0 in the last expression, we conclude that Ak(t) ≤ C 1
k2t2 . Analogously,

we now prove that ϕ = − C2

k2t2 − ρe−kt is a non-positive subsolution for this problem. Since
Ak(t) is bounded, there exist τρ such that

ϕ(t) ≤ Ak(t), ∀t ∈ (−∞, τρ].

Besides,

(− d2

dt2
+ k2)ϕ = 6C2

1

k2t4
−C2

1

k2t2
≤Mk(t), ∀t ∈ (τρ, log

γ

2
) ,

where the last inequality is valid if we choose C2 large enough. Observe also that ϕ(t) ≤ Ak(t)
for t = τρ, log γ

2 . Hence, by weak maximum principle we conclude that for all ρ > 0

− C2

k2t2
− ρe−kt ≤ Ak(t), ∀t ∈ (−∞, log

γ

2
] .

Taking the limit ρ → 0 in the last expression, we conclude (1.24). Finally, coming back to
the variable r we conclude that there exist a unique solution ak(r) of problem (1.20)-(1.21),
and for a constant C independent of k we have

∣ak(r)∣ ≤ C
1

k2 log2 r
, 0 < r < γ

2
.

Now we deal with a0(r). Observe that

eF = ea0(r) (1 +O ( 1

log2 r
)) , eJ = eb0(1 +O(r)),

and

a(θ) = α0 +
∞

∑
k=1

αke
ikθ, with α0 > 0,

so we conclude that a0(r) satis�es the ordinary di�erential equation

−∂
2a0(r)
∂r2

− 1

r

∂a0(r)
∂r

+ 2
α0eb0ea0(r) − 1

r2 log2 r
= O ( 1

r2 log4 r
) ,

under the following conditions

a0 (
γ

2
) = 0, a0 ∈ L∞ ([0, γ

2
]) .
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We make the change of variables r = et, ã0(t) = a0(et), so the previous problem transform
into

−d2ã0

dt2
+ 2

α0eb0eã0 − 1

t2
= O ( 1

t4
) , (1.25)

under the conditions
ã0 (log

γ

2
) = 0, ã0 ∈ L∞ ((−∞, log

γ

2
]) . (1.26)

The L∞-condition implies that there exist a sequence tn → −∞ such that

ã0(tn) → L, as n→∞,

where L = − log(α0eb0). If not there exist M < 0 such that

∣α0eb0eã0 − 1∣ ≥ ε > 0, ∀t <M,

which means that

∣d
2ã0

dt2
∣ ≥ C ε

t2
, ∀t <M.

Thus
∣ã0∣ ≥ Cε log ∣t∣, ∀t <M,

so ã0 is unbounded, a contradiction.

We claim that the problem (1.25), (1.26) has at most one solution. In fact, let us suppose
by contradiction that u1 and u2 are two diferent solutions. We de�ne u = u1 − u2, which
satis�es the problem

−d2u

dt2
+ 2α0eb0c(t)u = 0,

under the conditions,

u(log
γ

2
) = 0, u ∈ L∞ ((−∞, log

γ

2
]) ,

and where

c(t) = {
0 if u1(t) = u2(t),

1
t2

eu1(t)−u2(t)
u1(t)−u2(t)

if u1(t) ≠ u2(t).

Observe that c(t) ≥ 0, so we can apply the strong maximum principle in bounded domains
for this problem. Moreover, from the L∞ condition we deduce that there exists a sequence
tn such that u(tn) → 0 as n → ∞ (the proof of this fact is the same that we gave before).
From this two facts, we deduce easily that u1 ≡ u2.

Let us make the change of variables −t = es, A0(s) = ã0(−es), so the previous problem
transform into

−d2A0

ds2
+ dA0

ds
+ 2(α0eb0eA0 − 1) = O(e−2s), (1.27)

under the conditions

A0 (log (− log
γ

2
)) = 0, A0 ∈ L∞ ([log (− log

γ

2
) ,∞)) .

12



We look for a solution of this problem of the form A0(s) = L+φ(s), so φ solves the di�erential
equation

−d2φ

ds2
+ dφ

ds
+ 2φ = N(φ) +O(e−2s),

where
N(φ) = −2(eφ − φ − 1).

Observe that φ+ = e2s, φ− = e−s are two linear independent solutions of the homogeneous
equation.

From the previous analysis, we deduce that there exists a sequence sn → ∞ such that
φ(sn) = δn → 0, as n→∞. We make the change of variables φ̃n(τn) = φ(s) − δnφ−(τn), where
τn = s − sn, so φ̃n ∈ L∞ solves the problem

{ −φ̃′′n + φ̃′n + 2φ̃n = N(φ̃n + δe−τn) + e−2snO(e−2τn) τn ∈ (0,∞),
φ̃n(0) = 0.

(1.28)

Let us study the linear problem

{ −ϕ′′ + ϕ′ + 2ϕ = ω in (0,∞),
ϕ(0) = 0, ϕ ∈ L∞(0,∞)

for ω ∈ C([0,∞)) given. This problem has an explicit and unique solution ϕ = T [g], in fact

ϕ(t) = C1eλ+t +C2eλ−t + eλ+t∫
t

0

eλ−sω(s)
3e2s

ds − eλ−t∫
t

0

eλ+sω(s)
3e2s

ds

and we deduce that C1 = 0 and C2 = 0 due to the L∞ condition and the value at 0 of ϕ,
respectively. Problem (1.28) can be written as

φ̃n = T [N(φ̃n + δe−τn) + e−2snO(e−2τn)] ∶= A[φ̃n]. (1.29)

We consider the set
Bε = {ϕ ∈ C([0,∞)) ∶ ∥ϕ∥∞ ≤ ε} .

It is easy to see that if sn is large enough and δn small enough we have

∥A[φ̃1
n] −A[φ̃2

n]∥∞ ≤ Cε∥φ̃1
n − φ̃2

n∥,

∥A[φ̃n]∥ ≤ Cε,

and where C is independent of n. It follows that for all su�ciently small ε we get that A is a
contraction mapping of Bε (provided n large enough), and therefore a unique �xed point of
A exists in this region. We deduce that there exists a unique solution A0 of problem (1.27),
and it has the form A0(s) = L + φ(s), where L is a �xed constant, and φ(s) → 0 as s → ∞.
This concludes the proof of Lemma 2.8.
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1.3 Construction of a �rst approximation

In this section we will build a suitable approximation for a solution of Problem (1.8) which
is large exactly near the point p. The �basic cells� for the construction of an approximate
solution of problem (1.8) are the radially symmetric solutions of the problem

{ ∆w + λ2ew = 0 in R2,
w(x) → 0 as ∣x∣ → ∞. (1.30)

which are given by the one-parameter family of functions

wδ(∣x∣) = log
8δ2

(λ2δ2 + ∣x∣2)2
,

where δ is any positive number. We de�ne ε = λδ. In order to construct the approximate
solution we consider the equation

∆F − δ
2

r2
eF = 0, (1.31)

in the variable r = ∣x∣/ε and we look for a radial solution F = F (r), away from r = 0. For
this purpose we solve Problem (1.31) under the following initial conditions

F (1/δ) = 0, F ′(1/δ) = 0.

We make the change of variables r = et, V (t) = F (r), so that equation (1.31) transforms into

V ′′ − δ2eV = 0.

We consider the transformation V (s) = Ṽ (δs), so Ṽ solves problem

Ṽ ′′ − eṼ = 0, Ṽ (δ∣ log δ∣) = 0, Ṽ ′(δ∣ log δ∣) = 0.

This problem has a unique regular solution, which blows-up at some �nite radius γ > 0.
Coming back to the variable r = ∣x∣/ε, we conclude that the solution F (r) is de�ned for all
1/δ ≤ r ≤ Ce1/δ = C/λ, for some constant C. Besides, we extend by 0 the function F for
r ∈ [0,1/δ), which means F (r) = 0, for all r ∈ [0,1/δ) and we denote by F̃ (∣x∣) = F (∣x∣/ε). A
�rst local approximation of the solution, in local conformal coordinates around p, is given
by the radial function uε(x) = wδ(∣x∣) + F̃ (∣x∣).

In order to build a global approximation, let us consider η a smooth radial cuto� function
such that η(r) = 1 if r ≤ C1δ and η(r) = 0 if r ≥ C2δ, for constants 0 < C1 < C2. We consider
as initial approximation Uε = ηuε + (1 − η)G, where G is the Green function that we built in
the previous section. In order to have a good approximation around p we have to adjust the
parameter δ. The good choice of this number is

log 8δ2 = −2 log( 1√
2

log
1

λ
) +H(p),
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where H is de�ned in Section 1.2. With this choice of the parameter δ, the function uε is
approaching the Green function G around p.

A useful observation is that u satis�es problem (1.8) if and only if

v(y) = u(εy) + 4 logλ + 2 log δ

satis�es
∆gv − λ−2f(εy)ev + ev + ε2α = 0, y ∈Mε, (1.32)

where Mε = ε−1M .

We denote in what follows p′ = ε−1p and

Ũε(y) = Uε(εy) + 4 logλ + 2 log δ,

for y ∈Mε. This means precisely in local conformal coordinates around p that

Ũε(y) =η(ε∣y∣) (log
1

(1 + ∣y∣2)2
+ F̃ (ε∣y∣))

+ (1 − η(ε∣y∣)) (G(εy) + 4 logλ + 2 log δ) .

Let us consider a vector k ∈ R2. We recall that wδ(∣x−k∣) is also a solution of problem (1.30).
In order to solve problem (1.32), we need to modify the �rst approximation of the solution,
in order to have a new parameter related to translations. More precisely, we consider for
∣k∣ ≪ 1 the new �rst approximation of the solution (in the expanded variable)

Vε(y) =η(ε∣y∣) (log
1

(1 + ∣y − k∣2)2
+ F̃ (ε∣y∣))

+ (1 − η(ε∣y∣)) (G(εy) + 4 logλ + 2 log δ) .

We will denote by vε the �rst approximation of the solution in the original variable, which
means

vε(x) = η(∣x∣) (log
8δ2

(ε2 + ∣x − εk∣2)2
+ F̃ (∣x∣)) + (1 − η(∣x∣))G(x).

Hereafter we look for a solution of problem (1.32) of the form v(y) = Vε(y) + φ(y), where
φ represent a lower order correction. In terms of φ, problem (1.32) now reads

L(φ) = N(φ) +E, in Mε, (1.33)

where

L(φ) ∶=∆gφ − λ−2f(εy)eVεφ + eVεφ,

N(φ) ∶=λ−2f(εy)eVε(eφ − 1 − φ) − eVε(eφ − 1 − φ),
E ∶= − (∆gVε − λ−2f(εy)eVε + eVε + ε2α).
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1.4 The linearized operator around the �rst approxima-

tion

In this section we will develop a solvability theory for the second-order linear operator L
de�ned in (2.21) under suitable orthogonality conditions. Using local conformal coordinates
around p′, then formally the operator L approaches, as ε, ∣k∣ → 0, the operator in R2

L(φ) = ∆φ + 8

(1 + ∣z∣2)2
φ,

namely, equation ∆w + ew = 0 linearized around the radial solution w(z) = log 8
(1+∣z∣2)2 . An

important fact to develop a satisfactory solvability theory for the operator L is the non-
degeneracy of w modulo the natural invariance of the equation under dilations and transla-
tions. Thus we set

z0(z) =
∂

∂s
[w(sz) + 2 log s]∣s=1, (1.34)

zi(z) =
∂

∂ζi

w(z + ζ)∣ζ=0, i = 1,2. (1.35)

It turns out that the only bounded solutions of L(φ) = 0 in R2 are precisely the linear
combinations of the zi, i = 0,1,2, see [4] for a proof. We de�ne for i = 0,1,2,

Zi(y) = zi(y − k).

Additionally, let us consider R0 a large but �xed number R0 > 0 and χ a radial and smooth
cut-o� function such that χ ≡ 1 in B(k,R0) and χ ≡ 0 in B(k,R0 + 1)c.

Given h of class C0,β(Mε), we consider the linear problem of �nding a function φ such
that for certain scalars ci, i = 1,2, one has

⎧⎪⎪⎨⎪⎪⎩

L(φ) = h +∑2
i=1 ciχZi in Mε,

∫
Mε

χZiφ = 0 for i = 1,2.
(1.36)

We will establish a priori estimates for this problem. To this end we de�ne, given a �xed
number 0 < σ < 1, the norm

∥h∥∗ = ∥h∥∗,p ∶= sup
Mε

(max{ε2, ∣y∣−2−σ})−1∣h∣. (1.37)

Here the expression max{ε2, ∣y∣−2−σ} is regarded in local conformal coordinates around p′ =
ε−1p. Since local coordinates are de�ned up to distance ∼ 1

ε that expression makes sense
globally in Mε.

Our purpose in this section is to prove the following result.
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Proposition 1.4 There exist positive numbers ε0,C such that for any h ∈ C0,β(Mε), with
∥h∥∗ < ∞ and for all k such that ∣k∣ ≤ Cλ/δ, there is a unique solution φ = T (h) ∈ C2,β(Mε)
of problem (2.22) for all ε < ε0, which de�nes a linear operator of h. Besides,

∥T (h)∥∞ ≤ C log (1

ε
) ∥h∥∗. (1.38)

Observe that the orthogonality conditions in problem (2.22) are only taken respect to the
elements of the approximate kernel due to translations.

The next Lemma will be used for the proof of Proposition 2.5. We obtain an a priori
estimate for the problem

⎧⎪⎪⎨⎪⎪⎩

L(φ) = h in Mε,

∫
Mε

χZiφ = 0 for i = 1,2.
(1.39)

We have the following estimate.

Lemma 1.5 There exist positive constants ε0, C such that for any φ solution of problem
(1.39) with h ∈ C0,β(Mε), ∥h∥∗ < ∞ and any k, ∣k∣ ≤ Cλ/δ

∥φ∥∞ ≤ C log (1

ε
) ∥h∥∗,

for all ε < ε0.

Proof. We carry out the proof by a contradiction argument. If the above fact were false,
there would exist sequences (εn)n∈N, (kn)n∈N such that εn → 0, ∣kn∣ → 0 and functions φn, hn
with ∥φn∥∞ = 1,

log(ε−1
n )∥hn∥∗ → 0,

such that

{ L(φn) = hn in Mεn ,

∫Mεn
χZiφn = 0 for i = 1,2.

(1.40)

A key step in the proof is the fact that the operator L satis�es a weak maximum principle in
regions, in local conformal coordinates around p, of the form Aε = B(p′, ε−1γ/2) ∖B(p′,R),
with R a large but �xed number. Consider the function z0(r) = r2−1

r2+1 , radial solution in R2 of

∆z0 +
8

(1 + r2)2
z0 = 0.

We de�ne a comparison function

Z(y) = z0(a∣y − p′∣), y ∈Mε.

Let us observe that

−∆Z(y) = 8a2(a2∣y − p′∣2 − 1)
(1 + a2∣y − p′∣2)3

.

17



So, for 100a−2 < ∣y − p′∣ < ε−1γ/2, we have

−∆Z(y) ≥ 2
a2

(1 + a2∣y − p′∣2)2
≥ a−2

∣y − p′∣4
.

On the other hand, in the same region,

eVε(y)Z(y) ≤ C 1

∣y − p′∣4
.

Hence if a is taken small and �xed, and R > 0 is chosen su�ciently large depending on this
a, then

∆Z + eVεZ < 0, in Aε.

Since Z > 0 in Aε, we have
L(Z) < 0, in Aε

We conclude that L satis�es weak maximum principle in Aε, namely if L(φ) ≤ 0 in Aε and
φ ≥ 0 on ∂Aε, then φ ≥ 0 in Aε.

We now give the proof of the Lemma in several steps.

STEP 1. We claim that

sup
y∈Mεn∖B(p/εn,ρ/εn)

∣φn(y)∣ = o(1),

where ρ is a �xed number. In fact, coming back to the original variable by the transformation

φ̂n(x) = φn (
x

εn
) , x ∈M.

We can see that φ̂n satis�es the equation

∆gφ̂n − fevεn φ̂n + λ2
nevεn φ̂n =

1

ε2
n

hn (
x

εn
) , (1.41)

where
vεn(x) = Vεn (

x

εn
) − 4 logλn − 2 log δ,

is the approximation of the solution in the original variable. Taking n→∞, we can see that
φ̂n converges uniformly over compacts ofM ∖{p} to a function φ̂ ∈H1(M)∩L∞(M) solution
of the problem

∆gφ̂ − feJ φ̂ = 0, in M ∖ {p} (1.42)

where J is the limit of vεn . We claim that φ̂ ≡ 0, in fact, we consider the unique solution Φ
of the problem

∆gΦ −min{feJ ,1}Φ = −δp, in M.
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Using local conformal coordinates around p we expand

Φ(x) = − 1

2π
log(∣x∣) +H(x)

for H bounded. Since φ̂ ∈ L∞(M), we conclude that for all su�ciently small ε and τ we have

∣φ̂(x)∣ ≤ εΦ(x), x ∈ ∂B(0, τ).

Multiplying (1.42) by ϕ = (φ̂ − εΦ)+, and integrating by parts over Mτ =M ∖ Uτ , where Uτ
is the neighborhood around p under the local conformal coordinates that we used, we have

∫
Mτ

∣∇gϕ∣2 + ∫
Mτ

feJϕ2 + ε∫
Mτ

eJϕΦ = 0.

Since Φ ≥ 0, we have

∫
Mτ

∣∇gϕ∣2 + ∫
Mτ

feJϕ2 ≤ 0.

Hence ϕ = (φ̂−εΦ)+ = 0 inMτ , so φ̂ ≤ εΦ inMτ . Multiplying by ϕ = (φ̂+εΦ)− and integrating
by parts, we have (φ̂ + εΦ)− = 0, thus

∣φ̂(x)∣ ≤ εΦ(x), x ∈Mτ .

Taking ε→ 0 and τ → 0, we conclude that φ̂ ≡ 0.

STEP 2. Let us consider the transformation

φ̃n(y) = φn(y + p′n).

Thus φ̃n satis�es the equation

∆gφ̃n − λ−2
n f(εny + pn)eVεn(y+p

′
n)φ̃n + eVεn(y

′+p′n) = hn(y + p′n),

in Mεn − {p′n}. Taking the limit n→∞ in the last equation (and also in problem (1.40)), we
see that φ̃n converges uniformly over compacts of Mεn −{p′n} to a bounded solution φ̃ of the
problem

L(φ̃) = 0 in R2, ∫
R2
χZiφ̃ = 0, i = 1,2.

Hence φ̃(x) = C0Z0(x).

In what follows we assume without loss of generality that C0 ≥ 0. If C0 < 0, we work with
−φn instead of φn and the following analysis is also valid.

STEP 3. In this step we will construct a non-negative supersolution in the region, in
local conformal coordinates around p′n, Bn = B(kn, ρ) ∖B(kn, ε−1

n γ/2), ρ > 0, where the weak
maximum principle is valid. We work �rst in the case C0 > 0. Let us consider the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆ψn − eVεψn = 1 in Bn,
ψn(y) = C0 on ∂B(kn, ρ),
ψn(y) = o(1) on ∂B(kn, ε−1

n γ/2).
(1.43)
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We de�ne r = ∣y − kn∣. A direct computation shows that

ψn(y) = C0Z0(r) +CεY (r) +W (r),

where

Y (r) = Z0∫
r

ρ

1

sZ2
0(s)

ds, W (r) = −Z0(r)∫
r

ρ
sY (s)ds + Y (r)∫

r

ρ
sZ0(s)ds,

and

Cε =
o(1) −C0Z0(ε−1

n γ/2) −W (ε−1
n γ/2)

Y (ε−1
n γ/2)

.

We choose ρ > R, where R is the �xed minimal radio for which the weak maximum principle
is valid in the region Bn. Observe that

L(ψn) = −1 − λ−2f(εy)eVεψn ≤ hn = L(φn).

Moreover, from steps 1 and 2, we deduce that

ψn ≥ φn, on ∂Bn, (1.44)

which means that ψn is a supersolution for the problem

L(φn) = hn, in Bn.

Since ρ > R, we can apply the weak maximum principle and we deduce that Ψn ≥ φn in Bn.
Observe that

∣dψn(ρ)
dr

∣ ≥ ε−1
n . (1.45)

In the other hand
dZ0

dr
= −C r

(r2 − 1)2
, (1.46)

where C > 0 is a constant independent of n. Since φn converges over compacts of the
expanded variable to the function C0Z0, we deduce from (1.44), (1.45) and (1.46) that the
partial derivative of φn respect to r is discontinuous at ∣y − kn∣ = ρ, for large values of n,
which is a contradiction.

In the case C0 = 0, φn converges to 0 over compacts of the expanded variable. Let us
consider the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆ψn − eVεψn = 1 in Bn,
ψn(y) = 1/2 on ∂B(kn, ρ),
ψn(y) = o(1) on ∂B(kn, ε−1

n γ/2).

It is easy to see that ψn ≤ 1/2 in Bn. Using the previous maximum principle argument we
deduce that φn ≤ ψn ≤ 1/2 Applying the same argument for the problem that −φn satis�es,
we conclude −φn ≤ 1/2. Thus,

∥φn∥∞ ≤ 1/2,
which is a contradiction with the fact ∥φn∥∞ = 1. This �nishes the proof of the a priori
estimate.
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We are now ready to prove the main result of this section.

Proof of Proposition 2.5. We begin by establishing the validity of the a priori estimate
(2.24). The previous lemma yields

∥φ∥∞ ≤ C log (1

ε
)[∥h∥∗ +

2

∑
i=1

∣ci∣] , (1.47)

hence it su�ces to estimate the values of the constants ∣ci∣, i = 1,2. We use local conformal
coordinates around p, and we de�ne again r = ∣y∣ and we consider a smooth cut-o� function
η(r) such that η(r) = 1 for r < 1√

ε
, η(r) = 0 for r > 2√

ε
, ∣η′(r)∣ ≤ C

√
ε, ∣η′′(r)∣ ≤ Cε. We test

the �rst equation of problem (2.22) against ηZi, i = 1,2 to �nd

⟨L(φ), ηZi⟩ = ⟨h, ηZi⟩ + ci∫
Mε

χ∣Zi∣2. (1.48)

Observe that
⟨L(φ), ηZi⟩ = ⟨φ,L(ηZi)⟩,

and
L(ηZi) = Zi∆η + 2∇η ⋅ ∇Zi + η(∆Zi + eVεZi) − ηλ−2f(εy)eVεZi.

We have
η(∆Zi + eVεZi) = εO((1 + r)−3).

Observe that
λ−2f(εy)eVε(y) = λ2δ2f(x)evε(x), where y = x

ε
, x ∈M,

thus
ηλ−2f(εy)eVεZi = O(ε2).

Since ∆η = O(ε), ∇η = O(
√
ε), and besides Zi = O(r−1), ∇Zi = O(r−2), we �nd

Zi∆η + 2∇η ⋅ ∇Zi = O(ε
√
ε).

From the previous estimates we conclude that

∣⟨φ,L(ηZi)⟩∣ ≤ C
√
ε∥φ∥∞.

Combining this estimate with (1.47) and (1.48) we obtain

∣ci∣ ≤ C [∥h∥∗ +
√
ε log

1

ε
] ,

which implies
∣ci∣ ≤ C∥h∥∗ i = 1,2.

It follows from (1.47) that

∥φ∥∞ ≤ C log (1

ε
) ∥h∥∗,
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and the a priori estimate (2.24) has been thus proven. It only remains to prove the solvability
assertion. For this purpose let us consider the space

H = {φ ∈H1(Mε) ∶ ∫
Mε

χZiφ = 0, i = 1,2.}

endowed with the inner product,

⟨φ,ψ⟩ = ∫
Mε

∇gφ∇gψ + ∫
Mε

λ−2f(εy)eVεφψ.

Problem (2.22) expressed in weak form is equivalent to that of �nding φ ∈H such that

⟨φ,ψ⟩ = ∫
Mε

[eVεφ + h +
2

∑
i=1

ciχZi]ψ, for all ψ ∈H.

With the aid of Riesz's representation theorem, this equation gets rewritten in H in
the operator form φ = K(φ) + h̃, for certain h̃ ∈ H, where K is a compact operator in H.
Fredholm's alternative guarantees unique solvability of this problem for any h provided that
the homogeneous equation φ = K(φ) has only zero as solution in H. This last equation is
equivalent to problem (2.22) with h ≡ 0. Thus, existence of a unique solution follows from
the a priori estimate (2.24). The proof is complete.

1.5 The nonlinear problem

We recall that our goal is to solve problem (2.21). Rather than doing so directly, we shall
solve �st the intermediate problem

⎧⎪⎪⎨⎪⎪⎩

L(φ) = N(φ) +E +∑2
i=1 ciχZi in Mε,

∫
Mε

χZiφ = 0 for i = 1,2,
(1.49)

using the theory developed in the previous section. We assume that the conditions in Propo-
sition (2.5) hold. We have the following result

Lemma 1.6 Under the assumptions of Proposition (2.5) there exist positive number C, ε0

such that problem (1.49) has a unique solution φ which satis�es

∥φ∥∞ ≤ Cε log
1

ε
,

for all ε < ε0.

Proof. In terms of the operator T de�ned in Proposition (2.5), problem (1.49) becomes

φ = T (N(φ) +E) =∶ A(φ). (1.50)
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For a given number ϑ > 0, let us consider the space

Hϑ = {φ ∈ C(Mε) ∶ ∥φ∥∞ ≤ ϑε log
1

ε
} .

From Proposition (2.5), we get

∥A(φ)∥∞ ≤ C log (1

ε
) (∥N(φ)∥∗ + ∥E∥∗).

Let us �rst measure how well Vε solves problem (1.32). Observe that

eVε(y) = λ4δ2evε(x), y = x
ε
, x ∈M, (1.51)

so
∥eVε(y)∥∗ ≤ Cε.

As a consequence of the construction of the �rst approximation, the choice of the parameter
δ, the expansion of the Green function G around p, and (1.51), a direct computation yields

∥E∥∗ ≤ Cε.

Now we estimate
N(φ) = λ−2f(εy)eVε(eφ − 1 − φ) − eVε(eφ − 1 − φ).

In one hand, from (1.51) we deduce

∥eVε(eφ − 1 − φ)∥∗ ≤ Cε∥φ∥2
∞.

In the other hand
λ−2f(εy)eVε(y) = λ2δ2evε(x), y = x

ε
, x ∈M,

so
∥λ−2f(εy)eVε(eφ − 1 − φ)∥∗ ≤ Cε−σ∥φ∥2

∞.

We conclude,
∥N(φ)∥∗ ≤ Cε−σ∥φ∥2

∞.

Observe that for φ1, φ2 ∈Hϑ,

∥N(φ1) −N(φ2)∥∗ ≤ Cϑε1−σ log (1

ε
) ∥φ1 − φ2∥∞,

where C is independent of ϑ. Hence, we have

∥A(φ)∥∞ ≤ Cε log (1

ε
) [ϑ2ε1−σ log (1

ε
) + 1],

∥A(φ1) −A(φ2)∥∞ ≤ Cε1−σ log (1

ε
) ∥φ1 − φ2∥∞.

It follows that there exist ε0, such that for all ε < ε0 the operator A is a contraction mapping
from Hϑ into itself, and therefore A has a unique �xed point in Hϑ. This concludes the
proof.

With these ingredients we are now ready for the proof of our main result.
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1.6 Proof of Theorem 1.2 for n = 1

After problem (1.49) has been solved, we �nd a solution to problem (2.21), and hence to the
original problem, if k = k(ε) is such that

ci(k) = 0, i = 1,2. (1.52)

Let us consider local conformal coordinates around p and de�ne r = ∣y∣. We consider a
smooth cut-o� function η(r) such that η(r) = 1 for r < 1√

ε
, η(r) = 0 for r > 2√

ε
, ∣η′(r)∣ ≤ C

√
ε,

∣η′′(r)∣ ≤ Cε. Testing the equation

L(φ) = N(φ) +E +
2

∑
i=1

ciχZi,

against ηZi, i = 1,2, we �nd

⟨L(φ), ηZi⟩ = ∫
Mε

[N(φ) +E]ηZi + ci∫
Mε

χZ2
i , i = 1,2.

Therefore, we have the validity of (1.52) if and only if

⟨L(φ), ηZi⟩ − ∫
Mε

[N(φ) +E]ηZi = 0, i = 1,2.

We recall that in the proof of Proposition (2.5) we obtained

∣⟨φ,L(ηZi)⟩∣ ≤ C
√
ε∥φ∥∞,

thus

∣⟨φ,L(ηZi)⟩∣ ≤ Cε3/2 log
1

ε
.

Observe that
∥N(φ)∥∞ ≤ Cε2∥φ∥2

∞,

so

∣∫
Mε

N(φ)ηZi∣ ≤ Cε∥φ∥2
∞ ≤ Cε3 log2 1

ε

Let us remember that
E = −∆Vε + λ−2f(εy)eVε − eVε − ε2α.

Using (1.51), we have

∫
Mε

eVεηZi = O(ε4).

We also have,

∫
Mε

ε2αηZi = O(ε).
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Observe that
∆gVε(y) = ε2∆gvε(x), y = x

ε
, x ∈M,

thus

∫
Mε

∆VεηZi = O(ε2).

Also, by change of variables we have

∫
Mε

f(εy)eVεηZi = ∫
M̃ε

f(p + ε(y + k))eVε(y+k+p′)η(∣y + k∣)Zi(y + k + p′),

where M̃ε =Mε − k + p′. Using the fact that p is a local maximum of f of value 0, we have

f(p + ε(y + k)) = ε2⟨(y + k),D2f(p)(y + k)⟩ +O(ε3),

where we used the fact that f ∈ C3(M). Thus

λ−2∫
Mε

f(εy)eVεηZi = Ii + IIi,

where

Ii = δ2∫
M̃ε

⟨(y + k),Hf(p)(y + k)⟩eVε(y+k+p
′)η(∣y + k∣)Zi(y + k + p′)

IIi = ∫
M̃ε

O(ε)eVε(y+k+p′)η(∣y + k∣)Zi(y + k + p′).

Observe that eVε(y+k+p
′)η(∣y + k∣)Zi(y + k + p′) = O((1 + ∣y∣)−4), so

IIi = O(ε).

Finally, let us compute Ii. In the �rst place, observe that 0 ∈ M̃ε. Let us consider a �xed
number A0, such that B1 = B(0,A0/

√
ε) ⊂ M̃ε ∩ supp(η(⋅ +k)) ∶= B and η(⋅ +k) = 1 in B1. We

have the decomposition B = B1 + B2, where B2 = Ω̃ε ∩ supp(η(⋅ + k)) ∖ B1. Also, observe that

Zi(y + k + p′) = C0
yi

1 + ∣y∣
, i = 1,2,

where C0 is a �xed constant independent of ε. We have the following computation

⟨(y + k),D2f(p)(y + k)⟩ = f11(p)(y1 + k1)2 + 2f12(p)(y1 + k1)(y2 + k2) + f22(p)(y2 + k2)2,

where f11(p) = ∂2f
∂y21

(p), f22(p) = ∂2f
∂y22

(p) and f12(p) = f21(p) = ∂2f
∂y1∂y2

(p). We recall that

eVε(y+k+p
′) = H0

(1 + ∣y∣2)2
(1 +C

√
ε +O(ε)), (1.53)
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in the region Ω̃ε ∩ supp(η(⋅ + k)). We de�ne t(y) = eVε(y+k+p
′)η(∣y + k∣)Zi(y + k + p′). We have

∫
B
f11(p)(y1 + k1)2t(y) = ∫

B1

f11(p)(y1 + k1)2t(y) + ∫
B2

f11(p)(y1 + k1)2t(y)

= 2k1f11(p)∫
B1

C0
y2

1

1 + ∣y∣
H0

(1 + ∣y∣2)2
+O(ε).

In order to get the previous result, we used the fact that

∫
B1

y1

1 + ∣y∣
dy

(1 + ∣y∣2)2
= ∫

B1

y3
1

1 + ∣y∣
dy

(1 + ∣y∣2)2
= 0,

and the expansion (1.53). We also have

∫
B1+B2

2f12(p)(y1 + k1)(y2 + k2)t(y) = 2k2f12(p)∫
B1

C0
y2

1

1 + ∣y∣
H0

(1 + ∣y∣2)2
+O(ε),

where we used the fact that

∫
B1

y1y2

1 + ∣y∣
1

(1 + ∣y∣2)2
= 0,

and also the expansion (1.53). Finally, we have

∫
B1+B2

f22(p)(y2 + k2)2t(y) = O(ε),

where we used the fact that

∫
B1

y1y2
2

1 + ∣y∣
1

(1 + ∣y∣2)2
= 0,

and also the expansion (1.53). From the above computations we conclude that

I1 = 2δ2Ik1f11(p) + 2δ2Ik2f12(p) +O(ε),

where

I = ∫
B1

C0
y2

1

1 + ∣y∣
H0

(1 + ∣y∣2)2
> 0.

Similar computations yield

I2 = 2δ2Ik1f12(p) + 2δ2Ik2f22(p) +O(ε).

Summarizing, we have the system

δ2D2f(p)k = εb(k), (1.54)

where b is a continuous function of k of size O(1). Since p is a non-degenerate critical point
of f , we know that D2f(p) is invertible. A simple degree theoretical argument, yields that
system (1.54) has a solution k = O(λδ−1). We thus obtain c1(k) = c2(k) = 0, and we have
found a solution of the original problem. The proof for the case k = 1 is thus concluded.
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1.7 Proof of Theorem 1.2 for general n

In this section we will detail the main changes in the proof of our main result, in the case of
multiple bubbling.

Let p1, . . . , pn be points such that f(pj) = 0 and D2f(pj) is positive de�nite for each j.
We consider the singular problem

∆gG − feG + 8π
k

∑
j=1

δpj + α = 0, in M, (1.55)

where δp designates the Dirac mass at the point p. A �rst remark we make is that the proof
of Lemma 2.8 applies with no changes (except some additional notation) to �nd the result
of Lemma 2.6. Indeed, the core of the proof is the local asymptotic analysis around each
point pj.

We de�ne the �rst approximation in the original variable as

Uε =
n

∑
j=1

ηju
j
ε + (1 −

n

∑
j=1

ηj)G,

where ηj is de�ned around pj as in Section 1.3 and, in local conformal coordinates around
pj, u

j
ε(x) = wδj(∣x − kj ∣) + F̃j(∣x∣), for parameters kj ∈ R2. We make the following choice of

the parameters δj

log 8δ2
i = −2 log( 1√

2
log

1

λ
) +H(pi).

We also de�ne the �rst approximation in the expanded variable around each pj by

Vεj(y) = Uε(εjy) + 4 logλ + 2 log δj, y ∈Mεj

where εj = λδj and Mεj = ε−1
j M .

We look for a solution of problem (1.8) of the form u(y) = Uε(x)+φ(x), where φ represent
a lower order correction. By simplicity, we denote also by φ the small correction in the
expanded variable around each pj. In terms of φ, the expanded problem around pj

∆gv − λ−2f(εjy)ev + ev + ε2
jα = 0, y ∈Mεj

reads
Lj(φ) = Nj(φ) +Ej, in Mεj ,

where

Lj(φ) ∶=∆gφ − λ−2f(εjy)eVεjφ + eVεjφ,

Nj(φ) ∶=λ−2f(εjy)eVεj (eφ − 1 − φ) − eVεj (eφ − 1 − φ),
Ej ∶= − (∆gVεj − λ−2f(εjy)eVεj + eVεj + εj2α).
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Next we consider the linearized problem around our �rst approximation Uε. Given h of
class C0,β(M), which by simplicity we still denote by h in the expanded variable around
each pj, we consider the linear problem of �nding a function φ such that for certain scalars
cji , i = 1,2; j = 1, . . . , n, one has

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lj(φ) = h +∑2
i=1∑n

j=1 c
j
iχjZij in Mεj ,

∫
Mεj

χjZijφ = 0 for all i, j. (1.56)

Here the de�nitions of Zij and χj are the same as before for Zi and χ, with the dependence
of the point pj emphasized.

To solve this problem we consider now the norm

∥h∥∗ =
n

∑
j=1

∥h∥∗,pj . (1.57)

where ∥h∥∗,pj is de�ned accordingly with (1.37). With exactly the same proof as in the case
n = 1, we �nd the unique bounded solvability of Problem 1.56 for all small ε = max εi by
φ = T (h), so that

∥T (h)∥∞ ≤ C log (1

ε
) ∥h∥∗. (1.58)

Then we argue as in the proof of Lemma 1.6 to obtain existence and uniqueness of a small
solution φ of the projected nonlinear problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lj(φ) = Nj(φ) +Ej +∑2
i=1∑n

j=1 c
j
iχjZij in Mεj ,

∫
Mεj

χjZijφ = 0 for all i, j.

with
∥φ∥∞ ≤ Cε log

1

ε
.

After this, we proceed as in Section 1.6 to choose the parameters kj in such a way that
cji = 0 for all i, j. Summarizing, we have the system

D2f(pj)kj = εiδ
−2
i bj(k1, . . . , kn), (1.59)

which can be solved by the same degree-theoretical argument employed before. The proof is
concluded.
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Chapter 2

Critical interior bubbling in a semilinear

Neumann problem in dimension 3

2.1 Introduction

Let Ω ⊂ Rn be a bounded domain with smooth boundary and λ > 0. Let us consider the
problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆u + λu − uq = 0 in Ω,
u > 0 in Ω,
∂u
∂ν = 0 on ∂Ω,

(2.1)

where ν denotes the unit outgoing normal and q > 1. This problem has been widely considered
in the literature for more than 20 years. Lin Ni and Takagi initiated the study of this problem
[22, 26, 27]. Integrating the equation in Ω yields that a necessary condition for solvability of
(2.1) is λ > 0. This boundary value problem represents a model of di�erent phenomena which
exhibit concentrating behavior of families of their solutions. For instance, this equation arises
as the so-called shadow system associated to the Gierer-Meinhardt activator-inhibitor model
in mathematical theory of biological pattern formation. It also appears in certain models
of chemotaxis. In those problems, it is particularly meaningful the presence of solutions
exhibiting peaks of concentration, namely one or several local maxima around which the
solution remains strictly positive, while being very small away from them.

Problem (2.1) has a variational structure, since its solutions correspond to critical points
of the energy functional

Eq(u) =
1

2 ∫Ω
∣∇u∣2dx + λ

2 ∫Ω
u2dx − 1

q + 1 ∫Ω
∣u∣q+1dx,

de�ned for all u ∈H1(Ω)⋂Lq+1. It follows from Sobolev's embedding theorem that H1(Ω) ↪
Lq+1 continuously for 2 < q + 1 ≤ 2∗ = n+2

n−2 , thus the functional Eq is well de�ned on H1(Ω),
for all 2 < q + 1 ≤ 2∗. Moreover, the previous embedding is compact if 1 < q < 2∗ − 1.
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Observe that Problem 2.1 admits the constant solution uλ = λ
1
q−1 . In the case 1 < q < 2∗−1,

the compactness of the embedding and variational techniques imply that if λ is su�ciently
small, then uλ is the unique solution to Problem 2.1. This result inspired Lin and Ni to
conjecture an extension of this result to the critical case q + 1 = 2∗: For λ su�ciently small,
the constant solution uλ is the unique solution to Problem 2.1. In the radial case, that is
when Ω is a ball and when u is radially symmetrical, Adimurthi-Yadava solved the problem
in [1, 2]. The result depends strongly in the dimension: when n = 3 or n ≥ 7, the answer to
Lin-Ni's question is a�rmative, and it is negative for n = 4,5,6. In the asymmetric case, the
complete answer is not known yet. When n = 3, it was proved by Zhu [31] and Wei-Xu [29]
that the answer to Lin-Ni's question is positive when Ω is convex and λ su�ciently small.
When n = 5, Rey-Wei [28] constructed solutions as a sum of interior peaks for λ→ 0.

Construction of single and multiple spike-layer patterns for this problem in the subcritical
case q < n+2

n−2 has been the object of many studies, see for instance [11, 17, 23, 12], and also
[13] in the supercritical case q > n+2

n−2 .

In what follows, we work on the case n = 3, q = 5. Even when the answer to the Lin-
Ni's question is positive in dimension 3 for some special type of domains, we will show that
this situation is di�erent when the parameter λ converges to some strictly positive critical
value. In fact, it turns out that the object driving the location of blowing-up in single-bubble
solutions of (2.1) is the Robin's function gλ de�ned as follows. Let 0 < λ and consider Green's
function Gλ(x, y), solution for any given x ∈ Ω of

−∆yGλ + λGλ = δx y ∈ Ω ,

∂Gλ

∂ν
(x, y) = 0 y ∈ ∂Ω .

Let Hλ(x, y) = Γ(y − x) − Gλ(x, y) with Γ(z) = 1
4π∣z∣ , be its regular part. In other words,

Hλ(x, y) can be de�ned as the unique solution of the problem

−∆yHλ +Hλ = λΓ(x − y) y ∈ Ω ,

∂Hλ

∂ν
= ∂Γ(x − y)

∂ν
y ∈ ∂Ω .

Let us consider Robin's function of Gλ, de�ned as

gλ(x) ≡Hλ(x,x) .

It turns out that gλ(x) is a smooth function (we provide a proof of this fact in the appendix).

We consider here the role of non-trivial critical values of gλ in existence of solutions of
(2.1). The following is our principal result

Theorem 2.1 Suppose that for a number λ = λ0 > 0, one of the two situations holds
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(a) Either there is an open, bounded set D of Ω such that

0 = sup
D
gλ0 > sup

∂D
gλ0 .

(b) Or there is a ζ0 ∈ Ω such that

gλ0(ζ0) = 0, ∇gλ0(ζ0) = 0 ,

and D2gλ0(ζ0) is non-singular.

Then for all λ > λ0 su�ciently close to λ0 there exists a solution uλ of Problem (2.1) of
the form

uλ(x) = 31/4Mλ√
1 + M4

λ ∣x − ζλ∣2
(1 + o(1)) (2.2)

where o(1) → 0 uniformly in Ω as λ ↓ λ0, and the number Mλ depends on the Robin's
function and λ0. Here ζλ ∈ D in case (a) and ζλ → ζ0 in case (b).

The rest of this work will be devoted to the proof of Theorem 2.1.

2.2 Energy expansion

For ε > 0, we consider the transformation

u(x) = 1

ε1/2
v (x

ε
)

therefore v solves the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆v + ε2λv − v5 = 0 in Ωε,
v > 0 in Ωε,
∂v
∂ν = 0 on ∂Ωε,

(2.3)

where Ωε = ε−1Ω.

We �x a point ζ ∈ Ω and a positive number µ. We denote in what follows

wζ,µ(x) = 31/4 µ1/2

√
µ2 + ∣x − ζ ∣2

which correspond to all positive solutions of the problem

−∆w −w5 = 0, in R3.
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We de�ne πζ,µ(x) to be the unique solution of the problem

{
−∆πζ,µ + λπζ,µ = −λwζ,µ in Ω,

∂πζ,µ
∂ν = −∂wζ,µ∂ν on ∂Ω.

(2.4)

We consider as a �rst approximation of the solution of (2.1) one of the form

Uζ,µ = wζ,µ + πζ,µ. (2.5)

Observe that Uζ,µ satis�es the problem

{
−∆Uζ,µ + λUζ,µ = w5

ζ,µ in Ω,
∂Uζ,µ
∂ν = 0 on ∂Ω.

(2.6)

Let us also observe that

∫
Ω
w5
ζ,µ = Cµ1/2 (1 + o(1)) , as µ→ 0,

which implies that
w5
ζ,µ

∫Ωw
5
ζ,µ

→ 0, as µ→ 0,

uniformly on compacts subsets of Ω ∖ {ζ}. It follows that on each of this subsets

Uζ,µ(x) = (∫
Ω
w5
ζ,µ)G(x, ζ) = Cµ1/2 (1 + o(1))G(x, ζ) (2.7)

where G(x, ζ) denotes the Green's function, solution of the problem

{
−∆G(x, ζ) + λG(x, ζ) = δζ in Ω,

∂G(x,ζ)
∂ν = 0 on ∂Ω,

where δζ denotes the Dirac mass centered at the point ζ.

Using the transformation Uζ,µ(x) = 1
ε1/2V (x

ε
) we see that V solves the problem

{ −∆V + ε2λV −w5
ζ′,µ′ = 0 in Ωε,
∂V
∂ν = 0 on ∂Ωε,

where wζ′,µ′(x) = 31/4 µ′1/2
√
µ′2+∣x−ζ′∣2

and ζ ′ = ε−1ζ, µ′ = ε−1µ.

The following lemma establishes the relationship between the functions πζ,µ(x) and the
regular part of the Green's function (ζ, x). Let us consider the (unique) radial solution D0(z)
of the problem in entire space,

⎧⎪⎪⎨⎪⎪⎩

−∆D0 = λ31/4 [ 1√
1+∣z∣2

− 1
∣z∣] in R3,

D0 → 0 as ∣z∣ → ∞.

D0(z) is a C0,1 function with D0(z) ∼ ∣z∣−1 log ∣z∣, as ∣z∣ → ∞.
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Lemma 2.2 For any σ > 0 we have the validity of the following expansion as µ→ 0

µ−1/2πµ,ζ(x) = −4π31/4Hλ(ζ, x) − µD0 (
x − ζ
µ

) + µ2−σθ(ζ, µ, x).

where for j = 0,1,2, i = 0,1 i + j ≤ 2, the function µj ∂i+j
∂ζi∂µj

θ(ζ, µ, x) is bounded uniformly on
x ∈ Ω, all small µ and ζ, in compacts subsets of Ω.

Proof. We recall that Hλ(ζ, x) satis�es the equation

{
−∆xHλ + λHλ = λΓ(x − ζ) x ∈ Ω,

∂Hλ(ζ,x)
∂ν = ∂Γ(x−ζ)

∂ν x ∈ ∂Ω,

where Γ(z) = 1
4π∣z∣ .

Let us set D1(x) = µD0(µ−1(x − ζ)), so that D1 satis�es

{ −∆D1 = λ [µ−1/2wζ,µ(x) − 4π31/4Γ(x − ζ)] x ∈ Ω,
∂D1

∂ν ∼ µ3 logµ on ∂Ω, as µ→ 0.

Let us write
S1(x) = µ−1/2πζ,µ(x) + 4π31/4Hλ(ζ, x) +D1(x).

With the notation of Lemma 2.2, this means

S1(x) = µ2−σθ(µ, ζ, x).

Observe that for x ∈ ∂Ω, as µ→ 0,

∇(µ−1/2wζ,µ(x) + 4π31/4Γ(x − ζ)) ⋅ ν ∼ µ2∣x − ζ ∣−5.

Using the above equations we �nd that S1 satis�es

{ −∆S1 + λS1 = −λD1 x ∈ Ω,
∂S1

∂ν = O(µ3 logµ) on ∂Ω.
(2.8)

Observe that, for any p > 3,

∫
Ω
∣D1(x)∣pdx ≤ µp+3∫

R3
∣D0(x)∣pdx,

so that ∥D1∥Lp ≤ Cpµ1+3/p. Elliptic estimates applied to problem (2.8) yield that, for any
σ > 0, ∥S1∥∞ = O(µ2−σ) uniformly on ζ in compacts subsets of Ω. This yields the assertion
of the lemma for i, j = 0.

We consider now the quantity S2 = ∂ζS1. Observe that S2 satis�es

{ −∆S2 + λS2 = −λ∂ζD1 x ∈ Ω,
∂S2

∂ν = O(µ3 logµ) on ∂Ω.
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Observe that ∂ζD1(x) = −∇D0 (x−ζµ ), so that for any p > 3,

∫
Ω
∣∂ζD1(x)∣pdx ≤ µ3+p∫

R3
∣∇D0(x)∣pdx

We conclude that ∥S2∥∞ = O(µ2−σ), for any σ > 0. This gives the proof of the lemma for
i = 1, j = 0. Now we consider S3 = µ∂µS1. Then

{ −∆S3 + λS3 = −λµ∂µD1 x ∈ Ω,
∂S3

∂ν = O(µ3 logµ) on ∂Ω.

Observe that

µ∂µD1(x) = µ(D0 −D0) (
x − ζ
µ

) ,

where D0(z) = ∇D0(z) ⋅ z. Thus, similarly as the estimate for S1 itself we obtain ∥S3∥∞ =
O(µ2−σ), for any σ > 0. This yields the assertion of the lemma for i = 0, j = 1. The proof of
the remaining estimates comes after applying again µ∂µ to the equations obtained for S2 and
S3 above, and the desired result comes after exactly the same arguments. This concludes
the proof.

Classical solutions to (2.1) correspond to critical points of the energy functional

Eλ(u) =
1

2 ∫Ω
∣∇u∣2 + λ

2 ∫Ω
∣u∣2 − 1

6 ∫Ω
∣u∣6. (2.9)

If there was a solution very close to Uζ∗,µ∗ for a certain pair (ζ∗, µ∗), then we would formally
expect Eλ to be nearly stationary with respect to variations of (ζ, µ) on Uζ,µ around this
point. It seems important to understand critical points of the functional (ζ, µ) → Eλ(Uζ,µ).
In the following lemma we �nd explicit asymptotic expressions for this functional.

Lemma 2.3 For any σ > 0, as µ→ 0, the following expansion holds

Eλ(Uζ,µ) = a0 + a1µgλ(ζ) + a2µ
2λ − a3µ

2g2
λ(ζ) + µ3−σθ(ζ, µ) (2.10)

where for j = 0,1,2, i = 0,1, i + j ≤ 2, the function µj ∂i+j
∂ζi∂µj

θ(ζ, µ) is bounded uniformly on
all small µ and ζ in compact subsets of Ω.

Proof. Observe that

Eλ(Uζ,µ) = I + II + III + IV +V +VI,

34



where

I = ∫
Ω
(1

2
∣∇wζ,µ∣2 −

1

6
w6
ζ,µ) ,

II = ∫
Ω
(∇wζ,µ ⋅ ∇πζ,µ −w5

ζ,µπζ,µ) ,

III = 1

2 ∫Ω
[∣∇πζ,µ∣2 + λ(wζ,µ + πζ,µ)πζ,µ] ,

IV = λ
2 ∫Ω

(wζ,µ + πζ,µ)wζ,µ,

V = −5

2 ∫Ω
w4
ζ,µπ

2
ζ,µ,

VI = −1

6 ∫Ω
[(wζ,µ + πζ,µ)6 −w6

ζ,µ − 6w5
ζ,µπζ,µ − 15w4

ζ,µπ
2
ζ,µ] .

Multiplying equation −∆wζ,µ = w5
ζ,µ by wζ,µ and integrating by parts in Ω we obtain

I = 1

2 ∫∂Ω

∂wζ,µ
∂ν

wζ,µ +
1

3 ∫Ω
w6
ζ,µ

= 1

2 ∫∂Ω

∂wζ,µ
∂ν

wζ,µ +
1

3 ∫R3
w6
ζ,µ −

1

3 ∫R3∖Ω
w6
ζ,µ.

Now, testing the same equation against πζ,µ, we �nd

II = ∫
∂Ω

∂wζ,µ
∂ν

πζ,µ = −∫
∂Ω

∂πζ,µ
∂ν

πζ,µ,

where we have used the fact that πζ,µ solves problem (2.4). Testing the equation −∆πζ,µ +
λπζ,µ = −λwζ,µ against πζ,µ and integrating by parts in Ω, we get

III = 1

2 ∫∂Ω

∂πζ,µ
∂ν

πζ,µ.

Testing equation −∆wζ,µ = w5
ζ,µ against Uζ,µ = wζ,µ + πζ,µ and integrating by parts twice, we

obtain

IV = 1

2 ∫∂Ω

∂πζ,µ
∂ν

wζ,µ −
1

2 ∫∂Ω

∂wζ,µ
∂ν

wζ,µ −
1

2 ∫Ω
w5
ζ,µπζ,µ.

From the mean value formula, we get

VI = −10∫
1

0
ds(1 − s)2∫

Ω
(wζ,µ + sπζ,µ)3π3

ζ,µ.

Adding up the previous expressions we get so far

Eλ(Uζ,µ) =
1

3 ∫R3
w6
ζ,µ −

1

2 ∫Ω
w5
ζ,µπζ,µ −

5

2 ∫Ω
w4
ζ,µπ

2
ζ,µ +R1, (2.11)

where

R1 = −
1

3 ∫R3∖Ω
w6
ζ,µ − 10∫

1

0
ds(1 − s)2∫

Ω
(wζ,µ + sπζ,µ)3π3

ζ,µ. (2.12)
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We will expand the second integral term of expression (2.11). Using the change of variable
x = ζ + µz and calling Ωµ = µ−1(Ω − ζ), we �nd that

A1 = ∫
Ω
w5
ζ,µπζ,µdx = µ∫

Ωµ
w5

0,1(z)µ−1/2πζ,µ(ζ + µz)dz.

From Lemma 2.2, we have the expansion

µ−1/2πζ,µ(ζ + µz) = −4π31/4Hλ(ζ + µz, ζ) − µD0(z) + µ2−σθ(ζ, µ, ζ + µz).

According to Appendix A,

Hλ(ζ + µz, ζ) = gλ(ζ) +
λ

8π
µ∣z∣ +Θ(ζ, ζ + µz),

where Θ is a function of class C2 with Θ(ζ, ζ) = 0. Using this fact , we obtain

A1 = −4π31/4µgλ(ζ)∫
R3
w5

0,1(z)dz − µ2∫
R3
w5

0,1(z) [D0(z) +
31/4

2
λ∣z∣]dz +R2

with

R2 =µ∫
Ωµ
w5

0,1(z)[Θ(ζ, ζ + µz) + µ2−σθ(ζ, µ, ζ + µz)]dz

+ µ2∫
R3∖Ωµ

w5
0,1(z) [D0(z) +

31/4

2
λ∣z∣]dz

+ 4π31/4µgλ(ζ)∫
R3∖Ωµ

w5
0,1(z)dz. (2.13)

Let us recall that

−∆D0 = 31/4λ

⎡⎢⎢⎢⎢⎣

1√
1 + ∣z∣2

− 1

∣z∣

⎤⎥⎥⎥⎥⎦
,

so that,

−∫
R3
w5

0,1D0(z) = ∫
R3

∆w0,1D0(z)

= ∫
R3
w0,1∆D0(z) = 31/4λ∫

R3
w0,1

⎡⎢⎢⎢⎢⎣

1

∣z∣
− 1√

1 + ∣z∣2

⎤⎥⎥⎥⎥⎦
.

Combining the above relations we get

A1 = − 4π31/4µgλ(ζ)∫
R3
w5

0,1(z)dz

− µ2λ31/4∫
R3

⎡⎢⎢⎢⎢⎣
w0,1(z)

⎛
⎝

1√
1 + ∣z∣2

− 1

∣z∣
⎞
⎠
+ 1

2
w5

0,1∣z∣
⎤⎥⎥⎥⎥⎦

dz +R2.
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Let us consider now A2 = ∫Ωw
4
ζ,µπ

2
ζ,µ. We have

A2 =µ∫
Ωµ
w4

0,1(z)π2
ζ,µ(ζ + µz)dz

=µ2∫
Ωµ
w4

0,1(z) [−4π31/4Hλ(ζ + µz, ζ) − µD0(z) + µ2−σθ(ζ, µ, ζ + µz)]2
dz,

which we expand as

A2 = µ2g2
λ(ζ)16π231/2∫

R3
w4

0,1 +R3.

Combining relation (2.11) with the above expressions, we get so far

Eλ(Uζ,µ) = a0 + a1µgλ(ζ) + a2λµ
2 − a3µ

2g2
λ(ζ) +R1 −

1

2
R2 −

5

2
R3,

where

a0 =
1

3 ∫R3
w6

0,1,

a1 =2π31/4∫
R3
w5

0,1,

a2 =
31/4

2 ∫
R3

⎡⎢⎢⎢⎢⎣
w0,1(z)

⎛
⎝

1√
1 + ∣z∣2

− 1

∣z∣
⎞
⎠
+ 1

2
w5

0,1∣z∣
⎤⎥⎥⎥⎥⎦

dz,

a3 =40π231/2∫
R3
w4

0,1.

We want to establish the estimate

µj
∂i+j

∂ζ i∂µj
Rl = O(µ3−σ),

for each j = 0,1,2, i = 0,1, i + j ≤ 2, l = 1,2,3, uniformly on all small µ and ζ in compact
subsets of Ω. This needs a corresponding analysis for each of the individual terms arising in
the expressions for Rl.

Since several of these computations are similar, we shall only carry in detail those that
appear as most representative.

In (2.12) let us consider for instance the integral

∫
R3∖Ω

w6
µ,ζ = 3

3
2µ3∫

R3∖Ω

1

(µ2 + ∣y − ζ ∣2)3
.

From this expression it easily follows that

µj
∂i+j

∂ζ i∂µj ∫R3∖Ω
w6
µ,ζ = O(µ3) ,
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uniformly in ζ in compact subsets of Ω.

In (2.13), let us consider the term

B ≡ µ∫
Ωµ
w5

1,0(z) [θ1(ζ, ζ + µz) + µ2−σθ(µ, ζ, ζ + µz)]dz = B1 +B2 .

Let us observe that

B2 ≡ µ∫
Ωµ
w5

1,0(z)µ2−σ θ(µ, ζ, ζ + µz)dz = µ−σ∫
Ω
w5

1,0 (
y − ζ
µ

) θ(µ, ζ, y)dy .

The size of this quantity in absolute value is clearly O(µ3−σ). We have then that

∂ζB2 = I21 + I22 ,

I21 = −µ−σ ∫
Ω
µ−1D(w5

1,0) (
y − ζ
µ

) θ(µ, ζ, y)dy ,

I22 = µ−σ ∫
Ω
w5

1,0 (
y − ζ
µ

)∂ζθ(µ, ζ, y)dy .

Since ∂ζθ(µ, ζ, y) is uniformly bounded for ζ ranging on compact subsets of Ω, B22 is of size
O(µ3−σ). Now, using symmetry,

I22 = µ2−σ ∫
Ωµ
D(w5

1,0) [θ(µ, ζ, ζ + µz) − θ(µ, ζ, ζ)]

−µ2−σθ(µ, ζ, ζ)∫
R3∖Ωµ

D(w5
1,0)

= µ2−σ ∫
Ωµ
D(w5

1,0) [θ(µ, ζ, ζ + µz) − θ(µ, ζ, ζ)] + o(µ3) .

Now, θ is symmetric in ζ and y, hence has bounded derivative over compacts with respect
to each of its arguments. Thus

∣ µ2−σ ∫
Ωµ
D(w5

1,0)(z)[θ(µ, ζ, ζ + µz) − θ(µ, ζ, ζ)]dz ∣

≤ C µ2−σ∫
µ∣z∣≤δ

µ ∣D(w5
1,0)(z)∣ ∣z∣dz +C µ2−σ∫

µ∣z∣>δ
∣z∣−6 dz = O(µ3−σ) .

Let us consider now B1. We can expand

θ1(ζ, ζ + µz) = µc ⋅ z + θ2(ζ, ζ + µz)

for a constant vector c, where θ2 is a C2 function with ∣θ2(ζ, y)∣ ≤ C ∣ζ − y∣2. Observe that by
symmetry,

µ2∫
Ωµ
w5

1,0(z)c ⋅ z dz = −µ2∫
R3∖Ωµ

w5
1,0(z)c ⋅ z dz = O(µ3) .
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From here it easily follows that B1 = O(µ3 logµ). Let us decompose it as

B1 = B11 +B12 ,

B11 ≡ 3
5
2 µ−2∫

Ω
(1 + µ−2∣y − ζ ∣2)− 5

2 θ2(ζ, y)dy ,

B12 ≡ −3
5
2 µ3∫

R3∖Ω
(µ2 + ∣y − ζ ∣2)− 5

2 (y − ζ) ⋅ cdy .

B12 has derivatives with respect to ζ uniformly bounded by O(µ3). As for the �rst integral,

B11 = µ−2∫
Ω
w5

1,0 (
y − ζ
µ

) θ2(ζ, y)dy ,

we obtain that ∂ζB11 can be written as I111 + I112 with

I111 = µ−3∫
Ω
D(w5

1,0) (
y − ζ
µ

) θ2(ζ, y)dy ,

I112 = µ−2∫
Ω
w5

1,0 (
y − ζ
µ

)∂ζθ2(ζ, y)dy .

Let us estimate the second integral

I112 = µ−2∫
Ω
w5

1,0 (
y − ζ
µ

)∂ζθ2(ζ, y)dy = µ∫
Ω
w5

1,0(z)∂ζθ2(ζ, ζ + µz)dz .

We have that
∂ζθ2(ζ, ζ + µz) = µA z +O(∣µz∣2)

where A = D2
2θ2(ζ, ζ), where we have used the expansion for Hλ made in the appendix.

Replacing the above expression and making use of symmetry we get that I112 = O(µ3 logµ).
As for the integral B11, we observe that after an integration by parts,

I111 = O(µ3) − µ−2∫
Ω
w5

1,0 (
y − ζ
µ

)∂yθ2(ζ, y)dy .

The integral in the above expression can be treated in exactly the same way as B12, and
we thus �nd ∂ζB = O(µ3−σ) uniformly over compacts of Ω in the variable ζ variable. In
analogous way, we �nd similar bounds for µ∂µB. The same type of estimate does hold for
second derivatives µ2∂2

µB and µ2∂2
µζB. As an example, let us estimate, as a part of the latter,

the quantity µ∂µI21. We have

µ∂µI21 = −µ∂µ [µ−1−σ ∫ΩD(w5
1,0) (

y−ζ
µ ) θ(µ, ζ, y)dy]

= (1 + σ)I21 + µ−σ ∫Ω µ
−1D2(w5

1,0) (
y−ζ
µ ) ⋅ (y−ζµ ) θ(µ, ζ, y)dy

−µ−1−σ ∫ΩD(w5
1,0) (

y−ζ
µ )µ∂µθ(µ, ζ, y)dy .
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Let us consider the term

µ−σ ∫
Ω
µ−1D2(w5

1,0) (
y − ζ
µ

) ⋅ (y − ζ
µ

) θ(µ, ζ, y)dy ,

the others being estimated in exactly the same way as before. The observation is that the
estimate of this integral by O(µ3−σ) goes over exactly as that one before for I21, where
we simply need to replace the function D(w5

1,0)(z) by D2(w5
1,0)z ⋅ z which enjoys the same

properties used in the former computation. Corresponding estimates for the remaining terms
in R2 and R3 are obtained with similar computations, so that we omit them.

Summarizing, we have the validity of the desired expansion (2.10), which with the aid of
the formula

∫
∞

0
( r

1 + r2
)
q dr

rα+1
=

Γ( q−α2 )Γ( q+α2 )
2Γ(q)

,

has constant ai given by

a0 =
1

4

√
3π2, a1 = 8

√
3π2, a2 = 2

√
3π(4 − π), a3 = 120

√
3π4.

The proof is completed.

2.3 Critical single-bubbling

The purpose of this section is to establish that in the situation of Theorems 2.1 there are
critical points of Eλ(Uµ,ζ) which persist under properly small perturbations of the functional.
As we shall rigorously establish later, this analysis does provide critical points of the full
functional Eλ, namely solutions of (2.1), close to a single bubble of the form Uµ,ζ .

Let us suppose the situation (a) of local maximizer. In this section, and in the following
lemma we work with −g instead of g in the situation (a). Thus we have the assumption of
a local minimizer

0 = inf
x∈D

gλ0(x) < inf
x∈∂D

gλ0(x) .

Then for λ close to λ0, λ > λ0, we will have

inf
x∈D

gλ(x) < −A (λ − λ0) .

Let us consider the shrinking set

Dλ = {y ∈ D ∶ gλ(x) < −
A

2
(λ − λ0)}

Assume λ > λ0 is su�ciently close to λ0 so that gλ = A
2 (λ − λ0) on ∂Dλ.
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Now, let us consider the situation of Part (b). Since gλ(ζ) has a non-degenerate critical
point at λ = λ0 and ζ = ζ0, this is also the case at a certain critical point ζλ for all λ close to
λ0 where ∣ζλ − ζ0∣ = O(λ − λ0).

Besides, for some intermediate point ζ̃λ,

gλ(ζλ) = gλ(ζ0) +Dgλ(ζ̃λ)(ζλ − ζ0) ≥ A(λ − λ0) + o(λ − λ0)

for a certain A > 0. Let us consider the ball Bλ
ρ with center ζλ and radius ρ (λ−λ0) for �xed

and small ρ > 0. Then we have that gλ(ζ) > A
2 (λ−λ0) for all ζ ∈ Bλ

ρ . In this situation we set
Dλ = Bλ

ρ .

It is convenient to make the following relabeling of the parameter µ. Let us set

µ ≡ − a1

2a2

gλ(ζ)
λ

Λ , (2.14)

where ζ ∈ Dλ. We have the following result

Lemma 2.4 Assume the validity of one of the conditions (a) or (b) of Theorem 2.1, and
consider a functional of the form

ψλ(Λ, ζ) = Eλ(Uµ,ζ) + gλ(ζ)2 θλ(Λ, ζ) (2.15)

where µ is given by (2.14) and

∣θλ∣ + ∣∇θλ∣ + ∣∇∂Λθλ∣ → 0 (2.16)

uniformly on ζ ∈ Dλ and Λ ∈ (δ, δ−1). Then ψλ has a critical point (Λλ, ζλ) with ζλ ∈ Dλ,
Λλ → 1.

Proof. Using the expansion for the energy with µ given by (2.14) we �nd now that

ψλ(Λ, ζ) ≡ Eλ(Uζ,µ) = a0 +
a2

1

4a2

gλ(ζ)2

λ
[−2 Λ +Λ2] + gλ(ζ)2 θλ(Λ, ζ) (2.17)

where θλ satis�es property (2.16). Observe then that ∂Λψλ = 0 if and only if

Λ = 1 + o(1) θλ(Λ, ζ) , (2.18)

where θλ is bounded in C1-sense. This implies the existence of a unique solution close to 1
of this equation, Λ = Λλ(ζ) = 1 + o(1) with o(1) small in C1 sense. Thus we get a critical
point of ψλ if we have one of

pλ(ζ) ≡ ψλ(Λλ(ζ), ζ) = a0 + c gλ(ζ)2 [1 + o(1)] (2.19)

with o(1) uniformly small in C1-sense and c < 0. In the case of Part (a), i.e. of the minimizer,
it is clear that we get a local maximum in the region Dλ and therefore a critical point.
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Let us consider the case (b). With the same de�nition for pλ as above, we have

∇pλ(ζ) = gλ(ζ)[∇gλ + o(1) gλ] . (2.20)

Consider a point ζ ∈ ∂Dλ = ∂Bλ
ρ . Then ∣∇gλ(ζ)∣ = ∣D2gλ(x̃)(ζ − ζλ)∣ ≥ αρ(λ − λ0), for some

α > 0. We also have gλ(ζ) = O(λ − λ0). We conclude that for all t ∈ (0,1), the function
∇gλ+ t o(1) gλ does not have zeros on the boundary of this ball, provided that λ−λ0 is small.
In conclusion, its degree on the ball is constant along t. Since for t = 0 is not zero, thanks to
non-degeneracy of the critical point ζλ, we conclude the existence of a zero of ∇pλ(ζ) inside
Dλ. This concludes the proof.

2.4 The method

Hereafter we will look for a solution of (2.3) of the form v = V + φ, so that φ solves the
problem

{ L(φ) = N(φ) +E in Ωε,
∂φ
∂ν = 0 on ∂Ωε,

(2.21)

where

L(φ) ∶= −∆φ + ε2λφ − 5V 4φ,

N(φ) ∶=(V + φ)5 − V 5 − 5V 4φ,

E ∶=V 5 −w5
ζ′,µ′ .

Let us remember that the only bounded solutions of the linear problem

∆z + 5w4
ζ′,µ′z = 0, in R3

are given by linear combinations of the functions

zi(x) =
∂wζ′,µ′

∂ζ ′i
(x), i = 1,2,3,

z4(x) =
∂wζ′,µ′

∂µ′
(x).

In fact, the functions zi, i = 1,2,3,4 span the space of all bounded functions of the kernel of
L in the case ε = 0. Observe also that

∫
R3
zjzk = 0, if j ≠ k.

Rather than solving (2.21) directly, we will look for a solution of the following problem
�rst: Find a function φ such that for certain numbers ci,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L(φ) = N(φ) +E +∑4
i=1 ciw4

ζ′,µ′zi in Ωε,
∂φ
∂ν = 0 on ∂Ωε,

∫Ωε
w4
ζ′,µ′ziφ = 0 for i = 1,2,3,4.

(2.22)
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2.5 The linear problem

In this section we will study the linear part of the problem (2.22). Given a function h, we
consider the linear problem of �nding φ and numbers ci, i = 1,2,3,4 such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

L(φ) = h +∑4
i=1 ciw4

ζ′,µ′zi in Ωε,
∂φ
∂ν = 0 on ∂Ωε,

∫Ωε
w4
ζ′,µ′ziφ = 0 for i = 1,2,3,4.

(2.23)

Given a �xed number 0 < σ < 1 we de�ne the following norms

∥f∥∗ ∶= sup
x∈Ωε

(1 + ∣x − ζ ′∣σ)∣f(x)∣, ∥f∥∗∗ ∶= sup
x∈Ωε

(1 + ∣x − ζ ′∣2+σ)∣f(x)∣.

Proposition 2.5 There exist positive numbers δ0, ε0, α0, β0 and a constant C > 0 such that
if

dist(ζ ′, ∂Ωε) >
δ0

ε
and α0 < µ′ < β0,

then for any h ∈ C0,α(Ωε) with ∥h∥∗∗ < ∞ and for all ε < ε0, problem (2.23) admits a unique
solution φ = T (h) ∈ C2,α(Ωε). Besides,

∥T (h)∥∗ ≤ C∥h∥∗∗ and ∣ci∣ ≤ C∥h∥∗∗, i = 1,2,3,4. (2.24)

For the proof of Proposition (2.5) we will need the next

Lemma 2.6 Assume the existence of a sequences (µ′n)n∈N, (ζ ′n)n∈N, (εn)n∈N such that α1 <
µ′n < β1, dist(ζ ′n, ∂Ωε) > δ1, εn → 0 and for certain functions φn and hn with ∥hn∥∗∗ → 0 and
scalars cni , i = 1,2,3,4, one has

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L(φn) = hn +∑4
i=1 c

n
i w

4
ζ′n,µ′n

zni in Ωεn ,
∂φn
∂ν = 0 on ∂Ωεn ,

∫Ωεn
w4
ζ′n,µ′n

zni φn = 0 for i = 1,2,3,4

where
zni = ∂(ζ′n)iwζ′n,µ′n , i = 1,2,3, zn4 = ∂µnwζ′n,µ′n

then
lim
n→∞

∥φn∥∗ = 0

Proof. By contradiction, we may assume that ∥φn∥∗ = 1. We will proof �rst the weaker
assertion that

lim
n→∞

∥φn∥∞ = 0.

Also, by contradiction, we may assume up to a subsequence that limn→∞ ∥φn∥∞ = γ, where
0 < γ ≤ 1. Let us see that

lim
n→∞

cni = 0, i = 1,2,3,4.
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Up to subsequence, we can suppose that µ′n → µ′, where α1 ≤ µ′ ≤ β1. Testing the above
equation against znj (x) and integrating by parts twice we get the relation

∫
Ωεn

L(znj )φn + ∫
∂Ωεn

∂znj
∂ν

φn = ∫
Ωεn

hnz
n
j +

4

∑
i=1

cni ∫
Ωεn

w4
ζ′n,µ′nz

n
i z

n
j .

Observe that

∣∫
Ωεn

L(znj )φn + ∫
∂Ωεn

∂znj
∂ν

φn − ∫
Ωεn

hnz
n
j ∣ ≤ C∥hn∥∗ + o(1)∥φn∥∗,

∫
Ωεn

w4
ζ′n,µ′nz

n
i z

n
j = Cδi,j + o(1).

Hence as n→∞, cni → 0, i = 1,2,3,4.

Let xn ∈ Ωεn be such that supx∈Ωεn φn(x) = φn(xn), so that φn maximizes at this point.
We claim that there exists R > 0 such that

∣xn − ζ ′n∣ ≤ R, ∀n ∈ N.

This fact follows immediately from the assumption ∥φn∥∗ = 1. We de�ne φ̃n(x) = φ(x +
ζ ′n) Hence, up to subsequence, φ̃n converges uniformly over compacts of R3 to a nontrivial
bounded solution of

{ −∆φ̃ − 5w4
0,µ′φ̃ = 0 in R3,

∫R3 w4
0,µ′ziφ̃ = 0 for i = 1,2,3,4

where zi is de�ned in terms of µ′ and ζ ′ = 0. Then φ̃ = ∑4
i=1αizi(x). From the orthogonality

conditions ∫R3 w4
0,µ′ziφ̃ = 0, i = 1,2,3,4, we deduce that αi = 0, i = 1,2,3,4. This implies that

φ̃ = 0, which is a contradiction with the hypothesis limn→∞ ∥φn∥∞ = γ > 0.

Now we prove the stronger result: limn→∞ ∥φn∥∗ = 0. Let us observe that ζn is a bounded
sequence, so ζn → ζ, as n → ∞, up to subsequence. Let R > 0 be a �xed number. Without
loss of generality we can assume that ∣ζn − ζ ∣ ≤ R/2, for all n ∈ N and B(ζ,R) ⊆ Ω. We de�ne
ψn(x) = 1

εσn
φn ( x

εn
) , x ∈ Ω (here we suppose without loss of generality that µn > 0, ∀n ∈ N).

From the assumption limn→∞ ∥φn∥∗ = 1 we deduce that

∣ψn(x)∣ ≤
1

∣x − ζn∣σ
, for x ∈ B(ζ,R).

Also, ψn(x) solves the problem

{ −∆ψn + λψn = ε
−(2+σ)
n {5(ε1/2

n Uζn,µn)4ψ + gn +∑4
i=1 c

n
i ε

2
nw

4
ζn,µn

Zn
i } in Ω,

∂ψn
∂ν = 0 on ∂Ω,

where gn(x) = hn ( x
εn

) and Zn
i (x) = zni ( x

εn
). Since limn→∞ ∥hn∥∗∗ = 0, we know that

∣gn(x)∣ ≤ o(1)
ε2+σ
n

ε2+σ
n + ∣x − ζn∣2+σ

, for x ∈ Ω.
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Also, by (2.7), we see that

(ε1/2
n Uζn,µn(x))4 = Cε4

n(1 + o(1))G(x, ζn) (2.25)

away from ζn. It's easy to see that ε−σ∑4
i=1 c

n
i w

4
ζn,µn

Zi = o(1) as εn → 0, away from ζn. We
conclude (by a diagonal convergence method) that ψn(x) converges uniformly over compacts
of Ω ∖ {ζ} to ψ(x), a bounded solution of

{ −∆ψ + λψ = 0 in Ω ∖ {ζ},
∂ψ
∂ν = 0 on ∂Ω,

such that ∣ψ(x)∣ ≤ 1
∣x−ζ∣σ in B(ζ,R). So ψ has a removable singularity at ζ, and we conclude

that ψ(x) = 0. This implies that over compacts of Ω ∖ {ζ}, we have

∣ψn(x)∣ = o(1)εσn.

In particular, we conclude that for all x ∈ Ω ∖ B(ζn,R/2) we have ∣ψn(x)∣ ≤ o(1)εσn, which
traduces into the following for φn

∣φn(x)∣ ≤ o(1)εσn, for all x ∈ Ωεn ∖B(ζ ′n,R/2εn). (2.26)

Consider a �xed number M , such that M < R/2εn, for all n. Observe that ∥φn∥∞ = o(1), so

(1 + ∣x∣σ)∣φn(x)∣ ≤ o(1), for all x ∈ B(ζ ′n,M). (2.27)

We claim that
(1 + ∣x∣σ)∣φn(x)∣ ≤ o(1), for all x ∈ Aεn,M , (2.28)

where Aεn,M = B(ζ ′n,R/2εn)∖B(ζ ′n,M). This assertions follows from the fact that the opera-
tor L satis�es the weak maximum principle in Aεn,M (choosing a larger M and a subsequence
if necessary): If u satis�es L(u) ≤ 0 in Aεn,M and u ≤ 0 in ∂Aεn,M , then u ≤ 0 in Aεn,M . This
result in just a consequence of the fact that L(∣x− ζ ′n∣−σ) ≥ 0 in Aεn,M , if M is larger enough
but independent of n.

We now prove (2.28) with the use of a suitable barrier. Observe that from (2.26) we deduce
the existence of η1

n → 0, as n → 0 such that ε−σn ∣φn(x)∣ ≤ η1
n, for all x such that ∣x∣ = R/2εn.

From (2.27) we deduce the existence of η2
n → 0, as n → ∞ such that Mσ ∣φn(x)∣ ≤ η2

n, for all
x such that ∣x∣ =M . Also, there exists η3

n → 0, as n→∞ such that

∣x + ζ ′n∣2+σ ∣L(φn)∣ ≤ η3
n, in Aεn,M .

We de�ne the barrier function ϕn(x) = ηn 1
∣x−ζ′n∣σ

, with ηn = max{η1
n, η

2
n, η

3
n}. Observe that

L(ϕn) = σ(1−σ)ηn 1
∣x−ζ′n∣2+σ

+(ε2
nλ− 5V 4)ηn 1

∣x−ζ′n∣σ
. It's not hard to see that ∣L(φn)∣ ≤ CL(ϕn)

in Aµn,M and ∣φn(x)∣ ≤ Cϕn in ∂Aεn,M , where C is a constant independent of n. From the
weak maximum principle we deduce (2.28) and the fact ∥φn∥∞ = o(1). From (2.26), (2.27),
(2.28), and ∥φn∥∞ = o(1) we conclude that

∥φn∥∗ = o(1)

which is a contradiction with the assumption ∥φn∥∗ = 1. The proof of Lemma (2.6) is
completed.
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Proof of proposition 2.5. Let us consider the space

H = {φ ∈H1(Ω) ∫
Ωε
w4
ζ′,µ′ziφ = 0, i = 1,2,3,4.}

endowed with the inner product,

[φ,ψ] = ∫
Ωε
∇φ∇ψ + ε2λ∫

Ωε
φψ.

Problem (2.23) expressed in the weak form is equivalent to that of �nding φ ∈H such that

[φ,ψ] = ∫
Ωε

[5V 4φ + h +
4

∑
i=1

ciw
4
ζ′,µ′zi]ψ, for all ψ ∈H.

The a priori estimate ∥T (h)∥∗ ≤ C∥h∥∗∗ implies that for h ≡ 0 the only solution is 0. With
the aid of Riesz's representation theorem, this equation gets rewritten in H in operational
form as one in which Fredholm's alternative is applicable, and its unique solvability thus
follows. Besides, its easy to conclude (2.24) from an application of Lemma (2.6).

It is important, for later purposes, to understand the di�erentiability of the operator
T ∶ h → φ, with respect to the variables µ′ and ζ ′, for a �xed ε (we only let ζ and µ be
variables). We have the following result

Proposition 2.7 Under the conditions of Proposition (2.24), the map T is of class C1.
Besides, we have

∥∇ζ′,µ′T (h)∥∗ ≤ C∥h∥∗∗.

Proof. Let us consider di�erentiation with respect to the variable ζ ′k, k = 1,2,3. For nota-
tional simplicity we write ∂

∂ζ′
k
= ∂ζ′

k
. Let us set, still formally, Xk = ∂ζ′

k
φ. Observe that Xk

satis�es the following equation

L(Xk) = 5∂ζ′
k
(V 4)φ +

4

∑
i=1

dki w
4
ζ′,µ′zi +

4

∑
i=1

ci∂ζ′
k
(w4

ζ′,µ′zi), in Ωε.

Here dki = ∂ζ′kci, i = 1,2,3. Besides, from di�erentiating the orthogonality conditions ∫Ωε
w4
ζ′,µ′zi =

0, i = 1,2,3,4, we further obtain the relations

∫
Ωε
Xkw

4
ζ′,µ′zi = −∫

Ωε
φ∂ζ′

k
(w4

ζ′,µ′zi), i = 1,2,3,4.

Let us consider constants bi, i = 1,2,3,4, such that

∫
Ωε

(Xk −
4

∑
i=1

bizi)w4
ζ′,µ′zj = 0, j = 1,2,3,4.
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These relations amount to

4

∑
i=1

bi∫
Ωε
wζ′,µ′zizj = ∫

Ωε
φ∂ζ′

k
(w4

ζ′,µ′zj), j = 1,2,3,4.

Since this system is diagonal dominant with uniformly bounded coe�cients, we see that it
is uniquely solvable and that

bi = O(∥φ∥∗)
uniformly on ζ ′, µ′ in the considered region. Also, it is not hard to see that

∥φ∂ζ′
k
(V 4)∥∗∗ ≤ C∥φ∥∗.

From Proposition (2.24), we conclude

∥
4

∑
i=1

ci∂ζ′
k
(w4

ζ′,µ′zi)∥
∗∗

≤ C∥h∥∗∗.

We set X =Xk −∑4
i=1 bizi, so X satis�es

L(X) = f +
4

∑
i=1

bki w
4
ζ′,µ′zi, in Ωε,

where

f = 5∂ζ′
k
(V 4)φ

4

∑
i=1

biL(zi) +
4

∑
i=1

ci∂ζ′,µ′(w4
ζ′,µ′zi)

Observe that also,

∫
Ωε
Xw4

ζ′,µ′zi = 0, i = 1,2,3,4.

This computation is not just formal. Indeed, one gets, as arguing directly by de�nition
shows,

∂ξ′
k
φ =

4

∑
i=1

bizi + T (f)

and
∥∂ξ′

k
φ∥∗ ≤ C∥h∥∗∗.

The corresponding result for di�erentiation with respect to µ′ follows similarly. This con-
cludes the proof.

2.6 The nonlinear problem

We recall that our goal is to solve the problem (2.21). Rather than doing so directly, we
shall solve �rst the intermediate nonlinear problem (2.22) using the theory developed in the
previous section. We have the next result
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Lemma 2.8 Under the assumptions of Proposition (2.5), there exist numbers ε1 > 0, C1 > 0,
such that if µ and ζ are additionally such that ∥E∥∗∗ < ε1, then problem (2.22) has a unique
solution φ which satis�es

∥φ∥∗ ≤ C1∥E∥∗∗.

Proof. In terms of the operator T de�ned in Proposition (2.5), problem (2.22) becomes

φ = T (N(φ) +E) ≡ A(φ).

For a given γ > 0, let us consider the region

Fγ ∶= {φ ∈ C(Ωε) ∥φ∥∗ ≤ γ∥E∥∗∗}.

From Proposition (2.5), we get

∥A(φ)∥∗ ≤ C [∥N(φ)∥∗∗ + ∥E∥∗∗] .

The de�nition of N immediately yields ∥N(φ)∥∗∗ ≤ C0∥φ∥2
∗. It is also easily checked that N

satis�es, for φ1, φ2 ∈ Fγ,

∥N(φ1) −N(φ2)∥∗∗ ≤ C0γ∥E∥∗∗∥φ1 − φ2∥∗.

Hence for a constant C1 depending on C0, C, we get

∥A(φ)∥∗ ≤ C1 [γ2∥E∥∗∗ + 1] ∥E∥∗∗
∥A(φ1) −A(φ2)∥∗ ≤ C1γ∥E∥∗∗∥φ1 − φ2∥∗.

Choosing

γ = C1, ε1 =
1

2C2
1

,

we conclude that A is a contraction mapping of Fγ, and therefore a unique �xed point of A
exists in this region.

We shall next analyze the di�erentiability of the map (ζ ′, µ′) → φ. Concerning the di�er-
entiability of the function φ(ζ ′), let us write

A(x,ϕ) = ϕ − T (N(ϕ) +E).

Observe that A(ζ ′, φ) = 0 and
∂φA(ζ ′, φ) = I +O(ε).

It follows that for small ε, the linear operator ∂φA(ζ ′, φ) is invertible, with uniformly bounded
inverse. It also depends continuously on its parameters. Di�erentiating respect to ζ ′ we
obtain

∂ζ′A(ζ ′, φ) = −(∂ζ′T )(N(φ) +E) − T (∂ζ′N(φ) + ∂ζ′R).
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where the previous expression depend continuously on their parameters. Hence the implicit
function theorem yields that φ(ζ ′) is a C1 function. Moreover, we have

∂ζ′φ = −(∂φA(ζ ′, φ))−1[∂ζ′A(ζ ′, φ)].

By Taylor expansion we conclude that

∥∂ζ′N(φ)∥∗∗ ≤ C(∥φ∥∗ + ∥∂ζ′φ∥∗)∥φ∥∗ ≤ C(∥E∥∗∗ + ∥∂ζ′∥∗)∥E∥∗∗.

Using Proposition (2.7), we have

∥∂ζ′φ∥∗ ≤ C(∥N(φ) +E∥∗∗ + ∥∂ζ′N(φ)∥∗∗ + ∥∂ζ′E∥∗∗),

for some constant C > 0. Hence, we conclude that

∥∂ζ′φ∥∗ ≤ C(∥E∥∗∗ + ∥∂ζ′E∥∗∗).

A similar argument shows that, as well

∥∂µ′φ∥∗ ≤ C(∥E∥∗∗ + ∥∂µ′E∥∗∗).

This can be summarized as follows

Lemma 2.9 Under the assumptions of Proposition (2.5) and (2.8) consider the map (ζ ′, µ′) →
φ. The partial derivatives ∇ζ′φ and ∇µ′φ exist and de�ne continuous functions of (ζ ′, µ′).
Besides, there exist a constant C2 > 0, such that

∥∇ζ′φ∥∗ + ∥∇µ′φ∥∗ ≤ C2(∥E∥∗∗ + ∥∇ζ′E∥∗∗ + ∥∇µ′E∥∗∗).

After Problem (2.21) has been solved, we will �nd solutions to the full problem (2.22)
if we manage to adjust the pair (ζ ′, µ′) in such a way that ci(ζ ′, µ′) = 0, i = 1,2,3,4. This
is the reduced problem. A nice feature of this system of equations is that it turns out to
be equivalent to �nding critical points of a functional of the pair (ζ ′, µ′) which is close, in
appropriate sense, to the energy of the single bubble U .

2.7 Variational formulation of the reduced problem.

In order to obtain a solution of (2.1) we need to solve the system of equations

cj(ζ ′, µ′) = 0 for all j = 1, . . . ,4 . (2.29)

If (2.29) holds, then v = V + φ will be a solution to (2.21). This system turns out to be
equivalent to a variational problem. We de�ne

F (ζ ′, µ′) = Eλ(V + φ),
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where φ = φ(ζ ′, µ′) is the unique solution of (2.22) that we found in the previous section, and
Eλ is the energy functional de�ned in the previous sections. Critical points of F correspond
to solutions of (2.29), under the assumption that the error E is small enough. The proof of
this fact is similar to the one of Lemma 7.2 in [12].

Additionally, the following expansion holds

F (ζ ′, µ′) = Eλ(V ) + (∥E∥2
∗∗ + ∥∇ζ′E∥2

∗∗ + ∥∇µ′E∥2
∗∗)θ(ζ ′, µ′),

where for a certain constant C > 0 the function θ satis�es ∣θ∣ + ∣∇ζ′θ∣ + ∣∇µ′θ∣ ≤ C. Using
this expansion and the hypothesis of Theorem 2.1, we conclude the proof using a similar
argument to the one given for the proof of Theorem 3 part (b) in [12]. This concludes the
proof of our main theorem.

2.8 Appendix � Robin's function

In this appendix we prove two facts we have used in the course of the proofs about Robin's
function gλ. Recall that gλ(x) ≡ Hλ(x,x) where the function y ↦ Hλ(x, y) satis�es the
boundary value problem

{
−∆yHλ + λHλ = λΓ(x − y) y ∈ Ω,

∂Hλ(x,y)
∂ν = ∂Γ(x−y)

∂ν x ∈ ∂Ω,

where Γ(z) = 1
4π∣z∣ .

Lemma 2.10 The function gλ is of class C∞(Ω).

Proof. We will show that gλ ∈ Ck, for any k. Fix x ∈ Ω. Let h1,λ be the function de�ned in
Ω ×Ω by the relation

Hλ(x, y) = β1 ∣x − y∣ + h1,λ(x, y) ,

where β1 = − λ
8π . Then h1,λ satis�es the boundary value problem

{
−∆yh1,λ + λh1,λ = −λβ1∣x − y∣ xin Ω,

∂h1,λ(x,y)

∂ν = ∂Γ(x−y)
∂ν − β1

∂∣x−y∣
∂ν on ∂Ω.

Elliptic regularity then yields that h1,λ(x, ⋅) ∈ C2(Ω). Its derivatives are clearly continuous
as functions of the joint variable. Let us observe that the function Hλ(x, y) is symmetric,
thus so is h1, and then h1,λ(⋅, y) is also of class C2 with derivatives jointly continuous. It
follows that h1(x, y) is a function of class C2(Ω ×Ω). Iterating this procedure, we get that,
for any k

Hλ(x, y) =
k

∑
j=1

βj ∣x − y∣2j−1 + hk,λ(x, y)
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with βj+1 = −λβj/((2j + 1)(2j + 2)) and hk,λ solution of the boundary value problem

{
−∆yhk,λ + λhk,λ = −λβk∣x − y∣2k−1 in Ω,

∂hk,λ(x,y)

∂ν = ∂Γ(x−y)
∂ν −∑k

j=1 βj
∂∣x−y∣2j−1

∂ν on ∂Ω.

We may remark that
−∆yhk+1,λ + λhk,λ = 0 in Ω .

Elliptic regularity then yields that hk,λ, is a function of class Ck+1(Ω × Ω). Let us observe
now that by de�nition of gλ we have gλ(x) = hk,λ(x,x), and the conclusion of the Lemma
follows.

Lemma 2.11 The function ∂gλ
∂λ is well de�ned, smooth and strictly positive in Ω. Its

derivatives depend continuously on λ.

Proof. For a �xed given x ∈ Ω, consider the unique solution F (y) of

{ −∆yF + λF = G(x, y) y ∈ Ω,
∂F
∂ν = 0 y ∈ ∂Ω.

Using elliptic regularity, F is at least of class C0,α. Besides a convergence argument using
elliptic estimates shows that actually

F (y) = ∂Hλ

∂λ
(x, y) .

Since λ > 0 and G is positive in Ω, using F− as a test function we get that F− = 0 in Ω, thus
F > 0. Hence, in particular

∂gλ
∂λ

(x) = F (x) > 0 .

Arguing as in the previous lemma, this function turns out to be smooth in x. The resulting
expansions easily provide the continuous dependence in λ of its derivatives in x-variable.
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