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METRICAS CONFORMES CON CURVATURA GAUSSIANA PRESCRITA
CON CAMBIO DE SIGNO Y UN PROBLEMA DE NEUMANN CRITICO

En esta memoria se estudian dos problemas semilineales elipticos clésicos en la literatura:
el problema de la curvatura Gaussiana prescrita en dimension 2, y el problema de Lin-Ni-
Takagi con exponente critico en dimension 3. En ambos se encuentran soluciones con reviente
cuando el valor de un parametro involucrado se aproxima a cierto valor critico.

En el primer capitulo se estudia el siguiente problema: Dada una funcion escalar k(x),
suficientemente regular, definida en una variedad Riemanniana compacta (M, g) de dimen-
sion 2, se desea saber si kK puede corresponder a la curvatura Gaussiana de M para una
métrica g;, que es adicionalmente conforme a la métrica inicial g, es decir, g; = e*g para
alguna funcion escalar v en M. Sea f una funcion regular en M tal que

=20, f#0, m]\/i[nf:O.

Sean pi,...,p, una coleccion de puntos cualesquiera en los que f(p;) =0y D?f(p;) es no
singular. Se demuestra que para todo A\ > 0 suficientemente pequeno, existe una familia de
metricas conformes de tipo burbuja g, = e¥»g tal que su curvatura Gaussiana esta dada por
la funcion que cambia de signo K,, = —f + A2. Més atn, la familia u) satisface

=
V2

donde 0, corresponde a la masa de Dirac en el punto p.

1

1
gy

)+O(1), A%e™ =~ 81 Y 6,

i=1

ux(p;) = —4log A - 2log(

En el segundo capitulo se considera el problema

~Au+du—-u’=0, u>0 inQ, @ =0 on 012,
v
donde €2 c R? es un dominio acotado con frontera regular 92, A >0 and v denota la normal
unitaria exterior a 0€). Se demuestra que cuando A se apoxima por arriba a cierto valor
explicitamente caracterizado en términos de funciones de Green, una familia de soluciones
con reviente en un cierto punto interior del dominio existe.
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LARGE CONFORMAL METRICS WITH PRESCRIBED SIGN-CHANGING
GAUSS CURVATURE AND A CRITICAL NEUMANN PROBLEM

In this thesis we present a study of two semi-linear elliptic problems classical in the
literature: the prescribed Gaussian curvature problem in dimension 2, and the Lin-Ni-Takagi
problem with critical exponent in dimension 3. In both problems we find solutions with
“bubbling” as a certain parameter involved in the problem approaches a critical value.

In the first chapter we study the following problem: Given a real-valued function k(x),
sufficiently smooth, defined on a two dimensional compact Riemannian manifold (M, g), we
want to know if k can be realized as the Gaussian curvature of M for a metric g;, which is
in addition conformal to g, namely, g; = e%g for some scalar function v on M. Let f be a
smooth function on M such that

>0, f#0, IIlei]anO.

Let p1,...,p, be any set of points at which f(p;) = 0 and D?f(p;) is non-singular. We
prove that for all sufficiently small A > 0 there exists a family of “bubbling” conformal
metrics g, = e“rg such that their Gauss curvature is given by the sign-changing function

K, =-f+ A2 Moreover, the family u, satisfies

1
V2

where 9, designates Dirac mass at the point p.

u,\(pj)=—4log)\—2log( )
i-1

1 n
log—) +0(1), Ne"™ —~81) 4y,

In the second chapter we consider the problem

; : 9
“Au+ A u—-u>=0, u>0 in Q, a—u =0 on 0192,
v
where 2 c R3 is a bounded domain with smooth boundary 992, A >0 and v denotes the unit
normal to 0€). We prove that when A\ approaches from a above a certain value, explicitly
characterized in terms of Green’s functions, a family of solutions with blow-up around an
interior point of the domain exists.
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Chapter 1

Large conformal metrics with prescribed
sign-changing (Gauss curvature

1.1 Introduction

Let (M,g) be a two-dimensional compact Riemannian manifold. We consider in this work
the classical prescribed Gaussian curvature problem: Given a real-valued, sufficiently smooth
funtion k(x) defined on M, we want to know if x can be realized as the Gaussian curvature
K, of M for a metric g;, which is in addition conformal to g, namely ¢, = e“g for some
scalar function uw on M.

It is well known, by the uniformization theorem, that without loss of generality we may

assume that M has constant Gaussian curvature for g, K, =@ —a. Besides, the relation
K4, = Kk is equivalent to the following nonlinear partial differential equation
Agu+re+a=0, in M, (1.1)

where A, is the Laplace Beltrami operator on M. There is a considerable literature on
necessary and sufficient conditions on the function k for the solvability of the PDE (1.1).
We refer the reader in particular to the classical references |5, 9, 18, 19, 20, 25| and to |7]
for a recent review of the state of the art for this problem.

Integrating equation (1.1), assuming that M has surface area equal to one, and using the
Gauss-Bonet formula we obtain

udq — / K d =—a=2 M ) 1.2
‘/M ke dfig o pg = —a = 2mx (M) (1.2)
where x (M) is the Euler characteristic of the manifold M.

In what follows we shall assume that the surface M has genus g(M) greater than one,
so that x(M) =2(1-¢g(M)) <0 and hence

-K,=a>0.

1



Then (1.2) tells us that a necessary condition for existence is that x(z) be negative somewhere
on M. More than this, we must have that

d 0.
fM/i fg <

Indeed testing equation (1.1) against e™ we get

/ kdpg = — f (|V uf? + a)e™du, < 0. (1.3)
M M

Solutions u to equation (1.2) correspond to critical points in the Sobolev space H!(M, g)
of the energy functional

1
E.(u) = 5 ./J;j |V ul*dp, - ozvfMud,ug - /;w ketdp.

As observed in [5], since a > 0, we have that If x < 0 and s # 0, then this functional is
strictly convex and coercive in H'(M,g). It thus have a unique critical point which is a
global minimizer of Fj.

A natural question to ask is what happens when f changes sign. A drastic change in fact
occurs. If sup,;x > 0, then the functional F, is no longer bounded below, hence a global
minimizer cannot exist. On the other hand, intuition would tell us that if s is “not too
positive” on a set “not too big", then the global minimizer should persist in the form of a
local minimizer. This is in fact true, and quantitative forms of this statement can be found
in |3, 6].

We shall focus in what follows in a special class of functions x(z) which change sign being
nearly everywhere negative. Let f be a function of class C3(M) such that

=20, f#0, rn]vi[nf:().

For A > 0 we let
ra(z) = —f(z) + A2
so that our problem now reads

Agju— fe"+N%e"“+a =0, in M. (1.4)

In [15], Ding and Liu proved that the global minimizer of E,, persists as a local minimizer
u, of E,, for any 0 <A < \g. From (1.3) we see that

()"

Moreover, they established the existence of a second, non-minimizing solution uy in this
range. Uniqueness of the solution ug for A = 0, and its minimizing character, tell us that we
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Figure 1.1: Bifurcation diagram for solutions of Problem (1.4)

must have u, = ug as A - 0 while u, must become unbounded. The situation is depicted as
a bifurcation diagram in Figure 1.1.

The proof in [15] does not provide information on its asymptotic blowing-up behavior or
about the number of such “large" solutions. Borer, Galimberti and Struwe [7| have recently
provided a new construction of the mountain pass solution for small A, which allowed them
to identify further properties of it under the following generic assumption: points of global
minima of f are non-degenerate. This means that if f(p) = 0 then D2 f(p) is positive definite.
In [7] it is established that blowing-up of the family of large solutions u, occurs only near
zeros of f, and the associated metric exhibits “bubbling behavior", namely Euclidean spheres
emerge around some of the zero-points of f. In fact, the mountain-pass characterization let
them estimate the number of bubbling points as no larger than four. More precisely, they
find that along any sequence A = \; — 0, there exist points p¥,... pk 1 <n <4, converging
to p1,...,p, points of global minima of f such that one of the following holds

(i) There exist €}, ...,€5, such that e\ /A - 0,1=1,...,k, and in local conformal coordi-
nates around p; there holds

ur(e\z) - ux(0) +log8 - w(x) := log (1.5)

(L+]azf)>’
smoothly locally in R2. We note that

Aw +e? =0.



(i) In local conformal coordinates around p;, with a constant ¢; there holds
un(Ax) +4log(N) + ¢; = weo (),
smoothly locally in R2, where w,, satisfies
Ajweo + [1 - (Az,z) e + =0
where A =1D?f(p;).

In this work we will substantially clarify the structure of the set of large solutions of problem
(1.4) with a method that yields both multiplicity and accurate estimates of their blowing-up
behavior. Roughly speaking we establish that for any given collection of non-degenerate

global minima of f, py,...,px, there exist a solution uy blowing-up in the form (1.5) ezactly
at those points. Moreover
A 11
ey~ Tog A’ ux(pi) = —4log A - 2log ﬁng +0(1).

In particular if f has exactly m non-degenerate global minimum points, then 2™ distinct
large solutions exist for all sufficiently small \.

In order to state our main result, we consider the singular problem
AyG - feC +81 Y b, +a=0, in M, (1.6)
i=1

where 9§, designates the Dirac mass at the point p;. We have the following result.

Lemma 1.1 Problem (2.7) has a unique solution G which is smooth away from the singu-
larities and in local conformal coordinates around p; it has the form

G(x) = —4log|x| - 2log (%logﬁ) +H(x), (1.7)

where H(x) € C(M).

Our main result is the following.

Theorem 1.2 Let py,...,p, be points such that f(p;) =0 and D?f(p;) is positive definite
for each i. Then, there exists a family of solutions uy to (1.4) with

ANe"™ ~ 81 Y b,, as A—0,
i=1

and uy - G uniformly in compacts subsets of M \ {py,...,pr}. We define

L 4 : G i )
R— (pi)/2 oL = 1 i _ ol
G=5° T log A 2 A



where H is defined near p; by relation (1.10). In local conformal coordinates around p;, there

holds
8

uy () +4log X + 2log 8}, — log W,

uniformly on compact sets of R? as A — 0.

Our proof consists of the construction of a suitable first approximation of a solution as
required, and then solving by linearization and a suitable Lyapunov-type reduction There is a
large literature in Liouville type equation in two-dimensional domains or compact manifold,
in particular concerning construction and classification of blowing-up families of solutions.
See for instance [8, 14, 16, 21, 24, 30| and their references.

We shall present the detailed proof of our main result in the case of one bubbling point
n = 1. In the last section we explain the necessary (minor, essentially notational) changes
for general n. Thus, we consider the problem

Agju—fe"+ %" +a=0, in M, (1.8)

under the following hypothesis: there exists a point p € M such that f(p) =0 and D?f(p) is
positive definite.

1.2 A nonlinear Green’s function

We consider the singular problem
A,G - fe€ +8n8,+a=0, in M (1.9)

where 0, is the Dirac mass supported at p, which is assume to be a point of global non-
degenerate minimum of f. In this section we will establish the following result, which
corresponds to the case n =1 in Lemma 2.6

Lemma 1.3 Problem (1.9) has a unique solution G which is smooth away from the singu-
larities and in local conformal coordinates around p it has the form

G(z) = -4log|x| - 2log (%logé) +H(z), (1.10)

where H(z) € C(M).

Proor. In order to construct a solution to this problem, we first consider the equation, in
local conformal coordinates around p, for v < 1

AT - fel' + 870, =0, in B(0,7). (1.11)

5



Since .
—Alog — = 8y,
b
we look for a solution of (1.11) of the form I" = —4log|x| + h(zx), where h satisfies

Ah - f(x)ﬁeh ~0, in B(0,7). (1.12)

Since p is a non-degenerate point of minimum of f, we may assume that, in local conformal
coordinates around p, there exist positive numbers (31, 82,7 such that

Bilz|* < f(x) < Bo|zf?, (1.13)
for all 2 € B(0,v). Letting r = |x/, it is thus important to consider the equation
AV - T%e" =0, in B(0,7). (1.14)
For a radial function V' =V (r), this equation becomes
V) + V() - 5 O =0, 0<r <y, (1.15)

We make the change of variables r = e, v(t) = V(r), so that equation (1.15) transforms into

42
—(t) ='W, —oco<t<logy.

dt?
from where it follows that a (1)
(5 -e)=0
or v'(t)? = 2(e? + ('), for some constant C. Choosing C = 0, we have
d 1
= (e®12) = -7

Integrating and coming back to the original variable, we deduce that

V(r)=-2log (% log %)

is a radial solution of equation (1.14). From condition (1.13) we readily find that hy(z) =
V(|x]) - log B; is a supersolution of (1.12), while ho(z) = V(|z|) —log B2 is a subsolution of
(1.12). This suggest us to look a solution to (1.12) of the form V(|z|) + O(1).

Now we deal with existence of a solution of problem (1.9). The previous analysis suggest
that the singular part of the Green’s function, in local conformal coordinates around p, is

[(z) == -4log|z| + V(|z]),

6



so we look for a solution of (1.9) of the form u = nI"+ H, where n is a smooth cut-off function
such that n =1 in B(0,3) and =0 in R*\ B(0,7). Therefore, H satisfies the equation

AH - fee + a=-nfel —2v,nv,[ -TAn =0, in M. (1.16)

Observe that fen e L1(B(0,7)). Next we find ordered global sub and supersolutions for
(1.16). Let us consider the problem

—Agho'i‘fhoz 1, in J\j7
which has a unique non-negative solution of class C%# 0 < 8 < 1. Observe that
AyBho - fe e +a -0 = -+ fBhy— fe™ e +a -0,

so if we choose 3 = 3 < 0 small enough, then H := 31k is a subsolution of (1.16), while if
we choose = 35 > 0 large enough, then H := 5yhq is a supersolution of (1.16).

We consider the space

X - {H e H'(M, g) [Mfe”FeH < oo},

and the energy functional

E(H)=%[M|VQH]2+foe’7FF(H)+fM(—a+@)H, (1.17)

where
L@ (H - H(x))  H<H(x),

F(H(x))=1  eff -l H e [H(x),H(z)],
el (H - H(z)) H > H(x).
Observe that since hg € L=(M, g) and fe™ e LY(B(p,v)), then H, H € X, which means that
the functional E is well defined in X. Since

f -A,(nI') = -lim o _
M

— =8m,
a—0 J9B(p,a) or

we conclude that
0= [ -A,(nI") = 8&md,) = 0.
fM M( o(n ) p)

Besides « > 0, so the functional E is coercive in X. We claim that F attains a minimum
in X. In fact, taking H, € X such that

lim E(H,) = }IIsl)f(E(H) > —00,

and passing to a subsequence if necessary, we obtain

H,—>HeX (in L?), V,H, = V,H (weakly in L?), E(H) = énﬁ( E(H).

7



Observe that if we take p € C~(M) then H + ¢ € X, we can differentiate and obtain

=0, forall peC*(M,g)

t=0

0

or
AVQH-V9¢+[V[fe”FG(%)¢+/;4(—a+@)¢:O, (1.18)

where
el®) [ < H(x),

G(H) =4 e He[H(x), H()],
eH(z) H > H(x).

By suitably approximating Hy = (H - H),, we can use it as a test function in (1.18) and
obtain

f v,H -V, H + f FETG(H)H, + [ (—a+©)H, = 0.
M M M
Since H is a subsolution for Equation (1.16), we have
/ V,H -V, H + f fe el H, + f (~a+0©)H, <0.
M M M

Observe that
/fe”FG(H)lef femellH, .
M M

From the above calculations we deduce

f |V, Hil> <0,
M

hence H; = C for some constant C. If C' > 0, necessarily C = H; = H — H almost everywhere.
Thus, H =H + C, and (1.18) traduces into

f VoH -Vgp+ f feetp + / (—a+0)p =0,
M M M
for all ¢ € C> (M), which contradicts the fact that H solves

_Agﬂ+fﬂz 17

or in other words, the fact that H is not a solution of problem (1.16). Hence H; =0, which
implies H <. In a similar way, we find H < H and hence

H(z) <H(z)< H(x), ae. xeM.

Note that
f Vg7-[~vgg0+f fe"FeHg0+f(—oz+@)<p=0, (1.19)
M M M

for all ¢ € C>~(M,g). Besides, since the functional F is strictly convex and coercive, we
conclude that H is the unique minimizer in X.

8



So far we have proven that Problem (1.9) has a unique solution G which is smooth away
from the singularity point p and in local conformal coordinates around p it has the form

G(x)=n [—4103; |lz| - 210g(\;_

where H € X nL>*(M, g), is the unique minimizer of the functional F defined in X by (1.17).

log . |)] +H(x),

Next we will further study the form of H near p, which in particular yields its continuity
at p. For this purpose we use local conformal coordinates around p.

Let us consider the problem

a in B(0,3),

~A,T
H on 0B(0,3

J

This problem has a unique solution 7, which is smooth in B(0,3). So we can expand J as
= Zbkrk = bo + O(T)
k=0
We write H = J + F, therefore F solves

9 1 2
Af+f oTeF L 0 in B(0,2),

r*log?r 72 log?r
F 0 on 0B(0,3),

because nI'=T"in B(0, 7). Since F € L*(B(0,3)) we can expand it as

F(r,0) = ;ak(r)eike.

Observe that

f(x)  kir?cos?(8) + kor? sin®(6) + kar?sinf cosf

+0(r)=a(f) + O(r),

2 2
for r # 0. Besides, 5 < a(f) < . Thus

2 12 1 2
flo) 2 g7 1 2 1

rt log?r r2log?r  12log?r

[(a(G) +O0(r))e 7 1] :

Moreover, since H € L>(B(0, 7)) we have e7+* € L?(B(0,2)), so

1 2

r21og®r

[(a(6) + O(r))e?™F ~1] = i mi(r)e*,



where
()] < S —
me(r)] < = ,
g 2 log® r

Vk >0,

for a constant C' independent of k. Now, we study the behavior of the coefficients ax(r). For
this purpose let us remember that

Pu 10u 1 0%u
Au(r,0) = — + = — + ———.
u(r,9) orz " v or 2 0
For k > 1, we see that ay(r) satisfies the ordinary differential equation
2 1 k2
_%:2’?(7‘)—;%(7‘)+T—2ak(r)=mk(7‘), O<r<%7 (1.20)

under the conditions
ak(%):(), ak(r)eL‘”([O,%]). (1.21)

We recall that the L>-condition comes from the fact that F € L>(5(0,3)). Let us make the
change of variables r = ef, Ax(t) = ar(e'), Mx(t) = my(e), so the previous problem transform
into

dzA v
- dtj (t) + K2 Ay(t) = My(t),  —oo <t<log, (1.22)
under the conditions
Ay (log%) -0, A eL“((—oo,log%]). (1.23)

Besides, |My(t)| < Ct72 for all k > 1. All the solutions of the homogeneous equation are
given by linear combinations of ek and e and a particular solution A" of the non-
homogeneous equation (1.22) is given by the variation of parameter formula. We conclude
that this problem has a solution of the form

— t
Crett + Cye™F + AP,

By the L*°-condition we conclude that Cy = 0 and by the boundary condition in (1.23) we
deduce 'y = 0. This implies that the null function is the only solution of the homogeneous
equation under condition (1.23). Hence, this problem has a unique solution Ay (t). We claim
that for a constant C' independent of k£ we have

1

[A(®)] < C s (1.24)
The proof of this fact is based on maximum principle: Observe that since k2 > 0, the operator
42
—— + k2
dt?

satisfies the weak maximum principle on bounded subsets of (—oo,log 2]. Let us prove that
¢ = k(;# + pe”¥ is a non-negative supersolution for this problem. Observe first that since
Ay (t) is bounded, there exist 7, such that

Ap(t) <o(t), forallte(—oo0,7,].

10



Besides,
a2, 1 1 0%
(—E+/€ )¢=—601W+Clﬁ2Mk(t), VtE(Tp,lOgE),
where the last inequality is valid if we choose C} large enough. Observe also that ¢(t) > Ax(t)
for t = 7,,log 3. Hence, by weak maximum principle we conclude that for all p > 0

& ~kt g
Ag(t) < e Vi e (—oo,log 5] :

Taking the limit p — 0 in the last expression, we conclude that Ax(t) < C'z. Analogously,
we now prove that ¢ = —k%% — pe~F is a non-positive subsolution for this problem. Since

Ai(t) is bounded, there exist 7, such that
o(t) < Ap(t), Vte(—oo,7,].
Besides,
(—j—; n k?) o= 602# - 02# < My(t), Vte (Tp,log %) ,

where the last inequality is valid if we choose C5 large enough. Observe also that p(t) < Ax(t)
for t = 7,,log 3. Hence, by weak maximum principle we conclude that for all p >0
& —kt g
—W—pe SAk(t), Vt e (—00710g5:|.
Taking the limit p — 0 in the last expression, we conclude (1.24). Finally, coming back to
the variable 7 we conclude that there exist a unique solution ax(r) of problem (1.20)-(1.21),
and for a constant C' independent of k we have

1 gl
ar(r)|<C , O<r<—=.

Now we deal with ag(r). Observe that

ef:e‘m(’")(lnLO( 12 )), e =eP(1+0(r)),

log™ r

and

a(f) = ap + Z ape® with og > 0,
k=1

so we conclude that ag(r) satisfies the ordinary differential equation

D2ag(r)  10ag(r) _ageboew() —1 1
- - = +2 5 =0 — |
or? r Or r2log“r r2log” r

under the following conditions



We make the change of variables r = e!, ao(t) = ao(e?), so the previous problem transform

into 2 bogiio _ 1 .
ag Qpe’oe®o —
- 2 =0|—= 1.25
dt? i 12 (t4) ( )
under the conditions
o (log%) =0, ayel™ ((—oo,log %]) (1.26)

The L*-condition implies that there exist a sequence t,, > —oco such that
ao(t,) - L, asmn— oo,
where L = —log(age®). If not there exist M < 0 such that
lape™e®™ —1|>e>0, Vi< M,
which means that ~
d2a0
de?

>CE Vi< M.

2

Thus
|lag| > Celoglt|, Vi< M,

so ag is unbounded, a contradiction.

We claim that the problem (1.25), (1.26) has at most one solution. In fact, let us suppose
by contradiction that u; and wuy are two diferent solutions. We define u = uy; — us, which

satisfies the problem
P o ety = 0
——— +2ape”c(t)u =
dtz 0 Y

u(log%) =0, wel”™ ((—oo,log%]) ,

(1) = { 0 if uy (1) = ua(t),

cu (D-ua(®) .
t%ﬁ if uy () # ua(t).

under the conditions,

and where

Observe that ¢(t) > 0, so we can apply the strong maximum principle in bounded domains
for this problem. Moreover, from the L> condition we deduce that there exists a sequence
t, such that u(t,) - 0 as n - oo (the proof of this fact is the same that we gave before).
From this two facts, we deduce easily that u; = u,.

Let us make the change of variables —t = €%, Ay(s) = ag(—€*), so the previous problem
transform into

ZA A
_ddSQO + % +2(age™e — 1) = O(e™), (1.27)

under the conditions

Ao (10g(—10g%)) =0, Agel” ([log(—log%) , oo)) .

12



We look for a solution of this problem of the form Ag(s) = L+¢(s), so ¢ solves the differential

equati()n
d2¢ d¢ iy
]2 _+2¢—N(¢)+O(62),

where
N(¢)=-2(e?-¢-1).

Observe that ¢, = €?, ¢_ = e~ are two linear independent solutions of the homogeneous
equation.

From the previous analysis, we deduce that there exists a sequence s, — oo such that
¢(8n) = 0n > 0, as n — co. We make the change of variables ¢,,(7,) = ¢(s) - 6,¢_(7,), where
Tp =S — Sp, SO ¢, € L solves the problem

{ Qi1 + ¢, + 20,
én(0)

N(¢p +6e7™) +e200(e2™) 7, € (0, 00),
0.

(1.28)

Let us study the linear problem

w in (0, 00),

—p" 20
0, @eL>(0,00)

©(0)

for w e C([0,00)) given. This problem has an explicit and unique solution ¢ = T[g], in fact
t pA-s t aA+S
o(t) = CreMt + Chett + Mt f A w(s) ds — et / il ) CL)(S)ds
0o 3% 0o 3%

and we deduce that C; = 0 and Cy = 0 due to the L™ condition and the value at 0 of ¢,
respectively. Problem (1.28) can be written as

On = T[N(¢y +0e™) +e220(e2™)] = A[ 0] (1.29)

We consider the set
B.={peC([0,00)) : @] <}

It is easy to see that if s, is large enough and ¢,, small enough we have
|A[Gn] = Al ]l < Cell by = D1

[Al@a]l < Ce,

and where C'is independent of n. It follows that for all sufficiently small € we get that A is a
contraction mapping of B. (provided n large enough), and therefore a unique fixed point of
A exists in this region. We deduce that there exists a unique solution Ay of problem (1.27),
and it has the form Ag(s) = L + ¢(s), where L is a fixed constant, and ¢(s) — 0 as s > oo.
This concludes the proof of Lemma 2.8. O

13



1.3 Construction of a first approximation

In this section we will build a suitable approximation for a solution of Problem (1.8) which
is large exactly near the point p. The “basic cells” for the construction of an approximate
solution of problem (1.8) are the radially symmetric solutions of the problem

20w — 1 2
{ Aw + N%e 0 in R2, (1.30)

w(z) - 0 as|z|— oo.
which are given by the one-parameter family of functions

862
ws(|z]) =log O+ i)

where 0 is any positive number. We define ¢ = \d. In order to construct the approximate
solution we consider the equation
52
AF - ﬁeF =0, (1.31)
in the variable r = |z|/¢ and we look for a radial solution F' = F'(r), away from r = 0. For
this purpose we solve Problem (1.31) under the following initial conditions

F(1/6)=0, F'(1/6)=0.
We make the change of variables r = !, V/(t) = F(r), so that equation (1.31) transforms into
V" - 5% =0.
We consider the transformation V(s) = V(ds), so V solves problem
V'—eV =0, V(6logd|) =0, V’'(]logé])=0.

This problem has a unique regular solution, which blows-up at some finite radius v > 0.
Coming back to the variable r = |z|/e, we conclude that the solution F'(r) is defined for all
1/6 <r < Celld = O/, for some constant C. Besides, we extend by 0 the function F for
r€[0,1/8), which means F(r) = 0, for all € [0,1/6) and we denote by F(|z|) = F(|z|/e). A
first local approximation of the solution, in local conformal coordinates around p, is given
by the radial function u.(z) = ws(|z|) + F(|z|).

In order to build a global approximation, let us consider 1 a smooth radial cutoff function
such that n(r) =1 if r < C16 and n(r) = 0 if r > Cs9, for constants 0 < Cy < Cy. We consider
as initial approximation U, = nu. + (1 - )G, where G is the Green function that we built in
the previous section. In order to have a good approximation around p we have to adjust the
parameter 9. The good choice of this number is

1
V2

14
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where H is defined in Section 1.2. With this choice of the parameter J, the function u, is
approaching the Green function G around p.

A useful observation is that u satisfies problem (1.8) if and only if
v(y) = u(ey) +4log A + 2log o

satisfies
Ay - A2f(ey)e’ +e’ +2a =0, ye ., (1.32)

where M, =M.
We denote in what follows p’ = e~!p and

U.(y) = U-(ey) + 4log A + 21og 6,

for y € M.. This means precisely in local conformal coordinates around p that

Ue(y) =n(ely)) (log m + F(Elyl))
+(1=n(ely])) (G(ey) + 4log A + 21og?) .

Let us consider a vector k € R2. We recall that ws(|z—k|) is also a solution of problem (1.30).
In order to solve problem (1.32), we need to modify the first approximation of the solution,
in order to have a new parameter related to translations. More precisely, we consider for
|k| << 1 the new first approximation of the solution (in the expanded variable)

V) =l (1 e P
+(1-n(ely])) (G(ey) + 4log A + 21og ) .

We will denote by v. the first approximation of the solution in the original variable, which
means

802
(e%+ |z —ek|?)?

() = () (log . ﬁ<|x|>) - (1= n()G(a).

Hereafter we look for a solution of problem (1.32) of the form v(y) = V.(y) + ¢(y), where
¢ represent a lower order correction. In terms of ¢, problem (1.32) now reads

L(¢)=N(¢)+E, in M, (1.33)
where

(¢)

L(¢) =8¢~ A2 f(ey)e"“p+e" 0,
N(o):
E:

A2 () (6~ 1 6) — ¥(¢? — 1- ),
S (Ag‘/;- - )\‘2f(gy)evf +e's + 82a).

15



1.4 The linearized operator around the first approxima-
tion

In this section we will develop a solvability theory for the second-order linear operator L
defined in (2.21) under suitable orthogonality conditions. Using local conformal coordinates
around p’, then formally the operator L approaches, as ¢,|k| — 0, the operator in R?

8

L(¢) =0+ m¢;

namely, equation Aw + e¥ = 0 linearized around the radial solution w(z) = log (H‘%. An
important fact to develop a satisfactory solvability theory for the operator L is the non-
degeneracy of w modulo the natural invariance of the equation under dilations and transla-
tions. Thus we set

20(2) = %[w(sz) +2log s]|s1, (1.34)
zi(z) = 88§-w(z + ()]0, 1=1,2. (1.35)

It turns out that the only bounded solutions of L(¢) = 0 in R? are precisely the linear
combinations of the z;, i=0,1,2, see [4] for a proof. We define for i=0,1,2,

Zi(y) = z(y - k).

Additionally, let us consider R, a large but fixed number Ry > 0 and y a radial and smooth
cut-off function such that x =1 in B(k, Ry) and x =0 in B(k, Ry +1)°.

Given h of class C%P(M,.), we consider the linear problem of finding a function ¢ such
that for certain scalars ¢, i =1, 2, one has

L(¢)
{ /;45 XZi¢

h+ Y2, ¢xZ in M.,
0 fori=1,2.

(1.36)

We will establish a priori estimates for this problem. To this end we define, given a fixed
number 0 < ¢ < 1, the norm

12l = 1Allp = sﬂgp(maX{a?Q, =71~ Al (1.37)

Here the expression max{e?, |y|=2=7} is regarded in local conformal coordinates around p’ =
e~ p. Since local coordinates are defined up to distance ~ % that expression makes sense
globally in M..

Our purpose in this section is to prove the following result.

16



Proposition 1.4 There exist positive numbers ey, C' such that for any h € C%8(M.), with
|h|. < oo and for all k such that |k| < C\/d, there is a unique solution ¢ = T'(h) € C>P(M,)
of problem (2.22) for all € < ¢, which defines a linear operator of h. Besides,

I7(1)] < Clog 2 1. (1.38)

Observe that the orthogonality conditions in problem (2.22) are only taken respect to the
elements of the approximate kernel due to translations.

The next Lemma will be used for the proof of Proposition 2.5. We obtain an a priori
estimate for the problem
{ L(9)

[ Xz

We have the following estimate.

h in M.,
0 fori=1,2.

(1.39)

Lemma 1.5 There exist positive constants €y, C' such that for any ¢ solution of problem
(1.39) with h € C%8(M.), |h|. < oo and any k, |k| < C\/§

3

1
6l < Clog (=) 4],
for all € < .

Proor. We carry out the proof by a contradiction argument. If the above fact were false,
there would exist sequences (&,,)nen, (kn)nen such that e, - 0, |k,| = 0 and functions ¢, h,
with |¢p e =1,

log(e,") [+ = 0,

such that

{ L(¢n) = hn in M., (1.40)

v XZign = 0 fori=1,2.

A key step in the proof is the fact that the operator L satisfies a weak maximum principle in
regions, in local conformal coordinates around p, of the form A. = B(p’,e71v/2) ~ B(p', R),

with R a large but fixed number. Consider the function z(r) = =t

371, radial solution in R? of

8

(L0 =0

AZO +

We define a comparison function

Z(y) = z(aly -p'l), yeM.
Let us observe that
_8a*(a®ly-p'|* - 1)
C (L+ay-p PR

17
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So, for 100a=2 < |y — p'| < e71v/2, we have

2 -2

a

9 >4
(1+a?ly-p'?)? " |ly-p|*

-AZ(y) 2

On the other hand, in the same region,

1
=W Z(y )<C’| i
Yy-p

Hence if a is taken small and fixed, and R > 0 is chosen sufficiently large depending on this

a, then
AZ+e%"7Z<0, in A..

Since Z >0 in A., we have
L(Z)<0, in A,

We conclude that L satisfies weak maximum principle in A., namely if L(¢) <0 in A. and
¢ >0 on 0A,, then ¢ >0 in A..

We now give the proof of the Lemma in several steps.

STEP 1. We claim that
sup [Pn(y)| = o(1),

yeMe,, NB(p/en,p/en)

where p is a fixed number. In fact, coming back to the original variable by the transformation

quSn(x) :gbn(;), xeM.

n

We can see that gzgn satisfies the equation

Ny = fen g, + N2e"n ¢y, = 512 (ﬁ) (1.41)

n En

where

ve, (x) =V, (;) —4log A\, — 2log?,

is the approximation of the solution in the original variable. Taking n — oo, we can see that
¢n converges uniformly over compacts of M~ {p} to a function ¢ € H' (M) mL""(M) solution
of the problem

Ago—feldp=0, in M~ {p} (1.42)

where J is the limit of v., . We claim that (;SE 0, in fact, we consider the unique solution ®
of the problem
A,® - min{fe’, 1}® =-5,, in M.

18



Using local conformal coordinates around p we expand
1
©(2) =~ log(|a]) + H(z)
T

for H bounded. Since ¢ € L= (M), we conclude that for all sufficiently small € and 7 we have
|p(x)| < e®(z), xedB(0,7).

Multiplying (1.42) by ¢ = (¢ —e®),, and integrating by parts over M, = M ~ U, where U,
is the neighborhood around p under the local conformal coordinates that we used, we have

/‘, |V990|2+[ fngo2+5[ e p® = 0.
M, M, M,

[ |Vg<p|2+[ felp? <.
M, M,

Hence ¢ = (cﬁ—a@ﬁ =0in M, so ¢ <e® in M,. Multiplying by ¢ = (g5+5CI>), and integrating
by parts, we have (¢ +e®)_ =0, thus

6(z)] <e®(z), x€M,.

Since ¢ > 0, we have

Taking € - 0 and 7 — 0, we conclude that é = 0.

STEP 2. Let us consider the transformation
Ou(y) = bn(y +1h).
Thus ¢, satisfies the equation
qu’gn —_ A;L2f(€ny +pn)evv5n(y+p"n)qﬁgn + evvan(y,"'p'ln,) = hn(y +p;1)7

in M., —{p,,}. Taking the limit n — co in the last equation (and also in problem (1.40)), we
see that ¢, converges uniformly over compacts of M., —{p.} to a bounded solution ¢ of the
problem

L($)=0 inR? fRQXZiJs:o, i-1.2.
Hence ¢(z) = CoZy(z).

In what follows we assume without loss of generality that Cy > 0. If Cjy < 0, we work with
- ¢, instead of ¢, and the following analysis is also valid.

STEP 3. In this step we will construct a non-negative supersolution in the region, in
local conformal coordinates around p!,, B, = B(kn,p) N B(kn,e;'7v/2), p >0, where the weak
maximum principle is valid. We work first in the case Cy > 0. Let us consider the problem

_Awn - eVE'lan =1 in Bna
7%(3/) = CO on aB(knap)a (143)
Un(y) = o(1) on 0B(kn,e,'7/2).
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We define 7 = |y — k,|. A direct computation shows that
Un(y) = CoZo(r) + CY (1) + W(r),
where
vi=2 [ L g W) =-2o(r) [T sv s+ ¥ () [ sz(s)as
p SZO(S) p p

and
_o(1) - CoZo(e,'7/2) —W(e:'v/2)

Y(e,'v/2) '

We choose p > R, where R is the fixed minimal radio for which the weak maximum principle
is valid in the region B,,. Observe that

L(n) =-1-X2f(ey)e"* vy, < hy = L(¢y).
Moreover, from steps 1 and 2, we deduce that

VYn > ¢n, on B, (1.44)

Ce

which means that 1, is a supersolution for the problem
L(¢n) = hna in B,.
Since p > R, we can apply the weak maximum principle and we deduce that ¥,, > ¢, in B,,.

Observe that
‘ dl/’ﬂ(ﬁ)
dr

> et (1.45)

n

In the other hand iz
0 T
=-C : 1.46
dr (r2-1)2 (1.46)
where C' > 0 is a constant independent of n. Since ¢, converges over compacts of the
expanded variable to the function CyZy, we deduce from (1.44), (1.45) and (1.46) that the
partial derivative of ¢, respect to r is discontinuous at |y — k,| = p, for large values of n,

which is a contradiction.

In the case Cy = 0, ¢, converges to 0 over compacts of the expanded variable. Let us
consider the problem

_Az/}n - evewn =1 in Bna
1/}n(y) = 1/2 on aB(kmp)?
vo(y) = o(1) on OB(ky,e;'v/2).

It is easy to see that 1, < 1/2 in B,. Using the previous maximum principle argument we
deduce that ¢, <, < 1/2 Applying the same argument for the problem that —¢, satisfies,
we conclude —¢,, < 1/2. Thus,

[¢nllee <1/2,

which is a contradiction with the fact |¢,]lc = 1. This finishes the proof of the a priori
estimate. O
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We are now ready to prove the main result of this section.

Proor or ProrosiTion 2.5. We begin by establishing the validity of the a priori estimate

(2.24). The previous lemma yields

1 2
o < Ctog () 101+ Sl

(1.47)

hence it suffices to estimate the values of the constants |¢;, i =1,2. We use local conformal
coordinates around p, and we define again r = |y| and we consider a smooth cut-off function
n(r) such that n(r) =1 for r < %=, n(r) =0 for r > %, I’ (r)] < C\Ve, " (r)] < Ce. We test

NG
the first equation of problem (2.22) against Z;, i = 1,2 to find

(o)) = (hnZ) + e [ x|,

Observe that
<L(¢)77]21> = <¢7 L(T]Zl»?

and
L(T]Zl) = Z1A77 + 2V77 : VZI + ’I’](AZI + GVE Zl) - T]/\_Qf(€y)eVSZi.

We have
N(AZ; +e"Z;) =eO((1 +7)7?).

Observe that .
A 2f(ey)eV" W = \262 f (1)@ where y = =,z € M,
£

thus
n)\‘Qf(gy)er Zi = 0(e?).

Since An = 0(e), Vi =0(\/¢), and besides Z; = O(r~1), VZ, = O(r~2), we find
ZiAn+2Vn-VZ; = O(eV/e).

From the previous estimates we conclude that

(¢, L(nZ))| < CVE]¢]oo-
Combining this estimate with (1.47) and (1.48) we obtain

1
al <[ + vlog 2 .
which implies
la| < C|h|. i=1,2.
It follows from (1.47) that
1
6l < Clog (=) 4],

21
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and the a priori estimate (2.24) has been thus proven. It only remains to prove the solvability
assertion. For this purpose let us consider the space

H-= {gf)e HY(M,) : / XZip=0,i= 1,2.}
M.
endowed with the inner product,
(0.0)= [ V09 [ A2f(ey)etov.
M. M

Problem (2.22) expressed in weak form is equivalent to that of finding ¢ € H such that
2
(¢, 9) = f le% +h+ ZcixZi] ¢, forall ¢e H.
M. i-1

With the aid of Riesz’s representation theorem, this equation gets rewritten in H in
the operator form ¢ = K(¢) + iz, for certain h € H, where K is a compact operator in H.
Fredholm’s alternative guarantees unique solvability of this problem for any h provided that
the homogeneous equation ¢ = K(¢) has only zero as solution in H. This last equation is
equivalent to problem (2.22) with h = 0. Thus, existence of a unique solution follows from
the a priori estimate (2.24). The proof is complete. O

1.5 The nonlinear problem

We recall that our goal is to solve problem (2.21). Rather than doing so directly, we shall
solve fist the intermediate problem

{ L(¢) = N(¢)+E+¥i exZ in M.,

xZi¢ = 0 fori=1,2, (1.49)
M.

using the theory developed in the previous section. We assume that the conditions in Propo-
sition (2.5) hold. We have the following result

Lemma 1.6 Under the assumptions of Proposition (2.5) there exist positive number C| &g
such that problem (1.49) has a unique solution ¢ which satisfies

1
[¢les < Celog -,
£
for all € < gg.
Proor. In terms of the operator T defined in Proposition (2.5), problem (1.49) becomes
¢=T(N(¢)+FE)=:A(9). (1.50)
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For a given number 9 > 0, let us consider the space

Hy - {asec(ME) Nl mgg}.

From Proposition (2.5), we get

4(6) e < Clog (2) AN + 1ELL).

Let us first measure how well V. solves problem (1.32). Observe that

eVs(y) — )\4(5261)5(1)’ y=

).
TreM, (1.51)
9

SO

leV=®)], < Ce.
As a consequence of the construction of the first approximation, the choice of the parameter
J, the expansion of the Green function G around p, and (1.51), a direct computation yields
|E|. < Ce.

Now we estimate
N(¢)=X7f(ey)e’™(e” —1-¢) —e"(e? -1~ ¢).
In one hand, from (1.51) we deduce
le"*(e? = 1= ¢)]. < Cef¢]%.
In the other hand .
A 2f(ey)eVsW) = \252%ev=(®) == e M,
€
SO
A f(ey)e'(e? = 1= 9)]. < Ce™|9]%.
We conclude,
IN(@)]. < Ce™ |95
Observe that for ¢, ¢ € Hy,
1
N (60) = N(@2)]. < OO o (=) o = 6l
where C' is independent of 1. Hence, we have

JA(6)1e < C=1log () 9% 10g () + 11,

5 1
A1) = A(62) | < C' g (2 ) [61 - 62
It follows that there exist e, such that for all € < ¢y the operator A is a contraction mapping
from Hy into itself, and therefore A has a unique fixed point in Hy. This concludes the

proof. O]

With these ingredients we are now ready for the proof of our main result.
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1.6 Proof of Theorem 1.2 for n=1

After problem (1.49) has been solved, we find a solution to problem (2.21), and hence to the
original problem, if k = k(¢) is such that

a(k)=0, i=1,2. (1.52)

Let us consider local conformal coordinates around p and define r = |y|. We consider a
smooth cut-off function n(r) such that n(r) =1 for r < ﬁ, n(r) =0 for r > %, In'(r)] < C/e,
In"(r)| < Ce. Testing the equation

2
L(¢) = N(¢) + E+ ZCiXZiu
i=1
against nZ;, i=1,2, we find

(L(@)nz) = [ [N()+ ElZiva [ x22 i=1.2

£

Therefore, we have the validity of (1.52) if and only if

(L(9),nZ:) - [M [N(¢)+ ElnZ; =0, i=1,2.

€

We recall that in the proof of Proposition (2.5) we obtained

(&, L(nZ))] < Ve[|,

thus 1
o, L(nZ:)) < Ce3*log <

Observe that
IN(9)] < Ce?| 9%,

|fM€ N(o)nz;

E=-AV.+ X\ 2f(ey)e' —e' - 2a.

SO 1
< Celg|2 < C=Plog? -
g

Let us remember that

Using (1.51), we have
/ eVsnZ = O(%).

5

We also have,

2
Zi = :
[Me e*anZ; = O(e)
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Observe that .
Ag‘/s(y)=€2Agve(m)u y:gvx€M7

thus
[ AVinZs = O(?).
M.

Also, by change of variables we have
fM fley)enz; = [M F(p+e(y + k) (ly + k) Zi(y + k +p'),

where M. = M. -k +p'. Using the fact that p is a local maximum of f of value 0, we have

fo+e(y+k)) =e((y+k),D*f(p)(y+k)) + O(e*),

where we used the fact that f e C3(M). Thus

AT fM fley)e¥ nzi = I, + 11,
where
=02 [ (k) Hp )y + k) Dl s K)Z(y + b+ )
1= [ O@E)e™ 0y (ly+ ) Zi(y + k+1).
Observe that eV=W+ P )n(ly + k) Z;(y + k+p') = O((1 +|y|)*), so
II;=0(e).
Finally, let us compute [;. In the first place, observe that 0 € M.. Let us consider a fixed

number Ag, such that By = B(0, Ag/\/2) c Memsqpp(n(-+k)) =Band n(-+k)=11in B;. We
have the decomposition B = By + By, where By = Q. nsupp(n(- + k)) ~ B1. Also, observe that

Yi .
Zi(y+k+p)=Co——, i=1,2
1+ |yl

where Cj is a fixed constant independent of €. We have the following computation
((y+ k), D*f(p)(y + k) = fu(p)(yr + k1)? + 2f12(p) (g2 + k1) (y2 + K2) + fa2 (p) (92 + k2 )?,

where f11(p) = 54(0), fa2(p) = 55(p) and fr2(p) = fa1(p) = 5,3, (p). We recall that

M
(1+yP)?
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(1+Cve+0(e)), (1.53)



in the region Q. nsupp(n(-+k)). We define t(y) = V=@ +Vp(|jy + k|) Zi(y + k +p’). We have
Jo @ k) = [ @) ) |, @)+ k)

H,
=2k fu(p) f o1+ |y| (1+y[*)?

In order to get the previous result, we used the fact that

f Y1 dy :/ y% dy =0
gL+ [yl (L+[yP)? e Ty (L+[yP)?

and the expansion (1.53). We also have

+0(e).

2
Uh Hy
2 k ko)t (y) = 2k f Co +O
S, 2@ B w2 R)) = 2hfia(p) f, Cop i + 0,
where we used the fact that
/ Y1Y2 1 _0

B L+ [yl (L+[y)?)?

and also the expansion (1.53). Finally, we have
[ @)+ k) H(w) = OCe),
Bl+82
where we used the fact that )
f Y193 1,

B L+ [yl (L+[y))?

and also the expansion (1.53). From the above computations we conclude that
Il = 252jk1f11(p) + 2(52]/{32f12(p) + 0(5),
where ) I
Yi 0
I = C > 0.

B L+ [y (1+]yP)?

Similar computations yield
IQ = 2(52[]€1f12(p) + 252[]€2f22(p) + O(E)
Summarizing, we have the system
?D?f(p)k = eb(k), (1.54)

where b is a continuous function of k of size O(1). Since p is a non-degenerate critical point
of f, we know that D?f(p) is invertible. A simple degree theoretical argument, yields that
system (1.54) has a solution k = O(Ad~!). We thus obtain ¢;(k) = c2(k) = 0, and we have
found a solution of the original problem. The proof for the case k =1 is thus concluded. [
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1.7 Proof of Theorem 1.2 for general n

In this section we will detail the main changes in the proof of our main result, in the case of
multiple bubbling.

Let py,...,p, be points such that f(p,;) = 0 and D?f(p;) is positive definite for each j.
We consider the singular problem

k
NG - fe“+8T) 6, +a=0, in M, (1.55)
j=1

where ¢, designates the Dirac mass at the point p. A first remark we make is that the proof
of Lemma 2.8 applies with no changes (except some additional notation) to find the result
of Lemma 2.6. Indeed, the core of the proof is the local asymptotic analysis around each

point p;.

We define the first approximation in the original variable as
St (1-3) 6
j=1 j=1

where 7); is defined around p; as in Section 1.3 and, in local conformal coordinates around
pj, ut(x) = ws,(|v - ky[) + Fj(|z]), for parameters k; € R%2. We make the following choice of
the parameters 9,

1 1
log 862 = —21o lo +H(pi
g g ( 7583 ) (p1)-
We also define the first approximation in the expanded variable around each p; by
V., (y) = U(g5y) +4log A+ 2logd;, ye M,
where £; = \J; and M., = 5]‘.1M.
We look for a solution of problem (1.8) of the form u(y) = U.(z) +¢(x), where ¢ represent

a lower order correction. By simplicity, we denote also by ¢ the small correction in the
expanded variable around each p;. In terms of ¢, the expanded problem around p;

Agv =2 f(ejy)e’ +e + e?a =0, yelM,,
reads
Lij(¢) = Nj(¢) + Ej, in M.,
where
Li(¢) =Ag0 -\ 2f(5g?/)eVE] o+ e o,
Nj(0) =X (eg)es (e =1 - 0) i (e = 1= 9),
T (Agvsj 2f(5yy)evej +e%i + £; a)
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Next we consider the linearized problem around our first approximation U.. Given h of
class C%%(M), which by simplicity we still denote by A in the expanded variable around
each p;, we consider the linear problem of finding a function ¢ such that for certain scalars
c{,i:1,2; J=1,...,n, one has

Li(¢) = h+Xi, Y0 dx;Z; in M.,
XjZij¢ = 0 for all i, j.

J

(1.56)

M

Here the definitions of Zj; and x; are the same as before for Z; and x, with the dependence
of the point p; emphasized.

To solve this problem we consider now the norm

n

1l =3 MRl (1.57)

j=1

where | h|. p, is defined accordingly with (1.37). With exactly the same proof as in the case
n = 1, we find the unique bounded solvability of Problem 1.56 for all small ¢ = maxe; by
¢ =T(h), so that

(1) < Clog 2 1. (1.58)

Then we argue as in the proof of Lemma 1.6 to obtain existence and uniqueness of a small
solution ¢ of the projected nonlinear problem

Lj(¢) = NJ(¢) + B+ Zi2:1 Z?:l C'iinZij in MEj?
X;jZij¢ = 0 for all i, j.
M.,

with X
|p]lee < Celog -

~ After this, we proceed as in Section 1.6 to choose the parameters k; in such a way that
¢/ =0 for all i,j. Summarizing, we have the system

D2f(pj)kj 2815;2bj(k1,...,kn), (159)

which can be solved by the same degree-theoretical argument employed before. The proof is
concluded. O
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Chapter 2

Critical interior bubbling in a semilinear
Neumann problem in dimension 3

2.1 Introduction

Let 2 ¢ R™ be a bounded domain with smooth boundary and A > 0. Let us consider the

problem
“Au+Au—-ud = 0 in §Q,

u > 0 in , (2.1)
% = 0 on 01,

where v denotes the unit outgoing normal and ¢ > 1. This problem has been widely considered
in the literature for more than 20 years. Lin Ni and Takagi initiated the study of this problem
[22, 26, 27]. Integrating the equation in € yields that a necessary condition for solvability of
(2.1) is A > 0. This boundary value problem represents a model of different phenomena which
exhibit concentrating behavior of families of their solutions. For instance, this equation arises
as the so-called shadow system associated to the Gierer-Meinhardt activator-inhibitor model
in mathematical theory of biological pattern formation. It also appears in certain models
of chemotaxis. In those problems, it is particularly meaningful the presence of solutions
exhibiting peaks of concentration, namely one or several local maxima around which the
solution remains strictly positive, while being very small away from them.

Problem (2.1) has a variational structure, since its solutions correspond to critical points
of the energy functional

1 A 1
Eq(u):5A|Vu|2dx+§Au2dx—(1+—1‘/0|u|q”da:,

defined for all u e H'(Q2) N L1, Tt follows from Sobolev’s embedding theorem that H'(Q2) —
L1 continuously for 2 < g+1< 2% = Z—’_“%, thus the functional E, is well defined on H!((Q2),
for all 2 < ¢+ 1< 2*. Moreover, the previous embedding is compact if 1 < ¢ <2* - 1.
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Observe that Problem 2.1 admits the constant solution uy = AT, Tn the case 1 < q<2*-1,
the compactness of the embedding and variational techniques imply that if X is sufficiently
small, then u) is the unique solution to Problem 2.1. This result inspired Lin and Ni to
conjecture an extension of this result to the critical case ¢ + 1 = 2*: For A sufficiently small,
the constant solution u) is the unique solution to Problem 2.1. In the radial case, that is
when €2 is a ball and when u is radially symmetrical, Adimurthi-Yadava solved the problem
in [1, 2]. The result depends strongly in the dimension: when n =3 or n > 7, the answer to
Lin-Ni’s question is affirmative, and it is negative for n = 4,5,6. In the asymmetric case, the
complete answer is not known yet. When n = 3, it was proved by Zhu [31] and Wei-Xu [29]
that the answer to Lin-Ni’s question is positive when 2 is convex and \ sufficiently small.
When n =5, Rey-Wei [28] constructed solutions as a sum of interior peaks for A\ — 0.

Construction of single and multiple spike-layer patterns for this problem in the subcritical
case q < Z—fg has been the object of many studies, see for instance [11, 17, 23, 12|, and also
[13] in the supercritical case g > 2*2

n-2°

In what follows, we work on the case n = 3, ¢ = 5. Even when the answer to the Lin-
Ni’s question is positive in dimension 3 for some special type of domains, we will show that
this situation is different when the parameter A\ converges to some strictly positive critical
value. In fact, it turns out that the object driving the location of blowing-up in single-bubble
solutions of (2.1) is the Robin’s function g, defined as follows. Let 0 < A and consider Green’s
function G (z,y), solution for any given x € Q) of

—AyG)\+>\G)\ 2533 yEQ,

06

5 (z,y) =0 y e o).

Let Hy(z,y) = I'(y — z) - Ga(x,y) with ['(2) = ﬁw, be its regular part. In other words,
H)(z,y) can be defined as the unique solution of the problem

-AyH\+Hy, =AI'(z-vy) yel,

oH,  Ol'(z-y)
o v y e om.

Let us consider Robin’s function of GG, defined as

gx(z) = Hy(z,x) .
It turns out that gy (x) is a smooth function (we provide a proof of this fact in the appendix).

We consider here the role of non-trivial critical values of gy in existence of solutions of
(2.1). The following is our principal result

Theorem 2.1 Suppose that for a number A = \q > 0, one of the two situations holds
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(a) Either there is an open, bounded set I of §) such that

0 =supgy, >supgy, -
D o)

(b) Or there is a (g € §) such that

920(C0) =0, Vgx,(&) =0,
and D?%g, ((o) is non-singular.

Then for all A > \q sufficiently close to Ay there exists a solution uy of Problem (2.1) of

the form /
34 M
ur(z) = A (1+0(1)) (2.2)
\/1 + M|z -G\

where o(1) — 0 uniformly in Q as A | Ao, and the number M, depends on the Robin’s
function and \g. Here () € D in case (a) and () — (o in case (b).

The rest of this work will be devoted to the proof of Theorem 2.1.

2.2 Energy expansion

For € > 0, we consider the transformation

u(x) = %v (f)

gl €

therefore v solves the problem

-Av+e2dhv—-1v> = 0 in Q.
v > 0 in QL (2.3)
% = 0 on 0,

where Q. = e71Q.
We fix a point ( € {2 and a positive number . We denote in what follows
[/

which correspond to all positive solutions of the problem

we () = 3/

~-Aw-w®=0, inR3.
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We define 7 ,(x) to be the unique solution of the problem

-Ame, + AT, = —Awe, in €,
’ e we s 2.4
{ Oew = Hew ogn 9O, (2.4)
We consider as a first approximation of the solution of (2.1) one of the form
UC»M =We,p T T u- (25)
Observe that U, , satisfies the problem
R T
-AU;, + Aagf’“ = wg, in Q, (2.6)
7’” =0 on 0f).
Let us also observe that
/szu - Cp? (1+0(1)), as p—0,
which implies that
w?
C”g -0, aspu—0,
[Q w(,u
uniformly on compacts subsets of Q \ {¢}. It follows that on each of this subsets
Vo) = ([ 2,.) 6.0 = Ot (1+.0(1)) G 0) 2.7
where G(z,() denotes the Green’s function, solution of the problem
-AG(x,0) + \G(z,{) = 0¢ in
—BGS‘Z’O = 0 on 09,

where J. denotes the Dirac mass centered at the point .

Using the transformation U ,(z) = #V (2) we see that V solves the problem

AV + AV —wy, = 0 in €,
‘?9—% = 0 on 0,

where wer i (x) = 31/4 w

W and C’ = 5_1<7 ,u’ = 5_1M.

The following lemma establishes the relationship between the functions 7 ,(z) and the
regular part of the Green’s function (¢, z). Let us consider the (unique) radial solution Dg(z2)
of the problem in entire space,

N erEE

Dy - 0 as |z| = oo.

{—ADO - )\31/4[ 1 i] in R?,

Dy(2) is a C%! function with Dy(z) ~ |z|tlog|z|, as |z| = oo.
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Lemma 2.2 For any o >0 we have the validity of the following expansion as jt — 0

r—¢

() = 473 (G ) - o () #1200 )

where for j=0,1,2,i=0,11i+ 7 <2, the function m%e(g,ﬂ,x) is bounded uniformly on
x €2, all small u and (, in compacts subsets of ().

Proor. We recall that H,((,x) satisfies the equation

—AIH)\-F)\H)\ = )\F(JZ—C) IEQ,
BH%(VC,z) _ BFS:V—() T 89,
where I'(2) = .

Let us set Dy(x) = uDo(p~t(z = ¢)), so that D; satisfies

% w3 log on 02, as u — 0.

2

{ —AD; = ANp ' Pwe(x) - 43T (2 - ()] x€Q,

Let us write
Si(x) = p 7 (2) + 4n3YAHA(C ) + Dy ().

With the notation of Lemma 2.2, this means
Si(x) = > 70(p, ¢, ).
Observe that for z € 092, as u — 0,
V(P (@) + 43T (@ = €)) v - Pl - I
Using the above equations we find that S; satisfies

{—ASI+>\51 = Dy e,

% = O(p2logp) on 0. (2.8)

Observe that, for any p > 3,

[ py@)pdz < ps [ Dy()pz,
Q R3

so that |Dq|z» < Cpu!*3/P. Elliptic estimates applied to problem (2.8) yield that, for any
>0, |S]lec = O(1277) uniformly on ¢ in compacts subsets of . This yields the assertion
of the lemma for i, j = 0.

We consider now the quantity Sy = 0:S;. Observe that Sy satisfies

—ASQ-F)\SQ = —)\8(]])1 $€Q,
% = O(p3logp) on 09.
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Observe that 0D (z) = -V Dy (%), so that for any p > 3,

| locu@ypdz <2 [ 1vDo(@)Pda

We conclude that |S3]e = O(u277), for any o > 0. This gives the proof of the lemma for
i=1, j=0. Now we consider S3 = 119,,5;. Then

—A33+)\Sg = —Au@uDl .TGQ,
%3 = O(pPlogp) on 9.

Observe that

40,1 (@) = (Do =) (=2,

where Dy(z) = VDo(2) - z. Thus, similarly as the estimate for S; itself we obtain [Ss]e =
O(u?), for any o > 0. This yields the assertion of the lemma for i =0, j = 1. The proof of
the remaining estimates comes after applying again (10, to the equations obtained for S, and
Ss3 above, and the desired result comes after exactly the same arguments. This concludes
the proof. O

Classical solutions to (2.1) correspond to critical points of the energy functional

1 A 1
Exw) =5 [vaP+5 [ up -2 [l (2.9)

If there was a solution very close to U¢ ,» for a certain pair (¢*, 4*), then we would formally
expect E to be nearly stationary with respect to variations of (¢, u) on U, around this
point. It seems important to understand critical points of the functional ((,p) - E\(Ue ).
In the following lemma we find explicit asymptotic expressions for this functional.

Lemma 2.3 For any o >0, as u — 0, the following expansion holds
Ex(Ug ) = ao + a1pga(C) + azp® A = azp® g3 (Q) + p°~70(, 1) (2.10)

where for j =0,1,2,1=0,1, 1+ j <2, the function uj%ﬁ(gu) is bounded uniformly on
all small ;1 and ( in compact subsets of ().

Proor. Observe that
Ex(Uey) =1+1I+1I+1IV+V + VI,
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where

I

1 1
‘/Q (§|Vw4u|2 - éwg,u) )

II = (VU’C,M'VWCM We, MWC“)

Q
=5 fg [Vl + Mwey + me ) men]

A
IVZ_/(“’CM“LWCM)U’C,M

V== [wCu T

VI = 3 [(ww WCH)G - wgﬂ - 6’(1)?’#7'('@“ - 15“’2,#”?#] )

»—t\

Multiplying equation —Aw¢ ,, = wzﬂ by w¢, and integrating by parts in {2 we obtain

1 8w< 1
T [ D, 4= f 6
2 Jog o CerT 3 Jo om

1 [ owe, 1 o, 1 ;
== ~We+ = we, - = we .
2Joa ov M3 Jre SH 3 Jreg O

Now, testing the same equation against m¢ ,, we find

8wg~,“ _ (()71'(’“

T - —
oq Ov  OF o0 Ov

II = 7T<7u,

where we have used the fact that 7, solves problem (2.4). Testing the equation —Am, , +
AT, = —Awe,, against me , and integrating by parts in €, we get

o,
111 = / G
2 Joa oy O

Testing equation —Aw¢ , = w?,u against U¢ , = w¢,, + m¢,, and integrating by parts twice, we

obtain 1 0 1 0 1
¢, o We,pn f 5
IV = = Ukt ey = ~ .
2 Joa 0v R T Joq oy TR T Jo onTn

From the mean value formula, we get

1
v1:-10fd1— 2[ N Bp3

Adding up the previous expressions we get so far
E\(Ue,) = L o 1 2 > 1l 4R 2.11
A( C“u') - g R3 wC,# - 5 Q wC:Hﬂ-Cﬂu - 5 Q wC:Hﬂ-C’H + L ( ' )

1 1
Ry = -3 /R?)\Q wg , - 10 /0 ds(1-s)? /Q(ww + ST ) T, (2.12)
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We will expand the second integral term of expression (2.11). Using the change of variable
x =(+pz and calling Q, = p71(Q2 - (), we find that

A= /s;wg*ﬂrc’“dx - M/s; wa () (¢ + pz)de
"
From Lemma 2.2, we have the expansion

o P (¢ + pz) = =43 HLA(C+ pz, O) = uDo(2) + 1277 0(C, 1, € + uz)).

According to Appendix A,
A

F\(C#102,€) = Q) + £onle] + O(G, € + a2,

where O is a function of class C? with ©((,() = 0. Using this fact , we obtain
31/4
Ar==4m3g(O) [ whi(2)dz - [ ufi(2) [Do(z) + 7A|z|] dz+ R,
with
Ro :uf wo 1 (2)[O(C ¢+ pz) + p?70(C, 1, € + pz)]dz
31/4
+p f wo 1(2) lDo(z) + —)\|z|] dz

+47T31/4,ug,\(C) f 1(2)dz. (2.13)
Let us recall that
~AD, = 314\ 1 :
V1+E |4

so that,

1 1
_ ADy(z) = 314\ f S ———"
/R's o, Ay (2) Re 0! [|z| 1+ |z|2]

Combining the above relations we get

Ay == 4m3ugy(€) [ uf i (2)dz

1 1 1
- 2)\31/4f wo1(2) | —— + 5wl dz+R
2 RS 0,1( ) \/T|Z|2 |Z| 0, 1| ‘ 2-
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- _ 4 2
Let us consider now A, = [, wg ¢ - We have

A =p [ i ()72, + )z
= A wh 1 (2) [~43HL(C + 1z, Q) = pDo(2) + 12 00(C, 1, + i) | d,

which we expand as
Az = 12 GO1673 [, + Ry,
R b
Combining relation (2.11) with the above expressions, we get so far
1 5}
Ex(Ue) = ao + a1piga(Q) + ashp® = agii*g3(C) + Ra = 5Ra = 5 Rs,

where

1 6
ag == w
O 3 ]RS 0,17

a =27r31/4/ wy 1,
R3

31/4 ) 1 1 N 1 . HE
g =—— Wl 2) | —7/—m——— —Wp 1|2 | A7,
P2 Jws [ Lelp o) 27

a5 407231/ f wd,.
R3

We want to establish the estimate

i+j
ociou
for each j =0,1,2,1=0,1,1+j5 <2, [ =1,2,3, uniformly on all small ;4 and ¢ in compact
subsets of €). This needs a corresponding analysis for each of the individual terms arising in
the expressions for R;.

:U’] Rl = O(:u?)_o—)v

Since several of these computations are similar, we shall only carry in detail those that
appear as most representative.

In (2.12) let us consider for instance the integral

6 3 3 1
w, - =32 f .
‘/]R3\Q #eG H R3\Q (/JJ2 + |y — <|2)3

From this expression it easily follows that

Ot
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uniformly in ¢ in compact subsets of €.

In (2.13), let us consider the term
B [ wly()[02(CC 2+ 12700, C 4 pz) | dz = By + Ba.
Let us observe that

Bz—ﬂf wlo(z)u2”9(ugg+,uz)dz—,u /wm(

)Q(uCy)dy-

The size of this quantity in absolute value is clearly O(u377). We have then that

3432 = I + I,

— /M‘lD(wlo)( )‘9(M Cy)dy,
e fww( )849(u ¢,y)dy.

Since 0:0(u, ¢, y) is uniformly bounded for ¢ ranging on compact subsets of €2, By, is of size
O(p79). Now, using symmetry,

Ly = “Hfa, (wi o) [0, ¢, ¢+ p2) = 01, ¢, Q)]
w08¢0) [, Dlwio)
- [ DO 608 .+ 1) 0.6, Y]+ o).

Now, 6 is symmetric in ( and y, hence has bounded derivative over compacts with respect
to each of its arguments. Thus

270 [ D) @[00n.¢.C+n2) =000 Oz

<op [ ulD@io) )| [Fldz+ 0t [ dz = 0 ).
H)|z|< |z|>

Let us consider now B;. We can expand

01(¢.C+pz)=pc-z+0(C,C+pz)

for a constant vector ¢, where 65 is a C? function with |65(¢,y)| < C'|¢ —y|?>. Observe that by
symmetry,

w? /Qu wio(z)c-zdz = —p? fRB\QMin(z)c-zdz:O(ﬁ).
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From here it easily follows that By = O(p?log u). Let us decompose it as

By = Byy + Bi2,

Bm5-33u3A;w}u2+w—CPY%(y—Cchy-

Biy has derivatives with respect to ¢ uniformly bounded by O(u2). As for the first integral,

Bll = IU_Z QUJ?O (y_g) 92(C7y) dg?

we obtain that 0.Bj; can be written as Ij11 + 112 with

]111:/[3'/1)(1030) (y—_C)QQ(Cay)dy,
L = /wm( )8492@ y)dy

Let us estimate the second integral

1112=,lf2 Qwio(%)aﬁ%(cjy)dy:M/Qwio(z)aCHZ((aC"'ﬂz)dz

We have that
9c02(C,C+pz)=pAz+0(uz)

where A = D205((,(), where we have used the expansion for H, made in the appendix.
Replacing the above expression and making use of symmetry we get that I115 = O(pu?log ).
As for the integral B;;, we observe that after an integration by parts,

]111:O(Mg)_ﬂ_Qwiio(yuc)a 02(C,y) dy

The integral in the above expression can be treated in exactly the same way as Bps, and
we thus find ;B = O(p?9) uniformly over compacts of Q in the variable ¢ variable. In
analogous way, we find similar bounds for ;10,B. The same type of estimate does hold for
second derivatives ;202 B and ,uQGZCB. As an example, let us estimate, as a part of the latter,
the quantity 10, . We have

fOuln = - [ 7 Jo D wlo)(y C)G(M Gy)d ]
<1+a>121 w7 Jou D2 y) (56) () 0 € ) dy
—p7 Jo D(wip) (y,_f)ﬂaue(#»fay)
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Let us consider the term
-0 —]_D2 5 (y_g)(y_c)g d
p fQu (wi) — )\ (1, ¢, y)dy,

the others being estimated in exactly the same way as before. The observation is that the
estimate of this integral by O(u3-7) goes over exactly as that one before for Iy, where
we simply need to replace the function D(w?},)(2) by D?(w? )z -z which enjoys the same
properties used in the former computation. Corresponding estimates for the remaining terms
in Ry and Rj3 are obtained with similar computations, so that we omit them.

Summarizing, we have the validity of the desired expansion (2.10), which with the aid of
the formula

[“( r )q dr  T(5H)0(5)
0 1+7r2) patl 2I'(q) ’

has constant a; given by
1
ag = Z\/§7T2, ap =831, ay=23r(4-7), as=120/37"

The proof is completed. O

2.3 Ciritical single-bubbling

The purpose of this section is to establish that in the situation of Theorems 2.1 there are
critical points of E5 (U, ) which persist under properly small perturbations of the functional.
As we shall rigorously establish later, this analysis does provide critical points of the full
functional E), namely solutions of (2.1), close to a single bubble of the form U, .

Let us suppose the situation (a) of local maximizer. In this section, and in the following
lemma we work with —g instead of g in the situation (a). Thus we have the assumption of
a local minimizer

0= 02,0 < nf ().

Then for A close to Ag, A > Ao, we will have
inﬂgg)\(x) <=A(X-Xo).
Let us consider the shrinking set
A
D)\ = {y eD: gA(x) < —§(>\ - )\0)}
Assume \ > )\ is sufficiently close to Ao so that gy = 2(A - Xo) on OD,.
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Now, let us consider the situation of Part (b). Since g)(¢) has a non-degenerate critical
point at A = A\g and ( = (y, this is also the case at a certain critical point () for all A close to
)\0 where |C)\ - C0| = O()\ - )\0)

Besides, for some intermediate point C}\,

92 () = 92(G0) + Daa($) (6 = Go) = AN = o) +0(A = No)

for a certain A > 0. Let us consider the ball B} with center ¢\ and radius p (A - \o) for fixed
and small p > 0. Then we have that g,(¢) > 2(A— ) for all (€ Bj. In this situation we set
Dy = B).

It is convenient to make the following relabeling of the parameter p. Let us set

a1 9a(Q)

2.14
TR (2.14)

where ( € Dy. We have the following result

Lemma 2.4 Assume the validity of one of the conditions (a) or (b) of Theorem 2.1, and
consider a functional of the form

A(A, Q) = Ea(Up) + 92 (€)? 0x(A, ) (2.15)
where p is given by (2.14) and
|05+ [VOA] +[VOrOA] - O (2.16)

uniformly on ¢ € Dy and A € (§,67'). Then v, has a critical point (Ay, () with () € Dy,
A)\ - 1.

Proor. Using the expansion for the energy with p given by (2.14) we find now that

_ _ a? gr(¢)? 2 2
¢A(A7C):EA(UC’M)_GO+4_@T [—2A+A :I-i-g)\(C) HA(A;C) (217)
where 6, satisfies property (2.16). Observe then that d,¢, = 0 if and only if
A=1+0(1)05(A,C), (2.18)

where 6, is bounded in C'-sense. This implies the existence of a unique solution close to 1
of this equation, A = Ay(¢) = 1+ o(1) with o(1) small in C* sense. Thus we get a critical
point of 1, if we have one of

PA(C) = Ua(AN(C),€) = ag +cgx(¢)* [1+0(1)] (2.19)

with o(1) uniformly small in C'-sense and ¢ < 0. In the case of Part (a), i.e. of the minimizer,
it is clear that we get a local maximum in the region D, and therefore a critical point.
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Let us consider the case (b). With the same definition for p, as above, we have

VnA(€) = n(Q)[ Vo + o(1) 02 . (2.20)

Consider a point ¢ € 0Dy = 0B). Then [Vgx(¢)| = [D*gA(7)(¢ = Q)| > ap(A = o), for some
a > 0. We also have ¢g,(¢) = O(A - Ag). We conclude that for all ¢ € (0,1), the function
Vgr+to(1l) gy does not have zeros on the boundary of this ball, provided that A— \q is small.
In conclusion, its degree on the ball is constant along ¢. Since for ¢ = 0 is not zero, thanks to
non-degeneracy of the critical point ¢y, we conclude the existence of a zero of Vp,(() inside
Dy. This concludes the proof. 0

2.4 The method

Hereafter we will look for a solution of (2.3) of the form v = V' + ¢, so that ¢ solves the
problem

{L(Q = N(¢)+E in (., (2.21)

5% = 0 on 0f),,

where
L(¢) == A¢ + 2 \p - 5V 4o,
N(¢):=(V +)° - V°-5V1¢,
E:=V5- w?’,u"

Let us remember that the only bounded solutions of the linear problem
Az + 5w§,7ﬂ,z =0, inR?
are given by linear combinations of the functions

%(x) :agé’”/(:p), i=1,23,

_81"(’,#’

o ().

In fact, the functions z;,i=1,2,3,4 span the space of all bounded functions of the kernel of
L in the case ¢ = 0. Observe also that

/3zjzk:0,ifj¢k.
R<

z4(x)

Rather than solving (2.21) directly, we will look for a solution of the following problem
first: Find a function ¢ such that for certain numbers c¢;,

L(¢) = N(o)+E+Xi, Ciwé,’u,zi in Q.,
5 = 0 on 99, (2.22)
[QS wé/’#,Zi¢ = O fOI' 1 = ].7 27 37 4
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2.5 The linear problem

In this section we will study the linear part of the problem (2.22). Given a function h, we
consider the linear problem of finding ¢ and numbers ¢;, i = 1,2, 3,4 such that

L(¢) = h+ Z?:l Ciwg/#/Z’i in Qa,

% =0 on 09, (2.23)
Jo. Wi uzmp = 0 fori=1,2,3,4.

Given a fixed number 0 < o <1 we define the following norms

[f]:=sup(L+ ]z = D@, 1 f e = sup(L+ o = )| f ().

e xe€e

Proposition 2.5 There exist positive numbers 0y, €g, v, By and a constant C' > 0 such that
if 5
dist(¢',09.) >~ and ag < i < Bo,
€
then for any h € C%*(Q.) with |h|.. < oo and for all ¢ < gy, problem (2.23) admits a unique
solution ¢ = T'(h) € C?2(€.). Besides,

IT(W)[« < Clhlles and e < Clhl, 1=1,2,3,4. (2.24)
For the proof of Proposition (2.5) we will need the next
Lemma 2.6 Assume the existence of a sequences (pu!))nen, (C))nens (En)nen such that ag <

ph < By, dist(¢, 08 ) > 01, €, = 0 and for certain functions ¢,, and h, with |h,|.. = 0 and
scalars c',1=1,2,3,4, one has

4 )
L(ﬁgn) = hp+Xin C?w§a7M%Z{‘ in €,
% =0 on 08, ,
st wg' w Hon = 0 fori=1,2,3,4
where
A= 0y Wey e, 121,23, 21 = O, ey,
then

lim [, = 0

Proor. By contradiction, we may assume that [¢,]. = 1. We will proof first the weaker
assertion that

lim |6, = 0.

Also, by contradiction, we may assume up to a subsequence that lim, .« ||¢, e = 7y, Where
0 <~ <1. Let us see that
lim ¢ =0,i=1,2,3,4.

n—00
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Up to subsequence, we can suppose that p), - p/, where ay </ < ;. Testing the above
equation against zj(x) and integrating by parts twice we get the relation

/S;a L(Z;-l)¢n+[m %—[ hn 2] +121:C / why A

n

Observe that

[t fy o f b

En

< Cth”x— + 0(1)”¢n“*7

4 n.n _ .
o Weum A A = Cé;j+o(1).
&n

Hence as n — oo, ' = 0,1=1,2,3,4.

Let x, € (), be such that sup,.q_ ¢n(7) = ¢n(x,), so that ¢, maximizes at this point.
We claim that there exists R > 0 such that

|z, = ()| <R, VneN.

This fact follows immediately from the assumption ||¢,[. = 1. We define bn(x) = ¢(x +
(') Hence, up to subsequence, ¢, converges uniformly over compacts of R3 to a nontrivial

bounded solution of ~ _
-A¢p - 5w§’#,¢ 0 in R3,
Jpowg yz6 = 0 fori=1,2,34

where z; is defined in terms of " and ¢’ = 0. Then b= Y&, a;z(z). From the orthogonality
conditions [pswg 26 =0,1=1,2,3,4, we deduce that ; =0, i=1,2,3,4. This implies that
¢ =0, which is a contradiction with the hypothesis lim, e [¢n]e =7 > 0.

Now we prove the stronger result: lim,, o, |#,]. =0. Let us observe that ¢, is a bounded
sequence, so (, = (, as n — oo, up to subsequence. Let R > 0 be a fixed number. Without
loss of generality we can assume that |(, — (| < R/2, for all n e N and B(¢, R) € 2. We define
() = %qﬁn (i) , x € Q0 (here we suppose without loss of generality that u, >0, Vn € N).
From the assumption lim,, e |¢n | = 1 we deduce that

[0 ()] < , for z € B((, R).

Also, ¥, (x) solves the problem

A+ My = e B U )+ g+ S 2wl 20 i Q,
% =0 on 052,
where g, (x) = h, ( ) and Z(x) = 2" ( ) Since limy,, o || A+« = 0, we know that
82+J
|gn ()] < o(1) = for x € Q.

ggfa +|17_'CnP+O7
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Also, by (2.7), we see that
(eUg o (2))* = CEL(1 4 0(1))G(,C0) (2.25)

away from (,. It’s easy to see that e ¥, dwt 7y =o(l) as €, - 0, away from ¢,. We
conclude (by a diagonal convergence method) that 1, (x) converges uniformly over compacts

of @\ {¢} to ¢¥(x), a bounded solution of

“AY+Ap = 0 in QN {¢Y,
% = 0 onodQ,

such that | (x)| < ﬁ in B(¢, R). So ¢ has a removable singularity at ¢, and we conclude
that ¢(z) = 0. This implies that over compacts of Q ~ {¢}, we have

[¢n ()] = o(1)eg.

In particular, we conclude that for all z € Q ~ B((,, R/2) we have [¢,(z)| < o(1)e?, which
traduces into the following for ¢,

|pn ()| < 0(1)e?, for all z € Q. ~ B((, R/2e,). (2.26)
Consider a fixed number M, such that M < R/2e,, for all n. Observe that ||¢,[ . =o(1), so
(1 +z]7)|pn(z)| < 0(1), for all z € B((!, M). (2.27)

We claim that
(1+1]z])|pn(x)| < o(1), for all x e A, ur, (2.28)

where A,y = B(Cl, R/2e,)~ B(¢!, M). This assertions follows from the fact that the opera-
tor L satisfies the weak maximum principle in A, s (choosing a larger M and a subsequence
if necessary): If u satisfies L(u) <0 in A, » and u <0 in 0A., ar, then u<0in A, ». This
result in just a consequence of the fact that L(Jx —(,|7) > 0 in A, ur, if M is larger enough
but independent of n.

We now prove (2.28) with the use of a suitable barrier. Observe that from (2.26) we deduce
the existence of n! - 0, as n - 0 such that ¢.7|¢,(x)| < nt, for all x such that |x| = R/2¢,.
From (2.27) we deduce the existence of n2 - 0, as n - oo such that M?|¢,(x)| < n2, for all
x such that |z| = M. Also, there exists 73 - 0, as n - oo such that

@+ G| L(6n)] < M, in Ac, ar
We define the barrier function ¢, (z) = nnﬁ, with 7, = max{n},n2,n3}. Observe that
L(py) = o(1 —U)%W + (5%)\—51/4)77”@. It’s not hard to see that |L(¢,)| < CL(¢y)
in A, v and |¢,(x)| < Cy, in 0A., v, where C is a constant independent of n. From the
weak maximum principle we deduce (2.28) and the fact |¢, ] = o(1). From (2.26), (2.27),
(2.28), and | ¢y |0 = 0(1) we conclude that
[¢nll+ = o(1)

which is a contradiction with the assumption |¢,|. = 1. The proof of Lemma (2.6) is
completed. n
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PROOF OF PROPOSITION 2.5. Let us consider the space

H = {¢ c H'(Q) fQ Wi pz5¢=0,1= 1,2,3,4.}
endowed with the inner product,

[6.0]= [ vovwreir [ ov

Problem (2.23) expressed in the weak form is equivalent to that of finding ¢ € H such that

[0.4] = /Q [5V4¢ +h+ iciwé,#,zi] W, forall ¢ e H.

The a priori estimate |[T'(h)|. < C||h||.. implies that for & = 0 the only solution is 0. With
the aid of Riesz’s representation theorem, this equation gets rewritten in H in operational
form as one in which Fredholm’s alternative is applicable, and its unique solvability thus
follows. Besides, its easy to conclude (2.24) from an application of Lemma (2.6). O

It is important, for later purposes, to understand the differentiability of the operator
T : h - ¢, with respect to the variables p/ and (’, for a fixed € (we only let ¢ and p be
variables). We have the following result

Proposition 2.7 Under the conditions of Proposition (2.24), the map T is of class C.
Besides, we have

Ve wT ()] < Clhlss

Proor. Let us consider differentiation with respect to the variable (;, k =1,2,3. For nota-

tional simplicity we write % = O¢. Let us set, still formally, Xy = d; . Observe that Xj
k

satisfies the following equation

4 4
L(Xy) =50 (V) + > dfwl oz + Y 0 (Wi z), i Q.
i-1

i=1

Here df = J¢rci,1=1,2,3. Besides, from differentiating the orthogonality conditions |, w¢, 5=
0,i=1,2,3,4, we further obtain the relations

L kaé’vldzi = - ]Q Qﬁac;c (wz—ll"u/Zi), 1 = 1, 2, 3,4

Let us consider constants b;, i = 1,2, 3,4, such that

4
f (Xk N Zbizi) wé’,,u’zj = 07 j =1, 27 374
€ i=1
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These relations amount to

4
Zbi [ Wer ' ZiZj = f (Zﬁacllv (wgf’“/Zj), j = 1, 2, 3,4
-1 Y% Qe

Since this system is diagonal dominant with uniformly bounded coefficients, we see that it
is uniquely solvable and that

bi = O([4].)

uniformly on (', i/ in the considered region. Also, it is not hard to see that
[60¢; (V) [r < Cllg]..

From Proposition (2.24), we conclude

< Clhl-

4
Z CiagC (wélﬂulzi)
i=1

* %

We set X = X, - 214:1 b;z;, so X satisfies
4
L(X) = f + Z bfwé’v/»/zb ln QEJ
i-1

where A A
f = 58(;(V4)¢ Z blL(Zl) + Z ciagyu/(wg,#,zi)
i=1 i=1

Observe that also,

4 _ P —
QE Xw<I7MIZi - O, 1= 17273,4.

This computation is not just formal. Indeed, one gets, as arguing directly by definition
shows,

4
ag,;¢ = Z bizi + T(f)
i=1

and

|0g, 81l < ClA]x-

The corresponding result for differentiation with respect to u’ follows similarly. This con-
cludes the proof. O

2.6 The nonlinear problem

We recall that our goal is to solve the problem (2.21). Rather than doing so directly, we
shall solve first the intermediate nonlinear problem (2.22) using the theory developed in the
previous section. We have the next result
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Lemma 2.8 Under the assumptions of Proposition (2.5), there exist numbers e, >0, C; > 0,
such that if u and ¢ are additionally such that |E|.. < €1, then problem (2.22) has a unique
solution ¢ which satisfies

o]« < CL| Ell4s-

Proor. In terms of the operator T' defined in Proposition (2.5), problem (2.22) becomes
¢=T(N(¢)+E)=A(o).
For a given v > 0, let us consider the region
Fy={0 € C(Q)| o], <A E]}-
From Proposition (2.5), we get

A < CTIN(@) s + 1 E] ]

The definition of N immediately yields | N(®)|.. < Co|[?. It is also easily checked that N
satisfies, for ¢, ¢ € F,

IN(¢1) = N(d2) [ x < Cov | B 4e] @1 = D2l
Hence for a constant C; depending on Cy, C, we get

JA(B) ]« < C1[V|E]wx + 1] | Ellcx
|A(P1) = A(P2) [« < Cry| B s [ d1 = 2] -

Choosing
1
= C s E1 = —,
Y 1 1 2012
we conclude that A is a contraction mapping of 7., and therefore a unique fixed point of A
exists in this region. O

We shall next analyze the differentiability of the map ({’, ') - ¢. Concerning the differ-
entiability of the function ¢(¢’), let us write

Az, p) =9 -T(N(p) + E).
Observe that A(¢’,¢) =0 and
DpA(C',0) =1+ O(e).

It follows that for small e, the linear operator 9, A((’, ¢) is invertible, with uniformly bounded
inverse. It also depends continuously on its parameters. Differentiating respect to (' we
obtain

Do AC6) = (Do T)(N(6) + E) = T(IoN(6) + s R).
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where the previous expression depend continuously on their parameters. Hence the implicit
function theorem yields that ¢(¢’) is a C'! function. Moreover, we have

0gr¢ = =(05A(¢", 9)) [0 AL, 0) .
By Taylor expansion we conclude that
[0 N (@) 4x < C]« + [0 0] 0]« < CUE]x + [0 ) E -
Using Proposition (2.7), we have
[0c: ¢l < CAUN(P) + Ell s + [0 N (&) |45 + |0c B 1),

for some constant C' > 0. Hence, we conclude that

[0l < CUE] s + 10 E] 1)
A similar argument shows that, as well

1000l < CUE]s + [0 Ell1).

This can be summarized as follows

Lemma 2.9 Under the assumptions of Proposition (2.5) and (2.8) consider the map (', p') —
¢. The partial derivatives V¢ and V,,¢ exist and define continuous functions of ({’, u').
Besides, there exist a constant Cy > 0, such that

[Vedls +[Vudl. < Co(IEx + 1V Elx + [V B ).

After Problem (2.21) has been solved, we will find solutions to the full problem (2.22)
if we manage to adjust the pair (¢’,u) in such a way that ¢ (¢’, ') =0, 1=1,2,3,4. This
is the reduced problem. A nice feature of this system of equations is that it turns out to
be equivalent to finding critical points of a functional of the pair ({’, ') which is close, in
appropriate sense, to the energy of the single bubble U.

2.7 Variational formulation of the reduced problem.

In order to obtain a solution of (2.1) we need to solve the system of equations
cj(¢",p)=0 forall j=1,...,4. (2.29)

If (2.29) holds, then v = V + ¢ will be a solution to (2.21). This system turns out to be
equivalent to a variational problem. We define

F(¢ 1) = Ex(V +¢),
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where ¢ = ¢((’, p') is the unique solution of (2.22) that we found in the previous section, and
E) is the energy functional defined in the previous sections. Critical points of F' correspond
to solutions of (2.29), under the assumption that the error E is small enough. The proof of
this fact is similar to the one of Lemma 7.2 in [12].

Additionally, the following expansion holds
F(¢', 1) = Ex(V) + (|E[% + IV B2, + [V B2 1),

where for a certain constant C' > 0 the function 6 satisfies 0] + |V¢0| + |V /0| < C. Using
this expansion and the hypothesis of Theorem 2.1, we conclude the proof using a similar
argument to the one given for the proof of Theorem 3 part (b) in [12]. This concludes the
proof of our main theorem. O

2.8 Appendix — Robin’s function

In this appendix we prove two facts we have used in the course of the proofs about Robin’s
function gx. Recall that gy(x) = H)(x,z) where the function y — H)(z,y) satisfies the
boundary value problem

-AyHy+ M Hy, = MN'(z-y) yeQ,
8H)(\9(Vm,y) _ Bl"g:;y) Te GQ,

where I'(z) = =

yepk
Lemma 2.10 The function g, is of class C*(Q).

Proor. We will show that g, € C*, for any k. Fix xz € Q. Let hy, be the function defined in
Q) x € by the relation

H)\(CC,Z/) = ﬂl |l’ _y| + hl,)\('xay) )

where 3, = —%. Then h, ) satisfies the boundary value problem

{ “Ayhix+ Ay = =Abilz -y xin €,
oh x, z— x—
1,31(/ Y _ 8F(au y) _ 8 8\ayy| on ON.

Elliptic regularity then yields that hy \(x,-) € C?(Q). Its derivatives are clearly continuous
as functions of the joint variable. Let us observe that the function H)(z,y) is symmetric,
thus so is hy, and then hy (-, y) is also of class C? with derivatives jointly continuous. It
follows that hi(z,y) is a function of class C?(Q2 x ). Iterating this procedure, we get that,
for any k

k
Hy(z,y) =Y. Bile =y + hy (2, y)

=1
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with 8.1 = -A5;/((27+1)(2j +2)) and hy, ) solution of the boundary value problem

{ “Ayhpy+ My = =ABglr -yt in (),
oh x, ol (z— A|x—y[?9~1
e - e gl 8 o0

We may remark that
—Ayh;ﬁl,)\ + )\hk,)\ =0 in €.

Elliptic regularity then yields that hy y, is a function of class C**1(€Q x ). Let us observe
now that by definition of gy we have gy(z) = hy(x,x), and the conclusion of the Lemma
follows.

]

Lemma 2.11 The function %i/\k is well defined, smooth and strictly positive in ). Its

derivatives depend continuously on \.

Proor. For a fixed given x € 2, consider the unique solution F'(y) of

-AyF+\F G(z,y) yeQ,
& =0 y € 0N

Using elliptic regularity, F' is at least of class C%*. Besides a convergence argument using
elliptic estimates shows that actually

F(y) = %2 (2,0).

Since A > 0 and G is positive in €2, using F_ as a test function we get that F_ =0 in €2, thus
F > 0. Hence, in particular
9
o\
Arguing as in the previous lemma, this function turns out to be smooth in x. The resulting
expansions easily provide the continuous dependence in X of its derivatives in z-variable. [

(z)=F(x)>0.
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