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ABSTRACT

The dual nature of rock glaciers as ice-rich mountain permafrost and sediment storage systems results in a combination
of geomorphic processes and energy balance components controlling their distribution. We use the generalised
additive model (GAM), a semi-parametric nonlinear method, to empirically analyse environmental controls and
spectral characteristics of rock glaciers in the dry Andes of Chile based on presence/absence data at random point
locations and predictor variables derived from digital elevation models and Landsat data. A combination of
nonlinearly transformed local and catchment-related terrain attributes (especially local and catchment slope and
potential incoming solar radiation, PISR) characterises the geomorphic and climatic niche of rock glaciers. The
influence of (latitude adjusted) relative PISR varies with mean annual air temperature (MAAT): high-PISR sites are
favourable for rock glacier development at lower MAATs and low-PISR sites at higher MAATs. TM/ETMþ band
6 (thermal infrared) is an additional nonlinear predictor. The combination of topographic, climatic and multispectral
data in a GAM achieves an excellent general discrimination (area under the ROC curve 0.87 on the model domain and
0.94 overall). In automatic rock glacier detection at a sensitivity of 70 per cent, this model achieves a false-positive rate
(FPR) of 6.0 per cent overall and 12.8 per cent on the model domain (bootstrap estimates: 7.9% and 16.8%). Dropping
the multispectral data significantly increases the bootstrapped FPR by 36 per cent. Thus, the fusion of multisource data
using modern nonlinear classification techniques is a promising step towards automatic rock glacier detection.
Copyright # 2009 John Wiley & Sons, Ltd.
KEY WORDS: generalised additive model; logistic regression; digital elevation model; terrain analysis; rock glacier; Andes
INTRODUCTION

The complex topographic and climatic controls on rock
glacier occurrence and characteristics have been a focus of
rock glacier research since its early days (Wahrhaftig and
Cox, 1959; Frauenfelder et al., 2003; Janke, 2005; Brenning
and Trombotto, 2006; Brenning et al., 2007; Johnson et al.,
2007). The complexity of these relationships is a result of the
dual nature of rock glaciers as ice-rich mountain permafrost
and sediment storage systems. As permafrost features, rock
glacier occurrence is influenced by topoclimatic factors such
as air temperature and solar radiation that affect their energy
balance. Rock glaciers as sediment storage systems depend
on post-glacial talus production and transport, which are
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related to topographic characteristics of rock glacier sites
and talus sheds (Brenning and Trombotto, 2006).
Modern statistical analysis techniques are powerful tools

that provide insight into the environmental factors that are
empirically related to rock glacier distribution. Logistic
regression (Brenning and Trombotto, 2006; Janke, 2005)
and more recently the more flexible generalised additive
model (GAM; Hastie and Tibshirani, 1990; Brenning et al.,
2007) have been used for this purpose. These analyses have
been the starting point for the development and comparison
of different algorithms for automatic, multisource rock
glacier detection with a combination of terrain attributes and
remote-sensing variables (Brenning, 2009). Disentangling
the relationships between rock glacier occurrence and
topographic, climatic and spectral patterns will therefore not
only enhance our understanding of rock glaciers within the
mountain environment, but it will also improve automatic
mapping algorithms to be developed for efficiently mapping
rock glaciers. Advances in automatic rock glacier detection
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Statistical Analysis of Rock Glaciers in the Dry Andes 55
may help improve algorithms for mapping glaciers –
especially debris-covered ones – from space as intended by
initiatives such as the Global Land Ice Measurements from
Space project (GLIMS; Kargel et al., 2005). While rock
glaciers are usually not included in glacier inventories, the
detection of debris-covered parts of glaciers poses a major
challenge that is related to the problem of rock glacier
detection because the two spectral signatures are similar
(Gratton et al., 1990; Paul et al., 2004; Bolch and Kamp,
2006; Brenning, 2009).

The objective of this paper is to analyse the influence of
topographic and climatic variables on rock glacier distri-
bution in the dry Andes, and to determine to what degree
multispectral Landsat TM/ETMþ data can improve rock
glacier detection in this arid environment. The GAM and
logistic regression are used (see Brenning, 2009). This
builds on the results by Azócar and Brenning (2009), who
statistically estimated rock glacier areas and water
equivalents in the dry Andes, and characterised their
distribution and geomorphic and hydrological importance
in the context of regional climatic setting and the scarcity of
glaciers in the area. The reader is referred to this companion
paper for a geographical characterisation of the study area.
DATA AND METHODS

Statistical estimation based on air photo interpretation at
random point locations is an efficient method for the
quantification of rock glacier area and water equivalent
(Brenning, 2005), and GAMs are flexible tools for the
analysis and prediction of rock glacier distribution (Bren-
ning et al., 2007; Brenning, 2009). In this application of
GAMs and logistic regression models to analyse rock glacier
distribution in the dry Andes, we use a learning set of
random locations generated and presented by Azócar and
Brenning (2009), where 72 out of a total of 5308 samples
were classified as rock glacier locations based on air photo
interpretation. The samples are spread over an area of
10 616 km2 above the approximate lower limit of rock
glacier distribution. Of the original 5308 point locations, the
present data exclude 72 points where air photos or suitable
satellite imagery were unavailable, and four points that were
found to be east of the Chile-Argentina border. Moreover,
our analysis focuses on 2485 samples (corresponding to 48%
of the study area) that passed a first screening step which
excludes topographically clearly unsuitable areas according
to an unsuitability score defined by Azócar and Brenning
(2009). The score is based on thresholds on the catchment-
area size (0.1–3.16 km2 are suitable), the catchment slope
(must be �158) and the local slope (must be �458); in
addition, the elevation must lie between the extreme upper
and lower limits of rock glacier occurrence identified by
Brenning (2005) and refined by Azócar and Brenning
(2009). We refer to this more focused area as the model
domain.

All statistical analyses are performed within the data
analysis environment R. The GAM is implemented in R’s
Copyright # 2009 John Wiley & Sons, Ltd.
‘gam’ package. Terrain attributes are calculated with SAGA
GIS and R’s ‘RSAGA’ package. A digital elevation model
(DEM) from the Shuttle Radar Topography Mission (SRTM
version 3 from Consultative Group for International
Agriculture Research Consortium for Spatial Information
(CGIAR) with filled gaps, vertical standard error�15–16m,
Kääb, 2005; resolution 300, projected and resampled to a
resolution of 90m) is used for all analyses.

Generalised Additive and Linear Models

The GAM is a flexible yet interpretable model that has been
successfully used in periglacial geomorphology, including
rock glacier distribution modelling (Luoto and Hjort, 2005;
Hjort and Luoto, 2006; Brenning et al., 2007; Brenning,
2009). It extends the generalised linear model (GLM) using
a combination of linear and nonlinear terms to represent
predictor variables (Hastie and Tibshirani, 1990), which is
important in this context (compare Brenning et al., 2007,
with Brenning and Trombotto, 2006).

In the case of a binary response variable Y such as the
presence (Y¼ 1) versus absence (Y¼ 0) of rock glaciers, we
model the probability p(x)¼ P(Y¼ 1jx) of rock glacier
occurrence conditional on a vector of predictor variables
x¼ (x1,. . .,xp)

T characterising local site conditions and
regional climatic trends. In this situation, the GAM
represents the logit of this conditional probability as an
additive function of the predictors:

logitðxÞ ¼ f1ðx1Þ þ . . .þ fpðxpÞ;
where the log-odds or logit is defined as:

logitðxÞ ¼ lnðoddsðxÞÞ ¼ ln½PðxÞ=ð1�PðxÞÞ�;
and where the functions f1,. . .,fp are possibly nonlinear
functions of the predictor variables. These transforms can be
obtained using, for example, smoothing splines (here of two
equivalent degrees of freedom), or local polynomial
regression (Hastie and Tibshirani, 1990), though individual
predictors can still be modelled linearly.

We constructed three GAMs with different sets of
predictor variables:
1. o
nly terrain attributes and position variables representing
topographic and climatic conditions (model abbreviated
as GAM-TA),
2. o
nly multispectral remote-sensing data (GAM-RS), and

3. b
oth sets of variables (GAM-TA-RS).

We fitted the GAM-TA and GAM-RS by stepwise-for-
ward variable selection starting with an empty model. The
GAM-TA-RS was then built by combining the predictor
variables in the GAM-TA and GAM-RS. A stepwise variable
selection on the full set of predictor variables was not
possible because of memory limitations.

The topographic and climatic predictors considered in
model construction are described below. Each variable could
be included as a linear variable (as in logistic regression), as
a nonlinearly transformed one, or not at all. Variable
selection is based on the Akaike Information Criterion
Permafrost and Periglac. Process., 21: 54–66 (2010)
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(AIC), which penalises for the number of variables in a
model and thus helps avoid overfitting, keeping the model
small and interpretable. This strategy not only produces
good analytical models, but also models with excellent
predictive capabilities in rock glacier detection (Brenning,
2009).
We also compare the results of the GAM with logistic

regression (henceforth referred to as GLM), i.e. the special
case of an additive model with linear influences of the
predictor variables. This allows us to interpret rock glacier
distribution in a parametric framework, and to assess
whether ignoring the (possibly limited) nonlinearities in
predictor variables results in an appreciable loss of
goodness-of-fit.

Model Evaluation

The overall performance of the GAM and GLM is measured
by the area under the receiver-operating characteristic
(ROC) curve (AUROC). It can range between 0.5 (no
separation) and 1.0 (complete separation of presence and
absence by the model). The ROC curve represents all
possible combinations of sensitivities (percentage of
observed positives that are correctly predicted as such, or
true-positive rate) and specificities (true-negative rate) that
can be achieved by a probability model.
Effective rock glacier detection requires a large percen-

tage of actual rock glaciers to be correctly predicted (i.e.
high sensitivity). We use a fixed high sensitivity of 70 per
cent, at which we measure the false-positive rate (FPR) of a
classifier. High sensitivity allows us to identify most rock
glacier grid cells, and to detect almost all rock glacier
objects at least partly, as discussed below. The overall
misclassification error rate (overall percentage of samples
that is misclassified) of the classifier would not be an
appropriate error measure because false-positive and false-
negative predictions must be weighted differently (Bren-
ning, 2009).
In addition to measuring the AUROC and FPR on the

training set, we also perform bootstrap error estimation in
order to obtain unbiased estimates of the performance of the
GAM and GLM. Bootstrapping is based on approximating
the data-generating distribution by empirical distribution of
the data set. Independent training and test sets can thus be
obtained by drawing objects with replacement from the data
set. We use 100 bootstrap training sets and the same number
of bootstrap test sets, each drawn independently from the
learning set. Resampling is stratified with respect to the
response variable in order to maintain a constant rock glacier
density. This results in 100 independent estimates of
AUROC and FPR for each classification method. The
different GAM and GLM models obtained on each of the
bootstrap training sets by stepwise variable selection are
examined further in order to determine variable selection
frequencies as an indicator of variable importance.
We statistically test pairwise differences in bootstrap

estimates of AUROC and FPR on equality using a Wilcoxon
signed rank test with Bonferroni correction for multiple
Copyright # 2009 John Wiley & Sons, Ltd.
comparisons (15 pairwise tests for AUROC and FPR,
respectively) to control the familywise error rate at the 5 per
cent level. Effects of potential spatial autocorrelation on
statistical inference and bootstrap estimation can be
disregarded at the present sampling density of 0.5 km�2.
The GAM using terrain attributes and remote-sensing data

(GAM-TA-RS) is also used for predicting a rock glacier
probability map for the entire study area and further east into
the Argentine Andes. A median filter is applied to reduce
noise in the prediction map and to obtain more compact rock
glacier objects.

Predictor Variables.
In order to effectively characterise the geomorphic niche

of rock glaciers, we use a set of SRTM-derived positional
variables and terrain attributes that are related to local
topographic and climatic site conditions, catchment-area
characteristics controlling talus supply and regional climatic
trends. In addition, Landsat TM/ETMþ spectral and derived
data are used. Table 1 gives an overview of all predictor
variables and univariate descriptive statistics for assessing
the utility of individual variables. Variable importance in the
GAMs and GLMs is measured in terms of deviance
reduction and bootstrap variable selection frequency.

Topographic and Climatic Variables

Mean annual air temperature (MAAT) represents regional-
scale latitudinal variation and is based on the modern 08C
isotherm ofMAAT synthesised by Brenning (2005) based on
several primary data sources, and an assumed lapse rate of
0.658C per 100m. In addition to the estimated MAAT,
latitude itself and an interaction term of MAAT and latitude
are also considered in model building because the effect of
temperature itself and confounding effects may change
across several hundred kilometres in a north-south direction
(see Azócar and Brenning, 2009).
Morphometric properties of rock glaciers can be

measured by terrain attributes representing slope angle,
plan and profile curvature, and an important driver of the
surface energy balance can be captured by PISR. PISR, as an
annual sum, is represented as an index relative to the average
PISR at the same latitude, resulting in values mostly between
0.8 and 1.2 (i.e. local topographic conditions account for a
departure of �20% from the regional average). This index
allows us to separate latitudinal from topographic variation
in radiation. The interaction term of relative PISR and
MAAT is considered as a potential additional predictor
variable because such an interaction had a significant
influence on rock glacier distribution in the Andes of
Santiago (Brenning and Trombotto, 2006). The same study
also found a significant effect of plan curvature.
The size of the catchment area is a potentially important

predictor variable as it is related to the intensity and type of
talus supply processes (Frauenfelder et al., 2003; Janke and
Frauenfelder, 2008; Azócar and Brenning, 2009). We
calculate it with the Multiple Flow Direction algorithm.
A related predictor variable is the height of the catchment
Permafrost and Periglac. Process., 21: 54–66 (2010)



Table 1 Descriptive statistics of the morphometric and multispectral predictor variables used for modelling rock glacier distribution

Variable Unit Model domain Entire area

Non-rock glaciers: Mean (Std dev.) Rock glaciers: Mean (Std dev.) AUROC AUROC

MAAT 8C �1.04 (1.86) �1.15 (1.79) 0.51 0.58
Latitude 8S 30.57 (1.58) 30.85 (1.64) 0.54 0.65
Latitude�MAAT �29.9 (56.7) �34.0 (53.6) 0.51 0.57
Local slope 8 24.8 (8.3) 21.1 (8.7) ��� 0.63 0.50
Catchment slope 8 25.0 (5.4) 28.1 (4.1) ��� 0.68 0.78
Log10 catchment area log10(m

2) 4.72 (0.47) 5.11 (0.49) ��� 0.73 0.74
Log10 catchment height log10(m) 1.98 (0.42) 2.31 (0.34) ��� 0.74 0.78
Plan curvature 8/100m 0.43 (11.4) �3.42 (8.81) �� 0.61 0.63
Profile curvature 8/100m �0.70 (9.34) �4.43 (9.76) �� 0.60 0.65
Relative PISR 0.99 (0.06) 1.00 (0.06) 0.55 0.52
Relative PISR�MAAT �1.05 (1.85) �1.21 (1.75) 0.52 0.57
TM/ETMþ Band 1 DN 48.9 (12.1) 51.3 (12.9) 0.56 0.51
TM/ETMþ Band 2 DN 47.2 (15.0) 49.9 (14.3) 0.56 0.51
TM/ETMþ Band 3 DN 60.3 (22.6) 63.1 (21.2) 0.54 0.51
TM/ETMþ Band 4 DN 70.5 (27.4) 72.4 (25.4) 0.52 0.54
TM/ETMþ Band 5 DN 53.1 (25.0) 54.2 (23.1) 0.52 0.53
TM/ETMþ Band 6 DN 79.9 (44.8) 69.0 (38.2) 0.55 0.57
TM/ETMþ Band 7 DN 50.2 (17.2) 52.8 (15.7) 0.56 0.51
NDVI 0.073 (0.033) 0.066 (0.028) � 0.57 0.62
NDSI �0.02 (0.13) �0.01 (0.15) 0.50 0.55
Log10 band ratio 4:5 0.14 (0.08) 0.14 (0.10) 0.53 0.51

�, ��, ��� Differences in location parameter are significant at the 5 per cent, 1 per cent and 0.1 per cent levels, respectively (Mann-
Whitney test with normal approximation). Abbreviations are defined in the text. Significant test results and AUROC values of at least
0.60 are highlighted in bold.
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area. Both are highly skewed and are therefore log-
transformed. Catchment slope controls the effectiveness
of gravitational processes in providing talus to a rock glacier.

Multispectral Remote-Sensing Data

Among the Landsat TM/ETMþ variables that may be
important for distinguishing between rock glaciers and the
various types of non-rock glacier surfaces are the normal-
ised-differences vegetation index (NDVI), the thermal band
(band 6), the normalised-differences snow index (NDSI) and
the TM/ETMþ 4:5 band ratio (Hall et al., 1987; Williams
et al., 1991; Sidjak and Wheate, 1999; Paul et al., 2004;
Brenning, 2009). The NDSI is the normalised difference of
TM/ETMþ bands 2 and 5, which has been effective in
distinguishing snow from bright soil, vegetation and rock
based on the difference between reflection of visible
radiation and absorption of middle infrared by snow (Hall
et al., 1995; Sidjak and Wheate, 1999).

Spectral and derived variables were obtained from a
combination of several orthorectified Landsat TM and
ETMþ images (TM path/row 233/83 of 17 March 1989; TM
233/82 of 13 April 1990; ETMþ 233/81 of 21 March 2002;
TM 233/80 of 2 April 1986; ETMþ 233/79 of 26 November
2000; all retrieved from the Global Land Cover Facility at
the University of Maryland, http://www.landcover.org/).
Random influences on spectral data due to different
acquisition dates were removed by per-band linear
transformations. Transformation coefficients were estimated
Copyright # 2009 John Wiley & Sons, Ltd.
in overlapping areas by quantile regression of the median, a
method that is resistant to outliers and noise (Koenker,
2005). Simple regression of corresponding bands of adjacent
images provides an acceptable goodness-of-fit in most cases
(R2� 68%). Transformations based on regression models
with multiple bands as predictors were applied in five cases
where the univariate R2 was between 7 per cent and 57 per
cent. Four of these related to the difference between images
233/78 and 233/79. The multiple-variable band transform-
ations increased these R2 values to 53–76 per cent.

We use the transformed digital number (DN) of each
spectral band (bands 1–7; the panchromatic band of ETMþ
is omitted) as potential predictor variables and, in addition,
the NDVI, the NDSI and the log-transformed ratio of bands
4 and 5 (Table 1).
RESULTS

Exploratory Data Analysis

After applying the unsuitability score to limit the sample to
the model domain, univariate AUROC values indicated that
a variety of local and catchment-related terrain attributes
and, to a lesser extent, selected multispectral variables could
be useful to discriminate rock glacier presence and absence
(Table 1). Catchment height and area were the strongest
univariate predictors (AUROC> 0.70 on the model
domain), followed by catchment slope, local slope, and
Permafrost and Periglac. Process., 21: 54–66 (2010)
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plan and profile curvature (AUROC� 0.60). Differences in
the location parameters of these variables were also
statistically significant (Mann-Whitney test, 5% significance
level).
The NDVI and Landsat TM/ETMþ bands 1, 2 and 6 were

the most relevant univariate remotely sensed predictors of
rock glacier presence, although with weak univariate
discriminatory power (AUROC� 0.55). The NDVI, how-
ever, was the only remotely sensed variable with a
significant difference between presence and absence
samples in the location parameter. Reported differences in
the predictive power of the other remotely sensed variables
may be due to random variation. Variables that appear to be
of little importance here, however, may still be important in
nonlinear multiple variable models.
Most of the TM/ETMþ bands were strongly intercorre-

lated, with Spearman correlation coefficients>0.80 between
all bands except the thermal infrared (band 6), and 0.60–0.69
between band 6 and the other bands. The NDSI was strongly
correlated with band 5 (Spearman correlation �0.87) and
with the ratio of bands 4 and 5 (0.86), and less with bands 3,
4 and 7 and the NDVI (Spearman correlation �0.60 to
�0.68). The correlation of the NDVI with other variables
was strongest for the NDSI (�0.65), and the 4:5 band
ratio was strongly correlated with NDSI (0.86) and band
5 (�0.67).
Table 2 GAMs and GLMs relating rock glacier occurrence to t
(GAM-/GLM-RS) and both sets of predictors (GAM-/GLM-TA-RS

Model Variable G

Transformed a p-Value
transform

GAM-/GLM-TA Intercept (No)
MAAT Nob

Local slope Yes 0.097
Catchment slope Yes 0.008

Log10 catchment height No
Relative PISR —b —b

Relative PISR�MAAT Yes 0.005

GAM-/GLM-RS Intercept (No)
Band 2 Yes 0.008
Band 6 Yes 0.001

GAM-/GLM- Intercept (No)
TA-RS MAAT Nob

Local slope Yes 0.080
Catchment slope Yes 0.008

Log10 catchment height No
Relative PISR —b —b

Band 2 Yes 0.019
Band 6 Yes 0.002

Relative PISR�MAAT Yes 0.004

�, ��, ��� Hypothesis tests are significant at the 5 per cent, 1 per cen
a Indicates whether a variable is included in a GAM as a linear var
b MAAT and relative PISR are included in the GAMs’ non-paramet
MAAT was separately selected by automatic variable selection. Ab

Copyright # 2009 John Wiley & Sons, Ltd.
All Spearman correlations between TM/ETMþ variables
and terrain attributes ranged between�0.50 andþ0.50. The
height and size of the contributing area were the most
strongly intercorrelated terrain attributes (Spearman corre-
lation 0.92). The pairs latitude/MAAT and local slope/
catchment slope followed with correlations of 0.66, while all
other pairs of terrain attributes had correlations between
�0.60 and þ0.60 (mostly �0.30 to þ0.30).

GAM and GLM Variable Selection and Importance

The GAM that used only terrain attributes (GAM-TA)
included, after stepwise variable selection based on the AIC,
five variables: local and catchment slope, log-catchment
height, MAAT and relative solar radiation (Table 2). The
latter two were combined by a two-dimensional, nonlinear
interaction term representing a solar radiation influence that
differed between colder and more temperate sites. In
addition to this interaction, both slope variables were
included as nonlinearly transformed predictors.
The remote sensing-based GAM (GAM-RS) contained

Landsat bands 2 and 6 (thermal infrared), both after
nonlinear transformation (Table 2). The bootstrapped
variable selection frequencies clearly indicate that the
variables selected by our models GAM-TA and GAM-RS
errain attributes (GAM-/GLM-TA), Landsat TM/ETMþ data
)

AM GLM

of
ation

p-Value
of effect

Deviance
reduction

Coefficient Standard
error

p-Value

�6.70 2.75 0.014 �

<0.001 ��� 0.00b 2.62 1.03 0.011 �

<0.001 ��� 34.0 �0.11 0.02 <0.001 ���
�� <0.001 ��� 41.9 0.19 0.03 <0.001 ���

0.068 3.3 0.88 0.46 0.059
—b —b �1.41 2.46 0.566

�� 0.008 �� 18.1 �2.69 1.03 0.009 ��

�0.92 0.85 0.276
�� <0.001 ��� 14.9 0.03 0.01 <0.001 ���
�� <0.001 ��� 34.4 �0.03 0.01 <0.001 ���

�6.18 2.89 0.032 �

<0.001 ��� 0.00b 2.68 1.03 0.009 ��

<0.001 ��� 28.9 �0.11 0.02 <0.001 ���
�� <0.001 ��� 39.8 0.19 0.04 <0.001 ���

0.115 2.5 0.93 0.47 0.047 �

—b —b �1.47 2.53 0.560
� 0.008 �� 9.6 0.03 0.01 0.004 ��
�� 0.001 �� 14.4 �0.01 0.01 0.116
�� 0.007 �� 18.2 �2.70 1.03 0.009 ��

t and 0.1 per cent levels, respectively (x2 score test).
iable or nonlinearly transformed.
ric bivariate loess smoother representing their interaction term.
breviations are defined in the text.
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Table 3 Variable selection frequencies over 100 bootstrap replications for GAMs and GLMs combining terrain attributes and
remote-sensing variables

Variable GAM GLM

Linear Transformed Total Total

Catchment slope 0 100 100 100
Local slope 38 62 100 100
TM/ETMþ Band 6 0 100 100 65
Relative PISR�MAAT 21 64 85 6
Log10 catchment height 30 36 66 66
Latitude�MAAT 0 57 57 7
TM/ETMþ Band 2 2 49 51 45
MAAT 40 0 40 27
Profile curvature 19 15 34 29
Relative PISR 24 8 32 27
NDVI 4 26 30 9
TM/ETMþ Band 1 11 17 28 21
Log10 band ratio 4:5 9 8 17 48
TM/ETMþ Band 5 4 13 17 19
TM/ETMþ Band 3 11 6 17 19
TM/ETMþ Band 4 15 2 17 10
Plan curvature 4 9 13 28
TM/ETMþ Band 7 2 9 11 16
Log10 catchment area 2 9 11 10
Latitude 8 2 10 56
NDSI 4 4 8 27

Variables are ranked according to the total (linear and transformed) selection frequency in the GAM. Abbreviations are defined in the
text.

Copyright # 2009 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 21: 54–66 (2010)
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Figure 1 Illustration of rock glacier probabilities predicted by the GAM-TA-RS model. The other variables are fixed at the following values: MAAT �18C,
local slope 108, catchment slope 358, catchment height 500m, relative solar radiation 1.00, TM/ETMþ band 2 DN 60, band 6 DN 120. Abbreviations are defined
in the text.

Copyright # 2009 John Wiley & Sons, Ltd. Permafrost and Periglac. Process., 21: 54–66 (2010)
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Table 4 Predictive performance of GAMs and GLMs on the training set and using bootstrapping

Model Model domain Entire study area

AUROC [%] FPR [%] at 70% sensitivity AUROC [%] FPR [%] at 70% sensitivity

Training set Bootstrap Training set Bootstrap Training set Training set

GAM-TA 82.5 81.6 (2.5) 20.4 22.9 (5.4) 91.8 9.6
GAM-RS 70.6 68.8 (7.8) 40.6 42.2 (8.9) 86.2 19.0
GAM-TA-RS 86.4 85.0 (2.3) 12.8 16.8 (4.7) 93.6 6.0
GLM-TA 80.2 79.5 (2.6) 22.8 25.3 (6.0) 90.7 10.8
GLM-RS 66.0 63.7 (7.1) 44.8 48.3 (7.0) 84.0 21.0
GLM-TA-RS 81.9 81.6 (2.8) 18.8 20.9 (5.3) 91.5 8.8

The models include terrain attributes (TA), Landsat TM/ETMþ remote-sensing data (RS) and both sets of predictors (TA-RS). Except
for the comparison GLM-TA-RS vs. GAM-TA, all pairwise differences in bootstrapped AUROC values and FPRs are statistically
significant at the 5 per cent level (p-values<0.1% after Bonferroni correction for multiple comparisons). FPR¼False-positive rate (1
– specificity) at a sensitivity of 70 per cent. Other abbreviations are defined in the text. Best results are highlighted in bold.
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are robust with respect to changes in the training set
(Table 3).

The transformation functions used by the combined
model (GAM-TA-RS) are displayed in Figure 1, and the
results of hypothesis tests (x2 score test, 5% significance
level) on the significance of a variable or of its nonlinear
transformation (as opposed to the alternative linear term) are
summarised in Table 2. All variables except the log-
catchment height contribute significantly to the GAM-TA-
RS model. Of the five nonlinear terms in the models, the
transformations of catchment slope, bands 2 and 6, and the
interaction of solar radiation and MAAT are supported by
significance tests at the 5 per cent level, while local slope
could be represented by linear terms.

As a measure of variable importance we first used the
change in deviance that is associated with removing each
variable from the GAMs (Table 2). In the GAM-TA-RS, the
nonlinearly transformed catchment slope (deviance
reduction 39.8) was followed by the transformed local
slope (28.9) as the most important predictor variables. The
interaction of relative solar radiation with MAAT, and TM/
Figure 2 ROC curves of rock glacier prediction in the model domain using the
attributes and the combination of both. AUROCs and FPRs (1 – specificity) at a sen
the text.

Copyright # 2009 John Wiley & Sons, Ltd.
ETMþ thermal infrared band 6 followed (deviance
reduction 18.2 and 14.4, respectively), while the other
variables contributed less to the model fit (band 2: 9.6;
catchment height: 2.5). (The inclusion of MAAT resulted
in no change in deviance because its influence is captured
by the interaction term of MAAT with relative solar
radiation.)

The bootstrapped variable selection frequencies in the
GAM mostly agreed with observations based on the
deviance (Table 3). Catchment slope, local slope and TM/
ETMþ band 6 were included in all GAMs trained on
different bootstrap sets, with catchment slope and band 6
consistently being used with nonlinear transformations.
Local slope also mostly required a nonlinear transformation.
The interaction of solar radiation and MAAT found its way
into the GAM in 85 per cent of the models, mostly using a
nonlinear transformation. Catchment height (66% fre-
quency) predominated over its confounder catchment area
(11%). The interaction of latitude and MAAT (57%), TM/
ETMþ band 2 (51%) and MAAT (40%) also had moderate
selection frequencies. Low selection frequencies may be
GAM (solid lines) and the GLM (dotted) with remote-sensing data, terrain
sitivity of 70 per cent are displayed in Table 3. Abbreviations are defined in
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interpreted as overfitting to random patterns in individual
bootstrap training sets.
The nonlinearities of the transformations were mostly

moderate (Figure 1). A GLM may therefore provide a
reasonable approximation to the GAM. The results of fitting
GLMs (GLM-TA, GLM-RS, GLM-TA-RS) with the same
predictors as the corresponding GAMs are displayed in
Table 2. The results of hypothesis tests are similar to those
obtained with the GAM; however, TM/ETMþ band 6 was
not significant in the GLM-TA-RS. Bootstrapped variable
selection frequencies in the GLM were somewhat different
Figure 3 Rock glacier prediction generated by the GAM-TA-RS in a sample area
flight, air photos 2405-07). Probability thresholds represent area-preserving predict
Abbreviations are defined in the text.

Copyright # 2009 John Wiley & Sons, Ltd.
from the GAM. In particular, the complex, considerably
nonlinear interactions between PISR and MAAT and
between latitude and MAAT, which were identified by the
GAM, were not captured by the GLM because it can only
include linear interactions unless nonlinear transformations
are explicitly specified by the modeller.

Predictive Performance

The predictive performance measures of AUROC and the FPR
at a sensitivity of 70 per cent indicate that the combined GAM-
at 318500S. Rock glacier outlines based on air photo interpretation (GEOTEC
ion (0.87) and predictions corresponding to a sensitivity of 70 per cent (0.63).
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TA-RS is an important improvement over the GAM-TA and
especially the GAM-RS; the latter model is clearly not useful
for practical purposes (Table 4; Figure 2). The AUROC of the
GAM-TA-RS (86.4% on the training set and 85.0% with
bootstrap estimation) is somewhat better than the AUROC of
its submodel the GAM-TA (82.5% and 77.8%, respectively),
and it outperforms the GAM-TA more clearly in rock glacier
detection at high sensitivities (so-called early detection) as
it reduces the FPR from 20.4 per cent (bootstrap: 22.9%) to
12.8 per cent (16.8%) on the model domain and from 9.6 per
cent to 6.0 per cent if projected to the entire study area
(bootstrap: reduction from 10.8% to 7.9%). At an average
specific density of rock glaciers of 1.4 per cent across the
entire study area, the GAM-TA-RS achieved a positive
predictive value of 14 per cent on the training set (bootstrap:
11.0%), that is 14 per cent of the predicted rock glacier areas
(at the 70%-sensitivity threshold) are indeed rock glaciers,
compared to a rock glacier density of 1.4 per cent overall and
2.9 per cent in the model domain.

The bootstrapped predictive performance of the GLM-
TA-RS model was not statistically distinguishable from the
performance of the GAM-TA without remotely sensed
variables, but the GAM-TA-RS had a statistically significant
advantage over all other models in terms of bootstrapped
AUROC and FPR (Table 4).

At the selected sensitivity of 70 per cent, 21 of the 72 rock
glaciers in the data set were missed by the rock glacier
prediction of the GAM-TA-RS. However, ten of these false-
negative predictions of rock glacier point samples were
missed by only one pixel. Thus, allowing for a one-pixel
tolerance increases sensitivity to 84.7 per cent, and a two-
pixel tolerance results in a 93.1 per cent sensitivity of the
GAM-TA-RS on the training set. This indicates that for
the proposed detection procedure, the GAM-TA-RS is more
effective than what would be expected from a nominal
70 per cent sensitivity.

Figure 3 shows a map of the predicted probabilities of
rock glacier occurrence in a sample area at 318 500S on the
border between Chile and Argentina, and a comparison with
manual mapping results based on aerial photographs of 1997
(GEOTEC flight). In this area with 52 individual rock
glaciers (46 landforms>0.01 km2, and seven>0.1 km2), the
70 per cent-sensitivity threshold of the entire study area
resulted in an observed local sensitivity of 66.8 per cent and
a local FPR of 15.1 per cent, which is less accurate than the
performance on the training set but close to the bootstrap
error estimate (Table 4). On the other hand, the seven most
significant rock glaciers (>0.1 km2) were all detected
because they are at least partly covered by predicted rock
glacier grid cells. Some 82.6 per cent of rock glaciers
>0.01 km2 were detected, and 75.0 per cent of all rock
glaciers in this area. The areas of false-positive predictions
were often in areas with moraines, or they corresponded to
small talus cones and rock faces that are not accurately
represented by the SRTM DEM.
DISCUSSION
Copyright # 2009 John Wiley & Sons, Ltd.
Topographic and Climatic Niche of Rock Glaciers

The topographic and climatic niche of rock glaciers in the
dry Andes is mainly characterised by catchment slope, local
slope, MAATand an altitudinally varying influence of PISR.
Catchment-area size is a surrogate of the overall talus
production, which is another important control on rock
glacier development. This surrogate variable is implicitly
included in our model through the unsuitability score, and
through its confounder, catchment-area height. The influ-
ence of MAAT comes into play in the GAM-TA-RS through
the upper and lower limits of rock glacier distribution that
are reflected by the unsuitability score, and through the
interaction with solar radiation. At an average relative solar
radiation of 1.0, however, there is no influence of MAAT on
rock glacier abundance within this altitudinal belt since the
coefficients almost cancel each other out (2.618–
2.685¼ 0.067). The bootstrap variable selection frequencies
suggest that the interaction of latitude and MAAT could
provide further valuable information, possibly by adjusting
for latitudinally varying altitudinal belts or inaccuracies in
the lower and upper rock glacier limits adopted from
previous studies.

The optimal topographic niche of rock glaciers within the
altitudinal belt of their general distribution (Azócar and
Brenning, 2009) has a local slope angle of up to 20–228 and a
talus shed with an average slope angle of more than 30–338.
Large altitudinal differences within the catchment area tend
to be favourable. These talus shed characteristics allow for
effective gravitational talus supply by rockfall, debris flows
and avalanches (Frauenfelder et al., 2008) and are consistent
with a mean contributing-area slope of 378 (standard
deviation 6–78) found by Janke and Frauenfelder (2008) in
the Colorado Front Range. The optimal rock glacier slope
angle of 20–228 agrees well with the observation of a mean
rock glacier slope angle of 21–228 (standard deviation 6–78)
in the Front Range and a range of slope angles from 10 to 278
(outlier 68) in different areas worldwide (Janke and
Frauenfelder, 2008). Data from previous studies also show
that rock glacier talus sheds rarely exceed �3 km2

(Brenning, 2005; Brenning et al., 2007), as represented
by our unsuitability score. This reflects the general size
limits of rock glaciers (generally �2 km2; Brenning, 2005),
as well as river discharge and erosion in watersheds of this
size even in the dry Andes.

The interaction of MAATand relative PISR in our models
indicates that high solar radiation has a positive effect on
rock glacier probability at negative MAATs and a negative
effect at low elevations. This is particularly evident in the
GLM (GLM-TA, Table 2). At þ18C MAAT, a change in
relative solar radiation by 0.12 (i.e. two standard deviations,
see Table 1) results in a 63 per cent increase in the odds of
rock glacier occurrence, while the same difference between
shady and more exposed locations at �18C would have the
opposite effect according to our model GLM-TA. A
significant contribution of an interaction of elevation and
solar radiation was also found by Brenning and Trombotto
(2006) in the Andes at 338–34.58S, where the influence of
Permafrost and Periglac. Process., 21: 54–66 (2010)
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solar radiation also changes its sign at the regional 08C
isotherm altitude.
PISR and its surrogate variable, the equivalent latitude,

were found to be important predictors of BTS temperature
and permafrost distribution in several areas worldwide
(Leverington and Duguay, 1997; Gruber and Hoelzle, 2001;
Lewkowicz and Ednie, 2004; Julián and Chueca, 2007).
Interactions of PISR and elevation or MAAT have not
previously been studied in this context.
Geological factors that might modify topographic and

climatic patterns include lithological controls on weathering
rates. These influences could however not be considered in
the present analysis due to a lack of geological information
at the present scale and resolution.

Predictive Performance and the Utility of Spectral
Information

Incorporating predictor variables derived from multispectral
remote sensing reduced the FPR of the GAM in the study
area by one-quarter to one-third from 9.6 per cent (GAM-
TA; bootstrap: 10.8%) to 6.0 per cent (GAM-TA-RS;
bootstrap: 7.9%), resulting in a much more focused
prediction of potential rock glacier areas. Thus, while the
remote-sensing model itself is not of practical importance
for mapping rock glaciers (FPRs of GAM-RS >40%),
spectral data are useful for improving terrain attribute-based
models by providing additional explanatory variables that
correlate only weakly with terrain attributes.
The reduction of the FPR by adding Landsat ETMþ data

to topographic data in a similar study in the San Juan
Mountains (Colorado, USA) resulted in more pronounced
gains in FPR at a sensitivity of 70 per cent (Brenning, 2009).
We attribute this difference to the greater importance of
vegetation and hence the NDVI in excluding non-rock
glacier areas in the San Juan Mountains. In the present study
area, vegetation is virtually absent at elevations that are
suitable for rock glacier development.
In the Andes of Santiago and Mendoza, Brenning and

Trombotto (2006) achieved an AUROC of 0.84 in rock
glacier distribution modelling with a GLM-TA-type model
that however includes manually adjusted nonlinear trans-
formations of elevation (representing MAAT) and catch-
ment area. Its FPR at a sensitivity of 70 per cent is
approximately 22 per cent. These values are comparable to
those achieved in this study with the GLM-TA and GAM-TA
on the model domain (Table 4). Other studies presenting
empirical or physically motivated models of rock glacier
occurrence do not provide comparable measures of model
performance (Janke, 2005; Frauenfelder et al., 2008).
Overall, the empirical relationships found in this study

may help explore rock glacier distribution in areas where it is
currently unknown. Our results indicate that a combination
of catchment related and local terrain attributes with the
regional climatic trend of MAAT and topoclimatic
influences of solar radiation is required for detecting rock
glaciers. This topographic and climatic characterisation can
be refined using remotely sensed data, especially in the
Copyright # 2009 John Wiley & Sons, Ltd.
thermal infrared and, depending on the presence of
vegetation in the study area, the NDVI (Brenning, 2009).
In the context of permafrost studies using remote sensing
and terrain analysis, Leverington and Duguay (1997) and
Ødegård et al. (1999) found empirical relationships between
TM band 6 and ground thermal conditions. However, in both
cases empirical models could be improved only slightly by
including the thermal band as an additional predictor. This
suggests that the thermal band reflects ground thermal
conditions in general without necessarily indicating the
presence of ice-rich permafrost, which would be desirable
for rock glacier mapping. Taschner and Ranzi (2002)
suggest that the thermal band allows us to delineate ground
ice underneath a debris cover of less than 50 cm. This may
limit the (univariate) utility of band 6 alone for detecting ice-
rich permafrost underneath a 2–5-m thick active layer,
unless this active layer presents a pronounced thermal offset
due to the presence of a coarse blocky layer as on rock
glaciers.
Rock glaciers in our data set have, on average, a slightly

brighter spectral signal in the TM/ETMþ band 2, which
measures reflectance in the green wavelength segment, and/
or other highly correlated spectral bands (especially TM/
ETMþ bands 1, 3, 4). The selection of this variable is
however not consistent between the bootstrap replications
and might be related to the influence of small remnant snow
patches on the spectral signal of about ten rock glaciers,
especially in Landsat ETMþ 233/79 scene acquired in
November 2000 during snowmelt. It is therefore considered
a possible artifact.
The present findings have implications for glacier

inventories involving debris-covered glaciers. These have
similarly weak spectral characteristics (compare Gratton
et al., 1990; Taschner and Ranzi, 2002; Brenning, 2009)
with some information in the thermal infrared band when the
debris cover is thin (Taschner and Ranzi, 2002), but can also
be morphometrically characterised in terms of local and
catchment-related terrain attributes (Brenning and Trom-
botto, 2006). However, until now only local slope and
curvature variables have been employed in satellite-based
glacier inventories (Bishop et al., 2001; Bonk, 2002; Paul
et al., 2004; Kargel et al., 2005; Bolch and Kamp, 2006;
Bolch et al., 2008). The terrain attributes and classification
models applied in this study and by Brenning (2009) provide
further research directions for debris-covered glacier
mapping.

Nonlinearities and the Utility of the GAM

The presence of nonlinearities in the relationship between
predictor variables and rock glacier presence/absence is
reflected by our results both analytically in terms of variable
selection frequencies and hypothesis tests (Tables 2 and 3),
and in a predictive context as expressed by improved
AUROC and FPR values of the GAMs compared to the
GLMs with the same predictor variables. Though some of
the nonlinearities appear to be moderate (Figure 1), or are
not significant (Table 2), or are not consistent (Table 3), the
Permafrost and Periglac. Process., 21: 54–66 (2010)
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GAM with terrain attributes and remote-sensing variables
reduced the FPR by one-quarter to one-third compared to
the GLM (Table 4). Nonlinearities would have been more
pronounced if the masking based on the unsuitability score
had not been applied because this involved nonlinear
operations at the cutoff values for elevation, catchment area,
and local and catchment slope. Catchment area is
particularly known to involve nonlinearities because of
the existence of an ‘optimal’ talus shed size for rock glaciers,
beyond which fluvial processes would generally dominate
(Brenning and Trombotto, 2006).

The gain in predictive performance related to use of the
GAM is comparable to the performance improvement
achieved by adding remote-sensing variables to the set of
predictors. Using the GAM instead of GLM in a statistical
software such as R, however, comes at virtually no extra cost
in the analyst’s time, while processing of multiple Landsat
scenes is relatively labour-intensive.
CONCLUSIONS

This study characterises the topographic and climatic niche of
rock glaciers in terms of local and catchment-scale terrain
attributes that are related to talus supply, and as a function of
solar radiation and MAAT, which are key controls of the
energy balance of mountain permafrost. A striking feature
that confirms earlier findings of Brenning and Trombotto
(2006) is that high solar radiation has a favourable effect on
rock glacier occurrence probability at negative regional
MAATs, while it has the opposite effect at positive MAATs.
While the latter effect is not surprising, the former may relate
to reduced creep rates (compare Janke and Frauenfelder,
2008) and meltwater supply at cold, shady high-elevation
sites hampering rock glacier formation and growth.

Rock glacier detection in the dry Andes can benefit from
the integration of terrain attributes, regional-scale trends of
MAAT and remote-sensing data in modern, nonlinear
prediction methods such as the GAM. Multispectral Landsat
TM/ETMþ improves the false-positive prediction rate of
terrain attribute-based classification in the study area by one-
quarter to one-third, and the GAM achieves a similar
improvement compared to the more widely used GLM or
logistic regression. Our results may help improve rock
glacier mapping methods and products that are currently
required for large areas of the Andes, and they may prove
useful in the automatic creation of satellite-based glacier
inventories involving a significant portion of debris-covered
surfaces (e.g. Bown et al., 2008; Bolch and Kamp, 2006).
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Kääb A. 2005. Remote Sensing of Mountain Glaciers and
Permafrost Creep. Schriftenreihe Physische Geographie
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