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ABSTRACT 

We have studied the problem of what must be the minimal length of a nanotube with a given 
diameter to reasonably assert that its electronic properties can be extrapolated to longer 
structures. For this purpose the variation of the electronic chemical potential (ECP) was 
plotted against the number of units composing the nanotube for three systems: (5,5) 
armchair, (9,0) zigzag and (10,0) zigzag nanotubes. We found that the ECP curve defines a 
different minimal length for each system. This minimal length corresponds to the boundary 
between large molecules (short nanotubes) and nanotubes properly speaking. We suggest 
that this minimal length exists for at least all armchair and zigzag nanotubes.  

INTRODUCTION 

Nanotubes (NTs), discovered in 1991, have emerged as premier building blocks for the coming
age of nanotechnology (1-3). Pure and perfectly cylindrical defect-free carbon nanotubes 
(NTs) are viewed as a conformal mapping of the two-dimensional honeycomb lattice of a 
single sheet of graphite onto the surface of a cylinder. The helical symmetry of the carbon 
atoms around the axis of the cylinder is denoted by two integers (m,n) that indicate the 
number of lattice vectors in the graphite plane used to make the tubule (see Ref. 4 for 
pictorial details). For certain values of (m,n) two sub-families of NTs are obtained. For the 
case m=n the so called armchair nanotubes are generated. At their ends, one side of the 
benzene rings is exposed. For the case (m,0), the zigzag family of NTs is obtained. At the 
ends of the zigzag NTs one vertex of the benzene rings is exposed It is accepted that a 
relationship exists between the values of (m,n) and the conductivity properties of perfectly 
cylindrical defect-free carbon NTs. If m-n=3t (with t=0,1,2,…) the tube will display a metallic 
behaviour. Otherwise the NT will have semiconducting properties. This relationship indicates 



that all the zigzag and one third of the armchair NTs will be metallic. 

When we notice that for any NT with constant diameter there is an infinite number of 
structures differing only in their length, the following question arises: What must be the 
minimal length (ML) of a given nanotube to reasonably assert that the main features of the 
electronic structure can be extrapolated to longer ones?  

METHODS, MODELS AND CALCULATIONS 

As the physical criterion to determinate the ML we have chosen the invariance of the 
electronic chemical potential (ECP, or Fermi level) upon addition of units to build the 
nanotube. The ECP is related to the work function, a physical observable (5). When the ECP 
reaches a constant or an almost constant value for a certain number of units, we have got an 
answer to this problem. The ECP invariance criterion was employed (6-8) to generate minimal 
models to describe other molecular systems. The ECP, µ, was approximated by (8):  

 

where EH is the one-electron orbital energy of the highest occupied molecular orbital (HOMO) 
and EL is the one-electron energy of the lowest unoccupied molecular orbital (LUMO).  

The following kinds of nanotubes were selected for the study: an armchair (5,5) set of NTs 
with metallic properties, a set of metallic (9,0) zigzag NTs, and a set of semiconducting (10,0) 
zigzag NTs. Because some studies eliminated the free valences existing at the ends of the NTs 
by saturating them with hydrogen atoms, we also analyzed the hydrogenated systems (H-
NTs). 

The procedure to construct the elements of each set is the following. The first member of the 
family is a NT composed by only one rod (called unit) of benzene rings rolled in the 
appropriate way. The second member is a NT composed by two fused rods of benzene rings 
and so on. Figure 1 shows the numbering of units for armchair and zigzag NTs. 
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The geometries of all systems were fully optimized with Molecular Mechanics and the 
wavefunctions and associated eigenvalues were obtained with the Extended Hückel Method 
(EHT) (9). This choice is based on the size of the molecular systems and on the good results 
we obtained for fullerenes with the EHT method (10). 

RESULTS AND DISCUSSION 

Figure 2 shows the ECP curves for the family of (5,5) armchair metallic NTs in their 
hydrogenated and unhydrogenated forms. For the case of unhydrogenated NTs (C-NTs 
hereafter) we may observe that after some abrupt changes the ECP value begins to stabilize 
at the level of 13 units (280 atoms). This point is the minimal length associated to the (5,5) 
armchair nanotube. In the case of the H-NT only when it is composed by 16 units (360 atoms) 
a tendency to reach a constant value begins to appear. At the level of 860 atoms the ECP is 
still slowly raising its value. As the ECP value cannot rise indefinitely for physical reasons it is 
probable that a constant value will be reached after adding some 5 to 10 more units. Apart 
from the fact that using hydrogenated NTs to study phenomena involving pure carbon 
nanotubes is not licit because of the changes of the electronic structure, our results clearly 
indicate that if we want to use as model an hydrogenated (5,5) armchair NT, it must be one 
composed by about 600 carbon atoms or more. Finally, we note that the ECP curves for the H-
NT family do not intersect in the interval studied here.  

 

Figure 1. Numbering of units for armchair and zigzag 
nanotubes.
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Figure 3 shows the ECP curves for the (9,0) C-NT and H-NT zigzag NTs. The ECP curve for C-
NT shows, between 7 and about 22 units (414 atoms), an almost linear increase. The ML lies 
about 31 units (576 atoms) and the electronic chemical potential seems to be constant up to 
47 units (864 atoms). For the case of the H-NT family, the ECP curve begins an almost linear 
increase, starting at 20 units (396 atoms). At the level of the longest H-NT studied (47 units 
with 882 atoms) the ECP curve does not seem to behave constant. Therefore, the ML length 
for H-NT (9,0) remains undetermined. Also, contrary to the (5,5) case both curves intersect at 
the level of 13 units, and the situation at 47 units is not clear. 

 

Figure 4 shows the ECP curves for the semiconducting (10,0) C-NT and H-NT zigzag NTs. The 
ECP for both systems begins to stabilize at the level of 17 units (360 atoms for C-NT and 380 
atoms for H-NT) (11). As in the case of the (9,0) family, here both curves also intersect at 4 

Figure 2. ECP curve for the family of metallic 
(5,5) armchair nanotubes.  
� holds for the pure carbon NTs and ∗ for the 
hydrogenated forms.

Figure 3. ECP curve for the family of metallic 
(9,0) zigzag nanotubes.  
� holds for the pure carbon NTs and ∗ for the 
hydrogenated forms.
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units. We have not arrived to an explanation of this fact but we note that curve intersection 
occurs only in zigzag nanotubes. 

 

Our main result can be generalized as a conjecture stating that all pure carbon armchair and 
zigzag NTs have a minimal length defining the boundary between large molecules (short NTs) 
and nanotubes. The corollary is that any NT with a length falling below ML should be treated 
only as a big molecule and not as a nanotube whose electronic properties are similar to the 
ones of longer NTs. Finally, we found that the minimal length for a given hydrogenated NT 
seems to be greater than the ML for the pure carbon analogue 

We must stress that the concept of minimal length introduced here is valid only for the 
electronic properties (mainly for the frontier molecular orbitals and molecular orbitals closer to 
them in energy and the associated eigenvalues). There are other properties that not 
necessarily converge to a definite value with an increase in tube length. This is, for example, 
the case of the thermal conductivity of the (5,5) armchair NT which seems to obey a power 
law relation (12).  

Within these results, we suggest that calculations made on systems lying below the minimal 
length are not representative of the kind of NT they use. This is the case of the results 
reported for short fragments of (5,5) and (10,0) NTs (13). Also, the diffusion barriers for a Li 
atom inside a short (5,5) hydrogenated armchair nanotube should be re-examined using a 
longer (5,5) hydrogenated fragment (14).  
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