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Abstract

This paper presents the results obtained using a genetic algorithm (GA) to search for stable structures of Cu–silicon clusters. In this work

the GA uses a semiempirical energy function to find the best cluster structures, which are further optimized using density functional theory.

For small clusters our results agree well with previously reported structures, but for larger ones new structures appear in addition to those

previously found using limited local searches on common structural motifs. This demonstrates the need for global optimization schemes

when searching for stable structures of medium size Cu–silicon clusters.
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1. Introduction

The study of the structure and physical properties of

atomic and molecular clusters is an extremely active area of

research due to their importance, both in fundamental

science and in applied fields like microelectronics [1].

Existing experimental methods for structural determi-

nation seldom can obtain the structure of atomic clusters

directly. Therefore the calculation, using theoretical struc-

tures and comparison with experimental values of their

physical and optical properties is the most common way to

obtain structural information of atomic clusters.

The determination and understanding of the factors

governing the structure of medium size metal-doped silicon

clusters is important because these structures are relevant to

the design and fabrication of microelectronic devices. There

is consensus that the effects of metal impurities in silicon

can be more easily studied in medium size clusters than in

extended systems, where the properties of the bulk

dominate.

For instance, motivated by the extensive knowledge of

metal-doped fullerene species, such as La@Cn ðn ¼ 60; 74

and 82) [2], Jackson [3] suggested that an impurity in Sin
clusters would produce cage-like structures of metal–Sin
clusters with surprising stability. Beck [4,5] has observed

small-mixed transition-metal (TM)–Sin clusters with

TM ¼ Cr, Mo, W; n ¼ 16–18. CuSin clusters, for up to

n ¼ 10; have been observed by Scherer et al. [6] and a small

series of CumSin clusters have been identified using a pulsed

UV laser vaporization plasma reactor and time-of-flight

mass spectrometry. Hiura et al. [7] have reported the

observation of MSinHx (M ¼ Hf, Te, W, Re, I; n ¼ 9–14)

clusters using an ion trap.

The geometry and electronic properties of CuSin ðn ¼ 4;

6, 8, 10 and 12) clusters have been reported in several recent

publications [8–12]. These studies used locally optimized

structures based on those that can be constructed by the

adsorption of a Cu atom into a Sin atomic cluster or by

substitution of a Si atom by a Cu atom in a Sinþ1 cluster. The

final structures were locally optimized using the B3LYP/

6-311 þ G(d) density functional method [13]. This

approach produces numerous stable structures of CuSin
clusters, but leaves open the question of the existence of
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unrelated stable structures which cannot be derived from the

motifs present in the model structures used as starting ones

in the local optimizations. Systematic, global geometry

optimizations of atomic clusters is complex and time-

consuming due to the large number of possible structures

[14], the time required for the calculation of their total

energy and the lack of effective methods to perform global

searches. Nonetheless the need for global searches of atomic

cluster structures has been recently demonstrated by our

previous work on medium size silicon clusters [15].

In this paper, we demonstrate the use of a Parallel

Genetic Algorithm (PGA) to address the problem of the

structure prediction of CuSin atomic clusters. This method

was chosen because in conjunction with Basin Hopping

Monte Carlo [16,17], and simulated annealing [18], is one of

the best approaches to find global and secondary minima of

complex energy potential surfaces (PES) [16]. Moreover,

our recent research efforts have demonstrated the success of

using PGAs to predict crystalline [19–21] and cluster

structures [15,22].

Genetic algorithms (GAs) are a family of search

techniques rooted on the ideas of Darwinian biological

evolution [23,24]. The introductory sections of Refs. [25,26]

offer a very detailed description of the progress in the

development of GA strategies to perform optimizations of

atomic cluster structures in the last 7 years. The GAs are

based in the principle of survival of the fittest, considering

that each string or genome represents a trial solution

candidate of the problem, and that at any generation the

genomes or ‘individuals’ compete with each other in the

population for survival, producing off-springs for the next

generation by prescribed propagation rules. Operators

analogues to crossover, mutation and natural selection are

employed to perform a search able to explore and learn the

multidimensional parameter space and determine which

regions of that space provide good solutions to the problem.

One of the advantages of genetic algorithms is that they can

provide not only global minima, but also information on

other states with energies close to the minimum, an

important property when analyzing atomic clusters.

A significant source of difficulties when studying the

structures of metal/Si clusters is that the bonding charac-

teristics in silicon metal clusters is quite different than those

observed in more common organic compounds. Hence, it is

very difficult to obtain accurate but simplified empirical

potentials to reproduce the interatomic interactions, forcing

the use of more computational demanding quantum

mechanical approaches. As discussed above, for medium

to large size clusters the option of using ab initio or density

functional theory (DFT) methods to calculate the energies

has been limited to the study of a few plausible

configurations [12]. In this paper we have adopted a

compromise by using a semiempirical molecular orbital

program, MSINDO [27–29], to evaluate the energy of

the clusters in the global GA search, while using a DFT

method to further refine the more promising structures.

Among several semiempirical methods the MSINDO was

selected because it includes parameters to represent

transition metals.

Here we present results on a series of CuSin ðn ¼ 4; 6, 8,

10 and 12), chosen as test cases to check our strategy and

analyze its advantages and difficulties.

2. Methodology

Genetic coding of the cluster structures. In any GA

implementation it is necessary to define a genome with

enough information to calculate the associated fitness

function. For the case of atomic clusters, the genome is

quite simple because there are no symmetry or periodicity

relationships that constrain the parameters in the genome.

The genome is just given as an array containing the

coordinates of the atoms. This array has dimension 3N; were

N is the number of atoms in the cluster. Moreover, any

genetic operator, mating, crossover, mutation, etc. applied

to this genome produces a valid individual, i.e. a possible

structure for the desired cluster size.

The first population, of size Npop; is constructed by

generating a set of atomic coordinates using random

numbers. These random numbers, used to define the atomic

positions in the cluster, belong to specific intervals selected

according to the expected dimensions of the cluster; these

restrictions have been included to avoid sampling non-

physical configurations. Additionally, the distances between

all atom pairs are calculated and compared with a set of

rules, which guarantees that they are within the acceptable

values for interatomic distances, otherwise the structure is

rejected. This set of rules is designated to eliminate from the

initial population all those structures that are evidently

unphysical. There are basically two rules, the first states that

if any pair of atoms is closer than a minimal distance ðr1Þ the

structure will be rejected, the second rule states that if any

atom is at a distance larger than r2 to any other atom in the

cluster the structure also will be rejected.

The GA operations of mating, mutation and selection are

used to evolve one generation into the next. The population

replacement is done through the steady-state genetic

algorithm, which typically replaces only a portion of

individulas in each generation [30–32]. This technique is

also known as elitism because the best individuals among

the population, 50% in our case, are copied directly into the

next generation. The criteria for fitness probability, selec-

tion of the individuals and mutation are discussed in detail

in Ref. [20].

The MGAC package has been implemented in Cþþ

language using parallel techniques (MPI), making it very

portable as well as easy to maintain and upgrade. Our

parallel MGAC implementation of the GA (PGA) is

particularly efficient [33].

Using the information contained in the genomes, the

energy of each individual was evaluated and its structure



relaxed to the local minimum. All the energy calculations

for the GA optimizations were done using the MSINDO

code [27]. The GA procedure was repeated several times

employing different initial populations to confirm that the

final selection of isomers was independent of the initial

population. Populations were considered converged when

the standard deviation of the energies in the population

reaches 0.1 eV. The structures in the final population were

manually classified selecting a set of structures with

significant diversity for further refinement. The geometry

of these isomers was locally optimized using density

functional methods with the B3PW91 exchange correlation

functional. Following the observations of Xiao et al. [12],

that extended basis set have only a slight effect on the cluster

geometries, we have used the 6-311G(d) basis for these

calculations. All the geometry optimizations were run

until the forces on the atoms are less than 0.0002 a.u./Å.

The vibrational frequencies were calculated for the

optimized structures to check that no imaginary frequencies

are present, confirming that the isomers presented here

correspond to true minima of the potential energy. All the

DFT calculations were done using the GAUSSIAN suite of

programs [34].

3. Results and discussion

Table 1 presents the relative energies for the SinCu

clusters structures found in this paper compared with those

obtained by Xiao et al. [12]. In the table, Xiao’s structures

are labelled according to the original publication, while

those obtained here are labelled using roman numerals as

depicted in Figs. 1–5. The relative energies have been

calculated with respect to the most stable isomer in the

respective study and arrows connect isomers found in both

studies.

3.1. CuSi4

The MGAC was able to find four distinct isomers

searching for a minimum in the MSINDO energy hypersur-

face, when using 25 individuals and 20 generations. The

optimization of these structures by the B3PW91/6-311G(d)

methodology produces the relaxed isomers I–III, shown in

Fig. 1 as two different structures produced by the MGAC

methodology merge into isomer I. The vibrational analysis

of the three final structures shows that they are stable

configurations.

The relative energies of these species, listed in Table 1,

show that the most stable isomer, I, is identical to the one,

4a, reported by Xiao et al. [12]. Comparison of the

interatomic distances and angles show good agreement

between both methods. The second structure from our work,

II, corresponds to Xiao’s 4c and our third structure,

resembles quite closely Xiao’s 4b2, which may indicate

the possibility of a vertical transition in the photoelectron

spectra. The different energy ordering of the structures

found in this work when compared with those of Xiao is

attributed to the different exchange correlation functionals

used in the two studies. Nonetheless, it is apparent that for

this small cluster both approaches produce the same

structures with a somehow different ordering of the

structures.

3.2. CuSi6

The MGAC algorithm was able to find six isomers in the

MSINDO energy hypersurface using 50 individuals and 30

generations. Fig. 2 shows the B3PW91/6-311G(d) opti-

mized structures, ordered by increasing energy. Isomers II

and V look very similar. From the comparison of the

corresponding bond lengths, bond angles and dihedral

angles, one can see that isomer II has a higher symmetry.

Table 1

Relative energy (eV) for CuSin, n ¼ 4; 6, 8,10 and 12, atomic clusters



There is a reflection plane formed by four silicon atoms and

the copper atom. Instead, for isomer V the dihedral angle

between the silicon atoms and the copper atom is 1748. The

Cu–Si bond length is 2.13 Å for isomer II and 2.32 Å for

isomer V. Both isomers are stable and the vibrational

spectra show that they correspond to different local minima

in the energy hypersurface.

From Table 1 it is apparent that our method is able to find

the same lowest energy isomer than Xiao et al. [12]. The

MGAC method finds several new isomers not present in

Xiao’s study with energies lower than the highest energy

isomer, 6c, in Xiao’s study, but it misses the second isomer,

6b, from Xiao’s paper. When comparing the relative

energies of isomers 6a and 6b, the latter is less stable by

only 0.078 eV for the DFT method [12] but 0.944 eV for the

MSINDO, so it is readily eliminated from population in the

GA. As it will be shown later this is not an isolated case,

isomer 6b presents a tetra-coordinated Cu and the MSINDO

calculations consistently underestimate the binding energies

of Cu with coordination numbers larger than three, leading

to the elimination of any isomer with this type of bonding

from the GA population. Nevertheless, these results show

that the MGAC approach is able to find several new isomers

of CuSi6 with coordination numbers lower than four.

3.3. CuSi8

The MGAC approach found seven candidates for the

structures of the CuSi8 isomers using 25 individuals and 20

generations. The search was repeated four times with

different initial populations to confirm the selection of

candidates. Fig. 3 shows the five more stable B3PW91/

6-311G(d) structures ordered by their increasing energy.

The bond lengths are between 2.3 and 2.5 Å for the Si–Si

bonds and between 2.21 and 2.33 Å for the Si–Cu, which

agrees well with those reported in the literature: 2.35–

2.68 Å for Si–Si, and 2.36–2.47 Å for Cu–Si bonds [12].

Isomer I matches isomer 8b from Xiao et al. [12], while

isomers II–V are new stable states that have not been

previously reported. Isomer V presents an interesting

geometry, a cage like structure with a Cu atom attached to

only one silicon atom with a bond length of 2.14 Å. The

other silicon atoms are more than 3 Å away from the copper

atom. This type of structure appears also in CuSi10 and

CuSi12. Xiao et al. [12] documented that cage like structures

with Cu at the center site are unfavorable, both for CuSi6
and CuSi8, indicating that they are unstable and that the Cu

atom tends to move to the surface of the cluster while the

framework of Sin relaxes to a non-cage like structure. The

MGAC/MSINDO fails to find isomers 8a, 8c and 8d. All

these structures present a Cu atom with a coordination

number higher than three; therefore they are eliminated very

early from the population by the GA due to the under-

estimation of the binding energy of highly coordinated Cu

Fig. 3. CuSi8 structures obtained by the MGAC/MSINDO followed by

B3PW91/6-311G(d) local optimization. Notation between parenthesis

indicates the numbering according to Ref. [12].

Fig. 2. CuSi6 structures obtained by the MGAC/MSINDO followed by

B3PW91/6-311G(d) local optimization. Notation between parenthesis

indicates the numbering according to Ref. [12].

Fig. 1. CuSi4 structures obtained by the MGAC/MSINDO followed by

B3PW91/6-311G(d) local optimization. Notation between parenthesis

indicates the numbering according to Ref. [12].



by the MSINDO method. For instance, the MSINDO

predicts that 8a is less stable than 8b by 2.028 eV, while

the DFT method [12] predicts the reverse trend with 8a

more stable by 0.008 eV.

3.4. CuSi10

CuSi10 appears with the highest abundance in the mass

spectrum [4], indicating that it has an enhanced stability and

that it most likely exhibits a large number of nearly iso-

energetic low-lying isomers. For CuSi10 we employed a

population of 50 individuals that converged after 23

generations. The procedure was repeated five times with

different initial populations. This significant enlargement of

the population, with respect to the one used for the CuSi8
search, allows more diversity in the final sample a desired

feature due to the known existence of the higher number of

isomers of CuSi10. MGAC found 15 structures that were

relaxed locally employing the B3PW91/6-311G(d) pro-

cedure, leading to 11 distinct ones. The schemes of

these final structures are shown in Fig. 4, ordered by

their increasing energy. The lowest energy isomer, I, is

the same that the lowest energy isomer, 10a, found by Xiao

et al. [12] while isomers II and IV corresponds to 10d and

10b, respectively. Isomers III and V–XI have not been

previously reported. Isomers VII–IX seem to be originated

from a common silicon cluster that relaxes to different

conformations by different insertions of a Cu atom.

Structure XI is very similar to structure V of CuSi8.

Fig. 4. CuSi10 structures obtained by the MGAC/MSINDO followed by B3PW91/6-311G(d) local optimization. Notation between parenthesis indicates the

numbering according to Ref. [12].

Fig. 5. CuSi12 structures obtained by the MGAC/MSINDO followed by

B3PW91/6-311G(d) local optimization.



The MGAC/MSINDO method does not find numerous

isomers presented by Xiao et al. [12], this can again be

attributed to the fact that all the missed ones show a highly

coordinated Cu atom. For instance the MSINDO predicts

that the isomer 10c is 1.37 eV less stable than 10a, while the

DFT theory predicts only 0.049 eV [12].

3.5. CuSi12

For the GA optimizations of CuSi12 we used a

population made of 50 individuals, which needed 125

generations to reach convergence. The procedure was

repeated four times to confirm the candidates’ selection.

The MGAC selected isomers, six, have been further

relaxed employing the B3PW91/6-311G(d) procedure,

leading to five unique ones that are presented in Fig. 5

labelled by increasing energy. The bond distances Cu–Si

are in the order of 2.3 Å (I–III), and 2.4 Å (IV and V). The

average Si–Si bond is of 2.55 Å.

The clusters produced by the MGAC methodology do not

correspond to any of those proposed in Ref. [12], this can be

attributed to the already mentioned failure of the MSINDO

methodology to describe correctly clusters with copper

coordination number higher than three. All the structures in

Ref. [12] show the Cu atom with this type of bonding.

Because the DFT calculations in this paper have been done

using a different exchange correlation functional and basis

set it is difficult to compare the energies of the isomers

found here with those in the literature [12]. The calculated

energy of isomer 12a (locally optimized using the B3PW91/

6-311G(d) procedure) is 0.283 eV lower than our best

isomer, I. The MGAC/MSINDO method fails to found the

lowest energy isomer for CuSi12, it is able to find several

new isomers, I–IV that appear to have energies within the

range of those of Xiao et al. [12].

4. Concluding remarks

This paper presents a new strategy to perform global

searches of low energy isomers for CuSin clusters. The

results show that local optimizations of potential struc-

tures derived from known structural motifs do not produce

a comprehensive set of possible structures, leaving out

stable isomers that cannot be derived from previously

built models. The MGAC/MSINDO method presented

here, because it does not use neither symmetry constraints

nor techniques based on combination of subunits to

propose a starting geometry, is able to find numerous

new isomers that were not discover before. Unfortunately,

the results on CuSin clusters are not as encouraging as

those obtained for the pure silicon clusters [15] due to

the underestimation of the bonding energy of Cu with

coordination number larger than three by the MSINDO

method. This large underestimation of the binding energy

leads to the rapid elimination from the GA population of

any isomer with Cu atoms with high coordination number,

in spite of their lower energy when using DFT methods. It

appears that to provide a comprehensive list of stable

medium size isomers of CuSin, it is unavoidable to use the

MGAC coupled directly with the DFT method. While this

will increase considerably the computational resources

needed, the high degree of parallelization available in the

MGAC approach [33] will make this possible in the near

future.
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