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1. Introduction

All algebras considered in this paper are not necessarily associative algebras over
a field K .

Let A be an algebra. We denote by 〈a1, . . . , an〉 the vector space generated by
a1, . . . , an ∈ A. Let U be a subspace of A. We define inductively the following pow-
ers of U : U1 = U , Un = Un−1U + Un−2U2 + · · · + UUn−1; U(0) = U , U(n) =
(U(n−1))2. We say that U is nilpotent (respectively, solvable) when Uk = 0 (respec-
tively, U(k) = 0) for some k. When U is nilpotent the smallest k such that Uk = 0 is
called the index of nilpotency of U . Analogously, we define the index of solvability
of U . Clearly, if U is nilpotent then U is solvable.

In a series of papers, Gerstenhaber [6–8] studied nilalgebras and nilpotent linear
transformations. In particular, Gerstenhaber gave a sufficient condition for a vector
space of nilpotent linear transformations to be a nilpotent algebra. In this paper we
consider nilpotent linear transformations on vectors spaces of dimension 1, 2 and 3.
As an application of our results, we solve some cases of the problem on solvability
of nilalgebras described below.

An algebra A is power-associative in case the subalgebra generated by each ele-
ment of A is associative. For any algebra the (right) powers of an element x in A

are defined by x1 = x, xn+1 = xnx. If A is power-associative then xixj = xi+j . An
element x in a power-associative algebra A is called nilpotent if there exists a k such
that xk = 0. The index of nilpotency for such an element x is the smallest k such
that xk = 0. A power-associative algebra is called a nilalgebra if each element is
nilpotent. When there is a bound on the indices of nilpotency, the nilindex of the
algebra is the smallest k such that xk = 0 for all x in A.

The following problem has been open since 1972 (see [1,13], [11–p. 205]).
Albert’s Problem. Is every finite-dimensional commutative power-associative nil-

algebra solvable?
It is known that this problem has a positive answer when the algebra has dimen-

sion � 6 (see [3,4,9]), and dimension n and nilindex n or n + 1 (see [5]). See also
[2]. In this paper we prove that Albert’s problem has positive answer for dimension
7, and for algebras of dimension n and nilindex n − 1 or n − 2.

2. Nilpotent linear transformations

Let V be a vector space over a field K . We denote by L(V ) the set of all linear
transformations on V . The set L(V ) is a vector space.

Assume that dim(V ) = n. Let � be a vector subspace of L(V ). Assume that R

is nilpotent for any R ∈ �. Gerstenhaber [8] proved that: dim(�) � n(n − 1)/2; if
dim(�) = n(n − 1)/2 then � is a nilpotent algebra with index of nilpotency n.

In this section we prove Gerstenhaber’s result for n = 1, 2 and obtain a more
specific result for n = 3.
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Proposition 1. Let V be a vector space of dimension 1 over a field K. If T ∈ L(V )

is nilpotent then T = 0.

Proof. The result is clear since L(V ) ∼=K as K-algebras. �

Theorem 2. Let V be a vector space of dimension 2 over a field K and let � be a
vector subspace of L(V ). Assume that R is nilpotent for any R ∈ �. Then, if R and
S are any elements in �, we have R · S = 0.

Proof. If R is a nonzero element in �, we may assume that the matrix [R] associated
with R is in Jordan canonical form. Let S be any other element of �. We have:

[R] =
(

0 1
0 0

)
and [S] =

(
a b

c d

)
.

Since T = uR + S must be nilpotent for all choices of the scalar u, both the trace
and the determinant of [T ] must be zero. That is, a + d = 0 and −a2 − bc − uc = 0.
Since this last equation holds for all u in K , we must have c = 0. Consequently,
we must also have that a = 0. It follows that d = 0 as well. Thus [S] is strictly
upper triangular. This means that any element of � will be represented by a strictly
upper triangular 2 × 2 matrix. The product of any two strictly upper triangular 2 × 2
matrices is zero. �

Theorem 3. Let V be a vector space of dimension 3 over a field K and let � be a
vector subspace of L(V ). Assume that R is nilpotent for any R ∈ �. Then either

(i) � · � · � = 0 or,
(ii) The dimension of � is 2 and we can choose a basis of V such that {P, Q} is a

basis of � with

[P ] =

0 1 0

0 0 1
0 0 0


 , [Q] =


ε 0 ε3

1 −2ε 3ε2

0 −1 ε


 .

In this case, if R, S, and R · S are all in �, then R = 0 or S = 0.

Proof. Since the dimension of V is 3, the linear transformations in � are represented
by 3 × 3 matrices. Since each linear transformation in � is nilpotent, its characteris-
tic polynomial must be x3. We will consider two cases.

Case one. Suppose first that for all A in �, we have A2 = 0. Suppose that A /= 0
and B are elements in �. Assuming [A] to be in Jordan canonical form, we may
suppose that

[A] =

0 1 0

0 0 0
0 0 0


 and [B] =


a b c

d e f

g h i


 .
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Since A2 = B2 = (A + B)2 = 0, we get [AB + BA] = 0. From this we obtain d =
f = g = a + e = 0. Furthermore,

[B] =

a b c

0 −a 0
0 h i


 and [B]2 =


a2 ch ac + ci

0 a2 0
0 −ah + hi i2


 .

We conclude that a = i = 0. Therefore [A] and [B] as well as all other elements of
� belong to the family of matrices of type

0 ∗ ∗
0 0 0
0 ∗ 0


 .

In this case � · � · � = 0 which is the possibility contained in part (i).
Case two. We may suppose that there is some P in � with Jordan canonical form

[P ] =

0 1 0

0 0 1
0 0 0


 .

Suppose that all of the linear transformations in � have upper triangular represen-
tation. Since they are nilpotent, they must all be strictly upper triangular. It follows
that � · � · � = 0.

Now suppose that there is a linear transformation S in � whose representation is
not upper triangular. Let

[S] =

a b c

d e f

g h i


 .

We must have the characteristic polynomial of T = uP + S to be x3 for any
scalar u. The characteristic polynomial of T is

CT (x) = x3 − (a + e + i)x2 + (−bd + ae − cg − f h + ai + ei)x

− (d + h)ux + (ceg − bfg − cdh + af h + bdi − aei)

− (bg + fg − ah − di)u − gu2.

We conclude that: (i) a + e + i = 0, (ii) −bd + ae − cg − f h + ai + ei = 0, (iii)
d + h = 0, (iv) ceg − bfg − cdh + af h + bdi − aei = 0, (v) bg + fg − ah −
di = 0, (vi) g = 0. Since we assumed that [S] was not upper triangular, the con-
ditions g = 0 and d + h = 0, given by (vi) and (iii), imply that d must be nonzero.
Eq. (v) becomes d(a − i) = 0 which implies a = i. Using Eq. (i) we have e = −2a.

Eqs. (ii) and (iv) become (vii) −3a2 − bd + df = 0 and (viii) 2a3 + abd + cd2 −
adf = 0. Adding a times (vii) to (viii) gives a3 − cd2 = 0 so c = a3/d2. From (vii)
we get f = 3a2/d + b.

We obtain that the matrix form for any S in � which is not upper triangular must
be of the form
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[S] =



a b a3

d2

d −2a b + 3a2

d

0 −d a




with d /= 0. Letting ε = a/d , we can write

[S] = d


ε 0 ε3

1 −2ε 3ε2

0 −1 ε


 + b[P ].

Therefore we can take Q = Qε in � to be given by its matrix representation

[Q] =

ε 0 ε3

1 −2ε 3ε2

0 −1 ε




and S = dQ + bP .
We now want to show that the dimension of � is 2 and that {P, Q} is a basis of

�.
The set � determines ε uniquely. This follows since if Qε′ ∈ � for some ε′ ∈ K ,

then Qε − Qε′ is nilpotent and upper triangular, hence strictly upper triangular, forc-
ing ε = ε′. Therefore S ∈ 〈P, Q〉 for all S ∈ � whose representation are not upper
triangular. On the other hand, if S ∈ � is represented by an upper triangular matrix,
Q + S ∈ � is not, forcing S ∈ 〈P, Q〉 again. We conclude that � is two dimensional
with basis consisting of P and Q.

Finally, suppose that R, S, and R · S are all elements of �. Letting R = pP + qQ

and S = xP + yQ, then the (3, 1) entry of [R · S] is −qy. Since R · S is in �, then
qy = 0. So either q = 0 or y = 0.

If q = 0 then

[R · S] =

py −2εpy px + 3ε2py

0 −py εpy

0 0 0


 .

If y = 0 then

[R · S] =

0 εqx px

0 qx −2εqx

0 0 −qx


 .

Since [R · S] is upper triangular and in �, it must be a scalar multiple of [P ]. Thus
the diagonal elements and the (1, 3) entry must be zero. In either case we must have
qy = qx = py = px = 0. Therefore we either get x = y = 0 or p = q = 0 and so
either [R] = 0 or [S] = 0.

The assertions (i) and (ii) do indeed exclude one another since, for example,
P 2Q /= 0. �
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3. Albert’s problem

Throughout this section A is a commutative power-associative nilalgebra of finite
dimension n and nilindex k over a field K . We assume that K has characteristic
zero or sufficiently large. Therefore, from Gerstenhaber [7], the linear operator Lt is
nilpotent for any t in A.

3.1. Preliminary results

Proposition 1 and Theorems 2 and 3 are used extensively in this section in the
following way. Let V be a subspace of A. The set V is not necessarily a subalgebra.
It is just a subspace which means it is closed under addition and scalar multiplica-
tion. We let W = {x ∈ A | xV ⊂ V }. The set W is called the stabilizer of V in A.
The set � = {Lx | x ∈ W } is a vector space of nilpotent linear transformations. By
construction, V is an invariant subspace for all elements of �. We let � be the set of
linear transformations of A/V which are induced by the linear transformations in �.

If the dimension of A/V is 1, then Proposition 1 implies that WA ⊂ V .
If the dimension of A/V is 2, then Theorem 2 implies that W(WA) ⊂ V .
If the dimension of A/V is 3, then Theorem 3 implies that either � is of a certain

form or else W(W(W(A))) ⊂ V .

Proposition 4. Let A be a commutative power-associative nilalgebra of dimension
n. Let B be a (n − 1)-dimensional subalgebra of A. Then B is an ideal of A.

Proof. We have to prove that BA ⊂ B. Let W = {t ∈ A | tB ⊂ B}. Since B is a
subalgebra of A it follows that B ⊂ W . The quotient vector space A/B has dimen-
sion 1. Then, by Proposition 1, WA ⊂ B. Therefore BA ⊂ B since B ⊂ W. �

The following results will be useful.

Proposition 5 [3, Proposition 4]. Let A be a commutative power-associative nilal-
gebra of dimension n and nilindex k over a field K with characteristic /= 2, 3. If
k = 1, 2, 3, n, n + 1 then A is nilpotent (thus it is solvable).

Proposition 6 (Schafer [12, Proposition 2.2, p. 18]). If an algebra A contains a solv-
able ideal I, and if A/I is solvable, then A is solvable.

3.2. Nilindex n − 1 and n − 2

Let a be an element of A such that ak−1 /= 0 and let w = 〈a, a2, . . . , ak−1〉. Let
W = {t ∈ A | tw ⊂ w}. Since w is actually a subalgebra, w ⊂ W . Let � = {Lt | t ∈
W }.
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For each t in W , the subalgebra w is carried into itself by the operator Lt . There-
fore Lt induces linear transformation on the quotient vector space A/w. The set of
these induced linear transformations on A/w will be called �. We shall not distin-
guish Lt in � from the linear transformation induced by Lt which is in �.

In the next three theorems we will use these definitions of a, w, W , � and �.

Theorem 7. Every commutative power-associative nilalgebra of finite dimension
n and nilindex n − 1 over a field K with characteristic zero or sufficiently large is
solvable.

Proof. In this case dim(A/w) = 2. The transformations of A/w in � satisfy the
hypothesis of Theorem 2 and it follows that W(WA) ⊂ w. Since w ⊂ W , it follows
that (WA)w ⊂ w. This implies that WA ⊂ W whence W is an ideal of A. We remark
that w is an ideal of W and that A/W and W/w are algebras of dimension � 2.
Therefore, from Proposition 5, it follows that A/W and W/w are solvable. Since w is
solvable, it follows from Proposition 6 that W is solvable. Therefore, by Proposition
6 again, A is solvable. �

Theorem 8. Let A be a commutative power-associative nilalgebra of dimension
n and nilindex n − 2 over a field K with characteristic zero or sufficiently large.
Suppose that � has a basis {P, Q} with

[P ] =

0 1 0

0 0 1
0 0 0


 , [Q] =


ε 0 ε3

1 −2ε 3ε2

0 −1 ε


 .

Then A is solvable or W(W(WA)) ⊂ w.

Proof. Suppose that La = pP + qQ and La2 = rP + sQ.
From the first linearization of z2z2 = z4 we obtain

Lz3 = 4Lz2Lz − 2LzLzLz − LzLz2 .

Linearizing this identity we obtain

Lzi+j+k = Lzizj zk

= 1

3

{
4Lzi+j Lzk + 4Lzi+kLzj + 4Lzj+kLzi

− Lzi Lzj+k − Lzj Lzi+k − LzkLzi+j

}
+ 1

3

{ − Lzi Lzj Lzk − Lzj Lzi Lzk − LzkLzj Lzi

− Lzi LzkLzj − LzkLzi Lzj − Lzj LzkLzi

}
.

Therefore, using induction, we obtain that Lai (i � 3) is in the subring generated by
La and La2 .
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We compute the matrix for La3 . The (3, 1) entry of [La3] is −3qs. Since La3 is
in � we must have qs = 0. So q = 0 or s = 0.

If q = 0 then

[La3] =

−ps 6εps 3pr − 3ε2ps

0 5ps −9εps

0 0 −4ps


 .

If s = 0 then

[La3] =

4qr −9εqr 3pr + 12ε2qr

0 −5qr 6εqr

0 0 qr


 .

Since [La3] is upper triangular and in �, it must be a scalar multiple of [P ]. In
particular the diagonal and the (1, 3) entries must be zero. In both cases we get ps =
pr = qr = qs = 0. Therefore we either have r = s = 0 or p = q = 0 and hence
La = 0 or La2 = 0. We consider separately the three possible cases.

Case 1. Suppose that La = La2 = 0. Since Lai is in the subring generated by La

and La2 , we have Lai = 0 for all i. This means that w is an ideal of A. Since A/w is
now a nilalgebra of dimension 3, from Proposition 5 we have that A/w is solvable.
Since w is also solvable, we obtain from Proposition 6 that A is solvable.

Case 2. Suppose that La = 0 and La2 /= 0. Using power-associativity, from the
first linearization of the identity z2z3 = z5 we obtain

2(ay)((aa)a) + 2(aa)((ay)a) + (aa)((aa)y)

= 2(((ay)a)a)a + (((aa)y)a)a + (((aa)a)y)a + (((aa)a)a)y.

Since La = 0, all the terms except the last terms on each side of the equal sign are
in w. This means that a2(a2y) ≡ a4y (mod w). In particular, La2La2 = La4 . This
implies that La2La2 is in �. Since La2 is also in �, we obtain from Theorem 3 that
La2 = 0. This contradicts that La2 /= 0.

Case 3. Suppose that La /= 0 and La2 = 0. Since La is nilpotent and dim(A/w) =
3 we must have L3

a = 0. Since Lai is in the subring generated by La and La2 , and
L3

a = 0, we have that Lai = 0 for all i � 2. Looking at the matrix of La = pP +
qQ, we see that the matrix of L2

a has (3, 1) entry −q2. Therefore L2
a = 0 would

imply q = 0, hence La = pP /= 0 and then L2
a /= 0, a contradiction. This shows

that L2
a /= 0.

We can pick a basis of A/w of the form a(ax), ax, x. We will eventually show
that W(W(WA)) ⊂ w by first establishing what W actually contains. We will show
that dim(W) = dim(w) + 1 and that a(ax) is an element of W which is not in w.

We already know that aiy ∈ w for all y ∈ A and i � 2. Therefore, to establish
that an element y is in W , we need only show that ya is in w. Since L3

a = 0, we have
(a(ax))a is in w. This shows that a(ax) is in W .

We now establish that the dimension of W/w is one. Suppose that (c1a(ax) +
c2ax + c3x)w ⊂ w. Since a is an element of w, this implies (c1a(ax) + c2ax +
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c3x)a ∈ w. Since a(ax), ax, x are linearly independent modulo w, we must have
c2 = c3 = 0. Therefore a(ax) is a basis of W/w.

It follows that a, a2, . . . , an−3, a(ax) is a basis of W . Therefore, to obtain that W

is a subalgebra of A, it remains to prove that (a(ax))2 ∈ W .
We first show that (a4x)x is in w. From the second linearization of z4 = z2z2,

substituting two y’s for two z’s we obtain

((yy)z)z + 2((yz)y)z + 2((yz)z)y + ((zz)y)y = 2(yy)(zz) + 4(yz)(yz).

Now we let y = a2 and z = x to obtain

(a4x)x + 2((a2x)a2)x + 2((a2x)x)a2 + (x2a2)a2 = 2a4x2 + 4(a2x)2.

The terms on the left ending in a2 are in w since La2 = 0. Furthermore, ((a2x)a2)x

is in (wa2)x ⊂ w since Lai = 0 for all i � 2. On the right-hand side, the terms are

in w since La4 = 0 and (a2x)2 is in w2 ⊂ w since La2 = 0. This means that (a4x)x

is in w.
We next show that (a(ax))2 is in W . We use power-associativity of degree 6.

From the second linearization of the identity z3z3 = z6 we obtain:

2((xx)a)((aa)a) + 4((ax)x)((aa)a) + 4((ax)a)((ax)a)

+ ((aa)x)((aa)x) + 4((aa)x)((ax)a)

= ((((xx)a)a)a)a + 2((((ax)x)a)a)a + 2((((ax)a)x)a)a

+ 2((((ax)a)a)x)a + 2((((ax)a)a)a)x + ((((aa)x)x)a)a

+ ((((aa)x)a)x)a + ((((aa)x)a)a)x + ((((aa)a)x)x)a

+ ((((aa)a)x)a)x + ((((aa)a)a)x)x.

Notice that a2x is in w and (ax)a is in W . Therefore the terms on the left-hand side
are in the set 4((ax)a)2 + Aa3 + w2 + wW . Hence, the left-hand side is of the form
4((ax)a)2 + w. The terms on the right-hand side which end in two a’s are in W

since (Aa)a ⊂ W . The terms which end with ((. . .)a)x or ((. . .)x)a must start with
three a’s and an x. The products ((ax)a)a, ((aa)x)a, and ((aa)a)x are in w since
L3

a = 0 and Lai = 0 for i � 2. Thus the terms ((. . .)a)x or ((. . .)x)a are contained
in (wa)x + (wx)a ⊂ (ax)a + w ⊂ W since Lai = 0 for i � 2. The product (a4x)x

is in w by the previous proof. This proves that (a(ax))2 is in W .
Since W is a subalgebra of A and w is an ideal of W , we have that W/w is an

algebra. Also we know that the dimension of W/w is 1. Thus W/w is solvable (by
Proposition 5). Therefore W 2 ⊂ w.

Now let W act on the two-dimensional vector space A/W . From Theorem 2 we
have that W(WA) ⊂ W . Then it follows that W(W(WA)) ⊂ W 2 ⊂ w. �

Theorem 9. Every commutative power-associative nilalgebra of finite dimension
n and nilindex n − 2 over a field K with characteristic zero or sufficiently large is
solvable.
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Proof. The element a in now an element whose index of nilpotency is n − 2.
Therefore dim(A/w) = 3. We introduce H as the stabilizer of W in the second
portion of the proof and as the stabilizer of W + W 2 in the third portion of the
proof.

By Theorems 3 and 8, it remains to consider the case where W(W(WA)) ⊂ w.
Since w ⊂ W , we have that W(W(WA)) ⊂ w implies (W(WA))w ⊂ w which im-
plies W(WA) ⊂ W . This gives W 3 ⊂ W and W 3W ⊂ w. The proof now splits into
three cases.

Case 1. If W = w, then from w(w(wA)) ⊂ w we successively get w(wA) ⊂
w, wA ⊂ w and A ⊂ w. This is impossible since the dimension of A is n and the
dimension of w is n − 3.

Case 2. Assume that W /= w and W 3 ⊂ w. This implies that W 2 ⊂ W and so W

is a subalgebra. If H is the stabilizer of W, then W ⊂ H . Since dim(A/W) � 2 we
have H(HA) ⊂ W and so HA ⊂ H . Thus H is an ideal. The dimension of A/H ,
H/W , W/w are all �2 and these algebras are all solvable by Proposition 5. Since w

is solvable, we successively get that W , H and A are solvable by Proposition 6.
Case 3. Assume that W 3 is not contained in w. In this case W + W 2 is in the

stabilizer of w + W 3. Since the dimension of A/(w + W 3) � 2 we have (W + W 2)

((W + W 2)A) ⊂ w + W 3. In particular W 2(WA) ⊂ w + W 3 and this implies W 2

W 2 ⊂ w + W 3 ⊂ W . This makes W + W 2 a subalgebra and dim(A/(W + W 2)) �
2. Letting H be the stabilizer of W + W 2, we have H(HA) ⊂ (W + W 2) and so
HA ⊂ H . Thus H is an ideal of A. We have w ⊂ w + W 3 ⊂ W + W 2 ⊂ H ⊂ A.
Each subalgebra is an ideal of the next larger subalgebra and the dimension of the
quotient algebra is �2. All the quotient algebras are solvable, w is solvable, and
therefore A is solvable. �

As a consequence of Proposition 5 and Theorems 7 and 9 we obtain the following
result.

Corollary 10 (Correa et al. [3,4]). Let A be a commutative power-associative nilal-
gebra of dimension � 6 over a field of characteristic /= 2, 3, 5. Then A is solv-
able.

Remark. The results stated in Theorems 7 and 9 were obtained also independently
by Gutiérrez Fernández [10]. Furthermore, it is proved in [10] that the result stated
in Corollary 10 is true for commutative nilalgebras which are not necessary power-
associative.

3.3. Dimension 7

In this subsection we prove the following result.
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Theorem 11. Let A be a commutative power-associative nilalgebra of dimension 7
over a field K of characteristic zero or sufficiently large. Then A is solvable.

By Proposition 5 and Theorems 7 and 9 the result is true when the nilindex of A

is 1, 2, 3, 5, 6, 7 and 8. Therefore it remains to prove that A is solvable when the
nilindex of A is 4.

Throughout the rest of this subsection A is a commutative power-associative nil-
algebra of nilindex 4. By Lemma 2 of [4] L5

z = 0 for all z ∈ A.

Lemma 12 [3, Lemma 6]. Any commutative power-associative nilalgebra of nilindex
4 over a field of characteristic /= 2 satisfies the following identities:

2((yx)x)x + (x2y)x + x3y = 0, (1)

(yx)x2 = 0, (2)

2(yx)(zx) + (yz)x2 = 0, (3)

2(((yx)x)x)x + x3(yx) = 0, (4)

(yx2)x3 = 0, (5)

(yx3)x2 = 0. (6)

Lemma 13. Let A be a commutative power-associative nilalgebra of dimension 7
and nilindex 4 over a field of characteristic /= 2. Then A satisfies the following
identities:

(yx)x3 = 0, (7)

x3(yz) = −(zx2)(yx) − 2((zx)x)(yx), (8)

(yx2)x2 = 0, (9)

A2x2 = (Ax)2, (10)

A3x3 ⊂ ((A2x)x)(Ax) + (Ax)3. (11)

Proof. Identity (7) holds if x3 = 0. Let x ∈ A with x3 /= 0 and X = 〈x, x2, x3〉.
Let y be an arbitrary element of A. Let A/X be the quotient vector space of A

by X. Since XLx ⊂ X the linear map Lx : A/X → A/X, given by (y + X)Lx =
yLx + X, is well-defined. Since L5

x = 0 we have (Lx)
5 = 0. Since A/X has dimen-

sion 4 we have (Lx)
4 = 0. This implies that yL4

x ∈ X. Thus yL4
x = αx + βx2 +

δx3 (α, β, δ ∈ K). Since L5
x = 0 we obtain αx2 + βx3 = yL5

x = 0 and then α = 0
and β = 0. It follows that yL4

x = δx3. On the other hand, by (4), (yx)x3 = −2yL4
x .

We obtain then that (yx)x3 = λx3 (λ ∈ K). Since L5
yx = 0 we get λ5x3 = x3L5

yx = 0.

Therefore λ = 0 and we obtain (yx)x3 = 0. Therefore (7) is an identity of A.
Linearizing (7) we obtain (8). Replacing z by x2 in (3) and using (7) we get

(9). From (3) we get (10). Letting z ∈ A2 and y ∈ A in (8) and using (10) we get
(11). �
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The linearization of (3) is

(xy)(zw) + (yz)(xw) + (zx)(yw) = 0. (12)

By (12) we have ((yx)(zx))x3 = −((yx)x2)((zx)x) − ((zx)x2)((yx)x). Therefore,
by (2), we have

((yx)(zx))x3 = 0. (13)

From now on we assume that A has dimension 7. Since (yx)(zx) = −1/2(yz)x2

by (3) we have, by (9),

((yx)(zx))x2 = 0. (14)

Since ((yx)x)2 = −1/2(yx)2x2 = 1/4(y2x2)x2 by (3) we have, by (9),

((yx)x)2 = 0. (15)

From (8) we obtain 2y2x3 = −2(yx2)(yx)− 4((yx)x)(yx). By (12) we have y2x3 =
−2(yx2)(yx). Therefore, subtracting the second from the first, we obtain

y2x3 = −4((yx)x)(yx). (16)

Since the kernel of Lx3 plays a pivotal role in the proof of Theorem 11, we display
a number of useful properties. Identities (2), (5), (7) and (9) imply

Ax + Ax2 ⊂ Ker(Lx2) ∩ Ker(Lx3). (17)

Applying (13) and (14) we also obtain

(Ax)2 ⊂ Ker(Lx2) ∩ Ker(Lx3). (18)

Identity (8) yields

A Ker(Lx) ⊂ Ker(Lx3). (19)

In particular, since x4 = 0, we have x3 ∈ Ker(Lx), hence

Ax3 ⊂ Ker(Lx3). (20)

Replacing z by zx in (8) and applying (2), we deduce

((zx)x)x = 0 ⇒ A(zx) ⊂ Ker(Lx3). (21)

From now on we let x be an element of A such that x3 /= 0 and X = 〈x, x2, x3〉.
Thus Lx /= 0 and L2

x /= 0. Using (4) and (7) we obtain L4
x = 0. Therefore the min-

imal polynomial of Lx is t4 or t3. Let Jl denote the l × l elementary Jordan matrix
associated to the eigenvalue 0. Then the possible Jordan canonical forms of Lx are

(a)

[
J4 0
0 J3

]
(b)


J4 0 0

0 J2 0
0 0 0


 (c)




J4 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 (d)


J3 0 0

0 J3 0
0 0 0




(e)


J3 0 0

0 J2 0
0 0 J2


 (f)




J3 0 0 0
0 J2 0 0
0 0 0 0
0 0 0 0


 (g)




J3 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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The basis of A corresponding to each one of these matrices are

(a) {y, yx, (yx)x, ((yx)x)x, a, ax, (ax)x} with (((yx)x)x)x = 0, ((ax)x)x = 0.
(b) {y, yx, (yx)x, ((yx)x)x, a, ax, b} with (((yx)x)x)x = 0, (ax)x = 0, bx = 0.
(c) {y, yx, (yx)x, ((yx)x)x, a, b, c} with (((yx)x)x)x = 0, ax = 0, bx = 0, cx =

0.
(d) {x, x2, x3, a, ax, (ax)x, b} with ((ax)x)x = 0, bx = 0.
(e) {x, x2, x3, a, ax, b, bx} with (ax)x = 0, (bx)x = 0.
(f) {x, x2, x3, a, ax, b, c} with (ax)x = 0, bx = 0, cx = 0.
(g) {x, x2, x3, a, b, c, d} with ax = 0, bx = 0, cx = 0, dx = 0.

When A has a basis of type (c), (e), (f), (g), the proof that A is solvable is the
same (modulo minor modifications) as the proof when the algebra has dimension 6
and a basis of type, respectively, (a), (d), (d), (c) in the notation of Section 3.1 of [3].

We prove now that A is solvable when A has a basis of type (a), (b), (d). We
present the proof in a series of lemmas.

Lemma 14. If A3〈x3〉 ⊂ 〈x3〉 (so, in particular, if A〈x3〉 ⊂ 〈x3〉), then A is solv-
able.

Proof. Assume that A3〈x3〉 ⊂ 〈x3〉. Then 〈x3〉 is a solvable ideal of A3. The quo-
tient A3/〈x3〉 is a nilalgebra of dimension � 6, so it is solvable by Corollary 10.
Therefore A3 is solvable by Proposition 6. Finally, A3 solvable implies A

solvable. �

Lemma 15. If Ker(Lx3) is a subalgebra of dimension 6 then A is solvable.

Proof. Since dim(A) = 7 and dim(Ker(Lx3)) = 6, it follows by Proposition 4 that
Ker(Lx3) is an ideal of A. Since Ker(Lx3) and A/Ker(Lx3) are nilalgebras of dimen-
sion � 6, they are solvable by Corollary 10. Therefore A is solvable by Proposition
6. �

Lemma 16. Assume that A has a basis of type (a). Then A is solvable.

Proof. Let

x = α1y + α2yx + α3(yx)x + α4((yx)x)x + α5a + α6ax + α7(ax)x (22)

(αi ∈ K). Applying L3
x to (22) we obtain α1 = 0. Applying Lx2 to (22) and using

(2) we get x3 = α5ax2. This last equation implies α5 /= 0 since x3 /= 0. Therefore

ax2 = α−1
5 x3. (23)

Then (ax2)x = 0 since x4 = 0. Therefore by (1) we have x3a = −2((ax)x)x −
(ax2)x = 0. Therefore

a ∈ Ker(Lx3). (24)
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If yx3 = 0 then Ax3 = 0 by (7) and (24). Therefore A is solvable by Lemma 14.
Assume now thatyx3 /= 0. Then Ker(Lx3) = 〈yx, (yx)x, ((yx)x)x, a, ax, (ax)x〉

by (7) and (24). It follows by (17) that Ker(Lx3) = Ax + Ka. Therefore, by (18), to
conclude that Ker(Lx3) is a subalgebra of A, it remains to prove that a2, (tx)a ∈
Ker(Lx3) for all t ∈ A. This in turn follows from (23), (2) and (3) since

a2x3 = α5a
2(ax2) = 0,

(a(tx))x3 = α5(a(tx))(ax2) = −1

2
α5a

2((tx)x2) = 0.

Since Ker(Lx3) is a subalgebra of dimension 6 when yx3 /= 0, it follows that A is
solvable by Lemma 15. �

Lemma 17. Assume that A has a basis of type (b). Then A is solvable.

Proof. Let

x = α1y + α2yx + α3(yx)x + α4((yx)x)x + α5a + α6ax + α7b (25)

(αi ∈ K). Applying L3
x to (25) we obtain α1 = 0. Applying L2

x to (25) we get x3 =
α2((yx)x)x. From this last equation we obtain α2 /= 0 since x3 /= 0. Therefore

((yx)x)x = α−1
2 x3. (26)

We will consider two cases: α5 = 0 and α5 /= 0.
First case: Assume that α5 = 0. Multiplying (25) by x and using (26) we obtain

(yx)x = α−1
2 x2 − α−2

2 α3x
3. (27)

We will prove that A3x3 = 0. By (11) it is enough to prove that ((Ax)x)(Ax) = 0
and (Ax)3 = 0.

We have

Ax = 〈yx, (yx)x, ((yx)x)x, ax〉 ⊂ 〈yx, x2, x3, ax〉
by (26) and (27). Then (Ax)x ⊂ 〈x2, x3〉 by (27). Therefore, by (2) and (7),
((Ax)x)(Ax) = 0.

By (2) and (7)

(Ax)2 ⊂ 〈(yx)2, (yx)(ax), (ax)2〉.
For any t ∈ A, ((ax)(ax))(tx) = −2((ax)t)((ax)x) = 0 by (12). Therefore, by (13)
and (14), we have

(Ax)3 ⊂ 〈(yx)3, (yx)2(ax), ((yx)(ax))(yx), ((yx)(ax))(ax)〉.
We now prove that each one of these products is zero. Given any t ∈ A, we obtain

((yx)x)(tx) = 0, (((yx)x)x)(tx) = 0 (28)
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from (2), (7), (26), (27). Hence

(yx)2(tx) = −2((yx)t)((yx)x) (by (3))

= −2α−1
2 ((yx)t)x2 + 2α−2

2 α3((yx)t)x3 (by (27))

= 4α−1
2 ((yx)x)(tx) − 2α−2

2 α3((yx)x2)(tx)

− 4α−2
2 α3(((yx)x)x)(tx) (by (3), (8))

= 0 (by (2), (28))

so, in particular, (yx)3 = 0 and (yx)2(ax) = 0. From (25) we obtain yx ∈ 〈x, x2,

x3, ax, b〉. Therefore (yx)(ax) ∈ 〈(ax)(ax), (ax)b〉 by (2) and (7). Then ((yx)

(ax))(tx) ∈ 〈(ax)2(tx), ((ax)b)(tx)〉, where A being of type (b) implies (ax)2(tx) =
−2((ax)t)((ax)x) = 0 by (3) and ((ax)b)(tx) = −(bt)((ax)x) − (t (ax))(bx) = 0
by (12). Hence ((yx)(ax))(tx) = 0, which implies ((yx)(ax))(yx) = 0 and ((yx)

(ax))(ax) = 0. Therefore (Ax)3 = 0.
Therefore, in the case α5 = 0, we have A3x3 = 0. It follows that A is solvable by

Lemma 14.
Second case: Assume that α5 /= 0. Then

A = 〈y, yx, (yx)x, x, x2, x3, b〉 (29)

by (25) and (26).
If (yx)y = 0 then ((yx)x)(yx) = −1/2((yx)y)x2 = 0 by (3). Then by (8) y2x3 =

−(yx2)(yx) − 2((yx)x)(yx) = −(yx2)(yx). By (3) we obtainy2x3 = −2(yx2)(yx).
It follows that (yx2)(yx) = 0. Therefore

((yx)x)(yx) = 0, (yx2)(yx) = 0, (30)

when (yx)y = 0.
Assume that (yx)y /= 0. We have

((yx)y)x3 = −((yx)x2)(yx) − 2(((yx)x)x)(yx) = 0

by (8), (2), (26) and (7). Therefore

(yx)y ∈ Ker(Lx3). (31)

Let

(yx)y = β1y + β2yx + β3(yx)x + β4x + β5x
2 + β6x

3 + β7b (32)

(βi ∈ K).
Assume that β1 /= 0. Then A = 〈(yx)y, yx, (yx)x, x, x2, x3, b〉 by (29) and (32).

If b ∈ Ker(Lx3) then Ax3 = 0 by (7) and (31), and this implies that A is solvable by
Lemma 14. Assume that bx3 /= 0. Then

Ker(Lx3) = 〈(yx)y, yx, (yx)x, x, x2, x3〉.
We claim that Ker(Lx3) is a subalgebra of A. Replacing z by yx in (21) we obtain

A((yx)x) ⊂ Ker(Lx3). (33)
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By (17), (18) and (20) it therefore sufficies to prove that ((yx)y)2, ((yx)y)(yx) ∈
Ker(Lx3). We have ((yx)y)2 = 0 by (15). Using (8), (2), (26) and (7) we obtain

(((yx)y)(yx))x3 = −((yx)x2)(((yx)y)x) − 2(((yx)x)x)(((yx)y)x)

= −2α−1
2 (((yx)y)x)x3 = 0.

Therefore ((yx)y)2 and ((yx)y)(yx) are in Ker(Lx3). Therefore Ker(Lx3) is a sub-
algebra of A. By Lemma 15, it follows that A is solvable.

Assume that β1 = 0 and β7 /= 0. Then multiplying (32) by x3 we obtain by (7)
and (31) that bx3 = 0. If yx3 = 0 then Ax3 = 0. It follows that A is solvable by
Lemma 14. If yx3 /= 0 then Ker(Lx3) = 〈yx, (yx)x, x, x2, x3, b〉 is a subalgebra of
A by (17)–(19) and (33) combined with the relation b ∈ Ker(Lx). It follows that A

is solvable by Lemma 15.
Assume that β1 = 0 and β7 = 0. Multiplying (32) by x2 we obtain ((yx)y)x2 =

β4x
3 by (2). Therefore, using (3), we get ((yx)x)(yx) = −1/2((yx)y)x2 = −β4/

2x3. Therefore y2x3 = −4((yx)x)(yx) = 2β4x
3 by (16). Therefore β4 = 0 since

L5
y2 = 0. It follows that y2x3 = 0 = ((yx)x)(yx), and then (yx2)(yx) = −1/

2y2x3 = 0 by (3). Therefore relations (30) hold.
Therefore, when α5 /= 0, A is solvable or relations (30) hold.
Assume that relations (30) hold. We will prove that A is solvable.
From (29) and (26) it follows that Ax = 〈yx, (yx)x, x2, x3〉 and then (Ax)x =

〈(yx)x, x3〉. Therefore, by (2), (7), (15) and (30),

((Ax)x)(Ax) = 0.

We have Ax2 = 〈yx2, x3, bx2〉 by (29) and (2). Then

(Ax2)(Ax) = 〈(yx2)((yx)x), (bx2)(yx), (bx2)((yx)x)〉
by (5), (7), (9) and (30). By (8) we have (yx2)((yx)x) = −((yx)y)x3 − 2((yx)x)

((yx)x). Therefore, by (31) and (15), (yx2)((yx)x) = 0. By a linearization of (9) and
by (3) we get (bx2)(yx) = −(b(yx))x2 = 2(bx)((yx)x) = 0. A similar calculation
gives (bx2)((yx)x) = 0. Therefore

(Ax2)(Ax) = 0.

Since ((Ax)x)(Ax) = 0 and (Ax2)(Ax) = 0, it follows by (10) and (11) that
A3x3 = 0. Therefore A is solvable by Lemma 14. �

Lemma 18. Assume that A has a basis of type (d). Then A is solvable.

Proof. Identities (19) combined with the relation b ∈ Ker(Lx) and (21) for z = a,
z = ax yield

A(ax) + A((ax)x) + Ab ⊂ Ker(Lx3). (34)

Assume that b ∈ Ker(Lx3). If a ∈ Ker(Lx3) then Ker(Lx3) = A by (7). In this
case, A〈x3〉 = 0. Therefore A is solvable by Lemma 14. If a /∈ Ker(Lx3) then
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Ker(Lx3) = {x, x2, x3, ax, (ax)x, b} is a subalgebra of A by (34). It follows that
A is solvable by Lemma 15.

For the rest of the proof of this lemma, we assume that b /∈ Ker(Lx3).
We have

Ax = 〈x2, x3, ax, (ax)x〉.
Therefore

(Ax)2 = 〈(ax)(ax), ((ax)x)(ax)〉
by (2), (7) and (15). We compute (Ax)3. By (14) we have ((ax)(ax))x2 = 0 and
(((ax)x)(ax))x2 = 0. By (13) we obtain ((ax)(ax))x3 = 0 and (((ax)x)(ax))x3 =
0. By (2) we get ((ax)(ax))((ax)x) = 0. By (3) we get (((ax)x)(ax))((ax)x) =
−1/2(((ax)x)x)(ax)2 = 0. Therefore

(Ax)3 = 〈(ax)3, (((ax)x)(ax))(ax)〉.
We have that (Ax)x = 〈x3, (ax)x〉. Then

((Ax)x)(Ax) = 〈((ax)x)(ax)〉
by (2), (7) and (15). Therefore, it follows from (11) that

A3x3 ⊂ 〈(ax)3, ((ax)x)(ax), (((ax)x)(ax))(ax)〉.
Our aim is to prove that A3〈x3〉 ⊂ 〈x3〉.

Replacing y by b and z by a in (8) we get

(ab)x3 = 0. (35)

Now, replacing y by a and z by b in (8) we get

(bx2)(ax) = 0. (36)

Let

a2 = α1x + α2x
2 + α3x

3 + α4a + α5ax + α6(ax)x + α7b (37)

(αi ∈ K). Multiplying (37) by x2 and using (2) we obtain a2x2 = α1x
3 + α4ax2 +

α7bx2. Then multiplying this last expression by ax, we get (a2x2)(ax) = α4(ax2)

(ax) by (7) and (36). Since a2x2 = −2(ax)(ax) by (3) and (ax2)(ax) = −1/2a2x3

by (12), we obtain

(ax)3 = α4

4
a2x3. (38)

Since A has nilindex 4, we obtain (a2a2)x3 = a4x3 = 0. Combining (34) with (20)
to expand the second factor of (a2a2)x3 = 0 by means of (37) we obtain

α4a
3x3 = 0. (39)

Carrying out an analogous expansion of (a2a)x3 leads to

a3x3 = α4a
2x3. (40)
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Assume that α4 /= 0. Then a2x3 = 0 by (39) and (40), and then (ax)3 = α4/

4a2x3 = 0 by (38) and ((ax)x)(ax) = −1/4a2x3 = 0 by (16). Therefore A3x3 = 0.
Assume that α4 = 0. By (38) we have (ax)3 = 0. Let

(ax)a = β1x + β2x
2 + β3x

3 + β4a + β5ax + β6(ax)x + β7b (41)

(βi ∈ K). Using (2), (5), (7), (8) and (35), we obtain from (41) that
(((ax)a)a)x3 = β4a

2x3. By (1) we get ((ax)a)a = −1/2{a3x + (a2x)a}. There-
fore β4a

2x3 = −1/2{(a3x)x3 + ((a2x)a)x3}. By (7) (a3x)x3 = 0. From (37) we
obtain (a2x)a)x3 = 0 by (2), (5) and (8). Therefore

β4a
2x3 = 0. (42)

If β4 /= 0 then a2x3 = 0 by (42). In this case, A3x3 = 0 as before.
We now assume that β4 = 0. From (41) we obtain ((ax)a)x3 = β7bx3 by (7).

Since ((ax)a)x3 = 0 by (8) and (2), we obtain β7bx3 = 0. Since bx3 /= 0, we obtain
β7 = 0. From (41) we obtain ((ax)a)x2 = β1x

3 by (2). On the other hand, by (3),
((ax)x)(ax) = −1/2((ax)a)x2 = −1/2β1x

3. It follows that (((ax)x)(ax))(ax) =
−1/2β1x

3(ax) = 0 by (7). Therefore A3〈x3〉 ⊂ 〈x3〉.
Therefore, in any case, we have A3〈x3〉 ⊂ 〈x3〉. It follows that A is solvable by

Lemma 14. �
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