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Abstract

The concerted action of extracellular signals such as BMP, Wnt, FGF, RA and Notch activate a genetic program required to transform a
nave ectodermal cell into a neural crest cell. In this review we will analyze the extracellular signals and the network of transcription factors
that are required for this transformation. We will propose the division of this complex network of factors in two main steps: an initial cell
specification step followed by a maintenance or cell survival step.
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1. Introduction the neural tube these cells delaminate from the dorsal neu-

ral tube to migrate along different pathways. On reaching
The neural crest is a unique and highly specialized pop- their destination in the embryo, they differentiate into a wide
ulation of cells found in all vertebrate embryos that has variety of cell types.
fascinated generations of developmental and evolutionary In this review, we will analyse recent advances on the
biologists. The neural crest develops at the border betweensignals that induce neural crest and the genes activated by
the neural plate and the epidermis, and following closure of these signals that are required for the early steps of neural
crest specification. Induction of neural crest is a multi-step

* Corresponding author. Tel.: +44 20 7679 3323; fax: +44 20 7679 7349. process, and we will propose here some of the steps and the
E-mail address: r.mayor@ucl.ac.uk (R. Mayor). genes that control it.
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Epid. not linear, and many of the genes involved in the early steps
of neural crest specification are also involved in later steps of
crest development.
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Induction of the neural crest involves a complex set of
extracellular signals that transform the fate of cells lying
along the medio-lateral and anterior-posterior axes of the
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at the most dorsal ectoderm during gastrulation by a Wnt-

dependent mechanisfi3]. As a consequence of all these

Migration and interactions a dorso-ventral gradient of BMP activity is gen-

differentation erated. Strong evidence KXenopus and zebrafish embryos
genes indicate that neural plate, neural crest and epidermis are spec-

ified at progressively higher levels of BMP activi§;14—-18]

The addition of BMPs to dissected neural crest induces the
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Pax3, Zic cMy embryo. The signals that position the neural crest cells along

! * : : these axes are released from the neural plate, the epidermis
S . and the lateral mesod_enM—lO]. '
> P ! It has been shown iKenopus and zebrafish embryos that
§ |/Sox9f 7 ‘:‘]x‘ | prior to gastrulation BMP signalling is active throughout the
e (Slug| " D" entire ectodernjll,12] At this time, the dorsal mesoderm
= " Sy L : releases anti-BMP molecules such as noggin, follistatin and
‘5‘ \ Sox10+” / . chordin, that directly bind to BMPs, inhibiting their activ-
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Fig. 1. Neural cr_est genetic network. Qenetlc n_etwork based on expressmnexpression of neural crest markers in chick, supporting a role
patterns and gain- and loss- of function experiments. Green square: Cell

Specification genes; Blue square: Cell Survival genes. Genes written in blue!(Or th's molecule 'n. th's ?‘n'mal model a? WEIB].' However'.
indicate antiapoptotic activity. See text for more details. in this latter work it is likely that BMP is playing a role in
a late step of neural crest development as the tissue used in

Complete induction of neural crest cells requires the trans- these experiments was taken from relatively older embryos
formation of a néve ectoderm into neural crest. This is a (seg20]foracomparison between the stages of different ani-
complex process that involves the activity of extracellular mal models concerning the timing of neural crest induction).
factors produced by the inductive tissu€g Signalling in Nevertheless, although intermediate BMP activity is required
Fig. 1), which activate a genetic program in the ectodermal for neural crestinduction in chicKenopus and zebrafish this
cells (Cell Specification, green arrow inFig. 1). Once this molecule is not sufficient to induce neural plate or neural crest
genetic program is activated in the neural crest cells a sec-cells[21,22]
ond set of genes, the proper neural crest genes (blue box in A second group of signals, Wnts, FGFs, and RA, are
Fig. 1), are transcribed. One of the important functions of required for neural crest induction and have also been impli-
this second set of genes is to allow survival of the recently cated in the antero-posterior patterning of the neuroectoderm
induced neural crest cells (maintenanceCef! Survival in [23—28] These molecules come from the involuting endome-
Fig. 1). Finally, the joint action of the Cell Specification and soderm located at the posterior part of the embryo. Their
Cell Survival genes work together to control delamination, expression and inhibition are respectively required to poste-
migration and differentiation of the neural crest cells. In this riorize and anteriorize the neural tuf9-33] as well as to
review we will analyse the factors and genes involved in Cell induce neural crest on the posterior neural f¢R#5-39]
Signalling, Specification and Survival, but we will notinclude Recently, the emphasis has shifted in favor of Wnt sig-
the analysis of delamination, migration and differentiation as nalling as one of the key elements in neural crest induction
they have been discussed in another review of this igjue  [40]. Gain and loss of function experiments in chi&kpo-

The genetic cascade proposed in this review is an updatecpus and zebrafish show that Wnt signals are essential for
version of previous proposalg,3] and it will be based in neural crest induction. However they are not able to induce
the expression pattern and gain- and loss- of function experi-neural crest by itself in rfige ectoderm as they require work-
ments performed in different animal models. Thus, although ing in combination with anti-BMP signals or in a previously
useful as a proposal is far of being definitive as not many cys- induced neural platg86,38,41-46] A possible candidate to
regulatory analysis has been carried out. A further limitation be the source of Wnt signalling in the chick embryo is the epi-
of this proposal is that the interaction between the genes isdermis as it expresses Wnt6 at the right time to be the inducer
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[43]; however, there is no experimental evidence demon- also had an important role in neural crest evolution as well
strating that Wnt6 is required for neural crest formation. In as in other vertebrate trai{§9,60] Their expression pat-
Xenopus and zebrafish embryos Wnt8 is a good candidate tern correlates with the assumed ventro-dorso gradient of
to be a neural crest inducer. It is expressed in the meso-BMP activity, and identification of cys-regulatory elements
derm that is able to induce neural crest, and gain and lossin some of these genes indicate that is very likely to be direct
of function experiment show its role in neural crest induction targets of BMP[58,61-63] Loss of function experiments
[36,39,41,45,46] in mouse, zebrafish ankenopus embryos show that they

FGF signalling is also important in neural crest induction are required for the early specification of the neural crest
as gain and loss of function experiments show an essential[44,58,59,64—67]Msx] seems to play a key role in neu-
role of this molecule, and a direct, though transient, induction ral crest development, and epistatic experimenéeitopus

of some neural crest markers has been observedvs rato- suggest that works upstream of thieni/ geneg44,48,67]
derm treated with FGF8L0,14,36,37] Retinoic acid (RA) However, once the neural crestis indudéd:/ expression is
has also been implicated in neural crest inductioXédno- switched off from the neural crest, and become to play a role
pus and zebrafish embryos. Addition of RA to neuralized in controlling neural crest apoptogé8,68] The zebrafish
animal caps or expression of dominant negativeXdmo- AP2a mutantynont blanc, shows a defect in the early specifi-

pus embryos, as well as analysis of zebrafish mutant indicate cation of the neural crest, as well as in neural crest derivatives
the requirement of this molecule for the correct specifica- [64,69—71] It also shows a later role as an inhibitor of apop-
tion or survival of the neural crest cell39,47] Moreover, tosis in the neural crest cell§9]. Morpholino mediated

it has been shown that the induction activity of these three knockdown experiments ienopus indicates thaiP2a is
molecules is, at least in part, related to its posteriorization essential for the early specification of neural crest ¢éb$.
activity [3,20,39] Recently, it has been possible to dissociate Thus,AP2a seems to be a gene involved in early as well as
the posteriorizing role of FGF and Wnt signalling from their late neural crest development.

ability to induce neural cre$#8,49] In conclusion, induc- DIx genes are important in the positioning of the neu-
tion of neural crest requires a specific level of BMP and the ral plate border, including neural crest and placodal cells
concerted action of Wnt, FGF and RA signalling (§éz 1). [72—74] althoughDIx5 seems to be more specific for the

It is likely that Wnt, FGF and RA works in the posterior- neural crest cell§75]. It is important to note thaWsx, Dix
ization of the neuroectoderm in an early step of neural crestandAP2« have an earlier role in epidermal development, and
specification and also as direct neural crest inducer at laterin consequence it could be suggested that specification of the
steps. neural crest at this early stage involves the dorsalization of

Another important molecule involved in early crest speci- epidermis.
fication is Notch. It has been proposed that Notch participates The next group of gene<ic, Pax3 and c-Myc, are
in neural crest specification by controlling BMP expressionin expressed in a more restricted domain that the previous one,
chick andXenopus embryos, although the exact mechanism they are not expressed in the entire epidermis at earlier stages
could be different in these two speci@&®-54] In addition, but they are present in a wider domain than the premigratory
Notch signalling seems to control neural crest development neural crest cellf6—-81] Multiple Zic genes have beeniden-
by repressing neurogene$tsl]. We will not discuss Notch  tified in mouse an&enopus that are expressed in overlapping
signalling further as itis analyzed elsewhere in this i§56& but distinct pattern§80,82] Disruption of mous&ic genes

leads to multiple defects in neural and neural crest deriva-
tives[82—-84] In Xenopus, expression of the Zic genes are a
3. Early genetic network involved in Cell very early response to neural inducing signals, and ectopic
Specification of the neural crest expression of these Zic genes leads to neural plate and neural
crest formatiori67,78-80,85-87]

As consequence of the extracellular signalling working  Pax3 is expressed in the neural folds and loss of function
on the ectoderm a first set of genes that encode for tran-experiments in mouse arXtnopus show a key role in neu-
scription factors are activated in the prospective neural crestral crest developmef#8,67,88—90]Using a combination of
cells. These are the genes that control Cell Specification (seeoverexpression and morpholino mediated knockdown exper-
Fig. 1). iments, Monsoro-Burg et d48], show thatMsx/ andPax3

Gene expression pattern suggests tfat, AP2« and are required for neural crest formation and thak/ seems
DIx genes are amongst the earliest genes activated in theo work upstream oPax3 (seeFig. 1). Interestingly, itis pro-
ectoderm fated to become neural crest. We have groupedposed in their work that Wnt controls neural crest induction
these three genes together because they exhibit a similathroughPax3 activity, while FGF8 requires/sx! and Pax3
pattern of expression. They are initially expressed in the non- actions; however the molecular mechanism by which the
neural ectoderm, and later they are restricted to the neuralcombination of the anti-BMP molecule noggin ahdx! is
fold region inXenopus and chick embryof6-58] Interest- able to induce neural crest iniva ectoderm is not explained
ingly amphioxus, a non vertebrate chordate, shows a similar[48]. A similar strategy based on morpholino injections has
early AP2 expression pattern suggesting that this moleculebeen recently used to show a cooperative functioRaaf
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andZicl in neural crest specification and a mutual regulation expression of several neural crest markers including HNK-1,

between these two factors has also been shownKigpel RhoB andPax3 [98] but in the trunk additional signals are
and[67]). The exact pathway network connectiigx/, Pax3 required[99]. In conclusion,Snail/Slug genes are required
and theZic genes requires further careful consideration. for the specification of the neural crest cells in chick, mouse

The proto-oncogene c-Myc has been found to be expressedandXenopus embryos.
in the neural plate border of amphibian embryos earlier and  In addition to this early role of thénail genes another
in a broader domain than many specific neural crest genesimportant function is to control cell-cycle progression in neu-
[81]. Morpholino knockdown and overexpression experi- ral crest cell§100] and to inhibit apoptosis in the crest cells,
ments show an essential role of c-Myc in neural crest devel- by controlling the expression of Bcl-»xand specific caspases
opment that seems to be independent upon cell proliferation[68,100] Thus, this is the first example of this group of genes
or cell deat81]. c-Myc is expressed almost at the same time expressed specifically in the neural crest that have an anti-
and in the same cells @d4sx/ andPax3, and it is likely that apoptotic or cell survival activity.
an interaction between these factors is required for the early
step of neural crest specification. 42, 1d3

Two recent studies itKenopus have analysed the role

4. Specific neural crest genes involved in Cell of Id3 in neural crest formatiorf101,102] They showed
Survival that depletion ofd3 by morpholino knockdown experiments

results in the down-regulation of early neural crest markers

FOIIOWing the initial SpeCification of neural crest precur- (Slug, Sox10, FoxD3 and TWiS[) and an increase in apopto_

sors at the neural plate border, a network of genes is setsjs in the neural crest cells. The down-regulation of neural
up that function to maintain these precursors (blue arrow crest markers ifd3 depleted embryos occurs very early and
in Fig. 1). The genes transcribed at this step of neural crest could not be rescued wug expression Suggesting thia3
induction are expressed later that the Cell Specification genesunctions to maintain the expression of neural crest progen-
and only in the neural crest territory. They encode for tran- itor genes as well as control cell proliferation and apoptosis
scriptions factors of thénail andSox family of genes, and  [101,102]
for the genegoxD3, Id3 andTwist. Functional experiments
are insufficient to predict a cascade of genetic interactions 4 3 ¢,
amongst these genes as the up or down regulation of one
gene will effect the expression of others. It is also important ~ The Sox genes are a group of transcription factors with
to note thatSnail, Slug and FoxD3 all function as transcrip- ~ considerable importance in neural crest development; their
tional repressof91-94} this means that there are additional role has been considered in detail elsewhere in this issue
transcription factors mediating the activity of these genes. In [103] and so will not be dealt with in detail here. Briefly,
addition, as many of these genes are involved in cell sur- Sox8, Sox9, SoxI0 and LSox5 are expressed in the neural
vival it is not known in many cases whether the observed crest of mouse, chick, zebrafish akenopus embryos, at
effect is due to changes in rates of cell death/proliferation or different times during development. The most studSesl
changes in the transcription of neural crest genes. Thereforegenes in the neural crest afex9 andSox10, and multiple
the grey arrows included ]F“g 1that connectthese genesare interactions of these genes with other members of the Cell

tentative. Survival group of genes have been described Fsgel and
[96,97,99,104-112] Sox9-null mice mutants showed mas-
4.1. Snail/Slug sive cell death in the trunk neural crest population prior to or
shortly after delaminatiof®9] and inSox/0 mutant embryos
Two members of thénail family of genesSnail andSlug, the neural crest undergo apoptosis before they can differenti-

play key roles in neural crest development. The observed ate[113-115] Similarly, neural crest of thgox/0 zebrafish
function of these genes appears to be dependent upon thénutant ¢olourless) fails to migrate and undergo cell death
Species examined. IXenopus snail is expressed in the [107] Taken together these results point towards a role of
prospective neural folds slightly earlier théilng, and based ~ Sox9 andSox/0 as a survival factor.

on animal caps and epistatic experimeisi/ seems to work

upstream oblug in neural crest development (seig. 1and 4.4. Twist

[94,95). In addition,Slug can produce an expansion in the

Slug and Twist expression domains in whole embry@§]. Twist is another gene expressed in pre-migratory neural
Loss of function experiments Kenopus using differentdom-  crest cells irXenopus [95] and micg116,117] Mice lacking
inant negative constructs have shown #fiag is required for functionalTiist have defects in neural tube closure and neu-
full expression oflug, Sox9, Twist, Ets-1, FoxD3 andSox10 ral crest cell migratiorf117]. Interestingly,7wist has been
[91,92,94,96,97] Electroporation ofSiug into the cephalic implicated in controlling cell proliferation and survival dur-
regions of chick neural tubes produces an expansion in theing mouse paraxial mesoderm developm@iB]. The role
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of Twist in pre-migratory neural crest cells has not yet been  The need for a genetic program of cell survival is not sur-

examined. prising, asthe neural crest are likely to be induced in an hostile
environment surrounded by epidermal and neural plate cells,
4.5. FoxD3 and later they will migrate very far from its original niche.

Thus, many of the Cell Specification and Cell Survival genes

FoxD3 is one of the earliest neural crest genes to be used during the induction of the neural crest cell will also be
expressed in micgl19], zebrafish[120], Xenopus [92,93] used during the last step of the neural crest journey: migration
and chicks[121,122] Functional experiments iXenopus and differentiation.
have been somewhat contradictory. Overexpression has been
reported to decrease the expression of neural crest markers
while causing an expansion of the neural p[@&]. Sasaiet  Acknowledgements
al.[92] found that injection ofoxD3 RNA led to the ectopic
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secondary effect of neural induction. The differences betweenMedical Institute to R.M., and by grants from MRC and the
these two studies are likely to be due to the different doses of Millennium Program (P99-137F and ICM P02-050). B.S. has
RNA used. Indeed, injecting low dosesfafcD3 RNA results a BBSRC Ph.D. fellowship.
in the expansion of neural crest markers whereas high doses
result in the inhibition of neural crest markers (Francisco
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