
Genetic network during neural crest induction: From cell
specification to cell survival

Ben Steventona, Carlos Carmona-Fontainea, Roberto Mayora,b,c,∗
a Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK

b Millennium Nucleus in Developmental Biology, Universidad de Chile, Chile
c Fundación Ciencia Para la Vida, Chile

Abstract

The concerted action of extracellular signals such as BMP, Wnt, FGF, RA and Notch activate a genetic program required to transform a
näıve ectodermal cell into a neural crest cell. In this review we will analyze the extracellular signals and the network of transcription factors
that are required for this transformation. We will propose the division of this complex network of factors in two main steps: an initial cell
specification step followed by a maintenance or cell survival step.

647
48

49
50
650
650
650
650
651
651
651
651

neu-
hing
ide

the
ed by
eural
step
Keywords: Neural crest; Genetic cascade; Cell survival; Wnt; FGF; BMP; Retinoic acid

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Extracellular Cell Signalling during neural crest induction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Early genetic network involved in Cell Specification of the neural crest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. Specific neural crest genes involved in Cell Survival. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1. Snail/Slug. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2. Id3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3. Sox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4. Twist. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5. FoxD3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. Concluding remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction

The neural crest is a unique and highly specialized pop-
ulation of cells found in all vertebrate embryos that has
fascinated generations of developmental and evolutionary
biologists. The neural crest develops at the border between
the neural plate and the epidermis, and following closure of

the neural tube these cells delaminate from the dorsal
ral tube to migrate along different pathways. On reac
their destination in the embryo, they differentiate into a w
variety of cell types.

In this review, we will analyse recent advances on
signals that induce neural crest and the genes activat
these signals that are required for the early steps of n
crest specification. Induction of neural crest is a multi-
∗ Corresponding author. Tel.: +44 20 7679 3323; fax: +44 20 7679 7349. process, and we will propose here some of the steps and the

E-mail address: r.mayor@ucl.ac.uk (R. Mayor). genes that control it.
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Fig. 1. Neural crest genetic network. Genetic network based on expression
patterns and gain- and loss- of function experiments. Green square: Cell
Specification genes; Blue square: Cell Survival genes. Genes written in blue
indicate antiapoptotic activity. See text for more details.

Complete induction of neural crest cells requires the trans-
formation of a näıve ectoderm into neural crest. This is a
complex process that involves the activity of extracellular
factors produced by the inductive tissues (Cell Signalling in
Fig. 1), which activate a genetic program in the ectodermal
cells (Cell Specification, green arrow inFig. 1). Once this
genetic program is activated in the neural crest cells a sec-
ond set of genes, the proper neural crest genes (blue box in
Fig. 1), are transcribed. One of the important functions of
this second set of genes is to allow survival of the recently
induced neural crest cells (maintenance orCell Survival in
Fig. 1). Finally, the joint action of the Cell Specification and
Cell Survival genes work together to control delamination,
migration and differentiation of the neural crest cells. In this
review we will analyse the factors and genes involved in Cell
Signalling, Specification and Survival, but we will not include
the analysis of delamination, migration and differentiation as
they have been discussed in another review of this issue[1].

The genetic cascade proposed in this review is an updated
version of previous proposals[2,3] and it will be based in
the expression pattern and gain- and loss- of function experi-
ments performed in different animal models. Thus, although
useful as a proposal is far of being definitive as not many cys-
regulatory analysis has been carried out. A further limitation
of this proposal is that the interaction between the genes is

not linear, and many of the genes involved in the early steps
of neural crest specification are also involved in later steps of
crest development.

2. Extracellular Cell Signalling during neural crest
induction

Induction of the neural crest involves a complex set of
extracellular signals that transform the fate of cells lying
along the medio-lateral and anterior-posterior axes of the
embryo. The signals that position the neural crest cells along
these axes are released from the neural plate, the epidermis
and the lateral mesoderm[4–10].

It has been shown inXenopus and zebrafish embryos that
prior to gastrulation BMP signalling is active throughout the
entire ectoderm[11,12]. At this time, the dorsal mesoderm
releases anti-BMP molecules such as noggin, follistatin and
chordin, that directly bind to BMPs, inhibiting their activ-
ity. In addition, the expression of BMPs is down regulated
at the most dorsal ectoderm during gastrulation by a Wnt-
dependent mechanism[13]. As a consequence of all these
interactions a dorso-ventral gradient of BMP activity is gen-
erated. Strong evidence inXenopus and zebrafish embryos
indicate that neural plate, neural crest and epidermis are spec-
ified at progressively higher levels of BMP activity[9,14–18].
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or this molecule in this animal model as well[19]. However
n this latter work it is likely that BMP is playing a role

late step of neural crest development as the tissue u
hese experiments was taken from relatively older emb
see[20] for a comparison between the stages of different
al models concerning the timing of neural crest inducti
evertheless, although intermediate BMP activity is requ

or neural crest induction in chick,Xenopus and zebrafish th
olecule is not sufficient to induce neural plate or neural c

ells[21,22].
A second group of signals, Wnts, FGFs, and RA,

equired for neural crest induction and have also been im
ated in the antero-posterior patterning of the neuroecto
23–28]. These molecules come from the involuting endo
oderm located at the posterior part of the embryo. T
xpression and inhibition are respectively required to p
iorize and anteriorize the neural tube[29–33], as well as to
nduce neural crest on the posterior neural folds[34–39].

Recently, the emphasis has shifted in favor of Wnt
alling as one of the key elements in neural crest indu

40]. Gain and loss of function experiments in chick,Xeno-
us and zebrafish show that Wnt signals are essentia
eural crest induction. However they are not able to ind
eural crest by itself in naı̈ve ectoderm as they require wo

ng in combination with anti-BMP signals or in a previou
nduced neural plate[36,38,41–46]. A possible candidate
e the source of Wnt signalling in the chick embryo is the
ermis as it expresses Wnt6 at the right time to be the ind
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[43]; however, there is no experimental evidence demon-
strating that Wnt6 is required for neural crest formation. In
Xenopus and zebrafish embryos Wnt8 is a good candidate
to be a neural crest inducer. It is expressed in the meso-
derm that is able to induce neural crest, and gain and loss
of function experiment show its role in neural crest induction
[36,39,41,45,46].

FGF signalling is also important in neural crest induction
as gain and loss of function experiments show an essential
role of this molecule, and a direct, though transient, induction
of some neural crest markers has been observed in naı̈ve ecto-
derm treated with FGF8[10,14,36,37]. Retinoic acid (RA)
has also been implicated in neural crest induction inXeno-
pus and zebrafish embryos. Addition of RA to neuralized
animal caps or expression of dominant negatives inXeno-
pus embryos, as well as analysis of zebrafish mutant indicate
the requirement of this molecule for the correct specifica-
tion or survival of the neural crest cells[39,47]. Moreover,
it has been shown that the induction activity of these three
molecules is, at least in part, related to its posteriorization
activity [3,20,39]. Recently, it has been possible to dissociate
the posteriorizing role of FGF and Wnt signalling from their
ability to induce neural crest[48,49]. In conclusion, induc-
tion of neural crest requires a specific level of BMP and the
concerted action of Wnt, FGF and RA signalling (seeFig. 1).
It is likely that Wnt, FGF and RA works in the posterior-
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also had an important role in neural crest evolution as well
as in other vertebrate traits[59,60]. Their expression pat-
tern correlates with the assumed ventro-dorso gradient of
BMP activity, and identification of cys-regulatory elements
in some of these genes indicate that is very likely to be direct
targets of BMP[58,61–63]. Loss of function experiments
in mouse, zebrafish andXenopus embryos show that they
are required for the early specification of the neural crest
[44,58,59,64–67]. Msx1 seems to play a key role in neu-
ral crest development, and epistatic experiments inXenopus
suggest that works upstream of theSnail genes[44,48,67].
However, once the neural crest is inducedMsx1 expression is
switched off from the neural crest, and become to play a role
in controlling neural crest apoptosis[48,68]. The zebrafish
AP2a mutant,mont blanc, shows a defect in the early specifi-
cation of the neural crest, as well as in neural crest derivatives
[64,69–71]. It also shows a later role as an inhibitor of apop-
tosis in the neural crest cells[69]. Morpholino mediated
knockdown experiments inXenopus indicates thatAP2a is
essential for the early specification of neural crest cells[66].
Thus,AP2a seems to be a gene involved in early as well as
late neural crest development.

Dlx genes are important in the positioning of the neu-
ral plate border, including neural crest and placodal cells
[72–74], althoughDlx5 seems to be more specific for the
neural crest cells[75]. It is important to note thatMsx, Dlx
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zation of the neuroectoderm in an early step of neural
pecification and also as direct neural crest inducer at
teps.

Another important molecule involved in early crest sp
cation is Notch. It has been proposed that Notch particip
n neural crest specification by controlling BMP expressio
hick andXenopus embryos, although the exact mechan
ould be different in these two species[50–54]. In addition,
otch signalling seems to control neural crest developm
y repressing neurogenesis[51]. We will not discuss Notc
ignalling further as it is analyzed elsewhere in this issue[55].

. Early genetic network involved in Cell
pecification of the neural crest

As consequence of the extracellular signalling work
n the ectoderm a first set of genes that encode for
cription factors are activated in the prospective neural
ells. These are the genes that control Cell Specification
ig. 1).

Gene expression pattern suggests thatMsx, AP2α and
lx genes are amongst the earliest genes activated
ctoderm fated to become neural crest. We have gro

hese three genes together because they exhibit a s
attern of expression. They are initially expressed in the
eural ectoderm, and later they are restricted to the n

old region inXenopus and chick embryos[56–58]. Interest
ngly amphioxus, a non vertebrate chordate, shows a si
arly AP2 expression pattern suggesting that this mole
ndAP2α have an earlier role in epidermal development,
n consequence it could be suggested that specification
eural crest at this early stage involves the dorsalizatio
pidermis.

The next group of genes,Zic, Pax3 and c-Myc, are
xpressed in a more restricted domain that the previous
hey are not expressed in the entire epidermis at earlier s
ut they are present in a wider domain than the premigra
eural crest cells[76–81]. Multiple Zic genes have been ide

ified in mouse andXenopus that are expressed in overlapp
ut distinct patterns[80,82]. Disruption of mouseZic genes

eads to multiple defects in neural and neural crest de
ives[82–84]. In Xenopus, expression of the Zic genes ar
ery early response to neural inducing signals, and ec
xpression of these Zic genes leads to neural plate and n
rest formation[67,78–80,85–87].

Pax3 is expressed in the neural folds and loss of func
xperiments in mouse andXenopus show a key role in neu
al crest development[48,67,88–90]. Using a combination o
verexpression and morpholino mediated knockdown e

ments, Monsoro-Burq et al.[48], show thatMsx1 andPax3
re required for neural crest formation and thatMsx1 seems

o work upstream ofPax3 (seeFig. 1). Interestingly, it is pro
osed in their work that Wnt controls neural crest induc

hroughPax3 activity, while FGF8 requiresMsx1 andPax3
ctions; however the molecular mechanism by which
ombination of the anti-BMP molecule noggin andMsx1 is
ble to induce neural crest in naı̈ve ectoderm is not explaine

48]. A similar strategy based on morpholino injections
een recently used to show a cooperative function ofPax3
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andZic1 in neural crest specification and a mutual regulation
between these two factors has also been shown (seeFig. 1
and[67]). The exact pathway network connectingMsx1,Pax3
and theZic genes requires further careful consideration.

The proto-oncogene c-Myc has been found to be expressed
in the neural plate border of amphibian embryos earlier and
in a broader domain than many specific neural crest genes
[81]. Morpholino knockdown and overexpression experi-
ments show an essential role of c-Myc in neural crest devel-
opment that seems to be independent upon cell proliferation
or cell death[81]. c-Myc is expressed almost at the same time
and in the same cells asMsx1 andPax3, and it is likely that
an interaction between these factors is required for the early
step of neural crest specification.

4. Specific neural crest genes involved in Cell
Survival

Following the initial specification of neural crest precur-
sors at the neural plate border, a network of genes is set
up that function to maintain these precursors (blue arrow
in Fig. 1). The genes transcribed at this step of neural crest
induction are expressed later that the Cell Specification genes
and only in the neural crest territory. They encode for tran-
scriptions factors of theSnail andSox family of genes, and
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expression of several neural crest markers including HNK-1,
RhoB andPax3 [98] but in the trunk additional signals are
required[99]. In conclusion,Snail/Slug genes are required
for the specification of the neural crest cells in chick, mouse
andXenopus embryos.

In addition to this early role of theSnail genes another
important function is to control cell-cycle progression in neu-
ral crest cells[100] and to inhibit apoptosis in the crest cells,
by controlling the expression of Bcl-xL and specific caspases
[68,100]. Thus, this is the first example of this group of genes
expressed specifically in the neural crest that have an anti-
apoptotic or cell survival activity.

4.2. Id3

Two recent studies inXenopus have analysed the role
of Id3 in neural crest formation[101,102]. They showed
that depletion ofId3 by morpholino knockdown experiments
results in the down-regulation of early neural crest markers
(Slug, Sox10, FoxD3 andTwist) and an increase in apopto-
sis in the neural crest cells. The down-regulation of neural
crest markers inId3 depleted embryos occurs very early and
could not be rescued bySlug expression suggesting thatId3
functions to maintain the expression of neural crest progen-
itor genes as well as control cell proliferation and apoptosis
[
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or the genesFoxD3, Id3 andTwist. Functional experimen
re insufficient to predict a cascade of genetic interac
mongst these genes as the up or down regulation o
ene will effect the expression of others. It is also impor

o note thatSnail, Slug andFoxD3 all function as transcrip
ional repressors[91–94]; this means that there are additio
ranscription factors mediating the activity of these gene
ddition, as many of these genes are involved in cell
ival it is not known in many cases whether the obse
ffect is due to changes in rates of cell death/proliferatio
hanges in the transcription of neural crest genes. Ther
he grey arrows included inFig. 1that connect these genes
entative.

.1. Snail/Slug

Two members of theSnail family of genes,Snail andSlug,
lay key roles in neural crest development. The obse

unction of these genes appears to be dependent upo
pecies examined. InXenopus snail is expressed in th
rospective neural folds slightly earlier thanSlug, and base
n animal caps and epistatic experimentsSnail seems to wor
pstream ofSlug in neural crest development (seeFig. 1and

94,95]). In addition,Slug can produce an expansion in
lug andTwist expression domains in whole embryos[36].
oss of function experiments inXenopus using different dom

nant negative constructs have shown thatSlug is required fo
ull expression ofSlug, Sox9, Twist, Ets-1, FoxD3 andSox10
91,92,94,96,97]. Electroporation ofSlug into the cephali
egions of chick neural tubes produces an expansion i
101,102].

.3. Sox

The Sox genes are a group of transcription factors w
onsiderable importance in neural crest development;
ole has been considered in detail elsewhere in this
103] and so will not be dealt with in detail here. Brie
ox8, Sox9, Sox10 and LSox5 are expressed in the neu
rest of mouse, chick, zebrafish andXenopus embryos, a
ifferent times during development. The most studiedSox
enes in the neural crest areSox9 andSox10, and multiple

nteractions of these genes with other members of the
urvival group of genes have been described (seeFig. 1and

96,97,99,104–112]). Sox9-null mice mutants showed m
ive cell death in the trunk neural crest population prior t
hortly after delamination[99] and inSox10 mutant embryo
he neural crest undergo apoptosis before they can diffe
te[113–115]. Similarly, neural crest of theSox10 zebrafish
utant (colourless) fails to migrate and undergo cell dea

107]. Taken together these results point towards a ro
ox9 andSox10 as a survival factor.

.4. Twist

Twist is another gene expressed in pre-migratory ne
rest cells inXenopus [95] and mice[116,117]. Mice lacking
unctionalTwist have defects in neural tube closure and n
al crest cell migration[117]. Interestingly,Twist has bee
mplicated in controlling cell proliferation and survival d
ng mouse paraxial mesoderm development[118]. The role
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of Twist in pre-migratory neural crest cells has not yet been
examined.

4.5. FoxD3

FoxD3 is one of the earliest neural crest genes to be
expressed in mice[119], zebrafish[120], Xenopus [92,93]
and chicks[121,122]. Functional experiments inXenopus
have been somewhat contradictory. Overexpression has been
reported to decrease the expression of neural crest markers
while causing an expansion of the neural plate[95]. Sasai et
al. [92] found that injection ofFoxD3 RNA led to the ectopic
induction of Slug, AP-2, FoxD3, Ets-1, Twist and Sox2 in
embryos and animal caps. It is not known whetherFoxD3 can
induce neural crest cells directly or whether the induction is a
secondary effect of neural induction. The differences between
these two studies are likely to be due to the different doses of
RNA used. Indeed, injecting low doses ofFoxD3 RNA results
in the expansion of neural crest markers whereas high doses
result in the inhibition of neural crest markers (Francisco
Romero and R.M. unpublished). Electroporation ofFoxD3
into the chick neural tube can induce HNK-1 expression in
neuroepithelial cells as well as an increase in migratory neural
crest cells from the dorsal neural tube[99,121,122]. FoxD3
can also induce changes in the expression of cell adhesion
molecules required for delamination, although a dominant
n K-1
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The need for a genetic program of cell survival is not sur-
prising, as the neural crest are likely to be induced in an hostile
environment surrounded by epidermal and neural plate cells,
and later they will migrate very far from its original niche.
Thus, many of the Cell Specification and Cell Survival genes
used during the induction of the neural crest cell will also be
used during the last step of the neural crest journey: migration
and differentiation.
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