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Abstract

We study nonlinear surface modes in two-dimensional anisotropic periodic photonic lattices and demonstrate that, in a sharp contrast to one-
dimensional discrete surface solitons, the mode threshold power is lower at the surface, and two-dimensional discrete solitons can be generated
easier near the lattice corners and edges. We analyze the crossover between effectively one- and two-dimensional regimes of the surface-mediated

beam localization in the lattice.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Surface modes have been studied in different branches of
physics; in guided wave optics surface states were predicted to
exist at interfaces separating periodic and homogeneous dielec-
tric media [1]. The interest in studying surface waves has been
renewed recently because the interplay of discreteness and non-
linearity can facilitate the formation of discrete surface solitons
[2,3] at the edge of the waveguide array. That can be understood
as the localization of a discrete optical soliton near the surface
[4] for powers exceeding a certain threshold value, for which
the repulsive effect of the surface is balanced. A similar effect
of light localization near the edge of the waveguide array and
the formation of surface gap solitons have been predicted and
observed for defocussing nonlinear media [5,6].

It is important to analyze how the properties of nonlinear
surface waves are modified by the lattice dimensionality, and
the first studies of different types of discrete surface solitons
in two-dimensional lattices [7-10] revealed, in particular, that
the presence of a surface increases the stability region for two-
dimensional (2D) discrete solitons [10] and the threshold power
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for the edge surface state is slightly higher than that for the
corner soliton [9].

In this Letter we consider anisotropic semi-infinite two-
dimensional photonic lattices and study the crossover between
one- and two-dimensional surface solitons emphasizing the cru-
cial effect of the lattice dimensionality on the formation of
surface solitons.

2. Model

We consider a semi-infinite 2D lattice [shown schematically
in Fig. 2(a) below], described by the system of coupled-mode
equations for the normalized amplitudes u, , [11,12],

Un,m
3
where £ is the normalized propagation distance. We define the
lattice coupling as follows:

i + (Vi + Vm)un,m + |un,m|2un,m =0, (1)

u m, n=1,m21,

n>1,

Vautym = {
Uptim + Un—1,m,

Un,2,
(un,m—l-l + un,m—l)v
where o characterizes the lattice anisotropy.

Linear lattice waves of the form u, ,(§) = ugsin(kn) x
sin(gm) exp(iB&) satisfy the dispersion relation B, = 2(cosk +

n=zl,m=1,

Vinbn.m = o
m>1,
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acosq). In the nonlinear case, we look for localized station-
ary solutions of the form u, (&) = un mexp(iA§), where the
amplitudes u, , are real, and A is the nonlinear propagation
constant. For a given X, localized solutions are found in a
15 x 15 lattice by using the Newton—Raphson method.

3. 2D discrete solitons

We calculate the power threshold Py, that characterizes the
discrete solitons in 2D lattices [13]. We study three different
modes: corner [Fig. 1(a)], edge surface [Fig. 1(b), (c)] and cen-
tral [Fig. 1(d)] localized modes. The corner and edge modes
represent 2D surface localized modes, and the central mode
corresponds to a 2D discrete soliton of an infinite lattice. We
find the total power P =3 lun.m|?> of all those modes
and perform a linear stability analysis [4,12] for each solution
[Fig. 2(a)].

We observe that the threshold power Py for the surface
modes is smaller than the power corresponding to the central
mode, with the corner state having the smallest Py,. This inter-
esting feature was previously observed for a single nonlinear
impurity placed near a boundary of a 2D lattice [14], and it
appears also in the anisotropic model. Therefore, in a sharp con-
trast with one-dimensional (1D) surface solitons, the surface of
a 2D lattice creates an effectively attractive potential for the lo-
calized modes that reduces the threshold power for the mode
localization.

The linear stability analysis of the surface localized modes
coincides with the Vakhitov—Kolokolov stability criterion [15]:
the surface modes are stable for d P /dA > 0, and unstable oth-
erwise. To study in more details how the threshold power Py
varies for the modes localized at different points of the lattice,
we compute the power threshold landscape: We look numer-
ically for one-peak localized modes centered at different sites
of one-quarter of the whole lattice and find the first stable so-
Iution at the threshold power which corresponds to Py, at the
site (n, m). In Fig. 2(b), (c), we show the examples of two land-
scapes for two different values of the lattice anisotropy «. For
o =1, Py grows from the minimum Py = 4.9 at the corner
(1, 1) to two maxima corresponding to the edge surface modes
(8,1) and (1, 8) and the central mode (8, 8). For o = 0, we
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Fig. 1. Examples of (a) corner, (b), (c) two edge surface, and (d) central local-
ized nonlinear modes for A = 5.

observe that the required power to excite a localized mode de-
creases from the surface (n = 1) to the center (n = 8). The value
Pin(1,m) =~ 3.2 corresponds to the threshold power of discrete
surface solitons in a semi-infinite array [4]. For 1D localized
modes there exists no power threshold in the continuum limit
[13], but in our system P (8, m) ~ 0.4 due to finite-size ef-
fects.

Next, we study the effect of the lattice anisotropy on the
power threshold of discrete surface solitons. In Fig. 3 we show
Py, for different values of the parameter o (0 < o < 1), for the
four types of localized modes shown in Fig. 1(a)—(d).
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Fig. 2. (Color online.) (a) Power diagram of the central (continuous), edges
surface (dashed), and corner (dotted) localized modes for the isotropic case
(o = 1). Inset: schematic of a semi-infinite two-dimensional lattice. (b), (c)
Examples of the threshold power landscapes Py, (n,m) for « =1 and o =0,
respectively.
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Fig. 3. (Color online.) Threshold power Py, vs. « for the central (continuous
thick), two edge surface (continuous thin and dotted), and corner (dashed line)
localized modes. Inset: Py, (n, m) for @ = 0.3.
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When the anisotropy parameter « grows, the threshold
power grows for all localized modes. It means that, by in-
creasing the effective dimensionality of the system, the re-
quired power to excite a nonlinear discrete localized state also
increases. The threshold power for two edge surface modes
decreases as o decreases to o &~ 0.3, when the power curves
cross and diverge. For o = 0, the edge soliton centered at
(8, 1) [Fig. 1(c), dotted line in Fig. 3] only interacts with an
effective 1D array (m = 1). On the contrary, Py, for the edge
surface mode centered at (1, 8) [Fig. 1(b), continuous-thin line
in Fig. 3] approaches the same limit as the corner mode. For
a = 0, this mode only interacts with an effective 1D chain
(m = 8) and the surface. An interesting feature of Fig. 3 is
that it shows the existence of a critical value of the lattice
anisotropy, o & 0.3 where all powers thresholds almost coin-
cide. In other words, there exists a critical value of the lattice
anisotropy where we observe a crossover between 1D and 2D
lattices.

To study this interesting effect in more details, we calcu-
late the power threshold landscape Py, for @ = 0.3 [see inset in
Fig. 3], and observe that the localized mode centered at (2, m)
possesses the lowest value of Py, in the array and, in particu-
lar, the localized mode centered at (2, 1) is the mode with the
lowest threshold power. For o < 0.3, the minimum Py, will be
located outside of the array boundaries, and intermediate local-
ized states (located between the center and the surfaces of the
array) will be the easier states to excite. For 1D semi-infinite
arrays [4], it was shown that the power threshold for surface
modes decreases as the mode moves away from the surface [see
also Fig. 2(c)].

4. Dynamical generation of 2D surface discrete solitons

Finally, we study the dynamic generation of localized modes
in two-dimensional lattices. We simulate numerically Eq. (1) by
using a one-site excitation uq &y n'8,, . In Fig. 4, we show our
results by plotting the evolution of the mode amplitude |u, |
for two different values of £. As an example, we show the ex-
citation of the corner and central localized modes for the initial
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Fig. 4. Generation of surface modes by one-site excitation (o = 1) at (a) center
and (b) corner of the lattice.

amplitude ug = 2.5. If we try to excite a localized mode at the
middle of the lattice for this value of ug, this localized state
decays quickly, as shown in Fig. 4(a), and the beam diffracts
because the input power is below the effective dynamical power
threshold. On the contrary, by using the same input power we
are able to excite the corner soliton [see Fig. 4(b)] which is
dynamically stable in the propagation. It is worth mentioning
that, in the one-dimensional limit (o = 0) the situation becomes
completely different: if we try to excite a surface mode atn = 1
with the power smaller than a threshold value, but still large
enough, the input beam will not decay but will instead move to
the neighboring lattice site creating a localized mode there [2].

5. Conclusions

In conclusion, we have analyzed the properties of discrete
surface solitons in two-dimensional anisotropic photonic lat-
tices, and studied the crossover between the one- and two-
dimensional regimes of the surface-mediated beam localization
in the lattice. In particular, unlike one-dimensional discrete sur-
face solitons, the threshold power of the two-dimensional dis-
crete soliton is lowered by the surface, so that two-dimensional
solitons can be generated easier near the lattice corners and
edges.
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