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The class of rank 3 algebras includes the Jordan algebra of a symmetric bilinear form,
the trace zero elements of a Jordan algebra of degree 3, pseudo-composition algebras,
certain algebras that arise in the study of Riccati differential equations, as well as
many other algebras. We investigate the representations of rank 3 algebras and show
under some conditions on the eigenspaces of the left multiplication operator determined
by an idempotent element that the finite-dimensional irreducible representations are all
one-dimensional.

1. INTRODUCTION

In what follows � will denote an infinite field of characteristic not 2 or 3. A
commutative (not necessarily associative) algebra A over � is said to have rank 3 if
there exists a linear form �1 � A → � and a quadratic form �2 � A → � such that

x3 = �1�x�x
2 + �2�x�x (1.1)

for all x ∈ A. Here x3 = x2x = xx2 for every x ∈ A. We assume in such an algebra
that there exists an element y such that y and y2 are linearly independent; otherwise
the rank would be two or smaller.

The class of rank 3 algebras includes many well-known examples such as the
Jordan algebras associated to symmetric bilinear forms and the trace zero elements
of a degree three Jordan algebra. These Jordan algebras play a prominent role in the
study of Lie algebras graded by finite root systems in Benkart and Zelmanov (1996),
Allison and Gao (2001) and in the structure of the core of the extended affine Lie
algebras (Allison and Gao, 2001; Allison et al., 1997).
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The pseudo-composition algebras investigated in Meyberg and Osborn (1993)
are rank 3 algebras which are characterized by the properties that �1 = 0 and �2 �= 0.
Springer (1959) observed that the trace zero elements of a degree 3 Jordan algebra
form a pseudo-composition algebra. Such algebras also arise in the study of the
Riccati differential equation ẋ = x2 (see Walcher, 1994 for example).

Train algebras, introduced by Etherington (1940) as an algebraic framework
for treating problems in genetics, are commutative algebras A satisfying the
equation xt + �1w�x�x

t−1 + · · · + �t−1w�x�
t−1x = 0� where w � A → � is an algebra

homomorphism, �1� � � � � �t−1 ∈ �, and 1+ �1 + · · · + �t−1 = 0� The smallest value
of t for which this equation is satisfied identically is called the rank of A. Thus,
train algebras defined by an equation of the form x3 − �1+ ��w�x�x2 + �w�x�2x = 0,
� ∈ �, and Bernstein Jordan algebras, which are special instances of train algebras
of rank 3 with � = 0, provide further examples. Walcher has developed a general
theory of these objects showing that most of them can be constructed from a
quadratic alternative algebra or from a Clifford algebra and a representation for it.
Walcher (1999) is the basic reference for background results in this article.

Here we investigate the representation theory of rank 3 algebras. We suppose
that A has an idempotent e �= 0. The left multiplication operator Le determined
by e has eigenvalues 1� 1

2 , and 	 �= �1�e�− 1. We will assume that these three
eigenvalues are distinct so that Le is diagonalizable. Then A = �e⊕ A 1

2
⊕ A	 is

the decomposition into eigenspaces relative to Le. Any representation 
 � A →
End�M� decomposes into eigenspaces M = M 1

2
⊕M	 relative to 
�e�. A key fact is

Proposition 3.11 below, which states that either A 1
2
⊆ ker �1 or A 1

2
⊆ ker 
 for any

representation 
 of A.
Among the results we establish are the following.

Theorem 1.2. Assume 
 � A → End�M� is a finite-dimensional irreducible
representation of a rank 3 algebra A = �e⊕ A 1

2
⊕ A	 with A 1

2
⊆ ker 
. Then:

(a) 
�e� = 1
2 IM (i.e., M = M 1

2
) or 
�e� = 	IM (i.e. M = M	);

(b) If M = M	, then dimM = 1;
(c) If M = M 1

2
, 	 �= 0, and �2�x� = 0 for all x ∈ A	, then dimM = 1;

(d) If M = M 1
2
and � is algebraically closed, then

dimM =
{
2d/2 if d is even

2�d−1�/2 if d is odd�

where d = dim�A′
	/rad����. Here A′

	 = �y′ �= y − 1
2�1�y�e � y ∈ A	 and � is the

symmetric bilinear form on A′
	 defined by

��y′� z′� �= 1
2
q�y� z�− 1

4
��y� z�+ 1

16
�1�y��1�z��

where q�y� z� = 1
2 ��2�y + z�− �2�y�− �2�z�� and � is the symmetric bilinear form

given by

yz = 1
2
��1�y�z+ �1�z�y�+ ��y� z�e

for all y� z ∈ A	 (as in Remark 2.5 below).
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Theorem 1.3. Assume A is an algebra of rank 3 with an idempotent e such that
both �1 and �2 are 0 on A 1

2
⊕ A	 and 	 �= 0. Then the finite-dimensional irreducible

representations 
 � A → End�M� are one-dimensional and satisfy A 1
2
⊕ A	 ⊆ ker 
, and


�e� = 1
2 IM or 
�e� = 	IM .

In Section 4, we investigate the case that the rank 3 algebra A has �2 = 0
and relate representations of such algebras to representations of Clifford algebras.
In the final section, we give an explicit construction of some indecomposable two-
dimensional representations.

Over an algebraically closed field, a rank 3 algebra A having no idempotent
must satisfy x3 = �1�x�x

2 with �1�A
2� = 0 or must be a train algebra with � = 1

2 by
Walcher (1994). Thus, except for these special kinds of algebras, rank 3 algebras
over an algebraically closed field will possess an idempotent e, and so will fit the
considerations of this article when Le is diagonalizable.

2. PRELIMINARIES

Throughout this work we will assume that A is an algebra over an infinite field
� of characteristic not 2 or 3 satisfying equation (1.1). Associated to the quadratic
form �2�x� is the symmetric bilinear form denoted by q and defined by

q�x� y� = 1
2
��2�x + y�− �2�x�− �2�y��� (2.1)

The following identity from Walcher (1999, R5) relates the values of �1� �2 and q:

2q�x� x2��1�x�− �2�x
2� = ��1�x

2�− �2�x���2�x�� (2.2)

The class defined by (1.1) is too large for our purposes. We impose some
additional restrictions; in particular, we suppose that A has an idempotent e �= 0.
Note that �2�e� = 1− �1�e� follows from (2.2). Walcher (1999, Prop. 1.3) has shown
that the left multiplication operator Le determined by e satisfies the polynomial
identity

p�t� = 2t3 − �1+ 2�1�e��t
2 + �3�1�e�− 2�t + 1− �1�e�� (2.3)

so that the eigenvalues of Le are 1� 1
2 , and 	 �= �1�e�− 1 = −�2�e�. We will assume

that these three eigenvalues are distinct so that Le is diagonalizable.

Proposition 2.4 (Walcher, 1999, Prop. 1.4). If A is an algebra of rank 3 satisfying
(1.1) and e is an idempotent of A such that Le has distinct eigenvalues, then the following
assertions hold:

(i) A = �e⊕ A 1
2
⊕ A	 where A� = �x ∈ A � ex = �x and � = 1

2 � 	;
(ii) �1�y�+ 2q�e� y� = 0 for all y ∈ A�� � = 1

2 � 	;
(iii) If y� z ∈ A 1

2
, then yz− q�y� z��1− 	�−1e ∈ A	;

(iv) If y ∈ A 1
2
, and z ∈ A	, then yz− �1�y�z− q�y� z�e ∈ A 1

2
;
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(v) If y� z ∈ A	, then

yz = 1
2
��1�y�z+ �1�z�y�+ q�y� z�	−1e if 	 �= 0

yz− 1
2
��1�y�z+ �1�z�y� ∈ �e and q�A	� A	� = 0 if 	 = 0�

In particular, �e⊕ A	 is a subalgebra of A.

Remark 2.5. From part (v) of this result we see that there is a symmetric bilinear
form � defined on A	 so that

yz = 1
2
��1�y�z+ �1�z�y�+ ��y� z�e (2.6)

for all y� z ∈ A	, and ��y� z� = q�y� z�	−1 when 	 �= 0.

Lemma 2.7. Assume A is a rank 3 algebra as in Proposition 2.4 with A	 ⊆ ker �2.
Then either A	 ⊆ ker �1 or there exists an idempotent f ∈ A such that the multiplication
operator Lf has eigenvalues 1� 1

2 � 0.

Proof. We may assume 	 �= 0, as otherwise the idempotent e defining A	 will have
eigenvalues 1� 1

2 � 0. If A	 �⊆ ker �1, then there is an element f ∈ A	 with �1�f� = 1.
Now by Proposition 2.4 (v), yz = 1

2 ��1�y�z+ �1�z�y� for all y� z ∈ A	. In particular,
f 2 = f . By (2.3), the eigenvalues of f are 1� 1

2 , and �1�f�− 1 = 0. �

3. REPRESENTATIONS

Assume A is a rank 3 algebra over � satisfying x3 = �1�x�x
2 + �2�x�x for �1

a linear form and �2 a quadratic form, and let M be a �-vector space. Following
Eilenberg (1948), we say that a linear map 
 � A → End�M� is a representation of A
if the split null extension A⊕M of M , with multiplication defined by �a+m��b +
n� = ab + 
�a�n+ 
�b�m� a� b ∈ A�m� n ∈ M , also satisfies (1.1), where �1�a+m� =
�1�a� and �2�a+m� = �2�a� are the extensions of the given forms on A. The
associated symmetric bilinear form satisfies q�a�m� = 0 = q�m� n� for all a ∈ A,
m�n ∈ M . It is easy to verify the following result.

Proposition 3.1. A linear map 
 � A → End�M� is a representation of A if and only
if for every a ∈ A,

2
�a�2 + 
�a2� = 2�1�a�
�a�+ �2�a�IM� (3.2)

The linearization of this equation gives


�a�
�b�+ 
�b�
�a�+ 
�ab� = �1�a�
�b�+ �1�b�
�a�+ q�a� b�IM (3.3)

for all a� b ∈ A. Now by (3.2),

2
�e�2 + 
�e� = 2�1�e�
�e�+ �1− �1�e��IM� (3.4)
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so that 
�e� has eigenvalues 1
2 and 	 = �1�e�− 1 = −�2�e� = −q�e� e� on M . Since

A⊕M also satisfies (1.1), we may deduce the next result from Proposition 3.1.

Proposition 3.5. For A⊕M the following relations hold:

(i) A 1
2
M 1

2
⊆ M	 and A 1

2
M	 ⊆ M 1

2
;

(ii) A	M 1
2
⊆ M 1

2
;

(iii) For all a ∈ A	, m ∈ M	, am = 1
2�1�a�m so that A	M	 ⊆ M	.

Proposition 3.6. If A has rank 3 and 
 � A → End�M� is a representation of A, then
for all a ∈ A,

4
�a�3 − 4�1�a�
�a�
2 + ��1�a

2�− 3�2�a��
�a�+ q�a� a2�IM = 0� (3.7)

Proof. Start with the relation 2
�a�2 + 
�a2� = 2�1�a�
�a�+ �2�a�IM , and multiply
it on the left by 
�a� to obtain

2
�a�3 + 
�a�
�a2� = 2�1�a�
�a�
2 + �2�a�
�a�� (3.8)

Similarly, multiply on the right by 
�a� and subtract the result from (3.8) to get


�a�
�a2� = 
�a2�
�a�� (3.9)

Using this identity in equation (3.3), we have for all a ∈ A,

2
�a�
�a2�+ 
�a3� = �1�a�
�a
2�+ �1�a

2�
�a�+ q�a� a2�IM� (3.10)

Now replace a3 by �1�a�a
2 + �2�a�a in this expression and use (3.8) to obtain (3.7).

�

Proposition 3.11. Assume A is a rank 3 algebra. Then either A 1
2
⊆ ker �1 or A 1

2
⊆

ker 
 for any representation 
 � A → End�M�.

Proof. We have from (3.2), 2
�a�2 + 
�a2�− �2�a�IM = 2�1�a�
�a�. When a ∈ A 1
2
,

then by Proposition 3.5 the left-hand side maps M 1
2
to M 1

2
, and M	 to M	, while

the right-hand side sends M 1
2
to M	 and M	 to M 1

2
. Therefore, �1�a�
�a� = 0 for

all a ∈ A 1
2
.

If A 1
2
�⊆ ker �1, then �1�b� �= 0 and 
�b� = 0 for some b ∈ A 1

2
. But then for any

c ∈ A 1
2
,

0 = �1�b + c�
�b + c� = �1�b�
�c��

so that 
�c� = 0. �

Now we tackle the proofs of the theorems in the introduction. Recall that
a representation 
 � A → End�M� is irreducible if M �= 0 and there is no proper
subspace of M which is invariant under all the transformations 
�a�, a ∈ A, and it
is r-dimensional if dimM = r.
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Proof of Theorem 1.2. Throughout we assume 
 � A → End�M� is a finite-
dimensional irreducible representation of a rank 3 algebra A = �e⊕ A 1

2
⊕ A	 with

A 1
2
⊆ ker 
.

(a) Because 
�A� = �
�e�+ 
�A	�, it follows from Proposition 3.5 that 
�A�
leaves invariant the spaces M 1

2
and M	. The irreducibility of M forces M = M 1

2
or

M = M	 to hold.

(b) By (iii) of Proposition 3.5, 
�a�m = 1
2�1�a�m for all m ∈ M	, a ∈ A	.

Thus when M = M	 and A 1
2
⊆ ker 
, �m is invariant under 
�A� for any m ∈ M	.

By irreducibility, M = �m for m �= 0.

(c) Suppose now that M = M 1
2
. Because A 1

2
⊆ ker 
 and 
�e� = 1

2 IM , the
representation is completely determined by the action of A	. Applying 
 to the
expression for yz in (2.6), we have that


�yz� = 1
2
��1�y�
�z�+ �1�z�
�y��+

1
2
��y� z�IM (3.12)

for all y� z ∈ A	, (where ��y� z� = q�y� z�	−1 if 	 �= 0). Combining that with (3.3)
shows that


�y�
�z�+ 
�z�
�y� = 1
2
��1�y�
�z�+ �1�z�
�y��+ �q�y� z�− 1

2
��y� z��IM (3.13)

for all y� z ∈ A	.
Suppose 	 �= 0 and �2�y� = 0 for all y ∈ A	. Then q�y� z� = 0, and hence

��y� z� = 0, for all y� z ∈ A	. Relation (3.13) becomes


�y�
�z�+ 
�z�
�y� = 1/2��1�y�
�z�+ �1�z�
�y�� (3.14)

for all y� z ∈ A	.
Let B = A	 ∩ ker �1. Then from (3.14) it follows that 
�b�
�b′�+ 
�b′�
�b� = 0

for b� b′ ∈ B. Thus, 
�B� is a weakly closed set of transformations on M in the
sense of Jacobson (1962, Chap. 2). Moreover, 
�b�2 = 0 for all b ∈ B. Therefore
by Jacobson (1962, Chap. 2, Thm. 1′), there exists a basis for M such that 
�b� is
strictly upper triangular for all b ∈ B. Consequently, N �= �m ∈ M � 
�b�m = 0 for
all b ∈ B �= 0.

Now when B = A	, we must have M = �n for any nonzero n ∈ N since M is
irreducible, so that M is one-dimensional.

When B �= A	, we may choose a ∈ A	 with �1�a� = 1. By (3.2), 2
�a�2 +

�a2� = 2�1�a�
�a� = 2
�a�. But by (3.12), 
�a2� = 
�a� must hold since
��a� a� = 0. Therefore 
�a�2 = 1

2
�a�. Taking a nonzero n ∈ N , we see that
�
�a�n is invariant under the transformation 
�a�. In addition, if b ∈ B, then

�b�
�a�n = −
�a�
�b�n+ 1

2�1�a�
�b�n = 0. By irreducibility, M = �
�a�n and M
is one-dimensional.

(d) More generally, under the assumption that M = M 1
2
(but not requiring

	 �= 0 or �2�x� = 0 for all x ∈ A	), suppose that

A′
	 =

{
y′ �= y − 1

2
�1�y�e

∣∣∣∣ y ∈ A	

}
�
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Then for y� z ∈ A	 we have by (3.13) above that


�y′�
�z′�+ 
�z′�
�y′� = 
�y�
�z�+ 
�z�
�y�

− 1
2
��1�y�
�z�+ �1�z�
�y��+

1
8
�1�y��1�z�IM

= 2��y′� z′�IM� (3.15)

where

��y′� z′� �= 1
2
q�y� z�− 1

4
��y� z�+ 1

16
�1�y��1�z��

If R = rad��� is the radical of the form � on A′
	, then 
�R� is a weakly closed

set of nilpotent transformations on M by (3.15). As a consequence, N �= �m ∈
M � 
�z′�m = 0 for all z′ ∈ R is nonzero. Since 
�z′�
�y′�m = −
�y′�
�z′�m = 0 for
all m ∈ N , y′ ∈ A′

	, and z′ ∈ R, it follows that N is a nonzero A-invariant subspace
of M . By irreducibility, M = N .

Let V be a vector space complement of R in A′
	 (A′

	 = R⊕ V ). Then the
representation 
 is completely determined by its restriction 
 � V → End�M� to V ,
and this restriction is injective by (3.15) and the nondegeneracy of � on V . Indeed,
if 
�y′� = 0 for some y′ ∈ V , then from (3.15) it follows that y′ ∈ R ∩ V = 0. By
(3.15) and the universal property of the Clifford algebra (see for example, Jacobson,
1980, Sec. 4.8 for basic facts about Clifford algebras), there is a representation

̂ � ��V� �� → End�M� extending 
 to the Clifford algebra determined by V . This
Clifford algebra is semisimple by the nondegeneracy of � on V .

When � is algebraically closed and d = dim V = dim�A′
	/rad����,

��V� �� 	
{
�r ��� if d is even and r = 2d/2

�r ���⊕�r ��� if d is odd and r = 2�d−1�/2�

Because a matrix algebra �r ��� has a unique (up to isomorphism) irreducible
representation (which has dimension r), the assertion in (d) follows. �

Example. Let A = �1⊕ V be a Jordan algebra of a symmetric �-bilinear form
�� �. Thus the product in A is given by

�	+ v��� + w� = 	� + �v� w�+ 	w + �v�

It is easy to verify for x = 	+ v that x3 = �1�x�x
2 + �2�x�x, where

�1�x� = 2	 and �2�x� = �v� v�− 	2�

Taking u so that �u� u� = 1/4, we see that e = 1/2+ u is an idempotent, and relative
to Le, the algebra A has the decomposition A = �e⊕ A1/2 ⊕ A0, where A1/2 = �v ∈
V � �u� v� = 0, and A0 = �f for f = 1− e = 1/2− u. It is clear that A1/2 ⊆ ker �1.
Now suppose that 
 � A → End�M� is an irreducible representation with A1/2 ⊆
ker 
. According to Theorem 1.2, if M = M0, then dimM = 1. If M = M1/2 and �
is algebraically closed, then dimM depends on the following.
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Set A′
0 = �y′ = y − 1/2�1�y�e � y ∈ A0. Let � be the symmetric bilinear form

on A′
0 defined in (d) of Theorem 1.2. Notice q�f� f� = 0 and ��f� f� = 0, as f is

an idempotent. Thus, ��f ′� f ′� = 1/16�1�f��1�f� = 1/16. So we see that A′
0/rad��� is

one-dimensional.
Therefore, any irreducible A-module with A1/2 ⊆ ker 
 and M = M1/2 will be

one-dimensional by Theorem 1.2. Any irreducible A-module with A1/2 ⊆ ker 
 and
M = M0 likewise will be one-dimensional.

Proof of Theorem 1.3. Under the hypothesis that �1 and �2 are 0 on A 1
2
⊕ A	

and 	 �= 0, we have for a finite-dimensional irreducible representation 
 � A →
End�M� that 
�a�
�b�+ 
�b�
�a� = −
�ab� ∈ 
�B� for all a� b ∈ B �= A 1

2
⊕ A	 by

(3.3) and Proposition 2.4. Thus, 
�B� is a weakly closed set of transformations
of M . Moreover, by (3.7), 
�a�3 = 0 for all a ∈ B. Therefore, there exists a basis
for M such that 
�a� is strictly upper triangular for all a ∈ B. Consequently, N �=
�m ∈ M � 
�a�m = 0 for all a ∈ B �= 0. Now M = M 1

2
⊕M	, and the relations in

Proposition 3.5 show that if m = m 1
2
+m	 ∈ N , where m 1

2
∈ M 1

2
, m	 ∈ M	, then

m 1
2
�m	 ∈ N . Thus, if 0 �= m 1

2
∈ N ∩M 1

2
, then by irreducibility �m 1

2
= M . As a

similar result holds if N ∩M	 �= 0, it must be that M is one-dimensional; B = ker 
;
and either 
�e� = 1

2 IM or 
�e� = 	IM . �

4. THE �2 = 0 CASE

Here we will discuss representations of rank 3 algebras having an idempotent
element e such that Le has eigenvalue zero. Such algebras are closely connected with
Clifford algebras as we will see below. In particular, if A is a rank 3 algebra with
�2 = 0, then according to the next result, the possible eigenvalues of any idempotent
in A are 1� 1

2 � 0.

Theorem 4.1. Let A be a rank 3 algebra with �2 = 0. Then the following hold:

(i) A has an idempotent e if and only if �1�A
2� �= 0;

(ii) For every idempotent e ∈ A, �1�e� = 1. Thus, the Peirce decomposition relative to e
is given by A = �e⊕ A 1

2
⊕ A0 and �1�A0 ⊕ A 1

2
� = 0. There is a symmetric bilinear

form � on A0 such that yz = −4��y� z�e for all y� z ∈ A0;
(iii) Assume 
 � A → End�M� is a finite-dimensional irreducible representation of A.

(a) If 
�e� = 0 for some idempotent e of A, then dimM = 1.
(b) Assume 
�f� �= 0 for any idempotent f , and let A = �e⊕ A 1

2
⊕ A0 be

the Peirce decomposition of A relative to some idempotent e. Set d =
dim�A0/rad����, where � is as in (ii). Then if � is algebraically closed,

dimM =
{
2d/2 if d is even

2�d−1�/2 if d is odd.

(In particular, d is independent of the idempotent chosen.)

Proof. (i) By Walcher (1999, (R4)),

�x2�2 = ��1�x
2�− �2�x��x

2 + 2�2�x� x
2�x = �1�x

2�x2�

so part (i) is an immediate consequence.
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(ii) This is (a) of Proposition 5.3 of Walcher (1999).

(iii) Suppose e is an idempotent of A. By part (ii), A = �e⊕ A 1
2
⊕ A0,

�1�e� = 1, and �1 on A 1
2
⊕ A0 is 0. Let y� z be any two elements of A 1

2
⊕ A0. Then

by (ii) and (3.3), we have 
�y�
�z�+ 
�z�
�y�+ 
�yz� = 0 for any representation

 � A → End�M� of A. Let � be as in (ii), and set R = rad��� ⊆ A0. Suppose S is
a subspace such that A0 = R⊕ S. By Walcher (1999, Cor. 3.4), B �= R⊕ A 1

2
is an

ideal of A. Then for b� b′ ∈ B, 
�b�
�b′�+ 
�b′�
�b� = −
�bb′� ∈ 
�B�. Moreover,
4
�b�3 = 4�1�b�
�b�

2 − ��1�b
2�− 3�2�b��
�b�− q�b� b2�IM = 0 by (3.7). Thus, N �=

�v ∈ M � 
�b�v = 0 for all b ∈ B �= 0. It is easy to see from Proposition 3.5 that N =
N 1

2
⊕ N0 where N� = N ∩M� for � = 1

2 � 0. Now for any a ∈ A0, v ∈ N�, and b ∈ B,
we have


�b�
�a�v = −
�a�
�b�v− 
�ab�v = 0�

which implies that 
�a�v ∈ N . But since A0M� ⊆ M� for � = 1
2 � 0, we have 
�a�v ∈

N�. Thus, if N� �= 0, M = N� by irreducibility and 
�B� = 0. It follows from
(ii) that 
�a�
�a′�+ 
�a′�
�a� = −
�aa′� = 4��a� a′�
�e� for all a� a′ ∈ A0. If M =
N0, then 
�e� = 0, which is impossible by our assumptions. The other option is
that 
�e� = 1

2 IM (i.e., M = N 1
2
). Here 
�a�
�a′�+ 
�a′�
�a� = −
�aa′� = 2��a� a′�IM

for all a� a′ ∈ A0. Note that 
�R� = 0 and 
 � S → End�M� is injective by the
nondegeneracy of � on S. Thus, there is a extension 
̂ � ��S� �� → End�M� of the
representation 
 to the Clifford algebra determined by S and �. The Clifford algebra
��S� �� is semisimple since � is nondegenerate on S. So when � is algebraically
closed and d = dim S = dim�A0/rad����,

��S� �� 	
{
�r ��� if d is even and r = 2d/2

�r ���⊕�r ��� if d is odd and r = 2�d−1�/2�

This implies that M must have dimension r, as claimed. �

5. INDECOMPOSABLE EXAMPLES

In this section we impose the restriction that �1 and �2 are 0 on A 1
2
⊕ A	. This

is true, for example, when A is a train algebra of rank 3 or when A satisfies (1.1)
with �2 = 0 and �1�A

2� �= 0� (See Proposition 5.3 of Walcher, 1999 and the results
of the previous section.) We give an explicit construction of some indecomposable
representations for A in this setting.

Proposition 5.1. Assume A is a rank 3 algebra such that both �1 and �2 are 0 on
A 1

2
⊕ A	 and 	 �= 0. If there exists an element b ∈ A	\A2

1
2
or an element b ∈ A 1

2
\A	A 1

2
,

then there is a indecomposable two-dimensional representation 
 � A → End�M� of A
with 
�b� �= 0.

Proof. (1) Assume b ∈ A	\A2
1
2
. Let Z = A′

	 ⊕ A 1
2
, where A′

	 is a subspace of

A	 satisfying A′
	 ⊇ A2

1
2

and A	 = �b ⊕ A′
	. If B �= A 1

2
⊕ A	, then B2 ⊆ Z by

Proposition 2.4. Now we assign to the element a = �e+ �b + z (where z ∈ Z) a 2× 2
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matrix 
�a� defined by


�a� =
(

1
2� �

0 1
2�

)
�

Because a2 = �2e+ 2	��b + z′ where z′ ∈ Z, we have

2
�a�2 + 
�a2�− 2�1�a�
�a�− �2�a�IM

=
(

1
2�

2 2��

0 1
2�

2

)
+
(

1
2�

2 2	��

0 1
2�

2

)
− 2��1�e�

(
1
2� �

0 1
2�

)
−
(
�2�2�e� 0

0 �2�2�e�

)
�

Now using the relation �1�e� = 1− �2�e� along with 	 = �1�e�− 1 = −�2�e�,
we see that this expression is zero. Thus, 
 determines a representation of A on a
two-dimensional space M . If �m� n is the basis of M giving this matrix realization,
then �m is invariant under 
�A�, and it is the unique invariant proper subspace of
M . Thus, M is an indecomposable representation of A.

(2) Here we proceed analogously. Assume b ∈ A 1
2
\A	A 1

2
, and let W = A′

1
2
⊕

A	, where A 1
2
⊃ A′

1
2
⊇ A	A 1

2
and A 1

2
= �b ⊕ A′

1
2
. For a = �e+ �b + w ∈ A = �e⊕

�b ⊕W , set


�a� =
(

1
2� �

0 	�

)
�

Then 
 determines an indecomposable two-dimensional representation as

2
�a�2 + 
�a2�− 2�1�a�
�a�− �2�a�IM

=
(

1
2�

2 ��+ 2	��

0 2	2�2

)
+
(

1
2�

2 ��

0 	�2

)
− 2��1�e�

(
1
2� �

0 	�

)
−
(
�2�2�e� 0

0 �2�2�e�

)
= 0�

�
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