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Abstract

Weestablish the existence of a positive solution for the following non-variational equation{−div (|x|−2a∇u) = |x|−2(a+1)+c f (x, u,∇u), in Ω
u = 0, on∂Ω ,

where the non-linearityf (x, t, ξ) belongs to a class of functions that are superlinear in the variablet and
sublinear in the variableξ . For this purpose we used an idea of a recent work by De Figueiredo et al. [D.
De Figueiredo, M. Girardi, M. Matzeu, Semilinear elliptic equations with dependence on the gradient via
mountain-pass techniques, Diff. Integral Equ. (in press)] and we established a new regularity result for a
class of Singular Elliptic Equations.

1. Introduction

We consider the problem{−div (|x|−2a∇u) = |x|−2(a+1)+c f (x, u,∇u), in Ω
u = 0, on∂Ω

(1.1)

where 0≤ a < N−2
2 , c ≥ 1 andΩ is abounded domain inRN with a smooth boundary such that

0 ∈ Ω . Sincethe nonlinearityf depends on∇u, (1.1)cannot be treated directly by variational
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methods. Our approach is based on an idea of De Figueiredo et al. [4] for an equation involving
the Laplacian. This idea consists of analyzing afamily of associated elliptic equations without
dependence on the gradient (see also [8]). More precisely, givenw ∈ C0,1(Ω), we considerthe
following problem{−div (|x|−2a∇u) = |x|−2(a+1)+c f (x, u,∇w), in Ω

u = 0, on∂Ω .
(1.2)

Then the result is obtained by a combination of Truncation techniques, the Mountain Pass
Theorem and Monotone Iteration. This also requires a proof of Lipschitz regularity of the
solutions that occur in the iteration (seeSection 2below). At this stage we would like to point
out that if a < 0 or if c < 1, then we cannot expect a solution of(1.2)to be Lipschitz continuous
(for counter examples, see the remark at the end ofSection 2). This means that the method of [4]
is not applicable in the casesa < 0 or c < 1. We assign the following hypotheses on the
nonlinearity f :

( f0) f : Ω × R × R
N → R is measurable, andf (x, ·, ·) is continuous onR × R

N .
( f1) limt→0

f (x,t,ξ )
t = 0 uniformly for x ∈ Ω , ξ ∈ R

N .

( f2) | f (x, t, ξ)| ≤ a1(1+ |t|p)(1+ |ξ |r ) ∀ (x, t, ξ) ∈ Ω × R × R
N , for some constantsa1 > 0,

1 < p < min
{

N+2
N−2, N−2(a+1)+2c

N−2(a+1)

}
andr ∈ (0, 1).

( f3) 0 < θ F(x, t, ξ) ≤ t f (x, t, ξ) ∀ x ∈ Ω, |t| ≥ t0, ξ ∈ R
N , for some constantsθ > 2 and

t0 > 0, whereF(x, t, ξ) = ∫ t
0 f (x, s, ξ) ds.

We notice that (f3) implies that there exist constantsa2, a3 > 0 such that

F(x, t, ξ) ≥ a2|t|θ − a3 ∀ x ∈ Ω , t ∈ R, ξ ∈ R
N . (1.3)

The above hypotheses allow us to apply the Mountain Pass Theorem of Ambrosetti and
Rabinowitz (see [2]) on Eq.(1.2). Thesolvability of problem(1.1)is then ensured if the function
f satisfies two local Lipschitz conditions that are given in (f4) below,

( f4) | f (x, t ′, ξ) − f (x, t ′′, ξ)| ≤ L1|t ′ − t ′′| ∀ x ∈ Ω, t ′, t ′′ ∈ [0, ρ1], |ξ | ≤ ρ2, and
| f (x, t, ξ ′) − f (x, t, ξ ′′)| ≤ L2|ξ ′ − ξ ′′| ∀ x ∈ Ω , t ∈ [0, ρ1], |ξ ′|, |ξ ′′| ≤ ρ2, whereρ1
andρ2 depend onp, N, θ, a1, a2, a3 given in( f2), ( f3) and(1.3).

Let us first recall some basic facts about the weighted Sobolev spaces that we will work with
(compare, e.g., [11]). Givenl ≥ 1 andα ∈ R, we denote byLl (Ω , |x|−α) the space of measurable
functionsu : Ω → R suchthat

‖u‖Ll (Ω ,|x|−α) ≡
∫
Ω

|x|−α|u|l dx < +∞.

If a ∈ (−∞, (N −2)/2), then letW1,p
0 (Ω , |x|−2a) denote the closure ofC∞

0 (Ω) under the norm

‖u‖ ≡
∫
Ω

|x|−2a|∇u|2 dx.

Let l ∈ (1, 2N/(N − 2)) andα ≤ (1+ a)l + N(1− (l/2)). Then there is a constantC0 > 0 such
that

C0

(∫
Ω

|x|−α|u|l dx

)2/ l

≤
∫
Ω

|x|−2a|∇u|2 dx. (1.4)
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The casel = 2 in (1.4)requires special attention in our analysis. Consider the weighted Rayleigh
quotient

Qa,c(v) :=
∫
Ω |x|−2a|∇v|2 dx∫

Ω |x|−2(a+1)+cv2 dx
, v ∈ W1,2

0 (Ω , |x|−2a), v = 0,

wherea ∈ (−∞, (N − 2)/2) andc ≥ 0 and set

S(Ω , a, c) := inf{Qa,c(v) : v ∈ W1,2
0 (Ω , |x|−2a), v = 0}. (1.5)

If c > 0, thenS(Ω , a, c) is equal to the first eigenvalue of the following problem{−div(|x|−2a∇u) = λ|x|−2(a+1)+cu in Ω ,

u = 0 on∂Ω ,
(1.6)

andS(Ω , a, c) is attained for any first eigenfunction of(1.6)(see [11]).
If c = 0, thenS(RN , a, 0) = ((N − 2 − 2a)/2)2, but the infimum in (1.5) is not attained

(see [3]). It is easy to see that this also implies thatS(Ω , a, 0) = ((N − 2 − 2a)/2)2, and that
S(Ω , a, 0) is not attained. We are now in a position to formulate our main result.

Theorem 1.1. LetΩ be a C1-domain, and assume that either0 < a < (N − 2)/2 and c≥ 1, or
a = 0 and c> 1. Furthermore, suppose that f satisfies( f0), . . . , ( f4). Then problem(1.1)has
a positive and a negative solution in W1,2

0 (Ω , |x|−2a) provided that

L1

S(Ω , a, c)
+ L2√

S(Ω , a, 2(c − 1))
< 1. (1.7)

Our paper is organized as follows. InSection 2we obtain regularity properties for the
solutionsof problem(1.2). Theproof ofTheorem 1.1is given inSection 3.

2. A regularity result

In this section we prove boundedness and smoothness for solutions of problem(1.2).

Theorem 2.1. Let a ∈ (−∞, (N − 2)/2), c > 0, M > 0, β := 2(a + 1) − c, 1 < q <

min{(N + 2)/(N − 2); (N − 2(a + 1) + 2c)/(N − 2(a + 1))}, and let g : Ω × R → R, a
Caratheodory function such that

|g(x, t)| ≤ M(1 + |t|q) ∀(x, t) ∈ Ω × R. (2.8)

Furthermore, let u∈ W1,2
0 (Ω , |x|−2a) satisfy weakly

−div (|x|−2a∇u) = |x|−βg(x, u) in Ω . (2.9)

Then there is aconstant C> 0, depending only on N,Ω , a, cand q, such that

|u(x)| ≤ MC in Ω . (2.10)

Moreover, there is a numberα ∈ (0, 1] such that u ∈ C0,α
loc (Ω). Finally, if ∂Ω ∈ C0,1 then

u ∈ C0,α(Ω).

Proof. We introduce new coordinates

x = |y|k−1y, x ∈ R
N, wherek = N − 2

N − 2(a + 1)
,
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and setD := {y : x ∈ Ω}, v(y) := u(x), h(y, t) := g(x, t), ∀ (x, t) ∈ Ω × R. It is then easy to
see thatv ∈ W1,2

0 (D), andv satisfies weakly

− ∂

∂yi
ai (y,∇v) = k2|y|−γ h(y, v) in D, (2.11)

where

ai (y, ξ) = k2ξi + (1 − k2)
yi yj ξ j

|y|2 ∀ (y, ξ) ∈ D × R
N ,

andγ = 2 − c(N − 2)/(N − 2(a + 1)). Notice thatk > 0,

ξi ai (y, ξ) ≥
{|ξ |2 if k ≥ 1

k2|ξ |2 if k < 1
and (2.12)√√√√ N∑

i=1

a2
i (x, ξ) ≤

{|ξ | if k < 1
k2|ξ | if k ≥ 1.

(2.13)

Now we write

d(y) := |y|−γ h(y, v(y))

1 + |v(y)| , ∀ y ∈ D.

Sincev ∈ L2N/(N−2)(Ω) by the Sobolev Embedding Theorem, and sinceq < 1 + 2c/(N −
2(a + 1)), we findusing Hölder’s inequality and(2.8),∫

D
|d|N/2 dy ≤ c2

∫
D

|y|−γ N/2(1 + |v|(q−1)N/2)

≤ c2

(∫
D

|y|− 2γ N
4−(N−2)(q−1)

) 4−(N−2)(q−1)
4

×
(

c3 +
(∫

D
|v|2N/(N−2)

)(N−2)(q−1)/4
)

< +∞,

wherec2, c3 are some positive constants. In other words, we have that

−(∂/∂yi )ai (y,∇v) = d(y)(1 + |v|) in D,

whered ∈ LN/2(D). Wecan now apply Lemma B3 of [10], p. 244 ff., to obtain thatv ∈ Lr (D)

for everyr ≥ 1. (Notice that the above mentioned Lemma B3 has been formulated only for
the Laplace operator, but its proof carries over without difficulty to the general case, due to the
properties(2.12)and(2.13).) Hence we have that|y|−γ g(y, v(y)) ∈ Lρ(D) for someρ > N/2.
The assertions then follow from [9]. �

Next we consider the problem

u ∈ W1,2
0 (Ω , |x|−2a),

−div(|x|−2a∇u) = |x|−2a−2+c f (x) in Ω ,
(2.14)

wherec ≥ 1 and f ∈ L∞(Ω). Notice first that ifc > 0, then a result of [5], Theorem 1.1, tells
us thatu is bounded andu ∈ C0,α(Ω ′) for someα ∈ (0, 1) and for everyΩ ′ ⊂⊂ Ω . Ourproof is
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based on a blow-up argument as used by Gidas and Spruck (see [6]), and requires the following
Liouville-type result:

Theorem 2.2. Let a∈ (−∞, (N − 2)/2) and

m1 = − N − 2

2
+ a +

√(
N − 2

2
− a

)2

+ N − 1. (2.15)

Then, if u∈ W1,2
loc (RN , |x|−2a) satisfies

−div(|x|−2a∇u) = 0 and (2.16)

|u(x)| ≤ C(1 + |x|m1−ε) onR
N , (2.17)

for some C> 0, andε ∈ (0, m1), it follows that u is constant onRN.

Proof. Let (r, θ) denoteN-dimensional polar coordinates, (r = |x|, θ ∈ SN−1), and let{vn} be
the sequence of orthonormal eigenfunctions for the Laplace–Beltrami operator onSN−1, that is,

−∆θ vk = λkvk on SN−1, k = 0, 1, 2, . . . , (2.18)∫
SN−1

vi v j dθ = δi j , i , j = 0, 1, 2, . . . , and (2.19)

λ0 ≤ λ1 ≤ λ2 ≤ · · · . (2.20)

Notice thatλ0 = 0, v0 = const.= 0,λ1 = · · · = λN = N − 1, vk = Cxk/|x|, k = 1, . . . , N, for
someC > 0, and the eigenvaluesλ(= λk) can be calculated from the relation

λ = n2 + n(N − 2), n = 0, 1, 2, . . . .

Let R > 0, and letbk(R), k = 0, 1, . . ., (unique!) numbers such that

u(R, θ) =
+∞∑
k=0

bk(R)vk(θ), ∀ θ ∈ SN−1. (2.21)

Then we have the following representation ofu (see [1], proof of Theorem 4.4),

u(r, θ) =
+∞∑
k=0

bk(R)r mkvk(θ), ∀ r ∈ [0, R], ∀ θ ∈ SN−1, (2.22)

where mk = − N − 2

2
+ a +

√(
N − 2

2
− a

)2

+ λk. (2.23)

SinceR > 0 is arbitrary, we have that

bk(R) = ck Rmk , (2.24)

for some numbersck ∈ R, k = 0, 1, 2, . . .. Using Parseval’s identity on∂ BR and assumption
(2.17), we then find that

C(1 + R2m1−2ε) ≥
∫
SN−1

u2(R, θ) dθ =
+∞∑
k=0

c2
k R2mk ∀R > 0, (2.25)

for someC > 0. Passing tothe limit R → +∞, this givesck = 0 for k ≥ 1. Henceu is constant
onR

N . �
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Lemma 2.1. Let a ∈ (−∞, (N − 2)/2), c > 0, f ∈ L∞(Ω), and let u be a solution of(2.14).
Then for everyδ > 0 satisfyingδ ≤ c andδ < m1, there isa number c1 > 0 depending only on
δ, c, a, N andΩ suchthat

|u(x) − u(0)| ≤ c1M|x|δ ∀ x ∈ Ω , (2.26)

where M := ‖ f ‖L∞(Ω).

Proof. First assume thatM = 1. Suppose that(2.26)is wrong. Then there is a numberδ > 0
with δ ≤ c andδ < m1 and a sequence{xn} ⊂ Ω \ {0} with xn → 0 such that

lim
n→∞ |u(xn) − u(0)||xn|−δ = +∞. (2.27)

Define rotationsρn of the coordinate system about the origin such thatρnxn = (εn, 0, . . . , 0)

=: yn, (εn > 0), and letΩn := ρnΩ , fn(x) := f (ρnx), un(x) := u(ρnx), n = 1, 2, . . .. We may
assume w.l.o.g. that{εn} is decreasing and

|un(x) − un(0)||x|−δ ≤ |un(yn) − un(0)|ε−δ
n ∀x ∈ Ωn with |x| ≥ εn. (2.28)

SettingDn := {(1/εn)x : x ∈ Ωn}, gn(x) := fn(εnx), and

vn(x) := un(εnx) − un(0)

un(yn) − un(0)
,

we findvn(0) = 0, vn(e) = 1, wheree is the unit vector(1, 0, . . . , 0),

|vn(x)| ≤ |x|δ in Dn \ B1, (2.29)

vn ∈ W1,2
0 (Dn, |x|−2a), and

−div(|x|−2a∇vn) = |x|−2a−2+cgn(x)εδ
n

un(εne) − un(0)
=: hn(x) in Dn. (2.30)

By (2.27)we have that

lim
n→∞

εδ
n

un(εne) − un(0)
= 0,

so that

lim
n→∞ hn(x) = 0 uniformly in any compact subset ofR

N . (2.31)

Furthermore, using elliptic estimates separately inB1 and in Dn \ B1, we find – see [5] –
that thevns are uniformly bounded andvn ∈ C0,α(D′) for someα ∈ (0, 1), for every
D′ ⊂⊂ Dn. Hence, in view of (2.29)–(2.31), there is a subsequence{vn′ } and a function
v ∈ W1,2

loc (RN , |x|−2a) ∩ C0,α(RN) suchthat

v′
n −→ v in W1,2(BR, |x|−2a) and inC0,α(BR), ∀R > 0, (2.32)

div (|x|−2a∇v) = 0 onR
N , (2.33)

|v(x)| ≤ |x|δ for |x| ≥ 1, and (2.34)

v(0) = 0, v(e) = 1. (2.35)

Using the previous theorem, conditions(2.33) and (2.34) imply that v must be constant,
contradicting(2.35).

In the general case, the result follows from the above analysis, replacingu by M−1u. �
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We now prove the main results of this section.

Theorem 2.3. Let 0 < a < (N − 2)/2, c > 1, f ∈ L∞(Ω), and let u be a solution of(2.14).
Then u∈ C1,β(Ω) for everyΩ ′ ⊂⊂ Ω , and for everyβ ∈ (0, 1) with β ≤ c−1 andβ < m1−1.
Moreover, for every suchβ, and Ω ′, there is a constant c2 depending only on c,β, a, andΩ ′
suchthat

‖u‖C1,β (Ω ′) ≤ c2M, (2.36)

where M := ‖ f ‖L∞(Ω). Finally, if Ω is a C1,β -domain, then u∈ C1,β(Ω) and(2.36)holds with
Ω ′ replaced byΩ .

Proof. As in the proof of Lemma 2.1, we mayassume thatM = 1. First observe that standard
regularitytheory tells us (see, e.g., [7]) that

u ∈ C1,α(Ω ′ \ Bε) for everyΩ ′ ⊂⊂ (Ω \ {0}) and∀α ∈ (0, 1). (2.37)

Let δ ∈ (1, c] with δ < m1, and ε0 > 0 such thatB4ε0 ⊂ Ω , and ε ∈ (0, ε0). Setting
uε(x) := ε−δ(u(εx) − u(0)), fε(x) := f (εx), andΩε = {(1/ε)x : x ∈ Ω}, we have that
uε ∈ W1,2

0 (Ωε, |x|−2a), and

−div(|x|−2a∇uε) = |x|−2a−2+c fε(x)εc−δ in Ωε. (2.38)

By the previous lemma, theuεs are uniformly bounded. Hence,using elliptic estimates in
B4 \ B1/2, weobtain from(2.38)that for everyα ∈ (0, 1) there is aconstantc2(α), independent
of ε suchthat

|∇uε(x) − ∇uε(y)| ≤ c2(α)|x − y|α in B2 \ B1,

which implies

|∇u(x) − ∇u(y)| ≤ c2(α)|x − y|αεδ−1−α in B2ε \ Bε.

Choosingα ≤ δ − 1, this shows that

|∇u(x) − ∇u(y)| ≤ c2(α)|x − y|α in B2ε \ Bε. (2.39)

By the previous lemma and by(2.37)we have thatu ∈ C1
loc(Ω) and∇u(0) = 0. Together with

(2.37), this proves(2.36).
Finally, if Ω is aC1,β -domain, then one has

u ∈ C1,β(Ω \ Bε) ∀ε > 0. (2.40)

This impliesu ∈ C1,β(Ω), by the above considerations. �

A slight modification of the above proof in the casec = 1 leads to thefollowing:

Theorem 2.4. Let 0 < a < (N − 2)/2, c = 1, f ∈ L∞(Ω), and let u be a solution of(2.14).
Then u∈ C0,1(Ω ′) for everyΩ ′ ⊂⊂ Ω . Moreover, there is a constant d2 depending only on a
andΩ ′ suchthat

‖∇u‖L∞(Ω ′) ≤ d2M, (2.41)

where M is as inTheorem2.3. Finally, if Ω is a C1-domain, then u∈ C0,1(Ω) and(2.41)holds
with Ω ′ replaced byΩ .
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Proof. We proceed similarly as in the previous proof. Notice first thatu satisfies(2.26) with
δ = 1, and that(2.37). Moreover, if Ω is aC1-domain, then one has

u ∈ C0,1(Ω \ Bε) ∀ε > 0. (2.42)

Choosingε0 as before andε ∈ (0, ε0), we setuε(x) := (u(εx) − u(0))/ε. Then we have that

−div(|x|−2a∇uε) = |x|−2a−1 fε(x) in Ωε. (2.43)

Using elliptic estimates inB4 \ B1/2, we seefrom (2.43)that there is a constantc3 independent
of ε, such that

|∇uε(x)| ≤ c3 in B2 \ B1.

This implies

|∇u(x)| ≤ c3 in B2ε \ Bε.

Now the assertion follows from the continuity ofu and from(2.26)with δ = 1 and(2.42). �

Remarks. (1) Let us briefly report about the well-known Laplacian case,a = 0. Notice that we
cannot argue as in the proof ofTheorem 2.3, sincem1 = 1.

Assume thatc ∈ (1, 2). Since|x|−2a−2+c f (x) ∈ L p(Ω) for every p > N/(2 − c), we
have thatW2,p

loc (Ω) for thesep. By the Embedding Theorem this implies thatu ∈ C1,β(Ω ′)
for everyΩ ′ ⊂⊂ Ω , andβ ∈ (0, c− 1). Moreover, ifΩ is aC1,β-domain thenu ∈ C1,β(Ω).

(2) We wish to demonstrate that the restrictions on the parametersa and c in the above
Theorems 2.3and2.4are optimal.

ChooseR0 > 0 such that BR0 ⊂⊂ Ω , and leta ∈ (−∞, (N − 2)/2), andci > 0,
i = 1, 2, 3, with c3 = m1, wherem1 is given by(2.15). Setting u1(x) = |x|c1, u2(x) =
x1|x|m1−1, andu3(x) = x1|x|m1−1 log |x| in BR0, we have that

−div(|x|−2a∇ui ) = |x|−2a−2+ci fi (x) in BR0, i = 1, 2, 3, (2.44)

where f1(x) = −c1(N + c1 − 2 − 2a), f2(x) ≡ 0, and

f3(x) = −2x1|x|−1
√

((N − 2 − 2a)/2)2 + N − 1.

Clearly we may continueui to a function inC2(Ω \ {0}) with compact support inΩ , and
suchthat ui is a solution of problem(2.14)with right-hand side|x|−2a−2+ci fi (x), where
fi ∈ L∞(Ω), i = 1, 2, 3. The examples show that an estimate(2.26)with δ ≥ m1 or with
δ > c does not hold in general. In particular, the first example,u1, shows that one cannot
expect a solution of(2.14)to be Lipschitz continuous ifc < 1. Moreover, ifa < 0 then we
have thatm1 < 1, so thatu2 provides an example of a solution of (2.14)that is not Lipschitz
continuous. Finally, a counter example for Lipschitz continuity in the casea = 0 andc = 1
is given byu3.

3. Truncation argument

Fromnow on, we assume thatΩ , a andc are as inTheorem 1.1. In orderto obtain a solution
of (1.2)we first consider a truncated problem. Fix some numberR > 0. Then let

fR(x, t, ξ) = f (x, t, ξϕR(ξ)), and

FR(x, t, ξ) =
∫ t

0
fR(x, τ, ξ) dτ ∀(x, t, ξ) ∈ Ω × R × R

N ,
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whereϕR ∈ C1(RN) and satisfies the following conditions|ϕR(ξ)| ≤ 1 ∀ξ ∈ R
N,

ϕR(ξ) = 1 ∀|ξ | ≤ R
ϕR(ξ) = 0 ∀|ξ | ≥ R + 1.

(3.45)

Furthermore, for any fixedw ∈ W1,2
0 (Ω , |x|−2a) we define a functionalI R

w : W1,2
0 (Ω , |x|−2a) →

R by

I R
w (v) = 1

2

∫
Ω

|x|−2a|∇v|2 −
∫
Ω

|x|−2(a+1)+cFR(x, v,∇w).

The critical pointsuR
w of I R

w are weak solutions of the semi-linear elliptic problem{−div(|x|−2a∇uR
w) = |x|−2(a+1)+c fR(x, uR

w,∇w) in Ω
uR

w = 0 on∂Ω .

Our aim is to show that the functionalI R
w has a structure of Mountain Pass type for any

w ∈ W1,2
0 (Ω , |x|−2a). Indeed one can state the following two lemmata.

Lemma 3.1. For every R> 0 there exist positive numbersρ < 1 andα suchthat

I R
w (v) ≥ α ∀ w ∈ W1,2

0 (Ω , |x|−2a) and

∀ v ∈ W1,2
0 (Ω , |x|−2a) satisfying‖v‖ = ρ.

(3.46)

Lemma 3.2. There exists somev ∈ W1,2
0 (Ω , |x|−2a) with v ≥ 0, ‖v‖ > 1 suchthat

I R
w (v) < 0 ∀ R > 0 and∀ w ∈ W1,2

0 (Ω , |x|−2a). (3.47)

Proof of Lemma 3.1. It follows from ( f1) and (f2) that there is a positive constantkε that
depends only onε, such that

|FR(x, t, ξ)| ≤ εt2

2
+ kε(R + 2)r |t|p+1.

In view of (1.4)we have that∫
Ω

|x|−2(a+1)+cFR(x, v,∇w) ≤ ε

2

∫
Ω

|x|−2(a+1)+cv2

+ kε(R + 2)r
∫
Ω

|x|−2(a+1)+c|v|p+1

≤ C
(ε

2
+ kε(R + 2)r ‖v‖p−1

)
‖v‖2,

(3.48)

for some constantC > 0. Now, choosing

‖v‖ <

(
ε

2kε(R + 2)r

) 1
p−1

in the above inequality, one gets∫
Ω

|x|−2(a+1)+cFR(x, v,∇w) ≤ Cε‖v‖2,
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so that(3.46)easily follows by takingε < (2C)−1, ρ < min{1; (4kε(R + 2)r C)−1/(p−1)} and
α = (1

2 − Cε)ρ2. �

Proof of Lemma 3.2. We fix somefunctionv0 ∈ W1,2
0 (Ω , |x|−2a), with v0 ≥ 0, v0 = 0. By

(1.3)one gets, for anyt > 0,

I R
w (tv0) ≤ t2

2

∫
Ω

|x|−2a|∇v0|2 − a2

∫
Ω

|x|−2(a+1)+ctθ |v|θ + ã3,

whereã3 = a3
∫
Ω |x|−2(a+1)+c. Then we choosev = tv0 with t sufficiently large such that

‖v‖ > 1 andI R
w (v) < 0 for all R > 0. �

Proposition 3.1. Let ( f0), . . . , ( f3) be satisfied and letw ∈ W1,2
0 (Ω , |x|−2a) andv be given by

Lemma3.2. Then, for every R> 0, there exists somev = v(w, R) suchthat

D(I R
w )(v) = 0 and

I R
w (v) = inf

γ∈Γ
max

t∈[0,1]
I R
w ,

(3.49)

where

Γ = {γ ∈ C0([0, 1]; W1,2
0 (Ω , |x|−2a)) : γ (0) = 0, γ (1) = v}. (3.50)

Proof. We have thatI R
w (0) = 0. Furthermore, the functionalI R

w satisfies the (PS)-condition in
view of ( f0), . . . , ( f3). Then the existence of an elementv suchthat(3.49)and(3.50)hold is an
immediate consequence of theLemmatas 3.1and3.2and of the Mountain Pass Theorem due to
Ambrosetti and Rabinowitz (see [2]). �

Next, we will obtain a positive and a negative solution of(1.1). To this end, we fix an arbitrary
elementu0 ∈ W1,2

0 (Ω , |x|−2a) andR > 0, and we considerthe following iterative scheme:

Givenn ∈ N, fix an elementv = uR
n satisfying(3.49)and(3.50)with

w = uR
n−1. (3.51)

Notice that the elementsuR
n above are not unique in general. Now we obtain a uniform estimate

from above for theW1,2
0 (Ω , |x|−2a)-norms ofuR

n . This will finally allow us to get rid of the
dependence onR, and topass tothe following iteration scheme:

(P)n

{−div(|x|−2a∇un) = |x|−2(a+1)+c f (x, un,∇un−1) in Ω
un = 0 on∂Ω .

Lemma 3.3. There exists a positive constant c1 suchthat

‖uR
n ‖ ≤ c1 (3.52)

for every n∈ N and R> 0.

Proof. Using the definition ofuR
n and choosing the path inΓ given by the line segment joining

0 andv, one gets from(1.3)

I R
uR

n−1
(uR

n ) ≤ sup
t≥0

{
t2

2

∫
Ω

|x|−2a|∇v|2 − a2tθ
∫
Ω

|x|−(a+1)p+c|v|θ + ã3

}
,
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whereã3 is defined inthe proof of Lemma 3.2. Sinceθ > 2, the function

R+ � t �→ t2

2

∫
Ω

|x|−2a|∇v|2 − a2tθ
∫
Ω

|x|−(a+1)p+c|v|θ + ã3

attains a positive maximum. Hence

I R
uR

n−1
(uR

n ) ≤ const ∀ n ∈ N and∀ R > 0. (3.53)

Now (3.53), ( f3), the fact that|ϕR| ≤ 1, and the criticality ofuR
n for I R

uR
n−1

imply

1

2
‖uR

n ‖2 ≤ const+ 1

θ

∫
Ω

|x|−(a+1)p+c fR(x, uR
n ,∇uR

n−1)u
R
n

= const+ 1

θ
‖uR

n ‖2,

and(3.52)follows in view of θ > 2. �

Using the results ofSection 2, we nowobtain uniform estimates for theL∞-norms of{uR
n }

and{∇uR
n }, by assuming additionally that

uR
0 ∈ C0,1(Ω) for everyR > 0. (3.54)

Lemma 3.4. Assume(3.54). Then, for every n∈ N and R> 0, uR
n ∈ C0,1(Ω).

Proof. We have thatuR
1 is the weak solution of{−div (|x|−2a∇uR

1 ) = fR(x, uR
1 ,∇uR

0 ) in Ω ,

uR
1 = 0 on∂Ω .

Since

| fR(x, uR
1 ,∇uR

0 )| ≤ M(1 + |uR
1 |p)(2 + R)r ,

that is, ‖ fR(x, uR
1 ,∇uR

0 )‖L∞(Ω) ≤ M̃(2 + R)r , we mayapply Theorem 2.1. Hence uR
1 ∈

C0,α(Ω). In view of Theorems 2.3and2.4 and the remark at the end ofSection 2, this means
thatuR

1 is Lipschitz continuous onΩ , for anyR > 0. Our result now follows by induction. �

Lemma 3.5. Assume(3.54). Then there existµ0 > 0 andµ1 > 0 suchthat

‖uR
n ‖L∞(Ω) ≤ k0 = µ0(R + 2)r , (3.55)

‖∇uR
n ‖L∞(Ω) ≤ k1 = µ1(R + 2)r ∀ R > 0 and∀ n ∈ N. (3.56)

Proof. Recall that any Lipschitz function is a.e. differentiable with bounded gradient. Then,
arguing as inLemma 3.4, thecondition (f2) and the definition of fR yield the estimates(3.55)
and(3.56). �

Lemma 3.6. Assume(3.54). Then there exists someR > 0, such that

‖uR
n ‖L∞(Ω) ≤ k0 = µ0(R + 2)r ≤ R, (3.57)

‖∇uR
n ‖L∞(Ω) ≤ k1 = µ1(R + 2)r ≤ R. (3.58)

Proof. (3.57) and (3.58) are an obvious consequence of(3.55) and (3.56) and the fact that
r ∈ (0, 1). �
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Lemma 3.7. Assume(3.54). Then un := uR
n is a solution of(P)n and the following estimates

hold, for any n∈ N,

‖un‖ ≤ c1, (3.59)

‖un‖L∞(Ω) ≤ k0 = µ0(R + 2)r (3.60)

‖∇un‖L∞(Ω) ≤ k1 = µ1(R + 2)r . (3.61)

Proof. The fact thatun solves(P)n, is aconsequence of the definition offR and the assumptions
(3.45) and (3.57) with R = R. Moreover, (3.52), (3.57) and (3.58), respectively, imply
(3.59)–(3.61)with R = R. �

The functionun given in Lemma 3.7is a nontrivial solution of(P)n. More precisely, there
holds

Lemma 3.8. For any n∈ N, there exists a positive constant c2 suchthat

‖un‖ ≥ c2. (3.62)

Proof. For anyv ∈ W1,2
0 (Ω , |x|−2a) we have that∫

Ω
|x|−2a∇un∇v =

∫
Ω

|x|−(a+1)p+c f (x, un,∇un−1).

Settingv = un in the relation above, we obtain that∫
Ω

|x|−2a|∇un|2 =
∫
Ω

|x|−(a+1)p+c f (x, un, un−1)un.

Hence( f1) and( f2) imply that, for anyδ > 0, there exists a numberc(δ) > 0 such that∫
Ω

|x|−2a|∇un|2 ≤ δ

∫
Ω

|x|−(a+1)p+c|un|2 + c(δ)
∫
Ω

|x|−(a+1)p+c|un|p+1

≤ C(δ‖un‖2 + c(δ)‖un‖p+1),

for anyn ∈ N and for some constantC > 0. Now(3.62)follows, by choosingδC < 1. �

Lemma 3.9. Let

k0 := min{k0 > 0 : (3.60)holds}
k1 := min{k1 > 0 : (3.61)holds},

and chooseρ1 = k0 and ρ2 = k1 in ( f4). Then the sequence{un} converges strongly in
W1,2

0 (Ω , |x|−2a).

Proof. By the criticality ofun+1 andun, one has, for everyn ∈ N,∫
Ω

|x|−2a∇un+1(∇(un+1 − un)) =
∫
Ω

|x|−2(a+1)+c f (x, un+1,∇un)(un+1 − un), (3.63)∫
Ω

|x|−2a∇un(∇(un+1 − un)) =
∫
Ω

|x|−2(a+1)+c f (x, un,∇un−1)(un+1 − un). (3.64)

Subtracting(3.64)from (3.63), weobtain that

‖un+1 − un‖2 =
∫
Ω

|x|−2(a+1)+c{[ f (x, un+1,∇un) − f (x, un,∇un)](un+1 − un)

+ [ f (x, un,∇un) − f (x, un,∇un−1)](un+1 − un)}.
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Using hypothesis (f4), this leads to the following estimate,

‖un+1 − un‖2 ≤ L1

∫
Ω

|x|−2(a+1)+c|un+1 − un|2

+ L2

∫
Ω

|x|−2(a+1)+c|∇(un − un−1)||un+1 − un|. (3.65)

Using Cauchy–Schwarz and singular Poincar´e inequalities, and sincec ≥ 1, we have from(3.65),

‖un+1 − un‖2 ≤ L1S(Ω , a, c)−1‖un+1 − un‖2

+ L2S(Ω , a, 2(c − 1))−1/2‖un+1 − un‖ ‖un − un−1‖.
This means that

‖un+1 − un‖ ≤ L2S(Ω , a, 2(c − 1))−1/2

1 − L1S(Ω , a, c)−1
‖un − un−1‖ =: k‖un − un−1‖.

By our assumptions, we havek < 1. Hence the sequence{un} converges inW1,2
0 (Ω , |x|−2a) to

some functionu ∈ W1,2
0 (Ω , |x|−2a). Furthermore, since‖un‖ ≥ c2 by Lemma 3.8, it follows

thatu = 0. In this way we obtain a nontrivial solution of(1.1). �

Lemma 3.10. Problem(P)n hasa positive solution u+n and a negative solution u−n . Moreover,

the sequences{u+
n } and{u−

n } converge strongly in W1,2
0 (Ω , |x|−2a).

Proof. We consider only the case of the positive solution. The argument leading to a negative
solution is analogous. We replace the functionf (x, t, ξ) in (1.1)by the function

f +(x, t, ξ) =
{

0 if f (x, t, ξ) < 0
f (x, t, ξ) if f (x, t, ξ) ≥ 0.

Of course, f + satisfies( f3) only for t ≥ 0. But this is of no importance if we choosev0 > 0 in
the proof of Lemma 3.2. Indeed, proceeding analogously as before, we obtain a solution of the
problem{−div (|x|−2a∇un) = f +(x, u+

n ,∇u+
n−1) in Ω ,

u+
n = 0 on∂Ω .

Multiplying the differential equation by the negative part ofun and integrating by parts, we
conclude thatun is positive, that is,u+

n = un. �

Proof of Theorem 1.1. The proof is a direct consequence of theLemmatas 3.9and3.10. �
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