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Abstract

The solitonic-like solutions predicted by the continuum semi-classical two–dimensional
XY -model are investigated using canonical Monte Carlo simulation. In particular,
we verify the existence of kink states, and study their degree of stability. These
states, that were supposed to exist from approximate theories applied to the con-
tinuum limit of this model, are a new kind of solution of the XY model under
external magnetic field. In the simulation several system sizes up to 100× 100 spins
were considered. The study of the static spin correlation between the initial and
final configuration shows there exist a finite transition temperature Tc, which is
independent of the system size. According to our simulation, at T < Tc the kink
state is stable, and the degree of stability increases with system size.
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1 Introduction

Among the classical spin systems, the XY model is one of the most relevant.
It provides a prototype for systems which exhibit topological excitations and
play a key role in the understanding on phase transitions, critical behavior,
scaling, and universality [1,2]. In particular, the two dimensional XY model
(2D-XY model) has been used to represent a wide variety of systems including
superfluid films, Josephson-junction arrays, lipid layers, and others [3–5], in
addition to the magnetic systems [6].
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The 2D-XY model may be viewed as a Heisenberg ferromagnetic with an easy-
plane anisotropy, where the coupling between the z components of spins van-
ished. In general, the classical spins ~S = (Sx, Sy, Sz) interact only through the
Sx, Sy components, and the third component, Sz, can be absent (called plane
rotator model) or present (called XY model). Also, depending on the spatial
coordinates, the XY model can be realized in one, two or three spatial dimen-
sions. Interestingly, the plane rotator model and the 2D−XY model belong to
the same universality class. The plane rotator model does not present any true
long-range order, a consequence of the Mermin-Wagner theorem [7]. However,
it presents a Kosterlitz-Thouless phase transition [8] at a finite temperature
TKT . Recent works suggest that the 2D-XY model also exhibit Kosterlitz-
Thouless transition [9,10], very likely driven by a vortex-antivortex unbinding
mechanism.

In this contribution we are interested in the 2D-XY model under in-plane mag-
netic field, widely used in superconductivity and magnetism [5]. The inclusion
of an external in-plane magnetic field changes the behavior of the system,
precluding any topological transition. Several types of solutions have been
found in the 2D-XY under in-plane magnetic field, for instance spin waves,
Kosterlitz–Thouless vortices [11], and spiral–antispiral pairs [12]. In addition
to these well studied solutions, in Ref. [13], it was shown that in the continuum
limit the 2D-XY Hamiltonian with an external magnetic field can be mapped
onto an elliptic scale-invariant sine-Gordon equation [14] and exact solutions
were obtained using Bäcklund transformations. These sine-Gordon solutions
are solitonic excitations whose topology give evidence of kink like states. Our
purpose is to examine the behavior of this kinks state, in particular, to study
their degree of stability with respect to temperature or external magnetic field.
This is done by means of computer simulation methods, namely MonteCarlo
(MC) method [15]. A description of the model and the details of the compu-
tational procedures are given in Section 2. The results of the simulation are
presented in Section 3 and the conclusions are drawn in Section 4.

2 Model and Computational Method

2.1 Theory

The Hamiltonian of the Heisenberg XY -model in two dimensions, with nearest
neighbors ferromagnetic interactions reads as:

H = −J
∑

i,j,δ

~Si,j ·
[
~Si+δ,j + ~Si,j+δ

]
− h

2

∑

i,j

Sx
i,j (1)
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where J > 0 is the ferromagnetic exchange interaction parameter, h = gµBH
with H the external magnetic field applied along the x−axis and δ = d (d
lattice parameter). g is the g−factor and µB is the Bohr magneton.

In the continuum limit, using raising and lowering spin operators and to second
order in δ this Hamiltonian takes the form

H =−1

2
J

∫ ∫
dx dy

[
1

2

{
S+(x, y)∇2S−(x, y) + S−(x, y)∇2S+(x, y)

}

+ Sz(x, y)∇2Sz(x, y)

]
− h

2

∫ ∫
dx dy

(
S+(x, y) + S−(x, y)

)
(2)

Using the Schwinger [16] transformation and the semi-classical approximation
that the spins can be continuously projected along the quantization axis it was
demonstrated [13], in the coherent state formalism [17], that the system obeys
the following time independent scale-invariant elliptic sine-Gordon equation:

∇2Φ(~r) = m2 sin(Φ(~r)) , (3)

where Φ(~r) is the angle that the spin in ~r forms with respect to an external field
H and m2 ≡ 8gµBH/3J . This equation is scale invariant since the magnitude
m can be absorbed in a variation of the length scale.

By using a Bäcklung transformation [18] we found in Ref. [13] that a solution
to that equation is a plane static soliton

Φ(~r) = 4 arctan(A exp(~r · ~α)) , (4)

where A is a constant, ~α ≡ cos(ρ) · x̂ + sin(ρ) · ŷ and ρ a Bäcklung parameter.
Figure 1 displays this kink state for A = 1 and ρ = π/8. Notice that this
result constitute another types of solution of the 2D-XY model, different from
the well-known metastable vortex-antivortex pair of the Kosterlitz-Thouless
theory [19,20].

2.2 Simulation

We study the kink-like solutions by means of a MC simulation. In order to
do that, we consider a classical XY model with two spin component in two
dimensions (plane rotator model) under an external magnetic field, using as
a initial configuration the kink solution given by Equation (4).

3



The Hamiltonian reads as

H = −J
∑

i,j,δ

ŝi,j · [ŝi+δ,j + ŝi,j+δ]− h
∑

i,j

sx
i,j , (5)

where ŝi,j are classical vectors of unit length taken from the continuous spin

variable ~S = Sŝ, with J = J̃S2, and h = Sh̃/2 [21].

The properties of the system with respect to temperature were obtained by
using standard Metropolis Monte Carlo method [15]. We consider three dif-
ferent system sizes, 15 × 15, 25 × 25, and 100 × 100. For each system, the
initial configuration is the one corresponding to Figure 1, and the tempera-
ture goes from 0 to 5 kB/J , at intervals of 0.1 kB/J for low temperatures, and
0.5 kB/J for high temperatures. After equilibration, 2×103 MC steps per spin
at each temperature were performed. This number of steps was chosen after
performing longer run for some temperatures without significant differences.
In all simulations the external magnetic field correspond to h = 0.1 J .

The analysis of the result was done by means of the correlation with respect
to initial configuration,

C = 〈sx
i (0)sx

i (n) + sy
i (0)sy

i (n)〉
where sx

i (0) and sy
i (0) are the components of spin i of the initial configuration

and sx
i (n) and sy

i (n) correspond to the components of spin i of the configura-
tion n. The average 〈. . .〉 is done over all n uncorrelated configuration of each
run.

3 Results

Figure 2 shows a typical final spin configuration at T = 0.01 kB/J . We can
see that the main features of the kink persist, presenting only little differences
with respect to the original configuration. Among them are the widening of the
kink as well as the formation of kind of vortices at each end. This configuration
does not change when we increase the number of MC steps.

When the temperature increase, the kink state get disorder, but it is still
present, as can be seen in Figure 3, where it is shown a typical final spin
configuration at T = 0.4 kB/J . Notice that in this case the kink is even
wider than in the former case, and it is clearly distinguishable the pair vortex-
antivortex at each end of the kink. These vortices can be considered as a
resemblance of the Kosterlitz-Thouless vortices solution of the sine-Gordon
equation, and also are present in the case of the spiral solutions discussed in
Ref. [12].
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Fig. 1. Initial configuration in the case of a lattice of 100 × 100 spins. This is the
kink state corresponding to Equation (1) with A = 1 and ρ = π/8.

Fig. 2. Spin configuration at T = 0.01 kB/J and h = 0.1 J .
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Fig. 3. Spin configuration at T = 0.4 kB/J and h = 0.1 J .
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Fig. 4. Correlation with respect to the initial configuration, for sizes 15× 15, 25 ×
25, and 100 × 100 spins.

The kink state persist up to certain finite transition temperature Tc, and above
Tc it disappear. Figure 4 shows how his process occurs. For low temperatures,
the correlation between the initial and the final configuration is significant,
meaning that the kink state is observable. At high temperature the correla-
tion goes to zero, that is, the kink disappear. The temperature at which this
transition happen can be estimate around 2.5 kB/J . Notice that Tc is almost
the same for the three different sizes of the system. Also, it is interesting to
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note that for the same temperature, the larger the system the bigger the corre-
lation, a trend that is expected because the kink solution of Equation (5) was
obtained in the continuum semiclassical limit. This is a proof of the internal
consistency of our simulation.

4 Concluding remarks

We have investigated the behavior with respect to temperature, under a fix
external magnetic field, of solitonic solutions, so-called kink states, predicted
by the continuum semi-classical XY-model. By means of MC numerical simu-
lation we verify the existence of these solutions also in the discrete model, for
systems up to 100× 100 spins.

The correlation of these kink states with respect to the initial configuration
shows a strong dependence with the temperature making evident the existence
of a finite transition temperature Tc. Moreover, for our particular set of pa-
rameter we were able to estimate this temperature around 2.5 kB/J . Also, by
long MC run, we check for some cases that below Tc the kink state are stable.
Finally, we notice that the final MC states are much more correlated with
the initial configuration state when the system includes a larger number of
spin sites, consistent to fact that increasing the size of the system (number of
spins) improves the validity of the analytical solutions of the continuum semi-
classical limit. However the temperature at which the correlation vanishes is
independent system size.
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