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We discuss the formation of self-trapped localized states near the edge of a semi-infinite array of
nonlinear waveguides. We study a crossover from nonlinear surface states to discrete solitons by
analyzing the families of odd and even modes centered at different distances from the surface, and
reveal the physical mechanism of the nonlinearity-induced stabilization of surface modes.

PACS numbers:

Surface modes are a special type of waves localized at
an interface between two different media. Surface states
have been studied in different fields of physics, including
optics [1, 2], where such waves are confined to the inter-
face between periodic and homogeneous dielectric media,
and nonlinear dynamics of discrete chains [3]. In periodic
systems, staggered modes localized at surfaces are known
as Tamm states [4], first found as localized electronic
states at the edge of a truncated periodic potential.

Recently it was predicted theoretically and demon-
strated experimentally that nonlinear self-trapping of
light near the edge of a waveguide array with self-focusing

nonlinearity can lead to the formation of discrete surface
solitons [5, 6]. It was found that the self-trapped surface
modes acquire some novel properties different from those
of the discrete solitons in infinite lattices: they can only
exist above certain power level and for the same amount
of power, it is possible to have, in some conditions, up to
two surface modes, one stable and the other unstable.

In this Letter, we reveal and explain the physical mech-
anism of the nonlinearity-induced stabilization of surface
modes and their existence above a certain power thresh-
old. In particular, we analyze the families of odd and
even modes placed at different distances from the sur-
face, and discuss a crossover between the nonlinear sur-
face states and discrete solitons of a semi-infinite lattice.

We study a semi-infinite array of identical, weakly cou-
pled nonlinear optical waveguides [as shown in the inset
of Fig. 1(a)] described by the system of coupled-mode
equations [7, 8] for the normalized mode amplitudes En,

i
dE1

dz
+ α E1 + E2 + γ |E1|

2E1 = 0,

i
dEn

dz
+ α En + (En+1 + En−1) + γ |En|

2En = 0,

(1)

where n ≥ 2, the propagation coordinate z is normalized
to the intersite coupling V , En are defined in terms of the
actual electric fields En as En = (2V λ0η0/πn0n2)

1/2En,

FIG. 1: Examples of surface localized modes at β = 3 in the
array of focusing waveguides (γ = +1) centered at different
distances d = 0, 1, 2, 3 from the array edge.

where λ0 is the free-space wavelength, η0 is the free-space
impedance, α is the normalized linear propagation con-
stant of each waveguide, n2 and n0 are nonlinear and
linear refractive indices of each waveguide, and γ = ±1
defines focusing or defocusing nonlinearity, respectively.

We look for stationary modes of the waveguide ar-
ray in the form En(z) = exp(iβz)En, where β is the
nonlinearity-induced shift of the propagation constant.
For γ = 0 we use the ansatz En ∼ sin(nk) and obtain
the linear spectrum β = α + 2 cos k, (0 ≤ k ≤ π), and
no localized surface modes. The presence of nonlinearity
in the model (1) can give rise to new localized states. To
find those modes, we analyze the stationary equations
(1) where, without loss of generality, we scale out the
parameter α.

For given β, the system of stationary equations
is solved numerically by a multi-dimensional Newton-
Raphson scheme. Since we are interested in surface lo-
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FIG. 2: Examples of localized surface modes at β = −3 in the
array of defocusing waveguides (γ = −1) located at different
distances d = 0, 1, 2, 3 from the array edge.

calized modes, we look for the states with maxima near
the surface that decay quickly away from the array edge.
Similar to an infinite array, these states could be centered
at a waveguide site, or centered between waveguides. In
an infinite discrete chain, such modes are known as odd

and even states, respectively. In our calculations, we take
N = 51 waveguides and explore both focusing and defo-
cusing nonlinearities looking for localized modes below
and above the linear spectrum band, |β| < 2.

Figures 1(a-d) and 2(a-d) show examples of the non-
linear localized states centered at different sites near the
surface, for both focusing (γ = +1, β = 3) and defocus-
ing (γ = −1, β = −3) nonlinearities, respectively. The
surface state centered at the site n = 1 and shown in
Fig. 1(a) was predicted earlier by Markis et al. [5]. The
existence of multiple localized states near the surface and
their stability are important characteristics of an inter-
play between nonlinearity and discreteness of the array,
on one hand, and the surface created by the lattice trun-
cation, on the other. In both the cases, the states (b,c)
describe a crossover regime between the modes (a) with
the maximum amplitude at the surface and the modes (d)
which are weakly affected by the presence of the surface.

To analyze the linear stability of each nonlinear sta-
tionary state found numerically, we introduce a weak
perturbation as En(z) = En + [un(z) + ivn(z)] exp(iβz),
and obtain linear evolution equations for un and vn, that
can be expressed in a compact form by defining the real
vectors δU{un} and δV = {vn}, and real matrices A =
{Anm} = {δn,m+1 + δn,m−1 + (−β + 3γ|En|

2) δn,m} and
B = {Bnm} = {δn,m+1 + δn,m−1 + (−β + γ|En|

2) δn,m}.
With these definitions, the combined linear equations can
be written in the form, ¨δU+BA δU = 0, ¨δV+AB δV =
0, where the dot stands for the derivative in z. Therefore,
linear stability of nonlinear localized modes is defined by
the eigenvalue spectra of the matrices AB and BA. If
any of the real eigenvalues is negative, the corresponding

FIG. 3: Normalized power vs. propagation constant β for the
surface modes shown in Fig. 1 located at different distances
d = 0, 1, 2, 3 from the surface. Black curve corresponds to the
discrete soliton in an infinite array.

nonlinear stationary solution is unstable; otherwise, the
solution is stable. Results of this analysis are consistent
with the so-called Vakhitov-Kolokolov stability criterion
of nonlinear localized modes, and the solitons determined
by the slope of the power dependence P =

∑
n |En|

2, i.e.
the states with dP/dβ < 0 for β > 0 or dP/dβ > 0 for
β < 0, should be unstable.

Figure 3 shows the power P of the localized surface
states vs. the propagation constant for the modes in
the focusing waveguides shown in Figs. 1(a-d), and the
corresponding curves for the modes of the defocusing
waveguides are mirror images. Direct numerical simu-
lations and stability analysis confirm the validity of the
Vakhitov-Kolokolov stability criterion; the instability re-
gion decreases as the center of the localized mode gets
shifted away from the array edge.

Similarly, we have also found even localized modes,
akin to the modes found earlier for a semi-infinite non-
linear lattice [3], and verified that all in-phase even
modes, for the focusing nonlinearity, and out-of-phase
odd modes, for defocusing nonlinearity are all unstable,
similar to the case of an infinite array.

In order to get a deeper insight into the physics of the
nonlinear stabilization of the surface modes, we calculate
the effective energy of the mode H = −

∑
n(EnE∗

n+1 +

E∗

nEn+1)−
1

2

∑
n |En|

4 as a function of the distance of the

collective coordinate of the mode X = P−1
∑

n n|En|
2

from the surface, similar to the case of a defect [9].
We apply a constraint method and start from the so-
lution centered at the site n̄ for given values of β and P .
Our goal is to obtain all intermediate solutions between
the odd and even stationary configurations for the same
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FIG. 4: Effective energy of surface modes vs. coordinate X

near the edge of the array: (a) below (P = 2.85) and (b)
above (P = 4.05) threshold. Black dots correspond to the
stationary solutions found without constraint.

power. We proceed as follows:(i) We calculate an odd
stationary mode centered at n̄ and obtain all {En} and
the power P , (ii) fix the amplitude at the site n̄ + 1 to
be En̄+1 + ǫ, (iii) solve the Newton-Raphson equations
for all remaining Em (m 6= n̄ + 1) with the constraint
that the power be kept at P , arriving at an intermediate
state centered between n̄ and n̄ + 1, and finally (iv) vary
ǫ and repeat the procedure until we reach the even con-
figuration, where the amplitudes at the sites n̄ and n̄ + 1
coincide.

In Figs. 4(a,b), we show the effective energy of a surface
localized mode in a semi-infinite array, Ueff(X) ≡ H(X),
calculated for two different power values. The extremal
points of this curve defined by the condition dH/dX = 0
correspond to the stationary localized solutions in the
system.

In comparison with an infinite array, the truncation
of the waveguide array introduces an effective repulsive

potential, that is combined with the periodic (Peierls-
Nabarro) potential of an infinite waveguide array. As a
result, discrete surface modes are possible neither in the
linear regime nor in the continuous limit. As we see from
Fig. 4(a), for low powers there exists no solution of the
equation dH/dX = 0 at the surface site n = 1; this cor-
responds to the fact that no surface state is found below
the power threshold [5]. However, the modes localized at
the sites n ≥ 2 are still possible.

If the power exceeds the threshold P = 3.26, dis-
creteness overcomes a repulsive force of the surface and
the surface localized state becomes possible, as shown in
Fig. 4(b). The correspondence between the stationary

solutions found without constraints (black dots) and the
solutions obtained as extremal points using the constraint
methods is perfect. As expected, all odd modes are sta-
ble compared to even modes, and they all correspond to
the condition dH/dX = 0.

We also found many other discrete surface modes, in-
cluding the so-called flat-top surface modes that gener-
alize the corresponding modes of infinite chains [10], and
two-soliton bound states or surface twisted modes, which
are stable below a certain threshold in the propagation

FIG. 5: Examples of stable flat-top localized surface modes
at β = −4 in the array of defocusing waveguides (γ = −1)
centered between different sites near the edge.

constant. Examples of flat-top modes for defocusing non-
linearity are shown in Fig. 5 for β = −4, and their sta-
bility is defined by the Vakhitov-Kolokolov criterion.

In conclusion, we have analyzed different types of non-
linear localized modes near the edge of a semi-infinite
waveguide array and revealed the mechanism of the
nonlinearity-induced stabilization and power threshold.
In addition, we have demonstrated that a similar ap-
proach can be applied to other types of nonlinear discrete
surface modes, such as flat-top modes and twisted modes,
as well as to the case of staggered modes in defocusing
waveguides.
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