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Abstract. This article deals with the conjugacy problem of uniformly quasisymmetric groups
of circle homeomorphims to groups of Möbius transformations. We prove that if the involved maps
have some degree of regularity and the uniform quasisymmetry can be detected by some natural
L1 -cocycle associated to the action, then the conjugacy is, in fact, smooth.

Introduction

Roughly speaking, quasisymmetric homeomorphisms of the circle are those
which almost preserve cross-ratios. A subgroup Γ of Homeo+(S1) is said to be
uniformly quasisymmetric if all its elements are quasisymmetric and the distortion
of cross-ratios is uniformly controlled, independently of the element of the group
(see Section 1.1 for more details).

Question 1. Is every uniformly quasisymmetric group of circle homeomor-
phisms quasisymmetrically conjugate to a group of Möbius transformations?

After some effort by several people, this question has been positively answered
by V. Markovic in the recent work [24]. Although both the problem and its answer
are very natural, the proof unfortunately appears to be rather difficult. Moreover,
it uses some well-known results, as for instance the Convergence Theorem, whose
proof is already quite involved.

One of the main difficulties overcome by V. Markovic is the absence of a nat-
ural procedure to deal with the problem. Indeed, a difficult result by D. Epstein
and V. Markovic [9] shows that there is no canonical equivariant extension to the
disk of quasisymmetric homeomorphisms of the circle. (The well-known extensions
in [1], [7] and [31] fail to be equivariant.) The aim of this work is to present a con-
ceptual approach to Question 1, which unfortunately does not solve it completely,
but gives some insight into its nature. We will consider the same question in the
smooth case, and in this context we will study the problem of smooth conjugacy.

Question 2. Let Γ be a non metabelian group of C1+τ circle diffeomor-
phisms, where τ > 0. If Γ is uniformly quasisymmetric, is Γ necessarily C1+τ

conjugate to a group of Möbius transformations?
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We think that the answer to this question is positive, but this seems not
easy to be proved. The main difficulty is that it is not clear how to utilize the
smoothness of maps in order to control the distortion of cross-ratios in an optimal
way. Recall however the well-known formula

log([a, b, c, d]) = log

(
(a − c)(b − d)

(a − d)(b − c)

)
=

∫ b

a

∫ d

c

dx dy

4 sin2
(

1
2 (x − y)

) ,

where a < b < c < d < a . This equality shows that, for every circle diffeomor-
phism g ,

(1)

log

(
[g(a), g(b), g(c), g(d)]

[a, b, c, d]

)

=

∫ b

a

∫ d

c

[
g′(x)g′(y)

4 sin2
(

1
2

(
g(x)− g(y)

)) −
1

4 sin2
(

1
2 (x − y)

)
]

dx dy.

It is then natural to consider the function c(g): S1 × S1 → R defined by

c(g)(x, y) =
g′(x)g′(y)

4 sin2
(

1
2

(
g(x)− g(y)

)) −
1

4 sin2
(

1
2 (x − y)

) .

This Liouville’s cocycle c is a function whose L1 -norm captures in some way the
distortion of cross-ratios. Note that a closely related cocycle appears in [26] and
[29] in the study of certain cohomological obstructions for group actions on the
circle. In another direction, D. Sullivan and S. Nag showed that c is a natural
cocycle arising in the analytical theory of quasisymmetric homeomorphisms [25].
They proved in particular that c(g) is the kernel of a continuous linear operator
acting on H1/2(S1).

Inspired by the afore mentioned works, we will say that a group of circle
diffeomorphisms is L1 -uniformly quasisymmetric if there exists an upper bound
for the L1 -norm of the function c(g) which is independent of the element of the
group. Our main result then takes the following form.

Theorem A. Let Γ be a non metabelian subgroup of Diffr+3
+

(S1) , where

0 ≤ r ≤ ∞ . If Γ is L1 -uniformly quasisymmetric, then Γ is Cr+3 conjugate to a

group of Möbius transformations.

It is very plausible that a refinement of our technique allows to prove a similar
statement for Lp -uniformly quasisymmetric groups of C1+τ diffeomorphisms of
the circle when τ > 1/p (see Section 1.1 for more details). However, we will not
pursue this issue here, since we only want to illustrate the idea of our approach
and not to obtain sharp results. Moreover, it is quite clear that our method cannot
be used to deal with the general quasisymmetric conjugacy problem, which has
already been completely solved.



On uniformly quasisymmetric groups of circle diffeomorphisms

Recall that one of the motivations for Question 1 is the fact that its two-di-
mensional version (replace quasisymmetric by quasiconformal and the circle by the
Riemann sphere) was elegantly solved by D. Sullivan in [34] (see also [35]). His
proof uses a simple barycentric argument in order to obtain a conformal invariant
structure, and then the Ahlfors–Bers theorem in order to integrate this structure.
Our approach to the analogous one-dimensional problem is much inspired by this
idea. Indeed, the fact that c(g) is a cocycle suggests the use of some barycenter-
type argument. Besides the problem of the smoothness required for the definition
of the cocycle, the main difficulty to implement this idea is the absence of an
analogue of Ahlfors–Bers’ theorem of integrability. However, in the C3 case it is
possible to use Schwarzian derivatives to conclude the existence of an invariant
projective structure on the circle, whose integrability is a relatively elementary
issue. The use of this last technique is strongly inspired by [11].

The reader could think that, in difference with the general quasisymmetric
framework, for our case it is the smoothness of maps which is at the origin of
the conjugacy. Nevertheless, this is not at all the case. To illustrate in some way
this point, we give in an independent Appendix an example of a group of smooth
(namely, real-analytic) diffeomorphisms of the circle whose elements behave indi-
vidually like Möbius transformations, but which is not topologically conjugate to
a group of Möbius transformations. Before stating precisely this result, let us say
that a group of circle homeomorphisms is pseudo-Möbius if each one of its ele-
ments is topologically conjugate to a Möbius transformation, and let us say that
such a group is a Möbius group if it is topologically conjugate to a subgroup of
PSL(2,R). The following result is a slight improvement of the one obtained by
N. Kovačević in [22].

Theorem B. There exists a group of real-analytic diffeomorphisms of the

circle, all whose orbits are dense, which is pseudo-Möbius and non Möbius.

Acknowledgments. Many ideas of this article arose some years ago in several
discussions with É. Ghys, to whom I would like to extend my gratitude. I would
also like to thank D. Sullivan for explaining part of the content of [25] to me, and
W. Goldman for pointing out the reference [32] to me.

1. Some preliminary facts

1.1. Quasisymmetry, Liouville’s cocycle and Schwarzian derivative.

Throughout this article, we will only deal with orientation-preserving homeomor-
phisms. Among several equivalent definitions of quasisymmetry, we will only con-
sider the one which is the most appropriated for our study.

Definition 1.1. A circle homeomorphism g is said to be quasisymmetric if
there exists a constant M < ∞ such that for all points a < b < c < d < a on the
circle satisfying [a, b, c, d] = 2, one has [g(a), g(b), g(c), g(d)] ≤ M . A subgroup
Γ of Homeo+(S1) is said to be uniformly quasisymmetric if all its elements are
quasisymmetric with respect to the same constant M < ∞ .
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Equality (1) shows that if g is a circle diffeomorphism satisfying ‖c(g)‖ ≤ M ,
then g is quasisymmetric with respect to the constant M = 2 exp(‖c(g)‖). This
shows that if Γ is a L1 -uniformly quasisymmetric group of circle diffeomorphisms
(as defined in the Introduction), then Γ is a uniformly quasisymmetric group (as
defined above). However, the converse seems to be false, even for real-analytic
diffeomorphisms.

For a single diffeomorphism g , the problem of the integrability of c(g) is
settled by the following elementary lemma.

Lemma 1.2. If g is a C2+τ diffeomorphism of the circle for some τ > 0 ,

then c(g) belongs to L1(S1 × S1) .

Proof. Passing to local coordinates, the problem reduces to proving that

(2)

[
g′(x)g′(y)

(
g(x) − g(y)

)2 −
1

(x − y)2

]
∈ L1(S1 × S1),

and obviously the difficulty is to estimate the left-hand expression near the diago-
nal. To do this, note that a simple development in Taylor series gives, for x near
to y ,

g′(x) = g′(y) + (x − y)g′′(y) + o(|x − y|1+τ/2),

and so

(3) g′(x)g′(y)(x − y)2 = (x − y)2
(
g′(y)

)2
+ (x − y)3g′(y)g′′(y) + o(|x − y|3+τ/2).

On the other hand,

(4) g(x)− g(y) = (x − y)g′(y) + 1
2
(x − y)2g′′(y) + o(|x − y|2+τ/2).

Using (3) and (4) one obtains that the left-hand expression in (2) is bounded by
another one of the form

o(|x − y|3+τ/2)

(x − y)2
(
g(x) − g(y)

)2 ,

which has order o(|x− y|τ/2−1) near the diagonal. Since for every τ > 0 the map
(x, y) 7→ 1/|x − y|1−τ/2 belongs to L1(S1 × S1), this proves the lemma.

Recall that the Schwarzian derivative of a C3 diffeomorphism g: I ⊂ R →
J ⊂ R is defined by

s(g) =
g′′′

g′
−

3

2

(
g′′

g′

)2

.

This is closely related to Liouville’s cocycle, as is illustrated by the well-known
formula (which can be obtained as above by a simple development in Taylor series)

(5) s(g)(x) = 6 lim
y→x

c(g)(x, y).

The validity of (5) implies that if g is a C3+r diffeomorphism, then c(g) is of
class Cr on S1 × S1 .
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We will denote c̄(g) = c(g−1). The reason for introducing the function c̄ is
that it is a cocycle associated to the left regular representation θ: Diff1

+
(S1) →

U
(
L1(S1 × S1)

)
given by

θ(g−1)ξ(x, y) = ξ
(
g(x), g(y)

)
g′(x)g′(y).

In other words, the equality

(6) c̄(gh) = c̄(g) + θ(g)c̄(h)

holds for every g, h in Diff1
+
(S1). This means that the correspondence g 7→

θ(g)+c(g) defines a representation of Diff1
+
(S1) by isometries of the Banach space

L1(S1 × S1).

Lemma 1.3. Let Γ be a L1 -uniformly quasisymmetric group of circle diffeo-

morphisms. If ϕ: S1 → S1 is a C2+τ diffeomorphism, then the conjugate group

ϕΓϕ−1 is also L1 -uniformly quasisymmetric.

Proof. This follows immediately from the cocycle property (6) and Lemma 1.2.
Indeed, c̄(ϕ−1) = −θ(ϕ−1)c̄(ϕ), and so

‖c̄(ϕ ◦ g ◦ ϕ−1)‖ = ‖c̄(ϕ) + θ(ϕ)c̄(g) + θ(ϕg)c̄(ϕ−1)‖ ≤ 2‖c(ϕ)‖ + ‖c̄(g)‖.

In particular, if ‖c(g)‖ ≤ C for all g ∈ Γ, then ‖c(ϕ◦g◦ϕ−1)‖ ≤ C + 2‖c(ϕ)‖ for
all g ∈ Γ.

More generally, for each p ∈]1,∞[ we can define the Liouville’s Lp cocycle cp

by

cp(g)(x, y) =
[g′(x)g′(y)]1/p

∣∣2 sin
(

1
2 (g(x)− g(y))

)∣∣2/p
−

1
∣∣2 sin

(
1
2 (x − y)

)∣∣2/p
, p 6= 2,

c2(g)(x, y) =

√
g′(x)g′(y)

2 sin
(

1
2 (g(x)− g(y))

) −
1

2 sin
(

1
2 (x − y)

) .

Note that c = c1 . In the Lp setting, c̄p(g) = cp(g
−1) appears as a cocycle

associated to the left regular representation θp given by

θp(g
−1)ξ(x, y) = ξ

(
g(x), g(y)

)
[g′(x)g′(y)]1/p,

that is, for c̄p(g) = cp(g
−1) one has

c̄p(gh) = c̄p(g) + θp(g)c̄p(h).

One easily checks that Lp -uniformly quasisymmetric groups of circle diffeomor-
phisms are also uniformly quasisymmetric. The proof of the following lemma is
analogous to that of Lemmas 1.2 and 1.3, and we will leave it to the reader (see
for instance the proof of Proposition 2.1 in [26]).



Andrés Navas

Lemma 1.4. If g is an element of Diff1+τ
+

(S1) for some τ ∈]0, 1[ , then

cp(g) belongs to Lp(S1 × S1) for all p > 1/τ . Moreover, if Γ is a Lp -uniformly

quasisymmetric group and ϕ is C1+τ circle diffeomorphism such that τ > 1/p ,

then the conjugate group ϕΓϕ−1 is also Lp -uniformly quasisymmetric.

Among the Lp cocycles for p > 1, we will only utilize the cocycle c2 . This is
because c2 takes values on a Hilbert space, and in this context the classical Tits’
center lemma [2] implies the following proposition.

Proposition 1.5. Let ĉ be a cocycle with respect to an orthogonal repre-

sentation θ̂ of a group Γ on a Hilbert space H . If the norm ‖ĉ(g)‖ is bounded

by a constant which is independent of g , then there exists a vector ξ ∈ H such

that ĉ is the coboundary associated to ξ , that is ĉ(g) = ξ − θ̂(g)ξ for all g ∈ Γ .

We remark that c̄2 is nothing else than the formal coboundary of the function
(which does not belong to L2 )

(x, y) 7−→ −
1

2 sin
(

1
2 (x − y)

) .

Quite naturally, the cocycle c2 has better regularity properties near the diagonal
than c . Indeed, if g is of class C2 , then one easily checks that c2 extends continu-
ously to S1 ×S1 as being identically zero on the diagonal. To ensure the existence
(and continuity) of ∂1c(g)(x, x) and ∂2c(g)(x, x) (a fact that will be essential in
what follows), the Taylor development

(7) c2(g)(x, y) =
g′′′(y)

12
(x − y) + o(|x − y|)

shows that a C3 regularity hypothesis for g suffices. We leave to the reader the
easy verification of (7).

1.2. Projective structures. A one-dimensional manifold X is endowed
with a projective structure when we fix a system of local charts ϕi: Ii ⊂ X → R

such that the change of coordinate maps ϕi◦ϕ
−1
j are (restrictions of) Möbius trans-

formations. If g: X1 → X2 is a C3 local diffeomorphism between one-dimensional
projective manifolds, then the quadratic differential form s(g) dx2 is well defined
on X1 , that is it does not depend on projective charts. The following properties
are satisfied:
(i) One has s(g) dx2 = 0 if and only if g is a projective diffeomorphism. This

follows from the fact that the only local diffeomorphisms with zero Schwarzian
derivative are the restrictions of Möbius transformations.

(ii) If g: X1 → X2 and h: X2 → X3 are C3 local diffeomorphisms between pro-
jective manifolds, then

(8) s(h ◦ g) dx2 = g∗
(
s(h)dx2

)
+ s(g) dx2.
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This can be obtained by a straightforward computation, but it can also be
easily deduced from (5) and (6).
If X is a one-dimensional projective manifold and s is a quadratic differ-

ential form defined on it which is of class Cr for some 0 ≤ r ≤ ∞ , then the
equation s(g) dx2 = s has local solutions of class Cr+3 , and two solutions differ
by (the restriction of) a Möbius transformation. So, there is a natural bijection
between projective structures of class Cr+3 on X and quadratic differential forms
of class Cr .

By (ii), a diffeomorphism g: X → X preserves the projective structure given
by a quadratic form s = ζ dx2 if and only if s = g∗(s) + s(g) dx2 , which by (8) is
equivalent in projective coordinates to

(9) ζ = (g′)2(ζ ◦ g) + s(g).

Example 1.6. Let us consider the local charts ϕ1 and ϕ2 on S1 given by

ϕ1(x) = tan
(

1
2x

)
, x 6= π; ϕ2(x) = tan

(
1
2x + 1

4π
)
, x 6= 1

2π.

The change of coordinates map is then given by

ϕ2 ◦ ϕ−1
1 (x) =

1 + x

1 − x
,

which proves that the charts ϕ1 and ϕ2 define a projective structure on S1 .
This structure is invariant by the action of PSL(2,R). In fact, the group of
diffeomorphisms which preserve this structure coincides with the Möbius group.

The following classical result will be essential for our proof. It was first ob-
tained by N. Kuiper in [23] with a little mistake in the proof, which was corrected
by W. Goldman in [15], [16]; see also [32].

Theorem (Kuiper–Goldman). If the group of automorphisms of a Cr pro-

jective structure on the circle is non metabelian, then it is Cr conjugate to some

finite covering of PSL(2,R) .

2. Smooth conjugacy

2.1. An outline of the proof. Let Γ be a group of C2+τ diffeomorphisms
of the circle. Recall the cocycle c2 which has been defined by

c2(g)(x, y) =

√
g′(x)g′(y)

2 sin
(

1
2

(
g(x) − g(y)

)) −
1

2 sin
(

1
2(x − y)

) .

For every circle diffeomorphism g and all x , y in S1 one has

|c2(g)(x, y)|2 ≤ |c(g)(x, y)|.

From this one concludes that if Γ is L1 -uniformly quasisymmetric, then the re-
striction to Γ of the cocycle c2 is uniformly bounded. By Proposition 1.5, there
exists a function ξ ∈ L2(S1 × S1) such that c̄2(g) = ξ − θ2(g)ξ for all g ∈ Γ.

Let us assume that ξ has continuous ∂1 and ∂2 derivatives on a neighborhood
of the diagonal ∆ in S1 × S1 . In this situation the following proposition holds.
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Proposition 2.1. Let Γ be a subgroup of Diff3+r
+

(S1) , where r ≥ 0 . Let us

suppose that there exists a measurable and square integrable function ξ: S1×S1 →
R such that c̄2(g) = ξ−θ2(g)ξ for all g ∈ Γ . If ξ is continuous and has continuous

∂1 and ∂2 derivatives near the diagonal, then there exists a probability measure

on S1 which is invariant by Γ and whose density function is of class Cr+1 , or

there exists a projective structure of class C3 on S1 which is invariant by Γ .

In the non metabelian case, the existence of an invariant probability measure
is not possible.

Lemma 2.2. Let Γ be a uniformly quasisymmetric group of circle homeomor-

phisms. If Γ is non metabelian, then it cannot preserve any probability measure

on S1 .

So, if Γ is a non metabelian L1 -uniformly quasisymmetric group of Cr+3

circle diffeomorphisms such that the corresponding function ξ has continuous ∂1

and ∂2 derivatives near the diagonal, then Γ preserves a C3 projective structure
on S1 . Again since Γ is supposed to be non metabelian, using Lemma 2.2 and
Kuiper–Goldman’s theorem one can conclude that this projective structure is C3

conjugate to the canonical one. By the main result of [14], this conjugacy is in
fact of class Cr+3 , finishing the proof of Theorem A.

We close this section with the proof of Proposition 2.1. In the next section
we will check that, under our hypothesis, the regularity properties for the kernel
function ξ are satisfied.

Proof of Proposition 2.1. Note that the hypothesis implies that, for all g ∈ Γ
and a.e. (x, y) ∈ S1 × S1 ,

[
1

2 sin
(

1
2

(
g(x)− g(y)

)) + ξ
(
g(x), g(y)

)]
g′(x)g′(y) =

1

2 sin
(

1
2 (x − y)

) + ξ(x, y).

This means that the measure ν on S1 × S1 \ ∆ with density function

(x, y) 7→
1

2 sin
(

1
2 (x − y)

) + ξ(x, y)

is Γ-invariant. The idea of the proof of the proposition is very simple: the in-
finitesimal change of ν near the diagonal is a quadratic differential form, which
has to be invariant since the measure ν is invariant.

With respect to the canonical projective structure on S1 , the density of the
measure ν has the local form

[
1

x − y
+ N(x, y)

]2

dx dy,
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where N is a measurable function which is continuous and has continuous ∂1 and
∂2 derivatives on a neighborhood of the diagonal in R × R . Changing ξ by the
function (x, y) 7→ ξ(x, y) + ξ(y, x) if necessary, we may assume that N(x, y) =
N(y, x) for all x, y in R . By (9), in order to obtain a Cr invariant projective
structure we have to prove that there exists a continuous function ζ: R → R such
that, for all g ∈ Γ,

ζ = (g′)2(ζ ◦ g) + s(g).

We will prove that this equality holds for ζ(x) = 12∂1N(x, x) when the function
ξ is identically zero on the diagonal. If this is not the case, we will show that the
(finite total mass) measure on S1 whose density function is given by x 7→ |ξ(x, x)|
is invariant by Γ.

By hypothesis, for all g ∈ Γ and all x 6= y in R one has

g′(x)g′(y)

[
1

g(x) − g(y)
+ N

(
g(x), g(y)

)]2

=

[
1

x − y
+ N

(
g(x), g(y)

)]2

,

which gives

(10)
g′(x)g′(y)(x − y)2

[
1 +

(
g(x) − g(y)

)
N

(
g(x), g(y)

)]2

= [1 + (x − y)N(x, y)]2
(
g(x) − g(y)

)2
.

Note that for x near y one has

g′(x) = g′(y) + (x − y)g′′(y) + o(|x − y|),

and so

(11) g′(x)g′(y)(x − y)2 = (x − y)2
(
g′(y)

)2
+ (x − y)3g′(y)g′′(y) + o(|x − y|3).

On the other hand,

g(x) − g(y) = (x − y)g′(y) + 1
2 (x − y)2g′′(y) + o(|x − y|2),

N
(
g(x), g(y)

)
= N

(
g(y), g(y)

)
+ ∂1N

(
g(y), g(y)

)
g′(y)(x − y) + o(|x − y|),

and so

(12)
[
1+

(
g(x)−g(y)

)
N

(
g(x), g(y)

)]2
= 1+(x−y)g′(y)N

(
g(y), g(y)

)
+o(|x−y|).

From (11) and (12) one verifies that the left-hand member of equality (10) is equal
to

(13) (x−y)2
(
g′(y)

)2
+(x−y)3

[
g′(y)g′′(y)+2

(
g′(y)

)3
N

(
g(y), g(y)

)]
+o(|x−y|3).
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From the equalities

[1 + (x − y)N(x, y)]2 = [1 + (x − y)N(y, y) + o(|x − y|)]2

= 1 + 2(x − y)N(y, y) + o(|x − y|),

(
g(x)− g(y)

)2
= (x − y)2

(
g′(y)

)2
+ (x − y)3g′(y)g′′(y) + o(|x − y|3),

one concludes that the right-hand member of equality (10) is equal to

(14) (x − y)2
(
g′(y)

)2
+ (x − y)3

[
g′(y)g′′(y) + 2

(
g′(y)

)2
N(y, y)

]
+ o(|x − y|3).

Thus, replacing (13) and (14) in (10), and then identifying the coefficients of
(x − y)3 , one concludes that

2
(
g′(y)

)2
N(y, y) = 2

(
g′(y)

)3
N

(
g(y), g(y)

)
,

that is
N

(
g(y), g(y)

)
g′(y) = N(y, y).

This shows that the measure on S1 with density function x 7→ |ξ(x, x)| is invariant
by Γ. The total mass of S1 by this measure is finite, but it can be equal to zero.

Let us suppose in what follows that this measure is trivial. As in the first
part of the proof, we develop both sides of equality (10) in Taylor’s series, but this
time until the fourth order term. For the coefficient of (x − y)4 in the left-hand
member of (10) one finds

1
2

(
g′(y)g′′′(y)

)
+ 2

(
g′(y)

)4
∂1N

(
g(y), g(y)

)
,

whereas for the coefficient of (x − y)4 of the right-hand member one finds

1
4

(
g′′(y)

)2
+ 1

3
g′(y)g′′′(y) + 2

(
g′(y)

)2
∂1N(y, y).

Thus,
1
2g′(y)g′′′(y) + 2

(
g′(y)

)4
∂1N

(
g(y), g(y)

)

= 1
4 (g′′(y))2 + 1

3g′(y)g′′′(y) + 2
(
g′(y)

)2
∂1N(y, y),

that is,

g′′′(y)

g′(y)
−

3

2

(
g′′(y)

g′(y)

)2

= 12∂1N(y, y)− 12
(
g′(y)

)2
∂1N

(
g(y), g(y)

)
,

which is the desired equality.
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2.2. The regularity of the kernel. It is not difficult to prove that every
uniformly quasisymmetric group of circle homeomorphisms satisfies the conver-
gence property, and so it is topologically conjugate to a Möbius group [5], [10].
(Note that Lemma 2.2 follows directly from this.) Since we want to avoid the use
of this deep and difficult result, we will need to obtain a priori some simple but
useful topological information. The following lemma is well known, and we include
a proof only for the convenience of the reader.

Lemma 2.3. Let g be a circle homeomorphism such that the group generated

by g is uniformly quasisymmetric. If g fixes three points of the circle, then g
coincides with the identity. Moreover, if g fixes only two points, then one of them

is (topologically) attracting and the other is (topologically) repelling.

Proof. If g fixes more than two points then, passing to local projective co-
ordinates, we are reduced to the case where g is a homeomorphism of the real
line having at least two fixed points. Let us suppose that there exists a connected
component ]a, b[ of the complement of the set of fixed points of g such that both
a and b are real numbers, and let c = 1

2 (a + b). Changing g by g−1 if necessary,
we may assume that g(x) < x for all x ∈]a, b[ . The point of gn(c) goes to a , and
so the value of

gn(b) − gn(c)

gn(c) − gn(a)

diverges as n goes to infinity, contradicting the quasisymmetry hypothesis. Let us
now suppose that there is no such connected component ]a, b[ . Again, changing
g by g−1 if necessary, we may assume that there exists a ∈ R such that either
g(x) = x for x ≤ a and g(x) > x for x > a , or g(x) = x for x ≥ a and g(x) > x
for x < a . Both cases being analogous, let us only consider the first one. For
t > 0 the point gn(a + t) goes to the infinity, and gn(a − t) = a − t . Thus, the
value of

gn(a + t) − gn(a)

gn(a) − gn(a − t)

diverges as n goes to infinity, which again contradicts the quasisymmetry hypoth-
esis. The case of two fixed points can be treated by similar arguments and we
leave it to the reader.

Proof of Lemma 2.2. We will prove more generally that if Γ is a group of
circle homeomorphisms whose non trivial elements fix at most two points and
which preserves a probability measure on S1 , then Γ is metabelian. Indeed, if
the invariant probability measure has no atomic part, then its support is a closed
set invariant by the action of Γ. It is then easy to see that the derived group
Γ′ = [Γ, Γ] fixes punctually this set. By our hypothesis, Γ′ is trivial, and so Γ is
Abelian (and in fact semiconjugate to a group of rotations). On the other hand, if
we assume that Γ preserves an atomic probability measure on S1 , then the atoms
of maximal mass form a finite set F which is invariant by Γ. Thus, each element
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of a finite index subgroup Γ0 of Γ fixes every point in F . If F contains more
than two points then by hypothesis Γ0 is trivial, and so Γ is finite (and indeed
conjugate to a finite group of rotations). If F contains one or two points, then the
group Γ0 fixes globally one point. By Holder’s and Solodov’s theorems (see the
Appendix), this implies that Γ is metabelian (and topologically semiconjugate to
a group of affine transformations when uniformly quasisymmetric).

It is not difficult to verify that uniformly quasisymmetric metabelian groups
of circle homeomorphisms are not only semiconjugate but also conjugate to groups
of rotations or affine transformations. However, we will not use this fact in the
sequel.

Lemma 2.4. Let g: S1 → S1 be a Cr+3 diffeomorphism, where 0 ≤ r ≤ ∞ .

Suppose that a is a hyperbolic fixed point of g , and that g has exactly two fixed

points a and b . Suppose also that the infinite cyclic group generated by g is

L2 -uniformly quasisymmetric, and let ξ be a function in L2(S1 × S1) such that

c̄2(g) = ξ − θ2(g)ξ . Then ξ coincides on almost every point of a neighborhood of

the set ∆\{(a, a), (b, b)} with a function having continuous ∂1 and ∂2 derivatives

on the diagonal.

Proof. Using Yoccoz’ version of Sternberg’s linearization theorem [37], we
can conjugate g near the hyperbolic fixed point to the corresponding linear germ.
Since linear maps are projective, after conjugacy one has c̄2(g)(x, y) = 0 when x
and y are simultaneously near to a . In what follows we will assume that we have
performed this conjugacy, and we will fix a′ ∈]a, b[ such that (after conjugacy)

c̄2(g)(x, y) = 0 for all (x, y) ∈ [a, a′]2.

Changing g by its inverse if necessary, we may assume that g(x) > x for all
x ∈]a, b[ .

By Lemma 1.4, the group generated by (the conjugate of) g is also L2 -
uniformly quasisymmetric. Let us fix a point c ∈]a, b[ , and let

∆(c) =
⋃

n∈Z

[gn(c), gn+1(c)]2.

Note that ∆(c) is invariant by g . Let us define ξ̄: ∆(c) → R by

ξ̄ =
∑

i≥0

θ2(g
i)c̄2(g).

Note that the sum above is well defined, since it involves only a finite number
of nonzero terms. In particular, it defines a function with continuous ∂1 and ∂2

derivatives on the interior of ∆(c). Moreover, one easily checks that c̄2(g)(x, y) =
ξ̄(x, y) − θ2(g)ξ̄(x, y) for all (x, y) ∈ ∆(c).
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Now taking into account our hypothesis we conclude that the equality

ξ − θ2(g)ξ = ξ̄ − θ2(ξ̄)

holds for a.e. point (x, y) in ∆(c). We claim that this implies that ξ and ξ̄
coincide a.e. on ∆(c). Indeed, if not then |ξ − ξ̄|2 would be the density of a non
trivial measure on ∆(c) which is invariant by the diagonal action of g . The total
mass of the set ∆(c) by this measure is finite (since ξ and ξ̄ are square integrable).
However, this is absurd, since the only finite total mass measures on the closure of
∆(c) which are invariant by g are the linear combinations of the Dirac measures
supported on the fixed points (a, a) and (b, b).

Thus, the function ξ coincides on ∆(c) with the function ξ̄ . Changing c
by some point c′ ∈]c, g(c)[ , we conclude that ξ can be taken as a function with
continuous ∂1 and ∂2 derivatives on a neighborhood of the diagonal of ]a, b[×]a, b[ .
The proof is finished by looking at the interval ]b, a[ instead of ]a, b[ , and using
the same arguments as before.

Now let Γ be a L1 -uniformly quasisymmetric group of Cr+3 diffeomorphisms
of the circle. By Section 2.1 we know that there exist a function ξ ∈ L2(S1 × S1)
such that c̄2(g) = ξ − θ2(g)ξ for all g ∈ Γ. By Sacksteder’s theorem (see [33]
and p. 11 of [8]; see also [6]), if Γ is non metabelian then is contains an element
h having a hyperbolic fixed point a . Lemma 2.3 implies that h has exactly one
fixed point b in S1 \ {a} . This allows to apply Lemma 2.4, and so we conclude
that the function ξ can be supposed to have continuous ∂1 and ∂2 derivatives
on ∆ \ {(a, a), (b, b)} . The cocycle identity (6) implies that the set of points with
this property is invariant by Γ. So, conjugating by elements sending a and b into
points in S1 \{a, b} (which exist since there is no finite orbit for Γ), one concludes
that ξ can be taken as a map with continuous ∂1 and ∂2 derivatives on the whole
diagonal ∆ ⊂ S1×S1 . We are then under the hypothesis of Proposition 2.1, which
allows to finish the proof of Theorem A as in Section 2.1.

2.3. Some final comments. The metabelian hypothesis for Theorem A is
quite natural. For instance, it is very likely that, for Abelian groups, smooth con-
jugacy is prevented in many cases by problems related to small denominators (for
free actions) [17], or Mather’s invariant (for actions with a global fixed point) [37].
In the general metabelian case, there seems also to be some obstructions. In-
deed, by combining Lemma 2.3 with the results of [28], one easily concludes that
uniformly quasisymmetric groups of C2 circle diffeomorphisms are topologically
conjugate to groups of affine transformations. However, it is well known that in
this setting there are (at least local) obstructions to smoothing [36]. Note that
in this context, even the problem of the quasisymmetric conjugacy is solved [19]
by arguments which are different (and simpler) from those used for the general
case [24].

A second remark concerning the statement of Theorem A is related to the
smoothness hypothesis. It is clear that the C3 hypothesis is essential for the use
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of Schwarzian derivative. As we already remarked, it is very plausible to obtain
an analogous version of Theorem A in class C1+τ for any τ > 0. Neverthe-
less, it should be said that C1 conjugacy does not necessarily exist for uniformly
quasisymmetric groups of C1 diffeomorphisms. This was already remarked by
É. Ghys in a slightly different context ([11, p. 181]). Finally, let us point out that
a real-analytic version of the theorem still holds. This can be checked by a care-
ful analysis of the preceding proof, but it becomes more transparent by putting
together its C∞ version with the real-analytic case of the main result of [14].

We finish this section with a result which is related to the preceding proof.
It turns out that Liouville’s cocycle is very interesting from a dynamical point of
view. This has been already remarked in [30], where the author proved a version
of the proposition below for circle diffeomorphisms. Following [37], for r ≥ 0 let us
denote by Diffr,∆

+
([0, 1]) the space of Cr diffeomorphisms of the interval without

fixed points on ]0, 1[.

Proposition 2.5. If r ≥ 3 , then for a generic element g in Diffr,∆
+

([0, 1])
the restriction of Liouville’s cocycle to the infinite cyclic group generated by g is

non cohomologically trivial.

Proof. The germs at 0 and 1 of a generic element in Diffr,∆
+

([0, 1]) are
hyperbolic. We claim that if the restriction of Liouville’s cocycle to the infinite
cyclic group generated by such a diffeomorphism g is uniformly bounded, then g
preserves a Cr projective structure on [0, 1]. Before proving this, let us finish our
argument. Integrating the invariant projective structure, one concludes that g is
Cr conjugate to (the restriction of) a Möbius transformation. In particular, g is
contained in a flow of Cr diffeomorphisms. However, it is well known that generic
diffeomorphisms are not contained in such a flow [22], [37].

Thus, in order to complete the proof, we have to justify our assertion con-
cerning the existence of a Cr invariant projective structure. To do this, let us
first conjugate g by a Cr diffeomorphism in such a way it becomes linear near
the end points a = 0 and b = 1, and let us fix a′ < b′ in ]a, b[ such that (after
conjugacy) one has c(g)(x, y) = 0 for all (x, y) ∈ [a, a′]2 ∪ [b′, b]2 . We claim that
the hypothesis of boundedness of ‖c(gn)‖ then implies that, for all m ∈ Z and all
x, y contained in the interval [gm(a′), gm+1(a′)] , one has

(15)
∑

n∈Z

θ(gn)c̄(g)(x, y) = 0.

To verify this equality let us denote

σ(g)(x, y) =
∑

n∈Z

θ(gn)c̄(g)(x, y).

Note that the sum above is well defined, since it involves only a finite num-
ber of nonzero terms. Moreover, using (6) one easily checks that σ(g)(x, y) =
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θ(gi)σ(g)(x, y) for all (x, y) and all i ∈ Z . Thus, in order to verify equality (15),
it suffices to prove it when x and y both belong to [a′, g(a′)] . For each N ∈ N

denote

σN (g)(x, y) = c̄
(
gN )(x, y)

)
=

N−1∑

n=0

θ(gn)c̄(g)(x, y).

We leave to the reader to verify that, if 0 ≤ i < N and (x, y) ∈ [gi(a′), gi+1(a′)]2 ,
then

σN (g)(x, y) = σ(g)(x, y),

and thus

∫ gi+1(a′)

gi(a′)

∫ gi+1(a′)

gi(a′)

|σN (g)(x, y)| dx dy =

∫ gi+1(a′)

gi(a′)

∫ gi+1(a′)

gi(a′)

|σ(g)(x, y)| dx dy

=

∫ gi+1(a′)

gi(a′)

∫ gi+1(a′)

gi(a′)

|θ(gi)σ(g)(x, y)| dx dy

=

∫ g(a′)

a′

∫ g(a′)

a′

|σ(g)(x, y)| dx dy.

Denoting by I the value of the last expression, we have

∫ b

a

∫ b

a

|c̄(gN)(x, y)| dx dy =

∫ b

a

∫ b

a

|σN (g)(x, y)| dx dy

≥
N−1∑

i=0

∫ gi+1(a′)

gi(a′)

∫ gi+1(a′)

gi(a′)

|σN (g)(x, y)| dx dy = NI.

If σ(g) is not identically zero on [a′, g(a′)]2 then I > 0, and so ‖c(g−N )‖ goes to
infinity with N . In particular, the restriction of c to the group generated by g is
non uniformly bounded, which contradicts our hypothesis.1

Now we localize equality (15) on the diagonal: for all x ∈ S1 one has

(16)
∑

n∈Z

(gn)∗s(g)(x) = 0.

We claim that this implies that the cohomological equation (9) has a Cr−3 solution
ζ on [a, b] such that ζ(x) = 0 for all x ∈ [a, a′] ∪ [gk(a′), b] . To prove this, let us
fix k ∈ N such that gk(a′) > b′ . Define inductively ζ: [a, b] → R by

ζ(x) = 0 for all x ∈ [a, a′].

1 It is interesting to remark that the proof shows that if ‖c(gN )‖ growths sublinearly, then it

is in fact bounded. This should be compared with [30].
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Now assuming that ζ has been already defined on [a, gi−1(a′)] , let

ζ
(
g(x)

)
=

1
(
g′(x)

)2

[
ζ(x) − s(g)(x)

]
.

We claim that, according to this definition, ζ(x) = 0 for all x > b′ . Indeed, one
easily checks by induction that, for all i ≥ 0,

ζ
(
gi(x)

)
=

1
(
(gi)′(x)

)2

[
ζ(x) −

i−1∑

n=0

(gn)∗s(g)(x)

]
.

So, if x ∈ [gk(a′), gk+1(a′)] then

ζ(x) = ζ
(
gk+1

(
g−(k+1)(x)

))

=
1

(
(gk+1)′

(
g−(k+1)(x)

))2

[
ζ
(
g−(k+1)(x)

)
−

k∑

n=0

(gn)∗s(g)
(
g−(k+1)(x)

)]
.

But ζ
(
g−(k+1)(x)

)
= 0 since g−(k+1)(x) < a′ , and moreover

k∑

n=0

(gn)∗s(g)
(
g−(k+1)(x)

)
= 0

by (16). One thus concludes that ζ(x) = 0 for all x ∈ [gk(a′), gk+1(a′)] . From
this one easily checks by induction that ζ(x) = 0 for all x > gk+1(a′), and this
finishes the proof.

It would be interesting to study the same kind of phenomena in other con-
texts. For instance, one could restrict to diffeomorphisms which are tangent to
the identity at the end points. On the other hand, it is natural to investigate
what happens in lower differentiability classes for the corresponding Liouville’s Lp

cocycle. Finally, the study of c2 in reduced cohomology remains a major problem
(see however [30] for the case of the circle).

3. Appendix

A theorem essentially due to Hölder says that every group of homeomorphisms
of the real line (or of the circle) whose non trivial elements do not fix any point
is isomorphic to a group of translations (or of rotations), and the corresponding
actions are topologically semiconjugate. In 1991, V. Solodov proved an analogous
result for groups of homeomorphisms of the real line without global fixed points
and whose non trivial elements fix at most one point: such a group is necessarily
isomorphic to a subgroup of the affine group, and the corresponding actions are
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semiconjugate. The reader is referred to [13] for a nice exposition of these two
results.

Motivated by Hölder and Solodov theorems, it was natural to ask if an analo-
gous statement is true for subgroups of Homeo+(S1) having dense orbits and whose
non trivial elements have at most two fixed points, taking Möbius groups as uni-
versal models. The (negative) answer to this question was given by N. Kovačević
in [22]. However, the maps involved in her nice examples do not satisfy a priori

any regularity property. The aim of this Appendix is to prove that, by refining
the technique of construction of one of her examples, it is possible to obtain a
group of real-analytic diffeomorphisms of the circle whose orbits are dense, which
is pseudo-Möbius and non Möbius.

Let us start our construction by considering a real-analytic diffeomorphism
H: R → R satisfying H

(
x + 1

2

)
= H(x) + 1 for all x ∈ R , Fix (H) ∩

[
1
2 , 1

]
={

3
4 , 7

8 , 1
}

, and

(17) H ′(x) > H ′(y) for all x ∈
]
1
2 , 3

4

[
and all y ∈

]
3
4 , 1

[
.

To construct H one can start by considering a real-analytic diffeomorphism Ĥ : R

→ R satisfying H(x + 1) = H(x) + 1 for all x ∈ R , Fix (Ĥ ) = Z , Ĥ
(

1
2

)
= 3

4 ,

Ĥ
(

3
4 ) = 7

8 , and such that Ĥ ′(x) > Ĥ ′(y) for all x ∈
]
0, 1

2

[
and all y ∈

]
1
2 , 1

[
. (It

is easy to verify the existence of such a diffeomorphism.) Then one defines H by

H(x) = Ĥ (2x − 1). The map H induces a degree 2 map of the circle onto itself,
which we will still denote by H . Let A2 =

]
1
4 , 3

8

[
, B2 =

]
3
8 , 1

2

[
, C2 =

]
1
4 , 1

2

[
,

A1 =
]

3
4
, 7

8

[
, B1 =

]
7
8
, 1

[
and C1 =

]
3
4
, 1

[
.

Let us now define g1: [0, 1] → [0, 1] by g1(x) = y if H(x) = H(y) and x 6= y .
It is clear that g1 coincides with the Euclidean order 2 rotation (see Figure 1). In
general, for each n ∈ N let us consider the degree 2n map Hn: S1 → S1 , and let
us define gn: S1 → S1 by gn(x) = y if Hn(x) = Hn(y) and Hn(x) 6= Hn(y′) for
all y′ ∈]x, y[ , where ]x, y[ is the open interval joining the points x and y (with
respect to the canonical orientation of the circle). Note that g2

n = gn−1 for all
n ≥ 2.

The group Γ0 generated by the elements in {gn, n ∈ N} is a group of real-
analytic diffeomorphisms of the circle which is Abelian and torsion. It is indeed
an example of a pseudo-Möbius group which is non Möbius and which admits an
exceptional minimal set, namely

K = S1 \
⋃

n∈N

2n−1⋃
i=0

gi
n(C1).

This example, essentially due to M. Hirsch [20], is especially interesting by the
fact that, if the map H is well chosen, then the Lebesgue measure of K is positive.
(This should be compared with Remark 4.6 in [27].)
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Remark 3.1. The lifting to the real line of the group constructed above is
a group of real-analytic diffeomorphisms which is semiconjugate (and non con-
jugate) to a group of translations. Adding the diffeomorphism H , one obtains
a subgroup of Diffw

+
(R) which is semiconjugate (and non conjugate) to a non

Abelian subgroup of the affine group.
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Now let us fix a real-analytic diffeomorphism f : S1 → S1 having (exactly)
two fixed points and such that f(A1) = S1 \B2 , with f ′(x) > 1 for all x ∈ A1

and f ′(x) < 1 for all x ∈ S1 \A1 (see Figure 2). It is easy to see that one can take
f as a genuine hyperbolic Möbius transformation.

Let Γ be the group generated by f and the gn . Using a Klein type ping-pong
argument, it is easy to prove that Γ is the (non Abelian) free product between Γ0

and the infinite cyclic group generated by f . It is very interesting to remark that
Γ is discrete with respect to the topology induced from Homeo+(S1).

In what follows we will give a short and almost self-contained proof of the fact
that Γ is pseudo-Möbius, that all its orbits are dense, and that Γ is non Möbius.
The proof consists of several steps.

Claim 1. All the orbits by Γ are dense.

This is delicate to prove, and it is, in fact, our main improvement to Kovače-
vić’s construction. Let us remark that in [22] the problem of density of the orbits
is settled by collapsing the intervals of the complement of an eventual exceptional
minimal set. However, this argument cannot be applied if we want to obtain
smooth maps. Our argument uses a result due to G. Hector, which establishes
that if a group of real-analytic diffeomorphisms of the circle admits an exceptional
minimal set, then the stabilizers of points are trivial or infinite cyclic. (For the
reader’s convenience, we give a proof of this at the end of the Appendix.) Using
this result one easily concludes that, for a group of real-analytic diffeomorphisms
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of the circle preserving an exceptional minimal set, the intersection of the derived
set of every orbit with each connected component of the complement of the Cantor
invariant minimal set has at most two points. (In particular, the closure of the
union of finitely many orbits cannot be the whole circle.) Indeed, if ]a, b[ is such
a connected component and the orbit of p ∈]a, b[ intersects ]a, b[ infinitely many
times, then there exists an element g ∈ Γ which fixes [a, b] and such that all the
previous intersection points are of the form gn(p) for some n ∈ Z . These points
form a sequence which converges to the future (respectively to the past) to some
point a′ (respectively b′ ) in [a, b] , and so the intersection of [a, b] with the derived
set of the orbit of p is {a′, b′} .

Let us suppose that the orbits by Γ are not dense. Since there is no finite
orbit, there must be an exceptional minimal set [13]. The preceding remark then

implies that the open set U = S1 \
(
Γ(0) ∪ Γ

(
3
8

))
is non empty. Moreover, this

set is contained in the union of intervals of type gi
n(A1) and gi

n(B1), where n ≥ 1
and i ∈ {0, . . . , 2n − 1} .

Let I be a connected component of U having maximal length. We claim that
I is contained in one of the intervals A1 , A2 , B1 or B2 . Indeed, every connected
component of U which is not contained in one of those intervals lies inside g−i

n (A2)
or g−i

n (B2) for some n ≥ 2 and i ∈ {1, 3, 5, . . . , 2n − 1} . Let us consider the first
case, the second being analogous. In that case, it is easy to verify that, for all
x ∈ g−i

n (A2),

(18) x, H(x), . . . , Hn−2(x) /∈ C1 ∪ C2, Hn−1(x) ∈ A2, Hn(x) ∈ A1.

For each j ∈ {0, . . . , 2n − 1} let Hn
j : g−j

n (A2) → Hn
(
g−j

n (A2)
)
⊂]0, 1[ be the

injective branch of Hn defined on g−j
n (A2). If x ∈ g−i

n (A2) then gi
n(x) = g1 ◦

(Hn
2n−1)−1 ◦ Hn

i (x) (see Figure 3). Thus,

(gi
n)′(x) =

H ′
(
Hn−1(x)

)

H ′
(
Hn−1 ◦ (Hn

2n−1)−1 ◦ Hn
i (x)

) ·
(Hn−1)′(x)

(Hn−1)′
(
(Hn

2n−1)−1 ◦ Hn
i (x)

) .

Let us remark that (Hn
2n−1)−1 ◦Hn

i (x) belongs to the interval A1 , which is invari-
ant by H . Moreover, since Hn−1(x) ∈ A2 and n ≥ 2, one has Hn−1

(
(Hn

2n−1)−1 ◦

Hn
i (x)

)
= g1

(
Hn−1(x)

)
. One then obtains, by (17) and (18),

(gi
n)′(x) ≥

(Hn−1)′(x)
(
supu∈A1

H ′(u)
)n−1 > 1.

As a consequence we get that the connected component gi
n(I) ⊂ A2 of U has

greater length than I , which is a contradiction.
We then conclude that the interval I is contained in A1 , A2 , B1 or B2 .

Let us suppose that I ⊂ A1 . Since f ′(x) > 1 for all x ∈ A1 , the set f(A1) is
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a connected component U having greater length than I , which is absurd. For
I ⊂ B1 , I ⊂ A2 or I ⊂ B2 , one obtains a contradiction by a similar reasoning
using the maps g1f

−1g1 , g1fg1 or f−1 , respectively. We have then proved that Γ
cannot preserve a Cantor minimal set, and since Γ has no finite orbit, this finishes
the proof of Claim 1.

From this point of the construction, one can follow N. Kovačević’s arguments
verbatim. We will reproduce them partially for completeness, but for the interested
reader we recommend the reading of the beautiful work [22]. Let us only remark
that it is very important to know a priori that the orbits by Γ are dense in order
to apply these arguments.

Given an oriented interval ]a, b[ of the circle, let us denote by (a, b) the (non
oriented) hyperbolic geodesic joining a and b . We will say that this geodesic is
defined by the interval ]a, b[ . The open region contained in the unit disk and
which is delimited by the geodesics defined by the intervals gi

n(A1) and gi
n(B1),
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with n ∈ N and i ∈ {0, . . . , 2n − 1} , will be denoted by Ω. For g ∈ Γ the
notation g(Ω) = Ω′ will be employed when Ω′ is the open region delimited by
the geodesics defined by the intervals ggn(A1) and ggn(B1), with n ∈ N and
i ∈ {0, . . . , 2n − 1} . If g(Ω) = Ω′ , we will say that Ω′ is the copy of Ω by g .
Let us remark that if Ω1 and Ω2 are two copies of Ω and g ∈ Γ is such that
g(Ω1) 6= g(Ω2), then g(Ω1) ∩ g(Ω2) = ∅ . Moreover, it is easy to see that the
stabilizer of Ω in Γ coincides with Γ0 .

Claim 2. If g ∈ Γ and ]Fix (g) ≥ 3 , then g = Id .

Let us suppose that the opposite is true and let g ∈ Γ be a non trivial element
which fixes more than two points. Let I =]a, b[ be a connected component of
S1 \ Fix (g). We claim that some copy of Ω intersects the geodesic joining a
and b . Indeed, in the opposite case, the geodesic (a, b) would be contained inside
a copy of Ω, or it would be a component of the boundary of such a copy. In
any case, the element g fixes this copy, which is absurd, since the elements of the
stabilizer of a copy of Ω are the conjugates of elements of Γ0 , and so they do not
have fixed points if they are different from the identity.

Let us then fix a copy Ω1 of Ω which intersects the geodesic (a, b). We
claim that Ω ∩ (a, b) does not contain neither a nor b in its closure. Indeed, in
the opposite case the set g(Ω1) ∩ Ω1 would be non empty, and so g would be a
conjugate of an element of the stabilizer of Ω, which is absurd.

Changing g by g−1 if necessary, we may assume that gn(x) converges to b
for all x ∈]a, b[ . Let c ∈]b, a[ be another fixed point of g (we remark that the
fixed points of g are isolated). It is easy to see that for all x ∈]a, c[ near c , the
sequence

(
gn(x)

)
converges to c . This implies that the sequence of copies of Ω1

by gn accumulate on the geodesic joining b to c . However, the argument above
shows that there exists a copy Ω2 of Ω which cuts this last geodesic. We thus
have gn(Ω1) ∩ Ω2 6= ∅ for n sufficiently large. However, this implies that gn is a
conjugate of an element of the stabilizer of Ω, which is absurd.

Claim 3. If g ∈ Γ and ]Fix (g) = 2 , then g is topologically conjugate to a

hyperbolic Möbius transformation.

We must prove that one of the fixed points is (topologically) repelling and the
other is (topologically) attracting, and this is an almost direct consequence of the
preceding arguments.

Claim 4. If g ∈ Γ and ]Fix (g) = 1 , then g is topologically conjugate to a

parabolic Möbius transformation.

This is always true, independently of the structure of the group.

Claim 5. If g ∈ Γ and ]Fix (g) = 0 , then g is topologically conjugate to a

finite order rotation.
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For two different copies Ω1 and Ω2 of Ω, let us define the distance dist (Ω1, Ω2)
as being equal to 1 plus the minimum number of copies of Ω that a curve must
cross in order to go from Ω1 to Ω2 . Let us also define dist (Ω1, Ω1) = 0. If
dist

(
Ω, g(Ω)

)
= 0 then g belongs to the stabilizer of Ω, and so it is a torsion

element. If dist
(
Ω, g(Ω)

)
> 0 then it is not difficult to see that there exists a copy

Ω1 of Ω such that dist
(
Ω1, g(Ω1)

)
is equal to 0 or 1. In the first case, g is a

conjugate of an element of the stabilizer of Ω, and so it has finite order. In the
second case, it is easy to see that g has order 2.

Claim 6. Γ is not a Möbius group.

Indeed, the elements (gn) generate an Abelian subgroup of Γ which acts
freely but is not conjugate to a group of rotations.

Remark 3.2. It would be very interesting in our context to know if every
element of Γ is not only topologically but also quasisymmetrically conjugate to a
Möbius transformation (see for instance [3]). However, this seems to be a difficult
problem.

Remark 3.3. The group we constructed is unfortunately non finitely gener-
ated. Let us mention that in [22], N. Kovačević gives examples of finitely generated
groups of homeomorphisms of S1 which are pseudo-Möbius and non Möbius. How-
ever, we were not able to give analogous real-analytic examples, and it is indeed
not clear that this could be done. Another interesting problem is to find algebraic
conditions that, imposed to a pseudo-Möbius group, imply that it is in fact a
Möbius group.

To conclude this article, and for completeness, we will give a proof of Hector’s
unpublished result used in the preceding construction. (Note that a sketch of proof
appears already in [12, Proposition 3.9].) The following lemma is well known to
the specialists. We give a simple proof “à la Kopell” using control of distortion
type arguments [21].

Lemma 3.4. Let f and g be two real-analytic diffeomorphisms defined on a

small neighborhood of the origin of R and which are tangent to the identity at 0 .

Let us suppose that for |x| ≤ ε they can be written in the form f(x) = x+aix
i+· · ·

and g(x) = x + bjx
j + · · ·, and that f(x) < x for all x > 0 small enough. If

j > i , then the sequence (f−ngfn) converges uniformly to the identity on a non

degenerate interval [0, ε′] .

Proof. Let us first remark that the claim of the lemma is quite natural, since
from the hypothesis j > i one can see that the Taylor expansion of f−ngfn about
the origin has the form

f−ngfn(x) = x + cj,nxj+n + · · · .
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For the proof we first affirm that there exists ε′′ > 0 such that g(x) ≥ f(x) and
g(x) ≤ f−1(x) for all x < ε′′ . Indeed, there exist constants C1, C2 > 0 such that
for all x < 1

2ε one has

|g(x)− x| ≤ C1|x|
j, |f(x) − x| ≥ C2|x|

i.

So, if ε′′ ≤ max
{

1
2
ε, (C2/C1)

1/(j−i)
}

is small enough, then for all x < ε′′ one has

g(x) ≥ x − C1|x|
j ≥ x − C2|x|

i ≥ f(x).

The other inequality g(x) ≤ f−1(x) can be obtained in a similar way. In gen-
eral, an analogous argument shows that for each positive integer N there exists
ε′′(N) > 0 such that if y < ε′′(N) then

|g(y)− y| ≤
1

N
max

{
|f(y) − y|, |f−1(y) − y|

}
.

For N ∈ N let us fix n(N) ∈ N such that fn(y) ≤ ε′′(N) for all y ∈ [0, ε′]
and all n ≥ n(N). Let us define ε′ = f(ε′′). If δ > 0 is a constant such that∣∣(log(f ′)

)′
(u)

∣∣ ≤ δ for all u ∈ [0, ε′′] , then for all y ∈ [0, ε′] , ȳ ∈ [f(y), f−1(y)]
and n ∈ N ,

(fn)′(y)

(fn)′(ȳ)
≤ exp

(
δ

n−1∑

k=0

|fk(y) − fk(ȳ)|

)
≤ exp(ε′′δ).

By the mean value theorem, for all x ∈ [0, ε′] and all n ≥ n(N) one has

|f−ngfn(x) − x|

|x − f±1(x)|
≤ exp(ε′′δ)

|gfn(x) − fn(x)|

|fn(x) − fn±1(x)|
≤

exp(ε′′δ)

N
,

and then one obtains, for some constant C > 0,

|f−ngfn(x) − x| ≤
C exp(ε′′δ)

N
.

Since this last expression goes to zero as N goes to infinity, the sequence (f−ngfn)
uniformly converges to the identity on [0, ε′] .

Proposition 3.5. Let Γ be a subgroup of Diffω
+
([0, 1]) without fixed point

on ]0, 1[ . If Γ is neither trivial nor cyclic infinite, then the orbit of every point of

]0, 1[ is dense in [0, 1] .
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Proof. By Szekeres’ theorem [37], if Γ is an Abelian group of C2 diffeomor-
phisms of [0, 1[ without fixed points on ]0, 1[, then the restriction of Γ to ]0, 1[ is
contained in the flow associated to a C1 vector field over [0, 1[. If Γ is Abelian
and neither trivial nor cyclic infinite, then the closure of its orbits is the whole
interval [0, 1], since the corresponding flow is transitive on ]0, 1[. This shows the
proposition in the case where Γ is Abelian.

Let us now suppose that Γ is non Abelian. We claim that in this case there
exists ε′ > 0 and f , g in Γ which do not commute and such that f−ngfn

converges uniformly to the identity on the interval [0, ε′] . To prove this we must
consider two different cases.

First case. There exists f ∈ Γ such that f ′(0) 6= 1. Changing f by f−1 if
necessary, one can suppose that f ′(0) = λ < 1. We claim that there exists a non
trivial element g ∈ Γ such that g′(0) = 1. Indeed, if this is not the case then every
commutator in Γ would be trivial, and so Γ would be Abelian, contradicting our
hypothesis. So, let us fix a non trivial element g ∈ Γ such that g′(0) = 1. It is
easy to see that f and g do not commute. By Koenig’s linearization theorem ([4,
p. 31]), modulo conjugacy of f and g by a real-analytic diffeomorphism, we may
assume that f(x) = λx for all 0 ≤ x ≤ ε′ . So, after conjugacy, for x ∈ [0, ε′] one
has the uniform convergence

lim
n→+∞

f−ngfn(x) = lim
n→+∞

g(λnx)

λn
= g′(0)x = x.

Second case. Every element f ∈ Γ is tangent to the identity at 0. Let f be
an element of Γ whose contact order i with respect to the identity is minimal. We
claim that there exists an element g ∈ Γ having contact order with respect to the
identity greater than i . Indeed, if all the non trivial elements of Γ have the same
contact order with the identity at 0, then the corresponding contact order of all
commutators in Γ would be greater than i (due to the hypothesis of tangency to
the identity), and so Γ would be Abelian, contradicting our hypothesis. So, by
Lemma 3.4, f−ngfn converges uniformly to the identity on an interval [0, ε′] .

To finish the proof of the proposition, we claim that for all x ∈]0, 1[ the point
0 is contained in the interior of the closure K of the orbit by x . Indeed, by the
hypothesis of non existence of fixed point on ]0, 1[, the origin belongs to K. Let
us suppose that 0 does not belong to the interior of K, and let us fix a connected
component I of the complement of K contained in [0, ε′] . Since K is invariant
by Γ, the preceding claim implies that f−ngfn(I) = I for n large enough. So,
one has g

(
fn(I)

)
= fn(I) for infinitely many positive integer numbers n , which

contradicts the analyticity of g .
Let us now consider the infimum u0 ∈ [0, 1] of the set of points u ∈ [0, 1] such

that [0, u] ⊂ K. The preceding claim gives u0 > 0. Since u0 is a fixed point by
Γ, this implies that u0 = 1, that is the orbit of x by Γ is dense. Since x ∈]0, 1[
is arbitrary, this finishes the proof.
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We can finally give a proof for Hector’s result.

Theorem (Hector). If Γ is a subgroup of Diffω
+
(S1) having an exceptional

minimal set, then for all point a ∈ S1 the stabilizer Γa of a in Γ is trivial or

cyclic infinite.

Proof. The group Γa can be viewed as a group of real-analytic diffeomor-
phisms of the interval [a, a + 1]. If Γa is neither trivial nor cyclic infinite then,
by analyticity and the preceding proposition, the orbits by Γa of all but a finite
number of points p ∈]a, a+1[ are dense near p . As a consequence, the orbits by Γ
of all but a finite number of points b 6= a in S1 are dense on some open set of S1 .
However, this contradicts the hypothesis of existence of an invariant exceptional
minimal set.

An interesting corollary of this last theorem is the fact that every subgroup
of Diffω

+
(S1) having a Cantor minimal set is countable, which is not necessarily

true for subgroups of Diff∞
+

(S1) having such a minimal set.
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tations. - Publ. Math. Inst. Hautes Études Sci. 49, 1979, 5–234.

[18] Hinkkanen, A.: Abelian and non discrete convergence groups of the circle. - Trans. Amer.
Math. Soc. 318, 1990, 87–121.

[19] Hinkkanen, A.: The structure of some quasisymmetric groups. - Mem. Amer. Math. Soc.
83, 1990, 1–87.

[20] Hirsch, M.: A stable analytic foliation with only exceptional minimal set. - In: Lecture
Notes in Math. 468, 1965, 9–10.

[21] Kopell, N.: Commuting diffeomorphisms. - In: Global Analysis, Proc. Sympos. Pure
Math. XIV, Berkeley, CA, 1968, 165–184.

[22] Kovačević, N.: Examples of Möbius-like groups which are not Möbius groups. - Trans.
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