Observation of surface gap solitons in semi-infinite waveguide arrays
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We report on the first observation of surface gap solitons, recently predicted to exist at the interface
between uniform and periodic dielectric media with defocusing nonlinearity [Ya. V. Kartashov et al.,
Phys. Rev. Lett. 96, 073901 (2006)]. We demonstrate strong self-trapping at the edge of a LiNbOs
waveguide array and the formation of staggered surface solitons with propagation constant inside the
first photonic band gap. We study the crossover between linear repulsion and nonlinear attraction
at the surface, revealing the mechanism of nonlinearity-mediated stabilization of the surface gap

modes.

Interfaces between different physical media can sup-
port a special class of localized waves known as surface
waves or surface modes. In periodic systems, staggered
surface modes are often referred to as Tamm states [1],
first identified as localized electronic states at the edge
of a truncated periodic potential. Because of the diffi-
culties in observing this type of surface waves in natural
materials such as crystals, successful efforts were made
to demonstrate their existence in nano-engineered peri-
odic structures or superlattices |2]. An optical analog of
linear Tamm states has been described theoretically and
demonstrated experimentally for an interface separating
periodic and homogeneous dielectric media |3, 4].

Nonlinear surface waves have been studied in different
fields of physics and most extensively in optics where sur-
face TE and TM modes were predicted and analyzed for
the interfaces between two different homogeneous nonlin-
ear dielectric media |4, 6, [7]. In addition, nonlinear effects
have been shown to stabilize surface waves in discrete
systems, generating different types of modes localized at
and near the surface [§]. Self-trapping of light near the
boundary of a self-focusing photonic lattice has recently
been predicted theoretically [9] and demonstrated in ex-
periment [1(] through the formation of discrete surface
solitons at the edge of a waveguide array.

Recently, Kartashov et al. [L1] predicted theoretically
the existence of surface gap solitons at the interface be-
tween a uniform medium and a photonic lattice with de-
focusing nonlinearity. In such systems, light localization
occurs inside a photonic bandgap in the form of stag-
gered surface modes. This enables us to draw an analogy
with the localized electronic Tamm states and extend it
to the nonlinear regime, so that the surface gap solitons
can be termed as nonlinear Tamm states. They posses
a unique combination of properties related to both elec-

tronic and optical surface waves and discrete optical gap
solitons. The ability to generate such surface gap solitons
could provide novel and effective experimental tools for
the study of nonlinear effects near surfaces with possible
applications in optical sensing and switching.

In this Letter we study experimentally self-action of
a narrow beam propagating near the edge of a LiNbOs3
waveguide array with defocusing nonlinearity. For the
first time to our knowledge, we observe the formation of
surface gap solitons, or nonlinear Tamm states. While
linear surface modes do not exist in this type of system,
discrete light self-trapping is observed in the nonlinear
regime above a certain threshold power when the prop-
agation constant is shifted into the gap of the photonic
transmission spectrum. By employing a simple nonlin-
ear discrete model [14], we describe the crossover from
discrete diffraction and surface repulsion in the linear
regime, to the appearance of a purely nonlinear local-
ized surface state at higher optical intensities. We dis-
cuss the physical mechanism of the nonlinearity-induced
stabilization of the staggered surface modes.

In our experiments, we study nonlinear surface local-
ization in a semi-infinite array of single-mode optical
waveguides fabricated by a Titanium in-diffusion process
in a mono-crystal lithium niobate (LiNbO3) wafer, sim-
ilar to that recently used for the observation of discrete
gap solitons [13, [14]. The fabrication process, described
in Ref. [14], results in a high-quality waveguide array
with refractive index contrast An = 3 x 10™%, waveguide
spacing d = 9.0 um, sample length 50 mm, and a total of
100 waveguides. Inset in Fig. 0(b) shows schematically
the geometry of the waveguide array. The LiNbO3 sam-
ple exhibits a strong photovoltaic effect which leads to
defocusing nonlinearity at visible wavelengths.

In the experimental setup an extraordinarily polarized
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FIG. 1: (color online) Linear propagation of a narrow low-

power beam when only the edge waveguide of the array is
excited. (a) Measured transverse output intensity profile
(P =0.1 W) and (b) corresponding theoretically calculated
longitudinal propagation inside the sample. Inset in (b) shows
the waveguide geometry. (c-e) Formation of the surface gap
soliton at the array output 920, 1050, and 1550 s, respectively,
after the input beam power is increased to P = 0.5 mW. Grey
shading marks the waveguide positions.

probe beam from a cw Nd:YVOy laser (A = 532nm) is
focused by a microscope objective (x20) to a full width
at half-maximum (FWHM) of 2.7 um at the input face of
the sample, and injected into the waveguide at the edge
of the array. The propagated wavepacket at the output of
the sample is imaged onto a CCD camera. The FWHM of
the individual waveguide mode is 6 ym and 3 ym in hori-
zontal and vertical directions, respectively, allowing for a
single-waveguide input coupling. The waveguide array is
externally illuminated by a white-light source in order to
control the nonlinear response time. As shown in Ref. [14]
single site excitation provides an efficient method for ex-
citation of gap solitons in periodic defocusing nonlinear
materials, provided the refractive index contrast exceeds
a certain threshold. In this case the periodic structure
appears equivalent to a discrete system [14] and can be
well described by a nonlinear discrete model.

At low laser power (P = 0.1 uW), we observe two ma-
jor effects. First, due to coupling between neighboring
waveguides the probe beam experiences discrete diffrac-
tion and spreads out in the horizontal plane upon prop-
agation. Second, the beam shifts dramatically to the

right indicating a strong repulsive effect of the surface.
Figure [M(a) shows the experimental output image and
the corresponding transverse intensity profile. After lin-
ear propagation through the array the beam profile ac-
quires a complex form, spanning about 30 waveguides.
The major lobe is centered approximately 42 lattice sites
away from the input excitation point (n = 0 at the
edge of the array) due to the surface repulsion. Fig-
ure[l(b) shows the corresponding optical intensity distri-
bution inside the sample, calculated with the help of a
simple analytical formula derived from a discrete model
an(zk) = A" [Jn(22K)+Jpn12(22K)], where a,, (z£) is the
discrete mode amplitude in the n-th waveguide, Ag is the
initial field amplitude in the input waveguide n = 0, z is
the propagation distance, and & is the intersite coupling
coefficient [9]. In Fig. M(b) the discrete mode amplitudes
have been multiplied by the continuous waveguide mode
intensity profile, and the agreement with the experimen-
tal observation is found to be excellent. The coupling
coefficient is estimated to be kK = 0.46 mm™', implying a
total longitudinal propagation of 23 coupling lengths.

Increasing the laser power leads to spatial beam self-
action through the defocusing photovoltaic nonlinear-
ity. The slow response of the nonlinearity allows us to
monitor directly the transient temporal dynamics of self-
trapping and soliton formation, providing additional in-
formation about the localization process. Figures [ic-
e) show the output beam intensity profile at times 920,
1050, and 1550 s, respectively, after the beam power is in-
creased to P = 0.5 mW. The wavepacket is seen first to
contract and shift towards the edge of the array, indicat-
ing a nonlinearity-induced suppression of the surface re-
pulsion [Fig. M(c)]. Then partial self-trapping at the sur-
face occurs, with a tail of intensity lobes extending into
the periodic structure [Fig. [(d)]. A series of zero inten-
sity points between these lobes indicates the self-induced
dynamic formation of a staggered phase structure which
is clearly absent in Fig.[[(c). Eventually, a strongly local-
ized surface gap soliton is formed [Fig. {e)]. The asym-
metry of the photonic structure is reflected in the shape
of the trapped beam which decays monotonically into
the continuum while showing damped oscillations inside
the array, resembling the structure of a truncated Bloch
mode. The defocusing nonlinearity effectively decreases
the contrast of the surface waveguide, causing the local-
ized mode to broaden and penetrate substantially into
the continuous medium.

In order to study in detail the crossover between lin-
ear diffraction and nonlinear self-localization, we measure
the surface gap soliton formation time as a function of
the probe beam power. The results are summarized in
Fig.[@l The formation time increases dramatically for de-
creasing input power until, below a certain critical power,
no localized surface mode is observed. The observed crit-
ical slowing down indicates the existence of a threshold
power below which the nonlinear response is too weak
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FIG. 2: (color online) Measured surface localization time

vs. probe beam power. Solid curve: A + B/(P — P) fit
to experimental data (red dots). Vertical dashed line marks
the threshold power (P, = 0.042mW). (a-c) Beam intensity
profiles of decreasing width corresponding to the indicated

points.

FIG. 3: (color online) (a) Three-dimensional representation
of the surface gap soliton observed experimentally near the
threshold [corresponding to Fig.Ba)], (x,y) are the transverse
coordinates. (b) Plane-wave interferogram demonstrating the
staggered phase structure of the surface gap soliton.

to cause self-trapping. The value of the threshold power
was estimated as P, = 0.042mW by modelling the dy-
namics of the soliton formation time, fitting the func-
tion A+ B/(P — P,) (Fig. B solid curve) to the exper-
imental data (Fig. B red dots). Figures B(a-c) show the
beam intensity profiles corresponding to the indicated
data points. The width of the localized mode decreases
for increasing beam power, spanning about three lattice
sites immediately above threshold [see Fig. Bl(a)], and ap-
proximately a single lattice site at higher power, as in-
dicated in Fig. B(c). The decrease of the beam width is
due to the fact that stronger beam self-action at higher
power leads to a deeper surface defect, and hence more
pronounced beam localization.

An essential and unique feature of the observed surface

gap solitons is the staggered phase structure of the beam
tail inside the periodic medium. The alternating phase of
the field lobes reflects the fact that the propagation con-
stant of the self-localized mode lies within the photonic
bandgap at the edge of the first Brillouin zone. To verify
that this is indeed the case in the experiment, we inter-
fere the output beam with a vertically inclined plane ref-
erence wave. FigureBl(a) depicts a three-dimensional rep-
resentation of the spatial beam intensity distribution of
the broad surface gap soliton observed near the threshold
[Fig.B(a)]. FigureBl(b) shows a two-dimensional intensity
plot of the associated interference pattern. A half-period
vertical shift of the interference fringes, corresponding to
an exact m phase jump in the horizontal beam direction,
is clearly observed between each pair of lobes in the struc-
ture [Fig. B(b)]. The phase is seen to be constant in the
continuous region. The staggered phase structure inside
the array and the plane phase in the continuum are sig-
natures of the two different localization mechanisms in
play [L1]. The mode is confined from the continuum by
total internal reflection, while Bragg reflection is respon-
sible for localization inside the periodic structure.

In order to get a deeper insight into the physics of
staggered surface soliton formation in semi-infinite lat-
tices with defocusing nonlinearity, we consider the sys-
tem of coupled-mode equations |15] for the normalized
mode amplitudes Fy and E, (n = 1,2,...), assuming
weak coupling between the neighboring waveguides,

dE,
id—; + Ey + F(Eo)Ey = 0,

i% + (Ent1 + Enn) + F(ELE, =0,
where F(E) = v/(1 + |E|?) accounts for the saturable
character of the photovoltaic nonlinearity [16]. For a de-
focusing nonlinearity, v > 0.

Looking for stationary solutions in the form E,(z) =
exp(ifz)Ey,, we obtain the linear spectrum of extended
modes, § = 2cos k, (0 < k < m). No localized sur-
face mode exists in the linear regime, as this would re-
quire large index contrast between the waveguides and
the continuum. However, the presence of defocusing
nonlinearity in the model () can give rise to localized
states. To find them we solve numerically the correspond-
ing stationary equations by a multi-dimensional Newton-
Raphson scheme. Since we are interested in surface lo-
calized modes, we look for states with maxima near the
surface which decay quickly away from the edge of the
array, similar to the earlier studied cases of Kerr nonlin-
earity for the discrete [d] and continuous [L1] models.

Figure Ba) shows the staggered surface mode calcu-
lated by use of the discrete nonlinear model ([ll) and mul-
tiplied by the waveguide mode-field profiles. Using the
results solely based on the discrete model () provides
a reasonable agreement with the experimental data. An
example of such a comparison is shown in Fig. B(b) for
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FIG. 4: (a) Example of the staggered surface mode calcu-
lated by use of the discrete nonlinear model ([ll) at v = 8. The
discrete mode amplitudes are marked by + signs. (b) Nor-
malized width of the localized surface state calculated numer-
ically (solid curve) and measured experimentally (diamonds)
as a function of the beam power. Vertical dashed line marks
the threshold power (P = 0.042 mW).
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FIG. 5: (color online) (a,b) Effective potential of the local-

ized gap modes vs. the collective coordinate X below and
above the threshold power, respectively. Integer values of X
correspond to the waveguide numbers. Black dot in (b) refers
to the stationary solution shown in Fig. 4(a).

the width of the localized surface state calculated nu-
merically (solid curve) and measured experimentally (di-
amonds) as a function of the beam power.

Despite being approximate, the discrete model can be
employed to reveal an important physical mechanism of
the nonlinearity-induced surface mode stabilization. To
this end we follow earlier studies |11, [L&] and calculate
the effective energy of the mode, H = =% {(E,E; , +
E!Eni1)+vIn(1+|E,|?)}, as a function of its collective
coordinate X = P71 n|E,|?, where P = Y |E,|?
is the mode power. We apply a constraint method and
start from the solution centered at the site n = 0 for
given values of 8 and P. Our goal is to obtain all in-
termediate solutions between the neighboring stationary
configurations for the same power. First, we calculate the
stationary mode centered at n = 0 and obtain all {F,}
and the power P; then we fix the amplitude at the site
n =1 to E; + ¢, and solve the Newton-Raphson equa-
tions for all remaining E,, (m # 1) with the constraint
that the power be kept at P, arriving at an intermediate
state centered between n = 0 and n = 1. Finally we vary
€ and repeat the procedure until reaching the even con-
figuration where X = 0.5. The procedure is repeated for
the solutions centered at n = 1,2,3 which allows us to
construct the effective potential plotted in Figs. Ba,b).

Figures B(a,b) show the effective potential of the sur-

face mode in a semi-infinite array, Ueg(X) = —H(X),
calculated for two different power values. The extremal
points of this curve defined by the condition dH/dX =0
correspond to stationary localized solutions. In compar-
ison with an infinite array, the truncation of the waveg-
uide array introduces an effective repulsive surface po-
tential, which is combined with the periodic potential of
the array. As a result, discrete surface modes are pos-
sible neither in the linear regime nor in the continuous
limit. As we see from Fig. B(a), for low powers there
exists no solution of the equation dH/dX = 0 at the sur-
face site n = 0, and the surface repels the input beam
as clearly observed in experiment [see Fig. [i(a,b)]. How-
ever, when the input power exceeds the threshold value,
discreteness overcomes the surface repulsive force and the
localized state at n = 0 in the form of the surface gap
soliton becomes possible [Fig. B(b)].

In conclusion, we have predicted theoretically and
demonstrated experimentally that gap solitons can be
stabilized near the surface of a periodic medium with
self-defocusing nonlinearity in the form of staggered sur-
face modes, providing the first experimental evidence of
a nonlinear analog of surface Tamm states in optics.
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