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Abstract. It is known that classes of indefinite quadratic forms in a genus are
classified by the Galois group of a spinor class field [4]. Hsia has proved the
existence of a representation field F with the property that a lattice in the
genus represents a fixed given lattice if and only if the corresponding element
of the Galois group is trivial on F . Spinor class fields can also be used to
classify conjugacy classes of maximal orders in a central simple algebra. In [1]
we left open the issue of whether for every fixed given non-maximal order H
in a central simple division algebra there exists a representation field L with
the property that H embeds into a given maximal order if and only if the
corresponding element of the Galois group is trivial on L. In this work we
give a negative answer to this question for central simple division algebras of
dimension ≥ 32. The case of non-division algebras is also treated by replacing
the phrase embeds into by is contained in a conjugate of. As a byproduct of
the techniques used in this paper we compute the representation field of an
Eichler order in a quaternion algebra.
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1. Introduction. Let A denote an n2-dimensional central simple algebra over a
number field k. Assume that A satisfies the following condition:

Condition E: Either n > 2 or n = 2 and the Eichler condition is satisfied,
i.e., there exists an archimedean place ℘ of k such that A℘ is not the
(unique) quaternion division R-algebra.

Condition E is immediate if k is non-totally real. When condition E is satisfied,
then the conjugacy classes of maximal orders in A are in correspondence with the
elements of the Galois group of an abelian extension ΣA/k, unramified at finite
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places, that can be explicitly described in terms of the ramification of A/k [1]. The
field ΣA is called the spinor class field of maximal orders of A. This correspondence
is best seen as a map that associates an element ρ(D,D′) in the Galois group to
every pair (D,D′) of maximal orders and satisfies ρ(D,D′′) = ρ(D,D′)ρ(D′,D′′).
The map ρ is defined on pairs of maximal orders by

ρ(D,D′) = [N (σ), ΣA/k],

where N denotes the reduced norm on the adelic ring AA, the element σ ∈ AA

satisfies

D′ = σDσ−1,(1)

and a �→ [a,ΣA/k] denotes the Artin map on ideles. Then, if D is fixed, the
correspondence D′ �→ ρ(D,D′) is a bijection ([1, p. 2029]). Let H be an arbitrary
suborder of D. If the sub-set

{ρ(D,D′)|H is contained in a conjugate of D′} ⊆ Gal(ΣA/k)

is a subgroup, the corresponding fixed field is called the representation field Σ(H).
It does not depend on the choice of the order D containing H. Note that if H spans
a simple subalgebra of A, any embedding extends to a conjugation by Skolem-
Noether Theorem [5]. It follows that the phrase “is contained in a conjugate of”
above can be replaced by “embeds into”. This is the case for all orders considered
here. It is always the case if A is a division algebra.

In [1] we computed the representation field when H is the ring of integers of a
maximal abelian subfield L. Under some technical conditions on A we proved that
the representation field is ΣA ∩ L. In [2] we determined the spinor class field of
a suborder of maximal rank with generators x and y satisfying xn, yn ∈ Ok and
xy = ηyx where η is a primitive root of unity. In either case we proved the existence
of a representation field. This theory has an analog on the theory of spinor class
fields for quadratic forms, where the representation fields are known to exist [3].
In [1], we did not know whether the representation field actually existed for any
order. In this paper we present a counterexample. In fact, we prove the following
result:

Theorem 1. Let A be a central simple algebra of dimension at least 32 over the
number field k. The representation field exists for every order H in A if and only
if the extension ΣA/k has exponent 2.

For instance, if A = Mn(k) where the class group of k has exponent m, the rep-
resentation field always exists if and only if g.c.d.(m, n) ∈ {1, 2}. In the counterex-
amples we provide to prove the necessity, the embedded suborder is a generalized
Eichler order H = D ∩ D′, where D and D′ are maximal orders. As a byproduct
of our work on Eichler orders we have the following result:

Theorem 2. Let H = D ∩ D′ be an Eichler order in the quaternion algebra A.
Assume that Eichler condition is satisfied. The representation field F of H is the
maximal subfield of ΣA that splits completely at the places ℘ for which D℘ �= D′

℘.



2. Eichler orders and embeddings. Let D and D′ be maximal orders in the central
simple k-algebra A. At any local place ℘ there exist an element h℘ ∈ A℘ such that
D′

℘ = h℘D℘h−1
℘ . The local algebra A℘ is a matrix algebra Mf (E) where E is a

division algebra with uniformizing parameter u and maximal order E. Without
loss of generality we may assume D℘ = Mf (E). There exist matrices p, q ∈ D∗

℘

and d = diag(ut1 , . . . , utf ), where t1 ≤ · · · ≤ tf , such that h℘ = pdq. Then any
conjugate to the local order

H = D℘ ∩ D′
℘ = p(D℘ ∩ dD℘d−1)p−1

is said to be a local Eichler order of type (t1, . . . , tf ). We write [t1, . . . , tf ]℘ for the
set of such orders. Then clearly [t1, . . . , tf ]℘ = [t1 + t, . . . , tf + t]℘ for any integer
t, so we can always assume t1 = 0. Furthermore, the relation

D℘ ∩ dD℘d−1 = d(D℘ ∩ d−1D℘d)d−1

Shows that [t1, . . . , tf ]℘ = [−tf , . . . ,−t1]℘.

Lemma 2.1. If a local Eichler order of type (t1, . . . , tf ) embeds into a local Eichler
order of type (s1, . . . , sf ), then

∑
i>j(si − sj) ≤ ∑

i>j(ti − tj), with equality if and
only if both orders coincide.

Proof. Let µ be the additive Haar measure on A℘ normalized so that µ(D℘) = 1.
Then µ is conjugation invariant ([6, Corollary 3, p. 7]) and µ(H)−1 = [D℘ : H].
It suffices therefore to prove that [D℘ : H] is a strictly increasing function of∑

i<j(sj − si), where H = D℘ ∩ dD℘d−1 and d = diag(us1 , . . . , usf ). Note that
b ∈ H if and only if both b and d−1bd are matrices with coefficients in E. In
particular, if b = (βi,j)i,j then b ∈ H if and only if for all i > j the coefficient βi,j

is divisible by usi−sj . It follows that [D℘ : H] = |E/uE|
∑

i>j(si−sj). �

Proof of Theorem 2. When n = 2, every local Eichler order is of type (0, t) for
some non-negative integer t. In particular, an Eichler order H = D ∩ D′ is non-
maximal at ℘ if and only if H℘ embeds into an order of type (0, 1). We claim that
H embeds into an order D′′ if and only if

ρ(D,D′′) = [℘1 . . . ℘r, ΣA/k](2)

where H℘i
is non-maximal for i = 1, . . . , r, whence the result follows.

To prove the claim, observe that if H is conjugate to a sub-order of D′′, then
it is contained into D ∩ D′′′ for some conjugate D′′′ of D′′. Note that D℘ �= D′′′

℘

is possible only if H℘ is non-maximal, whence ρ(D,D′′′) = ρ(D,D′′) is in the
subgroup generated by the set

{ [℘, ΣA/k]|H℘ is not maximal} .

On the other hand, if (2) is satisfied, then we construct an order D′′′ by the
following local conditions:

1. D′′′
℘ = D℘ for ℘ /∈ {℘1, . . . , ℘r}.



2. If ℘ = ℘i, then H℘ = D′
℘∩D℘ is not maximal. We write D′

℘ = hD℘h−1, where
h = pdq, and d = diag(ut1 , . . . , utf ) as before. Since H℘ is not maximal, at
least tf ≥ 1. We set d0 = diag(1, . . . , 1, u), h0 = pd0q, and D′′′

℘ = h0D℘h−1
0 .

Note that D′′′
℘ contains H℘ at all places ℘ by construction. Then H is contained

in D′′′. As ρ(D,D′′) = ρ(D,D′′′) by construction, it follows that D′′ and D′′′ are
conjugate and therefore H embeds into D′′. �

3. Proof of Theorem 1.

Proof of the necessity. Assume that the extension ΣA/k is not of exponent 2. In
other words, there exists an element σ ∈ Gal(ΣA/k) of order q > 2. Let ℘ be
a finite place of k such that the Frobenius homomorphism at ℘ is σ. Now let
H = D ∩ D′, where D = D′ except at ℘. We identify D℘ = Mf (E) as before and
set D′

℘ = dD℘d−1, where d = diag(1, 1, . . . , 1, u) for a uniformizing parameter u of
E. Recall that σf = id by definition of ΣA [1]. By definition, H ⊆ D, H ⊆ D′, and
ρ(D,D′) = σ. It suffices to see that H cannot be contained in an order D′′ such that
ρ(D,D′′) = σ−1. Supose this is the case. Certainly D′′ coincide with D outside ℘,
since H is maximal there. Set D′′

℘ = gD℘g−1, where g = p diag(us1 , . . . , usf )q, for
some p, q ∈ D∗

℘. The order H is contained in H′′ = D∩D′′. Note that H℘ is of type
(0, . . . , 0, 1) and H′′

℘ is of type (s1, . . . , sf ) where

∑
i<j

(sj − si) =
f−1∑
i=1

i(f − 1 − i)(si+1 − si) ≥ f − 1.

It follows from lemma 2.1 that equality must hold, whence H = H′′ and we have
either (s1, . . . , sf ) = (0, . . . , 0, 1) or (s1, . . . , sf ) = (0, 1, . . . , 1). Since

σ �= σ−1 = ρ(D,D′′) = [℘, ΣA/k]
∑f

i=1 si ,

it follows that (s1, . . . , sf ) = (0, 1, . . . , 1).

Next consider the image K of H in D℘/uD℘. By definition of D℘ and D′
℘ we

have that K is the algebra of matrices in Mf (E/uE) of the form(
a v
0 B

)
,

where B is a block of f − 1 rows and f − 1 columns. On the other hand, since
H = D ∩ D′′, the algebra K is conjugate to the algebra of matrices of the form(

B w
0 a

)
,

where B is a block of (f − 1) × (f − 1). When f ≥ ord(σ) > 2, these two algebras
are not isomorphic, since only the first one has an element P that satisfies the
following conditions:

1. P 2 = P .



2. KP is an ideal of dimension 1 over the residue field.

�

Remark 3.1. If the order of σ is bigger than 3, we can give a simpler proof by
showing that H cannot be contained in an order D′′ such that ρ(D,D′′) = σ2.

Proof of the sufficiency. Let A be a central simple k-algebra of dimension n2. Let
AA be the algebra of adelic points of A. For any σ ∈ A∗

A
we define an idele

N (σ) ∈ Jk by the local relations N (σ)℘ = N℘(σ℘), where N℘ is the reduced norm
on A℘. Let A∗

A
act on the set of maximal orders by conjugation and let Γ be the

stabilizer of the maximal order D. It follows from §3 in [1] that the set of spinor
genera of maximal orders of A is in correspondence with the quotient Jk/k∗N (Γ),
and therefore with the Galois group of the corresponding class field ΣA. Since
A has dimension greater than 22, condition E is satisfied, whence spinor genera
coincide with conjugacy classes. The orders containing a copy of H correspond to
the images under N of the generators for D|H, i.e., the elements σ ∈ A∗

A
satisfying

H ⊆ σDσ−1 [1]. It suffices, therefore, to prove that the image [N (X), ΣA/k] of the
set X = XD|H of generators is a subgroup of Gal(ΣA/k).

Let σ and τ be generators for D|H. By definition, this means H ∈ σDσ∗ and
H ∈ τDτ∗. We define a third adelic element λ ∈ AA as follows:

• if the valuations v℘[N℘(σ℘)] and v℘[N℘(τ℘)] have the same parity, we define
λ℘ = 1.

• if v℘[N℘(σ℘)] is odd and v℘[N℘(τ℘)] is even, we define λ℘ = σ℘.
• if v℘[N℘(σ℘)] is even and v℘[N℘(τ℘)] is odd, we define λ℘ = τ℘.
• if ℘ is archimedean, we define λ℘ = σ℘τ℘.

Since the property defining a generator is local, the element λ is a generator. On
the other hand, we have

N (λ) = N (σ)N (τ)ur2

for some ideles r ∈ Jk and u ∈ J+
k,∞, where J+

k,∞ is the subgroup of ideles that
are positive at real places and units at finite places. Since the extension ΣA/k
is unramified, the subgroup J+

k,∞ has trivial image under the Artin map. By the
hypothesis on Gal(ΣA/k), also r2 has trivial image. �

References

[1] L. E. Arenas-Carmona, Applications of spinor class fields: embeddings of orders
and quaternionic lattices, Ann. Inst. Fourier 53, 2021–2038 (2003).

[2] L. E. Arenas-Carmona, An embedding theorem for orders in central simple alge-
bras, Submitted.

[3] J. S. Hsia, Y. Y. Shao, and F. Xu, Representations of indefinite quadratic forms,
J. Reine Angew. Math. 494, 129–140 (1998).



[4] J. S. Hsia, Arithmetic of indefinite quadratic forms, Contemporary Math. 249, 1–15
(1999).

[5] I. Reiner, Maximal Orders, Academic Press, London, 1975.

[6] A. Weil, Basic Number Theory, 2nd Ed., Springer-Verlag, Berlin, 1973.

Luis Arenas-Carmona, Universidad de Chile, Facultad de Ciencias, Casilla 653,
Santiago, Chile
e-mail: learenas@uchile.cl


