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Abstract. We consider Ledrappier’s dynamical system, which was the first example of a
Z2-action which is 2-mixing but not 3-mixing. Our main result is that, excluding certain
small ‘constructible’ sets, the system is mixing of every order.

1. Introduction
Let k be a positive integer and let T1, . . . , Tk be invertible commuting measure-preserving
transformations of a probability space (X, B, µ). The corresponding Zk-action (T n)n∈Zk

(where, for n = (n1, . . . , nk), we denote T n1 . . . T nk by T n) is r-mixing, for r ≥ 2, if

µ

( r⋂
i=1

T ni Ai

)
−→

r∏
i=1

µ(Ai ), Ai ∈ B, 1 ≤ i ≤ r,

as ni − n j → ∞ for all i 6= j†. The question whether, for Z-actions, 2-mixing necessarily
implies r -mixing for every r is an old open problem in ergodic theory. One of the first non-
trivial results related to this problem was established by Rohlin [6], who proved that mixing
(i.e. 2-mixing) endomorphisms of compact groups are mixing of all orders. Rohlin’s result
was generalized subsequently to more general classes of transformations, and conventional
wisdom started leaning towards the belief that the answer to the above question is positive.
Since there is, on the face of it, nothing special about Z-actions, there was also a tendency
to think that the situation for Zk-actions with k > 1 is similar. To the surprise of many,
Ledrappier [3] proved that this is not the case. He provided an example of a pair σ, τ

† Note that the conventional notion of mixing, namely the condition that µ(A ∩ T n B) −→
n→∞

for all A, B ∈ B,

corresponds to 2-mixing.
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of commuting mixing automorphisms of a compact abelian group G, such that for some
measurable set A ⊆ G one has

µ(A ∩ σ 2n
A ∩ τ 2n

A) 6−→
n→∞

µ(A)3.

Ledrappier’s work has served as an impetus for new and interesting developments and,
indeed, has led to the creation of a new branch of ergodic theory, which studies Zd -actions
by automorphisms of compact abelian groups, and has strong connections to abstract
algebra and number theory (see [8]).

Our goal in this paper is to undertake a deeper study of the higher-order mixing
properties of Ledrappier’s example, in the hope that this will shed new light on other
similar (and more general) examples. One of the natural questions addressed in this paper
concerns the nature of the obstacles to higher-order mixing. We will show that, in fact,
Ledrappier’s example is ‘almost mixing of all orders’.

To formulate this result formally (and to prove it), we have to review first Ledrappier’s
construction and introduce some notation and definitions. To give the reader a feeling of
the kind of results to be proved subsequently, we will formulate now a special case of our
main result, which describes completely the obstacle to 3-mixing in Ledrappier’s example.

Put

L= {{(a, b), (a + 2k, b), (a, b + 2k)} : a, b ∈ Z, k ∈ Z+}

(where Z+ = {0, 1, 2, . . .}). We view L as a set of triangles in the two-dimensional integer
lattice, obtained from the single triangle {(0, 0), (1, 0), (0, 1)} by dilations by powers of 2
and translations.

Denote by ρ(C, D) the Hausdorff distance between subsets C and D of Z2,

ρ(C, D) = max
{

sup
c∈C

inf
d∈D

‖c − d‖, sup
d∈D

inf
c∈C

‖c − d‖

}
, C, D ⊆ Z2,

where ‖ · ‖ is the maximum norm on Z2†. As usual in metric spaces, we shall also denote
by ρ(C,D) the minimal distance between a set C ⊆ Z2 and a collectionD of subsets of Z2.

Two sequences (vn) and (wn) of pairs of integers grow apart as n → ∞ if
‖vn − wn‖ −→

n→∞
∞.

THEOREM 1.1. Let σ, τ be the automorphisms from Ledrappier’s example, and

((a(n)
1 , b(n)

1 ), (a(n)
2 , b(n)

2 ), (a(n)
3 , b(n)

3 ))∞n=1

be a sequence of triples of integer pairs. Then

µ(σ a(n)
1 τ b(n)

1 A ∩ σ a(n)
2 τ b(n)

2 B ∩ σ a(n)
3 τ b(n)

3 C) −→
n→∞

µ(A)µ(B)µ(C),

A, B, C ∈ B,

if and only if the following conditions hold.

† We shall denote by ρ the Hausdorff distance between subsets of (Z2)r as well.
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(1) The sequences (a(n)
i , b(n)

i ) and (a(n)
j , b(n)

j ) grow apart for i 6= j .

(2) ρ(Dn, L) −→
n→∞

∞, where Dn = {(a(n)
i , b(n)

i ) : 1 ≤ i ≤ 3}†.

The theorem indicates that the only obstruction to 3-mixing in Ledrappier’s system is
what happens along powers of 2. Our main interest in this paper is to understand (the
generalized form of) this phenomenon for mixing of any order. The main result of the
paper is that, roughly speaking, the only obstacle to mixing of any order is connected to
exceptional behavior of Ledrappier’s system along certain explicitly described rarified sets.
For example, we obtain mixing of all orders along ‘most’ systems of polynomial sequences
(cf. Proposition 8.2 and Theorem 8.18).

Let us mention in passing a few relevant results regarding high-order mixing of
algebraic dynamical systems, and the related algebraic tools required to tackle such
systems. First, note that the situation is simpler for connected groups. In fact, Schmidt
and Ward [9] showed that, for such systems, mixing implies mixing of all orders. When
passing from this ergodic-theoretical result, by duality, to the equivalent algebraic claim,
one obtains certain equations over fields of characteristic 0, which have to be shown to
admit only finitely many solutions. This step is accomplished using [7]. Ledrappier’s
example shows that, in the totally disconnected case, mixing does not imply mixing of
higher orders. When studying the degree of mixing of such systems, one needs again
to consider various equations arising from considering the dual action. This time, the
equations are over fields of finite characteristic. The relevant algebraic tools are now
provided by results such as those obtained by Masser [5], who was able to show that
the degree of mixing of such systems is completely determined by the non-mixing shapes.
(For another result in this realm, which deals only with the special case of S-unit equations
with two indeterminates, see Voloch [13].)

In §2 we present Ledrappier’s example in detail, and provide some more background.
The main result of the paper is presented in §3. In §4 we digress to study in detail the
case of 4-mixing, where we manage to draw a complete picture of the situation. Section 5
contains an algebraic result, which is crucial for the proof of the main theorem. In §6 we
prove the main theorem. We would like to note that some of our arguments are reminiscent
of those in [1]. Section 7 provides more details on the sets which are the obstacles to
high-order mixing. Finally, in §8 we treat some general examples which confirm the claim
contained in the title of the paper.

2. Ledrappier’s example
Let F2 denote the field of two elements. We start with the set FZ2

2 , considered as the set
of all double sequences over F2. Equipped with the product topology and coordinate-wise
addition, FZ2

2 forms a compact abelian group. The Haar measure on FZ2

2 is the product

measure obtained by taking the normalized counting measure of F2. On FZ2

2 we have a

† Thus, for example, if an , bn , |an − bn | −→
n→∞

∞, then

µ(A1 ∩ σan A2 ∩ τbn A3) −→
n→∞

µ(A1)µ(A2)µ(A3)

for any measurable sets A1, A2, A3.
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leftward shift σ and a downward shift τ . The former is defined by

σ((νmn)∞m,n=−∞) = (νm+1,n)∞m,n=−∞

and the latter by

τ((νmn)∞m,n=−∞) = (νm,n+1)
∞
m,n=−∞.

Obviously, the set

G = {(νmn)∞m,n=−∞ : νmn + νm+1,n + νm,n+1 = 0, (m, n) ∈ Z2
}

is a compact subgroup of FZ2

2 , invariant under both σ and τ . Our object of study is the
measure-preserving Z2-action (σmτ n)∞m,n=−∞ on the probability space (G, B, µ), where
B is the Borel field of G and µ the normalized Haar measure on G.

It will be convenient to identify points in FZ2

2 with formal power series. Namely, a point

(νmn)∞m,n=−∞ ∈ FZ2

2 is identified with the power series

∞∑
m,n=−∞

νmn x−m y−n .

Thus the actions of σ and τ correspond to multiplication by x and y, respectively.
(Note that the set of all power series

∑
∞

m,n=−∞
νmn x−m y−n does not admit a ‘natural’

multiplication operation, but the product of a power series and a polynomial in
F2[x±1, y±1

] is well defined.) The dual group of FZ2

2 may be identified with F2[x±1, y±1
]

as follows. The value of a character (corresponding to a polynomial
∑

(m,n)∈S xm yn)

at the point (νmn)∞m,n=−∞ ∈ FZ2

2 is (−1)
∑

(m,n)∈S νmn , where we note that the exponent∑
(m,n)∈S νmn is the free term of the product

∑
(m,n)∈S xm yn

·
∑

∞

m,n=−∞
νmn x−m y−n .

The duals σ̂ and τ̂ correspond to multiplication by x and y on F2[x±1, y±1
]. The subgroup

G corresponds to the set of those power series
∑

∞

m,n=−∞
νmn x−m y−n for which (1 +

x + y) ·
∑

∞

m,n=−∞
νmn x−m y−n

= 0. The annihilator of G corresponds to the set of all

polynomials divisible by 1 + x + y. Hence Ĝ is the quotient F2[x±1, y±1
]/〈1 + x + y〉,

which may be identified with the ring of all rational functions over F2 whose denominator
is of the form xk(1 + x)l .

Let us briefly mention that there is another way of viewing the system, which may be
more convenient for certain purposes. Take FZ+

2 as the underlying group. Let σ ′ be the
(one-sided) shift, and let τ ′

= I + σ ′, where I is the identity map. The dual group now
is F2[x], and the dual actions are again multiplications by x and by 1 + x . This system
is basically equivalent to Ledrappier’s system. (More accurately, the transformations σ ′

and τ ′ are non-invertible, and one should pass to the natural extension to obtain exactly the
same system.)

3. The main result
As mentioned above, our main result in this paper says, roughly speaking, that the only
obstacle to mixing of all orders in Ledrappier’s system is what happens along powers of 2.
We shall proceed to state this result in a precise form in the general case.

In view of Theorem 1.1, the following definition is natural.

http://journals.cambridge.org


Definition 3.1. Let (X, B, µ, (T n)n∈Z2) be a measure-preserving system, r ≥ 2 an integer
and M⊆ (Z2)r . The system is r-mixing modulo M if for any A1, A2, . . . , Ar ∈ B
one has

lim µ

( r⋂
i=1

T ni Ai

)
=

r∏
i=1

µ(Ai )

as ρ((n1, . . . , nr ),M) → ∞ and ni − n j → ∞ for i 6= j .

Obviously, the smaller the setM is, the stronger is the assertion that a system is mixing
modulo M. Also, if M1 and M2 are two sets of r -tuples, such that the distance from
every point of M1 to the set M2 is at most C for some constant C , then mixing modulo
M2 implies mixing moduloM1. In particular, if the Hausdorff distance betweenM1 and
M2 is finite (which means that there exists a constant C such that every point ofM1 is at
a distance at most C from M2 and vice versa), then mixing modulo M2 coincides with
mixing moduloM1.

With this terminology, Theorem 1.1 is equivalent to the assertion that Ledrappier’s
system is 3-mixing modulo L†.

Definition 3.1 may be easily modified for Zd -actions for any d. Note that a Zd -action
(T n)n∈Zd on a probability space (X, B, µ) is strongly mixing, i.e. it satisfies the condition

µ(A ∩ T n B) −→
n→∞

µ(A)µ(B), A, B ∈ B,

if and only if it is 2-mixing modulo the empty set. Similarly, one can check that a Zd -action
(T n)n∈Zd is weakly mixing, i.e. satisfies the condition

µ(A ∩ T n B) −→
n→∞

n/∈M0

µ(A)µ(B), A, B ∈ B,

for some M0 ⊆ Zd of density 0, if and only if there exists a set M⊆ (Zd)2 of density 0
such that the action is 2-mixing modulo M. It is worth mentioning that, in general, the
exceptional set M distinguishing weak mixing from strong mixing may be not too small,
in the following sense. Given any positive sequence (cn) satisfying cn = o(nd), one can
show [14] that there exists a weakly mixing system (X, B, µ, (T n)n∈Zd ), sets A, B ∈ B
and ε > 0 such that

|{1 ≤ ‖n‖ ≤ N : |µ(A ∩ T n B) − µ(A)µ(B)| > ε}| > cN

for all sufficiently large N .
Our objective in this paper is to find, for any r , necessary and sufficient conditions on a

set of r -tuples Mr , so that Ledrappier’s system will be r -mixing modulo Mr . Moreover,
we would like these conditions to be as explicit as possible. As we shall see, Ledrappier’s
system is r -mixing moduloMr for rather small setsMr .

† Note that we could avoid the condition that the distance between ni and n j tends to infinity for i 6= j by
adjoining toM the set ⋃

1≤i< j≤r

{(n1, n2, . . . , nr ) ∈ (Z2)r
: ni = n j }.

However, since in any non-trivial system the convergence in question (for all r -tuples of measurable sets) implies
that the sequences ni and n j grow apart, it seems more natural to put the condition as part of the definition.
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Definition 3.2. A finite r -element set {(a1, b1), (a2, b2), . . . , (ar , br )} in Z2 is a special
r-gon if

xa1(1 + x)b1 + xa2(1 + x)b2 + · · · + xar (1 + x)br = 0.

The set of all special r -gons will be denoted by Lr .
Denote by 3r the set of all r -element sets in Z2, containing a special s-gon for

some s ≤ r .
The following theorem is the main result of this paper.

THEOREM 3.3. For every r ≥ 3, Ledrappier’s system is r-mixing modulo 3r .

As we shall see in the following, the set 3r is rather small, which justifies the title of
this paper. (See §§4, 7 and 8.)

4. An explicit form of Theorem 3.3 for r = 4
Theorem 1.1 is in principle a special case of Theorem 3.3, but uses the additional
knowledge as to how special triangles look like (see Lemma 5.6). To obtain an ‘explicit’
form of Theorem 3.3 for a specific r , one needs to know explicitly the family Lr , as well as
all families Ls for s < r . Unfortunately, these families tend to become quite cumbersome
as r increases. We shall now give an explicit description of L4. Given two polynomials

P1(x, y) =

r∑
i=1

xai1 ybi1 , P2(x, y) =

r∑
i=1

xai2 ybi2 ,

we will say that the polynomial P2(x, y) is obtained from P1(x, y) by an (a, b)-translation
and 2k-dilation if

P2(x, y) = xa yb P1(x, y)2k
,

namely if

ai2 = a + 2kai1, bi2 = b + 2kbi1, 1 ≤ i ≤ r,

for some integers a, b and k ≥ 0. Analogous terminology will be used for r -gons.
Now consider the following families of quadrangles (of which the first consists of a
single quadrangle):

Q1 = {{(0, 0), (0, 3), (3, 0), (1, 1)}},

Q2 = {{(0, 0), (0, 2k
+ 1), (2k, 0), (1, 2k)} : k ≥ 0},

Q3 = {{(0, 0), (0, 2k), (2k
+ 1, 0), (2k, 1)} : k ≥ 0},

Q4 = {{(0, 0), (0, 2k), (2k
− 1, 0), (2k

− 1, 1)} : k ≥ 1},

Q5 = {{(0, 0), (0, 2k
− 1), (2k, 0), (1, 2k

− 1)} : k ≥ 1},

Q6 = {{(0, 0), (0, 2k
+ 1), (1, 0), (2k, 1)} : k ≥ 0},

Q7 = {{(0, 0), (0, 1), (2k
+ 1, 0), (1, 2k)} : k ≥ 0},

Q8 = {{(0, 1), (0, 2k), (1, 0), (2k, 0)} : k ≥ 1},

Q9 = {{(0, 2k
+ 1), (0, 2k), (1, 0), (2k

+ 1, 0)} : k ≥ 0},

Q10 = {{(2k
+ 1, 0), (2k, 0), (0, 1), (0, 2k

+ 1)} : k ≥ 0}.
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FIGURE 1. Some quadrangles in L4.

See Figure 1, where the quadrangles for some selected values of k are shown. A bold dot
corresponds to k = 0 (where relevant), a circle to k = 1, and a square to k = 2.

PROPOSITION 4.1. L4 is the family of all quadrangles obtained from some quadrangle in⋃10
i=1 Qi by an (a, b)-translation and a 2k-dilation for some (a, b) and k.

The proof will be provided in the next section.
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5. Auxiliary algebraic results
PROPOSITION 5.1. Suppose

r∑
i=1

Pi (x)xai (1 + x)bi = 0 (1)

for some P1(x), P2(x), . . . , Pr (x) ∈ F2[x], not all 0, of degrees not exceeding 2s , and
integers a1, b1, a2, b2, . . . , ar , br . Then there exist constants c1, c2, . . . , cr ∈ F2, not all
0, and αi , βi ∈ {0, 1} such that

r∑
i=1

ci x [ai /2s
]+αi (1 + x)[bi /2s

]+βi = 0. (2)

Proof. The proof is by induction on s. It will be convenient to prove slightly more
than required. Namely, we shall prove in addition that, if deg Pi (x) < 2s and ai ≡ bi ≡

0 (mod 2s) for some i , then αi = βi = 0.
For s = 0, all the Pi are either constant or linear. Those which are constant are already

as required. If Pi (x) = x , take ci = 1 and increase ai by 1 (that is, αi = 1). Similarly,
if Pi (x) = 1 + x , take ci = 1 and increase bi by 1. Obviously, these changes bring the
equation to the required form. Moreover, if deg Pi (x) < 20

= 1 for some i , then the
corresponding term is already of the required form, so that αi = βi = 0.

Suppose the proposition has been established when all polynomials Pi (x) are of degree
not exceeding 2s−1, and suppose now that (1) holds, with all degrees not exceeding 2s . Let
Pi1(x) be the polynomial obtained from Pi (x) upon multiplying it by x if ai is odd and
by 1 + x if bi is odd. (Note that Pi1(x) = x(1 + x)Pi (x) in case both ai and bi are odd.)
Write (1) in the form

r∑
i=1

Pi1(x)(x [ai /2](1 + x)[bi /2])2
= 0. (3)

If not all polynomials Pi1(x), 1 ≤ i ≤ r , are squares, then differentiate both sides to obtain

r∑
i=1

P ′

i1(x)(x [ai /2](1 + x)[bi /2])2
= 0, (4)

where not all derivatives P ′

i1(x) vanish. Since the derivative of any polynomial over F2 is
a square, we may rewrite (4) as

r∑
i=1

P2
i2(x)(x [ai /2](1 + x)[bi /2])2

= 0, (5)

where P2
i2(x) = P ′

i1(x), and thus

r∑
i=1

Pi2(x)x [ai /2](1 + x)[bi /2]
= 0. (6)

We have

deg Pi2(x) =
deg P ′

i1(x)

2
≤

deg Pi1(x) − 1
2

≤
deg Pi (x) + 1

2
≤

2s
+ 1
2

,
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and therefore deg Pi2(x) ≤ 2s−1. Employing the induction hypothesis on (6) we arrive at
an equality of the form

r∑
i=1

ci x [[ai /2]/2s−1
]+αi (1 + x)[[bi /2]/2s−1

]+βi = 0. (7)

Since [[m/2]/2s−1
] = [m/2s

] for any integer m, this is in fact an equality as required. Note
that, if deg Pi (x) < 2s for some i , and ai ≡ bi ≡ 0 (mod 2s), then Pi1(x) = Pi (x) so that
deg Pi2(x) ≤ 2s−1

− 1 and [ai/2] = ai/2 ≡ 0 (mod 2s−1), [bi/2] = bi/2 ≡ 0 (mod 2s−1).

The induction hypothesis guarantees that in this case we shall have αi = βi = 0.

Now assume all polynomials Pi1(x), 1 ≤ i ≤ r , are squares. Pass from (3) directly to
(5), and then to (6), where this time P2

i2(x) = Pi1(x). Now

deg Pi2(x) =
deg Pi1(x)

2
≤

deg Pi (x) + 2
2

≤
2s

+ 2
2

= 2s−1
+ 1. (8)

If we could bound the degrees of the Pi2(x) from above by 2s−1, the induction hypothesis
could be applied as before. Going over the chain of inequalities in (8), we see that the
left-hand side equals the right-hand side if and only if deg Pi (x) = 2s and both ai and
bi are odd. Denote by I0 the set of those indices i for which all three conditions are
satisfied. According to our assumption, if i ∈ I0 then P2

i2(x) = Pi1(x) = x(1 + x)Pi (x),
and therefore Pi2(x) is divisible by x(1 + x). Put

Pi3(x) =



Pi2(x)

x
, i ∈ I0, ai 6≡ 2s

− 1 (mod 2s),

Pi2(x)

1 + x
, i ∈ I0, ai ≡ 2s

− 1 (mod 2s), bi 6≡ 2s
− 1 (mod 2s),

Pi2(x)

x(1 + x)
, i ∈ I0, ai ≡ bi ≡ 2s

− 1 (mod 2s),

Pi2(x), i /∈ I0.

(9)

Reordering the terms in (2), we may assume that the first condition in (9) is satisfied for
1 ≤ i ≤ r1, the second for r1 + 1 ≤ i ≤ r2, and so forth. Rewrite (6) as

r1∑
i=1

Pi3(x)x [ai /2]+1(1 + x)[bi /2]
+

r2∑
i=r1+1

Pi3(x)x [ai /2](1 + x)[bi /2]+1

+

r3∑
i=r2+1

Pi3(x)x [ai /2]+1(1 + x)[bi /2]+1
+

r∑
i=r3+1

Pi3(x)x [ai /2](1 + x)[bi /2]
= 0. (10)

Apply the induction hypothesis to (10). We obtain an equality of the required form,
except that the resulting αi and βi may seem to be possibly 2 instead of either 0 or 1. To
this end, we note the following.

(1) For 1 ≤ i ≤ r1 we have [ai/2] 6≡ 2s−1
− 1 (mod 2s−1), and therefore [([ai/2]

+ 1)/2s−1
] = [ai/2s

].
(2) For r1 + 1 ≤ i ≤ r2 we analogously have [([bi/2] + 1)/2s−1

] = [bi/2s
].
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(3) For r2 + 1 ≤ i ≤ r3 we are in the special situation where deg Pi3(x) = 2s−1 and
[ai/2] + 1 ≡ [bi/2] + 1 ≡ 0 (mod 2s−1), for which the induction hypothesis ensures
that the exponents of x and 1 + x in the resulting equality will be [([ai/2] +

1)/2s−1
] = [ai/2s

] + 1 and [([bi/2] + 1)/2s−1
] = [bi/2s

] + 1, respectively.
(4) For r3 + 1 ≤ i ≤ r we clearly obtain in the reduced equality terms as required.

Moreover, those terms in (10) which arose from terms in (1) with deg Pi (x) < 2s and
ai ≡ bi ≡ 0 (mod 2s) give rise to terms of the form Pi3(x)xai /2(1 + x)bi /2, where
deg Pi3(x) < 2s−1, whence the induction hypothesis ensures that αi = βi = 0.

This completes the proof. 2

Definition 5.2. A polynomial P(x, y) ∈ F2[x±1, y±1
] is an L-polynomial (L for

Ledrappier) if P(x, 1 + x) = 0†.

In other words, L-polynomials are those polynomials belonging to the ideal 〈1 +

x + y〉. (In fact, if P(x, y) ∈ 〈1 + x + y〉, then P(x, y) = (1 + x + y)Q(x, y) for some
polynomial Q(x, y), so that P(x, 1 + x) = (1 + x + 1 + x)Q(x, 1 + x) = 0. On the
other hand, if P(x, 1 + x) = 0, then 1 + x is a root of the polynomial R(y) = P(x, y) ∈

F2(x)[y], and therefore P(x, y) is divisible by y − (1 + x) = 1 + x + y.)

Definition 5.3. A polynomial P(x, y) =
∑r

i=1 xai ybi ∈ F2[x±1, y±1
] is in reduced form

if (ai , bi ) 6= (a j , b j ) for i 6= j . The length of a polynomial is the number of monomials r
in its reduced form.

In view of Proposition 5.1, the main thing we need to do is characterize L-polynomials.
This is relatively easy for ‘short’ polynomials.

LEMMA 5.4. There are no L-polynomials of length 1 or 2.

Definition 5.5. A polynomial T (x, y) ∈ F2[x±1, y±1
] is triangular if

T (x, y) = xa yb
+ xa+2k

yb
+ xa yb+2k

for some integers a, b and k ≥ 0.

LEMMA 5.6. A polynomial of length 3 is an L-polynomial if and only if it is triangular.

Proof. The ‘if’ direction is immediate. For the inverse direction, let P(x, y) =∑3
i=1 xai ybi be an L-polynomial. Consider the three pairs (ai , bi ) modulo (2, 2). We

distinguish between three cases according to the distribution of the pairs among the residue
classes. It will be convenient to deal with the cases in the following order.

Case 1. Two of the pairs belong to the same residue class, while the third pair belongs
to another.

Multiplying by some xα yβ we may assume the class containing the two pairs to be
(0, 0). Differentiating both sides of the identity

† Thus, a finite set ((a1, b1), (a2, b2), . . . , (ar , br )) is a special r -gon if and only if the polynomial xa1 yb1 +

xa2 yb2 + · · · + xar ybr is an L-polynomial.
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3∑
i=1

xai (1 + x)bi = 0,

we are left with a single monomial on the left-hand side, which is a contradiction.

Case 2. The pairs belong to three distinct classes.
Without loss of generality, we may assume that (a1, b1) ≡ (0, 0) (mod (2, 2)), (a2, b2)

≡ (1, 0) (mod (2, 2)) and (a3, b3) ≡ (0, 1) (mod (2, 2)). Differentiate to obtain

xa2−1(1 + x)b2 + xa3(1 + x)b3−1
= 0.

This implies a2 = a3 + 1 and b2 = b3 − 1. Consequently

xa2(1 + x)b2 + xa3(1 + x)b3 = xa3(1 + x)b2(x + (1 + x)) = xa3(1 + x)b2 ,

so that a1 = a3 and b1 = b2. Hence P(x, y) is triangular.

Case 3. All pairs lie in the same residue class.
It suffices to prove our claim for the case where ai , bi ≥ 0 for each i . We do it by

induction on the total degree of P(x, y). For degree 0 the claim is trivial, since there
exist no such polynomials of length 3. Suppose the proposition holds for polynomials of
degree not exceeding d − 1, and let P(x, y) be of degree d. If all the ai are odd, then
the polynomial P(x, y)/x is still an L-polynomial with all pairs of exponents in the same
residue class. By the induction hypothesis, P(x, y)/x is triangular, and therefore so is
P(x, y) itself. Similarly, we may assume all the bi to be even. Since

3∑
i=1

xai (1 + x)bi =

( 3∑
i=1

xai /2(1 + x)bi /2
)2

,

the polynomial
∑3

i=1 xai /2 ybi /2 is also an L-polynomial, and it is of degree smaller than
that of P(x, y). If all its coefficients lie in the same residue class modulo (2, 2), then
by the induction hypothesis the polynomial is triangular, and hence so is P(x, y). In the
other case, it satisfies either the conditions of Case 1 or those of Case 2, and again we
are done. 2

Remark 5.7. Actually, we could have given a simpler proof, as follows. Multiplying by
some xα yβ we may assume all the ai and bi to be non-negative with at least one of
the ai and at least one of the bi being 0. The two substitutions x = 0 (and y = 1) and
x = 1 (and y = 0) show that at least two of the ai and at least two of the bi are 0. Thus
P(x, y) = 1 + xa

+ yb. The equality (1 + x)b
= 1 + xa now gives b = a = 2s . However,

the proof we have given is more in line with the techniques we employ in the paper, and it
is instructive to have prior to the characterization of L-polynomials of length 4.

The characterization of L-polynomials of length 4 is essentially the contents of
Proposition 4.1, which will now be proved.

Proof of Proposition 4.1. Let P(x, y) =
∑4

i=1 xai ybi be an L-polynomial. Similarly to
the proof of the preceding lemma, two of the ai may be assumed to vanish, and so may
two of the bi . Thus, there are two cases to consider.
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Case 1. 1 + (1 + x)b2 + xa3 + xa4(1 + x)b4 = 0.

Consider the four integers b2, a3, a4, b4. We proceed by looking at how many of them
are even and how many odd.

Subcase 1(i). All four numbers are odd.
Differentiating both sides of the equality we obtain

(1 + x)b2−1
+ xa3−1

+ xa4−1(1 + x)b4−1
= 0.

According to Lemmas 5.4 and 5.6, this means that we have here some rearrangement of
the equality

1 + x2k
+ (1 + x)2k

= 0.

One possibility is having b2 − 1 = a3 − 1 = 2k and a4 − 1 = b4 − 1 = 0. Substituting in
the original equality, we obtain

1 + (1 + x)2k
+1

+ x2k
+1

+ x(1 + x) = 0,

which is easily seen to yield k = 1, so that b2 = a3 = 3 and a4 = b4 = 1. This yields the
quadrangle Q1. If either a4 − 1 = 2k or b4 − 1 = 2k , then the last summand on the left-
hand side of our equality is a polynomial of degree 2k

+ 2, while the first three are of lower
degree, and therefore we do not get a solution.

Subcase 1(ii). Exactly one of the numbers is odd.
Since three of the numbers are even, three of the terms on the right-hand side of our

equality are squares, and so is their sum, whereas the fourth cannot be a square. Thus this
case is impossible.

Subcase 1(iii). Exactly two of the numbers are odd.
The reasoning in the preceding case shows that not both b2 and a3 are even. If b2

and a3 are both odd, then a differentiation takes us to the case r = 2, which shows that
b2 = a3 = 1, which does not lead to a solution. Suppose b2 and exactly one of a4 and
b4 are odd. If b4 is the odd one, then a differentiation again leads to an L-polynomial of
length 2, implying that a4 = 0. This case is the intersection of Case 1 with Case 2, and will
be considered within the framework of Case 2 later. If a4 is odd, then differentiate

(1 + x)b2−1
+ xa4−1(1 + x)b4 = 0,

to obtain a4 = 1 and b2 − 1 = b4. The original equality reduces then to

1 + (1 + x)b4 + xa3 = 0,

which by Lemma 5.6 gives a3 = b4 = 2k for some k. Altogether we have b2 = 2k
+

1, a3 = b4 = 2k, a4 = 1, which yields the quadrangle Q2. The case where a3 and exactly
one of a4 and b4 are odd may be transformed to the preceding case by replacing x by 1 + x ,
and this gives therefore the solution b2 = a4 = 2k, a3 = 2k

+ 1, b4 = 1, namely Q3.
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Subcase 1(iv). Exactly three of the numbers are odd.
If the even number is b2, then differentiation shows that a3 = a4, b4 = 1, and

substituting in the original equality we obtain b2 = 2k, a3 = 2k
− 1. Thus b2 = 2k, a3 =

a4 = 2k
− 1, b4 = 1, that is the quadrangle Q4. If the even number is a3, then by

symmetry b2 = b4 = 2k
− 1, a3 = 2k, a4 = 1, namely Q5. If the even number is a4, then

by differentiation

(1 + x)b2−1
+ xa3−1

+ xa4(1 + x)b4−1
= 0.

According to Lemma 5.6, this yields three possible solutions. One of these is b2 =

2k
+ 1, a3 = b4 = 1, a4 = 2k , leading to Q6. The other two are b2 = 1, a3 = 2k

+ 1, a4 =

0, b4 = 2k
+ 1, and b2 = a3 = 2k

+ 1, a4 = 0, b4 = 1. Both of these solutions correspond
to Case 2 also, and will be treated there. If the even number is b4, then by symmetry we
arrive at the solution b2 = a4 = 1, a3 = 2k

+ 1, b4 = 2k , leading to Q7.

Subcase 1(v). None of the numbers are odd.
Divide all four numbers by the largest possible power of 2, thus reverting to one of the

former cases.

Case 2. (1 + x)b1 + (1 + x)b2 + xa3 + xa4 = 0.

Similarly to Case 1, we separate to subcases according to the number of even and odd
numbers among the integers b1, b2, a3, a4.

Subcase 2(i). All four numbers are odd.
Multiply both sides by x and differentiate to obtain

(1 + x)b1−1
+ (1 + x)b2−1

= 0,

which we know from Lemma 5.4 to be impossible.

Subcase 2(ii). Exactly one of the numbers is odd.
Exactly as in Subcase 1(ii), this yields no solutions.

Subcase 2(iii). Exactly two of the numbers are odd.
A differentiation gives an equality involving only two terms. By Lemma 5.4 the

derivative must then vanish trivially, which means that one of the ai and one of the bi

are 1, say b1 = a3 = 1. This yields

1 + (1 + x)b2 + xa4 = 0,

and Lemma 5.6 implies b2 = a4 = 2k for some k, which gives Q8.

Subcase 2(iv). Exactly three of the numbers are odd.
After differentiation we revert to the case of Lemma 5.6. If the even exponent is one of

the bi , say b2, then this implies a3 − 1 = 0 and b1 − 1 = a4 − 1 = 2k for some k, namely
a3 = 1, b1 = a4 = 2k

+ 1. Then

(1 + x)b2 = (1 + x)2k
+1

+ x + x2k
+1

= (1 + x)2k
,

which gives b2 = 2k . This yields the quadrangle Q9. If the even exponent is one of the ai

then we obtain symmetrically Q10.

Subcase 2(v). None of the numbers are odd.
Similarly to Case 1 we may divide them all by the largest possible power of 2, which

brings us back to one of the former subcases. 2
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6. Proof of Theorem 3.3
The proof of Theorem 3.3, to be presented in this section, hinges on Lemma 6.2 below. We
will find it convenient to view in this section the condition of mixing moduloM somewhat
differently. Namely, this condition may be rephrased in terms of the sequences of r -tuples
of pairs of integers for which the intersections we consider converge to the correct limit.
Thus, we start by defining the following notion.

Definition 6.1. A sequence ((a(n)
1 , b(n)

1 ), (a(n)
2 , b(n)

2 ), . . . , (a(n)
r , b(n)

r ))∞n=1 of r -tuples of

pairs of integers, with (a(n)
i , b(n)

i ) and (a(n)
j , b(n)

j ) growing apart for i 6= j , is mixing if∫ r∏
i=1

σ a(n)
i τ b(n)

i fi dµ −→
n→∞

r∏
i=1

∫
fi dµ

for every f1, f2, . . . , fr ∈ L∞.

Note that a sequence ((a(n)
1 , b(n)

1 ), (a(n)
2 , b(n)

2 ), . . . , (a(n)
r , b(n)

r ))∞n=1 is mixing if and
only if any bounded perturbation thereof is such. Clearly, if the system is mixing modulo
M, then every sequence ((a(n)

1 , b(n)
1 ), (a(n)

2 , b(n)
2 ), . . . , (a(n)

r , b(n)
r ))∞n=1, with (a(n)

i , b(n)
i )

and (a(n)
j , b(n)

j ) growing apart for i 6= j , and the distance of whose elements from M
tends to infinity, is mixing according to this definition. On the other hand, once we
characterize those sequences which are mixing according to this definition, we have
actually characterized those setsM for which the system is mixing moduloM.

For systems consisting of compact abelian groups and endomorphisms thereof, it is
usually most convenient to test mixing properties by studying corresponding properties of
the dual action. For Ledrappier’s system, the condition is given by the following lemma,
which we present without proof. (See [8, p. 263] for full details.)

LEMMA 6.2. A sequence ((a(n)
1 , b(n)

1 ), (a(n)
2 , b(n)

2 ), . . . , (a(n)
r , b(n)

r ))∞n=1 is mixing if and
only if for any polynomials P1(x), P2(x), . . . , Pr (x), not all 0, the equation

P1(x)xa(n)
1 (1 + x)b(n)

1 + P2(x)xa(n)
2 (1 + x)b(n)

2 + · · · + Pr (x)xa(n)
r (1 + x)b(n)

r = 0 (11)

has only a finite number of solutions n.

Example 6.3. The sequence ((0, 0), (2n, 0), (0, 2n))∞n=1 is not mixing since

1 · x0(1 + x)0
+ 1 · x2n

(1 + x)0
+ 1 · x0(1 + x)2n

= 0

for each n.

Proof of Theorem 3.3. Let ((a(n)
1 , b(n)

1 ), (a(n)
2 , b(n)

2 ), . . . , (a(n)
r , b(n)

r ))∞n=1 be a non-mixing

sequence, such that (a(n)
i , b(n)

i ) and (a(n)
j , b(n)

j ) grow apart for each i 6= j . We have to show
that it contains a subsequence, consisting of elements which are at a bounded distance
from 3r . Indeed, by Lemma 6.2 there exist polynomials P1(x), P2(x), . . . , Pr (x), not all
0, such that the equation

P1(x)xa(n)
1 (1 + x)b(n)

1 + P2(x)xa(n)
2 (1 + x)b(n)

2 + · · · + Pr (x)xa(n)
r (1 + x)b(n)

r = 0
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has infinitely many solutions n. Apply Proposition 5.1 to each of these n. Ignoring the
other n, and passing to a subsequence, we obtain constants c1, c2, . . . , cr ∈ F2, not all 0,
and αin, βin ∈ {0, 1} such that

r∑
i=1

ci x [a(n)
i /2s

]+αin (1 + x)[b
(n)
i /2s

]+βin = 0. (12)

Passing again to a subsequence, we may assume that each of the sequences αin and
βin is constant and that each of the sequences (a(n)

i ) and (b(n)
i ) is constant modulo 2s ,

say a(n)
i ≡ ai (mod 2s) and b(n)

i ≡ bi (mod 2s). Reordering the pairs (a(n)
i , b(n)

i ), we may
finally rewrite (12) in the form

r ′∑
i=1

x [a(n)
i /2s

]+αi (1 + x)[b
(n)
i /2s

]+βi = 0

for some 1 ≤ r ′
≤ r . Raising this equality to the power 2s , we find that

r ′∑
i=1

xa(n)
i −ai +2sαi (1 + x)b(n)

i −bi +2sβi = 0.

Thus, the r ′-gon

((a(n)
1 , b(n)

1 ), (a(n)
2 , b(n)

2 ), . . . , (a(n)

r ′ , b(n)

r ′ ))

is obtained from a special r ′-gon by a bounded perturbation, so that the r -gon

((a(n)
1 , b(n)

1 ), (a(n)
2 , b(n)

2 ), . . . , (a(n)
r , b(n)

r ))∞n=1

stays close to 3r . This completes the proof. 2

7. The structure of Lr

We have seen in §4 that the only reason for a sequence of r -tuples of pairs to be non-mixing
is its proximity to some special r -gons (or the proximity of some of its components to
some special s-gons for a certain 3 ≤ s < r ). For r = 3, the only special triangles are those
corresponding to triangular polynomials. For r = 4 we have seen that there are several
families of special quadrangles. Most of these, in fact all those obtained from one of the
r -gons of the familiesQ2, . . . ,Q10 by translation and dilation by a power of 2, correspond
to sums of two triangular polynomials. For example, for a typical quadrangle in Q2,

1 + y2k
+1

+ x2k
+ xy2k

= (1 + x2k
+ y2k

) + y2k
(1 + x + y).

The quadrangle in Q1 corresponds in two ways to sums of four triangular polynomials,

1 + x3
+ y3

+ xy = (1 + x + y) + x(1 + x2
+ y2) + y(1 + x2

+ y2) + xy(1 + x + y)

= (1 + x4
+ y4) + x3(1 + x + y) + y3(1 + x + y) + xy(1 + x2

+ y2),

but it may be shown to correspond to no shorter sum of triangular polynomials. Our main
result in this section asserts that any special r -gon corresponds to a sum of triangular
polynomials, and the number of addends is bounded above by some constant depending
only on r .
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THEOREM 7.1. Every special r-gon corresponds to a sum of at most r3 triangular
polynomials.

It will be convenient to denote by h(r) the minimal number m such that every special
r -gon corresponds to a sum of at most m triangular polynomials. Thus, the theorem asserts
that h(r) is finite for every r and, moreover, h(r) ≤ r3.

Proof. We proceed by induction on r . For r = 3 the theorem is a weak version of
Lemma 5.6. Assume that the theorem holds for polynomials of length up to r − 1, and
let P(x, y) ∈ F2[x±1, y±1

] be an L-polynomial of length r , say P(x, y) =
∑r

i=1 xai ybi .
Assume without loss of generality that ai , bi ≥ 0 for 1 ≤ i ≤ r . For α, β ∈ {0, 1} put

Rαβ = {1 ≤ i ≤ r : (ai , bi ) ≡ (α, β) (mod 2)}

and

Pαβ(x, y) =

∑
i∈Rαβ

xai ybi ,

so that

P(x, y) =

1∑
α,β=0

Pαβ(x, y).

Let

rαβ = |Rαβ |, α, β ∈ {0, 1}.

We may assume that rαβ < r for each (α, β). Indeed, if rαβ = r for some (α, β), then
dividing P(x, y) by xα yβ and taking a square root, we obtain an L-polynomial of length r .
Continuing the process, we eventually obtain an L-polynomial of length r satisfying the
extra condition. Expressing this polynomial as a sum of several triangular polynomials, we
easily decompose P(x, y) into a sum of as many triangular polynomials.

Replacing P(x, y) by one of the polynomials x P(x, y), y P(x, y) or xy P(x, y),
if needed, we may assume that r00 ≥ r10, r01, r11. Next, we note that the
polynomial P(y−1, xy−1) is also an L-polynomial, and by replacing P(x, y) by it we
leave the set R00 intact and permute the other three Rαβ cyclically. Hence, using this
transformation or its inverse, we may assume that r01 ≥ r10, r11.

Now we introduce a few more polynomials, as follows:

V1(x, y) = x−1 y P10(x, y) + P01(x, y) + x−1 P11(x, y),

V2(x, y) = P00(x, y) + x−1 P10(x, y) + x−1 y P11(x, y),

V3(x, y) = (1 + x−1
+ x−1 y)P10(x, y) + (1 + x−1

+ x−1 y)P11(x, y).

All three are L-polynomials. In fact

V1(x, 1 + x) = (1 + x)
d

dx
P(x, 1 + x) = 0,

V2(x, 1 + x) =
d

dx
((1 + x)P(x, 1 + x)) = 0,

and
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V3(x, y) = x−1(1 + x + y)(P10(x, y) + P11(x, y)), (13)

so that

V3(x, 1 + x) = 0.

Note that the length of V1(x, y) is r − r00, the length of V2(x, y) is r − r01, and (13) shows
that V3(x, y) is a sum of r10 + r11 triangular polynomials. As P(x, y) =

∑3
i=1 Vi (x, y),

this shows that P(x, y) is a sum of triangular polynomials.
The construction above yields

h(r) ≤ max(h(r − r00) + h(r − r01) + r10 + r11),

where the maximum is taken over all polynomials of length r satisfying our assumptions.
In view of the assumptions on the rαβ it follows that

h(r) ≤ max{h(r − d) + h(r − c) + a + b : a ≤ b ≤ c ≤ d ∈ Z+,

a + b + c + d = r, d < r}.

It remains to prove that, for non-negative integers a ≤ b ≤ c ≤ d < r with a + b + c + d =

r , we have
(r − d)3

+ (r − c)3
+ a + b ≤ r3. (14)

In fact, the constraints guarantee that c ≥ (r − d)/3, and therefore

(r − d)3
+ (r − c)3

+ a + b ≤ (r − d)3
+

(
2r + d

3

)3

+ r.

We have to show that, for d ∈ [r/4, r − 1], the right-hand side is bounded above by r3.
Routine calculations show that, considered as a function of d in that interval, the right-
hand side is decreasing from r/4 up to some point and increases after that. Thus we need
to check only the values at the endpoints r/4 and r − 1, and it is easily seen that both
values are bounded above by r3. This completes the proof. 2

Remark 7.2. The upper bound of r3 in the theorem can be easily replaced by a somewhat
smaller power of r , but our method does not yield a bound of r2. It would be interesting
to know how fast h(r) grows as a function of r . The ‘worst’ example (in the sense that it
seems not to be representable as a sum of a few triangular polynomials) we have so far is
the family of polynomials

1 + xy + x3
+ y3,

1 + xy + x3 y3
+ x7

+ y7,

and in general

1 + xy + x3 y3
+ x7 y7

+ · · · + x2r−1
−1 y2r−1

−1
+ x2r

−1
+ y2r

−1.

Denote the last polynomial by Ur . One can easily verify that

Ur+1 = Ur + x2r
−1(1 + x2r

+ y2r
) + y2r

−1(1 + x2r
+ y2r

) + x2r
−1 y2r

−1(1 + x + y).

As U1 = 1 + x + y is triangular, this shows that Ur is a sum of 3r − 2 triangular
polynomials. Note that, as Ur is of length r + 2, this example yields an infinite family of
polynomials such that the polynomial of length r is a sum of 3r − 8 triangular polynomials.
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QUESTION 7.3. Can any Ur be expressed as a sum of less than 3r − 2 triangular
polynomials?

QUESTION 7.4. Assuming that the answer to the preceding question is negative, are there
even sharper examples?

While we have not found an exact expression for h(r), we are able to find, for each
special r -gon, the minimal number m such that the r -gon corresponds to a sum of m
triangular polynomials. For an r -gon R (and corresponding L-polynomial P(x, y)), we
denote this number by h(R) (or h(P)). The correspondence between special r -gons and
L-polynomials enables us to use geometrical terminology for the latter. In particular, it
will be convenient to use the diameter of an L-polynomial, meaning the diameter of the
corresponding subset of Z2. Distances in Z2 will be calculated by the maximum metric.
Denote 1 = 1 + x + y.

PROPOSITION 7.5. Given a special r-gon R, it is possible to calculate h(R) effectively.
Moreover, if the diameter of R is D, then it is effectively possible to represent the
corresponding special polynomial P as a sum of h(R) triangular polynomials

P(x, y) =

∑
t∈T

xat ybt 12kt
, (15)

where each triangle is of diameter at most 5(5r3)r3
D, and its Hausdorff distance from R

is at most (5r3)r3
+1 D.

We first need a lemma.

LEMMA 7.6. Let R and P be as in Proposition 7.5, and suppose P has a representation
as in (15), with |T | = h(P). Suppose there exist integers k and l, satisfying D < 2l/5
and h(P) < 2l−k/5, such that for every t ∈ T we have either kt ≤ k or kt ≥ l. Then
P(x, y) has an alternative representation as a sum of triangular polynomials, in which
the terms xat ybt 12kt with kt < k are replaced by terms of the form xa′

t yb′
t 12kt , while the

terms xat ybt 12kt with kt > l are replaced by terms of the form xa′
t yb′

t 12kt −l
.

Proof. If T is of the smallest possible size, then |T | = h(P). We can define a graph on T ,
where two triangles in T are adjacent if they share a common vertex. This graph will be
denoted by T as well. Since the partial sum corresponding to any connected component of
T is itself an L-polynomial, we shall assume throughout that T is connected.

Split the set T into two parts, depending on the size of the triangles. Namely,
write T = Tb ∪ Ts, where Tb = {t : kt ≥ l} and Ts = {t : kt ≤ k}. Let Tb1, . . . , Tbm be the
connected components of Tb and Ts1, . . . , Tsu the connected components of Ts. Note that,
shrinking each Tbi and Tsi into a single vertex, we obtain a bipartite connected graph T.

Put

Pdi (x, y) =

∑
t∈Tdi

xat ybt 12kt
, d ∈ {b, s}.

Let Rd,i be the union of the triangles in Td,i , where d is either b or s. Note that all the first
coordinates of elements in Rb,i are congruent modulo 2l . In terms of polynomials, this
means that
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Pbi = x ãi yb̃i gi (x2l
, y2l

), i = 1, 2, . . . , m,

for appropriate polynomials

gi (x, y) =

∑
j∈Pb,i

x (a j −ãi )/2l
y(b j −b̃i )/2l

12k j −l
, i = 1, 2, . . . , m,

where |ãi | ≤ 2l−1, and |b̃i | ≤ 2l−1. Multiplying P by an appropriate monomial, we may
assume ã1 = b̃1 = 0.

For each Tb,i , consider the shortest path from Tb,1 to Tb,i in the bipartite graph T. The
change from the initial values ã1 = 0 and b̃1 = 0 to the final values ãi and b̃i is due to the
sets Ts, j in the path. In fact, if Tb,i0 , Ts, j and Tb,i1 are consecutive vertices of this path,
then |ãi1 | ≤ |ãi0 | + 2k

|Ts, j |. It follows that |ãi | ≤ 2k
|Ts| ≤ 2l/5 and similarly |b̃i | ≤ 2l/5

for i = 1, . . . , m.

Since each Rs, j must intersect some Rb,i , there must be at least one point in Rs, j

congruent to (ãi , b̃i ). As the diameter of Rs, j is at most 2k
|Ts, j | < 2l/5, the nearest lattice

point to all points 2−lw with w ∈ Ts, j is the same point (A j , B j ) ∈ Z2, Furthermore, the
distance between (2l A j , 2l B j ) and any point of Rs, j is at most 2l+1/5.

Let I be the set of all integer pairs (α, β) for which the monomial xα yβ appears in
one of the polynomials gi (x, y). Write gi (x, y) =

∑
(α,β)∈I εi,α,β xα yβ for suitable εi,α,β .

Then

P(x, y) =

∑
(α,β)∈I

x2lα y2lβ

( m∑
i=1

εi,α,β x ãi yb̃i

)
+

u∑
j=1

∑
t∈Ts, j

xat ybt 12kt

=

∑
(α,β)∈I

x2lα y2lβ

( m∑
i=1

εi,α,β x ãi yb̃i +

∑
{ j |(A j ,B j )=(α,β)}

∑
t∈Ts,v

xat −2lα ybt −2lβ12kt
)

.

Notice that every term in the above sum is contained in a neighborhood of radius 2l+1/5
of the corresponding point (2lα, 2lβ). Since the diameter of P is smaller than 2l/5, one of
the terms in this sum yields P and the others vanish. By the assumption that (0, 0) ∈ R, it
follows that P must equal the term corresponding to (0, 0), namely

m∑
i=1

εi,0,0x ãi yb̃i +

∑
{ j |(A j ,B j )=(0,0)}

∑
t∈Ts, j

xat ybt 12kt
= P(x, y),

whereas for (α, β) 6= (0, 0) we have

m∑
i=1

εi,α,β x ãi yb̃i +

∑
{ j |(A j ,B j )=(α,β)}

∑
t∈Ts, j

xat −2lα ybt −2lβ12kt
= 0.

It follows that in the above expansion for P(x, y) we can replace 2lα and 2lβ by α

and β, respectively, and write
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P(x, y) =

∑
(α,β)∈I

xα yβ

( m∑
i=1

εi,α,β x ãi yb̃i +

∑
{ j |(A j ,B j )=(α,β)}

∑
t∈Ts, j

xat −2lα ybt −2lβ12kt
)

=

m∑
i=1

x ãi yb̃i gi (x, y) +

∑
(α,β)∈I

xα yβ

( ∑
{v|(Av,Bv)=(α,β)}

∑
t∈Ts,v

xat −2lα ybt −2lβ12kt
)

=

m∑
i=1

∑
t∈Pb,i

x (ãi +(at −ãi )/2l )y(b̃i +(bt −b̃i )/2l )12kt −l

+

u∑
j=1

∑
t∈Ts, j

xat −2l Av+Av ybt −2l Bv+Bv12kt
. 2

Proof of Proposition 7.5. Take a decomposition as in (15) with maxt∈T as small as
possible. Suppose, say, that 2k1 ≤ · · · ≤ 2kh(P) . Set k0 = 0. Let m be the maximal integer
such that 2km ≤ 5D. If s ≥ m, and if 2ks+1−ks > 5h(R), the assumptions of Lemma 7.6
are satisfied for k = ks and l = ks+1, so that the conclusion of that lemma contradicts
our minimality assumption. It follows that 2ks+1 ≤ 5h(P) · 2ks for s ≥ m, and therefore
by Theorem 7.1 we have 2kh(P) ≤ (5h(P))h(P)(5D) ≤ (5r3)r3

(5D). Hence every triangle
in the decomposition must be within a radius of

∑
t∈T 2kt ≤ (r3)(5h(P))h(P)(5D) ≤

(5r3)r3
(5D) from some point of R.

Since the number of decompositions satisfying these properties is finite, this yields an
algorithm for finding a decomposition as required. 2

8. Higher-order mixing along special sequences
The main theme of this paper is that a sequence ((a(n)

1 , b(n)
1 ), (a(n)

2 , b(n)
2 ), . . . ,

(a(n)
r , b(n)

r ))∞n=1 is mixing unless it satisfies certain quite restrictive conditions. In this
section we apply our previous results to study the conditions under which some ‘natural’
sequences, arising from polynomials or multiplicative semigroups, are mixing. The
examples below give further validation to our theme. We start with the following
straightforward consequence of Lemma 6.2.

PROPOSITION 8.1. Each of the following three conditions implies that the sequence

((a(n)
1 , b(n)

1 ), (a(n)
2 , b(n)

2 ), . . . , (a(n)
r , b(n)

r ))∞n=1

is mixing:
(1) |a(n)

i − a(n)
j | −→

n→∞
∞ for 1 ≤ i < j ≤ r .

(2) |b(n)
i − b(n)

j | −→
n→∞

∞ for 1 ≤ i < j ≤ r .

(3) |(a(n)
i + b(n)

i ) − (a(n)
j + b(n)

j )| −→
n→∞

∞ for 1 ≤ i < j ≤ r .

In fact, if the first condition in the proposition is satisfied, then we can bound from above
the power of x dividing the left-hand side of (11), if the second condition is satisfied then
we do the same using 1 + x , and if the third condition holds then we prove the proposition
by considering the degree of the left-hand side of (11).

The following proposition is an immediate consequence of Proposition 8.1.
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PROPOSITION 8.2. Let pi (x), qi (x) ∈ Q[x] be polynomials without constant term such
that pi (Z), qi (Z) ⊆ Z, 1 ≤ i ≤ r . Suppose at least one of the following conditions holds:
(1) the polynomials pi (x) are mutually distinct;
(2) the polynomials qi (x) are mutually distinct;
(3) the polynomials pi (x) + qi (x) are mutually distinct.
Then the sequence ((p1(n), q1(n)), (p2(n), q2(n)), . . . , (pr (n), qr (n)))∞n=1 is mixing.

Denote by Z∗ the multiplicative semigroup of non-zero integers. Let π j : Zm
→ Z be

the j th coordinate map, j = 1, . . . , m.

LEMMA 8.3. Assume that G is a finitely generated subsemigroup of the m-fold cartesian
product (Z∗)m with a set of generators h1, . . . , ht , such that for all j = 1, . . . , m and
i = 1, . . . , t we have π j (hi ) 6= ±2s for s ≥ 1. Let l : Zm

→ Z be a linear function, and
let (gn) be a sequence in G such that |l(gn)| −→

n→∞
∞. Then, for any fixed integer d and

any fixed a0, . . . , ad , there exist at most finitely many n for which l(gn) is of the form∑d
i=0 ai 2ri .

Proof. Let R = {2, 4, 8, . . .} be the subsemigroup of Z∗ generated by 2. The conditions of
the lemma imply that, for every g ∈ G and j = 1, . . . , m, the set Rπ j (g) ∩ π j (G) is finite.

Let (gn) be a sequence in G such that |l(gn)| −→
n→∞

∞. Let l(x1, . . . , xm) =
∑m

i=1 αi xi .

Replacing {1, . . . , m} by a subset thereof and passing to subsequences if needed, we
may assume that no subsum of l(gn) =

∑m
i=1 αi gni vanishes. Thus we need to prove that

the equation

l(gn) −

d∑
j=0

a j 2r j = 0

has at most finitely many solutions (n, r0, . . . , rd) with no vanishing subsums of∑d
j=0 a j 2r j . (If there is a vanishing subsum, replace it by a shorter sum.) In particular, it

suffices to prove that

l(2−r0 g) −

d∑
j=1

b j 2r j −r0 = 1, b j = a−1
0 a j

has finitely many solutions (g, r0, . . . , rd) with g ∈ G and ri as above. By
[2, Theorem 1.1], there exist at most finitely many solutions of

l(g′) −

d∑
j=1

b j 2s j = 1, g′
∈ G ′,

without vanishing subsums, where G ′ is the subgroup of R∗ generated by G and

{(2, 1, . . . , 1), (1, 2, . . . , 1), . . . , (1, 1, . . . , 2)}.

Since Rπ j (g) ∩ π j (G) is finite for each g ∈ G, it follows that for every such g′ there
are at most finitely many possible values for r0 such that g = 2r0 g′

∈ G. In particular,
l(gn) −

∑d
j=0 a j 2r j = 0 has finitely many solutions without vanishing subsums. Now we
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take a general solution of l(gn) −
∑d

j=0 a j 2r j = 0 and rewrite it as a sum of minimal
vanishing subsums. We decompose a linear function into subsums in the form

l(x1, . . . , xm) = α1x1 + · · · + αm xm =

∑
j

l j (x1, . . . , xm),

where T = {T1, . . . , Ts} is a partition of {1, . . . , m} and l j (x1, . . . , xm) =
∑

i∈T j
αi xi .

The partition T can be chosen so that the minimal vanishing subsums are of the form
l j (gn) −

∑
i∈U j

ai 2ri , where U = {U1, . . . , Us} is a similar partition for {0, . . . , c}. For
any such pair of partitions (T, U) there are a finite number of solutions so that the
minimal vanishing subsums are actually l j (gn) −

∑
i∈U j

ai 2ri , so that there are finitely

many solutions of l(gn) −
∑d

j=0 a j 2r j = 0. 2

LEMMA 8.4. Let G be as in the preceding lemma and let l1, . . . , lr , l ′1, . . . , l ′r : Zm
→ Z

be linear. If (γn)∞n=1 is a sequence in G satisfying

ρ((li (γn), l ′i (γn)), (l j (γn), l ′j (γn))) −→
n→∞

∞, 1 ≤ i < j ≤ r,

then the sequence ((l1(γn), l ′1(γn)), . . . , (lr (γn), l ′r (γn))) is mixing.

Proof. If the sequence in question is not mixing, then by passing to a subsequence we
may assume that, say, the sequence (l1(γn) − l2(γn)) is unbounded and is composed of
numbers each of which is of the form

∑d
i=1 εi 2ri , where d ≤ h(r) and εi = ±1 for each i .

This contradicts Lemma 8.3, and thus proves our lemma. 2

Let D ⊆ Z2. A Z2-action (T, S) on (X, B, µ) is r-mixing along D if

µ

( r⋂
i=1

T mi (t)Sni (t) Ai

)
−→

r∏
i=1

µ(Ai ), A1, . . . , Ar ∈ B,

as (mi (t), ni (t)) ∈ D for each i and ρ((mi (t), ni (t)), (m j (t), n j (t))) −→
t→∞

∞ for i 6= j .

THEOREM 8.5. Let 0 be a finitely generated multiplicative subsemigroup of Z∗. If
0 ∩ {2n

: n = 1, 2, . . .} = ∅, then Ledrappier’s system is mixing of all orders along 0 × 0.

Proof. If Ledrappier’s system is not mixing of order r along 0 × 0, then there exist
sequences (mi (t))∞t=1 and (ni (t))∞t=1 in 0, for i = 1, . . . , r , such that

µ

( r⋂
i=1

σmi (t)τ ni (t) Ai

)
−→
t→∞

K 6=

r∏
i=1

µ(Ai ),

and ρ((mi (t), ni (t)), (m j (t), n j (t))) −→
t→∞

∞. Let γt = (m1(t), . . . , mr (t), n1(t), . . . ,

nr (t)) ∈ G = 02n and apply Lemma 8.4. 2

THEOREM 8.6. Let 0 be as in Theorem 8.5, and pi (x), qi (x) be integer polynomials
without constant term, 1 ≤ i ≤ r , such that the pairs (pi (x), qi (x)) are distinct. Then

µ

( r⋂
i=1

σ pi (m)τ qi (n) Ai

)
−→

(m,n)→∞

(m,n)∈0×0

r∏
i=1

µ(Ai ).
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Proof. We proceed similarly to the proof of the preceding theorem. If the conclusion does
not hold, then there exist sequences (mt )

∞

t=1 and (nt )
∞

t=1 in 0 such that

µ

( r⋂
i=1

σ pi (mt )τ qi (nt ) Ai

)
−→
t→∞

K 6=

r∏
i=1

µ(Ai ).

Put γt = (mt , . . . , mM
t , nt , . . . , nM

t ) ∈ G = 02M , where

M = max{deg p1, . . . , deg pr , deg q1, . . . , deg qr }.

Now apply Lemma 8.4. 2

To present our next result, we first need the following.

Definition 8.7. A polynomial p(x) ∈ Q[x] with p(Z) ⊆ Z is 2-exceptional if the
diophantine equation p(m) = 2n has infinitely many positive solutions (m, n).

LEMMA 8.8. A non-constant polynomial p(x) ∈ Q[x] with p(Z) ⊆ Z is 2-exceptional if
and only if it satisfies the following conditions:
(a) p(x) = 2 j (ax + b)k for certain integers a, b, j, k with b, k ≥ 1 and j ≥ 0;
(b) a is odd and (a, b) = 1;
(c) b is congruent to some power of 2 modulo a.

Proof. Suppose first that p(x) is 2-exceptional. By [11, Theorem 10.2], the polynomial
p(x) has a single root, so that p(x) = d(ax + b)k for some d, a, b, k with a, k ≥ 1.
Clearly, d must be a power of 2, and we may assume that (a, b) = 1. Also, the arithmetic
progression (am + b)∞m=1 must be a power of 2 infinitely often. For 2n′

to be of the form
am + b we need to have 2n′

≡ b (mod a).
The converse direction is trivial. 2

Going over the proof, we see that, moreover, given such a 2-exceptional polynomial, it
is easy to characterize the argument values for which it assumes a power of 2 value.

To formulate our next theorem, it will be convenient to use the following
notion. Let pi (x) and qi (x) be integer polynomials (or, more generally, rational
polynomials, assuming integer values at all rational points) for 1 ≤ i ≤ 2. The quadruple
(p1(x), q1(x), p2(x), q2(x)) is exceptional if up to some additive constants it is of one of
the forms

(p, 0, 0, p), (0, p, p, 0), (0, −p, −p, −p), (−p, −p, 0, −p),

(−p, p, −p, 0), (−p, 0, −p, p), (16)

where p(x) = 2t (ax + b)r , for some integers t, a, b, r with t ≥ 0, r ≥ 1, a odd and b in
the orbit of 2 modulo a.

THEOREM 8.9. Let pi (x), qi (x) ∈ Q[x] with pi (Z), qi (Z) ⊆ Z for i = 1, 2. Then

µ(A0 ∩ σ p1(m)τ q1(n) A1 ∩ σ p2(m)τ q2(n) A2) −→
(m,n)→∞

µ(A0)µ(A1)µ(A2),

A0, A1, A2 ∈ B,

if and only if the quadruple (p1(x), q1(x), p2(x), q2(x)) is not exceptional.
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Proof. The convergence condition is satisfied if and only if the triangle

{(0, 0), (p1(n), q1(n)), (p2(n), q2(n))}

is not a special triangle, up to some additive constants, infinitely often. Then it must be of
one of the forms in (16), where p(n) must be a power of 2 infinitely often. It follows that
p must be special. 2

The analogue of Theorem 8.9 for higher-order mixing seems unreachable with the
current knowledge on the emerging diophantine equations. We start with the following.

Example 8.10. Consider the polynomials

p1(x) = 0, q1(x) = 0,

p2(x) = 0, q2(x) = x7,

p3(x) = x7
− x3, q3(x) = 0,

p4(x) = x7
− x3, q4(x) = x3.

According to Theorem 3.3 and Proposition 4.1 (using the quadrangle Q3), the sequence

((p1(n), q1(n)), (p2(n), q2(n)), (p3(n), q3(n)), (p4(n), q4(n)))∞n=1

is not mixing.

Thus, a 4-tuple of pairs of polynomial sequences may fail to mix even if some of the
differences are not (up to a constant) polynomials with a single root. The reason is that
these polynomials are allowed to assume values which are sums or differences of two
powers of 2, so that [11, Theorem 10.2] is not applicable any more. To characterize
mixing polynomial sequences of length 4, one would need to find which polynomials
are guaranteed not to assume infinitely often values of the form 2k

± 2l . In view of
Theorem 7.1, to characterize r -tuples of pairs of polynomials for which we have mixing,
one needs first to find which polynomials may assume infinitely often values which are
sums and/or differences of up to some fixed number of powers of 2. As even the resolution
of the very special case, of finding which sums/differences of up to three powers of 2 are
squares, is quite recent [12] (see also [4] and [10]), it seems that a lot of work still needs to
be done to that end. In this connection, we raise the following.

QUESTION 8.11. Given any positive integer C, characterize those polynomials p(x) for
which the diophantine equation

p(m) = 2n1 ± 2n2 ± · · · ± 2nC

may have infinitely many solutions m, n1, . . . , nC .

THEOREM 8.12. If {(a1, b1), (a2, b2), . . . , (ar , br )} is a special r-gon, then:
(1) the set {1 ≤ k ≤ r : ak = min1≤i≤r ai } is of even size, and in particular consists of at

least two numbers;
(2) the set {1 ≤ k ≤ r : bk = min1≤i≤r bi } is of even size, and in particular consists of at

least two numbers;
(3) the set {1 ≤ k ≤ r : ak + bk = max1≤i≤r (ai + bi )} is of even size, and in particular

consists of at least two numbers.
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Proof.
(1) Suppose min1≤i≤r ai = a, where the minimum is obtained an odd number of times.

Then the coefficient of xa in the polynomial
∑

1≤i≤r xai (1 + x)bi is 1, and in
particular

∑
1≤i≤r xai ybi is not an L-polynomial.

(2) This part follows from the preceding part by interchanging x and 1 + x .
(3) Suppose max1≤i≤r (ai + bi ) = c, where the maximum is obtained an odd number of

times. Then the coefficient of xc in the polynomial
∑

1≤i≤r xai (1 + x)bi is 1, and in
particular

∑
1≤i≤r xai ybi is not an L-polynomial. 2

Example 8.13.

µ

( r⋂
i=1

σ ni
τ n Ai

)
−→
n→∞

r∏
i=1

µ(Ai ), A1, A2, . . . , Ar ∈ B.

Example 8.14. If p1(x), q1(x), p2(x), q2(x), . . . , pr (x), qr (x) are polynomials of
mutually distinct degrees, then

µ

( r⋂
i=1

σ pi (n)τ qi (n) Ai

)
−→
n→∞

r∏
i=1

µ(Ai ), A1, A2, . . . , Ar ∈ B.

Definition 8.15. A set E ⊆ N is rarified if

|{1 ≤ n ≤ N : n ∈ E}| = O((log N )C )

for some constant C .

We shall sometimes say rarified with exponent C when we wish to specify the constant
C in the definition.

LEMMA 8.16. If E1, . . . , En are rarified with exponent C, then so is E1 ∪ · · · ∪ En .

Proof. Trivial. 2

LEMMA 8.17. Let f : Z → Z be a function that is at most M-to-1 and that satisfies
f (n) = O(nR) for positive constants M and R. If E is rarified of exponent C then so
is f −1(E). In particular, the inverse image in N of a rarified set under a polynomial map,
which maps N into itself, is rarified as well.

Proof. Let K be a constant such that f (n) ≤ K nR and F = f −1(E). Put E(N ) =

{1 ≤ n ≤ N : n ∈ E} and F(N ) = {1 ≤ n ≤ N : n ∈ F}. Then y ∈ F(N ) implies f (y) ∈

E(K N R). Therefore,

|F(N )| ≤ M |E(K N R)| = O([log(K N R)]C )

= O([log K + R log N ]
C )

= O((log N )C ). 2

Note that this lemma applies in particular to polynomials.

THEOREM 8.18. Let pi (x), qi (x) ∈ Q[x], 1 ≤ i ≤ r, be polynomials without constant
term, assuming integer values on integers, and such that (pi (x), qi (x)) 6= (p j (x), q j (x))

for i 6= j . Then there exists a rarified set E ⊆ Z such that
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µ

( r⋂
i=1

σ pi (n)τ qi (n) Ai

)
−→

r∏
i=1

µ(Ai ), A1, A2, . . . , Ar ∈ B,

as n → ∞ along values outside E.

For the proof, we need the following fact.

PROPOSITION 8.19. Let ((a(n)
1 , b(n)

1 ), (a(n)
2 , b(n)

2 ), . . . , (a(n)
r , b(n)

r ))∞n=1 be a non-mixing
sequence of r-tuples of pairs of integers. Denote by Dh ⊂ Z the set of sums and differences
of at most h powers of 2, where h = h(r) is as defined in §7. Then, for some pair
(i, j) = (i(n), j (n)), the difference a(n)

i − a(n)
j tends to ∞ with n, and is at a bounded

distance from Dh infinitely often.

Note that, by passing to a subsequence, we may assume (i, j) to be constant.
In the proof we shall use the notion of a minimal special r-gon, which is a special r -gon,

containing properly no other special r -gon.

Proof of Proposition 8.19. Obviously, any special r -gon is a union of minimal ones. Let
f be a minimal special r -gon. Write f =

∑h
i=1 1i , where each 1i is triangular. Consider

the graph G, whose vertices are v1, . . . , vh and containing the edge viv j if the triangular
polynomials 1i and 1 j have a common term. In other words, a term of 1i may cancel a
term of 1 j only if viv j is an edge of G. In particular, there can be no cancellation between
triangular polynomials corresponding to vertices in different connected components of G.
It follows that, if vi1 , . . . , vir are all vertices in one connected component, then

∑r
u=1 1iu

is a subsum of f and a special r ′-gon. Thus, G must be connected. Note that we can
transform a triple (i, a, b), where xa yb is a term of 1i , to any other by a sequence of
alternating steps of the following types:
(1) replace (i, a, b) by ( j, a, b) if xa yb is also a term of 1 j ;
(2) replace (i, a, b) by (i, c, d) if xc yd is also a term of 1i .
Only the steps of the second type change the coordinates, and they do so only by a power
of 2. By choosing a simple path in the graph, we see that we need at most h steps of type
1, and therefore also at most h steps of type 2. Since a special r -gon contains at least 3
non-collinear points, it follows that every special r -gon contains terms of the form xa yb

and xc yd , where a − c ∈ Dh . Now the result follows from Theorem 3.3. 2

Proof of Theorem 8.18. By Proposition 8.19, if every sequence ai (n) − a j (n) or bi (n) −

b j (n) that tends to infinity gets away from Dh , then the sequence

((a1(n), b1(n)), (a2(n), b2(n)), . . . , (ar (n), br (n)))

is mixing. Note that there exists a rarified set E , such that the sequence x(n) satisfies
ρ(x(n), D) −→

n→∞
∞ provided that x(n) −→

n→∞
∞ and x(n) /∈ E . Now the result follows

from Lemmas 8.16 and 8.17. 2
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