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Abstract

Gerstenhaber and Myung in [10] classified all commutative-power associative
nilalgebras of dimension 4. In [7] Gerstenhaber and Myung’s results are generalized
by giving a classification of commutative right-nilalgebras of right-nilindex four and
dimension at most four, without assuming power-associativity. In this paper we
complete this research and give a classification of commutative right-nilalgebras
of right-nilindex five and dimension four, without assuming power-associativity,
thus completing the classification of commutative right-nilalgebras of dimension

at most four.
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1 Introduction

The problem of nilpotency in a commutative power-associative algebra is
known as Albert’s problem [1] (1948): Is every commutative finite dimensional

power-associative nilalgebra nilpotent?

Suttles [14] in 1972, gave an example of a commutative five dimensional
power-associative nilalgebra of nilindex 4 which is solvable and not nilpotent,
thus showing Albert’s conjecture to be false and forcing a new reformula-
tion of the conjecture. Therefore what is now really known by the Albert
conjecture is whether any commutative finite dimensional power associative

nilalgebra is solvable.

Gerstenhaber and Myung [10] proved that any commutative and power-
associative nilalgebra of nilindex 4 and dimension 4 over a field of character-
istic # 2 is nilpotent. There are many others papers dealing with Albert’s
problem (see for instance [2], [3], [4], [5], [6], [8], [9], [11] and [12]).

Moreover, in [10] Gerstenhaber and Myung determined the isomorphism
classes of commutative power-associative nilalgebras of nilindex four and di-
mension four. They found one family of algebras parameterized by F* /(F*)?
and 5 individual algebras, two of them being associative.

More recently, Elduque and Labra in [7] determined the isomorphism
classes of commutative right-nilalgebras of nilindex four and dimension four.
They do not assume power-associativity. They found 7 individual non iso-

morphic algebras.

In this paper we complete this study by giving a classification of commu-



tative right-nilalgebras of right-nilindex five and dimension four, over fields
of characteristic # 2 without assuming power-associativity. Extending thus

the classification given by Gerstenhaber and Myung.

2 Right-nilpotency

Let A be a nonassociative algebra and let x € A. We define the right-principal
powers of x by ! = x and 2""! = 2"z for all n > 1. An element x € A is
called right-nilpotent with right-nilindexn > 1if 2" = 0and 2" 1 #40. A is
called right-nilalgebra with right-nilindex n if x™ = 0 for all x € A and there
exists some a in A with a"~! # 0.

The algebra A is called nilpotent (respectively, right-nilpotent) in case
the descending chain of ideals (respectively right ideals) defined by A! =
A A =3 ATAS = S AIAY forn > 1 (or A< = A and
A< = A<"1>A for n > 1) ends up in zero. The smallest 7 such that
A" = 0 (respectively A<"> = 0) is called the index of nilpotency (respectively
index of right-nilpotency) of A. Clearly, if A is nilpotent then A is right-
nilpotent. Moreover, if A is commutative or anticommutative, then A° =
A3A? + A*A C A3A = A3A = A<*>. Thus, if A<*> =0, then A is nilpotent
with nilpotent index at most 5.

More generally, it is known (see [15, Proposition 1]) that if A is a com-
mutative or anti-commutative algebra, then A?" C A<">. Therefore if A is

right-nilpotent, it is nilpotent too.

Throughout the paper, all the algebras considered will be commutative and

defined over a ground field F' of characteristic # 2.



2.1 Nilindex 5

In what follows A will be a commutative nonassociative algebra that satisfies
strictly the identity z° = (((zz)x)z)z = 0, and contains an element a in A
such that a* # 0. This means that A satisfies the identity 2° = 0 and all its

linearizations.

The following notation will be used. Given a set S, (S) will denote the
subspace generated by S, while alg(S) will be the subalgebra generated by
S.

Theorem 1. Let A be a commutative algebra of dimension 4 over a field F),
char(F) # 2,which satisfies the identity 2° = 0 strictly and contains elements
y with y* # 0. Then A is nilpotent.

Proof: Extending scalars if necessary to get an infinite ground field, the
setG={reA | 2?40} ={re A | {x,2*2%2*} isabasisof A }is
Zariski-open and not empty in A, so it is dense and we conclude that L1 = 0,
for any = € G where L,(y) = zy is the left multiplication operator and, by

Zariski density, we have that this is true for any x € A. That is
Li=0V x €A, (1)

All references to density will refer to density in Zariski topology (for its
definition and main features on not necessarily finite dimensional spaces one
may consult [13]).

Using the nilpotency of the operator L,, the first linearization of the
identity z° = 0 becomes ((z?y)z)z + (z*y)x + 2y = 0 for every z,y € A.



Expressing this identity in terms of multiplication operators we obtain:
L2Lgo 4 LyLys + Lya =0 YV 1 € A. (2)

Fix an element x € G, then for every y € A, there exist o, € F, i =
1,--+,4 such that y = oy, 2+ a2 2® + a3 2% + o 44 2*. The equation

(2) is equivalent to the following conditions for every y € A,

Qg =0, (3)

Qlzay 22 + g3y » = 0, (4)

Qipay 43 + A3y 2 + Qu2y p = O, (5)
Qgiy gt + g3y 23 + Qp2y 22 = 0. (6)

In particular we have that for a,b,c,d,e, f € F,

virt = ax® +bat, 2*2t = —ax® + e +dat, 272t = — (b4 o) +exd 4 fa!

If @ = 0, then the nilpotency of the operator L, s« implies that b = 0.
Since z3(2* — dr) = cx3, the nilpotency of Lga_g, implies that ¢ = 0 and
23x* = da*. Therefore d = 0, as L,s is nilpotent. In this way we have that
23zt = 0 = 22", Now (4) implies that a,s,2, = 0 = a,3,3, and then (5)
implies that a,s,3,2 = 0. Therefore 2°2® = ga® + ha*, g¢,h € F, that is,
23(2® — ha) = g2® and the nilpotency of L,s_p, implies that g = a,s,3 .3 = 0.

3 2%) is an ideal of

Now (6) implies that 2,3 ,2 = 0. Therefore, I = (x
A and A/I is a two-dimensional right-nilalgebra, then A is nilpotent. In
particular, we have that z%2* € (2%, z*) and (5) implies that .23 =0

so e =0and (z?) is an ideal of A. Since L, is nilpotent for every, y € A,



we have that zA = 0, A /(z*) is a three-dimensional right-nilalgebra, hence

nilpotent, and therefore the whole A is nilpotent.

Now we will see that the case a # 0 is not possible. If a # 0, extending

scalars if necessary, we can take a = 1. The equations (3), (4), (5) and (6)

give the following matrices A; corresponding to Lgi, t =1,--- ,4.
0000 0 d+k—e b+c 0
1000 0 —(+ —(d+k) —(b+c

e |0 e s e
01 00 1 g 0} e
0 010 0 h J f
0 b+c 1 0 0 0 0 0
0 —(d+k) —(b+2c) —1 0 —(b+¢) -1 0

P R A I A S N IR
0 1 k c 0 e c 1
1 J l d 0 f d b

with b,c,d,e, f,g,h,i,7,k,l € F.

For every x1, o, 23,24 € F, the matrix A = x1 A1 +x9As +13A3+ 14 A, is
nilpotent, A* = 0 and the (1, 1) entry of A* is a polynomial p( 1) (21, T2, 23, T4)
of degree < 4 which is zero for any value of x1, x9, x3, x4. Since F'is an infinite
field, all the coefficient are zero. Using a program of symbolic calculus we
obtain that:

The coefficient of z?x3z,4 in P@,1) is —c¢ — 2b, then ¢ = —2b.

Replacing this value of ¢, the coefficient of zyx322 is f —b3, those of zyx322
is —k + 40 and those of z3x3 is —d — 2b%. Therefore, f = b®, k = 4b* and
d = —2b2.



Substituting the above values, the coefficient of 3 is —i — 2b%, those of

31y 18 b — e and i = —2b%, e = b?.

Finally substituting the new values, the coefficient of zyx3 is —2b° —bj —1
and b # 0. On the other hand, the coefficient of z,23 is v® — b'g, so g = b™.
But the coefficient of z3 is b* then b = 0. A contradiction. This finish the

proof of the Theorem. O

Remark 1. In the proof of the above Theorem it was proved that x*A = 0
and that 22z € (23, 2*) which is an ideal of A. Using (6) this fact prove
that 2?23 € (z*) and the multiplication table of A in the basis {x, 2% x3 21}

18:

x x? x® at
x| a? 3 2 0
22| 23 ex® + ax? Bzt 0
3| ot Bt vzt 0
24| 0 0 0 0

for suitable scalars €,a, B,y € F. Moreover, scaling x if necessary, € may

be taken to be either 0 or 1, with e = 0 if and only if (A2A%)A = 0.

Remark 2. Correa, Hentzel and Peresi in [2] prove the above Theorem in
char(F) # 2,3 using the complete linearization of the identity x> = 0 and
evaluating there several elements of A. The proof that we give is valid in
char(F) = 3 and use elementary linear algebra instead of the complete lin-

earization.



3 Classification

Our aim in this section is to classify the algebras in Remark 1.

CASE ¢ =0. Here we have that A24%2 C A<*> = A%

Table I
T x? 3 ot
x| 2? 3 0
x? | 23 azt Bx* 0
23| 2t Bt vzt 0
24| 0 0 0 O

Denote by A%(«, 3,7) the algebra with multiplication given by Table I.

Let y € G(= {2z € A: 2" # 0}) then y = pux + va? + pz® + dx?, with
w# 0.

y* = pPa? + 2uwa® + (2up + av® + 2vpfB + p?y)at,

y? = 1P’ + (2pPv + (P pB 4 a4 2u1? B + 2uvpy)at,

y' = (pt 4 v + P py)at = P (p+ Br + yp)at,

y'y® = (pla+ 4pPvB + 4pPvPy)at = (Pt duv B+ 4vty)at,

vy’ = (W8 + 2u'vy)at = pt(uB + 2vy)at,

Yy = Syt

We have three sub-cases:

Sub-case (i): A%A% = 0. Then 8 = v = 0. The multiplication table

depends on a. We have that y* = p*z* and y%y? = ptax? = ay*. Therefore:

A%a,0,0) ~ A%a’,0,0) & a=d.



Moreover A%(a,0,0) is associative if and only if @ = 1. Note that A°(a,0,0)

satisfies 2222 = az? for any 2 € A.

Sub-case (ii): A3A4%3 =0 # A%A3. Then v = 0 # 3.

In this case we have

yt =P (u+ Br)at, v?y® = pd(pa + ), v?y® = p’Bat, yPy? = 0.
Since y* # 0 then p # 0 # p + Bv, and

4
v*y? = oy, a/:—ﬂ@+ Vﬁ)
p+vp
2
2,3 _ o4 r_ u=p
vy =0y, L
If we takel/zw’we get 6/:1and O{,:a_4+4‘u"6.

B uB

Two possibilities appear:
(a) a # 4, then taking p = 4_7", we have the algebra A°(0,1,0).

(b) @ = 4, and we have the algebra A°(4,1,0). This algebra satisfies
y*y® = 4dy*, for any y € G, since y*y? = p°(4p + dvp)at = 4’ (u + vp)a* =
4y* and, since G is Zariski open, A°(4,1,0) satisfies y?y? = 4y* for any y € A.

Therefore both algebras are not isomorphic.

Sub-case (iii): A3A3 # 0. Then v # 0.
In this case we have y* = p3(u+vB+py)xt and y*y® = p*(uB+2vy)zt.

Since y* # 0 then 0 # u + Bv + py, and we have y?y®> = ['y?, where
3 = u(pB+2vy)

ptvB+py
. B —
Taking v = —‘2‘7 and p such that p+vg+ py # 0, we have 5/ = 0. Hence

we may assume that f = 0 # ~. In this case:

y't =P (ptpy)at, vy = pP(pPatdvty)at, ytyt = 2ptvyat, gPy? = ptyat



Therefore if u # 0 # p+vp, y* # 0 and we obtain that

2 4 2
y2y2 = o/y4, where o = paTvy Ay
pp+ py)
2
y2y3 — 61y47 Where B/ — HvYy
A+ py
3
y3y = 'y, where v/ = vy
A+ py

If we take v =0, p= MT_H this imply that 3’ = 0,7 = 1 and

,  po po
pEpy Wy Py

«

With p = 772%, we have o = ayn? = 0n?, with 0 = oy and the algebra is
(isomorphic to) A%(n?,0,1), for any n € F'*.
We can observe that for the algebra A = AY(0,0,1), the matrix of the

bilinear form
A2JASH> 5 A2JA<> s A< = i~ F
in the basis {z? + A<, 2% + A<*>} is (49).

Then for this matrix we have that #(F*)? is the discriminant of this
bilinear form. Therefore, denoting the multiplicative group of F' by F* we

have

A%(0,0,1) =~ A%0,0,1) < O(F*) =0/ (F*)2.

Theorem 2. Let A be a four dimensional commutative and not power asso-
ciative algebra satisfying the identity x° = 0 but not * = 0, and such that
(A2A%)A = 0. Then A is isomorphic to one and only one of the following al-
gebras: A°(,0,0) (o € F), A%0,1,0), A°(4,1,0), A°(0,0,1), or A%a,0,1)
(o € H), where H 1is a set of representatives of F* /(F*)2.



Corollary 1. Let F' be a quadratically closed field. Then any four dimen-
sional commutative and not power-associative algebra satisfying the identity
2% = 0 and with multiplication given by table I is isomorphic to one and only
one of the following algebras: A°(a,0,0) (o € F), A%(0,1,0), A%(4,1,0),
A%(0,0,1) or A%(1,0,1).

CASE ¢ =1. Here we have that A24%2 C A3 = A%

Table I1
x x? 3 ot
x| 2? 23 zt 0
22| 2 23+ axt Bx* 0
x| 2t Bt vzt 0
2| 0 0 0 O

Denote by A'(a, 3,7) the algebra with this multiplication table.

Let y € A\ A? then y = px + va? + px3 + dz*, with p # 0.
y? = pPa® + 2y + v2)2’ + (2up + av® + 2vpB + py)at,
y* = 12 (utv) 2’ +(pPvat p(2uv+v2) + 12 pB+ 2uv+v2)v B+ (2uv +v2) py)at,
y' =1 (p 4 v)[p +vB + pylat
yry? = pta® + [pta + 207 2uw 4 V) B+ (2ur + 12)?q ]t
vy’ = [t (e +v)B+ i (e + v)2ur + v2)ylat,
vy’ = pt(p+v)Pyat,

Therefore y* # 0 (that is, y € G) if and only if p, u+ v, u+vB+ py # 0.
Putting A = u+ vf3 + py we have that A # 0 for y € G. On the other hand



2?2 —o® € (y*) = (2) if and only if pu* = p%(p + v). Since u # 0, then
1
pr = ptv, A =GPt +(1=B)u+py, y' = p'A sz, that is 2* = /#_Ay4' (7)

and

2uv+ V7 = v(pt(p+v)) = (1 — @) (p+p?) = plp—Dp(p+1) = p(@* = 1).
(8)
Since A # 0, using (7) and (8) we have that:

4
y3y3 _ N87x4 _ % y4
2 2_
g2 = (U3 + S (2 — 1)y)at = & (ﬁ+(§ D) Y

vyt = pte? + [t 4+ 20t (n? = 1B + (*(p? — 1))

On the other hand,

v = pta® + [ (n = Do+ 1® (0 = 1) + p?pB + pP (0 — 1) (n — 1)3
+ 2 (= 1)py))at

= e + Pl = Dot p(p® = 1)+ (p(6 + (1 = 1)y) + p(p® = 1) (p — 1) 52",

Therefore
r

MQ—AZJ47
where T' = pu(p — Va4 p(p? — 1) 4+ p(B 4 (1* — 1)) + p(p? — 1)(p — 1)

y® = ptad 4 p2Tat = it +

Since p # 0 and A # 0, we obtain z3 = %yg - /ﬁ%y‘l

Replacing this value in y?y? = pa3 + ptla +2(p® — 1) 3 + (u% — 1)24]2*
and putting ® = o + 2(u? — 1)3 + (u* — 1)%y we obtain

V= et =yt =yt R = T



Summarizing, if y is any element of A with y* # 0 and y*y? —3° € (y*),
then there are elements u # 0 and p in F' such that:

y2y2 — y3 + O/y4

y2y3 _ g y4
y3y3 — 7/y4
where
g =T /T_u%ﬁ+uﬂ—wﬂ ,V:gﬁ
/,L2A bl A ) A )
with

A=p+plp—1)8+py,
O =a+2u* - 1)B+ (u* - 1)y,
D= p(p? = 1)+ p(p = Do+ (p+ plp® = 1) (p = 1))8+ (1 = 1)py.
We have three sub-cases:
Sub-case (i): A?A% =0. Then 3 =~ = 0. So we have that
A=p T=plp—Na+pp?=1), &=a
Then 3%y =0, 3%y =0 and

20-T _ pPa—p(p—Da—p(p=1) _ a—p?4+1 .
A = 3 = ——, that is,

v*y? = 3 + o'y*, where o/ = £

1+a)?=1+a.

Therefore:

Al(,0,0) ~ AYd/,0,0) & (1+a)(F*)* = (1+a)(F*)>

Sub-case (ii): A%A% =0 # A?A3. Then v =0 # 3.



In this case we have
A=pp+ (1= Bpu=p((p—1)8+1), & =a+2(u*—1)p,

U= p(p = Do+ p(p® = 1) + p(p® = 1)(p = 1)8 + pp.
Therefore, using (7) and (9) we obtain that

w2e—-T
AT

v}yP =0, y*® =12+ o'y?, where o/ =

2,3 _ a4 ' uB B
y7y° = PB'y*, where 5’ = 55 = i)

We have two possibilities:

(a) 3 = 1. Then ' = 1 and taking u = 1 and p such that I' = p2® we
have that o/ = 0, so that the algebra is (isomorphic to) A*(0,1,0).

(b) 8 # 1. Then taking pu = @, we obtain (3 = 2, and then taking p
such that ;2® =T, we have that o/ = 0, so that the algebra is A'(0,2,0).

Both algebras are not isomorphic, because the first algebra satisfies 2222 -
2 = 2223, V 2 € A which is not satisfied by the second one. In fact, for 3 = 1,
if 2 = aw+ bz + cx® + dx?, then 2% = a2 + (b* + 2ab) x> + 2(ac+ be)x?, 23 =
(a® + ba?)x3 + (ab® + 2a*b)z* + (b* + 2ab® + a®c)x?, 222% = a3 + 2(a®h* +

2a3b)xt, (222%)z = Pzt + ba'z?, 2223 = a?(a® + ba?)xt.

Sub-case (iii): A3A3 # 0. Then v # 0.

: A pty r_
Since 7 = £ = TR P ocan be taken so that 7 = 1, and we

have to deal with the algebra Al(«, 3, 1).



Thus, assume from now on that v = 1. Observe that for y = px + va? +

px® + dx* one gets:

) = e (ia? + g+ )2)
= (18 + p' 2ur +v?))a’
= 1 (u*B + 2uv + v*)a*
while y3y® = pt(u + v)%zt, so (y?)? = (y*)? for any y if and only if 3 = 1.
Now, with v = 1, we look for elements y € G such that y?y* — y3 € (y*)
and y3y® = y*.
This gives ! = A, 80 p = p* —p—p(p—1)8 = p(p— 1) (1P +p+1-3),

and

pe+ @ -1)) pf+@w -1 _ p-1

g = A 1 e b
that is,
B—1=p2B 1)
Therefore, if A'(a,3,1) is isomorphic to A'(a/, 3, 1), then (3 — 1)(F*)? =
(8" = 1)(F™)%.

In this case,

U=y’ = 1)+ p(p— Do+ (p+p(p® = 1)(n—1))8+ (u* = 1)p
= p(p? = 1)+ p(p = Da+ p(p — 1) (2% + p — 6)8
+ (0 = Dulp = 1)1 + p+1-5)

ZM(M—1)<Oz+u+1+(2u2+u—ﬂ)ﬁ+(u2—1)(u2+#+1—ﬁ>>-

We are left with two possibilities:



F=p(p—D(a+p+1+20" +p—1+ (= 1)(p* + 1)
= pu(p — 1) (a +2u(p + 1) + p(p+ 1) (1 — 1))
= p(p — 1) (e + p(p +1)(1* +1))
= p(p — Do+ p* (' = 1)

Hence p?® — I’ = pa, and thus

, e -T pa o«
o0 = — = — = —
2N R

and, therefore,
Alla,1,1) ~ AYd/,1,1) & o(F*)° =o/ (F*)°.

(b) B # 1. Here Al(«, 3,1) is isomorphic to A*(«/, #,1) if and only if there
is a scalar p € F* such that § — 1= p?(# —1) and o/ = £ S , with ® and

[' as above.

Once 3 # 1 is fixed, A'(«a, 3,1) is isomorphic to A'(a’, 3,1) if and only
if o/ = “25—64 for p = £1, if and only if either @/ = o (u = 1) or &/ =
—a+ (B-1)8 (p=-1).

In particular, if F'is quadratically closed, then one can always take 5’ = 0,

and then we get the algebras A'(a,0,1) with

Ale,0,1) ~ AYd/,0,1) & o = +a.



Theorem 3. Let A be a four dimensional commutative and not associa-
tive algebra satisfying the identity x> = 0 but not z* = 0, and such that
(A2A%)A #£ 0. Then A is isomorphic to one of the following algebras:

(i) AY(—1,0,0),

(ii) AY(a,0,0), with « € —1 + H, where H is a set of representatives of
FX/(FX)Q,

(iii) A'(0,1,0),
(i) AY(0,2,0),
(0) A10,1,1),
(vi) Al(a,1,1), witha € Z, where T 1is a set of representatives of F* /(F*)?,
(vii) A'(a,8,1), where 3 € 1+ H (H as in (i1)).

Moreover, algebras in different items are not isomorphic, and so are alge-
bras in the same item, with the exception of item (vii), where A'(«, 3,1) is
isomorphic to A'(o/,3',1) (3,8 € 1+ H) if and only if 3 = 3 and either
o =aord =—a+(f—-1)p.

Corollary 2. Let F' be an algebraically closed field. Then any four dimen-
sional commutative and not power-associative algebra satisfying the identity
x® = 0 and the multiplication given by table II is isomorphic to one and only
one of the following algebras: A'(0,0,0), A'(—1,0,0), A*(0,1,0), A*(0,2,0),
AY0,1,1), AY(1,1,1), AY(0,0,1), or AY(c,0,1) for a« € F, where F is a sub-
set of ' satisfying FU—-F = F* and FN—-F =10 .



Summarizing, in the case of an algebraically closed field F, Table III
display all the non isomorphic four dimensional commutative and not power-
associative algebras satisfying the identity z° = 0, but not satisfying the

identity z* = 0.

Table I1I
At = A<t A2A3=0| A%q,0,0) y2y? = ay Yy
dim(A?) =1. | A343=0+# A2A3 | A°4,1,0) vyt =4ytvVye A
(e=0), A°(0,1,0) Jy, vy # 4y
A3A3£0 | AY%0,0,1) rank(A? x A? — A*:

(u,v) = uv) =1

A%(1,0,1) rank(A% x A2 — A%

(u,v) — uv) = 2

At = A3 A48 =0 AY0,0,0) Sy € A\ A% : g2 — o

dim(A%) = 2, Al(=1,1,0) Byc A\ A2 : g2y —
(e=1), ASA3 =0+# A2A% | AY0,1,0) vyt y=vy’Vye A

A1(0,2,0) Jye A vy’ y# vy’

A 20| A1) W) = (P vy

Jdz 2323 =24 40, 2222 =23

AN1,1,1) (v*)* = (v°)* ¥y

Ar 2323 =440, 2222 =23

Al(e,0,1) Fy (v*)* # (v°)?

AY(,0,1) ~ AY/,0,1)

& o = 4o
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