ON THE CLASSIFICATION OF COMMUTATIVE RIGHT-NILALGEBRAS OF NILINDEX FIVE AND DIMENSION FOUR ${ }^{1}$

Alberto Elduque ${ }^{2}$, and Alicia Labra ${ }^{3}$
${ }^{2}$ Departamento de Matemáticas, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain e-mail: elduque@unizar.es
${ }^{3}$ Departamento de Matemáticas, Facultad de Ciencias Universidad de Chile, Casilla 653, Santiago-Chile e-mail: alimat@uchile.cl

Abstract

Gerstenhaber and Myung in [10] classified all commutative-power associative nilalgebras of dimension 4. In [7] Gerstenhaber and Myung's results are generalized by giving a classification of commutative right-nilalgebras of right-nilindex four and dimension at most four, without assuming power-associativity. In this paper we complete this research and give a classification of commutative right-nilalgebras of right-nilindex five and dimension four, without assuming power-associativity, thus completing the classification of commutative right-nilalgebras of dimension at most four.

Key words: nilpotency, right-nilalgebras, power-associative.

[^0]
1 Introduction

The problem of nilpotency in a commutative power-associative algebra is known as Albert's problem [1] (1948): Is every commutative finite dimensional power-associative nilalgebra nilpotent?

Suttles [14] in 1972, gave an example of a commutative five dimensional power-associative nilalgebra of nilindex 4 which is solvable and not nilpotent, thus showing Albert's conjecture to be false and forcing a new reformulation of the conjecture. Therefore what is now really known by the Albert conjecture is whether any commutative finite dimensional power associative nilalgebra is solvable.

Gerstenhaber and Myung [10] proved that any commutative and powerassociative nilalgebra of nilindex 4 and dimension 4 over a field of characteristic $\neq 2$ is nilpotent. There are many others papers dealing with Albert's problem (see for instance [2], [3], [4], [5], [6], [8], [9], [11] and [12]).

Moreover, in [10] Gerstenhaber and Myung determined the isomorphism classes of commutative power-associative nilalgebras of nilindex four and dimension four. They found one family of algebras parameterized by $F^{\times} /\left(F^{\times}\right)^{2}$ and 5 individual algebras, two of them being associative.

More recently, Elduque and Labra in [7] determined the isomorphism classes of commutative right-nilalgebras of nilindex four and dimension four. They do not assume power-associativity. They found 7 individual non isomorphic algebras.

In this paper we complete this study by giving a classification of commu-
tative right-nilalgebras of right-nilindex five and dimension four, over fields of characteristic $\neq 2$ without assuming power-associativity. Extending thus the classification given by Gerstenhaber and Myung.

2 Right-nilpotency

Let A be a nonassociative algebra and let $x \in A$. We define the right-principal powers of x by $x^{1}=x$ and $x^{n+1}=x^{n} x$ for all $n \geq 1$. An element $x \in A$ is called right-nilpotent with right-nilindex $n>1$ if $x^{n}=0$ and $x^{n-1} \neq 0 . A$ is called right-nilalgebra with right-nilindex n if $x^{n}=0$ for all $x \in A$ and there exists some a in A with $a^{n-1} \neq 0$.

The algebra A is called nilpotent (respectively, right-nilpotent) in case the descending chain of ideals (respectively right ideals) defined by $A^{1}=$ $A, \quad A^{n}=\sum_{r+s=n} A^{r} A^{s}=\sum_{i=1}^{n-1} A^{i} A^{n-i}$ for $n>1\left(\right.$ or $A^{<1>}=A$ and $A^{<n>}=A^{<n-1>} A$ for $n>1$) ends up in zero. The smallest r such that $A^{r}=0$ (respectively $A^{<r>}=0$) is called the index of nilpotency (respectively index of right-nilpotency) of A. Clearly, if A is nilpotent then A is rightnilpotent. Moreover, if A is commutative or anticommutative, then $A^{5}=$ $A^{3} A^{2}+A^{4} A \subseteq A^{3} A=A^{3} A=A^{<4>}$. Thus, if $A^{<4>}=0$, then A is nilpotent with nilpotent index at most 5 .

More generally, it is known (see [15, Proposition 1]) that if A is a commutative or anti-commutative algebra, then $A^{2^{n}} \subseteq A^{<n>}$. Therefore if A is right-nilpotent, it is nilpotent too.

Throughout the paper, all the algebras considered will be commutative and defined over a ground field F of characteristic $\neq 2$.

2.1 Nilindex 5

In what follows A will be a commutative nonassociative algebra that satisfies strictly the identity $x^{5}=(((x x) x) x) x=0$, and contains an element a in A such that $a^{4} \neq 0$. This means that A satisfies the identity $x^{5}=0$ and all its linearizations.

The following notation will be used. Given a set $S,\langle S\rangle$ will denote the subspace generated by S, while $\operatorname{alg}\langle S\rangle$ will be the subalgebra generated by S.

Theorem 1. Let A be a commutative algebra of dimension 4 over a field F, $\operatorname{char}(F) \neq 2$, which satisfies the identity $x^{5}=0$ strictly and contains elements y with $y^{4} \neq 0$. Then A is nilpotent.

Proof: Extending scalars if necessary to get an infinite ground field, the set $\mathcal{G}=\left\{x \in A \mid x^{4} \neq 0\right\}=\left\{x \in A \mid\left\{x, x^{2}, x^{3}, x^{4}\right\}\right.$ is a basis of A$\}$ is Zariski-open and not empty in A, so it is dense and we conclude that $L_{x}^{4}=0$, for any $x \in \mathcal{G}$ where $L_{x}(y)=x y$ is the left multiplication operator and, by Zariski density, we have that this is true for any $x \in A$. That is

$$
\begin{equation*}
L_{x}^{4}=0 \forall x \in A \tag{1}
\end{equation*}
$$

All references to density will refer to density in Zariski topology (for its definition and main features on not necessarily finite dimensional spaces one may consult [13]).

Using the nilpotency of the operator L_{x}, the first linearization of the identity $x^{5}=0$ becomes $\left(\left(x^{2} y\right) x\right) x+\left(x^{3} y\right) x+x^{4} y=0$ for every $x, y \in A$.

Expressing this identity in terms of multiplication operators we obtain:

$$
\begin{equation*}
L_{x}^{2} L_{x^{2}}+L_{x} L_{x^{3}}+L_{x^{4}}=0 \quad \forall x \in A \tag{2}
\end{equation*}
$$

Fix an element $x \in \mathcal{G}$, then for every $y \in A$, there exist $\alpha_{y, x^{i}} \in F, \quad i=$ $1, \cdots, 4$ such that $y=\alpha_{y, x} x+\alpha_{y, x^{2}} x^{2}+\alpha_{y, x^{3}} x^{3}+\alpha_{y, x^{4}} x^{4}$. The equation (2) is equivalent to the following conditions for every $y \in A$,

$$
\begin{gather*}
\alpha_{x^{4} y, x}=0, \tag{3}\\
\alpha_{x^{4} y, x^{2}}+\alpha_{x^{3} y, x}=0, \tag{4}\\
\alpha_{x^{4} y, x^{3}}+\alpha_{x^{3} y, x^{2}}+\alpha_{x^{2} y, x}=0, \tag{5}\\
\alpha_{x^{4} y, x^{4}}+\alpha_{x^{3} y, x^{3}}+\alpha_{x^{2} y, x^{2}}=0 . \tag{6}
\end{gather*}
$$

In particular we have that for $a, b, c, d, e, f \in F$,
$x^{4} x^{4}=a x^{3}+b x^{4}, x^{3} x^{4}=-a x^{2}+c x^{3}+d x^{4}, \quad x^{2} x^{4}=-(b+c) x^{2}+e x^{3}+f x^{4}$
If $a=0$, then the nilpotency of the operator $L_{x^{4}}$ implies that $b=0$. Since $x^{3}\left(x^{4}-d x\right)=c x^{3}$, the nilpotency of $L_{x^{4}-d x}$ implies that $c=0$ and $x^{3} x^{4}=d x^{4}$. Therefore $d=0$, as $L_{x^{3}}$ is nilpotent. In this way we have that $x^{3} x^{4}=0=x^{4} x^{4}$. Now (4) implies that $\alpha_{x^{3} x^{2}, x}=0=\alpha_{x^{3} x^{3}, x}$ and then (5) implies that $\alpha_{x^{3} x^{3}, x^{2}}=0$. Therefore $x^{3} x^{3}=g x^{3}+h x^{4}, \quad g, h \in F$, that is, $x^{3}\left(x^{3}-h x\right)=g x^{3}$ and the nilpotency of $L_{x^{3}-h x}$ implies that $g=\alpha_{x^{3} x^{3}, x^{3}}=0$. Now (6) implies that $\alpha_{x^{2} x^{3}, x^{2}}=0$. Therefore, $I=\left\langle x^{3}, x^{4}\right\rangle$ is an ideal of A and A / I is a two-dimensional right-nilalgebra, then A is nilpotent. In particular, we have that $x^{2} x^{2} \in\left\langle x^{3}, x^{4}\right\rangle$ and (5) implies that $\alpha_{x^{4} x^{2}, x^{3}}=0$ so $e=0$ and $\left\langle x^{4}\right\rangle$ is an ideal of A. Since L_{y} is nilpotent for every, $y \in A$,
we have that $x^{4} A=0, A /\left\langle x^{4}\right\rangle$ is a three-dimensional right-nilalgebra, hence nilpotent, and therefore the whole A is nilpotent.

Now we will see that the case $a \neq 0$ is not possible. If $a \neq 0$, extending scalars if necessary, we can take $a=1$. The equations (3), (4), (5) and (6) give the following matrices A_{i} corresponding to $L_{x^{i}}, i=1, \cdots, 4$.
$A_{1}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right), \quad A_{2}=\left(\begin{array}{cccc}0 & d+k-e & b+c & 0 \\ 0 & -(i+f) & -(d+k) & -(b+c) \\ 1 & g & i & e \\ 0 & h & j & f\end{array}\right)$,
$A_{3}=\left(\begin{array}{cccc}0 & b+c & 1 & 0 \\ 0 & -(d+k) & -(b+2 c) & -1 \\ 0 & i & k & c \\ 1 & j & l & d\end{array}\right), \quad A_{4}=\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & -(b+c) & -1 & 0 \\ 0 & e & c & 1 \\ 0 & f & d & b\end{array}\right)$.
with $b, c, d, e, f, g, h, i, j, k, l \in F$.
For every $x_{1}, x_{2}, x_{3}, x_{4} \in F$, the matrix $A=x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}+x_{4} A_{4}$ is nilpotent, $A^{4}=0$ and the $(1,1)$ entry of A^{4} is a polynomial $p_{(1,1)}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of degree ≤ 4 which is zero for any value of $x_{1}, x_{2}, x_{3}, x_{4}$. Since F is an infinite field, all the coefficient are zero. Using a program of symbolic calculus we obtain that:

The coefficient of $x_{1}^{2} x_{3} x_{4}$ in $p_{(1,1)}$ is $-c-2 b$, then $c=-2 b$.
Replacing this value of c, the coefficient of $x_{1} x_{3} x_{4}^{2}$ is $f-b^{3}$, those of $x_{2} x_{3} x_{4}^{2}$ is $-k+4 b^{2}$ and those of $x_{1}^{2} x_{3}^{2}$ is $-d-2 b^{2}$. Therefore, $f=b^{3}, k=4 b^{2}$ and $d=-2 b^{2}$.

Substituting the above values, the coefficient of x_{3}^{4} is $-i-2 b^{3}$, those of $x_{3}^{3} x_{4}$ is $b^{2}-e$ and $i=-2 b^{2}, e=b^{2}$.

Finally substituting the new values, the coefficient of $x_{1} x_{3}^{3}$ is $-2 b^{5}-b j-1$ and $b \neq 0$. On the other hand, the coefficient of $x_{1} x_{2}^{3}$ is $b^{8}-b^{4} g$, so $g=b^{4}$. But the coefficient of x_{2}^{4} is b^{2} then $b=0$. A contradiction. This finish the proof of the Theorem.

Remark 1. In the proof of the above Theorem it was proved that $x^{4} A=0$ and that $x^{2} x^{2} \in\left\langle x^{3}, x^{4}\right\rangle$ which is an ideal of A. Using (6) this fact prove that $x^{2} x^{3} \in\left\langle x^{4}\right\rangle$ and the multiplication table of A in the basis $\left\{x, x^{2}, x^{3}, x^{4}\right\}$ is:

	x	x^{2}	x^{3}	x^{4}
x	x^{2}	x^{3}	x^{4}	0
x^{2}	x^{3}	$\epsilon x^{3}+\alpha x^{4}$	βx^{4}	0
x^{3}	x^{4}	βx^{4}	γx^{4}	0
x^{4}	0	0	0	0

for suitable scalars $\epsilon, \alpha, \beta, \gamma \in F$. Moreover, scaling x if necessary, ϵ may be taken to be either 0 or 1 , with $\epsilon=0$ if and only if $\left(A^{2} A^{2}\right) A=0$.

Remark 2. Correa, Hentzel and Peresi in [2] prove the above Theorem in $\operatorname{char}(F) \neq 2,3$ using the complete linearization of the identity $x^{5}=0$ and evaluating there several elements of A. The proof that we give is valid in $\operatorname{char}(F)=3$ and use elementary linear algebra instead of the complete linearization.

3 Classification

Our aim in this section is to classify the algebras in Remark 1.
CASE $\epsilon=0$. Here we have that $A^{2} A^{2} \subseteq A^{<4>}=A^{4}$.

Table I

	x	x^{2}	x^{3}	x^{4}
x	x^{2}	x^{3}	x^{4}	0
x^{2}	x^{3}	αx^{4}	βx^{4}	0
x^{3}	x^{4}	βx^{4}	γx^{4}	0
x^{4}	0	0	0	0

Denote by $A^{0}(\alpha, \beta, \gamma)$ the algebra with multiplication given by Table I.
Let $y \in \mathcal{G}\left(=\left\{z \in A: z^{4} \neq 0\right\}\right)$ then $y=\mu x+\nu x^{2}+\rho x^{3}+\delta x^{4}$, with $\mu \neq 0$.

$$
\begin{aligned}
& y^{2}=\mu^{2} x^{2}+2 \mu \nu x^{3}+\left(2 \mu \rho+\alpha \nu^{2}+2 \nu \rho \beta+\rho^{2} \gamma\right) x^{4}, \\
& y^{3}=\mu^{3} x^{3}+\left(2 \mu^{2} \nu+\mu^{2} \rho \beta+\mu^{2} \nu \alpha+2 \mu \nu^{2} \beta+2 \mu \nu \rho \gamma\right) x^{4}, \\
& y^{4}=\left(\mu^{4}+\mu^{3} \nu \beta+\mu^{3} \rho \gamma\right) x^{4}=\mu^{3}(\mu+\beta \nu+\gamma \rho) x^{4}, \\
& y^{2} y^{2}=\left(\mu^{4} \alpha+4 \mu^{3} \nu \beta+4 \mu^{2} \nu^{2} \gamma\right) x^{4}=\mu^{2}\left(\mu^{2} \alpha+4 \mu \nu \beta+4 \nu^{2} \gamma\right) x^{4}, \\
& y^{2} y^{3}=\left(\mu^{5} \beta+2 \mu^{4} \nu \gamma\right) x^{4}=\mu^{4}(\mu \beta+2 \nu \gamma) x^{4}, \\
& y^{3} y^{3}=\mu^{6} \gamma x^{4} .
\end{aligned}
$$

We have three sub-cases:

Sub-case (i): $A^{2} A^{3}=0$. Then $\beta=\gamma=0$. The multiplication table depends on α. We have that $y^{4}=\mu^{4} x^{4}$ and $y^{2} y^{2}=\mu^{4} \alpha x^{4}=\alpha y^{4}$. Therefore:

$$
A^{0}(\alpha, 0,0) \simeq A^{0}\left(\alpha^{\prime}, 0,0\right) \Leftrightarrow \alpha=\alpha^{\prime} .
$$

Moreover $A^{0}(\alpha, 0,0)$ is associative if and only if $\alpha=1$. Note that $A^{0}(\alpha, 0,0)$ satisfies $z^{2} z^{2}=\alpha z^{4}$ for any $z \in A$.

Sub-case (ii): $A^{3} A^{3}=0 \neq A^{2} A^{3}$. Then $\gamma=0 \neq \beta$.
In this case we have
$y^{4}=\mu^{3}(\mu+\beta \nu) x^{4}, y^{2} y^{2}=\mu^{3}(\mu \alpha+4 \nu \beta), y^{2} y^{3}=\mu^{5} \beta x^{4}, y^{3} y^{3}=0$.
Since $y^{4} \neq 0$ then $\mu \neq 0 \neq \mu+\beta \nu$, and

$$
\begin{gathered}
y^{2} y^{2}=\alpha^{\prime} y^{4}, \quad \alpha^{\prime}=\frac{\mu \alpha+4 \nu \beta}{\mu+\nu \beta} \\
y^{2} y^{3}=\beta^{\prime} y^{4}, \quad \beta^{\prime}=\frac{\mu^{2} \beta}{\mu+\nu \beta}
\end{gathered}
$$

If we take $\nu=\frac{\mu(\mu \beta-1)}{\beta}$, we get $\beta^{\prime}=1$ and $\alpha^{\prime}=\frac{\alpha-4+4 \mu \beta}{\mu \beta}$.
Two possibilities appear:
(a) $\alpha \neq 4$, then taking $\mu=\frac{4-\alpha}{\beta}$, we have the algebra $A^{0}(0,1,0)$.
(b) $\alpha=4$, and we have the algebra $A^{0}(4,1,0)$. This algebra satisfies $y^{2} y^{2}=4 y^{4}$, for any $y \in \mathcal{G}$, since $y^{2} y^{2}=\mu^{3}(4 \mu+4 \nu \beta) x^{4}=4 \mu^{3}(\mu+\nu \beta) x^{4}=$ $4 y^{4}$ and, since \mathcal{G} is Zariski open, $A^{0}(4,1,0)$ satisfies $y^{2} y^{2}=4 y^{4}$ for any $y \in A$.

Therefore both algebras are not isomorphic.

Sub-case (iii): $A^{3} A^{3} \neq 0$. Then $\gamma \neq 0$.
In this case we have $y^{4}=\mu^{3}(\mu+\nu \beta+\rho \gamma) x^{4}$ and $y^{2} y^{3}=\mu^{4}(\mu \beta+2 \nu \gamma) x^{4}$. Since $y^{4} \neq 0$ then $0 \neq \mu+\beta \nu+\rho \gamma$, and we have $y^{2} y^{3}=\beta^{\prime} y^{4}$, where $\beta^{\prime}=\frac{\mu(\mu \beta+2 \nu \gamma)}{\mu+\nu \beta+\rho \gamma}$.

Taking $\nu=-\frac{\mu \beta}{2 \gamma}$ and ρ such that $\mu+\nu \beta+\rho \gamma \neq 0$, we have $\beta^{\prime}=0$. Hence we may assume that $\beta=0 \neq \gamma$. In this case: $y^{4}=\mu^{3}(\mu+\rho \gamma) x^{4}, y^{2} y^{2}=\mu^{2}\left(\mu^{2} \alpha+4 \nu^{2} \gamma\right) x^{4}, y^{2} y^{3}=2 \mu^{4} \nu \gamma x^{4}, y^{3} y^{3}=\mu^{6} \gamma x^{4}$.

Therefore if $\mu \neq 0 \neq \mu+\gamma \rho, \quad y^{4} \neq 0$ and we obtain that

$$
\begin{gathered}
y^{2} y^{2}=\alpha^{\prime} y^{4}, \text { where } \alpha^{\prime}=\frac{\mu^{2} \alpha+4 \nu^{2} \gamma}{\mu(\mu+\rho \gamma)} \\
y^{2} y^{3}=\beta^{\prime} y^{4}, \text { where } \beta^{\prime}=\frac{2 \mu \nu \gamma}{\mu+\rho \gamma} \\
y^{3} y^{3}=\gamma^{\prime} y^{4}, \text { where } \gamma^{\prime}=\frac{\mu^{3} \gamma}{\mu+\rho \gamma}
\end{gathered}
$$

If we take $\nu=0, \rho=\frac{\mu^{3} \gamma-\mu}{\gamma}$ this imply that $\beta^{\prime}=0, \gamma^{\prime}=1$ and

$$
\alpha^{\prime}=\frac{\mu \alpha}{\mu+\rho \gamma}=\frac{\mu \alpha}{\mu^{3} \gamma}=\frac{\alpha}{\mu^{2} \gamma}
$$

With $\mu=\frac{1}{\eta^{2} \gamma}$, we have $\alpha^{\prime}=\alpha \gamma \eta^{2}=\theta \eta^{2}$, with $\theta=\alpha \gamma$ and the algebra is (isomorphic to) $A^{0}\left(\theta \eta^{2}, 0,1\right)$, for any $\eta \in F^{\times}$.

We can observe that for the algebra $A=A^{0}(\theta, 0,1)$, the matrix of the bilinear form

$$
A^{2} / A^{<4>} \times A^{2} / A^{<4>} \quad \rightarrow \quad A^{<4>}=F x^{4} \simeq F
$$

in the basis $\left\{x^{2}+A^{<4>}, x^{3}+A^{<4>}\right\}$ is $\left(\begin{array}{cc}\theta & 0 \\ 0 & 1\end{array}\right)$.
Then for this matrix we have that $\theta\left(F^{\times}\right)^{2}$ is the discriminant of this bilinear form. Therefore, denoting the multiplicative group of F by F^{\times}we have

$$
A^{0}(\theta, 0,1) \simeq A^{0}\left(\theta^{\prime}, 0,1\right) \Leftrightarrow \theta\left(F^{\times}\right)^{2}=\theta^{\prime}\left(F^{\times}\right)^{2} .
$$

Theorem 2. Let A be a four dimensional commutative and not power associative algebra satisfying the identity $x^{5}=0$ but not $x^{4}=0$, and such that $\left(A^{2} A^{2}\right) A=0$. Then A is isomorphic to one and only one of the following algebras: $A^{0}(\alpha, 0,0)(\alpha \in F), A^{0}(0,1,0), A^{0}(4,1,0), A^{0}(0,0,1)$, or $A^{0}(\alpha, 0,1)$ $(\alpha \in \mathcal{H})$, where \mathcal{H} is a set of representatives of $F^{\times} /\left(F^{\times}\right)^{2}$.

Corollary 1. Let F be a quadratically closed field. Then any four dimensional commutative and not power-associative algebra satisfying the identity $x^{5}=0$ and with multiplication given by table I is isomorphic to one and only one of the following algebras: $A^{0}(\alpha, 0,0)(\alpha \in F), A^{0}(0,1,0), A^{0}(4,1,0)$, $A^{0}(0,0,1)$ or $A^{0}(1,0,1)$.

CASE $\epsilon=1$. Here we have that $A^{2} A^{2} \subseteq A^{3}=A^{4}$.

Table II

	x	x^{2}	x^{3}	x^{4}
x	x^{2}	x^{3}	x^{4}	0
x^{2}	x^{3}	$x^{3}+\alpha x^{4}$	βx^{4}	0
x^{3}	x^{4}	βx^{4}	γx^{4}	0
x^{4}	0	0	0	0

Denote by $A^{1}(\alpha, \beta, \gamma)$ the algebra with this multiplication table.
Let $y \in A \backslash A^{2}$ then $y=\mu x+\nu x^{2}+\rho x^{3}+\delta x^{4}$, with $\mu \neq 0$.
$y^{2}=\mu^{2} x^{2}+\left(2 \mu \nu+\nu^{2}\right) x^{3}+\left(2 \mu \rho+\alpha \nu^{2}+2 \nu \rho \beta+\rho^{2} \gamma\right) x^{4}$,
$y^{3}=\mu^{2}(\mu+\nu) x^{3}+\left(\mu^{2} \nu \alpha+\mu\left(2 \mu \nu+\nu^{2}\right)+\mu^{2} \rho \beta+\left(2 \mu \nu+\nu^{2}\right) \nu \beta+\left(2 \mu \nu+\nu^{2}\right) \rho \gamma\right) x^{4}$,
$y^{4}=\mu^{2}(\mu+\nu)[\mu+\nu \beta+\rho \gamma] x^{4}$
$y^{2} y^{2}=\mu^{4} x^{3}+\left[\mu^{4} \alpha+2 \mu^{2}\left(2 \mu \nu+\nu^{2}\right) \beta+\left(2 \mu \nu+\nu^{2}\right)^{2} \gamma\right] x^{4}$
$y^{2} y^{3}=\left[\mu^{4}(\mu+\nu) \beta+\mu^{2}(\mu+\nu)\left(2 \mu \nu+\nu^{2}\right) \gamma\right] x^{4}$,
$y^{3} y^{3}=\mu^{4}(\mu+\nu)^{2} \gamma x^{4}$.
Therefore $y^{4} \neq 0$ (that is, $y \in \mathcal{G}$) if and only if $\mu, \mu+\nu, \mu+\nu \beta+\rho \gamma \neq 0$. Putting $\Delta=\mu+\nu \beta+\rho \gamma$ we have that $\Delta \neq 0$ for $y \in \mathcal{G}$. On the other hand
$y^{2} y^{2}-y^{3} \in\left\langle y^{4}\right\rangle=\left\langle x^{4}\right\rangle$ if and only if $\mu^{4}=\mu^{2}(\mu+\nu)$. Since $\mu \neq 0$, then

$$
\begin{equation*}
\mu^{2}=\mu+\nu, \Delta=\beta \mu^{2}+(1-\beta) \mu+\rho \gamma, y^{4}=\mu^{4} \Delta x^{4}, \text { that is } x^{4}=\frac{1}{\mu^{4} \Delta} y^{4} \tag{7}
\end{equation*}
$$

and
$2 \mu \nu+\nu^{2}=\nu(\mu+(\mu+\nu))=\left(\mu^{2}-\mu\right)\left(\mu+\mu^{2}\right)=\mu(\mu-1) \mu(\mu+1)=\mu^{2}\left(\mu^{2}-1\right)$.

Since $\Delta \neq 0$, using (7) and (8) we have that:

$$
\begin{aligned}
& y^{3} y^{3}=\mu^{8} \gamma x^{4}=\frac{\mu^{4} \gamma}{\Delta} y^{4} \\
& y^{2} y^{3}=\left(\mu^{6} \beta+\mu^{6}\left(\mu^{2}-1\right) \gamma\right) x^{4}=\frac{\mu^{2}\left(\beta+\left(\mu^{2}-1\right) \gamma\right)}{\Delta} y^{4} \\
& y^{2} y^{2}=\mu^{4} x^{3}+\left[\mu^{4} \alpha+2 \mu^{4}\left(\mu^{2}-1\right) \beta+\left(\mu^{2}\left(\mu^{2}-1\right)\right)^{2} \gamma\right] x^{4}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
y^{3}= & \mu^{4} x^{3}+\left[\mu^{3}(\mu-1) \alpha+\mu^{3}\left(\mu^{2}-1\right)+\mu^{2} \rho \beta+\mu^{3}\left(\mu^{2}-1\right)(\mu-1) \beta\right. \\
& \left.\left.\quad+\mu^{2}\left(\mu^{2}-1\right) \rho \gamma\right]\right) x^{4} \\
= & \mu^{4} x^{3}+\mu^{2}\left[\mu(\mu-1) \alpha+\mu\left(\mu^{2}-1\right)+\left(\rho\left(\beta+\left(\mu^{2}-1\right) \gamma\right)+\mu\left(\mu^{2}-1\right)(\mu-1) \beta\right] x^{4},\right.
\end{aligned}
$$

Therefore

$$
y^{3}=\mu^{4} x^{3}+\mu^{2} \Gamma x^{4}=\mu^{4} x^{3}+\frac{\Gamma}{\mu^{2} \Delta} y^{4},
$$

where $\Gamma=\mu(\mu-1) \alpha+\mu\left(\mu^{2}-1\right)+\rho\left(\beta+\left(\mu^{2}-1\right) \gamma\right)+\mu\left(\mu^{2}-1\right)(\mu-1) \beta$.
Since $\mu \neq 0$ and $\Delta \neq 0$, we obtain $x^{3}=\frac{1}{\mu^{4}} y^{3}-\frac{\Gamma}{\mu^{6} \Delta} y^{4}$
Replacing this value in $y^{2} y^{2}=\mu^{4} x^{3}+\mu^{4}\left[\alpha+2\left(\mu^{2}-1\right) \beta+\left(\mu^{2}-1\right)^{2} \gamma\right] x^{4}$ and putting $\Phi=\alpha+2\left(\mu^{2}-1\right) \beta+\left(\mu^{2}-1\right)^{2} \gamma$ we obtain

$$
\begin{equation*}
y^{2} y^{2}=\mu^{4}\left(x^{3}+\Phi x^{4}\right)=y^{3}-\frac{\Gamma}{\mu^{2} \Delta} y^{4}+\frac{\Phi}{\Delta} y^{4}=y^{3}+\frac{\mu^{2} \Phi-\Gamma}{\mu^{2} \Delta} y^{4} . \tag{9}
\end{equation*}
$$

Summarizing, if y is any element of A with $y^{4} \neq 0$ and $y^{2} y^{2}-y^{3} \in\left\langle y^{4}\right\rangle$, then there are elements $\mu \neq 0$ and ρ in F such that:

$$
\begin{aligned}
& y^{2} y^{2}=y^{3}+\alpha^{\prime} y^{4} \\
& y^{2} y^{3}=\beta^{\prime} y^{4} \\
& y^{3} y^{3}=\gamma^{\prime} y^{4}
\end{aligned}
$$

where

$$
\alpha^{\prime}=\frac{\mu^{2} \Phi-\Gamma}{\mu^{2} \Delta}, \quad \beta^{\prime}=\frac{\mu^{2}\left(\beta+\left(\mu^{2}-1\right) \gamma\right)}{\Delta}, \quad \gamma^{\prime}=\frac{\mu^{4} \gamma}{\Delta},
$$

with

$$
\begin{aligned}
& \Delta=\mu+\mu(\mu-1) \beta+\rho \gamma \\
& \Phi=\alpha+2\left(\mu^{2}-1\right) \beta+\left(\mu^{2}-1\right)^{2} \gamma \\
& \Gamma=\mu\left(\mu^{2}-1\right)+\mu(\mu-1) \alpha+\left(\rho+\mu\left(\mu^{2}-1\right)(\mu-1)\right) \beta+\left(\mu^{2}-1\right) \rho \gamma .
\end{aligned}
$$

We have three sub-cases:

Sub-case (i): $A^{2} A^{3}=0$. Then $\beta=\gamma=0$. So we have that

$$
\Delta=\mu, \Gamma=\mu(\mu-1) \alpha+\mu\left(\mu^{2}-1\right), \Phi=\alpha .
$$

Then $y^{2} y^{3}=0, y^{3} y^{3}=0$ and $y^{2} y^{2}=y^{3}+\alpha^{\prime} y^{4}$, where $\alpha^{\prime}=\frac{\mu^{2} \Phi-\Gamma}{\mu^{2} \Delta}=\frac{\mu^{2} \alpha-\mu(\mu-1) \alpha-\mu\left(\mu^{2}-1\right)}{\mu^{3}}=\frac{\alpha-\mu^{2}+1}{\mu^{2}}$, that is, $\left(1+\alpha^{\prime}\right) \mu^{2}=1+\alpha$.

Therefore:

$$
A^{1}(\alpha, 0,0) \simeq A^{1}\left(\alpha^{\prime}, 0,0\right) \Leftrightarrow(1+\alpha)\left(F^{\times}\right)^{2}=\left(1+\alpha^{\prime}\right)\left(F^{\times}\right)^{2} .
$$

Sub-case (ii): $A^{3} A^{3}=0 \neq A^{2} A^{3}$. Then $\gamma=0 \neq \beta$.

In this case we have

$$
\begin{gathered}
\Delta=\beta \mu^{2}+(1-\beta) \mu=\mu((\mu-1) \beta+1), \Phi=\alpha+2\left(\mu^{2}-1\right) \beta, \\
\Gamma=\mu(\mu-1) \alpha+\mu\left(\mu^{2}-1\right)+\mu\left(\mu^{2}-1\right)(\mu-1) \beta+\rho \beta .
\end{gathered}
$$

Therefore, using (7) and (9) we obtain that

$$
\begin{aligned}
& y^{3} y^{3}=0, \quad y^{2} y^{2}=y^{3}+\alpha^{\prime} y^{4}, \quad \text { where } \alpha^{\prime}=\frac{\mu^{2} \Phi-\Gamma}{\mu^{2} \Delta} . \\
& y^{2} y^{3}=\beta^{\prime} y^{4}, \text { where } \beta^{\prime}=\frac{\mu^{2} \beta}{\Delta}=\frac{\mu \beta}{\beta \mu+(1-\beta)} .
\end{aligned}
$$

We have two possibilities:
(a) $\beta=1$. Then $\beta^{\prime}=1$ and taking $\mu=1$ and ρ such that $\Gamma=\mu^{2} \Phi$ we have that $\alpha^{\prime}=0$, so that the algebra is (isomorphic to) $A^{1}(0,1,0)$.
(b) $\beta \neq 1$. Then taking $\mu=\frac{2(\beta-1)}{\beta}$, we obtain $\beta^{\prime}=2$, and then taking ρ such that $\mu^{2} \Phi=\Gamma$, we have that $\alpha^{\prime}=0$, so that the algebra is $A^{1}(0,2,0)$.

Both algebras are not isomorphic, because the first algebra satisfies $z^{2} z^{2}$. $z=z^{2} z^{3}, \forall z \in A$ which is not satisfied by the second one. In fact, for $\beta=1$, if $z=a x+b x^{2}+c x^{3}+d x^{4}$, then $z^{2}=a^{2} x^{2}+\left(b^{2}+2 a b\right) x^{3}+2(a c+b c) x^{4}, z^{3}=$ $\left(a^{3}+b a^{2}\right) x^{3}+\left(a b^{2}+2 a^{2} b\right) x^{4}+\left(b^{3}+2 a b^{2}+a^{2} c\right) x^{4}, z^{2} z^{2}=a^{4} x^{3}+2\left(a^{2} b^{2}+\right.$ $\left.2 a^{3} b\right) x^{4},\left(z^{2} z^{2}\right) z=a^{5} x^{4}+b a^{4} x^{4}, z^{2} z^{3}=a^{2}\left(a^{3}+b a^{2}\right) x^{4}$.

Sub-case (iii): $A^{3} A^{3} \neq 0$. Then $\gamma \neq 0$.
Since $\gamma^{\prime}=\frac{\mu^{4} \gamma}{\Delta}=\frac{\mu^{4} \gamma}{\mu+\mu(\mu-1) \beta+\rho \gamma}, \rho$ can be taken so that $\gamma^{\prime}=1$, and we have to deal with the algebra $A^{1}(\alpha, \beta, 1)$.

Thus, assume from now on that $\gamma=1$. Observe that for $y=\mu x+\nu x^{2}+$ $\rho x^{3}+\delta x^{4}$ one gets:

$$
\begin{aligned}
\left(y^{2}\right)^{3} & =\mu^{4} x^{3}\left(\mu^{2} x^{2}+\left(2 \mu \nu+\nu^{2}\right) x^{3}\right) \\
& =\left(\mu^{6} \beta+\mu^{4}\left(2 \mu \nu+\nu^{2}\right)\right) x^{4} \\
& =\mu^{4}\left(\mu^{2} \beta+2 \mu \nu+\nu^{2}\right) x^{4},
\end{aligned}
$$

while $y^{3} y^{3}=\mu^{4}(\mu+\nu)^{2} x^{4}$, so $\left(y^{2}\right)^{3}=\left(y^{3}\right)^{2}$ for any y if and only if $\beta=1$.
Now, with $\gamma=1$, we look for elements $y \in \mathcal{G}$ such that $y^{2} y^{2}-y^{3} \in\left\langle y^{4}\right\rangle$ and $y^{3} y^{3}=y^{4}$.

This gives $\mu^{4}=\Delta$, so $\rho=\mu^{4}-\mu-\mu(\mu-1) \beta=\mu(\mu-1)\left(\mu^{2}+\mu+1-\beta\right)$, and

$$
\beta^{\prime}=\frac{\mu^{2}\left(\beta+\left(\mu^{2}-1\right)\right)}{\Delta}=\frac{\beta+\left(\mu^{2}-1\right)}{\mu^{2}}=\frac{\beta-1}{\mu^{2}}+1,
$$

that is,

$$
\beta-1=\mu^{2}\left(\beta^{\prime}-1\right) .
$$

Therefore, if $A^{1}(\alpha, \beta, 1)$ is isomorphic to $A^{1}\left(\alpha^{\prime}, \beta^{\prime}, 1\right)$, then $(\beta-1)\left(F^{\times}\right)^{2}=$ $\left(\beta^{\prime}-1\right)\left(F^{\times}\right)^{2}$.

In this case,

$$
\begin{aligned}
\Gamma= & \mu\left(\mu^{2}-1\right)+\mu(\mu-1) \alpha+\left(\rho+\mu\left(\mu^{2}-1\right)(\mu-1)\right) \beta+\left(\mu^{2}-1\right) \rho \\
= & \mu\left(\mu^{2}-1\right)+\mu(\mu-1) \alpha+\mu(\mu-1)\left(2 \mu^{2}+\mu-\beta\right) \beta \\
& \quad+\left(\mu^{2}-1\right) \mu(\mu-1)\left(\mu^{2}+\mu+1-\beta\right) \\
= & \mu(\mu-1)\left(\alpha+\mu+1+\left(2 \mu^{2}+\mu-\beta\right) \beta+\left(\mu^{2}-1\right)\left(\mu^{2}+\mu+1-\beta\right)\right) .
\end{aligned}
$$

We are left with two possibilities:
(a) $\beta=1$. Here

$$
\begin{aligned}
\rho & =\mu(\mu-1)\left(\mu^{2}+\mu\right)=\mu^{2}\left(\mu^{2}-1\right) \\
\Phi & =\alpha+2\left(\mu^{2}-1\right)+\left(\mu^{2}-1\right)^{2}=\alpha+\mu^{4}-1, \\
\Gamma & =\mu(\mu-1)\left(\alpha+\mu+1+2 \mu^{2}+\mu-1+\left(\mu^{2}-1\right)\left(\mu^{2}+\mu\right)\right) \\
& =\mu(\mu-1)\left(\alpha+2 \mu(\mu+1)+\mu(\mu+1)\left(\mu^{2}-1\right)\right) \\
& =\mu(\mu-1)\left(\alpha+\mu(\mu+1)\left(\mu^{2}+1\right)\right) \\
& =\mu(\mu-1) \alpha+\mu^{2}\left(\mu^{4}-1\right) .
\end{aligned}
$$

Hence $\mu^{2} \Phi-\Gamma=\mu \alpha$, and thus

$$
\alpha^{\prime}=\frac{\mu^{2} \Phi-\Gamma}{\mu^{2} \Delta}=\frac{\mu \alpha}{\mu^{6}}=\frac{\alpha}{\mu^{5}}
$$

and, therefore,

$$
A^{1}(\alpha, 1,1) \simeq A^{1}\left(\alpha^{\prime}, 1,1\right) \Leftrightarrow \alpha\left(F^{\times}\right)^{5}=\alpha^{\prime}\left(F^{\times}\right)^{5}
$$

(b) $\beta \neq 1$. Here $A^{1}(\alpha, \beta, 1)$ is isomorphic to $A^{1}\left(\alpha^{\prime}, \beta^{\prime}, 1\right)$ if and only if there is a scalar $\mu \in F^{\times}$such that $\beta-1=\mu^{2}\left(\beta^{\prime}-1\right)$ and $\alpha^{\prime}=\frac{\mu^{2} \Phi-\Gamma}{\mu^{6}}$, with Φ and Γ as above.

Once $\beta \neq 1$ is fixed, $A^{1}(\alpha, \beta, 1)$ is isomorphic to $A^{1}\left(\alpha^{\prime}, \beta, 1\right)$ if and only if $\alpha^{\prime}=\frac{\mu^{2} \Phi-\Gamma}{\mu^{6}}$ for $\mu= \pm 1$, if and only if either $\alpha^{\prime}=\alpha(\mu=1)$ or $\alpha^{\prime}=$ $-\alpha+(\beta-1) \beta(\mu=-1)$.

In particular, if F is quadratically closed, then one can always take $\beta^{\prime}=0$, and then we get the algebras $A^{1}(\alpha, 0,1)$ with

$$
A^{1}(\alpha, 0,1) \simeq A^{1}\left(\alpha^{\prime}, 0,1\right) \Leftrightarrow \alpha^{\prime}= \pm \alpha
$$

Theorem 3. Let A be a four dimensional commutative and not associative algebra satisfying the identity $x^{5}=0$ but not $x^{4}=0$, and such that $\left(A^{2} A^{2}\right) A \neq 0$. Then A is isomorphic to one of the following algebras:
(i) $A^{1}(-1,0,0)$,
(ii) $A^{1}(\alpha, 0,0)$, with $\alpha \in-1+\mathcal{H}$, where \mathcal{H} is a set of representatives of $F^{\times} /\left(F^{\times}\right)^{2}$,
(iii) $A^{1}(0,1,0)$,
(iv) $A^{1}(0,2,0)$,
(v) $A^{1}(0,1,1)$,
(vi) $A^{1}(\alpha, 1,1)$, with $\alpha \in \mathcal{I}$, where \mathcal{I} is a set of representatives of $F^{\times} /\left(F^{\times}\right)^{5}$, (vii) $A^{1}(\alpha, \beta, 1)$, where $\beta \in 1+\mathcal{H}$ (\mathcal{H} as in (ii)).

Moreover, algebras in different items are not isomorphic, and so are algebras in the same item, with the exception of item (vii), where $A^{1}(\alpha, \beta, 1)$ is isomorphic to $A^{1}\left(\alpha^{\prime}, \beta^{\prime}, 1\right)\left(\beta, \beta^{\prime} \in 1+\mathcal{H}\right)$ if and only if $\beta=\beta^{\prime}$ and either $\alpha^{\prime}=\alpha$ or $\alpha^{\prime}=-\alpha+(\beta-1) \beta$.

Corollary 2. Let F be an algebraically closed field. Then any four dimensional commutative and not power-associative algebra satisfying the identity $x^{5}=0$ and the multiplication given by table II is isomorphic to one and only one of the following algebras: $A^{1}(0,0,0), A^{1}(-1,0,0), A^{1}(0,1,0), A^{1}(0,2,0)$, $A^{1}(0,1,1), A^{1}(1,1,1), A^{1}(0,0,1)$, or $A^{1}(\alpha, 0,1)$ for $\alpha \in \mathcal{F}$, where \mathcal{F} is a subset of F satisfying $\mathcal{F} \cup-\mathcal{F}=F^{\times}$and $\mathcal{F} \cap-\mathcal{F}=\emptyset$.

Summarizing, in the case of an algebraically closed field F, Table III display all the non isomorphic four dimensional commutative and not powerassociative algebras satisfying the identity $x^{5}=0$, but not satisfying the identity $x^{4}=0$.

Table III

$\begin{aligned} & A^{4}=A^{<4>}, \\ & \operatorname{dim}\left(A^{4}\right)=1 . \\ & (\epsilon=0), \end{aligned}$	$A^{2} A^{3}=0$	$A^{0}(\alpha, 0,0)$	$y^{2} y^{2}=\alpha y \forall y$
	$A^{3} A^{3}=0 \neq A^{2} A^{3}$	$A^{0}(4,1,0)$	$y^{2} y^{2}=4 y^{4} \forall y \in A$
		$A^{0}(0,1,0)$	$\exists y, y^{2} y^{2} \neq 4 y^{4}$
	$A^{3} A^{3} \neq 0$	$A^{0}(0,0,1)$	$\begin{aligned} & \operatorname{rank}\left(A^{2} \times A^{2} \rightarrow A^{4}\right. \\ & (u, v) \mapsto u v)=1 \end{aligned}$
		$A^{0}(1,0,1)$	$\begin{aligned} & \operatorname{rank}\left(A^{2} \times A^{2} \rightarrow A^{4}:\right. \\ & (u, v) \mapsto u v)=2 \end{aligned}$
$\begin{aligned} & A^{4}=A^{3}, \\ & \operatorname{dim}\left(A^{4}\right)=2, \\ & (\epsilon=1), \end{aligned}$	$A^{2} A^{3}=0$	$A^{1}(0,0,0)$	$\exists y \in A \backslash A^{2}: y^{2} y^{2}=y^{3}$
		$A^{1}(-1,1,0)$	$\nexists y \in A \backslash A^{2}: y^{2} y^{2}=y^{3}$
	$A^{3} A^{3}=0 \neq A^{2} A^{3}$	$A^{1}(0,1,0)$	$y^{2} y^{2} \cdot y=y^{2} y^{3} \forall y \in A$
		$A^{1}(0,2,0)$	$\exists y \in A, y^{2} y^{2} \cdot y \neq y^{2} y^{3}$
	$A^{3} A^{3} \neq 0$	$A^{1}(0,1,1)$	$\begin{array}{r} \left(y^{2}\right)^{3}=\left(y^{3}\right)^{2} \forall y \\ \exists z z^{3} z^{3}=z^{4} \neq 0, z^{2} z^{2}=z^{3} \end{array}$
		$A^{1}(1,1,1)$	$\begin{array}{r} \left(y^{2}\right)^{3}=\left(y^{3}\right)^{2} \forall y \\ \nexists z z^{3} z^{3}=z^{4} \neq 0, z^{2} z^{2}=z^{3} \end{array}$
		$A^{1}(\alpha, 0,1)$	$\begin{gathered} \exists y\left(y^{2}\right)^{3} \neq\left(y^{3}\right)^{2} \\ A^{1}(\alpha, 0,1) \simeq A^{1}\left(\alpha^{\prime}, 0,1\right) \\ \Leftrightarrow \alpha^{\prime}= \pm \alpha \end{gathered}$

REFERENCES

1. Albert, A. A. (1948). On power-associative rings. Trans. Amer. Math. Soc. 64: 552-593.
2. Correa, I., Hentzel, I. R., Peresi, L. A. (2003). On the nilpotency of the commutative right nilalgebras of maximum right nilindex. Int. J. Math. Game Theory and Algebra. 14: 299-305.
3. Correa, I., Suazo, A. (1999). On a class of commutative power-associative nilalgebras. J. of Algebra. 215: 412-417.
4. Correa, Ivan., Peresi, Luiz Antonio. (2001). On the solvability of the five dimensional commutative power-associative nilalgebras. Results Math. 39, no. 1-2: 23-27.
5. Correa, Ivan., Hentzel, Irvin Roy., Peresi, Luiz Antonio. (2003). On the solvability of the commutative power-associative nilalgebras of dimension 6. Linear Algebra Appl. 369: 185-192.
6. Correa, Ivan., Hentzel, Irvin Roy., Julca, Pedro Pablo., Peresi, Luiz Antonio. (2005). Nilpotent linear transformations and the solvability of power-associative nilalgebras. Linear Algebra Appl. 396: 35-53.
7. Elduque, A., Labra, A. (2007). On the classification of commutative right-nilalgebras of dimension at most four. Comm. in Algebra, to appear.
8. Elgueta, Luisa., Suazo, Avelino. (2004). Solvability of commutative
power-associative nilalgebras of nilindex 4 and dimension ≤ 8. Proyecciones. 23, no. 2: 123-129.
9. Elgueta, Luisa., Suazo, Avelino., Gutiérrez Fernández, Juan C. (2005). Nilpotence of a class of commutative power-associative nilalgebras. J. Algebra 291: 492-504.
10. Gerstenhaber, M., Myung, H. C. (1975). On commutative powerassociative nilalgebras of low dimension. Proc. Amer. Math. Soc. 48: 29-32.
11. Gutiérrez Fernández, J. C.(2004) On Commutative Power-Associative Nilalgebras. Commun. Algebra. 32 (6): 2243-2250.
12. Gutierrez Fernandez, J. Carlos., Suazo, Avelino. (2005). Commutative power-associative nilalgebras of nilindex 5. Results Math. 47: 296-304.
13. McCrimmon, K. (1967). Generically algebraic algebras. Trans. Amer. Math, Soc. 127: 527-551.
14. Suttles, D. A. (1972). Counterexample to a conjecture of Albert. Notices Amer. Math. Soc. 19: A-566.
15. Zhevlakov, K. A. et als. (1992). "Rings that are nearly associative," Academic Press N. York, London.

[^0]: ${ }^{2}$ Part of this research was done while the first author was visiting Universidad de Chile on a grant from FONDECYT 7050164. Support is also acknowledged from the Spanish Ministerio de Educación y Ciencia and FEDER (MTM 2004-08115-C04-02) and from the Diputación General de Aragón (Grupo de Investigación deÁlgebra)
 ${ }^{3}$ Supported by FONDECYT 1030919.

