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Abstract

We study localized modes on a single Ablowitz-Ladik impurity embedded in the bulk or at

the surface of a one-dimensional linear lattice. Exact expressions are obtained for the bound

state profile and energy. Dynamical excitation of the localized mode reveals exponentially-high

amplitude oscillations of the spatial profile at the impurity location. The presence of a surface

increases the minimum nonlinearity to effect a dynamical selftrapping.
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The study of nonlinear dynamics in discrete systems has attracted a special attention

recently due to novel physics and possible interesting applications [1]. Among these systems,

we find the integrable discretized version of the continuum NLS equation, the so-called

Ablowitz-Ladik (AL) equation[2]:

i
dCn

dt
+ (V + µ|Cn|2)(Cn+1 + Cn−1) = 0 (1)

This integrable version support moving, nonlinear, spatially-localized excitations in the form

of lattice solitons, found through the use of the inverse scattering transform method. The

AL equations constitute a starting point for many studies on the interplay of disorder,

nonlinearity and discreteness. For instance, when examining the effects of disorder, a well-

known approach is to assume a perturbative approach and try to compute the evolution of

the soliton parameters[3]. When the scale of the disorder is high, this approach is no longer

tenable and one must resort to numerical schemes. On the other hand, when nonlinearity is

large, the spatial soliton profile is well localized in space, meaning that only a small number

of sites around the soliton center are effectively nonlinear. The system then looks very similar

to a linear system containing a small cluster of nonlinear sites, or even a single nonlinear

impurity. This simplified system is now amenable to exact mathematical treatment, and the

influence of other potentially competing effects, such as dimensionality, boundary effects,

noise, etc., can be more easily studied without losing the essential physics. This approach

has been successfully used for the DNLS equation[4],

i
dCn

dt
+ V (Cn+1 + Cn−1) + γ|Cn|2Cn = 0, (2)

where it was predicted that, for a semi-infinite nonlinear chain, the presence of a surface

would increase the amount of nonlinearity required to form a localized surface mode. This

was subsequently observed in later studies[5, 6]. When used for the two-dimensional semi-

infinite square lattice, this procedure predicted that this time, the presence of a boundary

would decrease the minimum nonlinearity needed to create a surface localized mode[7]. This

was later found to be the case[8].

In this Letter, we introduce a novel type of nonlinear defect in a one-dimensional discrete

chain, this time using the framework of the AL equation (1).

We consider a one-dimensional array of linear sites, containing a single, Ablowitz-Ladik

impurity located at site n0. In the tight-binding framework, the evolution equation for the



amplitude is given by

i
dCn

dt
+ (V + δn,n0

µ|Cn|2)(Cn+1 + Cn−1) = 0 (3)

where Cn is the complex amplitude at site n, V is the nearest-neighbor coupling coefficient,

and µ is the Ablowitz-Ladik (AL) parameter. We will be interested in stationary-state

solutions of the form Cn(t) = Cn exp(iωt). This leads to the system of equations:

− ωCn + (V + δn,n0
µ|Cn|2)(Cn+1 + Cn−1) = 0. (4)

From Eq.(3) it can be easily proven that the norm

N = (V/µ) log(1 + (µ/V )|C0|2) +
∑

n

′

|Cn|2, (5)

is a conserved quantity, where the prime in the sum indicates that the sum is carried out

over all sites, excepting the impurity site, n = n0. We normalize the time to τ = V t and

the probability amplitude to φn = Cn/
√
N . With these definitions, Eq.(3) simplifies to

i
dφn

dτ
+ (1 + δn,n0

ν|φn|2)(φn+1 + φn−1) = 0 (6)

where ν ≡ Nµ/V . The normalization condition becomes

1 = (1/ν) log(1 + ν|φn0
|2) +

∑

n

′

|φn|2. (7)

The equation for the stationary state, acquires now its dimensionless form:

− β φn + (1 + δn,n0
ν|φn|2)(φn+1 + φn−1) = 0, (8)

where, β ≡ ω/V .

We will focus on two special cases, (i) Impurity in the “bulk” and (ii) “surface” impurity.

Impurity in the “bulk”: In this case, −∞ < n < ∞ and without loss of generality,

we choose n0 = 0. We pose a solution in the form φn = A ξ|n|, where 0 < |ξ| < 1. After

inserting this ansatz into Eq.(8), one obtains β = 2ξ(1 + νA2) and β = ξ + (1/ξ). After

solving for ξ, one obtains

ξ2 =
1

1 + 2νA2
(9)

On the other hand, from the normalization condition, Eq.(7), one obtains the relation

1 =
1

ν
log(1 + νA2) +

2A2ξ2

1 − ξ2
. (10)
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FIG. 1: Impurity in bulk: localized modes for ν = 1.25 (left column) and ν = 1.5 (right column).

The top (bottom) row shows the unstaggered (staggered) versions of the mode.

After combining these last two equations, one obtains ξ = ±[2 exp(ν − 1) − 1]−1/2, and

A = ((exp(ν − 1) − 1)/ν)1/2, which implies

φn = (±1)n

(

exp(ν − 1) − 1

ν

)1/2

(2 exp(ν − 1) − 1)−|n|/2 . (11)

The dimensionless bound state energy is

β = ±
(

[2 exp(ν − 1) − 1]−1/2 + [2 exp(ν − 1) − 1]1/2
)

. (12)

As can be seen from Eq.(11), a localized bound state is possible provided ν > νc = 1,

and for a given ν, there is an unstaggered (staggered) version of the bound state for β >

2 (< −2). Fig.1 shows a couple of profiles φn and their staggered versions, for two different

dimensionless nonlinearity parameters ν. In Fig.2 we show ξ and the bound state energy

as a function of nonlinearity. Standard linear stability analysis reveals that this stationary

localized state is stable.

An interesting feature arises when we consider the dynamical excitation of a localized

state. In this case, one considers Eq.(6) for a highly localized initial condition, chosen as

φn(0) = δn,0

√

(exp(ν) − 1)/ν. This choice corresponds to the one that saturates the nor-

malization condition, Eq.(7). Examination of the ensuing dynamics reveals that at low
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FIG. 2: Impurity in bulk. Left: ξ as a function of ν for localized mode. Right: Bound state energy

of localized mode as a function of nonlinearity parameter. The shaded area marks the position of

the linear band, while the upper (lower) curve corresponds to the unstaggered (staggered) mode.

The black dot marks the position of νc = 1.

nonlinearity values, the excitation tends to diffract across the array, while for higher non-

linearities, it tends to selftrap at the impurity site, with a high-amplitude oscillation, as

Fig.3 clearly shows. The magnitude and frequency of these oscillations increase as the non-

linearity parameter ν is increased. We have checked numerically the persistence of this

breathing phenomenon for long times, and believe that it can be understood from the spe-

cial form of the normalization condition, Eq.(7): A small change in the sum of the square

amplitudes at sites other than the impurity site will bring about a large change of the am-

plitude at the impurity site, due to the logarithmic dependency of the latter. To be more

precise, let us assume that shortly after launching the initial excitation, a certain amount

of radiation is emitted causing
∑′|φn|2 → ∑′|φn|2 − ∆; then it can be easily proven that

|φ0|2 → |φ0|2 + (1/ν)(exp(ν∆) − 1). Thus, it is the particular form of the AL nonlinearity

that amplifies the breathing oscillations exponentially at the impurity site. We have also

computed the long-time average probability at the initial site, as a function of nonlinearity

strength. For our relatively short chain (100 sites), there is no sharp selftrapping threshold,

although there is an inflexion point around ν = 7, as Fig.3 shows.

Surface impurity: We now consider the case when the impurity is at the very beginning

of a semi-infinite lattice. We relabel the previous chain, so that the first site is now at n0 = 0.
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FIG. 3: Impurity in bulk. Top left: Long-time average probability at impurity site. Top right:

Evolution of initial localized excitation across the lattice for ν = 2. Bottom left: Evolution for

ν = 8. Bottom right: Evolution of amplitude at impurity site for ν = 8.

The dimensionless stationary-state equations read now

− β φ0 + (1 + ν|φ0|2)φ1 = 0 (13)

− β φn + (φn+1 + φn−1) = 0, n = 0, 1, 2, . . . (14)

We proceed as before and pose a solution of the form φn = Aξn, where 0 < |ξ| < 1 and

n = 0, 1, 2, . . .. After replacing this ansatz into Eq.(13) and (14), one obtains β = (1+νA2)ξ

and β = ξ + (1/ξ), which implies

ξ2 =
1

νA2
(15)

On the other hand, from the normalization condition, Eq.(7), we have

1 =
1

ν
log(1 + νA2) +

A2ξ2

1 − ξ2
(16)

From Eqs. (15) and (16), we obtain a transcendental equation for ξ:

ν = log

(

1 +
1

ξ2

)

+
1

1 − ξ2
(17)



Simple analysis shows that there is a critical nonlinearity value νc = (3/2) + log(4) ≈ 2.9,

such that, for ν < νc there is no bound state, at ν = νc there is exactly one bound state,

while for ν > νc there are two bound states. One of these states, becomes more narrow and

its energy detaches from the linear band as nonlinearity is increased, while the second one

becomes wider and its energy approaches the linear band upon increase in nonlinearity (see

Fig.5 below). Straightforward linear stability analysis reveals that the former state is stable,

while the latter is unstable.

The bound state mode is given by

φn =
1√
ν
ξ(ν)n−1 n = 0, 1, . . . (18)

where ξ has to be found numerically from Eq.(17), for a given ν > νc. It is possible, however,

to derive a very simple, yet accurate, approximation for ξ = ξ(ν), as follows: We start from

Eq.(17) re-written as

exp(ν) =

(

1 + ξ2

ξ2

)

exp(1/(1 − ξ2)) (19)

Now, since 0 < |ξ| < 1, it makes sense to expand around ξ = 0. To fourth-order in ξ, Eq.(19)

becomes

ξ2eν−1 ≈ 1 + 2 ξ2 + (5/2) ξ4 (20)

which implies,

ξ(ν) ≈ ±
(

1

5
(exp[ν − 1] − 2 − (exp[2(ν − 1)] − 4 exp[ν − 1] − 6)1/2)

)1/2

(21)

Numerical comparison with the exact value, reveals that the relative percentage error of

approximation (21) is less than 3% for ν > 3.

Figure 4 shows some amplitude profiles in the vicinity of the lattice surface for a couple

of different ν values. Figure 5 shows the numerical solution for ξ and the localized state

energy as a function of nonlinearity. As before, values of β above (below) the band give rise

to unstaggered (staggered) states.

Comparison between Figs. 2 and 5 reveals that, as far as stationary localized modes is

concerned, the presence of a surface increases the minimum amount of nonlinearity needed

to create a bound state. The boundary is acting as a repulsive surface, similar to what has

been observed earlier in semi-infinite DNLS systems[4, 6]

Finally, we examine the dynamics of an excitation initially localized at the surface of the

system n = 0. The idea is to determine how the presence of a boundary affects the dynamical



creation of a surface localized mode. As before, we take φn(0) =
√

(exp(ν) − 1)/ν δn,0

and examine the average probability remaining at the initial site for long times, as well

as the behavior of the amplitude at the impurity. Results are displayed in Fig.6, which

is qualitatively similar to its bulk counterpart, Fig.3. As before, we observe diffraction

behavior for small nonlinearity values and selftrapping at large ν values (at approximately

ν ∼ 14.6). In the last case, we also observe large-amplitude oscillations at the impurity site.

The main difference with the bulk case, is that we need now substantially larger ν values to

effect selftrapping.

In conclusion, we have examined the stationary-state and dynamical localized modes re-

siding on a AL-like impurity, embedded well inside and at the surface of a one-dimensional

discrete lattice. For both cases, the dynamical localized mode displays high-amplitude (ex-

ponential) oscillations at the impurity site, due to the particularly asymmetric form of the

coupling between the impurity and its neighbors. The presence of a surface, on the other

hand, increases the amount of minimum nonlinearity needed to create a localized mode, in

agreement with previous studies on one-dimensional DNLS systems.
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FIG. 4: Surface impurity: localized modes for ν = 3 (left column) and ν = 4 (right column). The

top (bottom) row shows the unstaggered (staggered) versions of the mode.
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FIG. 5: Surface impurity. Left: Numerical solution for ξ in terms of ν. Right: Bound state

energies of localized modes as a function of nonlinearity parameter. Solid(dashed) curve denotes

stable(unstable) solution.
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FIG. 6: Surface impurity. Top left: Long-time average probability at impurity site. Top right:

Evolution of initial localized excitation across the lattice for ν = 14. Bottom left: Evolution for

ν = 15. Bottom right: Evolution of amplitude at impurity site for ν = 15.
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List of Figure Captions

Figure 1: Impurity in bulk: localized modes for ν = 1.25 (left column) and ν = 1.5 (right

column). The top (bottom) row shows the unstaggered (staggered) versions of the mode.

Figure 2: (Color online) Impurity in bulk. Left: ξ as a function of ν for localized mode.

Right: Bound state energy of localized mode as a function of nonlinearity parameter. The

shaded area marks the position of the linear band, while the upper (lower) curve corresponds

to the unstaggered (staggered) mode. The black dot marks the position of νc = 1.

Figure 3: (Color online) Impurity in bulk. Top left: Long-time average probability at

impurity site. Top right: Evolution of initial localized excitation across the lattice for ν = 2.

Bottom left: Evolution for ν = 8. Bottom right: Evolution of amplitude at impurity site for

ν = 8.

Figure 4: Surface impurity: localized modes for ν = 3 (left column) and ν = 4 (right

column). The top (bottom) row shows the unstaggered (staggered) versions of the mode.

Figure 5: (Color online) Surface impurity. Left: Numerical solution for ξ in terms of ν.

Right: Bound state energies of localized modes as a function of nonlinearity parameter.

Solid(dashed) curve denotes stable(unstable) solution.

Figure 6: Surface impurity. Top left: Long-time average probability at impurity site. Top

right: Evolution of initial localized excitation across the lattice for ν = 14. Bottom left:

Evolution for ν = 15. Bottom right: Evolution of amplitude at impurity site for ν = 15.
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