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We analyze localization of light at the interface separating square and hexag-
onal photonic lattices, as recently realized experimentally in two-dimensional
laser-written waveguide arrays in silica glass with self-focusing nonlinearity [A.
Szameit et al., Opt. Lett. 33, 663 (2008)]. We reveal the conditions for the
existence of linear and nonlinear surface states substantially influenced by the
lattice topology, and study the effect of the different symmetries and couplings
on the stability of two-dimensional interface solitons.

Theoretical results on the existence of novel types of
discrete surface solitons localized in the corners or at
the edges of two-dimensional photonic lattices [1, 2, 3]
have been recently confirmed by the experimental obser-
vation of two-dimensional surface solitons in optically-
induced photonic lattices [4] and two-dimensional waveg-
uide arrays laser-written in fused silica [5, 6]. These two-
dimensional nonlinear surface modes demonstrate novel
features in comparison with their counterparts in trun-
cated one-dimensional waveguide arrays [7, 8, 9]. In par-
ticular, in a sharp contrast to one-dimensional discrete
surface solitons, the mode threshold is lower at the sur-
face than in a bulk making the mode excitation easier [2].

Recently, Szameit et al. [10] reported on the first ex-
perimental observation of two-dimensional interface soli-
tons, i.e. spatial optical solitons generated at the inter-
face separating square and hexagonal optical lattices with
different refractive index modulation depths. Such two-
dimensional interface solitons feature asymmetric shapes,
while differences in array properties and lattice topology
strongly affect the threshold power for soliton existence
and excitation as well as soliton stability.

In this Letter, we study this problem analytically in
a more general setting and analyze localization of light
at the interface separating two lattices of different sym-
metries in the framework of the two-dimensional discrete
nonlinear model. We assume that the interface is created
between the square and hexagonal two-dimensional op-
tical lattices, similar to the case studied earlier [10], but
we assume the coupling parameters to be different and
study the effect of different symmetries and lattice topol-
ogy, as well as the coupling strength of the interface on
the existence and stability of both linear and nonlinear
surface states. In particular, we determine the conditions
for the thresholdless surface states (linear surface modes)
that appear due to the breaking of the lattice topology,
and also study the nonlinear localization and generation
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Fig. 1. (Color online) Top: Sketch of a square-hexagonal
photonic lattice. Bottom: Examples of low-order non-
linear interface mode centered (left) on the site belong-
ing to the boundary of the square lattice (which ends at
x = −1), and (right) on the site belonging to the bound-
ary of the hexagonal lattice (which starts at x = 0).

of two-dimensional interface solitons.
We consider a semi-infinite two-dimensional optical

lattice created by a square array of optical waveguides
joined to the other semi-infinite but hexagonal lattice
along a straight boundary, as shown in Fig. 1 (top).

In the framework of the coupled-mode theory, the elec-
tric field E(r) propagating along the waveguides can be
presented as a superposition of the waveguide modes,
E(r) =

∑
n
Enφ(r − n), where En is the amplitude of

the (single) guide mode φ(r) centered on site with the
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Fig. 2. (Color online) Linear interface localized modes.
(a) Existence diagram with the shaded area for the modes
centered at the interface. Right: Example of a linear
localized mode for Vb/Vs = 2, Vh/Vs = 0.5. Square lattice
ends at x = −1 while triangular lattice starts at x = 0.

lattice number n = (n1, n2). The evolution equations for
the modal amplitudes En take the form,

i
dEn

dz
+ V

∑

n1,n2

Em + γ|En|
2En = 0, (1)

where n denotes the position of a guide center, and the
coupling V takes on the values Vs( or Vh) inside the
square (or hexagonal) lattice, and Vb, along the bound-
ary between both lattices (see notation in Fig. 1). The
nonlinear parameter γ is normalized to 1(−1) for the fo-
cussing (defocussing) nonlinearity. The lattice studied in
this Letter contains 96 sites with open boundary condi-
tions.

Next, we analyze the stationary localized modes of
Eq.(1) of the form En(z) = En exp(iβz), where the am-
plitudes En satisfy the nonlinear difference equations,

− βEn + V
∑

n1,n2

Em + γ|En|
2En = 0 (2)

We start our analysis by studying the fundamental (node-
less) modes of the system (2) in the linear limit (i.e.
for γ = 0) which corresponds to low input powers
P =

∑
n
|En|

2. After normalizing the lattice couplings
to one corresponding to the square lattice, we are left
with two independent parameters, Vh/Vs and Vb/Vs. For
given values of these two parameters, we diagonalize the
appropriate matrix and examine its fundamental (node-
less) mode. In general, these modes are wide and highly
asymmetric in the direction perpendicular to the inter-
face. The position of the mode center is very sensitive
to the specific value of the coupling parameters. For
instance, for Vt/Vs = Vb/Vs = 1, the mode center is
shifted inside the hexagonal lattice so that the interface
acts as a repulsive potential, preventing the light beam
from crossing the interface. Thus, we observe that the
lattice topology and geometry are playing an important
role. We attribute this effect to the coordination number

mismatch that can be easily compensated by changing
the interactions between the waveguides in each lattice.
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Fig. 3. (Color online) Nonlinear case (γ > 0). Top
left: Minimum power to create a localized mode at the
boundary of the square lattice, as a function of the cou-
plings. Top right: Example of an interface localized
mode centered on a site belonging to the boundary of
the square lattice (Vb/Vs = 1 = Vh/Vs, β = 5.9). Bot-
tom left: Power versus propagation constant for interface
modes localized at the boundary of the square lattice;
Vb/Vs = 1 = Vh/Vs (red) and Vb/Vs = 0.8, Vh/Vs = 1
(blue). The dashed portion of the curve denotes an un-
stable regime. Bottom right: Example of a higher-order
interface mode.

Indeed, if we compensate for this geometric effect by set-
ting the ratio Vh/Vs equal to the ratio of their respec-
tive coordination numbers, 2/3, while keeping Vb = Vs,
no mismatch is observed and the resulting mode extends
over both lattices.

We now make a sweep in coupling space selecting those
values that lead to a mode center located at the interface
either from the side of the square lattice or from the
side of the hexagonal lattice. Our results are summarize
in Fig. 2 in the form of a coupling-parameters diagram,
along with an example of one such mode.

We move now to analyze the nonlinear interface modes
of the system (i.e., γ 6= 0), looking for the low-order non-
linear modes centered at either side of the interface be-
tween the lattices. For a given value of β, we solve Eqs.
(2) numerically with the help of a straightforward exten-
sion of the multidimensional Newton-Raphson method
used earlier in our analysis of one-dimensional waveguide
arrays [9]. We also compute the linear stability proper-
ties of each mode. Results are displayed in Figs. 1 and 3,
which show some examples of low-order interface modes
(Fig. 1) and the minimum power to effect an interface
mode at the square side of the boundary, as a function
of the coupling parameters (Fig. 3).
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Fig. 4. Top: Average power fraction remaining at the
square-triangular interface waveguide, after some propa-
gation distance, as a function of the input power (solid).
The dotted(dashed) curves refer to the cases of fully-
square (triangular) lattices. (Vb/Vs = 1 = Vt/Vs, zmax =
20/Vs). Bottom: Dynamical excitation of an interface
localized mode. Left: localized mode at the boundary of
the square lattice. Right: Localized mode at the bound-
ary of the triangular lattice (Vb/Vs = 1, Vt/Vs = 2/3,
input power: 2.6). Triangular lattice starts at x = 0.

The presence of a steep “hole” in the power surface
is due to the existence of linear interface modes (Fig. 2).
The figure also shows an example of such a mode, which is
substantially narrower than its linear counterpart. The
stability analysis shows that all nonlinear modes origi-
nating from linear ones are always stable, while nonlin-
ear modes outside the linear “hole” in the coupling space
require a minimum power to exist. For the latter, the
Vakhitov-Kolokolov stability criterium seems to hold. Fi-
nally, in Fig.3 we also show for completeness, an example
of a high-order nonlinear mode, characterized by having
positive amplitudes inside the square sector, while inside
the hexagonal lattice the amplitudes are all negative. It
could be described as a “twisted” mode along the direc-
tion perpendicular to the boundary.

Finally, we examine the dynamical excitation of a lo-
calized interface mode, excited by a highly-localized in-
put beam launched at a boundary waveguide. As ex-
pected, for given values of Vb/Vs and Vh/Vs, a narrow
state is created above some minimum power level. Figure

4 shows the average power remaining at an initial waveg-
uide located at the very boundary between the square
and triangular lattices (Vb/Vs = 1 = Vh/Vs), as a func-
tion of the input power. Not surprisingly, the power curve
falls between the curves for the fully-square and fully-
triangular lattices; with the fully-square lattice possess-
ing the smallest threshold power for self-trapping due to
its lower coordination number. Figure 4 also shows two
examples of dynamically generated interface modes.

In conclusion, we have studied localization of light at
the interface separating square and hexagonal photonic
lattices and determined the conditions for the existence
of localized surface states due to symmetry breaking. We
have analyzed the effect of the lattice topology and inter-
site couplings on the stability of two-dimensional surface
solitons which are found to differ substantially from the
one-dimensional discrete surface solitons.
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