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a b s t r a c t

We study localized modes on a single magnetic impurity positioned in the bulk or at the surface of a
one-dimensional chain, in the presence of a magnetic field B acting at the impurity site. The strong on-
site nonlinear interaction U between two electrons of opposite spin at the impurity site, modelled here
as a nonlinear local term, and the presence of the external field induce a strong correlation between
parallel and antiparallel spin bound states. We find that, for an impurity in the bulk, a localized vector
mode (with up and down spin components) is always possible for any given value of U and B , while
for a surface impurity, a minimum value of both, U and B is needed to create a vector mode. In this
case, up to two localized modes are possible, but only one of them is stable. The presence of the surface
seems to destabilize the bulk mode in the parameter region U ∼ B , creating a “forbidden strip” region in
parameter space, bounded by U = B + V and U = B − V , approximately.
1. Introduction

Nonlinear effects are the subject of intensive, ongoing research
in several fields that include molecular crystals [1,2], Josephson-
junction arrays [3], Ferromagnetic materials [4], photonic crystals
[5], photonic lattices [6], Bose–Einstein condensates in magneto-
optical traps [7] and nonlinear metamaterials [8], to name a few.
This interest is due in no small part to the wide range of potential
applications to the design and operation of optoelectronic devices.

In condensed matter, nonlinear effects arise from at least two
different sources. One of them is a possible strong coupling be-
tween an excitation and local vibrational modes. In the approx-
imation where one assumes a rapid readjustments of the local
vibrations to the presence of the excitation, one quickly arrives at
some version of the discrete nonlinear Schrödinger (DNLS) equa-
tion, whose exact form depends on the type of anharmonicity
(or lack of it) of the underlying oscillators [9]. When the strong
interaction tales place only at some few sites, or at a single impu-
rity site, it is possible to compute the formation of bound states
in closed form in one-dimensional [10], two-dimensional [11] and
three-dimensional lattices [12], by using a direct extension of the
lattice Green function formalism.

The other source for nonlinearity comes from electron–electron
interactions in nanoscale devices, such as quantum dots and few
impurity models [13]. Roughly speaking, the Coulomb interaction
gives rise to a nonlinear term in the Schrödinger equation, that is
usually modelled as a cubic, nonlocal term in the fermionic field
operators. This is usually followed by the Hartree–Fock approxi-
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mation for the nonlinear term [14], or the use of a perturbative
approach in the Coulomb interaction [15]. Another recent approach
calls for modelling the electron–electron interaction by a nonlinear
local term in the Schrödinger equation [16]. While being a sort
of oversimplification of the many-body problem, it has the advan-
tage of retaining the main features of Coulomb interaction-induced
nonlinearities, while allowing for speedy computation of quanti-
ties of interest for electronic transport. This approach has been
recently used for a simple computation of the zero-voltage con-
ductance across a magnetic impurity [16].

In this Letter, we focus on the possible localized impurity
modes that can reside on top of a nonlinear magnetic impurity,
where the source of the nonlinearity is due to strong electron–
electron interaction effects at the impurity site. It is important to
ascertain the conditions under which such bound states exist, since
they could, for instance, scatter other extended excitations in the
system. The precise control of this scattering could be of impor-
tance in the control of the transport properties across nanoscale
impurity regions.

2. Model

Let us start by considering the problem of a one-dimensional
discrete system consisting of two linear chains (leads) joined by
a strongly nonlinear magnetic region, where electron–electron ef-
fects are important. In the interacting region, the electron–electron
repulsion is modelled by Uρ0σ ρ0−σ , where ρ0σ = |ψ0,σ |2, where
ψ0,σ is the probability amplitude of finding an electron of spin
σ =↑,↓ on site n = 0.

The coupled evolution equations for the probability amplitudes
are
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i
dψn,↑

dt
+ V (ψn+1,↑ + ψn−1,↑) + δn,0

(
ε0,↑ + U |ψn,↓|2)ψn,↑ = 0,

i
dψn,↓

dt
+ V (ψn+1,↓ + ψn−1,↓) + δn,0

(
ε0,↓ + U |ψn,↑|2)ψn,↓ = 0, (1)

where V is the nearest-neighbor coupling parameter, U is the
Coulomb repulsion energy and ε0,↑ = −B, ε0,↓ = B is the Zeeman
energy shift due to the magnetic field B , which is assumed to be
appreciable only in the immediate vicinity of the impurity site.

We are interested in stationary solutions of the type ψn,σ (t) =
exp(iβt) ψn,σ . This leads to the system of nonlinear equations

−βψn,σ + V (ψn+1,σ + ψn−1,σ )

+ δn,0
(
ε0,σ + U |ψn,−σ |2)ψn,σ = 0. (2)

At this point an general observation is in order. If we were to
consider the impurity site also coupled to a local, fast elastic vibra-
tional degree of freedom, then in the limit when the local vibration
is completely enslaved to the electronic motion, there would be an
additional term of the form γ |ψn,σ |2ψn,σ in Eqs. (1), (2). In that
case, the system would be formally equivalent to a birefringent,
nonlinear optical Kerr impurity embedded in a weakly-coupled,
linear waveguide array, in the absence of four-wave mixing effects,
and ψn,↑ and ψn,↓ would represent the electric field amplitudes
for the TM and TE mode, respectively [17].

In order to keep the magnetic and electronic repulsion effects
well separated from possible polaronic effects, in this work we re-
strict ourselves to Eqs. (1), (2). The interplay of external magnetic
field, electron–electron repulsion and electron–phonon interaction
effects on a single impurity, will be described elsewhere.

3. Impurity in bulk

Here the chain occupies the interval −∞ < n < ∞, with the im-
purity site at n = 0. We look for a localized mode centered on the
impurity site, ψn,σ = Aσ ξ

|n|
σ , with 0 < |ξ | < 1. This ansatz leads to

the equations:

−β + 2V ξσ + εσ + U A2−σ = 0 (3)

and

β = V

(
ξσ + 1

ξσ

)
. (4)

On the other hand, from probability conservation, we have 1 =∑
n |ψn,↑|2 = ∑

n |ψn,↓|2. This implies the additional equations

1 = A2↑
(1 + ξ2↑

1 − ξ2↑

)
(5)

and

1 = A2↓
(1 + ξ2↓

1 − ξ2↓

)
. (6)

From Eqs. (3), (4), (5) and (6), we obtain two coupled equations
for ξσ :

ξ2↑ = 1 − ξ↑
[
− B

V
+ U

V

(1 − ξ2↓
1 + ξ2↓

)]
(7)

and

ξ2↓ = 1 − ξ↓
[
+ B

V
+ U

V

(1 − ξ2↑
1 + ξ2↑

)]
. (8)

It is clear from these equations that, the transformation ξ↑ → ξ↓ ,
B → −B leave the equations invariant. Since U > 0 due to the re-
pulsive nature of the Coulomb interaction, we only need to deal
Fig. 1. (Color online.) Left: B = 0 case. Amplitude of localized state for both spins as
a function of nonlinearity. Right: U = 0 case. Amplitude of localized state for both
spins, as a function of magnetic field.

with, say, B > 0. The behavior for the opposite sign of B is ob-
tained by simply exchanging ξ↑ and ξ↓ .

Before analyzing the general case, let us discuss briefly a couple
of important special cases.

(a) B = 0. In this case, there is no physical distinction between
ξ↑ and ξ↓ , and Eqs. (7) and (8) collapse into a single one: ξ2 =
1 + (U/V )ξ((1 − ξ2)/(1 + ξ2)), with solution

ξ =
(

U

2V

)
−

√(
U

2V

)2

− 1, (9)

provided U/V > 2. Since ξ < 0, the spatial mode profile is stag-
gered. Fig. 1 shows ξ in terms of U/V . As expected, an increase of
nonlinearity reduces the width of the localized mode.

(b) U = 0. In the absence of Coulomb repulsion, the only source
for localization is given by the presence of the external field B .
The equations read now ξ2↑ = 1 − (B/V )ξ↑, ξ2↓ = 1 + (B/V )ξ↓ , with
solutions

ξ↑ =
(

B

2V

)
−

√(
B

2V

)2

+ 1 (10)

and

ξ↓ = −
(

B

2V

)
+

√(
B

2V

)2

+ 1. (11)

Fig. 1 shows the allowed ξ↑, ξ↓ as a function of magnetic field. In
this case, no minimum field strength is needed to create a local-
ized mode, but the mode profile corresponding to a spin parallel
(antiparallel) to the external field is staggered (unstaggered).

For the general case, we solve Eqs. (7) and (8) numerically, se-
lecting the real roots that lie in the interval (−1,1). Results are
shown on Fig. 2 in the form of a nonlinearity-magnetic field phase
space diagram, showing the amplitude of ξ↑ , ξ↓ , for a given value
of U/V and B/V . For spin up, the amplitude is always nega-
tive and increasing with increasing B , provided U/V < 2. When
U/V > 2, there is a sharp boundary in U –B space separating pos-
itive amplitude values, in the “low” B/V region, from negative
amplitude values, in the “high” B/V region. Upon crossing the
boundary, in the direction of increasing B , the sign of the ampli-
tude jumps discontinuously from +1 to −1. The shape of this crit-
ical boundary can be computed exactly from Eqs. (7) and (8): We
set ξ2↑ = 1 in Eq. (8), and solve for ξ↓ = −(B/2V )+√

(B/2V )2 + 1.
Next, we insert this into Eq. (7), and solve for U in terms of B ,
obtaining:(

B

V

)
c
= 4 + (B/V )2 − (B/V )

√
(B/V )2 + 4

−(B/V ) + √
(B/V )2 + 4

. (12)

For spin down, the amplitude of the localized modes is always
positive. For U/V < 2, the amplitude decreases monotonically to-



Fig. 2. Amplitude of localized mode as a function of nonlinearity and external magnetic field, for spin up (left) and spin down (right). Darkest (whitest) shade corresponds to
ξ = −1 (1).

Fig. 3. (Color online.) Spatial mode profiles for U/V = 3 and varying values of B/V . Top left: B/V = 1. Top right: B/V = 2. Bottom left: B/V = 4. Bottom right: B/V = 6.
Solid (dashed) curves denote the spin up (down) mode.
wards zero with an increase in B . For U/V > 2 however, the am-
plitude starts at some positive value at B = 0, then increases fur-
ther with an increase in B , until B/V reaches the critical boundary
computed above. After that, an increase in B leads to an decrement
of the amplitude towards zero.

In Fig. 3 we show some spatial profiles ψn,σ for a fixed value
of nonlinearity, and increasing values of magnetic field. Note that
for B > 0, the localized mode for spin down is always unstaggered,
while for spin up, the mode is unstaggered at first, and becomes
staggered after certain value of magnetic field, given by Eq. (12).

4. Surface impurity

We now consider the case when the magnetic impurity is at the
very beginning of a semi-infinite lattice. We relabel the previous
chain, so that the first site is now at n0 = 0. The stationary-state
equations read now

−β ψ0,σ + V ψ1,σ + (
ε0,σ + U |ψ0,σ |2)ψ0,σ = 0, (13)

−β ψn,σ + V (ψn+1,σ + ψn−1,σ ) = 0, n = 0,1,2, . . . . (14)

We proceed as before and pose a solution of the form φn,σ =
Aσ ξn

σ , where 0 < |ξ | < 1 and n = 0,1,2, . . .. After replacing this
ansatz into Eqs. (13) and (14), one obtains β = V ξσ + ε0,σ + U A2−σ
and β = ξσ + (1/ξσ ), which implies

ξσ = 1

(ε /V ) + (U/V )A2
. (15)
σ −σ
On the other hand, from the normalization condition, 1 =∑
n |ψn,↑|2 = ∑

n |ψn,↓|2, we obtain A2↑ = 1 − ξ2↑ and A2↓ = 1 − ξ2↓ .
After inserting this into Eq. (15) and after using ε0,σ = −σ B , one
arrives at two coupled transcendental equations for ξ↑ , ξ↓:

ξ↑ = 1

−(B/V ) + (U/V )(1 − ξ2↓)
, (16)

ξ↓ = 1

(B/V ) + (U/V )(1 − ξ2↑)
. (17)

As was done for the impurity in the bulk, let us consider first two
special cases.

(a) B = 0. In this case, ξ↑ = ξ↓ = ξ , where ξ satisfies ξ(1−ξ2) =
(U/V )−1. This implies that a critical value (U/V )c = (3/2)

√
3 ∼

2.6 exists, such that for (U/V ) < (U/V )c , no localized state ex-
ists. For (U/V ) = (U/V )c , there is exactly one localized state,
and (U/V ) > (U/V )c , two localized states are possible; for one
of them, ξ increases towards unity as nonlinearity is increased
(unstable mode), while the other decreases ξ as nonlinearity is
increased (stable mode). Since U > 0, this implies that ξ is also
positive, and thus, the localized mode is unstaggered. Fig. 4 shows
ξ in terms of U/V .

(b) U = 0. In the absence of Coulomb repulsion, we immedi-
ately obtain ξ↑ = −1/(B/V ) and ξ↓ = 1/(B/V ), where |B/V | > 1
to ensure |ξ↑,↓| < 1. Fig. 4 shows the allowed ξ↑, ξ↓ as a function



of magnetic field. The mode profile corresponding to a spin parallel
(antiparallel) to the external field is staggered (unstaggered).

Although Figs. 1 and 4 look qualitatively similar, we note some
interesting differences: For the surface impurity, and in the ab-
sence of magnetic field, the amount of nonlinearity needed to ef-
fect a localized state is higher that in the bulk impurity case. Also,
in the linear case (U = 0), one needs higher values of magnetic
field to create a surface localized mode. The surface, or boundary
of the system is acting in a repulsive manner.

Fig. 4. Left: B = 0 case. Amplitude of localized state for both spins as a function
of nonlinearity. The solid (dashed) curve denotes the stable (unstable) mode. Right:
U = 0 case. Amplitude of localized state for both spins, as a function of magnetic
field.

Fig. 5. Number of localized surface modes, as a function of nonlinearity and mag-
netic field.
For the general case, there are two important regimes, B/V � 1
and B/V > 1.

B/V � 1. In this case, there is a critical nonlinearity value
(U/V )c such that, for 0 < (U/V ) < (U/V )c , no localized state ex-
ists, while for (U/V ) > (U/V )c , there are two localized states. One
of them (stable mode) becomes narrower with increasing nonlin-
earity; the other (unstable mode) becomes wider.

B/V > 1. In this case, we have three critical values for (U/V ),
that create four regions:

(i) 0 < (U/V ) < (U/V )c1: This is the region of “small” nonlin-
earity, where magnetic field dominates and there is always
a localized mode, with ξ↑ < 0, ξ↓ > 0. As (U/V ) → (U/V )c1,
ξ↑ → −1.

(ii) (U/V )c1 < (U/V ) < (U/V )c2: No localized mode exists.
(iii) (U/V )c2 < (U/V ) < (U/V )c3: Two localized modes are pos-

sible here. One of them (stable) becomes narrower with in-
creasing U/V , while the other (unstable) becomes wider with
increasing U/V .

(iv) (U/V ) > (U/V )c3: The previous unstable state disappears, and
only stable mode remains. As (U/V ) → ∞, both ξ↑ and ξ↓
approach zero.

Fig. 5 shows all these regions in the form of a nonlinearity-
magnetic field phase space diagram. The number inside each re-
gion denotes the number of localized surface modes (each one
with a spin-up and spin-down component). We note, in partic-
ular, the existence of a region, roughly delimited by the straight
lines (U/V ) = (B/V ) + 1 and (U/V ) = (B/V ) − 1, where no lo-
calized states exists. These are obtained as limiting cases of the
curves that separate regions “1” (top) and “0”, and regions “0”
and “1” (bottom). For the first case the curve is U/V = [(B/V ) +
1]/[1 − (V /B)2], while for the second case, the curve is given
by U/V = [(B/V ) − 1]/[1 − (V /B)2]. In Fig. 6 we show examples
of spatial profiles ψn,σ . We note that their staggered/unstaggered
character is rather similar to the “bulk” case (Fig. 3).

5. Selftrapping dynamics

We consider now the dynamical excitation of a localized mode
on top of the magnetic impurity, comparing the bulk and sur-
face cases. We place initially both electrons (with opposite spins)
Fig. 6. (Color online.) Examples of surface localized modes. Solid (dashed) lines refer to spin up (down). Top left: B/V = 1, U/V = 4 (stable mode). Top right: B/V = 1,
U/V = 4 (unstable mode). Bottom left: B/V = 3, U/V = 5. Bottom right: B/V = 3, U/V = 1.



Fig. 7. Magnetic impurity in “bulk”. Left (right): Time-averaged selftrapped fraction of spin up (down) remaining on the initial site, as a function of U and B . Dark (white)
shade denote selftrapped fraction close to zero (one).

Fig. 8. Magnetic impurity on surface. Left (right): Time-averaged selftrapped fraction of spin up (down) remaining on the initial site, as a function of U and B . Dark (white)
shade denote selftrapped fraction close to zero (one).
on the impurity site and follow the evolution of their probability
densities, according to Eq. (1). In particular, we focus on the time-
averaged selftrapped fraction remaining the initial site, defined by

〈Pσ 〉 = 1

T

T∫
0

∣∣ψ0σ (t)
∣∣2

dt, (18)

and examine how 〈Pσ 〉 depends on electron interaction U and
magnetic field B .

Figs. 7 and 8 show the selftrapping results for the “bulk” and
surface cases. While the behavior in both cases is qualitatively sim-
ilar, we note that in general, it is a bit easier to selftrap in the
bulk case than in the surface case. On the other hand, for the sur-
face case, there are sharper boundaries separating the untrapped
from the selftrapped regime. Also, in both cases and for positive B ,
selftrapping for the spin up component, is largely inhibited in a
wide strip around the region U ∼ B , while the spin down compo-
nent is dominated by magnetic field effects. Of course, for U 
 B ,
nonlinearity effects are not important and selftrapping increases
gradually with magnetic field, as one expects for a linear site im-
purity. On the contrary, for U � B , selftrapping is abrupt and its
threshold is higher for the surface case than for the bulk case.
Again, this is a manifestation of the repulsive nature of the sys-
tem surface in one dimension.

6. Conclusions

We have examined theoretically the formation of bound spin
states on top of a narrow magnetic impurity region in the presence
of an external magnetic field, in the simplified framework of mod-
elling the electronic repulsion by means of a local nonlinear term.
The ensuing set of coupled DNSL equations obtained for the vec-
tor impurity, is solved numerically for arbitrary values of electronic
repulsion and magnetic field strength. We focused on the cases of
a bulk and a surface impurity. In general, we found that it is eas-
ier to create a bound state in the bulk case than in the surface
case. In the latter, the bound state diagram showing the number
of bound states in terms of nonlinearity and magnetic field param-
eters, show a rather complex structure, that includes a “forbidden
region” delimited approximately by U = B + V and U = B − V .
In this regard, the presence of a surface inhibits completely the
creation of a vector localized mode, in the region U ∼ B . In ad-
dition, there is a parameter region where two bound states exist,
although only one of them is (linearly) stable. Dynamical results
for selftrapping show that, in general, it is easier to selftrap on a
bulk impurity than on a surface one, although the selftrapping is
sharper for the latter. This repulsive character of the surface was
observed earlier for the one-dimensional nonlinear chain [18], and
seems to be generic to one-dimensional discrete systems.
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