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EXAMPLES OF COMMUTATIVE RIGHT-NILALGEBRAS
OVER SMALL FIELDS

Antonio Behn
Department of Mathematics, Faculty of Science, University of Chile,
Santiago, Chile

Correa et al. (2003) proved that any commutative right-nilalgebra of nilindex 4
and dimension 4 is nilpotent in characteristic �=2� 3. They did not assume power-
associativity. In this article we will further investigate these algebras without the
assumption on the dimension and providing examples in those cases that are not covered
in the classification concentrating mostly on algebras generated by one element.

Key Words: Albert’s problem; Nilalgebras; Small characteristic.

1991 Mathematics Subject Classification: 17A30.

1. INTRODUCTION

In a nonassociative algebra A we define right principal powers of an element
x ∈ A recursively as follows:

x1 = x� xn+1 = xnx�

We say that A is power associative if for any x ∈ A, the subalgebra generated
by x is associative. A is right-nil if there is some n ∈ � such that xn = 0 for all x ∈ A.
The smallest such n is called the right-nilindex of A.

We also define the following descending chains of subalgebras in A:

1. A1 ⊇ A2 ⊇ � � � � where A1 = A and An = ∑
r+s=n A

rAs for n > 1;
2. A�1� ⊇ A�2� ⊇ � � � � where A�1� = A and A�n� = A�n−1�A for n > 1;
3. A�1� ⊇ A�2� ⊇ � � � � where A�1� = A and A�n� = �A�n−1��2 for n > 1.

When one of these chains goes to zero, we say that A is nilpotent, right-
nilpotent, or solvable, respectively. It is clear from the definition that nilpotent
implies right-nilpotent and right-nilpotent implies solvable.

If the right-nilindex of A is 2, there are two possibilities depending on the
characteristic of the underlying field. When char K �= 2 we can easily see that the
multiplication is trivial. On the other hand, when char K = 2 we construct a power-
associative algebra A which is not solvable (Example 3.1).
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If the right-nilindex of A is 3 then we have the following possibilities:
When K �= �2 then A is a Jordan algebra and therefore power associative
(Remark 2.1). In particular, every subalgebra of A generated by one element is
associative and nilpotent. When char K �= 2, and A is finite dimensional, then A is
nilpotent (see Schafer, 1966). Finally, when K = �2 we construct an algebra A which
is generated as an algebra by one element, A is of infinite dimension and it is not
solvable (Example 3.2).

If the right-nilindex of A is 4 and char K �= 2� Elduque and Labra (2006)
studied the problem when the dimension of A is at most 4. Here we will study
what happens when A is generated by one element. In what follows we will write
�K� for the number of elements in the field K. When char K �= 2 and �K� ≥ 3� then
A is nilpotent and dim A ≤ 6 (see Theorem 2.3). When char K = 2, Example 3.3
shows that A may not be power-associative nor solvable. Finally, when K = �3� we
construct an example where A is nilpotent and dim A = 7 (Example 3.5).

2. RIGHT-NILINDEX AT MOST FOUR

We will start considering an algebra A with right-nilindex 3. The following is
a well-known result.

Remark 2.1. Let A be a commutative K-algebra with right-nilindex 3. If �K� ≥ 3�
then A is a Jordan algebra and therefore power-associative.

Now we will focus on algebras A that are generated by one element and
have right-nilindex 4. Correa et al. (2003) show that in a commutative right-
nilalgebra A of nilindex 4 over a field of characteristic �=2� 3 every subalgebra of
A generated by a single element is nilpotent of index at most 7. Here we drop the
assumptions on the characteristic of the field and we still get the following lemma
(see Correa et al., 2003, Theorem 1).

Lemma 2.2. Let A be a commutative K-algebra with right-nilindex 4. We will assume
�K� ≥ 4 so that we can use all the linearizations of the identity ��xx�x�x = 0. Let e1 ∈ A
be an arbitrary element and define e2 = e1e1, e3 = e2e1, e4 = e2e2, ei+1 = eie1 for i ≥ 4.
Then the ei satisfy:

(i) e1e3 = 0, e2e2 = e4, e1ei = ei+1 for i ≥ 1, i �= 3;
(ii) e2e3 = −e5;
(iii) e2e4 = e3e3 = e6;
(iv) e2e5 = e3e4 = e7;
(v) e3e5 = e8;
(vi) e2e6 = e2e7 = e3e6 = e3e7 = e4e4 = e4e5 = e4e6 = e4e7 = e5e5 = e5e6 = e5e7

= e6e6 = e6e7 = e7e7 = 0;
(vii) 2ei = 0 for all i ≥ 7�

Proof. Linearizing the identity ��xx�x�x = 0, we obtain the following:

f�x� y� �= 2��yx�x�x + �x2y�x + x3y = 0�

g�x� y� �= �y2x�x + 2��xy�y�x + 2��xy�x�y + �x2y�y = 0�
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h�x� y� z� �= 2���yz�x�x + ��yx�z�x + ��yx�x�z+ ��xz�y�x + ��xz�x�y�

+ �x2y�z+ �x2z�y = 0�

Part (i) follows from the definition of the ei using the fact that e41 = 0. In what
follows we will use these identities without further mentioning it.

0 = f�e1� e2� = 0+ e5 + e3e2 proving (ii).
Part (iii) follows from

0 = f�e1� e3� = 0+ �e2e3�e1 + e3e3 = −e6 + e3e3�

0 = g�e1� e2� = e6 − 2e6 + 0+ e4e2�

Part (iv) follows from

0 = f�e2� e1� = 2�e3e2�e2 + e5e2 + �e4e2�e1 = −2e5e2 + e5e2 + e7 = −e5e2 + e7�

0 = h�e1� e2� e3� = 2��e2e3�e1�e1 + 2�e3e3�e1 + 0+ 0+ 0+ e4e3 + �e2e3�e2

= −2e7 + 2e7 + e4e3 − e5e2�

Part (v) follows from

0 = g�e1� e3� = ��e3e3�e1�e1 + 0+ 0+ �e2e3�e3 = e8 − e3e5�

Part (vii) follows from

0 = f�e1� e4� = 2e7 + �e2e4�e1 + e3e4 = 4e7�

Part (vi) follows from

e6e2 = �e4e2�e2 = e42 = 0�

0 = h�e1� e2� e4� = 2��e2e4�e1�e1 + 2�e3e4�e1 + 0+ 2�e5e2�e1 + 2e6e2 + e4e4 + �e2e4�e2

= e4e4�

0 = f�e1� e6� = 2e9 + �e2e6�e1 + e3e6 = e3e6�

0 = h�e1� e3� e4� = 2��e3e4�e1�e1 + 0+ 0+ 2�e5e3�e1 + 2e6e3 + �e2e3�e4 + �e2e4�e3�

= −e5e4�

0 = h�e1� e2� e5� = 2��e2e5�e1�e1 + 2�e3e5�e1 + 0+ 2�e6e2�e1 + 2e7e2 + e4e5 + �e2e5�e2

= e7e2�

0 = f�e1� e7� = 2e10+ �e2e7�e1 + e3e7 = e3e7�

0 = f�e2� e4� = 2��e4e2�e2�e2 + �e4e4�e2 + �e4e2�e4 = e6e4�

0 = h�e1� e3� e5� = 2��e3e5�e1�e1 + 0+ 0+ 2�e6e3�e1 + 2e7e3 + �e2e3�e5 + �e2e5�e3

= −e5e5�
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0 = h�e1� e2� e7� = 2��e2e7�e1�e1 + 2�e3e7�e1 + 0+ 2�e8e2�e1 + 2e9e2 + e4e7 + �e2e7�e2

= e4e7�

0 = f�e2� e5� = 2��e5e2�e2�e2 + �e4e5�e2 + �e4e2�e5 = e5e6�

0 = f�e2� e6� = 2��e6e2�e2�e2 + �e4e6�e2 + �e4e2�e6 = e6e6�

0 = g�e1� e5� = ��e5e5�e1�e1 + 2�e6e5�e1 + 2e7e5 + �e2e5�e5 = e7e5�

0 = f�e2� e7� = 2��e7e2�e2�e2 + �e4e7�e2 + �e4e2�e7 = e6e7�

0 = h�e2� e3� e7� = 2��e3e7�e2�e2 + 2��e3e2�e7�e2 + 2��e3e2�e2�e7

+ 2��e2e7�e3�e2 + 2��e2e7�e2�e3 + �e4e3�e7 + �e4e7�e3

= e7e7� �

Theorem 2.3. Let A be a commutative K-algebra with right-nilindex 4 generated
as an algebra by a ∈ A. If charK �= 2 and �K� ≥ 4� then A is nilpotent and
A=�a� a2� a3� a2a2� a2a3� a3a3� so that dim�A� ≤ 6.

Proof. This is a direct consequence of the preceding lemma letting e1 = a and
noticing that since charK �= 2 we have ei = 0 for all i > 6. In particular A is
nilpotent of index at most 7. �

3. EXAMPLES

Example 3.1. Let A be a commutative algebra over K (charK = 2) with
basis �a1� a2� a3	. The multiplication defined on basis elements has commuting
nonzero products a1a2 = a3� a2a3 = a1� a1a3 = a2. The resulting algebra is power-
associative and has right-nilindex 2 (every square is zero), but it is not solvable
since A=A2 = �A2�2 = � � � . We may remark that this constitutes an answer in
characteristic 2 to a well-known problem of Albert’s which asks, “Is every finite-
dimensional commutative power-associative nilalgebra solvable?”

Example 3.2. Let A be an algebra over K = �2 with basis �a1� a2� � � � 	 and
nonzero products defined by

aiaj = a i+j
2 +1� if i+ j is even�

Then A is generated by one element, A is right-nil with right-nilindex 3, and A is
not solvable. We may also notice that A is commutative and not power-associative.

Proof. Since a2
i = ai+1, A is generated by a1. Let

u =
n∑

i=1


ia2i + �ia2i−1

be an arbitrary element in A. Then

u2 =
n∑

i=1


2i a2i+1 + �2
i a2i�
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and

u3 =
( n∑

i=1


ia2i + �ia2i−1

)( n∑
j=1


2j a2j+1 + �2
j a2j

)

=
( n∑

i=1


ia2i

)( n∑
j=1

�2
j a2j

)
+

( n∑
i=1

�ia2i−1

)( n∑
j=1


2j a2j+1

)

=
( n∑

i=1


ia2i

)( n∑
j=1

�2
j a2j

)
+

( n∑
j=1

�ja2j−1

)( n∑
i=1


2i a2i+1

)

=
n∑

i=1

n∑
j=1


i�
2
j ai+j+1 +

n∑
i=1

n∑
j=1

�j

2
i ai+j+1

=
n∑

i=1

n∑
j=1


i�j��j + 
i�ai+j+1

= 0�

The last equality occurs because in �2 either 
i = �j or one of the two has
to be zero. Therefore we have shown that A is right-nil. On the other hand,
A2 =�a2� a3� � � � �	A so A is not solvable. �

3.1. Nilindex 4

With the following examples we want to show that the hypotheses on the
field in Theorem 2.3 are sharp. Let us start by considering what happens when
charK= 2.

Example 3.3. Let K be a field with charK = 2 and let A be a commutative
K-algebra with basis �e1� e2� � � � 	 and multiplication defined by:

(i) e1ei = ei+1 for i ≥ 1, i �= 3, e1e3 = 0�
(ii) e2e2 = e4, e2e3 = e5, e2e4 = e6, e2e5 = e7�

(iii) e3e3 = e6, e3e4 = e7, e3e5 = e8�

(iv) e8e9 = e1�

(v)) All other products of basis elements are zero.

Then A is generated by one element, A satisfies the identity ��xx�x�x = 0� and
A=A2 so in particular A is not solvable. We may also notice that A is not power-
associative.

Proof. It is immediate from the multiplication table that A is generated as an
algebra by e1. Now let u ∈ A be an arbitrary element. Then

u =
n∑

i=0


iei
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for some n ∈ � and 
i ∈ K. We can proceed to calculate u4:

u4 = ��
21e2 + 
22e4 + 
23e6�u�u

= �
31e3 + 
1

2
2e5 + 
1


2
3e7 + 
21
2e4

+ 
32e6 + 
21
3e5 + 
22
3e7 + 
21
4e6 + 
21
5e7�u

= 
21

2
2e6 + 
21


2
3e8 + 
31
2e5 + 
1


3
2e7 + 
31
3e6 + 
1


2
2
3e8

+ 
31
4e7 + 
31
5e8 + 
31
2e5 + 
1

3
2e7 + 
21


2
2e6 + 
21
2
3e7

+ 
31
3e6
1

2
2
3e8 + 
21
2
3e7 + 
21


2
3e8 + 
31
4e7 + 
31
5e8

= 0�

It is easy to verify that A2 = A since e1 = e8e9 ∈ A2. �

Example 3.4. We can modify the previous example to obtain a finite dimensional
algebra which is not solvable. Let A = �e1� � � � � e9� and modify the multiplication
table so that e1e9 = 0.

The other assumption made in Theorem 2.3 is on the size of the field (�K� ≥ 4�)
which leaves as the only alternative to consider K = �3. Although this may not be
such a traditional source of examples, in a recent article, Bremner (2007) gives an
example of a power associative algebra over the field of three elements which is not
strictly power associative, i.e., when we extend the field, the resulting algebra is not
power associative.

It is interesting to notice that for Lemma 2.2 we need a field with at least 4
elements to linearize x4 = 0 to get the identity 2��yx�x�x + �x2y�x + x3y = 0. When
K = �3, the remaining linearizations g�x� y� and h�x� y� z� are still valid and we can
obtain an additional identity by calculating �x + y�4 − �x − y�4 to get

2��yx�x�x + 2��xy�y�y + �x2y�x + �y2x�y + x3y + y3x = 0�

The main difficulties in working with this last identity arise because it is not
homogeneous in each of the variables.

Example 3.5. Let K = �3 and let A be a commutative algebra with basis
�e1� � � � � e7	 and multiplication defined by:

(i) e1ei = ei+1 for i = 1� 2� 4� 5� 6;
(ii) e2e2 = e4, e2e3 = −e5 − e7, e2e4 = e6, e3e3 = e6;
(iii) All other products of basis elements are zero.

Then A satisfies the identity ��xx�x�x = 0, A is nilpotent of index 8 and
dimA = 7.

Proof. Let u = 
1e1 + � � � 
7e7 be an arbitrary element in A. Then:

u2 = 
21e2 − 
1
2e3 + 
22e4 − 
1
4e5 + 
2
3e5 + �� � � �e6 + �� � � �e7�
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u3 = 
31e3 + 
1

2
2e5 − 
21
4e6 + 
1
2
3e6 + 
21
2e4 + 
1


2
2e5 + 
32e6

−
21
3e5 − 
1
2
3e6 + 
21
4e6 + �� � � �e7

= 
31e3 + 
21
2e4 − 
1

2
2e5 − 
21
3e5 + 
32e6 + �� � � �e7�

u4 = 
31
2e5 − 
21

2
2e6 − 
31
3e6 + 
1


3
2e7 − 
31
2e5 − 
31
2e7 + 
21


2
2e6 + 
31
3e6

= �
1

3
2 − 
31
2�e7

= 
1
2�

2
2 − 
21�e7

= 0�

The last equality occurs because in �3 either 
21 = 
22 or one of the two has to be
zero. This way we have shown that A is right-nil with right-nilindex four. �

Remark 3.6. It is worth noticing that these calculations also show that A satisfies
the identity x4 = 0 but not strictly, that is, the right-nilindex of A increases if we
extend the scalar field and A does not satisfy all the linearizations of the identity
x4 = 0.
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