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In this article we study nonassociative rings satisfying the polynomial identity x�yz� =
y�zx�, which we call “cyclic rings.” We prove that every semiprime cyclic ring is
associative and commutative and that every cyclic right-nilring is solvable. Moreover,
we find sufficient conditions for the nilpotency of cyclic right-nilrings and apply these
results to obtain sufficient conditions for the nilpotency of cyclic right-nilalgebras.

Key Words: Nonassociative semiprime nilpotent identity algebra.

2000 Mathematics Subject Classification: 17A30; 16N60.

1. INTRODUCTION

We define a cyclic ring to be a not necessarily associative ring R that satisfies
the cyclic identity

x�yz� = y�zx� (1)

for all x� y� z in R.
Kleinfeld (1995) proves that every prime cyclic ring where 2x = 0 implies

x = 0, is a commutative and associative ring. In Sections 2 and 3 of the present
article we improve on this result by showing that every semiprime cyclic ring is
associative and commutative. We do not assume that 2x = 0 implies x = 0.

In Sections 4 and 5 we study the nilpotency and solvability of cyclic
right-nilrings. We prove that every right-nilring is solvable, and that if a ring is
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NONASSOCIATIVE RINGS SATISFYING X�YZ� = Y�ZX� 133

right-nilpotent then it is nilpotent. Finally, we use our results to prove that a
cyclic right-nilalgebra A is nilpotent when dim A ≤ 4 or when A has dimension n
and right-nilindex n+ 1. We present examples of right-nilalgebras of dimension 5
which are not nilpotent.

We recall some definitions. A ring R is called a prime ring if for every pair of
ideals I and J of R, IJ = 0 implies that I = 0 or J = 0. R is called semiprime if for
every ideal I of R, I2 = 0 implies I = 0. It is clear that prime implies semiprime.

For a not necessarily associative nor commutative ring R, we define recursively
the followings powers of R and of x ∈ R:

R1 = R and Rn = ∑

i+j=n

RiRj for n > 1 (principal powers)�

R�1� = R and R�n� = �R�n−1��R for n > 1 (right powers)�

�1�R = R and �n�R = R��n−1�R� for n > 1 (left powers)�

R�1� = R and R�n� = �R�n−1��2 for n > 1 (plenary powers)�

x�1� = x and x�n+1� = x�n�x for n > 1 (right powers)�

R is said to be nilpotent if for some n, Rn = 0, right-nilpotent (left-nilpotent) if
for some n, R�n� = 0 (�n�R = 0), solvable if for some n, R�n� = 0, nil if for every x ∈ R
the subring of R generated by x is nilpotent, right-nil if for every x ∈ R there is some
n such that x�n� = 0. A right-nilring is said to have right-nilindex n if x�n� = 0 for all
elements in the ring and n is the smallest positive integer for which this is true.

As usual, we will denote the associator by �a� b� c� = �ab�c − a�bc�, the
commutator by �x� y� = xy − yx and the left and right multiplication operators by
Lx and Rx, respectively, where aLx = xa and aRx = ax.

In terms of these operators, the cyclic identity (1) is equivalent to

LyLx = RxLy = Rxy� (2)

2. IDENTITIES IN CYCLIC RINGS

Lemma 1. Let R be a cyclic ring. Then the following identities hold in R:

1. �xy��st� = �tx��sy�;
2. �xy���st��uv�� = �tx���sy��uv��;
3. �xy� st� uv� = 0;
4. �x� y� st��uv� = 0.

Proof. 1. Direct calculations using the cyclic identity (1) give

�xy��st� = s�t�xy�� = s�y�tx�� = �tx��sy��

2. Using the cyclic identity (1) and part 1 we obtain

�xy���st��uv�� = �uv���xy��st�� = �uv���tx��sy�� = �tx���sy��uv���
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134 BEHN ET AL.

3. We use parts 1 and 2 and the cyclic identity to get

�xy���st��uv��
1= �xy���vs��ut��

2= �sx���vy��ut��
1= �sx���tv��uy��

2= �vs���tx��uy��
1= �vs���yt��ux��

c= �vs��u�x�yt���

c= u��x�yt���vs��
c= u�v�s�x�yt����

c= �s�x�yt����uv�

c= ��yt��sx���uv�
1= ��xy��st���uv��

4. We use parts 1–3 and the cyclic identity to obtain:

��xy��st���uv�
3= �xy���st��uv��

1= �xy���vs��ut��
2= �ys���vx��ut��

1= �ys���xt��uv��
3= ��ys��xt���uv�

1= ��st��xy���uv�

c= �x�y�st����uv�� �

Corollary 2. Let R be a cyclic ring. Then R2 is associative.

Proof. This follows from part 3 of Lemma 1, since every element of R2 is a finite
sum of products of elements in R. �

Lemma 3. Let R be a cyclic ring.

1. If R satisfies the identity �x� y� st� = 0, then R also satisfies the identities �xy� st� = 0
and �x� y� z��st� = 0.

2. If R is associative, then R satisfies the identity �x� y��st� = 0.

Proof. 1. Using the hypothesis and the cyclic identity (1) we get

�xy��st� = x�y�st�� = �st��xy��

This proves �xy� st� = 0. Using it, we obtain

��xy�z��st� = �xy��z�st�� = �z�st���xy� = x�y�z�st���

= x��st��yz�� = x��yz��st�� = �x�yz���st��

This proves part 1.

2. Since R is associative, it satisfies the identity �x� y� st� = 0. We use part 1
to get

�xy��st� = �st��xy� = y��st�x� = y�s�tx��

= y�x�st�� = �yx��st��

This proves part 2. �
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NONASSOCIATIVE RINGS SATISFYING X�YZ� = Y�ZX� 135

3. SEMIPRIME CYCLIC RINGS

Lemma 4. Let R be a cyclic ring and let I = �x ∈ R � xR2 = 0�. Then I is an ideal
of R.

Proof. Since it is clear that I is closed under addition we only need to show that
if x ∈ I and y ∈ R then xy and yx are in I . In fact, let x ∈ I� y� s� t ∈ R. Then, using
the cyclic identity we get

�xy��st� = s�t�xy�� = s�x�yt�� = 0

and

�yx��st� = s�t�yx�� = s�x�ty�� = 0�

This proves Lemma 4. �

Theorem 5. Let R be a semiprime cyclic ring. Then R is associative and commutative.

Proof. Let I be as in Lemma 4 and let N = I ∩ R2. By Lemma 4, N is an ideal
of R. Now, N 2 ⊆ NR2 = 0 and given that R is semiprime, we know that N = 0. By
Lemma 1 part 4, �x� y� st� ∈ N for any choice of x� y� s� t ∈ R. Hence R satisfies the
identity �x� y� st� = 0. Lemma 3 shows that �x� y� z� ∈ N so that R is associative.
Finally, we use Lemma 3 again to show that R is commutative. �

4. NILPOTENCY IN CYCLIC RINGS

Theorem 6. Let R be a cyclic right-nilring of index n without elements of additive
order ≤n. Then R2 is nilpotent and R is solvable.

Proof. By Corollary 2 R2 is associative, so it is an associative nilring of index at
most n. By the Ivanov–Dubnov–Nagata–Higman theorem (Formanek, 1990), R2 is
nilpotent and therefore R2 is solvable. Thus R is also solvable. �

Lemma 7. Let R be a cyclic ring. Then, for every n ≥ 2:

1. Rn = RRn−1 + Rn−1R;
2. RRn−1 = �n�R;
3. �2n�R = �R2�n;
4. R2n ⊆ R�n�.

Proof. We proceed by induction on n. For n = 2, all four statements are easy to
verify. Now we show the inductive step for part 1. We assume that n ≥ 2 and that
Rk = RRk−1 + Rk−1R for 2 ≤ k ≤ n. We want to show that Rn+1 = RRn + RnR. Using
the inductive hypothesis and the cyclic identity we obtain

Rn+1 =
n∑

k=1

RkRn+1−k = RRn + RnR+
n−1∑

k=2

Rk�RRn−k + Rn−kR�



D
ow

nl
oa

de
d 

B
y:

 [B
eh

n,
 A

nt
on

io
] A

t: 
19

:0
3 

4 
M

ar
ch

 2
00

8 

136 BEHN ET AL.

= RRn + RnR+
n−1∑

k=2

R�Rn−kRk + RkRn−k�

= RRn + RnR+ R
n−1∑

k=2

�Rn−kRk + RkRn−k� ⊆ RRn + RnR+ RRn�

The reverse inclusion is direct, so this proves the inductive step.
For part 2, we assume that n ≥ 2 and that RRn−1 = �n�R. We want to show

that RRn = �n+1�R. Using part 1, the cyclic identity and the inductive hypothesis we
obtain

RRn = R�RRn−1 + Rn−1R� = R�RRn−1� = R��n�R� = �n+1�R�

For part 3, we assume that n ≥ 2 and that �2n�R = �R2�n. We want to show that
�2n+2�R = �R2�n+1. Using the inductive hypothesis, the cyclic identity and recalling
that R2 is associative, we get

�2n+2�R = R�R��2n�R�� = R�R�R2�n� = �R2�n�R2� = �R2�n+1�

For part 4, we assume n ≥ 2 and R2n ⊆ R�n�. We want to show that R2n+2 ⊆
R�n+1�. Using now parts 1–3 and then the inductive hypothesis we get

R2n+2 = RR2n+1 + R2n+1R = �2n+2�R+ R2n+1R ⊆ R�n+1� + R2nR

⊆ R�n+1� + R�n�R ⊆ R�n+1��

This completes the proof of the lemma. �

Theorem 8. Let R be a cyclic ring. If R is right-nilpotent, then R is nilpotent.

Proof. This follows directly from Lemma 7 part 4. �

Lemma 9. If R satisfies x�n� = 0 and its first linearization (see Zhevlakov et al.,
1982), then for every x in R, Lx, and Rx are nilpotent operators. More precisely Ln

x = 0
and R2n−1

x = 0.

Proof. We will first show that for every k ≥ 2, Lk
x = Rx�k� . For k = 2 this is direct

from (2). Now we assume Lk
x = Rx�k� . Using (2) again we get

Lk+1
x = Lk

xLx = Rx�k�Lx = Rx�k+1� �

This proves our claim. In particular we obtain that Ln
x = Rx�n� = 0.

To prove the nilpotency of Rx, we first show that Rk
xLy = LyRx�k� for every

k ≥ 2. For k = 2, we have

R2
xLy = RxRxLy = RxLyLx = LyLxLx = LyRx2 �
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NONASSOCIATIVE RINGS SATISFYING X�YZ� = Y�ZX� 137

Now we assume Rk
xLy = LyRx�k� . Then

Rk+1
x Ly = Rk

xRxLy = Rk
xLyLx = LyRx�k�Lx = LyRx�k+1� �

This proves our claim. Now we see that the first linearization of x�n� = 0 can be
written in terms of operators as

Rn−1
x +

n−1∑

k=1

Lx�k�R
n−1−k
x = 0�

Multiplying this last identity by Rn
x on the left side we get:

0 = R2n−1
x +

n−1∑

k=1

Rn
xLx�k�R

n−1−k
x

= R2n−1
x +

n−1∑

k=1

Lx�k�Rx�n�R
n−1−k
x = R2n−1

x �

This completes the proof of the lemma. �

Lemma 10. Let R be a cyclic right-nilring and let x ∈ R. Then any power of x can be
written as a single x tapped some number of times by x on the left and then some other
number of times by x on the right. In other words, xLnRm are all the powers of xwemay get.

Proof. For small exponents this is clear since x = xL0R0, x2 = xL = xR (notice that
one may be able to write the same element in more than one way). Let us carefully
multiply two of these expressions, u = xLjRk, v = xLnRm. In the case that m+ n = 0
it is clear that v = x and that

uv = xLjRk+1�

We claim that in the remaining cases (when v has degree at least 2), then

uv = xLj+k+n+m+1

and we will prove this by induction on j + k+ n+m or on the total degree of the
product involved. We consider first the case where m 	= 0

uv = �xLjRk���xLnRm−1�x� = x��xLjRk��xLnRm−1��

= x�xLj+k+n+m� = xLj+k+n+m+1�

Now, when m = 0, the n 	= 0 and

uv = �xLjRk��x�xLn−1�� = x��xLn−1��xLjRk��

= x�xLj+k+n+m� = xLj+k+n+m+1�

This finishes the proof of the lemma. �
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138 BEHN ET AL.

Corollary 11. Let R be a cyclic right-nilring and let x ∈ R. Then the subring �x� ⊆ R
generated by x is nilpotent. In other words, R is nil.

Proof. We will assume x�n� = 0. By Lemma 10, any element u ∈ �x�3n can be
written as a linear combination of elements u = xLjRk where j + k ≥ 3n− 1, so
either j ≥ n or k ≥ 2n− 1. By Lemma 9 we get u = 0 and therefore �x� is nilpotent.

�

5. NILPOTENCY IN CYCLIC ALGEBRAS

In this section we obtain some results on the nilpotency of cyclic right-
nilalgebras. We will prove that if dimA = n, then A is nilpotent in the following
cases: (1) when n ≤ 4 and, (2) when the right-nilindex of A is n+ 1. These conditions
can not be improved in any obvious way as is shown by the following examples.

Example 1. Let A be an algebra with basis x1� x2� x3� x4� x5 and the following
nonzero products of basis elements

x2x1 = x3 x4x2 = x3 x5x1 = −x3 x3x1 = x4 x3x2 = x5�

A is a cyclic right-nilalgebra of dimension 5 and right-nilindex 4, which is
not nilpotent. In fact, notice that A2 = �x3� x4� x5� and AA2 = 0 so that A is clearly
cyclic since it satisfies the stronger identity x�yz� = 0. We can also see that A2A = A2

so A is not right-nilpotent. Straightforward calculation of the fourth power of an
arbitrary element in A shows that A has right-nilindex 4.

An interesting remark on Example 1 is that the algebra A+, defined on
the additive group of A with the new multiplication ∗ given by a ∗ b = �ab +
ba�/2, is isomorphic to a known counterexample given in Suttles (1972) to a
conjecture of Albert on the nilpotency of commutative power-associative nilalgebras
(see Albert, 1948). Regarding Albert’s conjecture, it has been proved that Suttle’s
counterexample is “best possible” in the sense that, every commutative power
associative nilalgebra A of dimension ≤4 is nilpotent (Gerstenhaber and Myung,
1975). It has also been proved that A is nilpotent when the dimension is finite equal
to n and the nilindex is ≥n (see Correa and Suazo, 1999). It is an open problem to
prove that in the remaining (finite dimensional) cases, nilalgebras are solvable.

In our case, cyclic right-nilalgebras are nilpotent when the dimension is n and
the right-nilindex is n+ 1, but not necessarily when the right-nilindex is n as the
following example shows.

Example 2. Consider the algebra A with basis a� x1� x2� x3� x4 and the following
nonzero products of basis elements

x1x1 = x2 x2x1 = x3 x3x1 = x4 x3a = x2 x4a = −x3�

A satisfies the identity x�yz� = 0, therefore it is cyclic, moreover, A is a
right-nilalgebra of dimension 5 and right-nilindex 5, but it is not nilpotent since
�� � � ���x2x1�a�x1�a � � � � 	= 0. In this case A+ is not power-associative since x41 = x4
but �x1x1��x1x1� = 0.
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In order to obtain our next result, we need the following two technical lemmas:

Lemma 12. Let A be a cyclic right-nilalgebra and let I be a right-ideal of A. If
dim I ≤ 2 then �IA�A = 0.

Proof. Assume I 	= 0. From Lemma 9 we know that for every x in A, the operator
Rx is nilpotent. Hence, Ix is properly contained in I .

If dim I = 1, then Ix = 0 for every x ∈ A and therefore IA = 0.
Assume now dim I = 2. Since IA ⊆ I , we also have �IA�A ⊆ IA so IA is a right-

ideal of A. Suppose first that IA = I . Then there must exist elements a� b ∈ A such
that I = Ia+ Ib. Since for every x in A, Rx is nilpotent and dim I = 2, it follows that
�Ix�x = 0 for every x in A. Therefore, if we multiply I = Ia+ Ib on the right side by
a, we get Ia = �Ib�a. Similarly Ib = �Ia�b. Therefore 0 = �I�a+ b���a+ b� = �Ia+
Ib��a+ b� = I�a+ b� = I , which is a contradiction. Therefore dim IA ≤ 1, using the
first part we can conclude �IA�A = 0. This proves the lemma. �

Lemma 13. Let A be a cyclic right-nilalgebra and let I be an ideal of A. If the
codimension of I is 1 and I2 is properly contained in I , then IA is properly contained
in I .

Proof. A = I + xF for some x ∈ A. Since IA = I2 + Ix, we get IA/I2 = Ix/I2 is
properly contained in I/I2 and IA is properly contained in I . �

Theorem 14. Let A be a cyclic right-nilalgebra with dim A ≤ 4. Then A�5� = 0. In
particular, A is nilpotent.

Proof. Since A is solvable, we know that A2 is a proper ideal of A. If dimA =
3, then by Lemma 13, A2A is a right ideal of A of dimension at most 2. Using
Lemma 12 for I = A2A we get A�5� = ��A2A�A�A = 0. Theorem 8 shows that A is
nilpotent. �

Theorem 15. Let A be a cyclic right-nilalgebra of dimension n and right-nilindex
n+ 1. Then A is nilpotent.

Proof. Let x be an element in A such that x�n� 	= 0. It is easy to see that
�x� x2� � � � � x�n�� are linearly independent so that A = �x�. From Corollary 11 it
follows that A is nilpotent. �

Now we present a cyclic right-nilalgebra which is infinite-dimensional and is
not nilpotent.

Example 3. Let N = �x1� x2� x3� � � � � a countably infinite set of indeterminates and
P the set of the words in the letters xi such that each letter occurs at most once
in each word. We say that a word u has length k if it is formed by k letters xi.
Therefore a word has length ≥ 1. Let K be a field and A the set of finite formal sums
of words of P and with coefficient in K. We define a noncommutative multiplication
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in A by:

1. uv = 0 if v has length >1, u = v or v is a letter that is in the composition of u;
2. ux is the word obtained adding the letter x at the end of the word u.

A is a cyclic right-nilalgebra of right-nilindex 2 which is not nilpotent since for
every n, �· · · ���x1x2�x3�x4� · · · �xn 	= 0.

We recall that an algebra is called flexible if it satisfies the flexible identity
�x� y� x� = 0. Correa (2006) proves that a cyclic flexible finite-dimensional right-
nilalgebra is nilpotent. The following theorem improves this result by replacing the
hypothesis of finite dimension with nil of bounded index.

Theorem 16. Let A be a cyclic and flexible right-nilalgebra of right-nilindex n over
a field of characteristic 0 or greater than n. Then A is nilpotent.

Proof. From the flexible identity and the linearity of the associator we have

0 = �z+ x� y� z+ x� = �z� y� z�+ �z� y� x�+ �x� y� z�+ �x� y� x�

= �z� y� x�+ �x� y� z��

whence, using the cyclic identity, we get

�zy�x = z�yx�− �xy�z+ z�xy�� (3)

We will show by induction on n that A�2n� ⊆ �A2�n. For n = 1 it is trivially true.
Now we assume that A�2n� ⊆ �A2�n and we will prove A�2n+2� ⊆ �A2�n+1. From
(3), A�2n+2� = �A�2n�A�A ⊆ A�2n�A2 + A2A�2n� which, using the inductive hypothesis,
proves the assertion.

Now we only need to show that A2 is nilpotent to conclude that A is right-
nilpotent and therefore nilpotent by Theorem 8. From Corollary 2, A2 is associative
so we can use the Nagata–Higman Theorem to show that it is nilpotent. �

As a final comment, we would like to mention the use of the computer
program Albert (Jacobs et al., 1993) to check conjectures before attempting a formal
proof and in general to get a better idea of what results we could expect to be true.
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