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Abstract

The gauge covariant magnetic Weyl calculus has been introduced and studied in previous works. We prove

criteria in terms of commutators for operators to be magnetic pseudodifferential operators of suitable symbol

classes. The approach is completely intrinsic; neither the statements nor the proofs depend on a choice of a

vector potential. We apply this criteria to inversion problems, functional calculus, affiliation results and to the

study of the evolution group generated by a magnetic pseudodifferential operator.

1 Introduction

This paper is devoted to the study of some commutator techniques in the frame of the twisted pseudodifferential
calculus associated to Quantum Hamilonian sytems in a bounded, smooth magnetic field. In order to take advantage
of the gauge invariance we formulate our statements about commutators in an algebraic frame using the twisted
Moyal algebra (Section 2). In Section 3 we study the magnetic translations and their generators in order to
formulate our main result, an analogue of Beals’ Criterion [2], in an algebraic setting. This theorem is proved in
Section 4 for the case of symbols of type S0

0(Ξ) (2.9). In the 4-th Section we extend our main Theorem to symbols
of a general class Smρ (Ξ) (2.9) and also prove a Bony type Criterion [3]. We apply these criteria in Section 5 for
inverses and fractional powers of some twisted pseudodifferential operators and to the functional calculus they
generate. In a last chapter we use the idea of Bony to define Fourier Integral Operators and introduce a class
of Twisted Fourier Integral Operators. We prove that for a large class of first order elliptic symbols, the unitary
groups that they generate (in any Hilbert representation) are such operators.

1.1 Beals criterion in a classical setting

For a linear operator T acting in L2(Rn) or in some other related function space, it is often useful to know if it is a
pseudodifferential operator with the symbol in a certain class. A possible answer ([2], [3], [10]) can be given in terms
of commutators: very roughly, a necessary and sufficient condition would be that the successive commutators of T
with an infinite family of specified simple operators has a specified behavior. Very often this involves boundedeness
of the commutators seen as operators between some Sobolev spaces. We indicate a particular case, relevant for our
purposes.

The Weyl calculus is a systematic procedure to associate to suitable functions f (classical observables) on R2n

(the phase space), operators Op(f) acting on functions u : R
n → C. Formally this is given by

[Op(f)u] (x) := (2π)−n
∫

Rn

dy

∫

Rn

dη exp{i < x− y, η >} f

(
x+ y

2
, η

)
u(y). (1.1)

This formula has various interpretations for various elements f and u. Frequently it is assumed that f belongs to
one of Hörmander’s symbol classes Smρ,δ(R

n) and (1.1) is regarded as an oscillatory integral. Then the operators
Op(f) have nice multiplication properties, they act continuously in the Schwartz space S(Rn) and, in the case
m = 0, ρ = δ = 0, they define bounded operators in the Hilbert space H := L2(Rn).

In Quantum Mechanics H is considered to be the state space of a quantum particle moving in Rn; the basic
observables of position and momenta are, respectively, the operators Qj of multiplication by the coordinate xj
and the operators Dj := −i∂xj

, j = 1, . . . , n. The correspondence f 7→ Op(f) ≡ f(Q,D), often called ”a
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quantization”, is interpreted as a functional calculus for the family of unbounded self-adjoint non-commuting
operators (Q;D) = (Q1, . . . , Qn;D1, . . . , Dn).

Independent of any interpretation, the operators Q and D are involved in Beals’ characterization of those
operators that are pseudodifferential (here in the Weyl sense) with symbols in the classes Smρ,0(R

n). We describe
only the result for S0

0,0(R
2n). Let us denote by adQj

, adDj
, the commutators with Qj and Dj, j = 1, . . . , n; in a

general notation, adS [T ] := [S, T ] = ST − TS, for convenient operators S, T acting in H.
Then the operator T is of the form Op(f) for some f ∈ S0

0,0(R
2n) if and only if for all multi-indices (a1, . . . , an)

and (α1, . . . , αn) in Nn, the commutators

ada1

Q1
. . . adan

Qn
adα1

D1
. . . adαn

Dn
[T ] (1.2)

define bounded operators in H.
Aside the obvious direct interest of having criteria for an operator to be pseudodifferential in purely hilbertian

terms, such a result is also very handy for deciding under which conditions inverses or functions of Weyl operators
are still of the same type.

1.2 Magnetic pseudodifferential operators

The main goal of the present article is to prove analogous results for a generalization of the Weyl calculus adapted
to the situation in which a variable magnetic field is also present. We recall very briefly some facts concerning the
magnetic pseudodifferential calculus that we have developed in [19] and [12]. Other references are [18], [14], [15],
[20] and [21].

First some notations. We denote Rn by X , with elements x, y, z. X ′ will be the dual of X , with elements ξ, η, ζ.
We also denote by < ·, · > the duality form < ξ, x >= ξ(x) =< x, ξ >. The phase space will be Ξ = R2n = X ⊕X ′,
with elements X = (x, ξ), Y = (y, η), Z = (z, ζ). In fact these notations will be used in a rigid manner: if the
contrary is not explicitly stated, when one encounters X ∈ Ξ, one should think that its components in X and X ′,
respectively, are called x and ξ; the same for Y and Z. S stands for the Schwartz space, S′ for its dual, formed
of tempered distributions, and B(R; T ) is the vector space of all linear continuous operators acting between the
locally convex spaces R and T . For any real euclidean space Y we consider on S(Y) the family of norms indexed
by M ∈ N (defining its localy convex Topology):

‖|ϕ|‖M := sup
Y ∈Y

∑

|a|+|b|≤M

∣∣Y a
(
∂bϕ

)
(Y )
∣∣ .

Suppose given a magnetic field B, i.e. a closed 2-form on X with components of class C∞(X ). Since dB = 0, the
magnetic field can be written as the differential B = dA of a 1-form A on X with components of class C∞(X ), called
vector potential. In such a situation, aside the position operatorsQ1, . . . , Qn, one works with the magnetic momenta
ΠA

1 := D1−A1, . . . ,Π
A
n := Dn−An. By analogy with the Weyl calculus, one would like to construct a quantization

assigning to phase-space functions f operators OpA(f) which admit the interpretation OpA(f) = f(Q; ΠA), within
a functional calculus. The commutation relations satisfied by the 2n operators (Q; ΠA) are more involved that
those for B = 0 (especially when B is not a polynomial), so a new pseudodifferential calculus is required. The
solution OpA(f) = Op(fA) was offered in the literature, with fA(x, ξ) := f(x, ξ −A(x)). It fails, because it is not
gauge covariant: two vector potentials A,A′ which differ by an exact 1-form A′ = A+dϕ define the same magnetic
field, but in general there is no reasonable connection between the operators Op(fA) and Op(fA

′

).
The solution is to introduce in (1.1) an extra phase factor exp

{
−iΓA([x, y])

}
, where ΓA([x, y]) :=

∫
[x,y]A is

the circulation of the 1-form A through the segment [x, y] := {tx+ (1 − t)y | t ∈ [0, 1]}. So, for any test function
f ∈ S(Ξ), we define the following operator, which is not equivalent in any sense with Op(fA):

[
OpA(f)u

]
(x) := (2π)−n

∫

X

dy

∫

X ′

dη exp{i < x− y, η >} exp
{
−iΓA([x, y)]

}
f

(
x+ y

2
, η

)
u(y). (1.3)

A thorough justification of this formula, properties and applications can be found in the references cited above.

We note that gauge covariance is recovered: if dA = dA′, then OpA(f) and OpA
′

(f) are unitarily equivalent.
Although for some developments this is not necessary, let us assume that the components Aj of the vector

potential are in C∞
pol(X ), the space of all C∞ functions on X with each derivative dominated by an (arbitrary)

polynomial. This can always be achieved if the components Bjk are in C∞
pol(X ), ∀j, k = 1, . . . , n. We have proved

in [19] that the application OpA is an isomorphism

OpA : S(Ξ) → B(S′(X );S(X )), (1.4)
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and may be extended to an isomorphism

OpA : S′(Ξ) → B(S(X );S′(X )). (1.5)

Thus there exists a vector subspace MB(Ξ) of S′(Ξ) sent bijectively by OpA onto B(S (X )) := B(S(X );S(X )).
The fact that it only depends on the magnetic field is an easy consequence of gauge covariance. In [12] and [19] it
is shown that MB(Ξ) contains all Hörmander’s classes of symbols

Smρ,δ(Ξ) :=
{
f ∈ C∞(Ξ) | ∀(a, α) ∈ N

n × N
n, ∃Caα > 0, |(∂ax∂

α
ξ f)(x, ξ)| ≤ Caα < ξ >m−ρ|α|+δ|a|

}

for m ∈ R, ρ ≥ 0, δ < 1, as well as the space C∞
pol,u(Ξ) composed of those f ∈ C∞

pol(Ξ) for which all the derivatives
are dominated by a fixed polynomial (depending on f).

1.3 The magnetic Beals criterion; the represented version of a particular case

Now we come to the Hilbert space H := L2(X ). For the hilbertian framework we shall need a stronger as-
sumption on the magnetic field, so we recall a function space that will be used very often subsequently. For
any m-dimensional euclidean space Y (the cases Y = X and Y = Ξ will be relevant) we set BC∞(Y) = {f ∈
C∞(Y) | ∂αf is bounded for any α ∈ N

m}. A particular case of a result of [12] says that OpA
[
S0

0,0(Ξ)
]
⊂ B(H) if

Bjk ∈ BC∞(X ).
The next statement is an extension of the result of Beals described in the first subsection, which can be recovered

for B = 0. It is one of our main results.

Theorem 1.1. Assume that the components of the magnetic field B belong to BC∞(X ). Choose a vector potential
A defining B (i.e. B = dA) which belongs to C∞

pol. A linear continuous operator T : S(X ) → S′(X ) is a magnetic

pseudodifferential operator with symbol of class S0
0,0(Ξ) if and only if the commutators

ada1

Q1
. . . adan

Qn
adα1

ΠA
1
. . . adαn

ΠA
n
T

are bounded operators on H for all multi-indices (a, α) = (a1, . . . , an, α1, . . . , αn).

This Theorem will be recast in a more tractable setting in the next section. It will be proved in Section 4, after
some preparations involving magnetic commutators and phase-space translations, object of Section 3. More general
results, including a treatment of the class Smρ,0(Ξ), will be given in Sections 6 and 7. The final two sections will
contain applications, mainly investigating the functional calculus applied to a magnetic pseudodifferential operator.

2 The main results in an intrinsic setting

2.1 The need of an intrinsic approach

The goal of this Section is to rephrase our problem in a more elegant and tractable intrinsic language.
Many of the drawbacks of the mathematical theory of systems placed in magnetic fields come from the following

fact: Although the single physically relevant object is the magnetic field, in most cases the objects one studies
involve the choice of a vector potential. Not only is this vector potential highly non-unique, but it is also worse
behaved than the magnetic field.

On one hand, obtaining gauge-invariant assertions is a difficult matter, both concerning the assumptions and the
conclusions. Most often, the underlying hypothesis says that a certain result holds for magnetic fields admitting a
vector potential with some specified properties, although one suspects that some simple condition imposed directly
on B would suffice. And it happens sometimes that the output is not obviously a gauge-covariant assertion.

On the other hand, rather nice magnetic fields admit as a best choice a vector potential which is a more
”singular” function than B itself. Within the class of bounded magnetic fields, for instance, a large subclass only
corresponds to unbounded vector potentials.

While trying to prove Theorem 1.1 we had to overcome these obstacles. The way out is actually built in
the formalism itself. Beyond the magnetic pseudodifferential operators, one also disposes of algebraic structures,
defined only in terms of B. The main notion is a symbol composition ♯B which extends the usual Weyl-Moyal

multiplication law, for which OpA(f)OpA(g) = OpA(f ♯B g). Thus
(
OpA

)
dA=B

is seen as a family of equivalent

representations of some algebra, the choice of this algebra being at our disposition and depending on the type of
symbols (classical observables) one would like to treat. Some choices are well-suited to various practical problems
(spectral analysis, as in [22], quantization, as in [20]). This will also be the case for our commutator characterization
of magnetic pseudodifferential operators, as shown below.
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We note that all these are consistent with the C∗-algebraic approach to quantization, cf. [16] and references
therein. Presentations of the general algebraic formalism for systems in magnetic fields, including C∗-algebras
generated by twisted dynamical systems, can be found in [21] and [20].

2.2 The magnetic composition law

First we note that Ξ is a symplectic space with the canonical symplectic form

σ(X,Y ) = σ[(y, η), (z, ζ)] =< η, z > − < ζ, y > .

As said before, the magnetic field is described by a closed 2-form B of class BC∞(X ). It has a natural raising to
a closed 2-form on Ξ and it is easy to verify that the sum

(
σB
)
Z
(X,Y ) := σ(X,Y ) +B(z)(x, y)

defines a symplectic form on Ξ.
For any k-form C in X , given a compact k-manifold K ⊂ X , we set

ΓC [K] :=

∫

K

C (2.6)

and

ΩC [K] := exp

{
−i

∫

K

C

}
= exp

{
−iΓC[K]

}
, (2.7)

involving the invariant integral of the k-form along the compact k-manifold.
On the Schwartz space of test functions S(Ξ) we introduce the magnetic composition:

(f ♯B g)(X) := π−2n

∫

Ξ

∫

Ξ

dY dZ e−2iσ(X−Y,X−Z)ΩB[T (x, y, z)]f(Y )g(Z), (2.8)

where T (x, y, z) is the triangle having the vertices: x − y + z, y − z + x, z − x + y. Under the assumption that
Bjk ∈ C∞

pol(X ), it is easy to show that S(Ξ) is a ∗-algebra, the involution being the usual complex conjugation.

The point in introducing ♯B is that one has OpA(f)OpA(g) = OpA(f ♯B g) for any f, g ∈ S(Ξ).
Once we have verified (see [19]) that for any three functions f, g, h from S(Ξ) one has the following equality of

the two L2(Ξ)-scalar products: (
f, g ♯B h

)
=
(
f ♯B g, h

)
,

we can extend the magnetic composition ♯B by duality and define the magnetic Moyal ∗−algebra as being the
unital associative algebra MB(Ξ) of tempered distributions F ∈ S′(Ξ) satisfying g ♯B F ∈ S(Ξ) and F ♯B g ∈ S(Ξ)
for any test function g ∈ S(Ξ). Actually it is the same space defined in the previous section, and if Aj ∈ C∞

pol

then OpA : MB(Ξ) → B(S(X )) is an isomorphism of involutive algebras. The magnetic composition extends to
composition laws ♯B : S′(Ξ) × MB(Ξ) → S′(Ξ) and ♯B : MB(Ξ) × S′(Ξ) → S′(Ξ). We shall denote by f− the
inverse of f ∈ MB(Ξ) when it exists.

An important matter is the behavior of the Weyl calculus with respect to Hörmander’s symbol classes Smρ,δ(Ξ).
In the present article we are only interested in the case δ = 0, for which we use the simplified notation

Smρ ≡ Smρ,0 := {f ∈ C∞(Ξ) | |
(
∂ax∂

α
ξ f
)
(x, ξ)| ≤ Caα < ξ >m−ρ|α|}. (2.9)

By Theorem 2.2 in [12], if B ∈ BC∞, m1,m2 ∈ R and ρ ∈ (0, 1], then

Sm1
ρ (Ξ) ♯B Sm2

ρ (Ξ) ⊂ Sm1+m2
ρ (Ξ). (2.10)

Actually the case ρ = 0 is a consequence of our Proposition in Appendix 8.45, but the asymptotic development
contained in [12], Theorem 2.2 will no longer hold for this case. In dealing with symbols we shall very often make
use without explicitly marking it, of the regularization procedure described in Appendix 8.1.

Let us also define CB(Ξ) :=
(
OpA

)−1

[B(H)]. It is obviously a vector subspace of S′(Ξ) and a ∗-algebra for the

magnetic composition. We transport the norm of B(H): ‖ f ‖CB :=‖ OpA(f) ‖B(H) will be a C∗-norm on CB(Ξ).
Gauge covariance shows that the C∗-algebra CB(Ξ) is independent of the vector potential A. For a nicer point of
view on the norm ‖ · ‖B, involving twisted crossed products, we refer to [21]. As already noticed above, by the
magnetic version of the Calderon-Vaillancourt theorem proved in [12], one has S0

0(Ξ) ⊂ CB(Ξ).
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2.3 Statement of the result

Let us consider real linear functions belonging to MB(Ξ) of the form lX(Y ) := σ(X,Y ), for some X ∈ Ξ. By
quantization, they produce the basic operators of our theory, as explained below.

Let us denote by (e1, . . . , en; ǫ1, . . . , ǫn) the canonical base of Ξ = R2n. We choose a vector potential A associated
to the magnetic field B (i.e. such that B = dA), and consider the representation OpA : CB(Ξ) → B[L2(X )]
associated to it. We observe that we can then associate to our linear functions lej

, the operators of multiplication
with the variables, as operators in B(S(X );S′(X ))

OpA(lej
) = Qj , such that (Qjf)(x) := xjf(x)

and to the elements lǫj the magnetic momentum operators

OpA(lǫj ) = ΠA
j , such that (ΠA

j u)(x) := −i(∂xj
u)(x) −Aj(x)u(x).

We introduce now a family of derivations, which play at an intrinsic level the role of basic commutators.

Definition 2.2. For any X ∈ Ξ we set

adBX [F ] := lX ♯
B F − F ♯B lX , ∀F ∈ S′(Ξ), ∀X ∈ Ξ. (2.11)

Obviously we have on S(X)

adOpA(lX )

(
OpA(F )

)
= OpA

(
adBX(F )

)
, ∀F ∈ MB(Ξ).

One of the main results in this paper, the intrinsic version of Theorem 1.1, is

Theorem 2.3. If B is of class BC∞(X ), then f ∈ S0
0(Ξ) if and only if for all N ∈ N and all U1, . . . , UN ∈ Ξ with

|U1| = · · · = |UN | = 1
adBU1

. . . adBUN
[f ] ∈ CB(Ξ).

The statement above can be understood in terms of C∞-vectors and this reinterpretation seems to us interesting
even for the case B = 0. To this end we shall use an action of the linear space Ξ on the algebra MB(Ξ), defined
by conjugation with exponentials of linear functions. The family of exponentials

eX := exp{−ilX}, X ∈ Ξ (2.12)

could be called the algebraic Weyl system. The functions eX are unitary elements in MB(Ξ) for any X ∈ Ξ; the
corresponding operators WA(X) := OpA(eX) were studied and used in [19] as a sort of building blocks for the
magnetic Weyl calculus. Then we define a family of automorphisms, indexed by Ξ, of the magnetic Moyal algebra:

Ξ ∋ X 7→ TBX ∈ Aut
[
MB(Ξ)

]
,

TBX [F ] := e−X ♯
B F ♯B eX , ∀F ∈ MB(Ξ). (2.13)

Each TBX also acts on other spaces, as S(Ξ),S′(Ξ), L2(Ξ) or CB(Ξ). In particular, since OpA(e±X) are bounded
(unitary) operators, TBX is an automorphism of the C∗-algebra CB(Ξ). Generically, we call

(
TBX
)
X∈Ξ

the family of

magnetic phase-space translations. For B = 0 this reduces to the usual phase-space translations (TX)X∈Ξ.

Definition 2.4. For a magnetic field B with components of class BC∞(X ), we define the following linear space:

C∞
(
TB; CB

)
:=
{
f ∈ CB(Ξ) | X 7→ TBX [f ] ∈ CB(Ξ) is C∞ in X = 0

}

and endow it with the following family of seminorms:

{
‖ · ‖TB ,CB

U1,...,UN
| |U1| = · · · = |UN | = 1, N ∈ N

}
, ‖ f ‖TB ,CB

U1,...,UN
:=‖ adBU1

. . . adBUN
[f ] ‖CB . (2.14)

At a more elementary level, let us observe that the symbol space S0
0(Ξ) is nothing butBC∞(Ξ) = C∞(T;BC(Ξ)).

Here we considered automorphisms defined by translations

[TY (f)] (X) := f(X − Y ), X, Y ∈ Ξ

on the C∗-algebra
BC(Ξ) := {f : Ξ → C | f is bounded and continuous},
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endowed with the sup-norm ‖ · ‖∞ . BC∞(Ξ) is also a Fréchet space with the family of seminorms
{
‖ · ‖T,BC

(a,α) | (a, α) ∈ N
2n
}
, ‖ f ‖T,BC

(a,α) :=‖ ∂ax∂
α
ξ f ‖∞, (2.15)

obviously equivalent with the family
{
‖ · ‖T,BC

U1,...,UN
| |U1| = · · · = |UN | = 1, N ∈ N

}
, ‖ f ‖T,BC

U1,...,UN
:=‖ ∂U1 . . . ∂UN

f ‖∞ . (2.16)

At first sight the two spaces BC∞(Ξ) and C∞(TB,CB) seem to be very different. They involve different families
of derivations acting in different C∗-algebras (BC(Ξ) and CB(Ξ) are quite different even when B = 0). But we
shall prove in Section 4 the following result, that implies Theorem 2.3, which in turn implies Theorem 1.1.

Theorem 2.5. If B is a magnetic field with components of class BC∞(X ), then the spaces C∞(T;BC) and
C∞(TB,CB) coincide and have isomorphic Fréchet structures.

3 Magnetic phase-space translations and commutators

We shall introduce notations that will allow us to put into evidence some algebraic and topologic structures
appearing in a rather natural way when dealing with the magnetic translations of symbols.

Notations

• For a distribution F ∈ S′(Ξ) and a test function g ∈ S(Ξ), we define the following commutative mixed product
(this is a mixture between pointwise multiplication in the first variable and convolution in the second):

(F ⋆ g)(x, ξ) :=

∫

X ′

dη F (x, ξ − η) g(x, η) with F ⋆ g ∈ S′(Ξ). (3.17)

• For any p ∈ [1,∞] we shall consider the complex linear space BC(X ;Lp(X ′)) of bounded continuous functions
f : X → Lp(X ′) endowed with the norm

‖f‖∞,p := sup
x∈X

{∫

X ′

dξ |f(x, ξ)|p
}1/p

. (3.18)

• For m ∈ R we define the weight function wm(v) :=< v >m≡
(
1 + |v|2

)m/2
and the following functions on

phase space: qm(x, ξ) := (wm ⊗ 1)(x, ξ) =< x >m and pm(x, ξ) := (1 ⊗ wm)(x, ξ) =< ξ >m.

• Let us define the complex linear space A(Ξ) as the space of functions a ∈ BC∞(X ;L1(X ′)) ⊂ BC(X ;L1(X ′))
such that pp ·

(
∂αx a

)
∈ BC(X ;L1(X ′)) for any p > 0 and any multi-index α ∈ Nn (i.e. having rapid decay in

the variable ξ ∈ X ′ together with all its derivatives with respect to the x ∈ X ).

Let us point out that ‖f‖∞,∞ = ‖f‖∞. Taking into account that the ∞-norm is a cross-norm for the usual
multiplication as well as the Hausdorff-Young inequality, we see that the above norms behave well with respect
to our mixt product ⋆. In fact the mixt product in (3.17) also defines a bilinear abelian composition law on
L1(X ′;BC(X )) and we have the following results:

Proposition 3.6.

1. The space BC(X ;L1(X ′)) is a Banach algebra for the ⋆-product and A(Ξ) is closed for the operation ⋆.

2. For any p ∈ [1,∞], the ⋆-product defines bicontinuous bilinear maps:

BC(X ;L1(X ′)) ×BC(X ;Lp(X ′)) ∋ (f, F ) 7→ f ⋆ F ∈ BC(X ;Lp(X ′)),

BC(X ;L1(X ′)) × Lp(Ξ) ∋ (f,Φ) 7→ f ⋆ Φ ∈ Lp(Ξ),

with the estimations: ‖f ⋆ F‖∞,p ≤ ‖f‖∞,1‖F‖∞,p, respectively ‖f ⋆ Φ‖p ≤ ‖f‖∞,1‖Φ‖p.

3. If f ∈ A(Ξ), then for any symbol φ ∈ Smρ (Ξ), we have f ⋆ φ ∈ Smρ (Ξ), the map being continuous.

4. For f ∈ A(Ξ) and for any M ∈ N there exists a constant C(M,n; f) ∈ R+ such that

‖|f ⋆ ψ|‖M ≤ C(M,n; f)‖|ψ|‖M , ∀ψ ∈ S(Ξ).

The proof is defered to an Appendix.
Since translations in the X -variable will occur very often, we use a special notation: τx := T(x.0).
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3.1 The magnetic phase-space translations

To study the families (2.12) and (2.13), we introduce first a 2-cocycle associated to the symplectic form σ and the
magnetic field B. Its cohomological and analytical importance was outlined in our previous works. The space

C(X , U(1)) := {ϕ : X → C | ϕ is continuous, |ϕ(x)| = 1, ∀x ∈ X}

can be seen as the group of all unitary elements of the C∗-algebra BC(X ).

Definition 3.7.
ωB : Ξ × Ξ → C(X , U(1)),

[
ωB(X,Y )

]
(z) := exp{(i/2)σ(X,Y )}ΩB[T (z, z − y/2, z + x/2)]. (3.19)

The multiplication properties of the functions eX , X ∈ Ξ will be essential in the sequel. By straightforward
computations we obtain

Lemma 3.8.
eX ♯

B eY = ωB(X,Y )eX+Y =

=
{
τ−(x+y)/2

[
ωB(X,Y )

]}
♯B eX+Y = eX+Y ♯

B
{
τ(x+y)/2

[
ωB(X,Y )

]}
.

The next step is an explicit formula for the phase-space magnetic translation TBU , with U = (u, µ) ∈ Ξ.
Proposition 3.9. For any 3 points q, x, y ∈ X let us define the parallelogram

P(q;x, y) := {q + sx+ ty | s ∈ [−1/2, 1/2], t ∈ [−1, 0]}, (3.20)

having edges parallel to the vectors x and y, respectively. We consider the distribution ΩB[P(x; y, u)] (see (2.6)
and (2.7)) and its Fourier transform with respect to the second variable:

Ω̃BP [u](x, ξ) := (2π)−n
∫

X

dy e−i<y,ξ>ΩB [P(x; y, u)]. (3.21)

• We have the following explicit formula:

ΩB[P(x; y, u)] = exp
{
−iΓB[P(x; y, u)]

}
= exp



−i

n∑

j,k=1

yjuk

∫ 1/2

−1/2

ds

∫ 0

−1

dtBjk(x+ sy + tu)



 . (3.22)

• For U = (u, µ) ∈ Ξ and f ∈ S(Ξ), we have

TBU [f ] = Ω̃BP [u] ⋆ TU [f ]. (3.23)

Proof. Straightforward computations give

(e−U ♯
B f)(Y ) = π−2n

∫

Ξ

dY1

∫

Ξ

dY2 e
−2iσ(Y−Y1,Y−Y2)ΩB[T (y, y1, y2)]e

iσ(U,Y1)f(Y2) =

(by integrating upon η1 ∈ X ∗, and using Fourier inversion formula for δ0(y − y2 − u/2))

= π−n e2i<η,y−u/2>
∫

Ξ

dY ′ e2i<y
′,η′>−2i<η′,y>−2i<η−µ/2,y′>ΩB[T (y, y′, y − u/2)]f(y − u/2, η′).

Thus

TBU [f ](X) = π−2n

∫

Ξ

dY

∫

Ξ

dZ e−2iσ(X−Y,X−Z)ΩB[T (x, y, z)]
(
e−U ♯

B f
)
(Y )e−iσ(U,Z) =

= π−3n

∫

Ξ

dY

∫

Ξ

dZ

∫

Ξ

dY ′ e−2i<ξ−η,x−z>+2i<ξ−ζ,x−y>−i<µ,z>+i<ζ,u>×

×e2i<η,y−u/2>−2i<η−µ/2,y′>−2i<η′,y−y′>ΩB[T (x, y, z)]ΩB[T (y, y′, y − u/2)]f(y − u/2, η′) =

(we integrate with respect to η and ζ by using the Fourier inversion formula for δ0(y− x+ u/2) and for δ0(z − x−
y + u/2 + y′) respectively)

= π−n

∫

X

dy′ e−2i<ξ−µ,y′−x+u/2>ΩB[T (x, x− u/2, 2x− u− y′)]ΩB[T (x− u/2, y′, x− u)]×
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×

{∫

X ∗

dη′ e2i<η
′,y′−x+u/2>f(x− u, η′)

}
=

(changing variables from y′ to y = 2y′ − 2x+ u)

= (2π)−n
∫

X

dy e−i<ξ−µ,y>ΩB [P(x; y, u)]

{∫

X ∗

dη′ ei<η
′,y>f(x− u, η′)

}
=
(
Ω̃BP [u] ⋆ TU [f ]

)
(X).

�

Remark 3.10. Using Stokes Theorem for the closed 2-form B and the formula T(u,µ)(g ⋆ h) = T(u,0)g ⋆ T(u,µ)h,
we get by a straightforward computation the following formula for composing magnetic translations:

(
TBU ◦ TBV

)
[f ] = ΣBu,v ⋆ TBU+V [f ],

where

ΣBu,v(x, ξ) := (2π)−n
∫

X

dy e−i<ξ,y>ΩB
[
< x+

y

2
, x+

y

2
− u, x+

y

2
− u− v >

]
×

×ΩB
[
< x−

y

2
, x−

y

2
− u, x−

y

2
− u− v >

]

and < a, b, c > ⊂ X is the triangle defined by the vertices a, b, c. Although U 7→ TBU is not a representation of Ξ
by automorphisms, it is however clear that

TBsU ◦ TBtU = TB(s+t)U , ∀U ∈ Ξ, ∀s, t ∈ R.

3.2 The magnetic derivations

The mappings
(
adBX

)
X∈Ξ

, defined in (2.11), will be called magnetic derivations. They are the infinitesimal objects

associated with the family of automorphisms
(
TBX
)
X∈Ξ

. Our notation stresses their interpretation as commutators,

but another natural one would be adBU ≡ DB
U = −i∂BU . Anyhow, for B = 0 they reduce to usual derivations.

Proposition 3.11. For any X ∈ Ξ and t0 ∈ R, we have the equalities

i (∂tetX)|t=t0 = lX ♯B et0X = et0X ♯
B lX (3.24)

and
i ∂tT

B
tX [F ]

∣∣
t=t0

= −adBX
[
TBt0X [F ]

]
. (3.25)

Proof. Due to the fact that ωB is obviously unitary in CB(Ξ), we have

ωB(tX, t0X)(z) = exp{(i/2)tt0σ(X,X)}ΩB[T (z, z − t0x/2, z + tx/2)] =

= ΩB[T (z, z − t0x/2, z + tx/2)].

Remark that the three vertices: z− (z− t0x/2)+(z+ tx/2), (z− t0x/2)− (z+ tx/2)+z, (z+ tx/2)−z+(z− t0x/2)
of the above triangle are in fact equal to z + (t+ t0)x/2, z − (t+ t0)x/2, z + (t− t0)x/2 and thus are colinear. It
follows that the flux of B through the given triangle is 0 and we get

ωB(tX, t0X)(z) = 1

and by Lemma 3.8
t−1

[
e(t+t0)X − et0X

]
= t−1

[
ωB(tX, t0X)−1etX ♯

B et0X − et0X
]

=

= t−1 [etX − 1] ♯B et0X = t−1 [exp{−itlX} − 1] ♯B et0X −→
t→0

(−i)lX ♯B et0X .

Similarly
t−1

[
e(t+t0)X − et0X

]
−→
t→0

(−i)et0X ♯
B lX.

For the second equality we observe that

t−1
{

TB(t+t0)X [F ] − TBt0X [F ]
}

=

= t−1
{
e−(t+t0)X ♯

B F ♯B e(t+t0)X − e−t0X ♯
B F ♯B et0X

}
=

= t−1
{[

e−(t+t0)X − e−t0X
]
♯B F ♯B e(t+t0)X

}
+ t−1

{
e−t0X ♯

B F ♯B
[
e(t+t0)X − et0X

]}
.
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It is extremely useful to express the magnetic derivations in terms of usual ones.

Proposition 3.12. For U = (u, µ) ∈ Ξ and f ∈ S(Ξ) we have

adBU [f ] = (−i) lim
ǫ→0

ǫ−1
(
TBǫU [f ] − f

)
= u · (Dx + δB)f + µ ·Dξf, (3.26)

where

δBj f :=

n∑

k=1

cBjk ⋆ Dξk
f, with cBjk(x, ξ) := (2π)−n

∫

X

dy e−i<ξ,y>bBjk(x, y),

and bBjk(x, y) :=
∫ 1/2

−1/2 dsBjk(x+ sy) are functions belonging to BC∞(X × X ).

Proof. The first equality is a particular case of (3.25).
The last equality in (3.26) is easily obtained from (3.23) by differentiation. For j ∈ {1, . . . , n} we have

−i∂xj
f + δBj f := adBej

[f ] = (−i)
∂

∂uj

∣∣∣∣
U=0

{
TBU [f ]

}
= (−i)

∂

∂uj

{
Ω̃BP [u] ⋆ TU [f ]

}∣∣∣∣
U=0

,

so that, taking into account the bilinearity of the mixed product ⋆, we get

(
δBj f

)
(X) = (−i)

{(
∂

∂uj
Ω̃BP [u]

)∣∣∣∣
u=0

⋆ f

}
(X).

But (
∂

∂uj
Ω̃BP [u]

)∣∣∣∣
u=0

(X) = (2π)−n
∫

X

dy e−i<y,ξ>
(

∂

∂uj
ΩB[P(x; y, u)]

)∣∣∣∣
u=0

=

= −i(2π)−n
∫

X

dy e−i<y,ξ>
n∑

k=1

yk

∫ 1/2

−1/2

dsBkj(x+ sy) =

=

n∑

k=1

∂

∂ξk

(
(2π)−n

∫

X

dy e−i<y,ξ>
∫ 1/2

−1/2

dsBkj(x+ sy)

)
,

and using the properties of the usual convolution we get

δBj f = (−i)
n∑

k=1

(
(2π)−n

∫

X

dy e−i<y,ξ>
∫ 1/2

−1/2

dsBkj(x + sy)

)
⋆

(
∂

∂ξk
f

)
.

�

Let us notice that Dξl
(c ⋆ f) = c ⋆ Dξl

f and Dxl
(c ⋆ f) = Dxl

c ⋆ f + c ⋆ Dxl
f . Using then the associativity

and commutativity properties of ⋆, it is easy to verify that the different components of the vectorial operator δB

commute with each other and we have

δBj δ
B
k [f ] = δBk δ

B
j [f ] =

n∑

l=1

n∑

m=1

cBjl ⋆ c
B
km ⋆ [Dξl

Dξm
f ], (3.27)

Moreover we obtain [
Dξl

, δBj
]

= 0,
[
Dxl

, δBj
]

= δDlB
j , (3.28)

and thus [
adB(u,µ), adB(v,ν)

]
= −

n∑

j,k=1

(ukvj − ujvk)δ
DjB
k = −

n∑

j,k=1

(u ∧ v)kjδ
DjB
k . (3.29)
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3.3 Estimations for the magnetic derivatives

Proposition 3.13. For B with components of class BC∞(X ) and for any j ∈ {1, . . . , n} we have

iδBj f :=
∑

1≤|α|≤2([n/2]+1)+1

cBjα ⋆ ∂
α
ξ f ∀f ∈ S(Ξ).

with the coefficients cBjα belonging to the space A(Ξ).

Proof. If we denote by F2 the Fourier transform in the second variable (the ξ-variable), then we can write for any
natural numbers m and M

iδBj f =

n∑

k=1

cBjk ⋆ ∂ξk
f =

n∑

k=1

F2

[
bBjk
]
⋆ ∂ξk

f =

n∑

k=1

F2

[
(1 ⊗ w(−2M))b

B
jk

]
⋆ (1⊗ < D >2M )∂ξk

f =

=

n∑

k=1

(1 ⊗ w(−2m))F2

[
(1⊗ < D >2m)(1 ⊗ w(−2M))b

B
jk

]
⋆ (1⊗ < D >2M )∂ξk

f =

=
n∑

k=1

p(−2m)F2

[
(1⊗ < D >2m)(1 ⊗ w(−2M))b

B
jk

]
⋆


 ∑

0≤|β|≤2M

C
(2M)
β ∂βξ ∂ξk

f


 =

=:
∑

1≤|β|≤2M+1

p(−2m)F2

[
(1⊗ < D >2m)(1 ⊗ w(−2M))b̃

B
jβ

]
⋆
[
∂βξ f

]
,

with b̃Bjβ ∈ BC∞(X × X ). Thus we have the following expression for the coefficient functions:

cBjα = p(−2m)F2

[
(1⊗ < D >2m)(1 ⊗ w(−2M))b̃

B
jβ

]
.

Now we can chose m such that w−2m ∈ L1(X ); take 2m > n. By also choosing 2M > n we get that

‖cBjα‖∞,1 ≤ ‖p−2m‖L1 sup
X∈Ξ

∣∣∣F2

[
(1⊗ < D >2m)(1 ⊗ w(−2M))b̃

B
jβ

]
(X)

∣∣∣ ≤

≤ ‖w(−2m)‖L1 sup
x∈X

∫

X ′

∣∣∣[(1⊗ < D >2m)(1 ⊗ w(−2M))b̃
B
jβ ](x, y)

∣∣∣ ≤

≤ C‖w(−2m)‖L1‖w(−2M)‖L1

[
max

|β|≤2m
sup

(x,y)∈X×X
|[∂βy b̃

B
jβ ](x, y)|

]
.

For the second conclusion we repeat the proof of Proposition 3.13 above, taking now 2m > n+ p. �

Remark 3.14. Among others, the results above imply that (together with Prop.3.6, pct.3)

adBU
[
Smρ (Ξ)

]
⊂ Smρ (Ξ), ∀U ∈ Ξ, m ∈ R, ρ ∈ [0, 1]. (3.30)

Remark 3.15. Using the explicit form of the functions bBjk appearing in Proposition 3.12, one easily proves that

∂xl
cBjα = p(−2m)F2

[
(1⊗ < D >2m)(1 ⊗ w(−2M))

(
∂xl

b̃Bjβ

)]
=

= p(−2m)F2

[
(1⊗ < D >2m)(1 ⊗ w(−2M))b̃

∂lB
jβ

]
= c∂lB

jα

Corollary 3.16. For B with components of class BC∞(X ) and any j ∈ {1, . . . , n} we have

• ‖δBj [f ]‖∞ ≤ C∞
∑

|α|≤2[n/2]+3 ‖∂
α
ξ f‖∞, ∀f ∈ S(Ξ)

• adBU sends Smρ (Ξ) in Smρ (Ξ) for any m ∈ R and any ρ ∈ [0, 1].

• δBj , adBU : BC∞(Ξ) → BC∞(Ξ) are continuous operators.

• g ∈ S(Ξ) implies δBj [g] ∈ S(Ξ), the map δBj being continuous for the topology of S(Ξ).

Taking into account this result, the explicit formula (3.26) relying usual derivatives to the magnetic ones and
the commutation relations (3.28) and (3.29), we get easily

Corollary 3.17. On BC∞(Ξ) = S0
0(Ξ) = C∞(T;BC(Ξ)), the families of seminorms

{
‖ · ‖T,BC

(a,α) | (a, α) ∈ N2n
}

and {
‖ · ‖TB ,BC

(U1,...,UN )| |U1| = · · · = |UN | = 1
}
, with ‖ F ‖TB ,BC

(U1,...,UN ):=‖ adBU1
. . . adBUN

[F ] ‖∞ (3.31)

are equivalent.
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4 Proof of Theorem 2.5

We shall consider a fixed an euclidean basis {e1, . . . , en} of our configuration space X and the dual basis {ǫ1, . . . , ǫn}
in X ′. We shall constantly use the multi-index type notations

(
adB

e

)a
:=
(
adBe1

)a1 ◦ · · · ◦
(
adBen

)an

(
adB

ǫ

)α
:=
(
adBǫ1

)α1 ◦ · · · ◦
(
adBǫn

)αn

4.1 Proof of the embedding BC∞(Ξ) ⊂ C∞(TB; CB)

Recalling that BC∞(Ξ) = S0
0(Ξ), this inclusion will be a consequence of the following Calderon-Vaillancourt type

theorem, that we proved in [12]:

Theorem 4.18. Assume that the magnetic field B has components of class BC∞. Let G ∈ S0
ρ,ρ(Ξ) for some

ρ ∈ [0, 1). Then G ∈ CB(Ξ) (i.e. OpA(G) ∈ B(L2(X ))) for B = dA) and we have the inequality

‖G‖CB ≤ c(n) sup
|a|≤p(n)

sup
|α|≤p(n)

sup
X∈Ξ

[
< ξ >ρ(|α|−|a|)

∣∣∂ax∂αξ G(X)
∣∣
]
, (4.32)

where c(n), p(n) are constants depending only on n, that can be determined explicitly.

Let F be an element of BC∞(Ξ). By Corollary 3.16, G := adBU1
. . . adBUN

[F ] also belongs to BC∞(Ξ), so we can
use Theorem 4.18 with ρ = 0 and get

‖ adBU1
. . . adBUN

[F ] ‖CB≤ c(n) sup
|a|≤p(n)

sup
|α|≤p(n)

‖ ∂ax∂
α
ξ adBU1

. . . adBUN
[F ] ‖∞ .

Then applying Corollary 3.17 gives the result.

4.2 Proof of the embedding C∞(TB; CB) ⊂ BC∞(Ξ)

The basic step is

Theorem 4.19. There exists N ∈ N, dependig only on the dimension n and on the magnetic field B, such that any
distribution f ∈ S′(Ξ) satisfying ‖

(
adB

e

)a(
adB

ǫ

)α
[f ]‖CB < ∞ for all |a| + |α| ≤ N is in fact a bounded measurable

function and there exist a constant C <∞ such that

‖f‖∞ ≤ C
∑

|a|+|α|=N

‖
(
adB

e

)a(
adB

ǫ

)α
[f ]‖CB .

Then for any F ∈ C∞(TB; CB), the function f := adBU1
. . . adBUN

[F ] can be plugged in Theorem 4.19. The

Fréchet spaces embedding C∞(TB; CB) ⊂ BC∞(Ξ) follows by applying Corollary 3.17.
So we only need to prove Theorem 4.19. For this we use a strategy inspired by [3] (Lemma 2.2); some changes

are needed to implement magnetic translations and derivatives.

Proof. 1. Since the algebraic tensor product S(X )⊙S(X ) is dense in S(X ×X ) and the inclusion S(X ) →֒ L2(X )
is continuous, taking into account the explicit formula for the kernel of a magnetic pseudodifferential operator, we
deduce that the inclusion map CB(Ξ) →֒ S′(Ξ) is continuous. It follows that there exist constants C1 > 0 and
N1 ∈ N such that for any f ∈ CB(Ξ) and any ϕ ∈ S(Ξ)

| < f, ϕ > | ≤ C‖f‖CB

{
max

|a|+|b|≤N1

sup
X∈Ξ

∣∣Xa
(
∂bϕ

)∣∣
}

≡ C‖f‖CB ‖|ϕ|‖N1 ,

where a and b are multi-indices in N2n and ‖| · |‖N1 is one of the semi-norms of S(Ξ).
2. If ∗ denotes the usual convolution and f̌(Y ) := f(−Y ), we evidently have for any X ∈ Ξ

(f̌ ∗ φ)(X) =< f,T−X [φ] > . (4.33)

Now we choose a function χ ∈ S(Ξ) such that its Fourier transform χ̂ ∈ C∞
0 (Ξ) with χ̂(X) = 1 on a neighborhood

of the origin of Ξ. For any ǫ ∈ (0, ǫ0] and X ∈ Ξ we set χ
X,ǫ

(Y ) := ǫ−2nχ((Y − X)/ǫ), χX(Y ) := χX,1(Y ). We
have

∂χ
X,ǫ

∂ǫ
(Y ) = −2nǫ−1χ

X,ǫ
(Y ) − ǫ−1ǫ−2n

2n∑

j=1

(
Yj −Xj

ǫ

)
∂jχ((Y −X)/ǫ) =: ǫ−1ψ

X,ǫ
(Y ),
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where the function ψ̂ vanishes on a neighborhood of 0. Therefore, for any N ∈ N we can find C∞
0 functions{

θ̂a | |a| = N
}

satisfying ψ̂(Z) =
∑

|a|=N(iZ)aθ̂a(Z). Thus for any f ∈ CB(Ξ) and for δ > 0

f̌ ∗ χ
X,δ

= f̌ ∗ χ
X
−

∫ 1

δ

f̌ ∗

(
∂χ

X,ǫ

∂ǫ

)
dǫ = f̌ ∗ χ

X
−

∫ 1

δ

ǫN−1
∑

|a|=N

f̌ ∗
[
∂a (θa)

X,ǫ

]
dǫ =

= f̌ ∗ χ
X
−

∫ 1

δ

ǫN−1
∑

|a|=N

(
∂af̌

)
∗ (θa)

X,ǫ
dǫ. (4.34)

Since lim
δ→0

f̌ ∗χ
X,δ

= f̌(X) weakly in S′(Ξ), if we can find a finite bound for the right hand-side member we deduce

that f belongs to L∞(Ξ) and we obtain

‖f‖∞ ≤ C‖f‖CB ‖|χ|‖N1 + C
∑

|a|=N

‖
(
∂af

)
‖CB

(
lim
δ→0

∫ 1

δ

ǫN−1ǫ−N1−2n ‖|θa|‖N1
dǫ

)
.

The problem now is to replace in the last term above the usual derivatives of f with magnetic derivatives.
3. Let us first notice that

∂af = ∂ax∂
α
ξ f =


 ∏

1≤j≤n


adBej

−
∑

1≤|β|≤2([n/2]+1)

cBj,β ⋆ (adB
ǫ

)β



aj

 (adB

ǫ
)α[f ].

By direct computations it is easy to show that

adBej

[
cBk,β ⋆ g

]
= cBk,β ⋆ (adBej

g) − ic
∂jB
k,β ⋆ g (4.35)

and
cBk,β ⋆ (adB

ǫ
)β
[
cBl,γ ⋆ (adB

ǫ
)γg
]

=
(
cBk,β ⋆ c

B
l,γ

)
⋆
[
(adB

ǫ
)β+γg

]
. (4.36)

Thus we conclude by a simple induction procedure that for any multi-index a ∈ N2n, the derivative ∂af is a finite
sum of terms of the form r ⋆ (adB

e
)a(adB

ǫ
)γf with r ∈ A(Ξ) (the algebra introduced in the Notations at the begining

of the previous section), γ ∈ Nn and (adB
e

)a(adB
ǫ

)γf ∈ CB(Ξ).
4. Let us choose r ∈ A(Ξ), g ∈ CB(Ξ) and ψ ∈ S(Ξ); then r ⋆ g ∈ S′(Ξ). The following triple integral is

absolutely convergent and

[(r ⋆ g) ∗ ψ] (X) =

∫

X

dy

∫

X ′

dη

∫

X ′

dζ r(y, ζ)g(y, η − ζ)ψ(x − y, ξ − η) =

=

∫

X

dy

∫

X ′

dη

∫

X ′

dζ r(y, ξ − η − ζ)g(y, ζ)ψ(x − y, η) =

=

∫

X

dy

∫

X ′

dη

∫

X ′

dζ g(y, ζ)τ−x[r](y − x, ξ − η − ζ)ψ(x − y, η) =

=
{
g ∗
[
(τ−x[r])

∨1 ⋆ ψ
]}

(x, ξ),

where (τ−x[r])
∨1 (y, η) := (τ−x[r]) (−y, η) = r(x− y, η). Thus, using the first two points of the proof we get

sup
X∈Ξ

|[(r ⋆ g) ∗ ψ] (X)| = sup
(x,ξ)∈Ξ

∣∣{g ∗
[
(τ−x[r])

∨1 ⋆ ψ
]}

(x, ξ)
∣∣ ≤

≤ sup
y∈X

sup
(x,ξ)∈Ξ

∣∣{g ∗
[
(τ−x[r])

∨1 ⋆ ψ
]}

(x, ξ)
∣∣ ≤ sup

y∈X
C‖g‖CB ‖|τy[r]

∨1 ⋆ ψ|‖N1 ≤

≤ C(N1, n; r)‖g‖CB ‖|ψ|‖N1 ,

using point 4 of Proposition 3.6 in the last step.
5. By writing the last term of the right hand side of (4.34) as a linear combination of terms of the form (r⋆g)∗ψ

with g replaced by a suitable sequence of magnetic derivatives applied to f , ψ = (θa)
X,ǫ

and taking N large, we
finish the proof of our Theorem. �
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5 Commutator Criteria for Magnetic Pseudodifferential Operators

5.1 The class of symbols Sm

0
(Ξ)

For λ > 0 and m > 0 we define
pm,λ(X) := pm(X) + λ =< ξ >m +λ, (5.37)

that is clearly an elliptic element of Sm1 (Ξ) ⊂ Sm0 (Ξ) ⊂ MB(Ξ). In a previous paper [22] we have shown that for
λ > 0 large enough, pm,λ is invertible in MB(Ξ) with a quasi-explicit inverse

p−m,λ = p−1
m,λ ♯

B
∑

k∈N

r
( ♯B k)
λ = p−1

m,λ ♯
B (1 − rλ)

−, (5.38)

where p−1
m,λ(x, ξ) = (< ξ >m +λ)−1 is the usual point-wise inverse and

rλ = pm,λ ♯
B p−1

m,λ − 1 ∈ S0
1(Ξ) ⊂ S0

0(Ξ) ⊂ CB(Ξ)

is a reminder that can be controlled as in [22]. The series converges in CB(Ξ).
For any m > 0 we fix λ > 0 such that pm,λ is invertible. We shall use the weight function

sm :=

{
pm,λ, for m > 0

p−|m|,λ, for m < 0,
(5.39)

such that s−m = s−m. For m = 0 we set simply s0 := 1.

Theorem 5.20. A distribution F ∈ S′(Ξ) is a symbol of type Sm0 (Ξ) if and only if for any N ∈ N and any family
of N vectors {X1, . . . , XN} ⊂ Ξ the following is true:

s−m ♯
B
(
adBX1

· . . . · adBXN
[F ]
)
∈ CB(Ξ) ∀m ∈ R.

The families of semi-norms ‖s−m∂
a
x∂

α
ξ F‖∞, with (a, α) ∈ N2n, and ‖s−m ♯

B
(
adBX1

· . . . · adBXN
[F ]
)
‖CB , indexed by

N ∈ N and N -tuples of vectors in Ξ, define equivalent topologies on Sm0 (Ξ).

Proof. Step 1. The Theorem is true for m = 0 (it is just our Theorem 2.3).

Step 2. For m < 0, s−m = s|m| = p|m|,λ ∈ S
|m|
1 (Ξ) ⊂ S

|m|
0 (Ξ). If F ∈ Sm0 (Ξ), by Corollary 3.16

adBX1
. . . adBXN

[F ] ∈ Sm0 (Ξ), ∀X1, . . . , Xn ∈ Ξ, ∀n ∈ N.

By (2.10) s−m ♯
B (adBX1

. . . adBXN
[F ]) ∈ S0

0(Ξ) and thus it belongs to CB(Ξ), as we already know from Theorem 4.18.
Thus the direct implication in the statement of the Theorem 5.20 is proved for m < 0.

Step 3. For m < 0 we shall prove that for any F ∈ S′(Ξ):

∀N ∈ N, ∀{X1, . . . , XN} ⊂ Ξ, s−m ♯
B
(
adBX1

· . . . · adBXN
[F ]
)
∈ CB(Ξ) ⇒ F ∈ S0

0(Ξ). (5.40)

Since sm = p−|m|,λ ∈ CB(Ξ), for any X1, . . . , XN ∈ Ξ we have

adBX1
. . . adBXN

[F ] = sm ♯
B
(
s−m ♯

B adBX1
. . . adBXN

[F ]
)
∈ CB(Ξ),

and using Theorem 2.3 we conclude that F ∈ S0
0(Ξ).

Step 4. For m < 0 we shall prove that for any F ∈ S′(Ξ):

∀N ∈ N, ∀{X1, . . . , XN} ⊂ Ξ, s−m ♯
B
(
adBX1

· . . . · adBXN
[F ]
)
∈ CB(Ξ) ⇒ s−m ♯

B F ∈ S0
0(Ξ). (5.41)

Due to the hypothesis of (5.41) with N = 0, s−m ♯
B F belongs to CB(Ξ) and we compute

adBX1
. . . adBXM

[
s−m ♯

B F
]

= (5.42)

=

M∑

k=0

∑

j1,...,jk

(
adBXj1

. . . adBXjk

[
p|m|,λ

])
♯B sm ♯

B s−m ♯
B

(
adBXj′1

. . . adBXj′
M−k

[F ]

)
,

where j1 < · · · < jk, j
′
1 < · · · < j′M−k and {j1, . . . , jk}

⋃
{j′1, . . . , j

′
M−k} = {1, . . . ,M}.

The factors s−m ♯
B

(
adBXj′

1

. . . adBXj′
M−k

[F ]

)
belong to CB(Ξ), by the hypothesis in (5.41).
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Using (5.38) for m < 0 and the fact that adBX preserves the symbol space Sm0 (Ξ), we can write

(
adBXj1

. . . adBXjk

[
p|m|,λ

])
♯B sm =

(
adBXj1

. . . adBXjk

[
p|m|,λ

])
♯B p−1

|m|,λ ♯
B (1 − rλ)

− ∈ (5.43)

∈ S
|m|
0 (Ξ) ♯B S

−|m|
0 (Ξ) ♯B CB(Ξ) ⊂ CB(Ξ).

We conclude by induction on M that adBX1
. . . adBXM

[
s−m ♯

B F
]
∈ CB(Ξ) for any X1, . . . , XM , thus by Theorem 2.3

we get s−m ♯
B F ∈ S0

0(Ξ).
Step 5. For m < 0 we shall prove that for any F ∈ S′(Ξ)

∀N ∈ N, ∀{X1, . . . , XN} ⊂ Ξ, s−m ♯
B
(
adBX1

· . . . · adBXN
[F ]
)
∈ CB(Ξ) ⇒ F ∈ Sm0 (Ξ). (5.44)

Using the results in [22] (see formula (2.6) in the proof of Theorem 1.8 in section 2.1 of the paper) for the symbol

s−m = p|m|,λ ∈ S
|m|
1 (Ξ), there exists u ∈ Sr0(Ξ) with r < 0 such that for any M ∈ N

[
M∑

k=0

u( ♯B k)

]
♯B p−1

|m|,λ ♯
B p|m|,λ = 1 − u( ♯B (M+1)). (5.45)

Thus we can write

F =

[
M∑

k=0

u( ♯B k)

]
♯B p−1

|m|,λ ♯
B
[
p|m|,λ ♯

B F
]
+ u( ♯B (M+1)) ♯B F.

Now F and p|m|,λ ♯
B F belong to S0

0(Ξ) by Step 3 and Step 4,
[∑

0≤k≤M u( ♯B k)
]

belongs to S0
0(Ξ) due to the

properties of u and p−1
|m|,λ ∈ Sm0 (Ξ). Thus if we choose M > m/r and use the Theorem of magnetic composition of

symbols from [12], we get the desired conclusion F ∈ Sm0 (Ξ).
Thus we have proved the Theorem for m ≤ 0.
Step 6. We show that for any p > 0 the distribution s−p ∈ CB(Ξ) is a symbol of type S−p

0 (Ξ). In fact we apply
the result of the Theorem with m = −p < 0 for F = s−p . To the obvious relation

sp ♯
B s−p = 1

one applies the operator adBX1
· . . . · adBXN

, using the Leibnitz rule for derivations to obtain

∑

0≤k≤N

∑

j1,...,jk

(
adBXj1

. . . adBXjk
[sp]
)
♯B
(

adBXj′
1

. . . adBXj′
N−k

[
s−p
])

= 0, (5.46)

where j1 < · · · < jk, j
′
1 < · · · < j′N−k and {j1, . . . , jk}

⋃
{j′1, . . . , j

′
N−k} = {1, . . . , N}. We can rewrite it as

sp ♯
B
(
adBX1

. . . adBXN

[
s−p
])

= −
N−1∑

k=0

∑

j1,...,jk

(
adBXj′

1

. . . adBXj′
N−k

[sp]

)
♯B
(
adBXj1

. . . adBXjk

[
s−p
])
, (5.47)

or

adBX1
. . . adBXN

[
s−p
]

= −s−p ♯
B
N−1∑

k=0

∑

j1,...,jk

(
adBXj′

1

. . . adBXj′
N−k

[sp]

)
♯B
(
adBXj1

. . . adBXjk

[
s−p
])
. (5.48)

Taking m = −p < 0 we obtain

s−m ♯
B
(
adBX1

. . . adBXN

[
s−p
])

= s−−p ♯
B
(
adBX1

. . . adBXN

[
s−p
])

= (5.49)

= −sp ♯
B s−p ♯

B
N−1∑

k=0

∑

j1,...,jk

(
adBXj′

1

. . . adBXj′
N−k

[sp]

)
♯B
(
adBXj1

. . . adBXjk

[
s−p
])

=

= −
N−1∑

k=0

∑

j1,...,jk

(
adBXj′1

. . . adBXj′
N−k

[sp]

)
♯B s−p ♯

B sp ♯
B
(
adBXj1

. . . adBXjk

[
s−p
])

=

= −





∑

0≤k≤(N−1)

∑

j1,...,jk

(
adBXj′

1

. . . adBXj′
N−k

[sp]

)
♯B s−1

p ♯B (1 − r)−



 ♯B

{
s−m ♯

B
(
adBXj1

. . . adBXjk

[
s−p
])}

.
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Thus starting with the known relations s−p ∈ CB(Ξ) and (1 − r)− ∈ CB(Ξ) (proved in [22]) and

(
adBXj′1

. . . adBXj′
N−k

[sp]

)
♯B s−1

p ∈ CB(Ξ)

(shown in (5.43)), and using induction, we see that all the conditions

s−m♯
B
(
adBX1

. . . adBXN

[
s−p
])

∈ CB(Ξ)

are satisfied and thus s−p ∈ S−p
0 (Ξ).

Step 7. We shall consider now the case m > 0 and prove first the direct implication. Assume that F ∈ Sm0 (Ξ),
which implies adBX1

. . . adBXN
[F ] ∈ Sm0 (Ξ). Step 6 implies s−m ∈ S−m

0 (Ξ). By the Theorem of magnetic composition

of symbols in [12] we get s−m ♯
B
(
adBX1

. . . adBXN
[F ]
)
∈ S0

0(Ξ) ⊂ CB(Ξ).
Step 8. For m > 0 we prove now the inverse implication. For F ∈ S′(Ξ) we show

∀N ∈ N, ∀{X1, . . . , XN} ⊂ Ξ, s−m ♯
B
(
adBX1

· . . . · adBXN
[F ]
)
∈ CB(Ξ) ⇒ s−m ♯

B F ∈ S0
0(Ξ). (5.50)

Due to the hypothesis of (5.50) with N = 0, s−m ♯
B F belongs to CB(Ξ) and we compute

adBX1
. . . adBXM

[
s−m ♯

B F
]

= (5.51)

=

M∑

k=0

∑

j1,...,jk

(
adBXj1

. . . adBXjk

[
s−m
])

♯B
(

adBXj′
1

. . . adBXj′
M−k

[F ]

)
=

=

M∑

k=0

∑

j1,...,jk

(
adBXj1

. . . adBXjk

[
s−m
])

♯B sm ♯
B s−m ♯

B

(
adBXj′1

. . . adBXj′
M−k

[F ]

)
,

where j1 < · · · < jk, j
′
1, . . . , j

′
M−k and {j1, . . . , jk}

⋃
{j′1, . . . , j

′
M−k} = {1, . . . ,M}.

The factors s−m ♯
B

(
adBXj′1

. . . adBXj′
M−k

[F ]

)
belong to CB(Ξ) by the hypothesis in (5.50). Using the result of Step 6

we know that s−m ∈ S−m
0 (Ξ) and thus we have

(
adBXj1

. . . adBXjk

[
s−m
])

♯B sm ∈ S−m
0 (Ξ) ♯B Sm0 (Ξ) ⊂ S0

0(Ξ) ⊂ CB(Ξ). (5.52)

By the hypothesis in (5.50) we conclude that adBX1
. . . adBXM

[
s−m ♯

B F
]
∈ CB(Ξ) for any family of vectors of Ξ and

thus, by Theorem 2.5, we conclude that s−m ♯
B F belongs to S0

0(Ξ).
Then

F = sm ♯
B s−m ♯

B F ∈ Sm0 (Ξ) ♯B S0
0(Ξ) ⊂ Sm0 (Ξ).

�

5.2 The class of symbols Sm

ρ
(Ξ)

Theorem 5.21. A distribution F ∈ S′(Ξ) is a symbol of type Smρ (Ξ) (with 0 ≤ ρ ≤ 1) if and only if for any
p, q ∈ N and for any u1, . . . , up ∈ X and any µ1, . . . , µq ∈ X ′ the following is true:

s−m−qρ ♯
B
(
adBu1

· . . . · adBup
adBµ1

· . . . · adBµq
[F ]
)
∈ CB(Ξ). (5.53)

The two families of norms:
‖s−m−|α|ρ∂

α
ξ ∂

a
xF‖∞,

indexed by (a, α) ∈ N2n, and

‖s−m−qρ ♯
B
(
adBu1

· . . . · adBup
adBµ1

· . . . · adBµq
[F ]
)
‖CB ,

indexed by (p, q) ∈ N
2 and sets of vectors in Ξ, define equivalent topologies on Smρ (Ξ).

Proof. Obviously F ∈ Smρ (Ξ) is equivalent to

∂αξ F ∈ S
m−|α|ρ
0 (Ξ), ∀α ∈ N

n, (5.54)
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that due to our Theorem 5.20 is equivalent to

s−(m−|α|ρ) ♯
B
[
adBX1

. . . adBXN
∂αξ F

]
∈ CB(Ξ), ∀α ∈ N

n, ∀N ∈ N, ∀X1, . . . , XN ∈ Ξ, (5.55)

i.e.

s−(m−|α|ρ) ♯
B
[
adBX1

. . . adBXN
(adBǫ1)

α1 . . . (adBǫn)αnF
]
∈ CB(Ξ), ∀α ∈ N

n, ∀N ∈ N, ∀X1, . . . , XN ∈ Ξ. (5.56)

Choosing |α| = q, N = p and Xj = uj for j ∈ {1, . . . , p}, we see that (5.56) implies the condition (5.53) in the
Theorem and thus the direct implication is proved.
Now suppose that (5.53) is true for any p, q ∈ N and for any family of p vectors {u1, . . . , up} ⊂ X and any family
of q vectors {µ1, . . . , µq} ⊂ X ′. Let us take N ∈ N, {X1, . . . , XN} ⊂ Ξ and α ∈ Nn. Due to the commutation
relations (3.29), we can rearrange the operator adBX1

. . . adBXN
as a sum of operators adBu1

· . . . · adBup
adBµ1

· . . . · adBµs

with p+ s = N . Then (5.53) implies that

s−[m−(s+|α|)ρ] ♯
B
(
adBu1

· . . . · adBup
adBµ1

· . . . · adBµs
(adBǫ1)

α1 . . . (adBǫn)αn [F ]
)
∈ CB(Ξ). (5.57)

Thus, we conclude that for any α ∈ Nn, ∀N ∈ N and ∀ X1, . . . , XN ∈ Ξ:

s−m−|α|ρ ♯
B
(
adBX1

. . . adBXN
(adBǫ1)

α1 . . . (adBǫn)αn [F ]
)

=

= s−m−|α|ρ ♯
B sm−(s+|α|)ρ ♯

B s−m−(s+|α|)ρ ♯
B
(
adBX1

. . . adBXN
(adBǫ1)

α1 . . . (adBǫn)αn [F ]
)
∈ CB(Ξ)

due to relation (5.57) and using the result of Step 6 of the Proof of Theorem 5.20

s−m−|α|ρ ♯
B sm−(s+|α|)ρ ∈ S

−(m−|α|ρ)
0 (Ξ) ♯B S

m−(s+|α|)ρ
0 (Ξ) ⊂ S−sρ

0 (Ξ) ⊂ S0
0(Ξ) ⊂ CB(Ξ).

Thus (5.54) implies (5.56) and we get also the inverse implication. �

Since F ∈ Smρ (Ξ) if and only if F ∗ ∈ Smρ (Ξ), by taking the adjoints we prove

Corollary 5.22. A distribution F ∈ S′(Ξ) is a symbol of type Smρ (Ξ) (with 0 ≤ ρ ≤ 1) if and only if for any p
and q in N and for any family of p vectors {u1, . . . , up} ⊂ X and any family of q vectors {µ1, . . . , µq} ⊂ X ′ the
following is true: (

adBu1
· . . . · adBup

adBµ1
· . . . · adBµq

[F ]
)
♯B s−m−qρ ∈ CB(Ξ). (5.58)

5.3 The Bony criterion

Following the work of J-M. Bony [3] we shall reformulate our main theorem by replacing the commutators with
linear distributions (of the type lX) by symbols of class S+

ρ (Ξ).
Definition 5.23. Let ρ ∈ [0, 1]; we define the class of symbols S+

ρ (Ξ) as

S+
ρ (Ξ) :=

{
ϕ ∈ C∞(Ξ) |

∣∣(∂ax∂αξ ϕ
)
(X)

∣∣ ≤ Caα < ξ >ρ(1−|α|), for |a| + |α| ≥ 1
}
.

For any ϕ ∈ S+
ρ (Ξ) ⊂ MB(Ξ) we can define the derivation

adBϕ [F ] := ϕ ♯B F − F ♯B ϕ, ∀F ∈ MB(Ξ). (5.59)

Theorem 5.24. A distribution F ∈ S′(Ξ) is a symbol of type Smρ (Ξ) (with 0 ≤ ρ ≤ 1) if and only if for any N ∈ N

and any family of N symbols {ϕ1, . . . , ϕN} ⊂ S+
ρ (Ξ) the following is true:

s−m ♯
B adBϕ1

. . . adBϕN
[F ] ∈ CB(Ξ). (5.60)

Proof.
Step 1. First let us consider that F ∈ Smρ (Ξ) and let us compute its commutator with symbols ϕ ∈ S+

ρ (Ξ). For
any distribution F ∈ S′(Ξ) we shall introduce the notations

∇
X
F := ∂xF, ∇

X′F := ∂ξF,

(F )X,s(Y ) := F (X + s(Y −X)), for s ∈ R,

and remark that for any ϕ ∈ S+
ρ (Ξ) we have that ∇

X
ϕ ∈ Sρρ(Ξ) and ∇

X′ϕ ∈ S0
ρ(Ξ). Then

adBϕ [F ](X) = (ϕ ♯B F )(X) − (F ♯B ϕ)(X) =
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= π−2n

∫

Ξ

∫

Ξ

dY dZ e−2iσ(X−Y,X−Z)ΩB[T (x, y, z)] {ϕ(Y )F (Z) − ϕ(Z)F (Y )} =

= π−2nϕ(X)

∫

Ξ

∫

Ξ

dY dZ e−2iσ(X−Y,X−Z)ΩB[T (x, y, z)] {F (Z) − F (Y )}−

−π−2n

∫ 1

0

ds

∫

Ξ

∫

Ξ

dY dZ e−2iσ(X−Y,X−Z)ΩB[T (x, y, z)] {[(X − Y ) · (∇ϕ)((1 − s)X + sY )]F (Z)}+

+π−2n

∫ 1

0

ds

∫

Ξ

∫

Ξ

dY dZ e−2iσ(X−Y,X−Z)ΩB[T (x, y, z)] {[(X − Z) · (∇ϕ)((1 − s)X + sZ)]F (Y )} .

The first term is evidently vanishing and we obtain by usual integration by parts techniques that

adBϕ [F ](X) = −
π−2n

2i

n∑

j=1

∫ 1

0

ds

∫

Ξ

∫

Ξ

dY dZ e−2iσ(X−Y,X−Z)ΩB[T (x, y, z)]× (5.61)

×
{
[(∇

X
ϕ)X,s(Y )]j [(∂ζj

F )(Z)] + [(∇
X
ϕ)X,s(Z)]j [(∂ηj

F )(Y )]−

−[(∇
X′ϕ)X,s(Y )]j

[
(∂zj

F )(Z) − i
(
∂zj

ΓB[T (x, y, z)]
)
F (Z)

]
−

−[(∇
X′ϕ)X,s(Z)]j

[
(∂yj

F )(Y ) − i
(
∂yj

ΓB[T (x, y, z)]
)
F (Y )

]}
.

Observing that the functions ΩB[T (x, y, z)] and ΓB[T (x, y, z)] belong to BC∞(X ;C∞
pol(X × X )), due to our hy-

pothesis on the magnetic field B and using the results of Appendix 8.45 we conclude that adBϕ [F ] is a symbol of

type Smρ (Ξ) and thus, using also the results of the last section, s−m ♯
B adBϕ [F ] belongs to CB(Ξ). Replacing now F

with adBϕ [F ] we may iterate the above argument and obtain the condition (5.60) of the Theorem.

Step 2. Let us prove now the inverse implication. Thus let us consider a tempered distribution F on Ξ that satisfies
(5.60) in the statement of the Theorem for some m ∈ R and ρ ∈ [0, 1]. For any vector u ∈ X and any vector µ ∈ X ′

we observe that:

∂ξj
lu = ∂ξj

[σ((u, 0), (x, ξ))] = −uj, (5.62)

∂xj
lu = ∂xj

[σ((u, 0), (x, ξ))] = 0, (5.63)

∂ξj
lµ = ∂ξj

[σ((0, µ), (x, ξ))] = 0, (5.64)

∂xj
lµ = ∂xj

[σ((0, µ), (x, ξ))] = µj . (5.65)

Thus, for any u ∈ X and any µ ∈ X ′ the distributions lu and lµ belong to S+
ρ (Ξ) (for any ρ ∈ [0, 1]). Using (5.60),

that we suppose to hold, we deduce that

s−m ♯
B
(
adBu1

. . . adBup
adBµ1

. . . adBµq

[
adBϕ1

. . . adBϕN
[F ]
])

∈ CB(Ξ). (5.66)

Conclusion 1. Using our Theorem 5.20 we conclude that adBϕ1
. . . adBϕN

[F ] is a symbol of class Sm0 (Ξ) ⊂ MB[Ξ] for
any N ∈ N and any family of S+

ρ (Ξ)-symbols.
Now, for 0 < ρ ≤ 1 we shall verify the hypothesis (5.53) of Theorem 5.21. The idea is to use a special symbol

of the type fµ,ρ := lµ♯
Bsρ. Unfortunately, this is not an element of S+

ρ (Ξ) (for ρ > 0) so that we shall need a
localization procedure in order to control the dependence on x ∈ X . We follow the procedure elaborated by J-M.
Bony and J-Y. Chemin [6], but dealing only with a specific class of metrics we shall avoid the use of the general
confinement norms and prove some confinement results in Appendix 8.6. We shall use repeatedly the following
observations
Remark 5.25.

1. For any two C∞(X ) functions f and g, considering them as functions on Ξ constant with respect to ξ ∈ X ′,
we have f♯Bg = f♯g = f · g.

2. For any C∞(X ) function f , considering it as function on Ξ constant with respect to ξ ∈ X ′, and any symbol
F we have f♯BF = f♯F and F♯Bf = F♯f .

3. For f ∈ C∞(X ′)∩Ssρ(Ξ) and g ∈ C∞(X )∩S+
0 (Ξ) we have that f♯Bg = f · g+ γ(f, g), where γ(f, g) ∈ Ss−ρ0 (Ξ).

4. For F ∈ Ss0(Ξ) and φ ∈ S0
0(Ξ) or g ∈ C∞(X ′) ∩ Sρρ(Ξ), we have that

adBφ [F ] ∈ Ss0(Ξ), adBg [F ] ∈ Ss0(Ξ).
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While the first point of the above remark is evident, the second follows easily by integration by parts, and the last
two can be easily proved by a very similar procedure to the proof of (5.61) and using once again the results of
Appendix 8.45.

Suppose chosen a positive function χ ∈ C∞
0 (X ) such that

∫
X dxχ(x) = 1 and suppχ ⊂ BR(0). Then we have

TB(x,0)[χ] = τx[χ] =: χx ∈ C∞
0 (X ), ∀x ∈ X

defining a continuous map X ∋ x 7→ τx[χ] ∈ C∞
0 (X ), so that we can define the following integrals in the weak sense

as elements of S′(Ξ) (the translations acting continuously on the Fréchet space S(X )), and we have in the sense of
distributions ∫

X

dxTB(x,0)[χ] =

∫

X

dx τx[χ] = 1.

Thus, due to the continuity of the magnetic Moyal product as map S′(Ξ) × S′(Ξ) → S′(Ξ), we can write for any
G ∈ MB(Ξ), in the sense of distributions:

G =

∫

X

dxGx :=

∫

X

dx

[∫

X

dy τx[χ]♯G♯τy [χ]

]
.

Remark that for any F ∈ MB(Ξ) we have (for any φ ∈ S(X ))

〈
F ♯B G,φ

〉
=
〈
G,φ ♯B F

〉
=

〈∫

X

dxGx, φ ♯
B F

〉
=

〈∫

X

dxF ♯B Gx, φ

〉
.

For any fixed x ∈ X we can write
∫

X

dy τx[χ]♯G♯τy [χ] =

∫

B2R(x)

dy {τx[χ]♯G♯τy [χ]} +

∫

Bc
2R

(x)

dy {τx[χ]♯G♯τy [χ]}

and we introduce the notations

Ġx :=

∫

B2R(x)

dy {τx[χ]♯G♯τy [χ]} , G̃x :=

∫

Bc
2R

(x)

dy {τx[χ]♯G♯τy [χ]} .

Let us also denote by

θx :=

∫

B2R(x)

dy τy[χ] = τx

[∫

B2R(0)

dy τy[χ]

]
=: τx[θ] ∈ C∞

0 (X ),

and observe that θ(z) = 1 for z ∈ BR(0) so that

θχ = χ, Ġx = χx♯G♯θx

G̃x =

∫

|x−y|≥2R

[
< x− y >N (τx[χ]♯G♯τy [χ])

]
< x− y >−N dy

First let us consider G = adBϕ1
. . . adBϕJ

[F ].
Using Conclusion 1 above for our F , and the Theorem for the magnetic composition of symbols, it is easy to

see that Ġx ∈ Sm0 (Ξ) uniformly with respect to x ∈ X . In fact we shall use several times the observation that the
symbol type norms (on any Smρ (Ξ)) are left invariant by translations with X -variables.

For G̃x we use Lemma 8.46 in Appendix 8.6 to prove that the integral is finite and defines an element in Sm0 (Ξ)
uniformly with respect to x ∈ X .

Let us prove that
s−m−ρ♯

BadBµ [G] ∈ CB(Ξ).

In fact, we can write
s−m−ρ♯

BadBµ [G] =
[
s−m−ρ♯

Bs−ρ ♯
Bsm

]
♯Bs−m♯

Bsρ♯
BadBµ [G].

and due to the fact that (by the magnetic composition of symbols) s−m−ρ♯
Bs−ρ ♯

Bsm ∈ S0
0(Ξ) we only have to

estimate

s−m♯
Bsρ♯

BadBµ [G] =

∫

X

dx
{

s−m♯
Bsρ♯

BadBµ

[
Ġx

]
+ s−m♯

Bsρ♯
BadBµ

[
G̃x

]}
. (5.67)

In order to control the integral appearing in (5.67) we shall apply the usual Cotlar-Stein argument together with
the confinement result in Lemma 8.47 of Appendix 8.6. In fact we shall use the following form of the ’integral
Cotlar-Stein Lemma’ proved in [7] (Lemma 4.2.3’):
Proposition 5.26. Let {Ax}x∈X be a family of bounded operators on a Hilbert space H such that the following
two estimations are satisfied:
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• sup
y∈X

(∫
X
dz‖A∗

yAz‖
1/2
B(H)

)
≤M ,

• sup
y∈X

(∫
X dz‖AyA

∗
z‖

1/2
B(H)

)
≤M .

Then
∫
X
dxAx converges for the strong topology and we have

∥∥∥∥
∫

X

dxAx

∥∥∥∥ ≤M.

We have to verify that all the terms appearing in 5.67 verify the conditions of Lemma 8.47 in Appendix 8.6.
Let us consider the first contribution to the integral in 5.67 and remark that

adBµ [Ġx] ≡ adBlµ [Ġx] = adBlµ,x
[Ġx]

for any x ∈ X , where lµ,x := τx[lµ], i.e. lµ,x(Z) =< µ, z − x > with < µ, x > a constant term (with respect to the
variable z). Moreover, if we fix a C∞

0 (X ) function ψ such that ψ · θ = θ (then we also have ψ · χ = χ) and denote
by ψx := τxψ and by ψµ,x := lµ,xψx; we get (remark that ψ2

xχx = ψx(ψxχx) = ψxχx = χx)

sρ♯
BadBµ

[
Ġx

]
= sρ♯

BadBlµ,x

[
Ġx

]
=

= sρ♯
B
[
lµ,x♯

BĠx − Ġx♯
Blµ,x

]
= sρ♯

B
[
lµ,x♯

B (χx♯G♯θx) − (χx♯G♯θx) ♯
Blµ,x

]
=

= sρ♯
B
[
lµ,x♯

B
(
χx♯

BG♯Bθx
)
−
(
χx♯

BG♯Bθx
)
♯B lµ,x

]
=

= sρ♯
B
[(

lµ,x♯
Bχx

)
♯BG♯Bθx♯

Bψx − ψx♯
Bχx♯

BG♯B
(
θx♯

Blµ,x
)]

=

= sρ♯
Bψx♯

B
[(
ψµ,x♯

Bχx
)
♯BG♯Bθx − χx♯

BG♯B
(
θx♯

Bψµ,x
)]
♯Bψx =

= sρ♯
Bψx♯

BadBψµ,x

[
Ġx

]
♯Bψx = ψx♯

Bsρ♯
BadBψµ,x

[
Ġx

]
♯Bψx + adBsρ

[ψx]♯
BadBψµ,x

[
Ġx

]
♯Bψx (5.68)

and (see Remark 5.25)

sρ♯
BadBψµ,x

[
Ġx

]
=
(
adBsρ·ψµ,x

[
Ġx

])
+
(
adBγ(sρ,ψµ,x)

[
Ġx

])
−
(
adBsρ

[
Ġx

]
♯Bψµ,x

)
. (5.69)

First we remark that ψx = TB(x,0)[ψ] and

adBsρ
[ψx] = adBsρ

[
TB(x,0)[ψ]

]
= TB(x,0)

[
adBsρ

[ψ]
]

define translations of symbols of class S0
1(Ξ) with rapid decay in the X variable. Then, the family

{
adBψµ,x

[
Ġx

]}

x∈X

defines a family of symbols in Sm0 (Ξ) uniformly with respect to x ∈ X . Observing that

(
∂yj

(sρ · ψµ,x)
)
(Y ) = (< η >ρ +λ)

[
µjψ(y − x)+ < µ, (y − x) > (∂yj

ψ)(y − x)
]
,

(
∂ηj

(sρ · ψµ,x)
)
(Y ) = ρ

ηj
< η >

< η >ρ−1< µ, (y − x) > ψ(y − x),

we deduce that sρ ·ψµ,x ∈ S+
ρ (Ξ) uniformly for x ∈ X and due to our Conclusion 1, the first term in 5.69 is uniformly

bounded in Sm0 (Ξ). Using the above Remark 5.25 for γ(sρ, ψµ,x) we conclude that adBγ(sρ,ψµ,x)

[
Ġx

]
∈ Sm0 (Ξ)

uniformly with respect to x ∈ X . Now for the last term in 5.69 we use once again the Remark 5.25. We conclude
thus that we can apply Lemma 8.47 in Appendix 8.6 and thus Proposition 5.26 above.

Let us study now the second contribution to the integral in 5.67:

sρ♯
BadBµ

[
G̃x

]
= adBµ

[
sρ♯

BG̃x

]
− adBµ [sρ] ♯

BG̃x (5.70)

and the second term defines clearly an element of Sm0 (Ξ) uniformly in x ∈ X . For the first term,denoting by
θc := 1 − θ we remark that χx · θcx = 0. Let us fix a function φ ∈ C∞

0 (X ) such that φ · χ = χ and φ · θc = 0. Then

sρ♯
BG̃x = (sρ · φ

2
x)♯

Bχx♯
BG♯Bθcx + γ(sρ, φ

2
x)♯

BG̃x − χx♯
BG♯B(sρ · φx · θ

c
x) =

= (φx · sρ · φx)♯
BG̃x − G̃x♯

B(sρ · φx) + γ(sρ, φ
2
x)♯

BG̃x + χx♯
BG♯Bγ(θcx, sρ · φx) =
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= φx♯
BadBsρ·φx

[G̃x] +
[
γ(sρ, φ

2
x) − γ(φx, sρ · φx)

]
♯BG̃x + χx♯

BG♯Bγ(θcx, sρ · φx) (5.71)

where sρ · φx ∈ S+
ρ (Ξ) uniformly for x ∈ X . It is easy to verify that γB(θcx, sρ · φx) is a symbol of class S0

1(Ξ) with
rapid decay in the X variable and uniformly with respect to x ∈ X (just repeat the arguments of the proof of 5.61
snd use once again the results of Appendix 8.45). Thus the last term can once again be treated by applying Lemma
8.47 in Appendix 8.6 (with Gx = G constant). For the first two terms above we use Lemma 8.48 in Appendix 8.6
and thus end the proof.
Conclusion 2. Thus we proved that for F verifying the condition (5.60) of the Theorem, for any N ∈ N,
{ϕ1, . . . , ϕN} ⊂ S+

ρ (Ξ), denoting G := adBϕ1
· · · adBϕN

[F ] we have for any µ ∈ X ′

s−m−ρ♯
BadBµ [G] ∈ CB(Ξ).

Taking any family {X1, . . . , XM} ⊂ Ξ and taking into account the commutation of the adBX operators (3.29) we
obtain that

s−m−ρ♯
BadBX1

· · · adBXM
[adBµG] = s−m−ρ♯

BadBµ
[
adBX1

· · · adBXM
[G]
]

= s−m−ρ♯
BadBµ [G̃]

with
G̃ := adBX1

· · · adBXM
· adBϕ1

· · · adBϕN
[F ]

to which we apply once again Conclusion 1 and Conclusion 2. Finally we use Theorem 5.20 to conclude that
adBµ

[
adBϕ1

. . . adBϕJ
[F ]
]
∈ Sm−ρ

0 (Ξ).

Taking now G = adBµ
[
adBϕ1

. . . adBϕJ
[F ]
]
∈ Sm−ρ

0 (Ξ) and repeating exactly the above procedure we shall obtain
that

s−m−2ρ♯
BadBµ1

[
adBµ

[
adBϕ1

. . . adBϕJ
[F ]
]]

∈ CB(Ξ).

Iterating these arguments (and taking into account the commutation properties of the adBX operators) one clearly
finishes the proof. �

6 Applications

6.1 Inversion

Proposition 6.27. If F ∈ S0
ρ(Ξ) is invertible in the C∗-algebra CB(Ξ), then the inverse F− also belongs to S0

ρ(Ξ).

Proof. By Theorem 5.24, we need to show that for arbitrary N ∈ N r 0 and any family ϕ1, . . . , ϕN in S+
ρ (Ξ) we

have adBϕ1
. . . adBϕN

[F−] ∈ CB(Ξ).

For any subset K := {k1, . . . , km} of the ordered set J := {1, . . . , N} we write DB
K := adBϕk1

. . . adBϕkm
.

It is known and easy to prove by induction that

DB
J [F−] =

∑
CJ1,...,Jp

F−♯BDB
J1

[F ]♯BF−♯B . . . ♯BF−♯BDB
Jp

[F ]♯BF−. (6.72)

The sum is over all partitions J = ⊔pi=1Ji where, for example, the partition (J1, J2) is considered different from
(J2, J1). The coefficients CJ1,...,Jp

take only the values ±1, but this is not important.
Once again by Theorem 5.24 we know that each DB

Ji
[F ] belongs to CB(Ξ), while F− ∈ CB(Ξ) by assumption.

It follows that DB
J [F−] ∈ CB(Ξ). �

Proposition 6.28. For m < 0 if f ∈ Smρ (Ξ) is such that 1 + f is invertible in CB(Ξ), then (1 + f)− − 1 ∈ Smρ (Ξ).

Proof. We borrow a simple idea from [17]. Choose f ∈ Smρ (Ξ) such that 1 + f is invertible in CB(Ξ). Then
(1 + f)− ∈ S0

ρ(Ξ). Consequently, by an obvious identity and by the magnetic symbolic calculus

(1 + f)− − 1 = −f + (1 + f)− ♯B f ♯B f ∈ Smρ (Ξ).

�

Proposition 6.29. Let m > 0 and ρ ∈ [0, 1]. If G ∈ Smρ (Ξ) is invertible in MB(Ξ), with sm♯
BG− ∈ CB(Ξ), then

G− ∈ S−m
ρ (Ξ).

Proof. First we remark that for any m ∈ R we have sm ∈ Sm1 (Ξ). To see this, one just has to repeat the proof by
induction given in Step 6 of the proof of Theorem 5.20 by using symbols ϕj ∈ S+

1 (Ξ) in place of the linear symbols
used there. Then use Theorem 5.24.

One has
G♯Bs−m ∈ Smρ (Ξ)♯BS−m

ρ (Ξ) ⊂ S0
ρ(Ξ).

20



In addition this element is invertible in CB(Ξ), since we can compute in MB(Ξ)

(
G♯Bs−m

)−
= sm ♯

BG− ∈ CB(Ξ).

Then, by Proposition 6.27, sm♯
BG− ∈ S0

ρ(Ξ). Consequently

G− = s−m♯
B [sm♯

BG−] ∈ S−m
ρ (Ξ)♯BS0

ρ(Ξ) ⊂ S−m
ρ (Ξ).

�

To verify the boundedness condition in the above Proposition 6.29, the condition of ellipticity is usually needed.
Definition 6.30. For m > 0, a symbol F ∈ Smρ (Ξ) is called elliptic if there exist two constants R,C for which

|ξ| ≥ R =⇒ F (x, ξ) ≥ C < ξ >m .

We can apply Proposition 6.29 to any elliptic symbol of strictly positive order by using Theorem 4.1. in [12].
In fact that Theorem asserts that for an elliptic symbol F ∈ Smρ (Ξ) with m > 0 and for any vector potential vector

A with B = dA, we get a self-adjoint operator OpA having a spectrum σ[F ] that does not depend on the choice
of the representation (by gauge covariance). Thus for any z /∈ σ[F ] the operator OpA(F ) − z1 = OpA(F − z)
is invertible with bounded inverse. This means that the inverse (F − z1)− exists in MB(Ξ) and that it belongs
to CB(Ξ). Moreover, the Theorem 4.1 in [12] implies that OpA

[
(F − z) ♯B s−m

]
is a bijection on L2(X ), and thus

sm ♯
B (F − z)− =

[
(F − z) ♯B s−m

]−
∈ CB(Ξ). This allows us to use Proposition 6.29 and prove the following

statement.
Proposition 6.31. Given a real elliptic symbol F ∈ Smρ (Ξ), for any z /∈ σ[F ] the inverse (F − z)− exists and is a
symbol of class S−m

ρ (Ξ).

6.2 Functional calculus

Relying on Propositions 6.27 and 6.31, we can obtain results concerning the functional calculus of elliptic magnetic
self-adjoint operators. In any given Hilbert space representation associated to a vector potential A we have

Φ
(
OpA[f ]

)
=: OpA

[
ΦB(f)

]

and this gives an intrinsic meaning to the functional calculus for Borel functions Φ.
We recall (cf. [17] and references therein) that a Ψ∗-algebra is a Fréchet ∗-algebra continuously embedded in a

C∗-algebra, which is spectrally invariant (i.e. stable under inversion). Our Proposition 6.27 says that S0
ρ(Ξ) is a

Ψ∗-algebra in the C∗-algebra CB(Ξ). But Ψ∗-algebras are stable under the holomorphic functional calculus, so we
can state:
Proposition 6.32. If f ∈ S0

ρ(Ξ) and Φ is a function holomorphic on some neighborhood of the spectrum of f ,

then ΦB(f) ∈ S0
ρ(Ξ).

If Φ ∈ C∞
0 (IR) (and in many other situations), ΦB(f) can be written using the Helffer-Sjöstrand formula

ΦB(f) =
1

π

∫

C

dz ∂zΦ̃(z)(f − z)−, (6.73)

Φ̃ being a quasi-analytic extension of Φ (cf. [11], [8], [9]).
Proposition 6.33. If Φ ∈ C∞

0 (R), f ∈ Smρ (Ξ),m ≤ 0, f ,elliptic if m > 0 then ΦB(f) ∈ S−m
ρ (Ξ).

Proof. Let Φ̃ be a quasi-analytic extension of Φ ∈ C∞
0 (R), i.e. Φ̃ ∈ C∞

0 (C), Φ̃|R = Φ and for any M ∈ N there
exists CM > 0 such that ∣∣∣∣∣

∂Φ̃

∂z
(λ+ iµ)

∣∣∣∣∣ ≤ CM |µ|M , for λ+ iµ ∈ C. (6.74)

Then using formula (6.73) we get

sm♯
BadBϕ1

. . . adBϕN

[
ΦB(f)

]
=

1

π

∫

Ω

dz

(
∂Φ̃

∂z

)
sm♯

BadBϕ1
. . . adBϕN

[
(f − z)−

]
,

with Ω ⊂ C a bounded domain strictly containing the support of Φ̃.
To understand the behavior in z = λ + iµ of the magnetic derivatives of (f − z)−, we adapt some ideas of [1],

section 6.2. Since Φ̃ has compact support, we concentrate only on the divergence when µ→ 0.
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Let z, z0 /∈ σ(f) and ϕ ∈ S+
ρ (Ξ).

adBϕ
[
(f − z)−

]
= −(f − z)− ♯B adBϕ (f − z) ♯B (f − z)− =

= −(f − z)− ♯B (f − z0) ♯
B (f − z0)

− ♯B adBϕ (f − z0) ♯
B (f − z0)

− ♯B (f − z0) ♯
B (f − z)− =

= g(z) ♯B adBϕ
[
(f − z0)

−
]
♯B g(z),

where
g(z) := (f − z)− ♯B (f − z0) = 1 + (z − z0)(f − z)−.

Then, by reccurence, we prove that adBϕ1
. . . adBϕN

[(f − z)−] is a finite linear combination of terms of the form

(z − z0)
m−1g(z) ♯B DB

J1

[
(f − z0)

−
]
♯B g(z) ♯B . . . ♯B g(z) ♯B DB

Jm

[
(f − z0)

−
]
♯B g(z),

with (J1, . . . , Jm) a partition of {1, . . . , N} and DB
K := adBϕk1

. . . adBϕkp
for the ordered set K := {k1, . . . , kp}. There

are at most N + 1 g’s.
Under our assumption on f , all the factors DB

Jl
[(f − z0)

−] are elements of CB(Ξ) with z-independent norms.
One also has ‖ g(z) ‖CB≤ C|µ|−1 on suppµ.

The factor sm♯
Bg(z)♯BDJ1 [(f − z)−] needs a special study.

The first (constant) term composing g is trivial. For the second we write

sm♯
B [(z − z0)(f − z)−]♯BDJ1 [(f − z)−] = (z − z0)sm♯

B(f − z0)
−♯B [(f − z0)♯

B(f − z)−]♯BDJ1 [(f − z)−]

and once again we are safe, because sm♯
B(f − z0)

− ∈ S0
ρ(Ξ) ⊂ CB(Ξ).

So finally, putting everything together, we get

‖ adBϕ1
. . . adBϕN

[
(f − z)−

]
‖CB ≤ C

< λ >N

|µ|N+1
. (6.75)

Using now the estimations (6.75) and (6.74) and Theorem 5.24 we get the stated result. �

6.3 Fractional powers

Choosing a vector potential A for the magnetic field B and considering the associated Schrödinger representation
on H = L2(X ), one proves

Theorem 6.34. Given a lower bounded F ∈ Smρ (Ξ) with m ≥ 0, elliptic if m > 0, let OpA[F ] be the associated
self-adjoint, semi-bounded operator on H given by Theorem 4.1. and Corollary 4.4 in [12] and let t0 ∈ R+ such
that for F0 := F + t01 the operator OpA[F0] is strictly positive. Then for any s ∈ R the power s of OpA[F0] is a

magnetic pseudodifferential operator with symbol F
[s]B
0 ∈ Ssmρ (Ξ), i.e.

(
OpA[F0]

)s
= OpA

[
F

[s]B
0

]
.

Proof. Due to (2.10) and the above Proposition 6.31, the statement is valid for any s ∈ Z. Once again by (2.10)
it is enough to solve the case s ∈ (−1, 0).

In this case the equality

(
OpA[F0]

)s
= −

1

2πi

∫ i∞

−i∞

zs
(
OpA[F0] − z

)−1

dz = −
1

2πi
OpA

(∫ i∞

−i∞

zs(F0 − z)−dz

)

may be proved by approximation. First we restrict to vectors u ∈ E
OpA[F0]

([−N,N ])L2(X ) and use the Cauchy

formula for the analytic function zs on the domain {ℜz ≥ 0} ∩ {0 < ǫ ≤ |z| ≤ 2N}. Here ǫ < inf OpA(F0) and ET
denoted the spectral measure of the self-adjoint operator T . Then one lets ǫց 0 and N ր ∞. Thus we only have
to prove that ∫

R

ts(F0 + it)−dt =

∫

R

ts(F0 + it)−1Gtdt ∈ Smsρ (Ξ),

where Gt := (F0 + it)(F0 + it)−. This will follow easily from (i) and (ii) below and the behavior on pointwise
products of the seminorms defining the topology of Smρ (Ξ)

|f |m,p,q := sup
(x,ξ)∈Ξ

max
|α|≤p

max
|a|≤q

∣∣∣< ξ >−m+ρ|α|
(
∂αξ ∂

a
xf
)
(x, ξ)

∣∣∣ .

(i) Gt belongs to S0
ρ(Ξ) uniformly in t ∈ R.
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Let us notice that Gt := (F0 + it)(F0 + it)− is a symbol of type S0
ρ(Ξ) due to our previous Proposition 6.31 and

poinwise multiplication of symbols. It will be enough to prove that F0(F0 + it)− and t(F0 + it)− are symbols of
class S0

ρ(Ξ) uniformly with respect to t ∈ R+.

The results of Section 4 of [12] show that OpA [sm] OpA [(F0 + it)−] is a bounded operator uniformly with
respect to t ∈ R+. Let us choose N ∈ N and a family {ϕ1, . . . , ϕN} ⊂ S+

ρ (Ξ). Using (6.72) one gets

‖sm ♯
B
(
adBϕ1

· . . . · adBϕN
[(F0 + it)−]

)
‖CB ≤ C

with C independent of t ∈ R+, and this implies immediately the assertion for F0(F0 + it)−.
Now use once again (6.72) and the fact that F0 ∈ Smρ (Ξ). The results of Section 4 of [12] show that

tOpA [(F0 + it)−] is a bounded operator uniformly with respect to t ∈ R+, so one gets

‖tadBϕ1
· . . . · adBϕN

[(F0 + it)−]‖CB ≤ C

with C independent of t ∈ R+ and this implies the result.
(ii) One has ∫

R

ts(F0 + it)−1dt ∈ Smsρ (Ξ).

This can be proved by writing

∂ax∂
α
ξ

[
(F0 + t)−1

]
=

∑

|α1|+···+|αk|=|α|
|a1|+···+|ak|=|a|

Ca1,...,ak
α1,...,αk

(
∂a1
x ∂

α1

ξ F0

)
. . .
(
∂ak
x ∂αk

ξ F0

)
(F0 + t)−(k+1).

So that we are reduced to evaluating ∫

R

ts
∣∣∣(F0 + it)−(k+1)

∣∣∣ dt.

But since s ∈ (−1, 0), one has

∫

R

ts
∣∣∣(F0 + it)−(k+1)

∣∣∣ dt = F s−k0

∫

R

(
t

F0

)s−k ∣∣∣∣∣

(
F0

t
+ i

)−(k+1)
∣∣∣∣∣
dt

t
≤

≤ C < ξ >m(s−k)

∫

R

τk−s
∣∣∣(τ + i)−(k+1)

∣∣∣ dτ
τ

≤ C′ < ξ >m(s−k),

and this finishes the proof. �

7 Magnetic Fourier Integral Operators

In this section we consider a definition given by J.-M. Bony for an operator to be a Fourier Integral Operator and
using our Bony type criterion (Theorem 5.24) as a starting point, modify it in what we shall call Magnetic Fourier
Integral Operators.

Let us consider one-to one mappings V,W, · · · : Ξ → Ξ. For complex functions ϕ defined in phase space, we
introduce formally twisted magnetic commutators, generalizing our previous commutators adBϕ :

adB,Vϕ [f ] := ϕ ♯B f − f ♯B (ϕ ◦ V ). (7.76)

They satisfy simple algebraic properties, that will be basic in the sequel:

adB,Vϕ [λf + µg] = λadB,Vϕ [f ] + µadB,Vϕ [g], (7.77)

adB,V ◦W
ϕ [f ♯B g] = adB,Vϕ [f ] ♯B g + f ♯B ad

B,W
ϕ◦V [g], (7.78)

adB,Vϕ [f∗] = −ad
B,V −1

ϕ∗◦V [f ]∗. (7.79)

Definition 7.35. Let V : Ξ → Ξ be given and let R be a vector subspace of MB(Ξ), supposed (for simplicity)
closed under complex conjugation and such that R ◦ V ⊂ MB(Ξ). We set

S(B, V ;R) :=
{
f ∈ MB(Ξ) | adB,Vϕ1

. . . adB,VϕN
[f ] ∈ CB(Ξ), ∀N ∈ N, ∀ϕ1, . . . , ϕN ∈ R

}
.
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Clearly S(B, id;S+
ρ (Ξ)) = S0

ρ(Ξ), by Theorem 5.24. In the framework of [5] (cf. Definitions 4.3 and 3.1), for
B = 0 and under some assumptions connecting the diffeomorphism V and the metrics g1, g2, one has

Op
[
S(0, V ;S+(1, g2))

]
= FIO(V ; g1, g2) and S(0, id;S+(1; g) = S(1; g)).

We shall consider a class of diffeomorphisms Φ : Ξ → Ξ and we shall denote Φ(X) ≡
(
y(X), η(X)

)
(for any

X = x, ξ) ∈ Ξ). We shall also consider on Ξ the metric g(x,ξ)(y, η) := |y|2+ < ξ >−2 |η|2. We shall supose that Φ
satisfies the following conditions:
Hypothesis 7.36.

1. Φ : Ξ → Ξ is of class C∞ and symplectic for the canonical symplectic form on Ξ;

2. there exists C > 0 such that (
< η(x, ξ) >

< ξ >

)±1

≤ C;

3. the derivatives of order higher then 1 of Φ and Φ−1 are bounded with respect to the metric g introduced
above.

One can easily prove that under our Hypothesis 7.36 the class of symbols S+
1 (Ξ) is stable for the composition

with Φ. Thus we can define the class S(B,Φ;S+
1 (Ξ)) as above.

For a magnetic field B with components of class BC∞(X ) we shall consider the class of symbols S(B,Φ;S+
1 (Ξ)).

Moreover, chosing a vector potential A for B having components of class C∞
pol(X ) we shall consider the class of

’magnetic Fourier integral operators’, in the Schrödinger representation associated to A:

FIOA(Φ) := OpA
[
S(B,Φ;S+

1 (Ξ))
]
.

In fact we shall prove that for a class of hamiltonians, the unitary evolution group they generate are of class
FIOA(Φ) for a diffeomorphism Φ given by a Hamiltonian flow.

7.1 The symbol of the evolution group

Given any Hamiltonian described by a symbol h ∈ Sm1 (Ξ) we shall define its associated flow Φt : Ξ → Ξ, that we
shall also denote by Y (t;X) ≡ Φt(X), that is defined by the Cauchy problem:

Ẏ (t;X) = Xh [Y (t;X)] , Y (0;X) = X, (7.80)

with Xh the Hamiltonian field associated to h with respect to the canonical simplectic form σ on Ξ. Explicitely we
have

Xh := (∂ξh,−∂xh) .

Hypothesis 7.37. Suppose h ∈ Sm1 (Ξ) is real elliptic and 0 < m ≤ 1.
Lemma 7.38. Under the above Hypothesis 7.37 for the Hamiltonian h we have:

1. the Cauhy problem (7.80) has a unique solution Y (t;X) and the map

R × Ξ ∋ (t,X) 7→ Y (t : X) ∈ Ξ

is of class C∞.

2. for any given t ∈ R the flow Φt satisfies the Hypothesis 7.36.

Proof. The first conclusion results from the fact that the Hamiltonian has at most a lineara growth. Let us turn
now to the proof of the 3 conditions in Hypothesis 7.36. The first one is a classic property of Hamiltonian systems.
The second one can be easily verified using the ellipticity of h and the conservation of h along the flow it generates.
For the third condition we have to integrate the components of the Hamiltonian field (7.80)





yj(t;x, ξ) = xj +
∫ t
0
ds
(
∂ηj

h
)
(y(s;x, ξ), η(s;x, ξ))

ηj(t;x, ξ) = ξj −
∫ t
0 ds

(
∂yj

h
)
(y(s;x, ξ), η(s;x, ξ)).

(7.81)

Now let us compute

(
∂xk

yj
)
(t;x, ξ) = δjk +

∑

1≤l≤n

∫ t

0

ds
[(
∂yl
∂ηj

h
)
(y(s;x, ξ), η(s;x, ξ))

(
∂xk

yl
)
(s;x, ξ)+
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+
(
∂ηl
∂ηj

h
)
(y(s;x, ξ), η(s;x, ξ))

(
∂xk

ηl
)
(s;x, ξ)

]
,

(
∂xk

ηj
)
(t;X) = −

∑

1≤l≤n

∫ t

0

ds
[(
∂yl
∂yj

h
)
(y(s;X), η(s;X))

(
∂xk

yl
)
(s;X)+

+
(
∂ηl
∂yj

h
)
(y(s;X), η(s;X))

(
∂xk

ηl
)
(s;X)

]
.

Thus we have the estimations:

max
1≤j≤n

∣∣(∂xk
yj
)
(t;X)

∣∣ ≤ 1 + C

∫ t

0

ds

[
max
1≤l≤n

∣∣(∂xk
yl
)
(s;X)

∣∣+ 〈η(s;X)〉−1

(
max

1≤l≤n

∣∣(∂xk
ηl
)
(s;X)

∣∣
)]

,

max
1≤j≤n

∣∣(∂xk
ηj
)
(t;X)

∣∣ ≤ C

∫ t

0

ds

[
〈η(s;X)〉m

(
max
1≤l≤n

∣∣(∂xk
yl
)
(s;X)

∣∣
)

+

(
max
1≤l≤n

∣∣(∂xk
ηl
)
(s;X)

∣∣
)]

.

Due to the ellipticity condition (and m > 0) and the conservation of the Hamiltonian along the flow we easily
obtain that there exists a finite constant c such that c−1 < ξ >≤< η(t;X) >≤ c < ξ > for any t ∈ R. Thus if we
denote for |a| = 1

Ea,0(t;X) :=

{
max

1≤j≤n

∣∣(∂axyj
)
(t;X)

∣∣+ < ξ >−1 max
1≤j≤n

∣∣(∂axηj
)
(t;X)

∣∣
}
,

it defines a positive function for which we have proved the following estimation

Ea,0(t;X) ≤ 1 + C

∫ t

0

ds Ea,0(s;X),

so that by the Gronwall Lemma we conclude that

Ea,0(t;X) ≤ eCt, ∀t ∈ R, ∀X ∈ Ξ.

Let us consider now the derivations with respect to the X ′-variables.

(
∂ξk

yj
)
(t;X) =

∑

1≤l≤n

∫ t

0

ds
[(
∂yl
∂ηj

h
)
(y(s;X), η(s;X))

(
∂ξk

yl
)
(s;X)+

+
(
∂ηl
∂ηj

h
)
(y(s;X), η(s;X))

(
∂ξk

ηl
)
(s;X)

]
,

(
∂ξk

ηj
)
(t;X) = δjk −

∑

1≤l≤n

∫ t

0

ds
[(
∂yl
∂yj

h
)
(y(s;X), η(s;X))

(
∂ξk

yl
)
(s;X)+

+
(
∂ηl
∂yj

h
)
(y(s;X), η(s;X))

(
∂ξk

ηl
)
(s;X)

]
.

Thus we have the estimations:

max
1≤j≤n

∣∣(∂ξk
yj
)
(t;X)

∣∣ ≤ C

∫ t

0

ds

[
max
1≤l≤n

∣∣(∂ξk
yl
)
(s;X)

∣∣+ 〈η(s;X)〉−1

(
max
1≤l≤n

∣∣(∂ξk
ηl
)
(s;X)

∣∣
)]

,

max
1≤j≤n

∣∣(∂ξk
ηj
)
(t;X)

∣∣ ≤ 1 + C

∫ t

0

ds

[
〈η(s;X)〉m

(
max
1≤l≤n

∣∣(∂ξk
yl
)
(s;X)

∣∣
)

+

(
max
1≤l≤n

∣∣(∂ξk
ηl
)
(s;X)

∣∣
)]

.

For |α| = 1 let us denote

E0,α(t;X) :=

{
max

1≤j≤n

∣∣(∂αξ yj
)
(t;X)

∣∣+ < ξ >−1 max
1≤j≤n

∣∣(∂αξ ηj
)
(t;X)

∣∣
}
,

it defines a positive function for which we have proved the following estimation

E0,α(t;X) ≤< ξ >−1 +C

∫ t

0

ds Ea,0(s;X),

so that by the Gronwall Lemma we conclude that

E0,α(t;X) ≤< ξ >−1 eCt, ∀t ∈ R, ∀X ∈ Ξ.

We conclude that for |a| + |α| = 1 we have the estimation:

Ea,α(t;X) ≤< ξ >−|α| eCt, ∀t ∈ R, ∀X ∈ Ξ.
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Let us suppose now that for some k ≥ 1 we have proved that for any pair of multi-indices (a, α) with 1 ≤
|a| + |α| ≤ k we have the inequality

Ea,α(t;X) ≤ Ct,(a,α) < ξ >−|α|, ∀t ∈ R, ∀X ∈ Ξ.

Let us choose then a pair of multi-indices (b, β), such that |b| + |β| = k + 1 and let us apply the operator ∂bx∂
β
ξ to

our system 7.81. Using our induction hypothesis we obtain

Eb,β(t;X) ≤ Ct,(b,β) < ξ >−|β| +C

∫ t

0

ds Eb,β(s;X), ∀t ∈ R, ∀X ∈ Ξ.

Thus using once again the Gronwall Lemma we obtain that

Ea,α(t;X) ≤ Ct,(a,α) < ξ >−|α|, ∀t ∈ R, ∀X ∈ Ξ, ∀(a, α) ∈ N
n × N

n.

It is now easy to conclude that our third condition in Hypothesis 7.80 is satisfied. �

Theorem 7.39. We suppose given a magnetic field with components of class BC∞(X ) and a Hamiltonian h
satisfying Hypothesis 7.37. In the Schrödinger representation associated to a vector potential A of class C∞

pol(X we

have that OpA(h) defines a self-adjoint operator and its unitary evolution group Pt := exp{−itOpA(h)} is of class
FIOA(Φt) with Φt the solution of problem (7.80) associated to h.

The proof of this Theorem is based on the following two Lemmas.
Lemma 7.40. Let a ∈ Sm1 (Ξ) and c ∈ S+

1 (Ξ). We consider on S+
1 (Ξ) the natural Frechet topology. We denote by

{., .} the Poisson bracket defined by the canonical symplectic form σ on Ξ. Then we have the following statements.

1. For any t ∈ R we have that c ◦ Φt ∈ S+
1 (Ξ) and the map

R ∋ t 7→ c ◦ Φt ∈ S+
1 (Ξ)

is of class C∞(R).

2. We have that
c♯Ba− a♯Bc− i−1{c, a} ∈ Sm−1

1 (Ξ)

and in particular c♯Ba− a♯Bc ∈ Sm1 (Ξ).

3. For m ≤ 1 the map
(c ◦ Φt)♯

Ba− a♯B(c ◦ Φt) − i−1{(c ◦ Φt), a} ∈ S0
1(Ξ)

is of class C∞(R).

The proof of this Lemma may be obtained in a straightforward way from the arguments given in the first two
sections of [12].
Lemma 7.41. The unitary evolution group Pt generated by OpA(h) satisfies the following relations.

1. For any f ∈ S(X ) and any t ∈ R we have that Ptf ∈ S(X ) uniformly for t in bounded sets.

2. Pt ∈ B(S(X )) for any t ∈ R.

3. The map R ∋ t 7→ Pt ∈ B(S(X )) is differentiable for the strong operatorial topology on B(S(X )).

Proof. Let us denote by Hm
A the domain of the operator OpA(h) with the graph norm (this is a magnetic Sobolev

space [12]). For any multi-index α ∈ Nn let us denote by Πα
A := (ΠA

1 )α1 · . . . · (ΠA
n )αn and by f(t) := Ptf . It is

enough to prove by induction on p+ q (for (p, q) ∈ N × N) that for any α ∈ N
n with |α| = q we have

< x >p Πα
Af(t) ∈ Hm

A , (7.82)

uniformly for t in bounded sets.
Let us observe that our Lemma 7.40 implies that for any d ∈ S+

1 (Ξ) we have [d, h]♯B ∈ Sm1 (Ξ). This allows us
to prove that for any r ∈ N we have

[
OpA(d)

]r
OpA(h)f(t) =

∑

0≤k≤r

Crk

[
adr−k

OpA(d)
· OpA(h)

] [
OpA(d)

]k
u(t). (7.83)

26



Suppose that ϕ ∈ C∞
0 (X ) is such that ϕ(x) = 0 for |x| ≥ 2 and ϕ(x) = 1 for |x| ≤ 1. Denote by θj(x) :=< x >

ϕ(x/j) for j ≥ 1; then θj ∈ C∞
0 (X ). Let us stil introduce the notations

vj,p,α(t) := θpjΠ
α
Af(t), ∀α ∈ N

n, |α| = q.

One has
≤ v̇j,p,α(t) = θpjΠ

α
AOpA(h)f(t)

and using (7.83) we conclude that

d

dt
‖vj,p,α‖

2
L2(X ) ≤ ‖vj,p,α‖

2
L2(X ) + C, for |t| ≤ T,

for any T ≥ 0, with C a constant depending on T . Integrating this inequality and using the Fatou Lemma we
conclude that < x >p Πα

Af(t) ∈ L2(X ) uniformly for t in bounded sets. Using once again (7.83) and some evident
commutation properties we also obtain that OpA(h) (< x >p Πα

Af(t)) ∈ L2(X ) uniformly for t in bounded sets.
This proves (7.82).

The second conclusion of the Lemma follows from the Uniform Boundedness Principle. The third conclusion
follows directly from the inequality

∥∥∥< x >p Πα
A

(
Ptf(t) − f(t) + itOpA(h)f(t)

)∥∥∥ ≤ Cp,q(f)|t|, for |t| ≤ 1, |α| = q,

that can be obtained by induction on p+ q using similar arguments as in the proof of (7.82) and the explicit form
of the derivative of the map

R ∋ t 7→ Ptf(t) − f(t) + itOpA(h)f(t) ∈ L2(X ).

�

P r o o f o f t h e T h e o r e m . We introduce some more notations. We consider a fixed sequence {dk}k∈N∗ from
S+
ρ (Ξ) and multi-indices of various lengths:

N ∗ :=
{
α = (α1, . . . , αj) ∈ (N∗)j , j ≥ 1, α1 < . . . < αj

}
, N := N ∗ ∪ {0};

α = (α1, . . . , αj) ∈ N ∗ ⇒ ‖= α := j; ‖= 0 = 0.

For two multi-indices α and β from N we say that β ⊂ α when ‖= β < ‖= α and βl ∈ {α1, . . . α‖=α}. Then we set

K
t
d[T ] := OpA(d ◦ Φ−t) · T − T · OpA(d), for any T ∈ B(L2(X ))

and for j = ‖= α
Qα(t) := K

t
dαj

. . .Kt
dα1

[
Pt
]
∈ B(S(X )), Q0(t) := Pt ∈ CB(Ξ).

Due to our previous Lemma the maps R ∋ t 7→ Qα(t) ∈ B(S(X )) are differentiable. Using induction on ‖= α we
shall now prove that 




i∂tQα(t) = OpA(h) · Qα(t) +
∑

β∈N ,β(α

OpA(rαβ) · Qβ(t),

rαβ ∈ S0
1(Ξ) and depend continuously on t ∈ R.

(7.84)

For α = 0 ∈ N (7.84) is true with r0 = 0, being the definition of Pt.
Now suppose that we have proved (7.84) for any α ∈ N with ‖= α ≤ s ∈ N and let us choose αs+1 ∈ N∗ such

that αs+1 ≥ 1 for s = 0 or αs+1 > αs for s > 0 and denote by α̃ := (α1, . . . , αs, αs+1). We differentiate the equality

Qeα(t) = K
t
dαs+1

[Qα(t)] =
(
OpA(dαs+1 ◦ P( − t))

)
· Qα(t) − Qα(t) · OpA(dαs+1)

and use (7.84), Lemma 7.40 and the equalities

∂t(dαs+1 ◦ P−t) = −
{
h, dαs+1

}
◦ Φ−t =

{(
dαs+1 ◦ Φ−t

)
, h
}
.

In order to finish our proof it is sufficient to prove by induction on ‖= α with α ∈ N the fact that uniformly for
t in bounded sets we have

Qα(t) ∈ B(L2(X )). (7.85)

The case ‖= α = 0 is evident. Let α ∈ N∗ and suppose that (7.85) is true for any β ∈ N with β ⊂ α. Let us denote
by Rα(t) the sum appearing in the right-hand side of (7.84). The map

R ∋ t 7→ Rα(t) ∈ B(S(X ))
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is continuous and Rα(t) ∈ B(L2(X )) uniformly for t in bounded sets. AA direct computation using (7.84) and the
fact that Φ0 is the identity on Ξ shows that

d

dt
(P−tQα(t)) = P−tRα(t), (Q)α(0) = 0.

We conclude that

Qα(t) =

∫ t

0

Pt−sRα(s) ds

and thus we obtain (7.85). �

8 Appendix

8.1 Regularization procedure

Lemma 8.42. Let Y be a finite dimensional real space. Suppose given p ∈ R and q ∈ N, then we consider the
weight {

F ∈ S′(Y)
∣∣∂αF ∈ L1

loc(Y), |α| ≤ q
}
∋ F 7→ ν(F ) :=

∑

|α|≤q

sup
y∈Y

< y >p |(∂αF )(y)| ∈ R+

and the linear spaces:
Lν :=

{
F ∈ S(Y)′

∣∣∂αF ∈ L1
loc(Y), |α| ≤ q , ν(F ) <∞

}

Bν :=
{
F ∈ S′(Y) | ∃{φm}m∈N ⊂ S(Y), s.th.(φm, ϕ) −→

m→∞
(F, ϕ), ∀ϕ ∈ S(Y), ν(φm) ≤ C, ∀m ∈ N

}
.

Then we have: Lν = Bν .

Proof. Let n be the dimension of Y. If F ∈
{
F ∈ S′(Y)

∣∣∂αF ∈ L1
loc(Y), |α| ≤ q

}
is such that ν(F ) < ∞, we

choose the cut-off function χ ∈ D(Y) with χ(0) = 1 and define χm(y) := χ(m−1y), and we also choose the
regularizing function θ ∈ S(Y) with

∫
Y dy θ(y) = 1, and define θm(y) := mnθ(my) and φm := χm(θm ∗ F ) ∈ S(Y).

Then it is straightforward to verify that given ǫ > 0

(φm, ϕ) −→
m→∞

(F, ϕ), ∀ϕ ∈ S(Y),

ν(φm) =
∑

|α|≤q

sup
y∈Y

< y >p |(∂αχm(θm ∗ F ))(y)| ≤

≤
∑

|α|≤q

∑

β≤α

Cαβ sup
y∈Y

< y >p m−|α−β|
∣∣(∂α−βχ)m

(
θm ∗ (∂βF )

)∣∣ ≤

≤ C
∑

|α|≤q

∑

|β|≤q−|α|

sup
y∈Y

< y >p m−|β|
∣∣(∂βχ)m (θm ∗ (∂αF ))

∣∣ ≤ C′ν(F ),

for m large enough. Thus Lν ⊂ Bν

For the reversed inclusion suppose we are given F ∈ S′(Y) such that there exists an approximating sequence
{φm}m∈N ⊂ S(Y) as in the definition of the space Bν . By the usual properties of tempered distributions it
follows that ∂αφm converges to ∂αF in the sense of distributions for any multiindex α and also that the product
< y >p ∂αφm converges in the sense of distributions to < y >p ∂αF that is a well defined distribution for any
p ∈ R. As S(Y) is dense in L1(Y) we conclude from the definition of Bν that the sequences {< y >p ∂αφm}m∈N,
for any |α| ≤ q, belong to a finite ball of the space L∞(Y) that is the dual of L1(Y) and thus the sequence
{< y >p ∂αφm}m∈N has accumulation points in the ball ‖.‖∞ ≤ (1 + ǫ)ν(F ), and due to the weak convergence to
< y >p ∂αF , this distribution must belong to the above ball ‖.‖∞ ≤ (1 + ǫ)ν(F ). We conclude thus that Bν ⊂ Lν .

�

8.2 Some composition formulae

Lemma 8.43. For ϕ ∈ BC(X ) and U ∈ Ξ, we have

(ϕ ♯B eU )(Z) = ϕ(z − u/2)eU (Z), (eU ♯
B ϕ)(Z) = ϕ(z + u/2)eU(Z).

Proof. By direct computation we get

(ϕ ♯B eU )(Z) = π−2n

∫

Ξ

dZ1

∫

Ξ

dZ2 e
−2iσ(Z−Z1,Z−Z2)ΩB[T (z, z1, z2)]ϕ(z1)e

−iσ(U,Z2) =
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= π−2n

∫

Ξ

dZ1

∫

Ξ

dZ2 e
−2i{<ζ−ζ1,z−z2>−<ζ−ζ2,z−z1>+<µ,z2/2>−<ζ2/2,u>}ϕ(z1)Ω

B [T (z, z1, z2)] =

= π−2n

∫

Ξ

dZ1

∫

Ξ

dZ2 e
2i{<ζ1,z−z2>−<ζ2,z−z1−u/2>−<ζ,z−z2>+<ζ,z−z1>−<µ,z2/2>}ϕ(z1)Ω

B [T (z, z1, z2)].

Integration in ζ1 and usual inverse Fourier formula for the Dirac mass gives z2 = z; similarly integration in ζ2
implies z1 = z − u/2. Thus, taking into account that the triangle T (z, z, z − u/2) is degenerate, we get:

(ϕ ♯B eU )(Z) = ϕ(z − u/2)e−iσ(U,Z)ΩB[T (z, z, z − u/2)] = ϕ(z − u/2)eU(Z).

Similarly:

(eU ♯
B ϕ)(Z) = π−2n

∫

Ξ

dZ1

∫

Ξ

dZ2 e
−2iσ(Z−Z1,Z−Z2)ΩB[T (z, z1, z2)]e

−iσ(U,Z1)ϕ(z2) =

= π−2n

∫

Ξ

dZ1

∫

Ξ

dZ2 e
−2i{<ζ−ζ1,z−z2>−<ζ−ζ2,z−z1>+<µ,z1/2>−<ζ1/2,u>}ϕ(z2)Ω

B [T (z, z1, z2)] =

= π−2n

∫

Ξ

dZ1

∫

Ξ

dZ2 e
2i{<ζ1,z−z2+u/2>−<ζ2,z−z1>−<ζ,z−z2>+<ζ,z−z1>−<µ,z1/2>}ϕ(z2)Ω

B [T (z, z1, z2)] =

= ϕ(z + u/2)e−iσ(U,Z)ΩB[T (z, z + u/2, z)] = ϕ(z + u/2)eU (Z).

�

Proof of Lemma 3.8 By direct computation we obtain

(eX ♯
B eY )(Z) = π−2n

∫

Ξ

dU1

∫

Ξ

dU2 e
−2iσ(Z−U1,Z−U2)ΩB[T (z, u1, u2)] e

−iσ(X,U1) e−iσ(Y,U2) =

= π−2n

∫

Ξ

dU1

∫

Ξ

dU2 e
−2is(X,Y ;Z,U1,U2)ΩB[T (z, u1, u2)],

where we have introduced the shorthand notation

s(X,Y ;Z,U1, U2) :=< ζ − µ1, z − u2 > − < ζ − µ2, z − u1 > +

+ < ξ, u1/2 > − < µ1/2, x > + < η, u2/2 > − < µ2/2, y >=

=< ζ, z − u2 > − < ζ, z − u1 > + < ξ, u1/2 > + < η, u2/2 > −

− < µ1, z + x/2 − u2 > + < µ2, z − y/2 − u1 > .

Integration with respect to µ1 and µ2 implies u2 = z + x/2 and u1 = z − y/2 and the phase of the exponential
factor will be:

− < ζ, x/2 > + < ζ, y/2 > + < ξ, u1/2 > + < η, u2/2 >=

= − < ζ, x/2 > − < ζ, y/2 > + < ξ, z/2 > − < ξ, y/4 > + < η, z/2 > + < η, x/4 >=

= −(1/2)σ(Z,X + Y ) + (1/4)σ(Y,X).

Therefore
(eX ♯

B eY )(Z) = e−iσ(X+Y,Z) e(i/2)σ(X,Y )ΩB[T (z, z − y/2, z + x/2)] =

= e(i/2)σ(X,Y )ΩB[T (z, z − y/2, z + x/2)]eX+Y (Z),

and the first equality is obtained. The second and the third follow immediately from Lemma 8.43.

29



8.3 Proof of Proposition 3.6

1) For (f, g) ∈
[
BC(X ;L1(X ′))

]2
and for any x ∈ X we can define f(x, .)⋆g(x, .) ∈ L1(X ′) depending continuously

on (f, g) ∈
[
BC(X ;L1(X ′))

]2
. We can verify that

sup
x∈X

‖f(x, .) ⋆ g(x, .)‖1 ≤ ‖f‖∞,1 ‖g‖∞,1.

2) In a similar way, using the Hausdorff-Young inequality, for (f, F ) ∈ BC(X ;L1(X ′)) × BC(X ;Lp(X ′)) and for
any x ∈ X we can define f(x, .) ⋆ g(x, .) ∈ Lp(X ′) and prove that

sup
x∈X

‖f(x, .) ⋆ g(x, .)‖p ≤ ‖f‖∞,1 ‖g‖∞,p.

For the case (f, g) ∈ BC(X ;L1(X ′)) × Lp(Ξ) let us first suppose that p < ∞ and g ∈ S(Ξ). Then for any x ∈ X
we can define

(f ⋆ g)(x, ξ) =

∫

X ′

dη f(x, ξ − η)g(x, η),

and we remark that

|(f ⋆ g)(x, ξ)|p ≤ ‖f(x, ·)‖p−1
1

∫

X ′

dη |f(x, ξ − η)| |g(x, η)|p ≤ ‖f‖p−1
∞,1

∫

X ′

dη |f(x, ξ − η)| |g(x, η)|p,

∫

X

dx

∫

X ′

dξ |(f ⋆ g)(x, ξ)|p ≤ ‖f‖p−1
∞,1

∫

X

dx

∫

X ′

dξ

∫

X ′

dη |f(x, ξ − η)| |g(x, η)|p =

= ‖f‖p−1
∞,1

∫

X ′

dη

∫

X

dx

∫

X ′

dξ |f(x, ξ − η)| |g(x, η)|p ≤

≤ ‖f‖p−1
∞,1

∫

X ′

dη

(
sup
x∈X

‖f(x, .)‖1

)∫

X

dx |g(x, η)|p = ‖f‖p∞,1 ‖g‖
p
p.

The case g ∈ Lp(Ξ) is now obtained using the density of S(Ξ) in Lp(Ξ). For p = ∞ we simply observe that for any
x ∈ X :

|f(x, .) ⋆ g(x, .)| ≤ ‖g‖∞‖f(x, ·)‖1 ≤ ‖g‖∞‖f‖∞,1.

3) We observe that
< ξ >−m+|α|ρ |(∂ax∂

α
ξ (f ⋆ g))(X)| ≤

≤
∑

|b|≤|a|

ca,b

∣∣∣∣
∫

X ′

dη < η >|m−ρ|α||
[
∂bxf(x, η)

]
< ξ − η >−m+ρ|α|

[
∂a−bx ∂αξ g(x, ξ − η)

]∣∣∣∣ ≤

≤ C max
|b|≤|a|

‖pm∂
b
xf‖∞,1 max

|b|≤|a|
max

|β|≤|α|
sup

(x,ξ)∈Ξ

| < ξ >−m+ρ|β| ∂bx∂
β
ξ g(x, ξ)|.

4) Evident.

8.4 Multiple magnetic derivatives

Using Corollary 3.16 and the formulae in Section 3 we obtain
Proposition 8.44. For B with components of class BC∞(X ) and for any f ∈ S(Ξ) we have

1. ‖Da
xD

α
ξ f‖∞ ≤ C|a|

∑
b≤a

∑
|β|≤(|a|−|b|)(2[n/2]+3) ‖(adB

e
)b(adB

ǫ
)α+βf‖∞,

2. ‖(adB
e

)a(adB
ǫ

)αf‖∞ ≤ C|a|

∑
b≤a

∑
|β|≤(|a|−|b|)(2[n/2]+3) ‖D

b
xD

α+β
ξ f‖∞,

where e := {e1, . . . , en} and ǫ := {ǫ1, . . . , ǫn} are the canonical basis in X and X ′, respectively.

Proof. We first remark that

Dξj
f = ǫj ·Dξf = adBǫjf ; Dxj

f = ej ·Dxf = adBej
f + δBj f,

so that
Dα
ξ f = (ǫ1 ·Dξ)

α1 · · · (ǫn ·Dξ)
αnf = (adBǫ1)

α1 · · · (adBǫn)αnf ≡ (adB
ǫ

)αf.

30



Next we use Proposition 3.6 and Corollary 3.16 in order to prove that

‖Dxj
f‖∞ = ‖ej ·Dxf‖∞ ≤ ‖adBej

f‖∞ + ‖δBj f‖∞ ≤ ‖adBej
f‖∞ + C∞

∑

|α|≤(2[n/2]+3)

‖(adB
ǫ

)αf‖∞,

and similarly

‖adBej
f‖∞ ≤ ‖Dxj

f‖∞ + C∞

∑

|α|≤(2[n/2]+3)

‖Dα
ξ f‖∞. (8.86)

We continue by recurrence using Remark 3.15 and Proposition 3.13.

Da
xDxj

f = Da
x(adBej

f) +Da
x(δ

B
j f) = Da

x(adBej
f) +

∑

1≤|α|≤(2[n/2]+3)

∑

b≤a

Cab (Da−b
x cBjα) ⋆ (Db

x∂
α
ξ f) =

= Da
x(adBej

f) +
∑

1≤|α|≤(2[n/2]+3)

∑

b≤a

Cab (c
Da−b

x B
jα ) ⋆ (Db

x∂
α
ξ f).

Let us suppose that for |a| ≤ p we have proved that there exists some finite positive constant Cp such that the
following estimation holds

‖Da
xf‖∞ ≤ Cp

∑

b≤a

∑

|β|≤(|a|−|b|)(2[n/2]+3)

‖(adB
e

)b(adB
ǫ

)βf‖∞. (8.87)

Then the previous equality (8.87) implies that, for any j ∈ {1, . . . , n}, (with (θj)k := δjk),

‖Da
xDxj

f‖∞ ≤ Cp
∑

b≤a

∑

|β|≤(|a|−|b|)(2[n/2]+3)

‖(adB
e

)b(adB
ǫ

)β(adBej
f)‖∞ +

+c

[
max
|a|≤p

max
|α|≤(2[n/2]+3)

∥∥∥c(D
a
xB)

jα

∥∥∥
∞,1

] ∑

b≤a

∑

|β|≤(2[n/2]+3)

‖Db
x(adB

ǫ
)βf‖∞ ≤

≤ Cp
∑

b≤a

∑

|β|≤(|a|−|b|)(2[n/2]+3)

‖(adB
e

)(b+θj)(adB
ǫ

)βf‖∞+ (8.88)

+C′
pCp

∑

b≤a

∑

1≤|β|≤(2[n/2]+3)

∑

c≤b

∑

|γ|≤(|b|−|c|)(2[n/2]+3)

‖(adB
e

)c(adB
ǫ

)γ(adB
ǫ

)βf‖∞.

One can find a constant Kp, depending only on p ∈ N and on the dimension n of X , such that the expression in
(8.88) may be estimated by

Cp
∑

b≤a

∑

|β|≤(|a|−|b|)(2[n/2]+3)

‖(adB
e

)(b+θj)(adB
ǫ

)βf‖∞ + KpC
′
pCp

∑

b≤a

∑

|β|≤(1+|a|−|b|)(2[n/2]+3)

‖(adB
e

)b(adB
ǫ

)βf‖∞ ≤

≤ Cp
(
1 +KpC

′
p

) ∑

b′≤a′

∑

|β|≤(|a′|−|b′|)(2[n/2]+3)

‖(adB
e

)(b
′)(adB

ǫ
)βf‖∞,

where a′ := a+ θj , so that |a′| = |a| + 1. Thus, taking Cp+1 = Cp
(
1 +KpC

′
p

)
, we obtain the condition (8.87) for

|a| = p+ 1 and the statement of point 1 of the Proposition for |α| = 0. Replacing then f with ∂αξ f = (adB
ǫ

)αf , we
completely prove the assertion of point 1 of the Proposition. Replacing the norms ‖.‖∞ with the norms ‖.‖2 makes
no changes, so we also have proved point 2 of the Proposition.

Let us observe now that we can also write

(adB
e

)aadBej
f = (adB

e
)a(Dxj

f) + (adB
e

)a(δBj f) = (adB
e

)a(Dxj
f) +

∑

|α|≤(2[n/2]+3)

(adB
e

)a
(
cBjα ⋆ ∂

α
ξ f
)
,

and a similar induction procedure allows us to prove points 3 and 4 of the Proposition. �
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8.5 Composition of symbols

In order to estimate commutators of symbols we shall need to control the rest in the Taylor series and we consider
for φ ∈ C∞(Ξ)

φs(X,Y ) := φ(X + s(Y −X)), for s ∈ [0, 1].

Let us suppose that φ ∈ Smρ (Ξ) for some m ∈ R. Then

|φs(X,Y )| ≤ C < ξ + s(η − ξ) >m .

Proposition 8.45. Suppose we are given φ ∈ Smρ (Ξ), ψ ∈ Spρ(Ξ) and θ ∈ BC∞(X ;C∞
pol(X

2)) (the bounded smooth

functions on X with values in the space of smooth functions on X 2 with polynomial growth together with their
derivatives). Then

Lσ(θ;φ, ψ; s)(X) :=

∫

Ξ

dY

∫

Ξ

dZe−2iσ(X−Y,X−Z)θ(x, y − x, z − x)φs(X,Y )ψ(Z)

defines a symbol of class Sm+p
ρ (Ξ) for any s ∈ [0, 1] and the mapping

Smρ (Ξ) × Spρ(Ξ) ∋ (φ, ψ) 7→ Lσ(θ;φ, ψ; s) ∈ Sm+p
ρ (Ξ)

is continuous; all is uniform with respect to s ∈ [0, 1].

Proof. We use integration by parts observing once again that

(yj − xj) e
−2iσ(X−Y,X−Z) =

1

2i
∂ζj

e−2iσ(X−Y,X−Z),

(ηj − ξj) e
−2iσ(X−Y,X−Z) = −

1

2i
∂zj

e−2iσ(X−Y,X−Z),

(zj − xj) e
−2iσ(X−Y,X−Z) = −

1

2i
∂ηj

e−2iσ(X−Y,X−Z),

(ζj − ξj) e
−2iσ(X−Y,X−Z) =

1

2i
∂yj

e−2iσ(X−Y,X−Z),

so that we have the identity

e−2iσ(X−Y,X−Z) =

(
1 − i < (ξ − ζ), ∂y >

1 + 2|ξ − ζ|2

)N2
(

1 + i < (ξ − η), ∂z >

1 + 2|ξ − η|2

)N1

× (8.89)

×

(
1 + i < (x − z), ∂η >

1 + 2|x− z|2

)M2
(

1 − i < (x − y), ∂ζ >

1 + 2|x− y|2

)M1

e−2iσ(X−Y,X−Z)

for any exponents N1, N2, M1, M2. Then we start by considering φ and ψ as test functions and we integrate by
parts. Due to our hypothesis we easily obtain the estimation

|Lσ(θ;φ, ψ; s)(X)| ≤

≤ C

(∫

Ξ

dY < ξ − η >−N1< ξ + s(η − ξ) >m< x− y >r1(N1,N2)−M1

)
×

×

(∫

Ξ

dZ < ξ − ζ >−N2< ζ >p< x− z >r2(N1,N2)−M2

)
≤

≤ C′ < ξ >m+p, uniformly in s ∈ [0, 1],

where we choose N1 > |m|+ n, N2 > |p|+ n, M1 > r1(N1, N2) + n and M2 > r2(N1, N2) + n, with rj(N1, N2) the
powers dominating ∂N1

z ∂N2
y θ(x, y − x, z − x). Let us compute now the ξ-derivative of Lσ(θ;φ, ψ)

(
∂ξj

Lσ(θ;φ, ψ; s)
)
(X) =

= −

∫

Ξ

dY

∫

Ξ

dZ
[
(∂ηj

+ ∂ζj
)e−2iσ(X−Y,X−Z)

]
θ(x, y − x, z − x)φs(X,Y )ψ(Z)+

+

∫

Ξ

dY

∫

Ξ

dZe−2iσ(X−Y,X−Z)θ(x, y − x, z − x)
[
(1 − s)

(
∂ξj

φ
)
s
(X,Y )

]
ψ(Z) =
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=

∫

Ξ

dY

∫

Ξ

dZe−2iσ(X−Y,X−Z)θ(x, y − x, z − x)
[
s
(
∂ξj

φ
)
s
(X,Y )

]
ψ(Z)+

+

∫

Ξ

dY

∫

Ξ

dZe−2iσ(X−Y,X−Z)θ(x, y − x, z − x)φs(X,Y )
[(
∂ζj

ψ
)
(Z)
]
+

+

∫

Ξ

dY

∫

Ξ

dZe−2iσ(X−Y,X−Z)θ(x, y − x, z − x)
[
(1 − s)

(
∂ξj

φ
)
s
(X,Y )

]
ψ(Z) =

= Lσ(θ; (∂ξj
φ), ψ; s)(X) + Lσ(θ;φ, (∂ξj

ψ); s)(X).

Considering the x-derivative we obtain in a similar way that

(
∂xj

Lσ(θ;φ, ψ; s)
)
(X) =

= Lσ(θ; (∂xj
φ), ψ; s) + Lσ(θ;φ, (∂xj

ψ); s) + Lσ(θ̃;φ, ψ; s)(X)

where θ̃(x, y − x, z − x) := ∂xj
θ(x, y − x, z − x). �

8.6 Some confinement results

In this Appendix we include some technical results inspired by [6]. In fact, as we only need some very particular
case of the results in [6], we prefered to include here some complete proofs for these simpler Lemmas.
Lemma 8.46. Suppose given the family {F(x,y)}(x,y)∈X×X

⊂ Sm0 (Ξ) for some m ∈ R, uniformly for (x, y) ∈ X ×X
and χ ∈ C∞

0 (X ) with suppχ ⊂ BR(0). For |x− y| > 2R and for any N ∈ N we have

< x− y >N τx[χ]♯F(x,y)♯τy[χ] ∈ Sm0 (Ξ)

uniformly in x and y in the given domain of X × X .

Proof. By the Theorem on composition of symbols τx[χ]♯F(x,y)♯τy[χ] is a symbol of type Sm0 (Ξ) and we have

{
τx[χ]♯F(x,y)♯τy[χ]

}
(Z) = π−2n

∫

Ξ

dZ1

∫

Ξ

dZ2 e
−2iσ(Z−Z1,Z−Z2)χ(z1 − x)

{
F(x,y)♯τy [χ]

}
(Z2) =

= π−3n

∫

X

dz1

∫

X ′

dζ2

∫

Ξ

dZ3

∫

Ξ

dZ4 e2i(z−z1,ζ−ζ2)e−2iσ(Z2−Z3,Z2−Z4)
∣∣∣
z2=z

χ(z1 − x)χ(z4 − y)F(x,y)(Z3) =

= π−2n

∫

X

dz1

∫

X ′

dζ2

∫

X

dz4

∫

X ′

dζ3 e
2i(z−z1,ζ−ζ2)e−2i(z−z4,ζ2−ζ3)χ(z1 − x)χ(z4 − y)F(x,y)(z, ζ3) =

= π−2n

∫

X

dz1

∫

X ′

dζ2

∫

X

dz4

∫

X ′

dζ3 e
2i(z1,ζ−ζ2)e−2i(z4,ζ2−ζ3)χ(z − z1 − x)χ(z − z4 − y)F(x,y)(z, ζ3) =

= π−n

∫

X

dz1

∫

X ′

dζ3 e
2i(z1,ζ−ζ3)χ(z − z1 − x)χ(z + z1 − y)F(x,y)(z, ζ3) =

= π−n

∫

X

du ei(u,ζ)χ(z − u/2 − x)χ(z + u/2 − y)F2[F(x,y)(z, ·)](−u), (8.90)

where F2 is the Fourier transform with respect to the second variable. The hypothesis F(x,y) ∈ Sm0 (Ξ) implies that
for fixed z ∈ X , F2[F(x,y)(z, ·)] is a tempered distribution having rapid decay (i.e. extending to a continuous linear
functional on C∞

pol(X )) and such that for any ϕ ∈ C∞
pol(X ) the map X ∋ z 7→< F2[F(x,y)(z, ·)], ϕ >∈ C is of class

BC∞(X ) uniformly for (x, y) ∈ X × X . If suppχ ⊂ BR(0) then the integral in (8.90) is to be taken only on the
domain B2R(y − x) and τx[χ]♯F(x,y)♯τy[χ](z, ζ) = 0 for z /∈ B2R((x+ y)/2). For any N ∈ N we have

< x−y >2N
{
τx[χ]♯F(x,y)♯τy[χ]

}
(Z) = π−n < x−y >2N

∫

X

du ei(u,ζ)χ(z−u/2−x)χ(z+u/2−y)F2[F(x,y)(z, ·)](u) =

= π−n

∫

B2R(y−x)

du ei(u,ζ)χ(z − u/2 − x)χ(z + u/2 − y)

(
< x− y >

< u >

)2N

F2[(1 − ∆)NF(x,y)(z, ·)](u) =

= π−n
{(

F [Φ̌x,y,z]
)
∗
[
(1 − ∆)NF(x,y)(z, ·)

]}
(ζ).

Thus
sup
(z,ζ)

< ζ >−m
∣∣< x− y >2N

{
τx[χ]♯F(x,y)♯τy[χ]

}
(z, ζ)

∣∣ ≤
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≤ π−n sup
(z,ζ)

< ζ >−m
∣∣{(F [Φ̌x,y,z]

)
∗
[
(1 − ∆)NF(x,y)(z, ·)

]}
(ζ)
∣∣ ≤

≤ π−nsup
z
‖ < . >|m| Φx,y,z‖1

sup
(z,ζ)

< ζ >−m
∣∣[(1 − ∆)NF(x,y)(z, ζ)

]∣∣ ≤ C

uniformly in x and y with |x− y| > 2R. In fact, here we have denoted by

Φx,y,z(u) := χ(z − x− u/2)χ(z − y + u/2)

(
< x− y >

< u >

)2N

that is of class C∞
0 (X ) and such that together with all its derivatives, they have bounded L2-norms uniformly

with respect to x, y and z. The derivatives ∂az∂
α
ζ

(
τx[χ]♯F(x,y)♯τy [χ]

)
(Z) are clearly handled by completely similar

arguments. �

Lemma 8.47. Assume that {Gx}x∈X ⊂ Sm0 (Ξ) are uniformly bounded with respect to x ∈ X for the topology of
Sm0 (Ξ) and vj (with j=1,2) are symbols of class S0

1(Ξ) with rapid decay in the X -variable. Then, by denoting

Ax := TB(x,0)[v1] ♯
B Gx ♯

B TB(x,0)[v2],

the family of symbols s−m♯
BAx indexed by x ∈ X , defines in any Schrödinger representation a family of operators

{Ax}x∈X that satisfies the hypothesis of the Proposition 5.26.

Proof. First we observe that
s−m♯

BAx = s−m♯
B TB(x,0)[v1] ♯

BGx♯
B TB(x,0)[v2] =

= TB(x,0)
[
s−m♯

Bv1♯
Bsm

]
♯B
[
s−m♯

BGx
]
♯B
[
TB(x,0)[v2]

]
,

and a similar formula is valid for Ax♯
Bs−m.

Remark that if vj (with j=1,2) is a symbol of class S0
1(Ξ) with rapid decay in the X -variable, then s−m♯

Bv1♯
Bsm

is also a symbol of class S0
1(Ξ) (Theorem on composition of symbols) and has also rapid decay in the X -variable

because:
< x >p

[
sm♯

Bw
]
(X) =

= π−2n

∫

Ξ

∫

Ξ

dY dZ
[
< x− z >p e−2iσ(X−Y,X−Z)

]
ΩB[T (x, y, z)]sm(Y )

[
< z >p w(Z)

] [ < x >p

< x− z >p< z >p

]

and we apply the usual integration by parts technique to control the growing factor < x− z >p.
So we can easily reduce the proof of the Lemma to the case m = 0. Let us compute

Ay♯
BAz = TB(y,0)[v2] ♯

BGy ♯
BTB(y,0)[v1] ♯

B TB(z,0)[v1] ♯
BGz ♯

B TB(z,0)[v2].

We have then:

sup
y∈X

∫

X

dz
∥∥Ay♯BAz

∥∥1/2

CB ≤ sup
x∈X

∥∥∥Gx♯BTB(x,0)[v2]
∥∥∥

CB
sup
y∈X

∫

X

dz
∥∥∥TB(y,0)[v1] ♯

B TB(z,0)[v1]
∥∥∥

1/2

CB
.

But, extending formula (3.23) to functions in S0
1(Ξ) with rapid decay in the X -variable,

(
TB(y,0)[v1] ♯

B TB(z,0)[v1]
)

(X) =

=

∫

Ξ

∫

Ξ

dX1 dX2 e
−2iσ(X−X1,X−X2)ΩB

(
T (x, x1, x2)

)(
Ω̃BP [y] ⋆

(
T(y,0)v1

))
(X1)

(
Ω̃BP [z] ⋆

(
T(z,0)v1

))
(X2)

so that we can write
< y − z >N

∣∣∣
(
TB(y,0)[v1] ♯

B TB(z,0)[v1]
)

(X)
∣∣∣ =

=< y − z >N
∣∣∣∣
∫

Ξ

∫

Ξ

dX1 dX2 e
−2iσ(X−X1,X−X2)ΩB

(
T (x, x1, x2)

)
< x− x1 >

−p< x− x2 >
−p ×

×

[(
1 − (i/2) < x− x2, ∂ξ1 >

< x− x2 >

)p (
Ω̃BP [y] ⋆

(
T(y,0)v1

))]
(X1)×

×

[(
1 − (i/2) < x− x1, ∂ξ2 >

< x− x1 >

)p (
Ω̃BP [z] ⋆

(
T(z,0)v1

))]
(X2)

∣∣∣∣ ≤
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≤ CN,n(B)
∑

|a|≤q

∑

|b|≤q

∫

Ξ

∫

Ξ

dX1 dX2 < ξ − ξ1 >
−q< ξ − ξ2 >

−q< x− x1 >
N+r(q)−p< x− x2 >

N+r(q)−p ×

× < y − x1 >
N ∂ax1

[(
1 − (i/2) < x− x2, ∂ξ1 >

< x− x2 >

)p (
Ω̃BP [y] ⋆

(
τ(y,0)v1

))]
(X1)×

× < z − x2 >
N ∂bx2

[(
1 − (i/2) < x− x1, ∂ξ2 >

< x− x1 >

)p (
Ω̃BP [z] ⋆

(
τ(z,0)v1

))]
(X2) ≤ CN,n(B)

�

Lemma 8.48. Assume that {Gx}x∈X ⊂ Sm0 (Ξ) are uniformly bounded with respect to x ∈ X for the topology of
Sm0 (Ξ) and v is a symbol of class S0

1(Ξ) with rapid decay in the X -variable. Then, by denoting

Ax := TB(x,0)[v] ♯B Gx,

the family of symbols s−m♯
BAx indexed by x ∈ X , defines in any Schrödinger representation a family of operators

{Ax}x∈X that satisfies the hypothesis of the Proposition 5.26.

Proof. As remarked at the begining of the proof of the previous Lemma 8.47 it is enough to consider the case
m = 0. Evidently the product Ay♯

BAz is treated identically as in the proof of Lemma 8.47. So let us consider the
opposite situation Ay♯

BAz for m = 0:

sup
y∈X

∫

X

dz
∥∥Ay♯BAz

∥∥1/2

CB = sup
y∈X

∫

X

dz
∥∥∥TB(y,0)[v]♯BGy♯

BGz♯
BTB(z,0)[v]

∥∥∥
1/2

CB
.

Let us choose now ϕ ∈ C∞
0 (X ) such that

∫
X
ϕ2(x) dx = 1 and thus, using Lemma 8.46 and our L2-continuity result

in [12]

TB(y,0)[v]♯BGy♯
BGz♯

BTB(z,0)[v] =

∫

X

dxTB(y,0)[v]♯BGy♯
Bϕx♯

Bϕx♯
BGz♯

BTB(z,0)[v],

sup
y∈X

∫

X

dz
∥∥Ay♯BAz

∥∥1/2

CB ≤ sup
y∈X

∫

X

dz

∫

X

dx
∥∥∥TB(y,0)[v]♯BGy♯

BTB(x,0)[ϕ]
∥∥∥

1/2

CB

∥∥∥TB(x,0)[ϕ]♯BGz♯
BTB(z,0)[v]

∥∥∥
1/2

CB
.

But

TB(y,0)[v]♯BGy♯
BTB(x,0)[ϕ] =

∫

X

duTB(y,0)[v]♯Bϕu♯
Bϕu♯

BGy♯
BTB(x,0)[ϕ]

so that (using the rapid decay of v)

sup
y∈X

∫

X

dz
∥∥Ay♯BAz

∥∥1/2

CB ≤ CN sup
y∈X

∫

X

dz

∫

X

dx

∫

X

du < y − u >−N< x− u >−N< x− z >−N

(where for any N ∈ N there exists a finite positive constant CN such that the inequality is true). �
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