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Abstract

The gauge covariant magnetic Weyl calculus has been introduced and studied in previous works. We prove
criteria in terms of commutators for operators to be magnetic pseudodifferential operators of suitable symbol
classes. The approach is completely intrinsic; neither the statements nor the proofs depend on a choice of a
vector potential. We apply this criteria to inversion problems, functional calculus, affiliation results and to the
study of the evolution group generated by a magnetic pseudodifferential operator.

1 Introduction

This paper is devoted to the study of some commutator techniques in the frame of the twisted pseudodifferential
calculus associated to Quantum Hamilonian sytems in a bounded, smooth magnetic field. In order to take advantage
of the gauge invariance we formulate our statements about commutators in an algebraic frame using the twisted
Moyal algebra (Section 2). In Section 3 we study the magnetic translations and their generators in order to
formulate our main result, an analogue of Beals’ Criterion [2], in an algebraic setting. This theorem is proved in
Section 4 for the case of symbols of type S§(Z) ). In the 4-th Section we extend our main Theorem to symbols
of a general class S7"(Z) ([23) and also prove a Bony type Criterion [3]. We apply these criteria in Section 5 for
inverses and fractional powers of some twisted pseudodifferential operators and to the functional calculus they
generate. In a last chapter we use the idea of Bony to define Fourier Integral Operators and introduce a class
of Twisted Fourier Integral Operators. We prove that for a large class of first order elliptic symbols, the unitary
groups that they generate (in any Hilbert representation) are such operators.

1.1 Beals criterion in a classical setting

For a linear operator T acting in L?(IR™) or in some other related function space, it is often useful to know if it is a
pseudodifferential operator with the symbol in a certain class. A possible answer ([2], [3], [L0]) can be given in terms
of commutators: very roughly, a necessary and sufficient condition would be that the successive commutators of T
with an infinite family of specified simple operators has a specified behavior. Very often this involves boundedeness
of the commutators seen as operators between some Sobolev spaces. We indicate a particular case, relevant for our
purposes.

The Weyl calculus is a systematic procedure to associate to suitable functions f (classical observables) on R?"
(the phase space), operators Op(f) acting on functions u : R" — C. Formally this is given by

Op(l @) = )" [y [ dyeoti <oy} p (S5 o) (1)

This formula has various interpretations for various elements f and w. Frequently it is assumed that f belongs to
one of Hérmander’s symbol classes 57" (R") and (L)) is regarded as an oscillatory integral. Then the operators
Op(f) have nice multiplication properties, they act continuously in the Schwartz space S(R™) and, in the case
m =0,p=J = 0, they define bounded operators in the Hilbert space H := L?(R").

In Quantum Mechanics H is considered to be the state space of a quantum particle moving in R"; the basic
observables of position and momenta are, respectively, the operators @; of multiplication by the coordinate z;
and the operators D; := —i0,,, j = 1,...,n. The correspondence f — Op(f) = f(Q, D), often called "a
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quantization”, is interpreted as a functional calculus for the family of unbounded self-adjoint non-commuting
operators (Q; D) = (Q1,...,Q@Qn; D1,...,Dp).

Independent of any interpretation, the operators Q and D are involved in Beals’ characterization of those
operators that are pseudodifferential (here in the Weyl sense) with symbols in the classes S)5(R"). We describe
only the result for S§,(R?"). Let us denote by adq,, adp,, the commutators with Q; and Dj, j = 1,...,n; in a
general notation, adg[T] := [S,T] = ST — T'S, for convenient operators S, T acting in H.

Then the operator T is of the form Op(f) for some f € SO o(R*™) if and only if for all multi-indices (a1, ..., an)
and (a1,...,qy,) in N™ the commutators

adyy, ... adg adyy) ... a0y [T (1.2)

define bounded operators in H.

Aside the obvious direct interest of having criteria for an operator to be pseudodifferential in purely hilbertian
terms, such a result is also very handy for deciding under which conditions inverses or functions of Weyl operators
are still of the same type.

1.2 Magnetic pseudodifferential operators

The main goal of the present article is to prove analogous results for a generalization of the Weyl calculus adapted
to the situation in which a variable magnetic field is also present. We recall very briefly some facts concerning the
magnetic pseudodifferential calculus that we have developed in [19] and [I2]. Other references are [18], [14], [15],
[20] and [21].

First some notations. We denote R™ by X', with elements x,y, z. X’ will be the dual of X, with elements £, 7, (.
We also denote by < -, > the duality form < &, 2 >= £(z) =< 2,£ >. The phase space will be Z = R?" = X ® X/,
with elements X = (2,€),Y = (y,n), Z = (2,¢). In fact these notations will be used in a rigid manner: if the
contrary is not explicitly stated, when one encounters X € =, one should think that its components in X and X”,
respectively, are called x and &; the same for Y and Z. S stands for the Schwartz space, S’ for its dual, formed
of tempered distributions, and B(R;7) is the vector space of all linear continuous operators acting between the
locally convex spaces R and 7. For any real euclidean space ) we consider on S()) the family of norms indexed
by M € N (defining its localy convex Topology):

lllar == sup > [Y*(d°)(V)].

la|+|b|<M

Suppose given a magnetic field B, i.e. a closed 2-form on X with components of class C*°(X). Since dB = 0, the
magnetic field can be written as the differential B = dA of a 1-form A on X’ with components of class C°°(X), called
vector potential. In such a situation, aside the position operators @1, ..., Q,, one works with the magnetic momenta
Hf =D1—Aq,... ,Hf := D, — A,,. By analogy with the Weyl calculus, one would like to construct a quantization
assigning to phase-space functions f operators Op”(f) which admit the interpretation Op”(f) = f(Q;II4), within
a functional calculus. The commutation relations satisfied by the 2n operators (Q;II4) are more involved that
those for B = 0 (especially when B is not a polynomial), so a new pseudodifferential calculus is required. The
solution Op™(f) = Op(f*) was offered in the literature, with f4(x, &) := f(x,& — A(x)). It fails, because it is not
gauge covariant: two vector potentials A, A’ which differ by an exact 1-form A’ = A+ dp define the same magnetic
field, but in general there is no reasonable connection between the operators Op(f4) and Op(f4").

The solution is to introduce in () an extra phase factor exp {—il'*([z,y])}, where T'*([z,y]) = f[w,u] Ais
the circulation of the 1-form A through the segment [z,y] := {tz + (1 —t)y | t € [0,1]}. So, for any test function
f € S(E), we define the following operator, which is not equivalent in any sense with Op(f4):

[0 (10u] @) = ) [y [ anexpli <o —pon >} e (=irt el 1 (T5Ln) w0

A thorough justification of this formula, properties and applications can be found in the references cited above.
We note that gauge covariance is recovered: if dA = dA’, then Op”(f) and DpA/( f) are unitarily equivalent.
Although for some developments this is not necessary, let us assume that the components A; of the vector
potential are in C55,(X), the space of all C> functions on X' with each derivative dominated by an (arbitrary)
polynomial. This can always be achieved if the components Bjj, are in ngl()(), Vi, k=1,...,n. We have proved

in [19] that the application Op? is an isomorphism

Op? 1 S(B) — B(S'(X); S(X)), (1.4)



and may be extended to an isomorphism
Op? 1 §'(2) — B(S(X); S'(X)). (1.5)

Thus there exists a vector subspace MB(Z) of §'(Z) sent bijectively by Op” onto B(S (X)) 1= B(S(X); S(X)).
The fact that it only depends on the magnetic field is an easy consequence of gauge covariance. In [12] and [19] it

—

is shown that 95 (Z) contains all Hsrmander’s classes of symbols
7s(E) = {f € C2(2) | ¥(a,0) €N" X N", ICuq > 0, (9202 F)(@,€)] < Cun < & > rloHilal}

form € R, p> 0,6 <1, as well as the space C3%) (£) composed of those f € C5 () for which all the derivatives

are dominated by a fized polynomial (depending on f).

1.3 The magnetic Beals criterion; the represented version of a particular case

Now we come to the Hilbert space H := L?(X). For the hilbertian framework we shall need a stronger as-
sumption on the magnetic field, so we recall a function space that will be used very often subsequently. For
any m-dimensional euclidean space ) (the cases Y = X and Y = = will be relevant) we set BC>®()) = {f €
C>(Y) | 9*f is bounded for any o € N™}. A particular case of a result of [12] says that Op” [S00(2)] c B(R) if
Bji € BC™(X).

The next statement is an extension of the result of Beals described in the first subsection, which can be recovered
for B = 0. It is one of our main results.

Theorem 1.1. Assume that the components of the magnetic field B belong to BC*(X). Choose a vector potential
A defining B (i.e. B = dA) which belongs to C35. A linear continuous operator T' : S(X) — S'(X) is a magnetic
pseudodifferential operator with symbol of class 5’870(5) if and only if the commutators

adgy, ... ady! aoﬁli4 coadn T

are bounded operators on H for all multi-indices (a,a) = (a1,...,an,Q1,...,0p).

This Theorem will be recast in a more tractable setting in the next section. It will be proved in Section 4, after
some preparations involving magnetic commutators and phase-space translations, object of Section 3. More general
results, including a treatment of the class S)'(Z), will be given in Sections 6 and 7. The final two sections will
contain applications, mainly investigating the functional calculus applied to a magnetic pseudodifferential operator.

2 The main results in an intrinsic setting

2.1 The need of an intrinsic approach

The goal of this Section is to rephrase our problem in a more elegant and tractable intrinsic language.

Many of the drawbacks of the mathematical theory of systems placed in magnetic fields come from the following
fact: Although the single physically relevant object is the magnetic field, in most cases the objects one studies
involve the choice of a vector potential. Not only is this vector potential highly non-unique, but it is also worse
behaved than the magnetic field.

On one hand, obtaining gauge-invariant assertions is a difficult matter, both concerning the assumptions and the
conclusions. Most often, the underlying hypothesis says that a certain result holds for magnetic fields admitting a
vector potential with some specified properties, although one suspects that some simple condition imposed directly
on B would suffice. And it happens sometimes that the output is not obviously a gauge-covariant assertion.

On the other hand, rather nice magnetic fields admit as a best choice a vector potential which is a more
"singular” function than B itself. Within the class of bounded magnetic fields, for instance, a large subclass only
corresponds to unbounded vector potentials.

While trying to prove Theorem [[1] we had to overcome these obstacles. The way out is actually built in
the formalism itself. Beyond the magnetic pseudodifferential operators, one also disposes of algebraic structures,
defined only in terms of B. The main notion is a symbol composition #? which extends the usual Weyl-Moyal

multiplication law, for which DpA(f)DpA(g) = DpA(f 8 g). Thus (DpA)dA is seen as a family of equivalent

representations of some algebra, the choice of this algebra being at our disposition and depending on the type of
symbols (classical observables) one would like to treat. Some choices are well-suited to various practical problems
(spectral analysis, as in [22], quantization, as in [20]). This will also be the case for our commutator characterization
of magnetic pseudodifferential operators, as shown below.



We note that all these are consistent with the C*-algebraic approach to quantization, cf. [I6] and references
therein. Presentations of the general algebraic formalism for systems in magnetic fields, including C*-algebras
generated by twisted dynamical systems, can be found in [21] and [20].

2.2 The magnetic composition law

First we note that = is a symplectic space with the canonical symplectic form

o(X,Y)=o0[(y,m), (2, Q)] =<n,2> = < y>.

As said before, the magnetic field is described by a closed 2-form B of class BC*°(X). It has a natural raising to
a closed 2-form on = and it is easy to verify that the sum

(JB)Z(X, Y):=0(X,Y)+ B(2)(z,y)

defines a symplectic form on Z.
For any k-form C in X, given a compact k-manifold X C X, we set

O[] = /’Cc (2.6)

" QY[K] := exp {—i/}CC} =exp{—iI“[K]}, (2.7)

involving the invariant integral of the k-form along the compact k-manifold.
On the Schwartz space of test functions S(Z) we introduce the magnetic composition:

(F£% 9)(X) = 72" / / 4Y dZ & 20 XY X-DQBT (2 y )| f(V)g(2), (2.8)

where T (z,y, z) is the triangle having the vertices: © —y + z, y — 2 + 2, 2 —  + y. Under the assumption that

B, € CSEI(X), it is easy to show that S(Z) is a *-algebra, the involution being the usual complex conjugation.

The point in introducing #2 is that one has Op”(f)Op?(g) = Op?(f 18 g) for any f,g € S(2).
Once we have verified (see [19]) that for any three functions f, g, h from S(=Z) one has the following equality of
the two L?(Z)-scalar products:

(f.98"%h) = (f£%3.h),

we can extend the magnetic composition #Z by duality and define the magnetic Moyal *—algebra as being the
unital associative algebra 9B (Z) of tempered distributions F € §'(Z) satisfying g#Z F € S(Z) and F {8 g € S(2)
for any test function g € S(Z). Actually it is the same space defined in the previous section, and if A; € C55)
then Op? : MP (E) — B(S(X)) is an isomorphism of involutive algebras. The magnetic composition extends to
composition laws 47 : S'(Z) x MB(Z) — &'(Z) and £8 : MB(Z) x S'(E) — &'(Z). We shall denote by f~ the
inverse of f € MB(Z) when it exists.

An important matter is the behavior of the Weyl calculus with respect to Hérmander’s symbol classes S;’:LJ(E).
In the present article we are only interested in the case § = 0, for which we use the simplified notation

Syt =Sy = {f € C(E) | [ (9508 f) (2,€)] < Caa < & >TP10N, (2.9)
By Theorem 2.2 in [12], if B € BC*, m1, ma € R and p € (0, 1], then
m1 =\ uB gma (= mitmez (=
Sy (E) 87 S (E) C S tm2(z), (2.10)

Actually the case p = 0 is a consequence of our Proposition in Appendix 845 but the asymptotic development
contained in [12], Theorem 2.2 will no longer hold for this case. In dealing with symbols we shall very often make
use without explicitly marking it, of the regularization procedure described in Appendix Bl

-1
Let us also define €8 (Z) := (DpA) [B(H)]. It is obviously a vector subspace of §’'(Z) and a *-algebra for the

magnetic composition. We transport the norm of B(H): || f [les:=| Op™(f) |B(#) will be a C*-norm on €5 (Z).

Gauge covariance shows that the C*-algebra ¢ (Z) is independent of the vector potential A. For a nicer point of
view on the norm || - || g, involving twisted crossed products, we refer to [2I]. As already noticed above, by the

—

magnetic version of the Calderon-Vaillancourt theorem proved in [12], one has S3(Z) C ¢B(Z).



2.3 Statement of the result

—_
—

Let us consider real linear functions belonging to 95 (Z) of the form [x(Y) := o(X,Y), for some X € Z. By
quantization, they produce the basic operators of our theory, as explained below.

Let us denote by (e1, ..., en; €1, ..., €,) the canonical base of = = R?™. We choose a vector potential A associated
to the magnetic field B (i.e. such that B = dA), and consider the representation Op” : €B(E) — B[L2(X)]
associated to it. We observe that we can then associate to our linear functions [;, the operators of multiplication
with the variables, as operators in B(S(X); S’ (X))

Op(l;,) = Q;,  such that (Q;f)(2) =g, f(x)

and to the elements [, the magnetic momentum operators

DpA(lej) = Hf, such that (H;‘u)(:ﬂ) = —i(0y,u)(x) — Aj(x)u(z).

We introduce now a family of derivations, which play at an intrinsic level the role of basic commutators.

Definition 2.2. For any X € = we set
B [F] = xtP F-FtBlx, VFeS'(5), VXcE (2.11)
Obviously we have on S(X)
o1y (DpA(F)) = Op* (E(F)), VF e mBE(=).

One of the main results in this paper, the intrinsic version of Theorem [[.1] is

Theorem 2.3. If B is of class BC™(X), then f € SQ(Z) if and only if for all N € N and all Uy, ..., Uy € = with
Uil =+ = [Un| =1 A
avy, ... ady, [f] € €7 (F).

The statement above can be understood in terms of C'°°-vectors and this reinterpretation seems to us interesting
even for the case B = 0. To this end we shall use an action of the linear space = on the algebra MPB(Z), defined
by conjugation with exponentials of linear functions. The family of exponentials

ex = exp{—i[x}, Xe= (212)

—

could be called the algebraic Weyl system. The functions ex are unitary elements in 97 (Z) for any X € =; the
corresponding operators W4 (X) := Op”(ex) were studied and used in [I9] as a sort of building blocks for the
magnetic Weyl calculus. Then we define a family of automorphisms, indexed by =, of the magnetic Moyal algebra:

E35 X — TX € Aut [MP(F)],

TLEIF) = e x B FiPex, VFecMB(2). (2.13)

Each % also acts on other spaces, as S(Z),S'(Z), L2(Z) or €¢5(E). In particular, since Op”(e+x) are bounded
(unitary) operators, % is an automorphism of the C*-algebra ¢Z(Z). Generically, we call (Tf}) xez the family of
magnetic phase-space translations. For B = 0 this reduces to the usual phase-space translations (Tx)xez.

Definition 2.4. For a magnetic field B with components of class BC*(X), we define the following linear space:
C> (TP eP) ={feeP(E) | X —» TR[fl € €P(E) is C* in X =0}
and endow it with the following family of seminorms:
B B B B
{1150 | oal == Unl =1, NeN}, IS, Soei=l adf, . adf [f les . (214)

At a more elementary level, let us observe that the symbol space S§(Z) is nothing but BC*(Z) = C*°(%; BC(E)).
Here we considered automorphisms defined by translations

[Ty(NI(X):=f(X-Y), X, Y€E

on the C*-algebra
BC(E) :=={f:2 — C| f is bounded and continuous},



endowed with the sup-norm | - || . BC®(E) is also a Fréchet space with the family of seminorms

(IG5 @) e N | £ USRS = 02021 e, (2.15)

(a,0)

obviously equivalent with the family

,BC
{11550 | 2l =+ = Ul =1, NeN}, || f]

.....

T,BC
Ul,...,UN::H 8U1 . 'aUNf Hoo . (216)

At first sight the two spaces BC®°(Z) and C*° (T8, €P) seem to be very different. They involve different families
of derivations acting in different C*-algebras (BC(Z) and ¢P(Z) are quite different even when B = 0). But we
shall prove in Section 4 the following result, that implies Theorem 23] which in turn implies Theorem [T}

Theorem 2.5. If B is a magnetic field with components of class BC*(X), then the spaces C*°(%; BC) and
C>=(%B,€B) coincide and have isomorphic Fréchet structures.

3 Magnetic phase-space translations and commutators

We shall introduce notations that will allow us to put into evidence some algebraic and topologic structures
appearing in a rather natural way when dealing with the magnetic translations of symbols.
Notations

e For a distribution F' € §'(E) and a test function g € S(2), we define the following commutative mized product
(this is a mixture between pointwise multiplication in the first variable and convolution in the second):

(Fxg)(z,§) = / dnF(z,& —n)g(x,n) with F xg € §'(2). (3.17)

’

e For any p € [1, 0o] we shall consider the complex linear space BC'(X; LP(X”)) of bounded continuous functions
f: X — LP(X') endowed with the norm

1/p
1flloop = sup { / d5|f<x,§>|p} . (3.18)
rzeX X/

e For m € R we define the weight function ro,,(v) :=< v >™= (1+ |’U|2)m/2 and the following functions on
phase space: (&) i= (0 © 1)(7,€) =< @ >™ and pyu(,€) i= (1® ) (@,€) =< & >™.

e Let us define the complex linear space 2((Z) as the space of functions a € BO™®(X; L (X')) ¢ BC(X; LY(X’))
such that p, - (8%a) € BC(X; L' (X")) for any p > 0 and any multi-index v € N™ (i.e. having rapid decay in
the variable £ € X’ together with all its derivatives with respect to the z € X).

Let us point out that ||f|lcc,co = ||fllcc. Taking into account that the co-norm is a cross-norm for the usual
multiplication as well as the Hausdorff-Young inequality, we see that the above norms behave well with respect
to our mixt product x. In fact the mixt product in (BI7) also defines a bilinear abelian composition law on
L'(X'; BC(X)) and we have the following results:

Proposition 3.6.
1. The space BC(X; L'(X")) is a Banach algebra for the x-product and (=) is closed for the operation x.
2. For any p € [1,00], the x-product defines bicontinuous bilinear maps:
BC(X; LY (X)) x BC(X; LP(X")) 3 (f,F) — f » F € BC(X; LP(X")),
BC(X; LY (X)) x LP(E) 2 (f,®) — f* ® € LP(E),

with the estimations: |[f % Flloo,p < [[flloc 1l Flloc.p, respectively || f x @llp < [[flloo. 1l Pllp-
3. If f € A(Z), then for any symbol ¢ € S (=), we have f* ¢ € S (Z), the map being continuous.
4. For f € A(E) and for any M € N there exists a constant C(M,n; ) € Ry such that

1 *¢llar < CMns; Y[, Vi € S(E).

The proof is defered to an Appendix.
Since translations in the X-variable will occur very often, we use a special notation: 7, := T, o).



3.1 The magnetic phase-space translations

To study the families (Z12)) and (ZI3]), we introduce first a 2-cocycle associated to the symplectic form o and the
magnetic field B. Its cohomological and analytical importance was outlined in our previous works. The space

C(X,U(1)) :={¢: X — C| ¢ is continuous, |p(z)| =1, Vz € X}

can be seen as the group of all unitary elements of the C*-algebra BC(X).

Definition 3.7.
WwP i EXxE- WX, UQ)),

[wB(X, Y)} (2) :=exp{(i/2)0 (X, Y)}QB[T(Z, z2—y/2,z+x/2)]. (3.19)

The multiplication properties of the functions ex, X € = will be essential in the sequel. By straightforward
computations we obtain

Lemma 3.8.
ex P ey =wP(X,Y)exyy =

= {7 (w2 (W]} 8P exqy = exiv 7 {T(aqy) 2 [WP (X, V)] ]

The next step is an explicit formula for the phase-space magnetic translation 35, with U = (u, ) €
Proposition 3.9. For any 3 points q,x,y € X let us define the parallelogram

[

Plg;z,y) == {qg+sx+ty|se[-1/2,1/2],t € [-1,0]}, (3.20)

having edges parallel to the vectors x and y, respectively. We consider the distribution QP [P(x;y,u)] (see (2.4)
and ([27)) and its Fourier transform with respect to the second variable:

Qg[u](x,ﬁ) = (2m)" " /Xdye_i<y’5>QB[P(3:;y,u)]. (3.21)

o We have the following explicit formula:

n 1/2 0
QB[P(x;y,u)] = exp {—il—‘B['p(x; y,u)]} =expq —i Z yjuk/ ds/ dtBjg(x + sy +tu) p. (3.22)
Pyt -2 J=1
o ForU = (u,p) € E and f € S(E), we have
Tl = Qlul  Tulf). (3.23)

Proof. Straightforward computations give

(e—U ﬂB f)(Y) _ 7T72n‘/— dyvl dY'2 672ia(Y7Y1,Y7Y2)QB[T(y7yhy2)]eio(U,Y1)f(Y72) —

P

(by integrating upon 17 € X*, and using Fourier inversion formula for §o(y — y2 — u/2))

— T p2i<ny—u/2> / dy’ e2i<y/,77'>—2i<n',y>—2i<n—u/2,y'>QB[T(y’ y/, y — U/2)]f(y _ u/27 77/)-

Thus
TOUX) = a72" /_ dy /_ dZ e 20XV X=DOBIT (2, y, 2)] (e—v 4P f) (V)e D) =

— W—Sn/ dY/ dZ/ dyle—2i<£—n,m—z>+2i<£—C,m—y>—i<u,z>+i<(,u>X

Xe2i<n,y—u/2>—2i<77—u/2,y/>—2i<n',y—y/>QB[T(x’ v, Z)]QB[T(y, y/7 y— U/2)]f(y _ u/2, 77/) _

(we integrate with respect to n and ¢ by using the Fourier inversion formula for do(y — x + u/2) and for do(z — x —
y+u/2+y’) respectively)

=" / dy e <€y —rtu/2> QBT (2 0 — /2,22 — u — y)|QP [T (z — u/2,y/, z — u)]x
X



(changing variables from y’ to y = 2y’ — 22 + u)

_ (27r)_"/Xdye_i<5_”’y>QB[7’(x;y,u)] {/ drf’ ei<77/7y>f(x—u,’l7/)} = (@[u]*fﬂf]) (X).

*

Remark 3.10. Using Stokes Theorem for the closed 2-form B and the formula T, (g * h) = T (4,09 * T(u,u)hs
we get by a straightforward computation the following formula for composing magnetic translations:

(50 0 %9) [f] = 20 * Toav [£);

where
»B (x,6) = (2#)7"/ dy e~ <8v>QPB {<x—|— g,x+g—u,x+g—u—v> X
' e 2 2 2
x QB [<x—%,x—%—u,x—g—u—v>

and < a,b,c > C X is the triangle defined by the vertices a,b,c. Although U +— 55 is not a representation of =
by automorphisms, it is however clear that

T oS =Ty, YUEE, Vs teR

3.2 The magnetic derivations

The mappings (abf}) Xem? defined in (2.I1)), will be called magnetic derivations. They are the infinitesimal objects

associated with the family of automorphisms (3?}) Xeg- Our notation stresses their interpretation as commutators,

but another natural one would be ad5 = DF = —idF. Anyhow, for B = 0 they reduce to usual derivations.

Proposition 3.11. For any X € = and tg € R, we have the equalities
i (Orerx)ymy, = 1IX 1 erox = erox 171X (3.24)

and
i 0T (F],_,, = —a0% [Thx[F]] - (3.25)

Proof. Due to the fact that w? is obviously unitary in €¥(Z), we have
WP (X, t0X)(2) = exp{(i/2)ttoo (X, X)}QP [T (2,2 — tox/2, 2 + tz/2)] =

= QP [T (2,2 — tox/2, 2 + tz/2)].

Remark that the three vertices: z — (z —tox/2) + (2 +tx/2), (z —tox/2) — (z+tx/2) + 2, (2 +tx/2) — 2+ (2 — toz/2)
of the above triangle are in fact equal to z + (t + to)x/2, z — (t + t9)z/2, z + (t — to)x/2 and thus are colinear. It
follows that the flux of B through the given triangle is 0 and we get

WXt X)(2) = 1

and by Lemma 3.8
t [eegax — etox] =t [wP (X, t0X) Terx 87 e x — erox] =

= t_l [etx — 1] ﬁB o X = t_l [exp{—ith} — 1] ﬁB [479.¢ Q (—’L)ZX ﬁB €t X -

Similarly
t [e(tt0)x — tox] P (—i)es,x 1P 1X.

For the second equality we observe that
t{Sh ) x[F) - TEXIFI} =

=t {e_(t140)x 45 F 5 C(t+to)X — €—toX 4% F P eox ) =

=t {[e—rto)x — e—tox] 17 F 17 eprio)x} + 7 {eciox §F F 1P [eiieo)x — eox]}-



It is extremely useful to express the magnetic derivations in terms of usual ones.

Proposition 3.12. For U = (u,pu) € E and f € S(Z) we have

ap[f] = (i) lim e (TG[f] = f) = u- (Do +6%)f + - Def, (3.26)

e—0

where

07 f =Y cixDef. with cfi(w,):= (2@*”/}( dy e " <SYTBE (x,y),
k=1
and bl (z,y) = fiﬁz ds Bji(z + sy) are functions belonging to BC®(X x X).

Proof. The first equality is a particular case of (3:20]).
The last equality in ([B.20]) is easily obtained from ([B.23]) by differentiation. For j € {1,...,n} we have

so that, taking into account the bilinearity of the mixed product x, we get

6 00 = (= { (G 080)| o+ s}

9
Auj |y

i, f 108 = @B [f] = (—i) o

)

U=0

gu {2l # 011}

But
o —~ . 0
Y 0B X) = (27)" —i<y,£> —QB . —
(5e0)| 0=en [ aee (Forpea)|
1/2
—i(2ﬂ')_"/ dye” l<y’£>2yk/ ds Bij(z + sy) =
= 2

n b ) 1/2
Z — - / dy e~ 1<v:6> / dsBy;(z + sy) |,
O&k X —1/2

and using the properties of the usual convolution we get
n ) 1/2 b
_ —’L) Z (27_‘_)777. / dy efl<yﬁf>/ dSBkJ(ZZ? —+ Sy) * (—f) .
pt x —1/2 23"
]

Let us notice that D¢ (c* f) = c¢* De, f and Dy, (¢ f) = Dg,c* f 4+ ¢+ Dy, f. Using then the associativity
and commutativity properties of x, it is easy to verify that the different components of the vectorial operator 6%
commute with each other and we have

0711 =67 (F) =D > et % cfi * [De, De,, £, (3.27)
=1 m=1
Moreover we obtain

[De,.67] =0, [Dy,,07] =577, (3.28)

and thus . .

D;B
[aba#),ab(v V)] Z UKV — U; V)0 Z (u A V)0, 7. (3.29)
7,k=1 7,k=1



3.3 Estimations for the magnetic derivatives

Proposition 3.13. For B with components of class BC™(X) and for any j € {1,...,n} we have
P f = > ch o xOgf  VfeSE).
1<]a|<2([n/2]+1)+1

with the coefficients cfa belonging to the space UA(Z).

Proof. If we denote by F» the Fourier transform in the second variable (the ¢-variable), then we can write for any
natural numbers m and M

6P f = Z B ox 0, f = ng B %0, f = ng (1@ w(_on))bit] *x (1® < D >0, f =

k=1

I
M:

(1®W(_om))F2 [(1® < D >*™)(1 ® w0_opn))bli] * (10 < D >*M)o, f =

=
Il
—

S

ZP( 2y F2 [(1®0 < D >*)(1 @ w(_an))bir] * Z C;gQM)a?a&kf =
=1 0<|gl<2M

= Y pean B [0 <D @ m )b « [2£1].

1<|B|<2M+1

with I;% € BC™(X x X). Thus we have the following expression for the coefficient functions:
Cia = p(72m)-7:2 [(1@ <D >2m)(1 ® YU(,QM))BJ»BB] .
Now we can chose m such that w_s, € L1(X); take 2m > n. By also choosing 2M > n we get that

e lloe.t < lo-2mllza sup [ 72 [(10 < D >27)(1 @ ro(_aa b5 (X)| <
XeE
< Iocamllisup [ ][0 <D >*)(1 8 o) P) (e 0)] <

< Clwgm)llei 0 aanllor | max — sup  [[9)b55](w,y)|| -
1B1<2m (3 yyexxx

For the second conclusion we repeat the proof of Proposition above, taking now 2m > n + p. |

Remark 3.14. Among others, the results above imply that (together with Prop.3.6, pct.3)
adg [S)HE)] € S)HE), YU E€E meR, pel0,1]. (3.30)
Remark 3.15. Using the explicit form of the functions bjBk appearing in Proposition [3.12], one easily proves that
OB, = p(_am) P {(1@ <D >¥)(1 @ w(_anp) (axll}fﬁ)} -
= pam P2 [(190 < D >2)(1 @ w0087 ] = 1P

Corollary 3.16. For B with components of class BC®(X) and any j € {1,...,n} we have

o 107 [flllos < Coc 320 <apnya)13 108 fllos, VS € S(2)

o ad sends SJ'(E) in S7(Z) for any m € R and any p € [0,1].

e 68, a0f : BC*(E) — BC™(E) are continuous operators.

o g € S(E) implies 5JB [g] € S(B), the map 6;-9 being continuous for the topology of S(Z).

Taking into account this result, the explicit formula (3.28) relying usual derivatives to the magnetic ones and
the commutation relations (328) and (3:29), we get easily

Corollary 3.17. On BC*®(Z) = SJ(E) = C*(%; BC(E)), the families of seminorms {H
and

%, BC| (a,) € NQ"}

B .
{18 101 = = un =1}, with | F 5P =l adf, . adf, [Fl e (331)

are equivalent.
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4 Proof of Theorem

We shall consider a fixed an euclidean basis {ey, ..., e, } of our configuration space X and the dual basis {e1,...,¢,}
in X’. We shall constantly use the multi-index type notations

(a0g)" = (a07)™ 0+ 0 (a0 )™

(007)" = (a07)™ 0+ 0 (a07)™

4.1 Proof of the embedding BCO®(Z) C C~(T5; ¢P)
Recalling that BC*®(Z) = SJ(Z), this inclusion will be a consequence of the following Calderon-Vaillancourt type

theorem, that we proved in [12]:
Theorem 4.18. Assume that the magnetic field B has components of class BC*>®. Let G € Sgp(E) for some
p€0,1). Then G € €B(2) (i.e. Op(G) € B(L2(X))) for B = dA) and we have the inequality

|Glles < ¢(n) sup  sup sup < & >rllal=lah |0208 G(X)
la|<p(n) |a|<p(n) X€E

} , (4.32)

where c(n),p(n) are constants depending only on n, that can be determined explicitly.

Let F be an element of BC™(Z). By Corollary B8, G := adfj, ... adf, [F] also belongs to BC™(Z), so we can
use Theorem .18 with p = 0 and get

| adf, ... a0 [F] les<c(n) sup  sup | 0%0¢avf, ... adp [F] [l -
la|<p(n) |a|<p(n)

Then applying Corollary 317 gives the result.

4.2 Proof of the embedding C*>(T7;¢B) c BC*(2)

The basic step is

Theorem 4.19. There exists N € N, dependig only on the dimension n and on the magnetic field B, such that any
distribution f € S'(Z) satisfying ||(a0Z)" (adZ)"[f]ller < 0o for all |a| + |a| < N is in fact a bounded measurable
function and there exist a constant C' < oo such that

e <C D7 l(a0d)" (@) [flllen-

lal+|al=N

Then for any F € C*(TP;¢B), the function f := aOB abg [F] can be plugged in Theorem The
Fréchet spaces embedding C>(T8; ¢B) ¢ BC°°( ) follows by applylng Corollary B.117

So we only need to prove Theorem LT For this we use a strategy inspired by [3] (Lemma 2.2); some changes
are needed to implement magnetic translations and derivatives.

Proof. 1. Since the algebraic tensor product S(X) ® S(X) is dense in S(X x X) and the inclusion S(X) — L?(X)
is continuous, taking into account the explicit formula for the kernel of a magnetic pseudodifferential operator, we
deduce that the inclusion map €¢5(Z) — &’(Z) is continuous. It follows that there exist constants C; > 0 and
N; € N such that for any f € ¢5(Z) and any ¢ € S(2)

|<f,s0>|§C|f|¢B{ max  sup | X% (0" )\}zcnfu@ el

laf+[6]<N: Xe
where a and b are multi-indices in N** and ||| - ||| v, is one of the semi-norms of S(Z).
2. If x denotes the usual convolution and f(Y) := f(=Y), we evidently have for any X € =

(f* o) (X) =< [,T-x[¢] >. (4.33)
Now we choose a function x € S(Z) such that 1ts Fourier transform yx € C‘X’(E) with x(X) =1 on a neighborhood
of the origin of Z. For any € € (0,¢9] and X € Z we set x, (V) := e 2"x((Y — X)/e), xx (V) := xx,1(Y). We
have )

OXx.. _ IE=LYA I ¢ B
1) = —ane (V) - e S (B o - X0/ = 1),

j=1

11



where the function {/1\ vanishes on a neighborhood of 0. Therefore, for any N € N we can find C§° functions
{é\a | |a] = N} satisfying ¢ (Z) = Z|a\:N(iZ)a§a(Z)- Thus for any f € ¢5(Z) and for § > 0

f*xx";:f*XX—/;JZ*(82:’6>d6:f*xx—/51€]v_1Zf*{aa(eﬂ)x,e}dez

la|=N

= fxxy _/5 Nl Z (0°f) = (), de. (4.34)

la|=N

Since }in%f * Xy, = [(X) weakly in S'(Z), if we can find a finite bound for the right hand-side member we deduce
that f belongs to L>°(E) and we obtain

1
Il < Clsllen Nl + € 3 1@ o (fmy [ 22 gy, de)
la|=N

The problem now is to replace in the last term above the usual derivatives of f with magnetic derivatives.
3. Let us first notice that

aj
of=0m0gf=| [ |aZ - > By x (a0F)? (a05)°[f].
1<j<n 1<|B1<2([n/2]+1)
By direct computations it is easy to show that
B [.B _ B By _ ;9iB 4.35
A, [ckg*g] = chg* (a0 g) —ic’s *g (4.35)
and
cep* (@02) [cf, * (a02)7g] = (cf g x ) » [(adF)H7g] . (4.36)

Thus we conclude by a simple induction procedure that for any multi-index a € N7, the derivative 9°f is a finite
sum of terms of the form rx (ad2)%(ad2)7 f with r € 2(Z) (the algebra introduced in the Notations at the begining
of the previous section), v € N™ and (a02)?(adB)" f € ¢B(2).

4. Let us choose r € 2A(Z), g € €B(Z) and ¢ € S(E); then rxg € §'(Z). The following triple integral is
absolutely convergent and

(g =0l () = [y [ an [ dcr(wCatn = Oite =6 =) =

=/Xdy//dn/x/dc r(y, & —n—Qg(y, OY(z —y.,n) =

_ /Xdy/,dn/y 4¢ 9(9, O)ralr)(y — 2,6 — 11— Ol — y,17) =

= {9 [(7=a[r) " x 9] } (,€),
where (7_,[r])"" (y,1) := (7_2[r]) (—y,n) = r(z — y,n). Thus, using the first two points of the proof we get

)S{lé%l[(?"*g) #y] (X)| = sup_[{g [(r—a[r])"* x¥]} (2,)| <

(z,8)e=

<sup sup [{g* [(Talr]) " % 9]} (2,6)] < sup Cliglles |||my[r]"* * ¢llln, <
YEX (2,6)€EE yeEX

SO nr)lglles (190l

using point 4 of Proposition in the last step.

5. By writing the last term of the right hand side of (@34 as a linear combination of terms of the form (rxg)
with g replaced by a suitable sequence of magnetic derivatives applied to f, ¥ = (Ga)x’é and taking N large, we
finish the proof of our Theorem. |
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5 Commutator Criteria for Magnetic Pseudodifferential Operators

5.1 The class of symbols S;*(E)

For A > 0 and m > 0 we define
P (X) 1= pm(X) + A =< & > +A, (5.37)

that is clearly an elliptic element of ST*(Z) C SF*(Z) C MB(Z). In a previous paper [22] we have shown that for
A > 0 large enough, p,,  is invertible in 915 (Z) with a quasi-explicit inverse

m)\ = pmAﬂB Zt)\ﬁ M — - p ﬂB (1 _tA)77 (538)

keN

where p;:/\ (2,8) = (< € >™ +))7! is the usual point-wise inverse and
o =pmat’p, 1€ S50(E) C SHE) c e?(E)

is a reminder that can be controlled as in [22]. The series converges in €2 (Z).
For any m > 0 we fix A > 0 such that p,, ) is invertible. We shall use the weight function

. :_{ Pm.a, for m >0 (5.39)

pfml)\, for m <0,

such that s, = s_,,. For m = 0 we set simply so := 1.

Theorem 5.20. A distribution F € §'(Z) is a symbol of type S§*(Z) if and only if for any N € N and any family
of N wvectors {X1,...,Xn} CE the following is true:

s, 47 (a0}, ... a0} [F]) €¢P(E) VmEeR.

The families of semi-norms ||s,,040¢ F o, with (a,a) € N**, and ||s,, " (ad, - ... a0% [F]) lles, indexed by
N € N and N-tuples of vectors in =E, define equivalent topologies on SJ*(E).

Proof. Step 1. The Theorem is true for m = 0 (it is just our Theorem 23)).
Step 2. For m < 0, 8, = Sj;y| = Pm|.x € simlz@) c siml=). 1t F e $5°(2), by Corollary BI6

a0k ... [F]€SP(E), VXi,...,Xn€E, VneN.

By @I0) s,, 17 (ad¥, ... ad¥ [F]) € S)(Z) and thus it belongs to €7 (), as we already know from Theorem EI8
Thus the direct implication in the statement of the Theorem [5.20]is proved for m < 0.
Step 3. For m < 0 we shall prove that for any F € §'(2):

VN €N, V{X1,...,Xn} CE, 5,47 (ad¥, -... ad§ [F]) € €B(E) = F e SJ(2). (5.40)
Since s, = Pl € ¢B(2), for any Xi,..., Xy € E we have
avk, ...ad% [F]=smt” (s, 87 a0k, ... a0k [F]) € €5(2),

and using Theorem 2.3 we conclude that F' € S§(Z).
Step 4. For m < 0 we shall prove that for any F € §'(2):

VN €N, V{X1,...,Xn} CE, 5,87 (ad¥, -... ad% [F]) € €B(E) =5, 47 F € S)(2). (5.41)
Due to the hypothesis of (5.41)) with N = 0, s,,, ¥ F belongs to €¢Z(Z) and we compute
ak ...ad¥, [P F] = (5.42)

M
=30 S (0, a0k, [pa]) et 0 (w0 a0k, (1),

E=0J1,-,Jk
where j1 < -+ < g, 1 <o <jgy_p and {j1, .. 0t UG - ik = {1, M}
The factors s, #7 (aOB‘/ c.adf [F]) belong to €8 (=), by the hypothesis in (E.4T]).
71

IM—k
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Using (5.38) for m < 0 and the fact that ad¥ preserves the symbol space S§*(Z), we can write
(aof}h ...abf}jk [P\m|,>\]) 1 5,, = (ab§j1 ...aof}jk [p‘mw\}) 45 pl_ni‘)/\ 81—\ € (5.43)

e SM(@)17 5, (@) 17 B (®) ¢ ¢B(3).

We conclude by induction on M that abf}l . abf}M [5;1 ik F] € ¢B(2) for any X1,..., Xy, thus by Theorem 2.3
we get 5. #8 F € SO(2).
Step 5. For m < 0 we shall prove that for any F € §'(2)

VN €N, V{X1,...,Xn} CE, 5,87 (ad¥, -... ad¥ [F]) € €P(E) = F e S§(2). (5.44)

Using the results in [22] (see formula (2.6) in the proof of Theorem 1.8 in section 2.1 of the paper) for the symbol
S = Plm|x € S‘lml(E), there exists u € S§(E) with r < 0 such that for any M € N

M
B _ B
[Zu(ﬁ k)] £ A B Py a = 1 —ulE (D), (5.45)
k=0

Thus we can write

F =

M
B _ B
> ut k)] 17 P a b [P t? F] 4+ ul OB B,
k=0

Now F and pj,\#? F belong to S(Z) by Step 3 and Step 4, [EogkgM u(#” )| belongs to S(Z) due to the

—

properties of u and pfﬂ%w € S§*(2). Thus if we choose M > m/r and use the Theorem of magnetic composition of

symbols from [12], we get the desired conclusion F € Si*(E).

Thus we have proved the Theorem for m < 0.

Step 6. We show that for any p > 0 the distribution s, € ¢B(Z) is a symbol of type S, ¥(Z). In fact we apply
the result of the Theorem with m = —p <0 for F' =5, . To the obvious relation

spiPs =1

one applies the operator a0§1 S ab§ v using the Leibnitz rule for derivations to obtain

Z Z (abf}h ...aof}jk [5,,]) i (abf}ji "'“ogm

0<KSN ji,eensdin ok

[5;]) =0, (5.46)

where j1 < -+ < g, J1 < <jgn_pand {j1,. .., gkt UL - ikt = {1, ..., N}. We can rewrite it as

N-1
sp P (0% . a0k, [5,]) = — Z Z aof}ji ...abf}jﬁvik [5p]> 4B (a0§j1 ...aof}jk [55]) : (5.47)
k=0 j1,.-,Jk
or N1
R, . adf [s, ] =5, 87 >0 N (abf}ji ok, [s,,]) i (ab§j1 R [s;]). (5.48)
k=0 j1,---,Jk

Taking m = —p < 0 we obtain

s i (a0%, . a0k, [5,]) =52, 47 (ad¥, ... a0%, [5,]) = (5.49)

N-1
=5, 175, 17 > Y (abf}ji ...aof}mik [5,,]) i (aaf}jl LAk [55}) =

k=0 j1,..-,Jk



Thus starting with the known relations s, € ¢#(Z) and (1 —rt)~ € €¢#(2) (proved in [22]) and

(aaf}j, adf s ]) s e cP(E)
1 IN—k
(shown in (243))), and using induction, we see that all the conditions

5P (a0f, .. ad% [s,]) € €P(E)

are satisfied and thus s, € Sy "(Z).

Step 7. We shall consider now the case m > 0 and prove first the direct implication. Assume that F' € SJ*(E),
which implies ad¥, ... ad¥ [F] € S§*(E). Step 6 implies s, € S;™(Z). By the Theorem of magnetic composition
of symbols in [12] we get s, #5 (ad% ...ad¥ [F]) € SY(E) c €5(2).

Step 8. For m > 0 we prove now the inverse implication. For F' € §'(Z) we show

YN eN, V{Xi,...,Xn} CE, 5,47 (0%, -...-ad} [F]) € €P(E) =5, P F € SJ(2). (5.50)

Due to the hypothesis of (5.50) with N = 0, s,,, ¥ F belongs to €Z(Z) and we compute

ak ...ad¥ [s, tP F] = (5.51)
M
B B B B
=> > (aOXh...aDXjk [5 })ﬁ (aoxi ..aDleMk[F]>:
k=071,....0k
5 ) (abf}. a0 [sm]) £ 587 5 8 (ao;;,/ Ll [F]>,
J1 Ik 71 Mk
k=0 j1,...,
where ji1 < -+ < g, 31, Jh—p and {G1, g UG - ik = {1, M
The factors s, £5 (abg/ . aDX .t ]) belong to €5(Z) by the hypothesis in (5.50). Using the result of Step 6
71 IM—k

—

we know that s, € S;™(E) and thus we have
(abf}jl LAk [5;1}) t85,, € S;™(E) 48 SM(E) C SL(E) c eB(=). (5.52)

By the hypothesis in (550) we conclude that a0§1 e abf}M (s, 4% F] € ¢B(Z) for any family of vectors of = and
thus, by Theorem 2.5 we conclude that s, 2 F belongs to SO(Z).
Then

F = s, 16, 4% F € S7(2) 47 S§(2) C S§(2).

5.2 The class of symbols S7*(E)

Theorem 5.21. A distribution F' € S'(Z) is a symbol of type S;*(Z) (with 0 < p < 1) if and only if for any
p.q € N and for any us,...,u, € X and any p1,. .., g € X' the followmg 15 true:

S gp i (aofl ccadf ol a0 [F]) c eB (). (5.53)

The two families of norms:

”57 03 F |l oo

\Otlp

indezed by (a,a) € N*", and
gy £ (abfl ol af L af [F]) ez,

indexed by (p,q) € N? and sets of vectors in Z, define equivalent topologies on Sy (2).

Proof. Obviously I € S}'(Z) is equivalent to

O¢F € Sg1°P(2), vaeN, (5.54)
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that due to our Theorem [5.20]is equivalent to
5m—lalo) 88 [a0%, ... ad% 0¢F| € €P(E), VaeN', VNEN, VXy,..., Xy €E, (5.55)
ie.

Sim_jalp) £ (00X, <. a0% (a07)™ ... (@07 )2 F| € €5(E), Va eN", VN €N, VX;,...,Xy €2 (5.56)
Choosing |a| = ¢, N = p and X; = u; for j € {1,...,p}, we see that (5.50) implies the condition (B.53) in the
Theorem and thus the direct implication is proved.

Now suppose that (5.53)) is true for any p,q € N and for any family of p vectors {u1,...,u,} C X and any family
of q vectors {p1,..., g} C X'. Let us take N € N, {X;,...,Xn} C E and a € N*. Due to the commutation

relations (3:29), we can rearrange the operator ad¥ ...ad% as a sum of operators ad? - ...- abfp abfl e abfs
with p + s = N. Then (&.53) implies that

S (stlapg B (aafl eadf a0 ey (@) (af ) [F]) € ¢B(3). (5.57)
Thus, we conclude that for any « € N*, VN € Nand V Xy,..., Xy € =t

S lalp 88 (0%, .. ad% (a0P)* . (002 ) [F]) =

=5 lalp 85 8 (st 1app 17 S (st ]a)p §P (a0%, .. ad% (adP)* .. (a0f ) [F]) € €B(E)
due to relation (5.57) and using the result of Step 6 of the Proof of Theorem

5 8P S (st € So 1M (2) 88 st Ctr (=) € 5y (E) c SY(E) ¢ eP ().

m—|alp
Thus (&54) implies (B.56]) and we get also the inverse implication. [ |
Since F' € S;*(Z) if and only if I™* € S7*(Z), by taking the adjoints we prove

Corollary 5.22. A distribution F' € §'(Z) is a symbol of type S;*(Z) (with 0 < p < 1) if and only if for any p
and q in N and for any family of p vectors {u1,...,up} C X and any family of q vectors {u1,...,puq} C X' the
following is true:

(aafl Cee abfpaofl Celt aafq [F]) i Sm—ap

€ ¢B(=). (5.58)

5.3 The Bony criterion

Following the work of J-M. Bony [3] we shall reformulate our main theorem by replacing the commutators with
linear distributions (of the type [x) by symbols of class S} (Z).
Definition 5.23. Let p € [0, 1]; we define the class of symbols S (Z) as

SHE) = {(p €C™(E) | [(050¢¢) (X)| < Can < &>PU71D for |a| + |af > 1}.

For any ¢ € S} (2) C MP(E) we can define the derivation
Wl [F] =P F-FiP o, VF e MP(E). (5.59)

Theorem 5.24. A distribution I € §'(Z) is a symbol of type S;'(Z) (with 0 < p < 1) if and only if for any N € N
and any family of N symbols {¢1,...,¢on} C S;L(E) the following is true:

s, P a0l ...a0l [F] € ¢P(2). (5.60)

Proof.
Step 1. First let us consider that F' € S)*(Z) and let us compute its commutator with symbols ¢ € S;‘ (2). For
any distribution F' € §'(Z) we shall introduce the notations

V,F:=0,F, V,F:=0F,
(F)xs(Y):=F(X +s(Y -X)), forscR,
and remark that for any ¢ € ST (Z) we have that V, ¢ € S2(Z) and V,, ¢ € S)(Z). Then

@ [F](X) = (¢ 47 F)(X) = (F§¥ ¢)(X) =
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e / / 4Y dZ &2 XY X-DOBT (1 y )| {p(Y)F(Z) — o(Z)F(Y)} =

:w’zncp(X)/:/:dYdZe’Qi”(X’Y’X’Z)QB[T(x,y,z)] {F(Z)-F(Y)} -
Com / s /_ /_ Y 47 e 27 XY X-DQBIT (2,4 N {[(X = V) - (Vo) (1 — )X + sY)F(Z)} +

/ ds / / dY dZ e 20XV X=DOB T (2,4, )] {(X — Z) - (Vo)((1 — 8)X + sZ)]F(Y)}.
The first term is evidently vanishing and we obtain by usual integration by parts techniques that

—2n n

1
> / ds / / dY dZ e= 20 XY X=D) BT (2,y, 2)] x (5.61)
— Jo EJE

@B [F)(X) = —

X{[(VX(p)X,S(Y)]][(aCJ )(Z)] [(VX()O)X,S( )][(a F(Y)]

~[(Vy 0)x,s (V)] [(0:,F)(Z) i (0:,TF [T (2,9, 2)]) F(Z)] —

) —
~[(Vo ) x.s(2)]; [y, F)(Y) = i (9, TP [T (,y, 2)]) F(Y)] } -
Observing that the functions QP [T (x,y, 2)] and T'B[T (z,vy, 2)] belong to BC™(X; Cog(X x X)), due to our hy-
pothesis on the magnetic field B and using the results of Appendix [8.45 we conclude that aOB [F] is a symbol of
type S)'(Z) and thus, using also the results of the last section, s, 1B aDB [F] belongs to ¢B(= ) Replacing now F

with adZ[F] we may iterate the above argument and obtain the condition (E60) of the Theorem.

)
F(Z)
)

Step 2. Let us prove now the inverse implication. Thus let us consider a tempered distribution F' on = that satisfies
(E60) in the statement of the Theorem for some m € R and p € [0, 1]. For any vector v € X and any vector u € X’
we observe that:

0e,lu = 0g,[0((u,0), (z,€))] = —uy, (5.62)
Ou,lu = 05, [0((1,0), (,€))] = 0, (5.63)
D¢,V = ¢, [0((0, 1), (,€))] = 0, (5.64)
Os, 1 = 0, [0((0, 1), (2,€))] = pj. (5.65)

Thus, for any v € X and any p € X’ the distributions [, and [, belong to Sf(Z) (for any p € [0,1]). Using (5.60),
that we suppose to hold, we deduce that

s, 1P (aafl a0l ady oa0) [adl a0l [F]D c¢B(=). (5.66)

Conclusion 1. Using our Theorem 520 we conclude that adZ, ... adZ [F] is a symbol of class Sg*(E) c MP[E] for
any N € N and any family of S (Z)-symbols.

Now, for 0 < p < 1 we shall Verlfy the hypothesis ([2.53) of Theorem [5.22T] The idea is to use a special symbol
of the type f., = [,4Ps,. Unfortunately, this is not an element of SH(Z) (for p > 0) so that we shall need a
localization procedure in order to control the dependence on z € X. We follow the procedure elaborated by J-M.
Bony and J-Y. Chemin [6], but dealing only with a specific class of metrics we shall avoid the use of the general
confinement norms and prove some confinement results in Appendix We shall use repeatedly the following
observations
Remark 5.25.

1. For any two C°°(X) functions f and g, considering them as functions on = constant with respect to £ € X,
we have f§%g = fig=f-g.

2. For any C*°(X) function f, considering it as function on = constant with respect to £ € X', and any symbol
F we have f{PF = ftF and FiB f = Fif.

3. For f € C*°(X') N S5(2) and g € C(X) NS (E) we have that {59 = f- g+ ~(f, 9), where ¥(f,g) € S5~ 7(E).
4. For F € 5§(2) and ¢ € S§(Z) or g € C*°(X’) N S4(E), we have that

@B[F] e S3(2),  ab[F] € Si(2).

17



While the first point of the above remark is evident, the second follows easily by integration by parts, and the last
two can be easily proved by a very similar procedure to the proof of (L.GI]) and using once again the results of
Appendix

Suppose chosen a positive function x € C§°(X) such that [, dz x(z) =1 and suppx C Bg(0). Then we have

TL o =7l] = xe €CF(X),  VzeX

defining a continuous map X 3 x +— 7,[x] € C5°(X), so that we can define the following integrals in the weak sense
as elements of §'(E) (the translations acting continuously on the Fréchet space S(X)), and we have in the sense of

distributions
/dwffi,o)[x]:/ dr 7:[x] = 1.
X X

Thus, due to the continuity of the magnetic Moyal product as map S'(2) x §'(E) — S§’(E), we can write for any
G € MPB(Z), in the sense of distributions:

Gz/Xd:ma :=/de [/Xdym[x]ﬁGﬁTy[x]}

Remark that for any F' € M5 (Z) we have (for any ¢ € S(X))

(FEP G,¢) = (G,94" F) = </ dem,¢ﬂBF> = </ dzF #B Gm,¢>.
X X

For any fixed z € X we can write

/ dy 7o XEGHTy Y] = / dy {7 [\]EGHm, ]} + / dy {7 [5G, ]}
X Bar(z) Sr(T)

BQR

and we introduce the notations

Gy = /B A BIGIRI) Ga= / dy {ra[\iGim, ]} -

sr(@)

Let us also denote by

0, = /132R<m> dy Ty[x] = 72 UBM@ dyTy[x]] =: 75[0] € Cg°(X),

and observe that 0(z) = 1 for z € Bg(0) so that

9X =X, Gz = quGﬁoz
Gy = / [<a—y >N (LXiGiny[X])] <z —y>"Ndy
lu—y|>2R

First let us consider G = a0, ... a02 [F].

Using Conclusion 1 above for our F', and the Theorem for the magnetic composition of symbols, it is easy to
see that G, € S§"(E) uniformly with respect to € X. In fact we shall use several times the observation that the
symbol type norms (on any S;*(Z)) are left invariant by translations with X-variables.

For G, we use Lemma 840 in Appendix [B6] to prove that the integral is finite and defines an element in ST(E)
uniformly with respect to x € X
Let us prove that
s, 4P a0l [G] € €F(2).
In fact, we can write
5;_pﬂ3a05 [G] = [5;_pﬂ35;ﬂ35m} ﬂBs;lﬁBspﬂBaaf [G].

and due to the fact that (by the magnetic composition of symbols) 5;_,)1135;1135,” € SJ(Z) we only have to
estimate

5;ﬁ35pﬂBaDE[G] :/ dx {5;ﬁ35pﬂ3a05 [Gm} —|—5;LﬂBspﬁBabf [G‘m] } (5.67)
x

In order to control the integral appearing in (5.67)) we shall apply the usual Cotlar-Stein argument together with
the confinement result in Lemma [B.47 of Appendix In fact we shall use the following form of the ’integral
Cotlar-Stein Lemma’ proved in [7] (Lemma 4.2.3"):

Proposition 5.26. Let {A,}.cx be a family of bounded operators on a Hilbert space H such that the following
two estimations are satisfied:
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 sup (fxdzHA Ally3o) <M,

 sup (fXdZHA Al ) < M.
Then fX dx A, converges for the strong topology and we have

‘/ dr A,
x

We have to verify that all the terms appearing in [5.67] verify the conditions of Lemma R47 in Appendix
Let us consider the first contribution to the integral in £.67 and remark that

7 [G.] = adf [Gr] = adf (G

for any x € X, where [, ; := 7,[[,], i.e. [, 2(Z) =< p,z —a > with < g,z > a constant term (with respect to the
variable z). Moreover, if we fix a C§°(X) function v such that ¢ - = 6 (then we also have ¢ - x = x) and denote
by 1, := T, and by ¥, = [, 2,; we get (remark that ¥2x, = ¥ (VaXa) = YaXe = Xa)

5pﬂBan [Gz} zspﬁBabﬁw [Gz} =

= 5t [LatP G = GatPla ] = 887 (Lot (GHGH0,) — (xatGH0.) £71,0] =
= 5p8” [luat® (a1 G1700) — (xal"G1702) £710] =
= 5p8” [(letXa) 7 GEP 0085 00 — 9ot xat PGP (02871,0)] =
= 5t P0t” (Yot Xa) 17 GE7 00 — XatPGEP (087 0p0) | 8700 =
= 5,877 0], | [Go] 870 = vntPs 87 0] (G| 870 + 0l [P0l [Cu] 870, (5.68)
and (see Remark [5:25)

5pﬂBa05‘L’x [Gm} = (aOB . [G D + (abf(ﬁpﬁww) [GID - (aafl [Gm} ﬁB@buyw) ) (5.69)

First we remark that ¢, = fg 0) [¢] and
B B _ B B
af [1] = adf [SF ) [v]] = TE o) [a0 0]

define translations of symbols of class SY(Z) with rapid decay in the X variable. Then, the family {abdj {G } }
rEX

defines a family of symbols in S7*(Z) uniformly with respect to x € X'. Observing that
Oy, (sp - ) (V) = (< >7 +0) [0y — @)+ < o, (y — 2) > (9y,9)(y — 2],

(aﬁj (5p ’ %,m))(Y) =p

we deduce that 5,1, . € S +( ) uniformly for z € X and due to our Conclusion 1, the first term in[5.69 is uniformly

bounded in S*(Z). Using the above Remark for v(sp,1u,.) we conclude that ao'Y(spku,m) {Gm} e SIME)

uniformly with respect to x € X. Now for the last term in [5.69 we use once again the Remark 5.251 We conclude
thus that we can apply Lemma 847 in Appendix and thus Proposition [5.26] above.
Let us study now the second contribution to the integral in B.GT

nj

—_ <p>ric —z) > — ),
=y < s (y —x) > Py — )

spt a0l [ém} = v}, [5pﬂ3ém} —ad) [s,] 47 G, (5.70)

and the second term defines clearly an element of SJ*(E) uniformly in € X. For the first term,denoting by
6¢ := 1 — 0 we remark that x, - 05 = 0. Let us fix a function ¢ € C§°(X) such that ¢ - x = x and ¢ - 0° = 0. Then

5pﬂBém = (5;) : (bi)ﬂBXmﬂBGﬂBegcc + ’7(5/)7 ¢925)ﬁ8é1 - XﬂaﬁBGﬂB(sp : (bac . 9;) =

= ((bz '5p : d)m)ﬁBéz - ézﬁB(ﬁp : ¢m) + 7(5p7 (bi)ﬂBém + quBGuB'Y(G;aﬁp : (bz) =
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= (bzﬂBaDg.B;-gbz [Gm] + ['Y(spv (bi) - 'Y(Qbmasp : (bz)} ﬁBém + XmﬁBGﬁBV(ogasp : Qbm) (5-71)

—
—

where s, - ¢, € S} (E) uniformly for € X. Tt is easy to verify that v7 (65,5, - ¢.) is a symbol of class S7(Z) with
rapid decay in the X’ variable and uniformly with respect to x € X’ (just repeat the arguments of the proof of 561
snd use once again the results of Appendix [B4H). Thus the last term can once again be treated by applying Lemma
B4 in Appendix (with G, = G constant). For the first two terms above we use Lemma [848 in Appendix
and thus end the proof.

Conclusion 2. Thus we proved that for F' verifying the condition (.60) of the Theorem, for any N € N,
{¢1,...,on} C SF(E), denoting G := adf ---adZ [F] we have for any p € X’

s, 4P a0l [G] € €F(2).

Taking any family {X1,..., Xy} C = and taking into account the commutation of the ad% operators [3.29) we
obtain that
— 4B B B B — BB [.AB B —  4B_~B[A
5 pfP a0y, - avy [0 G] =5, 4Pa0] [a0%, - a0} [G]] =5, 17 a0, [C]
with
~ B B B B
Gi=ady, ---ady,, -ad, ---ad,  [F]
to which we apply once again Conclusion 1 and Conclusion 2. Finally we use Theorem [5.20] to conclude that
avf [adZ ... adZ [F]] € Sg"7(B).
Taking now G = ady; [adZ ... a0l [F]] € 57" *(E) and repeating exactly the above procedure we shall obtain
that
- BB B [aB B B(=
S, 0,00 a0 (a0} [a0] ... a0] [F]]] € €°(E).
Iterating these arguments (and taking into account the commutation properties of the ad¥ operators) one clearly
finishes the proof. |

6 Applications

6.1 Inversion

Proposition 6.27. If F € S)(Z) is invertible in the C*-algebra ¢B(2), then the inverse F~ also belongs to Sp(Z).

Proof. By Theorem [5.24] we need to show that for arbitrary N € N\ 0 and any family ¢1,...,¢n in S} (Z) we
B B [p— B(=
have adg, ... a0, [F7] € €7(Z).
For any subset K := {ki,...,ky} of the ordered set J := {1,..., N} we write D& := abgkl . .ctbfflc
It is known and easy to prove by induction that

DIFT]=> Cy. ., FHPOR [P PP PP 4PDF PP P~ (6.72)

The sum is over all partitions J = U?_,.J; where, for example, the partition (Ji,.J2) is considered different from
(J2, J1). The coefficients Cle,,wJp take only the values +1, but this is not important.

Once again by Theorem [5.24] we know that each D% [F] belongs to €7(Z), while F~ € €¥(Z) by assumption.
It follows that DF[F~] € ¢B(2). [ ]

Proposition 6.28. Form <0 if f € S;*(Z) is such that 1+ f is invertible in €5(Z), then (1+ )~ —1 € SJ"(E).

Proof. We borrow a simple idea from [I7]. Choose f € S7'(Z) such that 1 + f is invertible in ¢”(Z). Then
1+ f)" € SS(E). Consequently, by an obvious identity and by the magnetic symbolic calculus

L+ —1==f+0+ 17 f17 f €S (E).
]
Proposition 6.29. Let m >0 and p € [0,1]. If G € S}"(E) is invertible in M7 (Z), with 5,7 G~ € €P(2), then
G~ € S;™(B).
P

Proof. First we remark that for any m € R we have s,,, € S7"(E). To see this, one just has to repeat the proof by
induction given in Step 6 of the proof of Theorem [5.20] by using symbols ¢; € S;"(Z) in place of the linear symbols
used there. Then use Theorem [5.24]
One has
GtPs_p, € STHEPS,™(E) C SY(E).
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In addition this element is invertible in €2 (=), since we can compute in 95 (=)
(GtPs_m) =smtPG™ € €P(@).
Then, by Proposition [6.27 s,,12G~ € SS(E). Consequently
G~ =s_utPsmtPG7] € Sp_m(E)ﬁBSg(E) cS,™(=).
]

To verify the boundedness condition in the above Proposition [5.29, the condition of ellipticity is usually needed.
Definition 6.30. For m > 0, a symbol F' € S}'(Z) is called elliptic if there exist two constants R, C' for which

K|I>R = F@x,)>C<&>m.

We can apply Proposition [6.29] to any elliptic symbol of strictly positive order by using Theorem 4.1. in [12].
In fact that Theorem asserts that for an elliptic symbol F' € S,’)”(E) with m > 0 and for any vector potential vector

A with B = dA, we get a self-adjoint operator Op? having a spectrum o[F] that does not depend on the choice
of the representation (by gauge covariance). Thus for any z ¢ o[F] the operator Op”(F) — 21 = Op™(F — z)
is invertible with bounded inverse. This means that the inverse (F — 21)~ exists in 9P (Z) and that it belongs
to €B(E). Moreover, the Theorem 4.1 in [12] implies that Op* [(F —2)#Ps,,] is a bijection on L?(X), and thus
s P (F —2)7 = [(F —2)#Ps,,] € ¢B(Z). This allows us to use Proposition and prove the following
statement.

Proposition 6.31. Given a real elliptic symbol F' € S]'(Z), for any z ¢ o[F] the inverse (F' — z)~ exists and is a
symbol of class S;™(Z).

6.2 Functional calculus

Relying on Propositions[6.27 and [6.31] we can obtain results concerning the functional calculus of elliptic magnetic
self-adjoint operators. In any given Hilbert space representation associated to a vector potential A we have

o (9p"[f]) = 09" [07(f)]

and this gives an intrinsic meaning to the functional calculus for Borel functions ®.

We recall (cf. [I7] and references therein) that a ¥*-algebra is a Fréchet *-algebra continuously embedded in a
C*-algebra, which is spectrally invariant (i.e. stable under inversion). Our Proposition [6.227 says that SS(E) is a
U*-algebra in the C*-algebra €5(Z). But U*-algebras are stable under the holomorphic functional calculus, so we
can state:

Proposition 6.32. If f € SS(E) and @ is a function holomorphic on some neighborhood of the spectrum of f,
then ®B(f) € SY(2).

If ® € C5°(R) (and in many other situations), ®(f) can be written using the Helffer-Sjostrand formula

BB(f) = - /C 02 0=5(2)(f - 2)", (6.73)

™

® being a quasi-analytic extension of ® (cf. [L1], [8], [9]).
Proposition 6.33. If ® € C5°(R), f € Si*(Z),m <0, f,elliptic if m > 0 then ®B(f) € S;™(2).

Proof. Let ® be a quasi-analytic extension of ® € C°(R), i.e. ® € C5°(C), ®|g = ® and for any M € N there
exists Cps > 0 such that

< Cu|p/™, for A\4ipeC. (6.74)

ﬁ—i(kﬂu)

Then using formula ([G.73]) we get

5mﬁBanl . .anN [@P(f)] = 1 /Q dz <?9_§> 5mﬁBabfl ... abe [(f—2)7],

™
with 2 C C a bounded domain strictly containing the support of ®.

To understand the behavior in z = A + ip of the magnetic derivatives of (f — z)~, we adapt some ideas of [,
section 6.2. Since ® has compact support, we concentrate only on the divergence when p — 0.
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Let z,20 ¢ o(f) and ¢ € SF(2).
a0 [(f—2)7] =~(f—2) 8P a0 (f —2)t7 (f —2)" =
=—(f=2) 7 (f =200t (f = 20) " 47 a0Z (f — 20) 87 (f — 20) " 87 (f — 20) 8" (f —2)” =
= g(2) 4" @ [(f — 20)7] 87 9(2),

where
9(z) = (f =277 (f—20) =1+ (z—20)(f — 2)".

B B — . . . . .
Then, by reccurence, we prove that ad] ...a0, [(f —2)7] is a finite linear combination of terms of the form

(z—20)" " g() 47 DF [(f —20) 7] 17 9(2) 87 ... 8% g() 47 DT [(f — 20)7] £7 g(2),

with (J1,...,Jm) a partition of {1,..., N} and D& := abgkl e abgkp for the ordered set K := {k1,...,k,}. There
are at most N + 1 g’s.

Under our assumption on f, all the factors D% [(f — z0)~] are elements of ¢7(Z) with z-independent norms.
One also has || g(2) |lez< C|u|~! on suppu.

The factor s,,4%g(2)E2D ;,[(f — 2)7] needs a special study.

The first (constant) term composing g is trivial. For the second we write

smt”[(z = 20)(f = 2) WD AI(f = 2)7] = (2 = 20)smt” (f — 20) 4°[(f — 200" (f = 2) " It"D 0 [(f — 2)7]

and once again we are safe, because 8,17 (f — z0)~ € S)(2) C CP(2).
So finally, putting everything together, we get

- <A>N
Using now the estimations (6.75) and (6.74) and Theorem [5.24] we get the stated result. |

6.3 Fractional powers

Choosing a vector potential A for the magnetic field B and considering the associated Schrodinger representation
on H = L?(X), one proves

Theorem 6.34. Given a lower bounded I € S}'(Z) with m > 0, elliptic if m > 0, let Op?[F] be the associated
self-adjoint, semi-bounded operator on H given by Theorem 4.1. and Corollary 4.4 in [12] and let ty € Ry such
that for Fy := F + tol the operator Op”[Fy| is strictly positive. Then for any s € R the power s of Op?[Fy] is a

magnetic pseudodifferential operator with symbol F(ES]B € S;M(E), e (DpA[FODS = Op4 [F(ES]B].

Proof. Due to ([2.I0) and the above Proposition [6.3T] the statement is valid for any s € Z. Once again by (Z.10)
it is enough to solve the case s € (—1,0).
In this case the equality

1 100 _

(DpA[FO])S =—— L z° (DpA[FO] - z) ' dz = —LDpA (/l: 2% (Fy — z)dz)

211 211

may be proved by approximation. First we restrict to vectors u € E_ , . ([=N, N])L?(X) and use the Cauchy

formula for the analytic function z* on the domain {Rz > 0} N {0 < € < |z| < 2N}. Here € < inf Op*(Fy) and Er
denoted the spectral measure of the self-adjoint operator T'. Then one lets € \, 0 and N " co. Thus we only have
to prove that
/ t5(Fy +it) " dt = / t°(Fy +it) " Gydt € )" (2),
R R

where G, := (Fp + it)(Fp +4t)~. This will follow easily from (i) and (ii) below and the behavior on pointwise
products of the seminorms defining the topology of S7*(Z)

<>l (9gauf) (w,6)|.

| flm,p,q == sup max max
(z,¢)eE la|<p la|<q

(i) G belongs to S)(Z) uniformly in ¢ € R.
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Let us notice that Gy := (Fy +it)(Fo +it)~ is a symbol of type S5(Z) due to our previous Proposition [6.31] and
poinwise multiplication of symbols. It will be enough to prove that Fy(Fy + it)~ and t(Fp + it)~ are symbols of

—
—

class SS(H) uniformly with respect to ¢t € R;..

The results of Section 4 of [12] show that Op” [s,,] Op® [(Fy + it)~] is a bounded operator uniformly with
respect to t € Ry. Let us choose N € N and a family {¢1,...,on} C SF(E). Using (6.72) one gets

l|$m #5 (abfl SR anN[(Fo + it)*]) ez <C

with C independent of ¢ € R, and this implies immediately the assertion for Fy(Fp + it)
Now use once again (G.72) and the fact that Fy € S}'(Z). The results of Section 4 of [12] show that

tOp? [(Fo + it)~] is a bounded operator uniformly with respect to ¢ € R, so one gets
[tadl - ... a0l [(Fo+it) ][ler < C

with C' independent of t € Ry and this implies the result.
(ii) One has

/ t*(Fo +it)~'dt € $)*(2).
R
This can be proved by writing

w0 = S o (o). (e ) 00

Qe O

loa|+--+|ak|=|al
lay+-+lag|=lal

/ ts
R
Bul Since S € (_1, O), one haS

s—k
t
/ts (F0+z't)*<k+1>’dt:F5—’“/ <—>
R r \Fo

<C< 5 >m(s—k) /Tk—s
R

and this finishes the proof. |

So that we are reduced to evaluating

(Fo + it)_(’““)‘ dt.

(r+1)~+)| I < gomie),
T

7 Magnetic Fourier Integral Operators

In this section we consider a definition given by J.-M. Bony for an operator to be a Fourier Integral Operator and
using our Bony type criterion (Theorem [5.24]) as a starting point, modify it in what we shall call Magnetic Fourier
Integral Operators.

Let us consider one-to one mappings V,W,--- : 2 — Z. For complex functions ¢ defined in phase space, we
introduce formally twisted magnetic commutators, generalizing our previous commutators abg :

BV [f] =t f— F1P (o V). (7.76)

They satisfy simple algebraic properties, that will be basic in the sequel:

a V[N + pg) = AadV [f] + pad ] [g), (7.77)
a2V (1% gl = V(1187 g + 17 a0y (o], (7.78)
@BV (] = —al2V, (] (7.79)

Definition 7.35. Let V : £ — = be given and let R be a vector subspace of 9B (=), supposed (for simplicity)
closed under complex conjugation and such that R o V' C 9MMZ(Z). We set

S(B,ViR) = {f eMP(E) a0l ...a0]V[f] € €¥(E), VN €N, Vo1,...,on € R}.
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Clearly S(B,id; S (Z)) = S5(E), by Theorem 524 In the framework of [5] (cf. Definitions 4.3 and 3.1), for
B = 0 and under some assumptions connecting the diffeomorphism V' and the metrics g1, g2, one has

Op [S(0,V;57(1,92))] =FIO(V;91,92) and S(0,id; ST (1;9) = S(1;9)).

We shall consider a class of diffecomorphisms ® : = — = and we shall denote ®(X) = (y(X),n(X)) (for any
X =1z,£) € E). We shall also consider on = the metric g ¢)(y,1) := |y|*+ < £ >72 |n|*>. We shall supose that ¢
satisfies the following conditions:
Hypothesis 7.36.

1. &: = — = is of class C*° and symplectic for the canonical symplectic form on =;

<<n<x,§>>)ﬂ<a

<&> -

2. there exists C > 0 such that

3. the derivatives of order higher then 1 of ® and ®~! are bounded with respect to the metric g introduced
above.

One can easily prove that under our Hypothesis the class of symbols S;"(Z) is stable for the composition
with ®. Thus we can define the class S(B, ®; S] (Z)) as above.
For a magnetic field B with components of class BC™(X') we shall consider the class of symbols S(B, ®; S} (Z)).

Moreover, chosing a vector potential A for B having components of class ngl( ) we shall consider the class of

‘'magnetic Fourier integral operators’, in the Schrodinger representation associated to A:
FIO* (@) := Op” [S(B, ®; 51 (2))] .

In fact we shall prove that for a class of hamiltonians, the unitary evolution group they generate are of class
FIO*(®) for a diffecomorphism ® given by a Hamiltonian flow.

7.1 The symbol of the evolution group

Given any Hamiltonian described by a symbol h € S7*(Z) we shall define its associated flow ®, : = — E, that we
shall also denote by Y (¢t; X) = ®,;(X), that is defined by the Cauchy problem:

Y(X)=%,[Y(:X)], Y(0;X)=X, (7.80)

with X; the Hamiltonian field associated to h with respect to the canonical simplectic form o on Z. Explicitely we
have

= (Deh, —0,h).

Hypothesis 7.37. Suppose h € S7*(2) is real elliptic and 0 < m < 1.
Lemma 7.38. Under the above Hypothesis[T.37) for the Hamiltonian h we have:

1. the Cauhy problem (7.80) has a unique solution Y (t; X) and the map
RxE3#X)—Y(t:X)eE
is of class C*°.
2. for any given t € R the flow O, satisfies the Hypothesis [7.36]

Proof. The first conclusion results from the fact that the Hamiltonian has at most a lineara growth. Let us turn
now to the proof of the 3 conditions in Hypothesis[[.361 The first one is a classic property of Hamiltonian systems.
The second one can be easily verified using the elhptlclty of h and the conservation of h along the flow it generates.
For the third condition we have to integrate the components of the Hamiltonian field (Z.80)

yi(tiz,§) = x;+ [y ds (O, h) (y(s; 2,),m(s; 2, €))
ni(ta,€) = & — [y ds (8y,h) (y(s; 2, €),n(s;2,€)).

(7.81)

Now let us compute

(mkyj)(t:vé =0k + Z / ds 6 O h ( (s;x,f),n(s;x,ﬁ))(@mkyl)(s;x,f)—i—

1<I<n
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+ (877L877jh)( (S'Iaf) (S € g))( mknl)(s'xaf)}
(Oumy) (X)) == > / ds [(9y,0y;h) (y(s3 X),1(s: X)) (B yit) (85 X)+

1<i<n
+ (09, 0y, 1) (y(55 X),m(8; X)) (Owmr) (55 X)] -

Thus we have the estimations:

max | (D)t X)| < 1+O/Otds [m%\(aﬂyl) 5 X)| + (n(s; X))~ <maxn‘(8zkm)(s;X)|>],

1<j<n 1<l 1<1<

gj&gﬂl(axmj)(t;)()\ < O/Ot ds {<77(5;X)>m (gﬂXnKaxkyl)(S;Xﬂ) + (gﬂxnl(aka)(S;X)N :

Due to the ellipticity condition (and m > 0) and the conservation of the Hamiltonian along the flow we easily
obtain that there exists a finite constant ¢ such that ¢™! < & ><< n(t; X) >< ¢ < £ > for any t € R. Thus if we
denote for |a] =1

max |(05y;) (6 X)|+ < &>~ 1@Ja§n’(6;nj)(t;X)’},

Ea0(t; X) == {

it defines a positive function for which we have proved the following estimation
t
Eaolt: X) <1+ c/ ds Eq.0(s; X),
0
so that by the Gronwall Lemma we conclude that
Eao(t; X) < e, VteR, VX €E.
Let us consider now the derivations with respect to the X”-variables.

(Oeu)E:X) = 3 / ds [(0,00n, 1) (555 ), 1(5 X)) (B 1) (55 X)

1<i<n
+ (O, Oy ) (y (55 X), (85 X)) (D) (55 X)]

(Demy) (1 X) =56 — > / ds [(8y,0y;h) (y(s; X),1(s5 X)) (e ) (53 X)+

1<l<n

+ (O, 0y, 1) (y(s; X), (55 X)) (Oeum) (53 X)] -

Thus we have the estimations:

max |(9e,y;)(t: X)| < c/ ds [max |(De,tn) (53 X)| + (n(s; X)) ™" (maﬁxﬂ|(6gkm)(s;X)‘)],

1<j<n

e (0a) (0] < 14.€ [ s [tnts 0™ (s 10k0) 6100 ) + (s | 0com) 50 )]

For |a| =1 let us denote

max [(9¢y;)(X)|+ < &> 1rgja<xn\(3?nj)(t;X)|},

1<j<n

o,a(t; X) = {

it defines a positive function for which we have proved the following estimation

¢
Eoa(t; X) << &1 —I—C/ ds Ea0(s;X),
0

so that by the Gronwall Lemma we conclude that
Soa(t; X)<<&>"1e% VteR, VX cE.
We conclude that for |a| 4+ |a| = 1 we have the estimation:

Eaat; X) << e>710l e VieR, VX eE.
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Let us suppose now that for some k > 1 we have proved that for any pair of multi-indices (a,a) with 1 <
la| + || < k we have the inequality

Eaat;X) < Chiamy <E>71° VEER, VX €Z

Let us choose then a pair of multi-indices (b, 3), such that [b| + |3] = k + 1 and let us apply the operator 8285 to
our system [.8T] Using our induction hypothesis we obtain

t
Epp(t; X) < Chpp) < &> +c/ ds&p(s;X), VteR, VX €E.
0

Thus using once again the Gronwall Lemma we obtain that
Eaa(t; X) < Chaay <E>71° VLR, VX € E,V(a,0) € N" x N".
It is now easy to conclude that our third condition in Hypothesis [7.80]is satisfied. |

Theorem 7.39. We suppose given a magnetic field with components of class BC*(X) and a Hamiltonian h

satisfying Hypothesis[7.37 In the Schrédinger representation associated to a vector potential A of class ngl(X we

have that Op™(h) defines a self-adjoint operator and its unitary evolution group P, := exp{—itOp?(h)} is of class
FIO*(®,) with ®; the solution of problem (7.80) associated to h.

The proof of this Theorem is based on the following two Lemmas.
Lemma 7.40. Let a € SJ*(Z) and c € S (Z). We consider on Sy (Z) the natural Frechet topology. We denote by
{.,.} the Poisson bracket defined by the canonical symplectic form o on =. Then we have the following statements.

1. For any t € R we have that c o ®, € S (Z) and the map
R3St cod, € Sf(2)
is of class C*(R).

2. We have that
ctPa —atBe—i e, a} € SHE)

and in particular ctPa — atPe € ST (2).

3. For m <1 the map
(co @t)ﬁBa — aﬂB(c o®d,) — i_l{(c o®;),a} € 510(5)

is of class C*(R).

The proof of this Lemma may be obtained in a straightforward way from the arguments given in the first two
sections of [12].
Lemma 7.41. The unitary evolution group P generated by DpA(h) satisfies the following relations.

1. For any f € §(X) and any t € R we have that P, f € S(X) uniformly for t in bounded sets.
2. P, € B(S(X)) for any t € R.
3. The map R >t — P, € B(S(X)) is differentiable for the strong operatorial topology on B(S(X)).

Proof. Let us denote by H'} the domain of the operator Op?(h) with the graph norm (this is a magnetic Sobolev
space [12]). For any multi-index o € N” let us denote by 119 = (II{)* - ... . (II2)% and by f(t) := P.f. It is
enough to prove by induction on p + ¢ (for (p,q) € N x N) that for any o € N with |a| = ¢ we have

<z >PISf(t) € HY, (7.82)

uniformly for ¢ in bounded sets.
Let us observe that our Lemma [0 implies that for any d € S{"(Z) we have [d, h]ys € S{*(E). This allows us
to prove that for any » € N we have

(o (@) opt s = 3 i [k, 0wt )] [op (@) ulo). (78)

0<k<r
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Suppose that ¢ € C§°(X) is such that ¢(z) = 0 for |z| > 2 and ¢(x) = 1 for |z| < 1. Denote by 6,(z) :=< z >
o(x/j) for j > 1; then §; € C§°(X). Let us stil introduce the notations

vj>1070¢(t) = efnif(t)a Va € Nna |a| =q.
One has
< Ojpa(t) = OIEOP" () (1)
and using (Z83) we conclude that

d
dt
for any T > 0, with C a constant depending on T'. Integrating this inequality and using the Fatou Lemma we
conclude that < z >P II f(t) € L*(X) uniformly for ¢ in bounded sets. Using once again (T.83)) and some evident
commutation properties we also obtain that Op?(h) (< z >P T4 f(t)) € L*(X) uniformly for ¢ in bounded sets.
This proves (Z.82]).
The second conclusion of the Lemma follows from the Uniform Boundedness Principle. The third conclusion
follows directly from the inequality

2 2
ij-,p,OzHLz(X) < ij-,p,Osz(m +C, for [t| <T,

|< o> 15 (P @) = &) +it0p  ()F )| < Cra(Dltl, for |t < L]l =g,

that can be obtained by induction on p + ¢ using similar arguments as in the proof of (Z.82)) and the explicit form
of the derivative of the map
R 3t Pf(t)— f(t)+itOp(R)f(t) € L3(X).

Proofofthe Theorem. We introduce some more notations. We consider a fixed sequence {dj}ren+ from
S+ (=) and multi-indices of various lengths:

No={a=(o,...,05) E(N*), j>1, ay <...<aj}, N = N*U{0};

a=(o,...,05) e N* = Ha:=j; #0=0.
For two multi-indices & and 3 from N we say that § C o when# 6 <# a and §; € {a1,...0a4,}. Then we set

K4[T] := Opt(do®_,)- T —T-Op?(d), for any T € B(L*(X))

and for j =# «
Q,(t) = Kfl%_ .- Kg,, [P] € B(S(X)), Q(t) := P, € €5(2).

Due to our previous Lemma the maps R 3 ¢ — Q(t) € B(S(X)) are differentiable. Using induction on # a we
shall now prove that

i0:Qu(t) =0p*(h) - Q) + 3 Op™(rap) - Qp(t),
BEN Be (7.84)

tag € SY(Z) and depend continuously on ¢ € R.

For « =0 € N ([T84) is true with vy = 0, being the definition of P;.
Now suppose that we have proved (.84) for any o € N with4 o < s € N and let us choose as41 € N* such
that ag41 > 1 for s =0 or as41 > a; for s > 0 and denote by a := (a1, . .., as, as+1). We differentiate the equality

Qa(t) = Ki,_ [Qu(®D] = (96" (dass 0 P(=1)) - Qult) = Qu(t) - 9" (da.,)

Xs41
and use (Z.84), Lemma [T.40] and the equalities
O (da.,, o P-t) = —{h,da,,, } 0Py = {(day,, ©P—t) , h}.

In order to finish our proof it is sufficient to prove by induction on # o with o € A the fact that uniformly for
t in bounded sets we have

Q. (1) € B(L*(X)). (7.85)

The cased a = 0 is evident. Let o € N+ and suppose that (T.85) is true for any 8 € N with 3 C «. Let us denote
by R, (t) the sum appearing in the right-hand side of (Z.84]). The map

R >t R,(t) € B(S(X))
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is continuous and R, () € B(L?(X)) uniformly for ¢ in bounded sets. AA direct computation using (7.84) and the
fact that ®g is the identity on = shows that

d

7 (P-tQa(t)) = P-Ra(t),  (@)a(0) =0.

We conclude that .
Q) = / P_R.(s)ds
0
and thus we obtain (T.85]). [

8 Appendix

8.1 Regularization procedure

Lemma 8.42. Let Y be a finite dimensional real space. Suppose given p € R and q € N, then we consider the
weight
{FeSV)|0“F € Li,.(¥), la| <q} > F s v(F) := Z sup < y >P |(0°F)(y)| € R4

la]<q¥SY

and the linear spaces:
L, ={FeS8Y) |0°F € Li,(¥), lo| < q, v(F) < oo}

B, = {F € §'0) | Hbmbmen € SO), 540 (dm,9) — (F.),Yp € SOV), () < C,¥m € N}
Then we have: £, =B,.
Proof. Let n be the dimension of Y. If F € {F € 8'(Y)|0°F € Li,.(), |o| < q} is such that v(F) < oo, we

loc
choose the cut-off function y € D(Y) with x(0) = 1 and define x,,(y) := x(m~ly), and we also choose the
regularizing function 8 € S()) with fy dy0(y) = 1, and define 0,,(y) := m"0(my) and ¢, := Xm (0 * F) € S(Y).
Then it is straightforward to verify that given ¢ > 0
((bmu 90) - (Fa QD),V(,O € S(y)v

m—00

v(dm) = D sup <y >P [(0xm (0 * F))(y)] <

la]<q¥SY

< Z Z Cg sug <y >Pmlepl ’(50‘_6)()771 (9m * (5BF))‘ <

la|<gB<a Y

<CY Y swp <y st m @) (6 (0°F))| < C'u(F),

S
lal<q|8]<q—a] YEY

for m large enough. Thus £, C B,
For the reversed inclusion suppose we are given F € S’()) such that there exists an approximating sequence
{dmtmen C S(¥) as in the definition of the space %B,. By the usual properties of tempered distributions it
follows that 0%¢,, converges to 0“F in the sense of distributions for any multiindex « and also that the product
<y >P 0%p,, converges in the sense of distributions to < y >P 0“F that is a well defined distribution for any
p € R. As S§()) is dense in L!(Y) we conclude from the definition of 9B, that the sequences {< y >P 9%¢y, fmen,
for any |a| < g, belong to a finite ball of the space L>°()) that is the dual of L!'(}) and thus the sequence
{< y >P %P tmen has accumulation points in the ball ||.||s < (1 + €)v(F'), and due to the weak convergence to
<y >P 0%F, this distribution must belong to the above ball ||.||cc < (14 €)v(F). We conclude thus that B, C £,.
|
8.2 Some composition formulae
Lemma 8.43. For ¢ € BC(X) and U € Z, we have

(pt%ew)(Z) = p(z —u/2)ev(2), (v 1 9)(2) = @(z +u/2)ev(Z).

Proof. By direct computation we get

(90 uB QU)(Z) — 7r’2”/_d21 / dZ 672io(Z7Z1.,Z7Z2)QB[T(Z721,22)]90(21)671'0(U,Z2) —
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— 7T—2n

dZs e—Qi{<C—C1,Z—Zz>—<C—C2,Z—Zl>+<H>22/2>—<C2/27u>}@(zl)QB[’]‘(37 21, 7)]

T
i

dzy

:71'72”/ le/ ng e2i{<C1,zfzg>7<C2,zle7u/2>7<C,zfzg>+<§,z7z1>7<;L,Z2/2>}(p(21)QB[T(Z,21722)]-

Integration in ¢; and usual inverse Fourier formula for the Dirac mass gives zo = z; similarly integration in (o
implies z; = z — u/2. Thus, taking into account that the triangle 7 (z, z, 2 — u/2) is degenerate, we get:

(7 ev)(2) = p(z = u/2)e " PAOPT (2,2,2 — u/2)] = (2 — u/2)ev(Z).

Similarly:
(eU ﬁB @)(Z) — 7T72n/_dZ1 / dZ 672io(Z7Z1,Z7Z2)QB[T(Z7Z1,22)]67ia(U,Z1)<p(22) —

:F—zn/dzl/d22e—zi{<<—<1,z—zZ>—<<—<2,z—zl>+<u,zl/2>—<<1/2,u>}¢(22)93[7—(2721722)] _

_ 7T72n/ dZ, / dZs e2i{<<1,sz2+u/2>f<<j2,zle>7<C,zfzz>+<c,zle>7<,u,zl/2>}@(z2)QB[7(27Zl,22)] —

= o(z+u/2)e " UAONBIT (2,2 +u/2,2)] = (2 + u/2)ev (Z).

Proof of Lemma [3.8 By direct computation we obtain

(eX ﬂB ey)(z) — 7T_2n/HdU1 ‘/_ dUs €_2iU(Z_U17Z_U2)QB[T(Z,u1,u2)] e—iU(X,Ul) e—ia’(Y,Ug) —

= 7T_2n/ dUl / dU2 6_2i5(X’Y;Z’U1’UQ)QB[T(Z, U1, ’U,z)],
where we have introduced the shorthand notation
5(X7Y;27U17U2) Z=<C—/L1,Z—u2 > = <C_N272—U1 >+

+<&u/2>—<pi/2, x>+ <nug/2>— < pof2,y >=
:<C7Z_U2>_<C72—U1>+<§aul/2>+<777u2/2>—
—<pn,ztx/2—uy>+ < p2,z—y/2—u >.

Integration with respect to p1 and po implies us = 2z + /2 and u; = z — y/2 and the phase of the exponential
factor will be:
—<Ga/2>+<(y/2>+ <&ur/2>+ <nug/2 >=

=—<6a/2> < y/2>+<Ez2/2>—<&y/d>+<nz/2>+ <na/d>=
=—(1/2)0(Z,X +Y) + (1/4)a(Y, X).

Therefore . .
(eX ﬂB ey)(Z) — e—za(X—i—Y,Z) 6(1/2)U(X’Y)QB[T(Z,Z _ y/2’2 + LL‘/2)] —

= WDeENOBIT (2,2 — y/2, 2+ 2/2)]ex 1y (Z),
and the first equality is obtained. The second and the third follow immediately from Lemma
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8.3 Proof of Proposition

1) For (f,g) € [BC(X; Ll(X’))]2 and for any x € X we can define f(xz,.)xg(z,.) € L'(X") depending continuously
on (f,g) € [BC(X;Ll(X'))]2. We can verify that

sup || f(z,.) * g(x,)ll; < [[flloc,1l|glloo,1-
zeX

2) In a similar way, using the Hausdorff-Young inequality, for (f,F) € BC(X; L*(X’)) x BC(X; LP(X’)) and for
any x € X we can define f(x,.) x g(x,.) € LP(X’) and prove that

sup [|f(z,.) x gz, ), < [ flloo,1 [lglloo,p-

reX

For the case (f,g) € BC(X;L'(X")) x LP(Z) let us first suppose that p < co and g € S(Z). Then for any x € X
we can define

(P08 = [ dnfa.c = niglan).

and we remark that

(F %)@ OF < |z, / dn|f(z.& — )l lg(z. )P < |FIE / dn £ (& — ) lg(z. )P,
X X

| aa [ acita@or < i [ o[ de [ dnise—nlloar

1At [ an [ dn [ acli g =il <

< At / dn (sup|f<x,.>||1> / dzlg(e, mP = I|71%. lgl2
X! reX X

The case g € LP(Z) is now obtained using the density of S(Z) in LP(Z). For p = oo we simply observe that for any
e X:

[f(@, ) xg(@, )] < llgllscllf (@)l < Nlglloollflloo,-
3) We observe that
<ESTHP (9208 (f % 9))(X)| <

S Z Ca,b

b<lal

/ dny <n>m=elell 88 f(x,m)] < & —n >l [9e~bogg(x, & — n)]

< C max [|p,0, max max < & >—mAelfl 8b8ﬁ .
e llpm ofl ’|b\<\a\|m<\a|<mg>e~| ¢ 9(@ &)l

4) Evident.

8.4 Multiple magnetic derivatives

Using Corollary [3.16] and the formulae in Section [B] we obtain
Proposition 8.44. For B with components of class BC*(X) and for any f € S(E) we have

1. |DEDE flloo < Cla) Xp<a 22181 (jal— b)) @2in/21+3) (0)° (@) flo,

2. 1(a02)*(a22)* flloo < Cla] pca 20181<(lal— b)) (2[n/2)+3) ||D3D?+Bf||oo,
where e := {e1,...,en} and € :={e1,...,€,} are the canonical basis in X and X', respectively.

Proof. We first remark that
_ _ ~B . _ _ B B
ngf_ej-DEf_abejf, Dzjf_eJ-sz—abejf+5jf,

so that
DEf=(er- D)™ - (en- D)™ f = (adF)* - (adl ) f = (ad0) f.
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Next we use Proposition and Corollary B.16] in order to prove that
1Dz, flloo = llej - Daflloo < 1805 flloo + 167 flloo < 1802 flloo +Coo > [[(@2) flcos
lo| <(2[n/2]+3)

and similarly

1007 fllos < 1Ds, flloe +Coo D IIDEf]loc- (8.86)
|l < (2ln/2)+3)

We continue by recurrence using Remark [3.15] and Proposition B.13

DiD,, f = D3(ad2 f) + Dy(67 f) = D2(ad? f) + > > Cp(DaTeh) « (Do f) =
1<|al<(2[n/2]+3) b<a

=Dy(adl ) + > S Cptei Py x (Dhog f).
1<|al<(2[n/2]43) b<a

Let us suppose that for |a| < p we have proved that there exists some finite positive constant C, such that the
following estimation holds

IDSf oo < Cp > > [(@02)"(a02)" £ . (8.87)

b<a |B|<(|a|—[b])(2[n/2]+3)

Then the previous equality (8.87) implies that, for any j € {1,...,n}, (with (6;)r := d;x),

IDSDs, fllse < Cp Y > 1(a0)" (@d2)" (a0 f)lloo +

b<a [B|<(la|—-[b])(2[n/2]+3)

2. }Z S IDL@E) fl <

b<a |<(2[n/2]+3)

c [m max
\a\<17 |l <(2[n/2]+3)

<G > 1(a0) 02 (a0Z)" fl| oot (8.88)

b<a |B|<(|al—|b])(2[n/2]+3)
+C)C, > > > > (a02)°(a0Z)7 (00F)? f| oo
b<a 1<|B|<(2[n/2]4+3) e<b [y[<(|b]—|c])(2[n/2]+3)

One can find a constant K, depending only on p € N and on the dimension n of X, such that the expression in
(B88)) may be estimated by

> > 1(@02) 0 (@08 )7 flloo + K,CoCp Y > 1(a02)*(a08)7 f|oo <
b<a |B|<(|al—|b])(2[n/2]+3) b<a |B|<(1+]a]—|b)(2[n/2]+3)
<G (1+K,Cp) > > [(a02)®) (0057 f| o

b'<a’ |BI<(la’| =16} (2[n/2]+3)

where @/ := a + 6;, so that |a’| = |a| + 1. Thus, taking Cpy1 = C, (1 + K,C}), we obtain the condition (88T) for
la| = p+1 and the statement of point 1 of the Proposition for |a| = 0. Replacing then f with 9¢' f = (a0B)ef, we
completely prove the assertion of point 1 of the Proposition. Replacing the norms ||.||s with the norms ||.||2 makes
no changes, so we also have proved point 2 of the Proposition.

Let us observe now that we can also write

(002)"a0f) f = (a0)*(Day f) + (@02) (67 f) = (@02)"(Da, )+ D (@) (cfax 2 f),

|| <(2[n/2]43)

and a similar induction procedure allows us to prove points 3 and 4 of the Proposition. |
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8.5 Composition of symbols

In order to estimate commutators of symbols we shall need to control the rest in the Taylor series and we consider
for ¢ € C*(E)
Ps(X,Y) = (X +s(Y — X)),  forsel0,1].

Let us suppose that ¢ € S7*(Z) for some m € R. Then
lps(X, V)] <C <&+s(n—§) >".

Proposition 8.45. Suppose we are given ¢ € S;*(Z), ¢ € SP(E) and 6 € BC™(X; Co(X?)) (the bounded smooth

functions on X with values in the space of smooth functions on X2 with polynomial growth together with their
derivatives). Then

€0 (06,5 8)(X) = / ay / 1Ze 20XV XDy s~ )u(X, Y IO(Z)

defines a symbol of class S;'*P(Z) for any s € [0,1] and the mapping

Sy(E) x SH(E) 2 (6, %) = L4(0: ¢,455) € Sy HP(F)
is continuous; all is uniform with respect to s € [0, 1].

Proof. We use integration by parts observing once again that

(y; — ;) e 2i0(X~Y,X~2) _ %8@_6—21‘0()(—1/,)(-2)7
(n; — &) e 2i0(X-Y,X~2) _ _% azje—2z‘a(X—Y,X—Z)7
(Zj _ xj) e~ 2i0(X=Y,X=2) _ _% anje—zw(XfY.,sz)7

(Cj _ §j) e 2i0(X-Y,X-2Z) _ %ayj6—21‘<7(X7Y,X72)7

so that we have the identity

e~ 2i0(X-Y,X~27) _ (1 —i< (5_078@/ >>N2 (1+i <(€-n)9 >)N1 X
1+2|¢ —¢J? 1+2[ —nf

(8.89)

L+i<(@=2),0,>\" (1=i<(@—y),0 >\" o 2i0(X~Y,X~2)
142z — 2|2 1+ 2|z — yl|?

for any exponents N1, No, My, M>. Then we start by considering ¢ and 1 as test functions and we integrate by
parts. Due to our hypothesis we easily obtain the estimation

1L5(0; 0,95 5)(X)| <

<C (/ dY <§—77 >7N1< §+3(77_§) =M T —y >7"1(N1,N2)M1> y

X (/ Az < f — C >7N2< C >P< T —z >T2(N1,N2)M2> <
<O < & >MmTP, uniformly in s € [0, 1],

where we choose N1 > |m|+n, Na > |p| +n, My > r1(N1, Na) +n and My > ro(N1, N2) + n, with 7;(Ny, Na) the
powers dominating M 8{1\729(% y —x,z — ). Let us compute now the &-derivative of £,(0; ¢, )

(e, €4 (0; 6,03 9)) (X) =
o /” " /” A2 (0, + 0, )e XX D Oy — 2,2 = )0, (X V)0 (2)+

+ /_ dy /_ dZe 20X XD (3 y — 2,2 —2) (1 - 5) (0, 0), (X, V)] ¥(Z) =
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—210’X Y, X — Z)o(x,y—x,z—ilf) [S(agjqf))s(X,Yﬂ 1/}(Z)+

/ 72w'X Y, X— Z)e(

[I]

zy—x,z—2)0s(X,Y) [(0,¢) (2)] +

[I]

+

T

dy /_ dZe 20XV X=A) (g y — 3,2 —x) [(1 - 5) (0,0) , (X, V)] (2) =

= £5(6; (9g; 0), 3 8)(X) + £6(0; ¢, (9, 4); 8)(X).

Considering the z-derivative we obtain in a similar way that
(02, L5 (6; 9,93 5)) (X) =
= £,(0; (02, 0), 03 5) + Lo (056, (0s,1); 8) + Lo (0; ¢, 5 5)(X)

where 0(z,y — x,z — x) == O, 0(z,y — 2,2 — ). |

8.6 Some confinement results

In this Appendix we include some technical results inspired by [6]. In fact, as we only need some very particular
case of the results in [6], we prefered to include here some complete proofs for these simpler Lemmas.
Lemma 8.46. Suppose given the family {F, C SP(E) for some m € R, uniformly for (z,y) € X x X

(wyy)}(z,y)EXxX

and x € C§°(X) with suppy C Bgr(0). For |z —y| > 2R and for any N € N we have

uniformly in x and y in the given domain of X x X.

Proof. By the Theorem on composition of symbols 7. [x|#F|, )7, [x] is a symbol of type S§*(Z) and we have

(il (2) = [ d [ a0 0t oy ) (B ) (20) =
_3n/ dz1/ dCQ/ng/dZ4 (20210~ Ca) y— 20 (2o~ Z3, 2o~ Za)

x ' = = 22
72”A'dzl/ld<2Ldz4//dC3 25210 0) 202G )y (2 — ) (24 — y) Flay) (2, Cs) =

_zn/Xle//d@/de//dﬁs e em )2 N (2 — 2y —2)x(2 — 21 — Y) Flay) (2, () =

g / iz / dGs =)y (2 — 2y — w)x(z + 21 — ) Flay) (2 Cs) =
X 7

X(z1 — @)X (24 — Y) Fl0y)(Z3) =

=z

=" /X du ey (2 — u/2 — 2)x (2 +u/2 — y) Fo[Flay (2, )] (—u), (8.90)

where F3 is the Fourier transform with respect to the second variable. The hypothesis F{, ,) € Sg*(Z) implies that
for fixed 2z € X', Fo[F(4,4)(2,-)] is a tempered distribution having rapid decay (i.e. extending to a continuous linear
functional on C75; (X)) and such that for any ¢ € Cp5)(X) the map X 3 z =< Fa[F(, (2, )], ¢ >€ C is of class
BC*(X) uniformly for (z,y) € X x X. If suppy C Bgr(0) then the integral in (890) is to be taken only on the
domain Bygr(y — x) and 7. [X|4F (4, i7y[X](2,¢) = 0 for z ¢ Bagr((z +y)/2). For any N € N we have

<z—y > {T 18 E (@) iy [X ]} (Z)=n"" <ax—y >N /Xdu e (w0 x(z—u/2—x)x(24u/2—y) Fo[ F(z ) (2, )] (u) =

— N i(u, <zTr—y> 2N B . B
= /BZR(y . du e’y (z —u/2 — 2)x(z +u/2 — y) <7< — ) Rl A)NF(w,y)(Za () =

=" {( T,Y,% ) [(1 - A)NF(JC,U) (Za )]} (C)
Thus

(sug<<> < —y SN X F Gy in X} (2,0)] <
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< w s < ¢ { (Pl ) « [0 A Fep (2]} O] <

<7 supl <. > @, L, sup < ST [(L - AN FL o (2.0)]| < ©

Z7

uniformly in z and y with | — y| > 2R. In fact, here we have denoted by

2N
Oy y.2(u) = x(2 — 2 — u/2)x(z — y + u/2) (%)

that is of class C§°(X) and such that together with all its derivatives, they have bounded L?-norms uniformly
with respect to x, y and z. The derivatives 9¢0¢ (T2 [X)8F (2. 87y [X]) (Z) are clearly handled by completely similar
arguments. |

Lemma 8.47. Assume that {Gy}zex C SJ'(E) are uniformly bounded with respect to x € X for the topology of
SyU(Z) and v; (with j=1,2) are symbols of class SY(Z) with rapid decay in the X-variable. Then, by denoting

Ay =T o) [01] 87 G 17 TE, ) 02],

the family of symbols s, 15U, indeved by x € X, defines in any Schridinger representation a family of operators
{Az}zexr that satisfies the hypothesis of the Proposition [5.20]

Proof. First we observe that
5l 7%Ue = 5,87 TE, o) [01] 47 Got® T, ) 02] =

= %0 o) [smt701t78m] 7 [57,87Go] £ 30 02

and a similar formula is valid for 2, #"s,,

Remark that if v; (with j=1,2) is a symbol of class SY(Z) with rapid decay in the X-variable, then s, 50,455,
is also a symbol of class SP(Z) (Theorem on composition of symbols) and has also rapid decay in the X-variable
because:

<z > [5,4"w](X) =

<x>P
<xr—2z>P 2z >P

=g 2 /:/: dY dZ {< T —z>P eiQiG(X*Y’sz)} QBT (z,vy, z)]sm(Y)[ <z>P t‘O(Z)]

and we apply the usual integration by parts technique to control the growing factor < x — z >P.
So we can easily reduce the proof of the Lemma to the case m = 0. Let us compute

AP, = T [02] 47G, 17 TE (0147 T o) [04] 87 G 17 TE g [02].

We have then:

— 1/2 - 1/2
sup/ dz HQlyﬁBleHQ/B < sup HGwﬁBTﬁ,oﬂ“?]H sup/ dz Hf(y 0) [04] #5 ‘I(zo [nl]‘ L
yeX Jx TEX ex
But, extending formula ([3.23) to functions in SY(Z) with rapid decay in the X-variable,
(37 o)1) 27 TE gy fo1]) (X) =
= /_/_Xm dX2 672iU(X7X1,X7X2)QB (T(I,I1;$2)) (Qg[y] * (f(y)o)bl)) (Xl) (Q [ ] (I(z 0)01)) (XQ)

so that we can write
<y—2>N|(F o)t T o lon]) (X)| =

=<y—2z>V

dX, dXye 20X =X, X=X2)) B (T(x,xl,xg)) <r—x1> P<ax—29>"P x

[( (i/2) <@ — @,0¢, > >P(@[y]*(s(yyo)n1))} (X1)%

<7 —m2 >
K < x—xx_lil’a& >>p GHER (%,owl))] (X2)| <
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< Cnn(B Z Z//Xmng <E—&G>TI<E— G > I< g — gy SV O P g gy SNEO-P

lal<q[b|<q

<<y > o [ (AL 2N G () | 060

<xr—1T9 >

x<ama > o, [(FUEE 00 2N G o)) | () < xa(8)

Lemma 8.48. Assume that {Gy}zex C S5 (ZE) are uniformly bounded with respect to x € X for the topology of
S (Z) and v is a symbol of class SY(Z) with rapid decay in the X-variable. Then, by denoting

Q[x :_gzo)[ ]ﬂBG

the family of symbols s, tPA, indeved by x € X, defines in any Schrédinger representation a family of operators
{Az}zexr that satisfies the hypothesis of the Proposition [5.20]

Proof. As remarked at the begining of the proof of the previous Lemma [8.47 it is enough to consider the case
m = 0. Evidently the product 2,452, is treated identically as in the proof of LemmaRB47 So let us consider the
opposite situation 2, 4P2A, for m = 0:

sup/ dzHQlyﬁBQl_zch/;:sup/ dz
yeX Jx yeX

Let us choose now ¢ € C§°(X) such that [, ¢*(x)dz = 1 and thus, using Lemma B.46 and our L?-continuity result
n [12]

1/2

B

%L 0ol o 0]

T8 o )P G TP TE | [f] = / A T8 o [0t Gy putP o, PGP TE | [6),

sup/dzHQl 18, H€B<sup/dz/ d:v ’Eyo) ﬂBG ﬁBTzo) ‘ ‘f(xo Zisten ﬁBEzo)[]‘l/j.
But
TGP TE el = [ duTh ol PG AP gl
so that (using the rapid decay of v)
Sgngz}’ﬂyﬂBﬁ_z||i <C’Nsup/ dz/ da:/ du <y—u>N<z—u>N<z—z>7V
(where for any N € N there exists a finite positive constant Cy such that the inequality is true). |
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