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Glycogen synthesis by the direct or indirect pathways depends on
glucose availability: In vivo studies in frog oocytes
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Abstract Besides the classic direct route, frog oocytes incorpo-
rate glucosyl units into glycogen by the so-called indirect path-
way. The operation of both pathways depends on glucose
availability. Below 0.5 mM glucose (calculated intracellular con-
centration), the indirect route accounts for 90% of polysaccha-
ride formation, while the direct pathway supports 70% of total
glucose incorporation when administered glucose is above
1.5 mM. A sigmoidal curve was obtained for the direct pathway
with nH = 2.04, and half saturation was reached at 2.6 mM glu-
cose. The curve for the indirect route presented an nH of 1.15 and
an S0.5 of 0.9 mM glucose.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

In addition to the classic direct route, glycogen may be also

synthesized from glucose by an indirect pathway which in-

volves prior degradation of glucose to trioses, followed by glu-

coneogenesis to resynthesize hexose phosphates, which are

then commited to glycogen formation [1–3]. The operation

of the indirect pathway has been observed in several species

and cells [1,4,5], but rat liver has been the most studied system.

A vexing problem has been the quantitation of the relative

contributions of the direct and indirect pathways to glycogen

formation from a glucose load, and widely ranging estimates

of the percentage of glucose carbon that follows the indirect

pathway have been reported. Most of the variations surely

stem from limitations of the methods employed and also from

differences in the experimental conditions used (for a review

see [6]). However, the influence of the nutritional state as a ma-

jor factor involved in the indirect route contribution has been

recognized in several studies. As Newgard and coworkers al-

ready noted [2], the administration of a large glucose bolus

to rats resulting in a portal glucose concentration of 15 mM

causes preferential glycogen synthesis through the direct path-

way. Also, Landau and Warren [7] reported that the contribu-
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tion of the pathways appears to be determined by the size

of the glucose load, with larger contributions of the indirect

route occurring with smaller loads. A study conducted in

rats showed a higher contribution of the indirect pathway in

48 h fasted animals as compared with fed ones [8]. In agree-

ment with these results, hepatocyte cultures derived from

fasted-refed and fasted rats showed increased contribution of

the indirect pathway compared with hepatocytes from fed rats

[9].

Although experimental evidence for the operation of the

indirect pathway in vivo was reported two decades ago, the

regulatory mechanisms underlying the alternative or simulta-

neous operation of the two metabolic routes for glycogen syn-

thesis remain largely unknown. This prompted us to search for

a metabolic condition that could signal the preferential opera-

tion of one pathway over the other, and for an appropriate

experimental system in which accurate measurements of the

contribution of each pathway could be obtained. We have used

the full grown stage VI amphibian oocyte as a model system

for the in vivo study of glucose metabolism, its organization

and regulation. The advantages of this system have been de-

scribed elsewhere [10–12]. Glycogen is the main end product

of glucose metabolism in oocytes [13,14]. A minor portion of

the glucose microinjected into the cells (around 5%) is metab-

olized through the pentose phosphate pathway [15]. We have

shown that, in vivo, oocytes incorporate glucosyl units into

glycogen both by the direct and indirect routes [5]. This means

that the Embden–Meyerhof pathway is operative in these cells,

as also shown by Kessi et al. [5]. Furthermore, we developed a

novel approach to estimate the contributions of both routes to

glycogen synthesis in vivo based on the inhibition of gluconeo-

genesis by fructose 2,6-bisphosphate (fructose-2,6-bisP). The

aim of the present work was to study the influence of glucose

concentration in the operation of the two pathways. The re-

sults obtained show that the contribution of one pathway or

the other to glycogen formation depends indeed on the amount

of glucose microinjected into the oocytes. The indirect path-

way is the only route operating at low glucose concentrations,

while the direct route becomes predominant when intracellular

glucose rises above 1 mM.
2. Materials and methods

2.1. Materials
Labeled compounds and mixtures for scintillation counting were

from New England Nuclear, Boston, MA. Non-radioactive com-
pounds and metabolites were mostly from Sigma.
blished by Elsevier B.V. All rights reserved.



Fig. 1. Effect of glucose concentration on glycogen labeling. (A)
Groups of 8 oocytes were microinjected with 50 nL of variable
amounts of [U-14C]glucose (60000 cpm). Other oocytes received the
same solution plus 0.3 nmol (0.1 mM intracellular calculated concen-
tration) of unlabeled fructose-2,6-bisP. After 15 min incubation, cells
were individually processed for glycogen isolation and radioactivity
counting. (B) Quantitative contributions of the direct and indirect
pathways to glycogen synthesis. Values were obtained as described in
the text.

664 A. Preller et al. / FEBS Letters 581 (2007) 663–666
2.2. Animals
Freshly excised stage VI oocytes from the chilean frog Caudiverbera

caudiverbera were used. The animals were obtained from a local dealer,
fed and maintained in the laboratory until used.

2.3. Microinjection procedures and metabolic labeling
Before the experiments, aliquots of the radioactive compounds to be

injected were dried in a Univapo concentrator centrifuge, unlabeled
solutions were added and the samples were resuspended in Barth saline
[16] in order to achieve the desired concentrations. High pressure liquid
chromatography using a Dionex CarboPac PA1 column was used to
check for purity of commercial compounds. By means of a Narishige
automatic injector, individual oocytes were microinjected with 50 nL
of saline containing the desired compounds. Then, groups of six to
eight oocytes were incubated in 75 lL saline at 22� under 100% O2.

2.4. Glycogen isolation
After incubation glycogen was isolated from individual cells by re-

peated ethanol precipitation as described [17].

2.5. Quantitative estimation of the direct and indirect pathways
2.5.1. Comparison between the 3H/14C ratio of the administered

doubly labeled glucose and that of the newly formed glycogen. Groups
of six oocytes were microinjected with 0.5 or 6 nmol of [U-14C,
5-3H]glucose, with 3H/14C ratios (dpm/dpm) of 2.82 and 2.56, respec-
tively. After 20 min incubation, each oocyte was individually processed
for glycogen isolation and further radioactivity counting. Then, the rel-
ative 3H/14C was calculated by dividing the 3H/14C ratio in glycogen by
the 3H/14C in the injected glucose and percent detritiation was esti-
mated.

2.5.2. Inhibition of the indirect pathway by fructose-2,6-
bisP. Groups of 8 oocytes were microinjected with 50 nL of variable
amounts of [U-14C]glucose (60000 cpm). Other oocytes received the
same solution plus 0.3 nmol (0.1 mM intracellular calculated concen-
tration) of unlabeled fructose-2,6-bisP. After 15 min incubation, cells
were individually processed for glycogen isolation and radioactivity
counting. Substracting the values for glucose incorporation by the di-
rect route (data obtained in the presence of fructose-2,6-bisP) from the
total incorporation values (in the absence of fructose-2,6-bisP) the
amount of glucose metabolized through the indirect pathway was ob-
tained (total � direct = indirect).
3. Results and discussion

One of the most employed techniques for estimating the con-

tributions of both the direct and indirect metabolic pathways

to glycogen synthesis has been the comparison between the
3H/14C ratio of the doubly labeled administered glucose and

that of the newly formed glycogen. However, it has been rec-

ognized that 3H/14C ratios are relatively insensitive to path-

ways contributions (for an extended discussion see [5]). This

situation prompted us to search for a metabolic condition that

could signal the preferential operation of one pathway over the

other, and for an appropriate experimental system in which

accurate measurements of the contribution of each pathway

could be obtained. In previous work, we have shown that coin-

jection of [U-14C]glucose (0.5 nmol) together with unlabelled

fructose-2,6-bisP into oocytes drastically inhibits label incor-

poration into glycogen in vivo [5]. Fifty per cent inhibition

was obtained with 2 lM fructose-bisP, a value identical to

the Ki for the hexose-bisP of the purified oocyte fructose bis-

phosphatase [18]. Thus, fructose-2,6-bisP may be used as a po-

tent inhibitor of gluconeogenesis and therefore of the indirect

route allowing an accurate estimation of the contributions of

the direct and indirect pathways for glycogen synthesis.

The dependence of glycogen labeling on glucose concentra-

tion after [U-14C]glucose microinjection is shown in Fig. 1A.
The curve obtained in the absence of fructose-2,6-bisP (control

curve) corresponds to total label incorporation, i.e., direct plus

indirect pathways. Label incorporation into glycogen in the

presence of fructose-2,6-bisP corresponds to glycogen synthe-

sized through the direct pathway. An amount of 0.3 nmol fruc-

tose-2,6-bisP was microinjected into the oocytes, which is

equivalent to 0.1 mM intracellular concentration and is 50

times the Ki. The extent of the inhibition produced by fruc-

tose-2,6-bisP depends on the amount of glucose injected into

the oocytes. The inhibition is maximal (about 90%) at low glu-

cose loading, and reaches a plateau of 30% inhibition around

6 nmol glucose. Substracting the values for glucose incorpora-

tion by the direct route from the total incorporation values, the

amount of glucose metabolized through the indirect pathway

(total � direct = indirect) was obtained (Fig. 1B). Inspection

of the curves of Fig. 1B shows that the indirect pathway exhib-

its a michaelian type response (Table 1) with a half saturation

at 0.9 mM glucose and a Hill coefficient of 1.15. On the other

hand, the direct pathway shows a distinctive sigmoid behavior

with a Hill coefficient of 2.04 and half saturation at 2.6 mM

glucose (Table 1). We propose that the direct pathway behaves

as an ultrasensitive system with a built-in threshold operating

as a bioswitch [19,20] triggered by glucose or a derived metab-

olite. The calculated percent contribution of both pathways to

glycogen synthesis is depicted in Fig. 2. It is clearly seen that

the indirect pathway accounts for around 90% of polysaccha-

ride formation when glucose availability is low (below



Table 1
Kinetic constants for the two pathways for glycogen synthesis in frog
oocytes

Pathway nH S0.5 (mM)

Direct 2.04 2.60
Indirect 1.15 0.93

Values for the direct pathway were obtained by linearization of the
corresponding curve in Fig. 1B by the method of Lineweaver–Burk.
The constants for the indirect pathway were obtained by transforma-
tion of the data presented in Fig. 1B to a Hill plot.

Fig. 2. Estimated percentage contribution of the direct and indirect
pathways for glycogen synthesis in frog oocytes. Values were estimated
by assigning 100% incorporation to each experimental point in the
control curve in Fig. 1A. Calculated intracellular glucose for each
amount of glucose injected into the oocytes is shown.

Table 2
Relative 3H/14C ratios in glycogen from oocytes microinjected with 0.5
and 6 nmol doubly labeled glucose

Injected glucose Relative 3H/ 14C Percent detritiation

0.5 0.46 ± 0.023 (54) – 54
6.0 0.64 ± 0.010 (36) – 18a

Groups of six oocytes, in duplicate, were injected with 50 nL of saline
containing 0.5 or 6 nmol of [U-14C]glucose plus [5-3H]glucose. After
20 min incubation, each oocyte was individually processed for glyco-
gen isolation and radioactivity counting. Results are given as the

means ± S.E.M. of 12 individual observations. Relative 3H/14C is the
3H/14C ratio in glycogen divided by the 3H/14C in the injected
substrate. Values of 3H/14C (dpm/dpm) for the 0.5 and 6 nmol solu-
tions to be injected were 2.82 and 2.56, respectively.
aCorrected for 30% indirect pathway operation at 6 nmol glucose, see
Section 3.
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0.5 mM), while the direct route supports approximately 70% of

total glucose incorporation at glucose levels above 1.5 mM.

We have never observed less than 30% operation of the indi-

rect pathway, even if glucose injected was raised up to 9 nmol

(3 mM intracellular). This observation suggests that the indi-

rect pathway is the route operating by default, while the direct

pathway requires a critical glucose concentration in order to

become activated. Both pathways are equally active at about

1 mM intracellular glucose.

As mentioned above, the comparison between the 3H/14C ra-

tio of the doubly labeled administered glucose and the ratio in

glycogen has been the preferred technique for estimating the

contributions of both the direct and indirect metabolic path-

ways to glycogen synthesis. The rationale of this approach lies

in the fact that if glucose is converted into glycogen exclusively

by the direct pathway, then the 3H/14C ratio in glycogen

should be identical to the ratio in the microinjected glucose.

However, if glucose follows the indirect route, the 3H/14C ratio

in glycogen should be lower because of detritiation at the tri-

ose-phosphate isomerase reaction. We have also used this ap-

proach in order to compare the results with the ones obtained

by our method using fructose-2,6-bisP as inhibitor of the indi-

rect route. With this purpose, oocytes were microinjected with

different concentrations of [U-14C, 5-3H]glucose. The results
obtained show that a significant detritiation (54%) of glycogen

glucosyl units occurs in oocytes microinjected with 0.5 nmol of

radioactive glucose (0.17 mM calculated intracellular concen-

tration assuming a cell volume of 3 lL and homogeneous dis-

tribution of the sugar). In oocytes that received 6 nmol glucose

(2 mM intracellular concentration), glycogen detritiation was

only 18% (Table 2). We should stress the fact that the experi-

mentally obtained value in the latter case was 36%, but the re-

sults obtained before by using fructose-2,6-bisP showed that,

even under conditions where the direct pathway is the prefered

one, around 30% of the indirect route is always operative.

Thus, the experimental value of 36% involves the contribution

of both pathways (100%), and therefore was corrected by dis-

counting the contribution of the indirect route (30%). The re-

sults obtained by using the 3H/14C ratios indicate that, at low

glucose concentrations, at least 50% of the microinjected glu-

cose reached the step of the triose phosphates before beeing

incorporated into glycogen, and that the contribution of the

indirect pathway is significantly higher than that of the direct

route at low glucose concentrations. These results are in agree-

ment with the relative lack of sensibility of the 3H/14C ratios to

pathways contributions. When glucose availability is low

(0.5 nmol injected), the dual tracer technique showed 50% con-

tribution of the indirect pathway, while the combined use of

radioactive glucose with fructose-2,6-bisP allowed an estima-

tion of 90% contribution of the pathway under the same con-

ditions. It seems therefore that, compared with the dual tracer

technique, our method allows improved accurate measure-

ments of the contribution of each pathway and enables correct

quantitative distinction between them.

The experimental system used in this study allows the con-

trol of the operation of the direct or indirect pathways by

manipulating the amount of glucose microinjected into the oo-

cytes in the presence or absence of fructose-2,6-bisP. Thus, we

could induce cellular conditions in which glycogen deposition

occurs solely by the indirect route. Although precursor concen-

tration is one of the factors regulating the proportion of direct

versus indirect pathways contribution to glycogen synthesis,

the mechanism by which high glucose levels (or a derived

metabolite) triggers the direct pathway still remains unclear.

Glucose-6-P stands out as the best candidate, since it has been

long recognized that the activity of glycogen synthase largely

depends on the presence of the hexose-P. We have found that

oocyte glycogen synthase is in fact allosterically activated by

glucose-6-P under in vivo conditions [21]. Also, it has been

shown that glucose-6-P stimulates the activity of protein phos-
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phatase 1, which activates glycogen synthase by dephosphoryl-

ation [22]. The switch-like response described above for the di-

rect pathway may arise from the various phosphorylation-

dephosphorylation steps involved in the regulation of glycogen

synthase activity.

Finally, we would like to point out that at present we have

no good explanations as to the physiological significance of

the indirect pathway. Compared with the direct route, this is

a circuitous and energy wasting process. It seems that glycogen

synthesis has a higher level of complexity than previously be-

lieved, and answers to these and several other unresolved prob-

lems should wait for further work.
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