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In this paper we study plenary train algebras of arbitrary rank.
We show that for most parameter choices of the train identity,
the additional identity (x2 − ω(x)x)2 = 0 is satisfied. We also find
sufficient conditions for A to have idempotents.
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1. Introduction

Nonassociative algebras arise in population genetic models in a quite natural way. For more infor-
mation see Worz-Busekros [6], Lyubich [4] and Reed [5]. In particular Gutierrez [3] shows that every
genetic algebra is a plenary train algebra.

Plenary powers are defined inductively by x(1) = x and x(n+1) = (x(n))2. The pair (A,ω) is called
a baric algebra if ω : A → K is a nontrivial homomorphism. If a baric algebra (A,ω) satisfies an iden-
tity of the form

x(n) = α1ω(x)2n−1−1x + α2ω(x)2n−1−2x2 + · · · + αn−1ω(x)2n−2
x(n−1), (1)

where
∑n−1

i=1 αi = 1, then we call it a plenary train algebra. We will further assume that A is commu-
tative.

An important question in nonassociative algebras in general and in train algebras in particular is
the existence of idempotents. Given an idempotent we may better understand the algebra studying
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its Peirce decomposition. For train algebras this was done by Gutierrez [3]. In addition to this mathe-
matical importance, idempotents are also significant in the biological application since they represent
a genetic equilibrium.

2. Main section

Lemma 1. Let A be any baric algebra with weight function ω. If A satisfies the identity

(
x2 − ω(x)x

)2 = 0, (2)

then, for any integers i, j > 0 and for any element x of weight 1:

(
x(i) − x( j))2 = 0. (3)

Proof. We proceed by induction on n = |i − j|. The case n = 0 is obvious. The case n = 1 is a direct
consequence of (2). We start by expanding and linearizing (2):

4(xx)(xy) − 2ω(y)x(xx) − 2ω(x)y(xx) − 4ω(x)x(xy) + 2ω(x)ω(y)(xx) + 2ω(x)ω(x)(xy) = 0.

When ω(x) = ω(y) = 1 this shortens to

(
4x2 − 4x

)
(xy) + 2xy − 2x2 y − 2xx2 + 2x2 = 0. (4)

Our inductive hypothesis is that (3) holds for all x of weight 1 and for all i, j such that |i − j| < n:

2x(i)x( j) = x(i+1) + x( j+1). (5)

Replacing y = x(n) in (4) we get

(
4x2 − 4x

)(
xx(n)

) + 2xx(n) − 2x2x(n) − 2xx2 + 2x2 = 0.

Using (5) on the first occurrence of xx(n)

(
2x2 − 2x

)(
x2 + x(n+1)

) + 2xx(n) − 2x2x(n) − 2xx2 + 2x2 = 0.

Again using (5) where appropriate

2x(3) + (
x(3) + x(n+2)

) − (
x2 + x(3)

) − 2xx(n+1) + (
x2 + x(n+1)

)
−(

x(3) + x(n+1)
) − (

x2 + x(3)
) + 2x2 = 0.

Collecting similar terms

x(n+2) − 2xx(n+1) + x2 = (
x(n+1) − x

)2 = 0.

This proves (3) for |i − j| = n. �
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Theorem 2. Let A be a plenary train algebra of rank n with defining identity:

x(n) = α1ω(x)2n−1−1x + α2ω(x)2n−1−2x2 + · · · + αn−1ω(x)2n−1
x(n−2), (6)

where
∑n−1

i=1 αi = 1. Let

λ =
n−1∑
i=1

(n − i)αi .

Assume A satisfies (x2 − ω(x)x)2 = 0. If λ �= 0 then A has idempotents.

Proof. Let x be any weight one element of A and let

bk =
k∑

i=1

αi, b =
n−1∑
k=1

bkx(k).

Notice that
∑n−1

k=1 bk = λ and that bn−1 = 1. Next we calculate b2:

b2 =
n−1∑
k=1

n−1∑
j=1

bkb jx
(k)x( j)

= 1

2

n−1∑
k=1

n−1∑
j=1

bkb j
(
x(k+1) + x( j+1) − (

x(k) − x( j))2)
.

Using Lemma 1, (x(k) − x( j))2 = 0,

b2 = 1

2

(
n−1∑
k=1

n−1∑
j=1

bkb jx
(k+1) +

n−1∑
k=1

n−1∑
j=1

bkb jx
( j+1)

)
.

Switching the indices of the first sum and using that
∑

bk = λ,

b2 =
n−1∑
k=1

n−1∑
j=1

bkb jx
( j+1) = λ

n−1∑
j=1

b jx
( j+1).

From the plenary identity and noticing that bn−1 = 1,

b2 = λ

(
n−2∑
j=1

b jx
( j+1) +

n−1∑
k=1

αkx(k)

)
.

Collecting terms and using the definition of the bk ,

b2 = λ

(
α1x +

n−1∑
k=2

(bk−1 + αk)x(k)

)
= λ

(
n−1∑
k=1

bkx(k)

)
= λb.

We conclude that e = b
λ

is an idempotent in A. �
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We may notice that in the previous proof the hypothesis (x2 − ω(x)x)2 = 0 is not fully used.
A sufficient condition would be

∑
k< j<n bkb j(x(k) − x( j))2 = 0, where the bk are defined as in the

proof of the theorem.

Lemma 3. Let A be a baric algebra. If all weight one elements x ∈ A satisfy the equation:

x(k) =
n−1∑
i=1

βi x
(i), (7)

for some fixed k � n and
∑

βi = 1, then they also satisfy

∑
1�i< j<n

βiβ j
(
x(i) − x( j))2 = 0. (8)

Proof. Let

S = 2
∑

1�i< j<n

βiβ j
(
x(i) − x( j))2

.

We can turn (8) into a full double sum by adding some trivially zero terms where i = j:

S =
n−1∑
i=1

n−1∑
j=1

βiβ j
(
x(i) − x( j))2

.

Expanding the squared terms

S =
n−1∑
i=1

n−1∑
j=1

βiβ j
(
x(i))2 +

n−1∑
i=1

n−1∑
j=1

βiβ j
(
x( j))2 − 2

n−1∑
i=1

n−1∑
j=1

βiβ jx
(i)x( j).

Changing the summation order and factoring the sums

S =
n−1∑
j=1

β j

n−1∑
i=1

βi x
(i+1) +

n−1∑
i=1

βi

n−1∑
j=1

β jx
( j+1) − 2

n−1∑
i=1

βi x
(i)

n−1∑
j=1

β j x
( j).

Using (7) and that
∑

βi = 1

S = 2
n−1∑
j=1

β jx
( j+1) − 2

(
x(k)

)2
.

Using (7) again for x2 in place of x

S = 2x(k+1) − 2x(k+1) = 0. �
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Lemma 4. Let A be a plenary train algebra of rank n with defining identity:

x(n) =
n−1∑
i=1

αiω(x)2n−1−2i−1
x(i),

where
∑n−1

i=1 αi = 1. Consider an element x ∈ A of weight one and let its plenary powers up to x(n−1) be the
spanning set of a vector space where x(i) = (0 . . . 1 . . . 0) has a one in the ith-position. Then we can express
x(k+1) in terms of this spanning set by (1,0,0,0, . . . ,0)Ak where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .

. . .

0 0 0 . . . 1 0
0 0 0 . . . 0 1
α1 α2 α3 . . . αn−2 αn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. The proof goes by induction on k. For k = 0 there is nothing to prove. So we assume

x(k) =
n−1∑
i=1

βi x
(i) = (β1, β2, β3, . . . , βn−2, βn−1) = (1,0,0,0, . . . ,0)Ak−1.

Replacing x by x2 we have

x(k+1) =
n−1∑
i=1

βi x
(i+1) =

n−1∑
i=2

βi−1x(i) + βn−1

n−1∑
i=1

αi x
(i)

= (0, β1, β2, . . . , βn−3, βn−2) + βn−1(α1,α2,α3, . . . ,αn−2,αn−1)

= (β1, β2, β3, . . . , βn−2, βn−1)A

= (1,0,0,0, . . . ,0)Ak. �
Theorem 5. Let A be a plenary train algebra of rank n with defining identity:

x(n) =
n−1∑
i=1

αiω(x)2n−1−2i−1
x(i).

Let λ1, . . . , λn−1 be the eigenvalues of the matrix A defined in Lemma 4 (the λk are the nonzero roots of the
associative polynomial xn − ∑

αi xi ). If all the products λiλ j are distinct then A satisfies (x2 − ω(x)x)2 = 0
and A has idempotents.

Proof. Using Lemma 3 and Lemma 4 we get identities

n−1∑
i=1

n−1∑
j=1

βkiβkj
(
x(i) − x( j))2 = 0,
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where (βk1, βk2, βk3, . . . , βkn−2, βkn−1) = e1 Ak−1 and k is any positive integer. So we have a homoge-
neous system of identities satisfied by the squares (x(i) − x( j))2. In matrix form this can be written
as

〈(
e1 Ak−1)T

e1 Ak−1, U
〉 = 0,

where U is the symmetric matrix such that Uij = (x(i) − x( j))2, and where the angled bracket of two
matrices X , Y stands for 〈X, Y 〉 = ∑

i, j Xi j Yi j . Now consider v1, . . . , vn−1 eigenvectors corresponding
to the distinct eigenvalues λ1, . . . , λn−1 of A, and write e1 = ∑

ci vi as a linear combination of them.
Since ek = e1 Ak−1 = ∑

λk−1
i ci vi we notice that the ci vi also form a basis of eigenvectors for A, so we

may assume that ci = 1 for every i. Then

0 = 〈(
e1 Ak)T

e1 Ak, U
〉 =

〈(
n−1∑
i=1

λk
i vi

)T n−1∑
i=1

λk
i vi, U

〉

=
〈

n−1∑
i=1

n−1∑
j=1

(λiλ j)
k vT

i v j, U

〉

=
∑

1�i� j<n

(λiλ j)
k〈(vT

i v j + vT
j vi

)
, U

〉
.

Since this holds for all k, the Vandermonde determinant says that for each 1 � i � j < n we have

〈(
vT

i v j + vT
j vi

)
, U

〉 = 0.

Using the symmetry of U ,

2
〈(

vT
i v j

)
, U

〉 = 0.

Since the vi form a basis for the (n − 1)-dimensional row space, the matrices v T
i v j form a basis for

the space of all (n − 1) × (n − 1) matrices. To verify this, it suffices to show that they are linearly in-
dependent. In fact, if

∑
ri j v T

i v j = 0 then multiplying by any vk on the left we get
∑

j(
∑

i ri j vk v T
i )v j .

Since the v j are linearly independent,
∑

i ri j vk v T
i = 0 for every k, j. Now since the vk form a basis∑

i ri j v T
i = 0, and finally since the v T

i are linearly independent, ri j = 0 for every i, j.
Finally, this shows that U is orthogonal to a basis for the space of all matrices, so U = 0 and

in particular (x(i) − x( j))2 = 0 for every i, j. Finally, to use Theorem 2 we need to check that λ =∑
(n − i)αi �= 0. We will show that this just means that 1 is not a repeated eigenvalue of A and so it

is part of the hypothesis. We factor the associative polynomial:

xn −
n−1∑
i=1

αi x
i =

n−1∑
i=1

αi
(
xn − xi) =

n−1∑
i=1

n−1∑
k=i

αi
(
xk+1 − xk)

= (x − 1)

n−1∑
i=1

n−1∑
k=i

αi x
k.
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Evaluating the right factor at x = 1 we get

n−1∑
i=1

n−1∑
k=i

αi =
n−1∑
i=1

(n − i)αi .

So A has idempotents by Theorem 2. �
As an illustration we consider some small cases:

Example 6 (n = 3). Let A be a plenary train algebra satisfying

x(3) = αx + (1 − α)x2.

The nonzero roots of the polynomial x3 − (1 − α)x2 − αx are 1 and −α so by Theorem 5 we can
guarantee that A has an idempotent as long as 1,−α,α2 are all different, that is α /∈ {0,1,−1}.
Furthermore, for every x of weight 1, we know an idempotent to be

1

α + 1

(
αx + x2).

Notice that when α = 0, the formula still works and x2 is an idempotent. When α = 1 we do not
find an idempotent in this way but Etherington [2] showed that there are idempotents in this case.
Etherington also showed that when α = −1 there may not be any idempotents.

Example 7 (n = 4). Let A be a plenary train algebra satisfying

x(4) = αx + βx2 + γ x(3),

where α + β + γ = 1. Lets assume that 1, λ,μ are the nonzero roots of x4 − γ x3 − βx2 − αx = 0 so
that α = λμ, β = −(λμ+λ+μ), γ = λ+μ+ 1. Theorem 5 says that A has an idempotent as long as
1, λ,μ,λμ,λ2,μ2 are all distinct, that is λμ(λ2 − 1)(μ2 − 1)(λ2 − μ2)(λ − μ2)(λ2 − μ)(λμ − 1) �= 0.

Furthermore, in this case, we know an idempotent to be

1

3α + 2β + γ

(
αx + (α + β)x2 + (α + β + γ )x(3)

)
.

One may notice again that the given condition is not necessary and to answer the question it
suffices to show that α(α + β)x + α(α + β + γ )x2 + (α + β)(α + β + γ )x(3) = 0 (see the proof of
Theorem 2). For this we have to solve a linear algebra problem. We need to know whether the vector

(α(α + β) α(α + β + γ ) (α + β)(α + β + γ ) )

is in the row space of the following matrix:

⎛
⎝ αβ αγ βγ

αγ (α + βγ ) αγ (β + γ 2) (α + βγ )(β + γ 2)

α(β + γ 2)(αγ + β(β + γ 2)) α(β + γ 2)(α + βγ + γ (β + γ 2)) (αγ + β(β + γ 2))(α + βγ + γ (β + γ 2))

⎞
⎠ .

The coefficients of this matrix are obtained applying Lemma 3 to the train identity and to the higher
order identities from Lemma 4. It turns out that this is the case as long as (β − 1)(α − 1) �= 0. We
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also need that 3α + 2β + γ �= 0. Finally, in terms of the eigenvalues, the condition is

(
λ2 − 1

)(
μ2 − 1

)
(λμ − 1) �= 0.

This result was obtained recently by Labra and Suazo [1].

Example 8 (n = 5). Let A be a plenary train algebra satisfying

x(5) = αx + βx2 + γ x(3) + (1 − α − β − γ )x(4).

Skipping the details, using Maxima to solve the linear system, we know an idempotent to be

1

3α + 2β + γ + 1

(
αx + (α + β)x2 + (α + β + γ )x(3) + x(4)

)
,

as long as (α + γ − 1)(αγ + αβ − α − β + 1)(3α + 2β + γ + 1) �= 0. In terms of the eigenvalues, the
condition is

(
λ2 − 1

)(
μ2 − 1

)(
ν2 − 1

)
(λμ − 1)(λν − 1)(μν − 1) �= 0.

3. Open problem

One question that remains open is to find precise necessary and sufficient conditions for a plenary
train algebra to have idempotents.
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