Idempotents in plenary train algebras

Antonio Behn ${ }^{\text {a }, *, 1}$, Irvin Roy Hentzel ${ }^{\text {b, }}{ }^{2}$
${ }^{\text {a }}$ Departamento de Matemáticas, Fac. de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
${ }^{\mathrm{b}}$ Department of Mathematics, Iowa State University, Ames, IA 50011-2064, USA

A R T I C L E I N F O

Article history:

Received 20 March 2008
Available online 8 October 2010
Communicated by Efim Zelmanov

Keywords:

Plenary train algebras
Idempotent element

Abstract

In this paper we study plenary train algebras of arbitrary rank. We show that for most parameter choices of the train identity, the additional identity $\left(x^{2}-\omega(x) x\right)^{2}=0$ is satisfied. We also find sufficient conditions for A to have idempotents.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Nonassociative algebras arise in population genetic models in a quite natural way. For more information see Worz-Busekros [6], Lyubich [4] and Reed [5]. In particular Gutierrez [3] shows that every genetic algebra is a plenary train algebra.

Plenary powers are defined inductively by $x^{(1)}=x$ and $x^{(n+1)}=\left(x^{(n)}\right)^{2}$. The pair (A, ω) is called a baric algebra if $\omega: A \rightarrow K$ is a nontrivial homomorphism. If a baric algebra (A, ω) satisfies an identity of the form

$$
\begin{equation*}
x^{(n)}=\alpha_{1} \omega(x)^{2^{n-1}-1} x+\alpha_{2} \omega(x)^{2^{n-1}-2} x^{2}+\cdots+\alpha_{n-1} \omega(x)^{2^{n-2}} x^{(n-1)}, \tag{1}
\end{equation*}
$$

where $\sum_{i=1}^{n-1} \alpha_{i}=1$, then we call it a plenary train algebra. We will further assume that A is commutative.

An important question in nonassociative algebras in general and in train algebras in particular is the existence of idempotents. Given an idempotent we may better understand the algebra studying

[^0]its Peirce decomposition. For train algebras this was done by Gutierrez [3]. In addition to this mathematical importance, idempotents are also significant in the biological application since they represent a genetic equilibrium.

2. Main section

Lemma 1. Let A be any baric algebra with weight function ω. If A satisfies the identity

$$
\begin{equation*}
\left(x^{2}-\omega(x) x\right)^{2}=0 \tag{2}
\end{equation*}
$$

then, for any integers $i, j>0$ and for any element x of weight 1 :

$$
\begin{equation*}
\left(x^{(i)}-x^{(j)}\right)^{2}=0 . \tag{3}
\end{equation*}
$$

Proof. We proceed by induction on $n=|i-j|$. The case $n=0$ is obvious. The case $n=1$ is a direct consequence of (2). We start by expanding and linearizing (2):

$$
4(x x)(x y)-2 \omega(y) x(x x)-2 \omega(x) y(x x)-4 \omega(x) x(x y)+2 \omega(x) \omega(y)(x x)+2 \omega(x) \omega(x)(x y)=0
$$

When $\omega(x)=\omega(y)=1$ this shortens to

$$
\begin{equation*}
\left(4 x^{2}-4 x\right)(x y)+2 x y-2 x^{2} y-2 x x^{2}+2 x^{2}=0 . \tag{4}
\end{equation*}
$$

Our inductive hypothesis is that (3) holds for all x of weight 1 and for all i, j such that $|i-j|<n$:

$$
\begin{equation*}
2 x^{(i)} x^{(j)}=x^{(i+1)}+x^{(j+1)} \tag{5}
\end{equation*}
$$

Replacing $y=x^{(n)}$ in (4) we get

$$
\left(4 x^{2}-4 x\right)\left(x x^{(n)}\right)+2 x x^{(n)}-2 x^{2} x^{(n)}-2 x x^{2}+2 x^{2}=0 .
$$

Using (5) on the first occurrence of $x x^{(n)}$

$$
\left(2 x^{2}-2 x\right)\left(x^{2}+x^{(n+1)}\right)+2 x x^{(n)}-2 x^{2} x^{(n)}-2 x x^{2}+2 x^{2}=0
$$

Again using (5) where appropriate

$$
\begin{aligned}
& 2 x^{(3)}+\left(x^{(3)}+x^{(n+2)}\right)-\left(x^{2}+x^{(3)}\right)-2 x x^{(n+1)}+\left(x^{2}+x^{(n+1)}\right) \\
& \quad-\left(x^{(3)}+x^{(n+1)}\right)-\left(x^{2}+x^{(3)}\right)+2 x^{2}=0 .
\end{aligned}
$$

Collecting similar terms

$$
x^{(n+2)}-2 x x^{(n+1)}+x^{2}=\left(x^{(n+1)}-x\right)^{2}=0
$$

This proves (3) for $|i-j|=n$.

Theorem 2. Let A be a plenary train algebra of rank n with defining identity:

$$
\begin{equation*}
x^{(n)}=\alpha_{1} \omega(x)^{2^{n-1}-1} x+\alpha_{2} \omega(x)^{2^{n-1}-2} x^{2}+\cdots+\alpha_{n-1} \omega(x)^{2^{n-1}} x^{(n-2)}, \tag{6}
\end{equation*}
$$

where $\sum_{i=1}^{n-1} \alpha_{i}=1$. Let

$$
\lambda=\sum_{i=1}^{n-1}(n-i) \alpha_{i} .
$$

Assume A satisfies $\left(x^{2}-\omega(x) x\right)^{2}=0$. If $\lambda \neq 0$ then A has idempotents.
Proof. Let x be any weight one element of A and let

$$
b_{k}=\sum_{i=1}^{k} \alpha_{i}, \quad b=\sum_{k=1}^{n-1} b_{k} x^{(k)} .
$$

Notice that $\sum_{k=1}^{n-1} b_{k}=\lambda$ and that $b_{n-1}=1$. Next we calculate b^{2} :

$$
\begin{aligned}
b^{2} & =\sum_{k=1}^{n-1} \sum_{j=1}^{n-1} b_{k} b_{j} x^{(k)} x^{(j)} \\
& =\frac{1}{2} \sum_{k=1}^{n-1} \sum_{j=1}^{n-1} b_{k} b_{j}\left(x^{(k+1)}+x^{(j+1)}-\left(x^{(k)}-x^{(j)}\right)^{2}\right) .
\end{aligned}
$$

Using Lemma $1,\left(x^{(k)}-x^{(j)}\right)^{2}=0$,

$$
b^{2}=\frac{1}{2}\left(\sum_{k=1}^{n-1} \sum_{j=1}^{n-1} b_{k} b_{j} x^{(k+1)}+\sum_{k=1}^{n-1} \sum_{j=1}^{n-1} b_{k} b_{j} x^{(j+1)}\right)
$$

Switching the indices of the first sum and using that $\sum b_{k}=\lambda$,

$$
b^{2}=\sum_{k=1}^{n-1} \sum_{j=1}^{n-1} b_{k} b_{j} x^{(j+1)}=\lambda \sum_{j=1}^{n-1} b_{j} x^{(j+1)} .
$$

From the plenary identity and noticing that $b_{n-1}=1$,

$$
b^{2}=\lambda\left(\sum_{j=1}^{n-2} b_{j} x^{(j+1)}+\sum_{k=1}^{n-1} \alpha_{k} x^{(k)}\right) .
$$

Collecting terms and using the definition of the b_{k},

$$
b^{2}=\lambda\left(\alpha_{1} x+\sum_{k=2}^{n-1}\left(b_{k-1}+\alpha_{k}\right) x^{(k)}\right)=\lambda\left(\sum_{k=1}^{n-1} b_{k} x^{(k)}\right)=\lambda b .
$$

We conclude that $e=\frac{b}{\lambda}$ is an idempotent in A.

We may notice that in the previous proof the hypothesis $\left(x^{2}-\omega(x) x\right)^{2}=0$ is not fully used. A sufficient condition would be $\sum_{k<j<n} b_{k} b_{j}\left(x^{(k)}-x^{(j)}\right)^{2}=0$, where the b_{k} are defined as in the proof of the theorem.

Lemma 3. Let A be a baric algebra. If all weight one elements $x \in A$ satisfy the equation:

$$
\begin{equation*}
x^{(k)}=\sum_{i=1}^{n-1} \beta_{i} x^{(i)} \tag{7}
\end{equation*}
$$

for some fixed $k \geqslant n$ and $\sum \beta_{i}=1$, then they also satisfy

$$
\begin{equation*}
\sum_{1 \leqslant i<j<n} \beta_{i} \beta_{j}\left(x^{(i)}-x^{(j)}\right)^{2}=0 . \tag{8}
\end{equation*}
$$

Proof. Let

$$
S=2 \sum_{1 \leqslant i<j<n} \beta_{i} \beta_{j}\left(x^{(i)}-x^{(j)}\right)^{2}
$$

We can turn (8) into a full double sum by adding some trivially zero terms where $i=j$:

$$
S=\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \beta_{i} \beta_{j}\left(x^{(i)}-x^{(j)}\right)^{2}
$$

Expanding the squared terms

$$
S=\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \beta_{i} \beta_{j}\left(x^{(i)}\right)^{2}+\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \beta_{i} \beta_{j}\left(x^{(j)}\right)^{2}-2 \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \beta_{i} \beta_{j} x^{(i)} x^{(j)} .
$$

Changing the summation order and factoring the sums

$$
S=\sum_{j=1}^{n-1} \beta_{j} \sum_{i=1}^{n-1} \beta_{i} x^{(i+1)}+\sum_{i=1}^{n-1} \beta_{i} \sum_{j=1}^{n-1} \beta_{j} x^{(j+1)}-2 \sum_{i=1}^{n-1} \beta_{i} x^{(i)} \sum_{j=1}^{n-1} \beta_{j} x^{(j)}
$$

Using (7) and that $\sum \beta_{i}=1$

$$
S=2 \sum_{j=1}^{n-1} \beta_{j} x^{(j+1)}-2\left(x^{(k)}\right)^{2}
$$

Using (7) again for x^{2} in place of x

$$
S=2 x^{(k+1)}-2 x^{(k+1)}=0
$$

Lemma 4. Let A be a plenary train algebra of rank n with defining identity:

$$
x^{(n)}=\sum_{i=1}^{n-1} \alpha_{i} \omega(x)^{2^{n-1}-2^{i-1}} x^{(i)},
$$

where $\sum_{i=1}^{n-1} \alpha_{i}=1$. Consider an element $x \in A$ of weight one and let its plenary powers $u p$ to $x^{(n-1)}$ be the spanning set of a vector space where $x^{(i)}=(0 \ldots 1 \ldots 0)$ has a one in the ith-position. Then we can express $x^{(k+1)}$ in terms of this spanning set by $(1,0,0,0, \ldots, 0) A^{k}$ where

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
& & & \ldots & & \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
\alpha_{1} & \alpha_{2} & \alpha_{3} & \ldots & \alpha_{n-2} & \alpha_{n-1}
\end{array}\right)
$$

Proof. The proof goes by induction on k. For $k=0$ there is nothing to prove. So we assume

$$
x^{(k)}=\sum_{i=1}^{n-1} \beta_{i} x^{(i)}=\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n-2}, \beta_{n-1}\right)=(1,0,0,0, \ldots, 0) A^{k-1}
$$

Replacing x by x^{2} we have

$$
\begin{aligned}
x^{(k+1)} & =\sum_{i=1}^{n-1} \beta_{i} x^{(i+1)}=\sum_{i=2}^{n-1} \beta_{i-1} x^{(i)}+\beta_{n-1} \sum_{i=1}^{n-1} \alpha_{i} x^{(i)} \\
& =\left(0, \beta_{1}, \beta_{2}, \ldots, \beta_{n-3}, \beta_{n-2}\right)+\beta_{n-1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n-2}, \alpha_{n-1}\right) \\
& =\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{n-2}, \beta_{n-1}\right) A \\
& =(1,0,0,0, \ldots, 0) A^{k} .
\end{aligned}
$$

Theorem 5. Let A be a plenary train algebra of rank n with defining identity:

$$
x^{(n)}=\sum_{i=1}^{n-1} \alpha_{i} \omega(x)^{2^{n-1}-2^{i-1}} x^{(i)} .
$$

Let $\lambda_{1}, \ldots, \lambda_{n-1}$ be the eigenvalues of the matrix A defined in Lemma 4 (the λ_{k} are the nonzero roots of the associative polynomial $x^{n}-\sum \alpha_{i} x^{i}$). If all the products $\lambda_{i} \lambda_{j}$ are distinct then A satisfies $\left(x^{2}-\omega(x) x\right)^{2}=0$ and A has idempotents.

Proof. Using Lemma 3 and Lemma 4 we get identities

$$
\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \beta_{k i} \beta_{k j}\left(x^{(i)}-x^{(j)}\right)^{2}=0
$$

where $\left(\beta_{k 1}, \beta_{k 2}, \beta_{k 3}, \ldots, \beta_{k n-2}, \beta_{k n-1}\right)=e_{1} A^{k-1}$ and k is any positive integer. So we have a homogeneous system of identities satisfied by the squares $\left(x^{(i)}-x^{(j)}\right)^{2}$. In matrix form this can be written as

$$
\left\langle\left(e_{1} A^{k-1}\right)^{T} e_{1} A^{k-1}, U\right\rangle=0
$$

where U is the symmetric matrix such that $U_{i j}=\left(x^{(i)}-x^{(j)}\right)^{2}$, and where the angled bracket of two matrices X, Y stands for $\langle X, Y\rangle=\sum_{i, j} X_{i j} Y_{i j}$. Now consider v_{1}, \ldots, v_{n-1} eigenvectors corresponding to the distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n-1}$ of A, and write $e_{1}=\sum c_{i} v_{i}$ as a linear combination of them. Since $e_{k}=e_{1} A^{k-1}=\sum \lambda_{i}^{k-1} c_{i} v_{i}$ we notice that the $c_{i} v_{i}$ also form a basis of eigenvectors for A, so we may assume that $c_{i}=1$ for every i. Then

$$
\begin{aligned}
0=\left\langle\left(e_{1} A^{k}\right)^{T} e_{1} A^{k}, U\right\rangle & =\left\langle\left(\sum_{i=1}^{n-1} \lambda_{i}^{k} v_{i}\right)^{T} \sum_{i=1}^{n-1} \lambda_{i}^{k} v_{i}, U\right\rangle \\
& =\left\langle\sum_{i=1}^{n-1} \sum_{j=1}^{n-1}\left(\lambda_{i} \lambda_{j}\right)^{k} v_{i}^{T} v_{j}, U\right\rangle \\
& =\sum_{1 \leqslant i \leqslant j<n}\left(\lambda_{i} \lambda_{j}\right)^{k}\left\langle\left(v_{i}^{T} v_{j}+v_{j}^{T} v_{i}\right), U\right\rangle .
\end{aligned}
$$

Since this holds for all k, the Vandermonde determinant says that for each $1 \leqslant i \leqslant j<n$ we have

$$
\left\langle\left(v_{i}^{T} v_{j}+v_{j}^{T} v_{i}\right), U\right\rangle=0
$$

Using the symmetry of U,

$$
2\left\langle\left(v_{i}^{T} v_{j}\right), U\right\rangle=0
$$

Since the v_{i} form a basis for the ($n-1$)-dimensional row space, the matrices $v_{i}^{T} v_{j}$ form a basis for the space of all $(n-1) \times(n-1)$ matrices. To verify this, it suffices to show that they are linearly independent. In fact, if $\sum r_{i j} v_{i}^{T} v_{j}=0$ then multiplying by any v_{k} on the left we get $\sum_{j}\left(\sum_{i} r_{i j} v_{k} v_{i}^{T}\right) v_{j}$. Since the v_{j} are linearly independent, $\sum_{i} r_{i j} v_{k} v_{i}^{T}=0$ for every k, j. Now since the v_{k} form a basis $\sum_{i} r_{i j} v_{i}^{T}=0$, and finally since the v_{i}^{T} are linearly independent, $r_{i j}=0$ for every i, j.

Finally, this shows that U is orthogonal to a basis for the space of all matrices, so $U=0$ and in particular $\left(x^{(i)}-x^{(j)}\right)^{2}=0$ for every i, j. Finally, to use Theorem 2 we need to check that $\lambda=$ $\sum(n-i) \alpha_{i} \neq 0$. We will show that this just means that 1 is not a repeated eigenvalue of A and so it is part of the hypothesis. We factor the associative polynomial:

$$
\begin{aligned}
x^{n}-\sum_{i=1}^{n-1} \alpha_{i} x^{i} & =\sum_{i=1}^{n-1} \alpha_{i}\left(x^{n}-x^{i}\right)=\sum_{i=1}^{n-1} \sum_{k=i}^{n-1} \alpha_{i}\left(x^{k+1}-x^{k}\right) \\
& =(x-1) \sum_{i=1}^{n-1} \sum_{k=i}^{n-1} \alpha_{i} x^{k} .
\end{aligned}
$$

Evaluating the right factor at $x=1$ we get

$$
\sum_{i=1}^{n-1} \sum_{k=i}^{n-1} \alpha_{i}=\sum_{i=1}^{n-1}(n-i) \alpha_{i}
$$

So A has idempotents by Theorem 2.

As an illustration we consider some small cases:
Example $6(n=3)$. Let A be a plenary train algebra satisfying

$$
x^{(3)}=\alpha x+(1-\alpha) x^{2}
$$

The nonzero roots of the polynomial $x^{3}-(1-\alpha) x^{2}-\alpha x$ are 1 and $-\alpha$ so by Theorem 5 we can guarantee that A has an idempotent as long as $1,-\alpha, \alpha^{2}$ are all different, that is $\alpha \notin\{0,1,-1\}$. Furthermore, for every x of weight 1, we know an idempotent to be

$$
\frac{1}{\alpha+1}\left(\alpha x+x^{2}\right)
$$

Notice that when $\alpha=0$, the formula still works and x^{2} is an idempotent. When $\alpha=1$ we do not find an idempotent in this way but Etherington [2] showed that there are idempotents in this case. Etherington also showed that when $\alpha=-1$ there may not be any idempotents.

Example $7(n=4)$. Let A be a plenary train algebra satisfying

$$
x^{(4)}=\alpha x+\beta x^{2}+\gamma x^{(3)}
$$

where $\alpha+\beta+\gamma=1$. Lets assume that $1, \lambda, \mu$ are the nonzero roots of $x^{4}-\gamma x^{3}-\beta x^{2}-\alpha x=0$ so that $\alpha=\lambda \mu, \beta=-(\lambda \mu+\lambda+\mu), \gamma=\lambda+\mu+1$. Theorem 5 says that A has an idempotent as long as $1, \lambda, \mu, \lambda \mu, \lambda^{2}, \mu^{2}$ are all distinct, that is $\lambda \mu\left(\lambda^{2}-1\right)\left(\mu^{2}-1\right)\left(\lambda^{2}-\mu^{2}\right)\left(\lambda-\mu^{2}\right)\left(\lambda^{2}-\mu\right)(\lambda \mu-1) \neq 0$.

Furthermore, in this case, we know an idempotent to be

$$
\frac{1}{3 \alpha+2 \beta+\gamma}\left(\alpha x+(\alpha+\beta) x^{2}+(\alpha+\beta+\gamma) x^{(3)}\right) .
$$

One may notice again that the given condition is not necessary and to answer the question it suffices to show that $\alpha(\alpha+\beta) x+\alpha(\alpha+\beta+\gamma) x^{2}+(\alpha+\beta)(\alpha+\beta+\gamma) x^{(3)}=0$ (see the proof of Theorem 2). For this we have to solve a linear algebra problem. We need to know whether the vector

$$
(\alpha(\alpha+\beta) \quad \alpha(\alpha+\beta+\gamma) \quad(\alpha+\beta)(\alpha+\beta+\gamma))
$$

is in the row space of the following matrix:

$$
\left(\begin{array}{ccc}
\alpha \beta & \alpha \gamma & \beta \gamma \\
\alpha \gamma(\alpha+\beta \gamma) & \alpha \gamma\left(\beta+\gamma^{2}\right) & (\alpha+\beta \gamma)\left(\beta+\gamma^{2}\right) \\
\alpha\left(\beta+\gamma^{2}\right)\left(\alpha \gamma+\beta\left(\beta+\gamma^{2}\right)\right) & \alpha\left(\beta+\gamma^{2}\right)\left(\alpha+\beta \gamma+\gamma\left(\beta+\gamma^{2}\right)\right) & \left(\alpha \gamma+\beta\left(\beta+\gamma^{2}\right)\right)\left(\alpha+\beta \gamma+\gamma\left(\beta+\gamma^{2}\right)\right)
\end{array}\right)
$$

The coefficients of this matrix are obtained applying Lemma 3 to the train identity and to the higher order identities from Lemma 4. It turns out that this is the case as long as $(\beta-1)(\alpha-1) \neq 0$. We
also need that $3 \alpha+2 \beta+\gamma \neq 0$. Finally, in terms of the eigenvalues, the condition is

$$
\left(\lambda^{2}-1\right)\left(\mu^{2}-1\right)(\lambda \mu-1) \neq 0
$$

This result was obtained recently by Labra and Suazo [1].
Example $8(n=5)$. Let A be a plenary train algebra satisfying

$$
x^{(5)}=\alpha x+\beta x^{2}+\gamma x^{(3)}+(1-\alpha-\beta-\gamma) x^{(4)} .
$$

Skipping the details, using Maxima to solve the linear system, we know an idempotent to be

$$
\frac{1}{3 \alpha+2 \beta+\gamma+1}\left(\alpha x+(\alpha+\beta) x^{2}+(\alpha+\beta+\gamma) x^{(3)}+x^{(4)}\right)
$$

as long as $(\alpha+\gamma-1)(\alpha \gamma+\alpha \beta-\alpha-\beta+1)(3 \alpha+2 \beta+\gamma+1) \neq 0$. In terms of the eigenvalues, the condition is

$$
\left(\lambda^{2}-1\right)\left(\mu^{2}-1\right)\left(v^{2}-1\right)(\lambda \mu-1)(\lambda \nu-1)(\mu \nu-1) \neq 0 .
$$

3. Open problem

One question that remains open is to find precise necessary and sufficient conditions for a plenary train algebra to have idempotents.

References

[1] A. Suazo, A. Labra, On plenary train algebras of rank 4, Comm. Algebra 35 (9) (2007) 2744-2752.
[2] I.M.H. Etherington, Commutative train algebras of rank 2 and 3, J. London Math. Soc. 15 (1940) 136-149.
[3] J.C. Gutiérrez Fernández, Principal an plenary train algebras, Comm. Algebra 28 (2) (2000) 635-667.
[4] Yu.I. Lyubich, Mathematical Structures in Population Genetics, Biomath., vol. 22, 1992.
[5] M.L. Reed, Algebraic structure of genetic inheritance, Bull. Amer. Math. Soc. 34 (1997) 107-130.
[6] A. Worz-Busekros, Algebras in Genetics, Lect. Notes in Biomath., vol. 36, 1980.

[^0]: * Corresponding author.

 E-mail addresses: afbehn@gmail.com (A. Behn), hentzel@iastate.edu (I.R. Hentzel).
 1 Supported by FONDECYT 1070243.
 2 Part of the work was done while this author was visiting Chile on FONDECYT 7070304 Grant.

