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1. Introduction

Nonassociative algebras arise in population genetic models in a quite natural way. For more infor-
mation see Worz-Busekros [6], Lyubich [4] and Reed [5]. In particular Gutierrez [3] shows that every
genetic algebra is a plenary train algebra.

Plenary powers are defined inductively by x() =x and x"tD = ()2, The pair (A, w) is called
a baric algebra if w: A — K is a nontrivial homomorphism. If a baric algebra (A, w) satisfies an iden-
tity of the form

X =002 X+ a0 T 4 a0 XD, (1)

where Z?;ll o = 1, then we call it a plenary train algebra. We will further assume that A is commu-
tative.

An important question in nonassociative algebras in general and in train algebras in particular is
the existence of idempotents. Given an idempotent we may better understand the algebra studying
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its Peirce decomposition. For train algebras this was done by Gutierrez [3]. In addition to this mathe-
matical importance, idempotents are also significant in the biological application since they represent
a genetic equilibrium.

2. Main section
Lemma 1. Let A be any baric algebra with weight function w. If A satisfies the identity

(x* — a)(x)x)2 =0, (2)
then, for any integers i, j > 0 and for any element x of weight 1:

(xD — x(j))2 =0. (3)

Proof. We proceed by induction on n=|i — j|. The case n =0 is obvious. The case n =1 is a direct
consequence of (2). We start by expanding and linearizing (2):

4(xx)(xy) — 20(¥)X(xX) = 20(X)y (xX) — 40 (X)X(XY) + 20(X)0(y) (XX) + 20X)0(X)(xy) = 0.

When w(x) = w(y) =1 this shortens to

(4x? — 4x) (xy) + 2xy — 2x%y — 2xx* + 2x* = 0. (4)
Our inductive hypothesis is that (3) holds for all x of weight 1 and for all i, j such that |i — j| <n:

2Dy — x(+D | G+ (5)
Replacing y = x™ in (4) we get
(4x% — 4x) (xx™) + 2xx™ — 2x*x™ — 2xx* + 2x* = 0.
Using (5) on the first occurrence of xx™
(2% — 2x) (x® + D) 4 2xx™ — 252%™ — 2xx% +2x* = 0.

Again using (5) where appropriate

ZX(3) + (X(3) + x(n+2)) _ (Xz + X(B)) _ 2XX(n+]) + (X2 + X(n+1))

—(x® +xD) — (3 +xP) + 242 =0.
Collecting similar terms
X2 _oxx 1) 4 32 (x(n-H) _ X)Z —0.

This proves (3) for |i — j|=n. O
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Theorem 2. Let A be a plenary train algebra of rank n with defining identity:
X = 0100? x4+ 0@ A A ag i w? X2, (6)

where Y"1~ 1 aj=1.Let

n—1
A= Z(n —1)aj.
i=1

Assume A satisfies (x> — w(x)x)?> = 0. If A # 0 then A has idempotents.

Proof. Let x be any weight one element of A and let

k n—1
kaZOli, bZZka(k).
i=1 k=1

Notice that ZZ;} by = A and that by = 1. Next we calculate b?:

n—1n-1

B2 =33 by xOxd)

k=1 j=1

nlnl

—_ Z Zb' (xHD 4 xUHD _ (x0) x(j))z)_

k 1j=1
Using Lemma 1, (x® —x()2 =0
n—1n-1 n—1n-1
| PR LS w i
k=1 j=1 k=1 j=1

Switching the indices of the first sum and using that > by = A

n—1n-—1

2= bbxUth =2 Zb xUHD,

k=1 j=1

From the plenary identity and noticing that b, =1,

n—2 n—1
b2 — A( S bxUH 4 Zakx(k)).
j=1 k=1

Collecting terms and using the definition of the by,

n—1 n—1
b =2 (omx + Z(bkq + ozk)x(")> = k( Z bkx(")) —Ab.

k=2 k=1

We conclude that e = % is an idempotent in A. O
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We may notice that in the previous proof the hypothesis (x* — w(x)x)2 = 0 is not fully used.
A sufficient condition would be Y7 _;_, bibj(x® — x0)2 = 0, where the by are defined as in the
proof of the theorem.

Lemma 3. Let A be a baric algebra. If all weight one elements x € A satisfy the equation:
n—1
x®© — Zﬂ"x(l)’ (7)
i=1

for some fixed k > n and )" B; = 1, then they also satisfy

Z BiBj (x(i) _ X(j))2 —0. (8)

1<i<j<n

Proof. Let

s=2 Y Bip(x® —x)%.

1<i<j<n

We can turn (8) into a full double sum by adding some trivially zero terms where i = j:

n—1n-1
S=Y"3 iV - x(j))Z_
i=1 j=1
Expanding the squared terms
n—1n-1 - n—1n-1 5 n—1n-1 ) )
S = Z Z.Biﬂj (x(l)) + Z Z/silgj (X(J)) ) Z Zﬂiﬂjx(l)x(])~
i=1 j=1 i=1 j=1 i=1 j=1

Changing the summation order and factoring the sums
n—1 n—1 ] n—-1 n-1 ] n—1 ) n—1 ]
S=D_Bi) BxTTV D B BTV =2) pix) .
j=1 i=1 i=1  j=1 i=1 j=1
Using (7) and that }_8i =1
n—1 )
s=2) pixUth —2(x®)?,
j=1

Using (7) again for x% in place of x

§=2xk+tD _oxkth _ o g



A. Behn, LR. Hentzel / Journal of Algebra 324 (2010) 3241-3248 3245
Lemma 4. Let A be a plenary train algebra of rank n with defining identity:

n—1
X(n) — Zaiw(x)2n71_2171x(i)’
i=1

where Z?;ll a; = 1. Consider an element x € A of weight one and let its plenary powers up to x"~1 be the
spanning set of a vector space where x) = (0...1...0) has a one in the ith-position. Then we can express
x**+1) in terms of this spanning set by (1,0, 0,0, ..., 0)A¥ where

o 1 0 ... O 0

o o0 1 .. 0 0
A=

0o 0 o0 ... 1 0

o o o ... O 1

o1 Oy O3 ... Op—2 O0Op

Proof. The proof goes by induction on k. For k = 0 there is nothing to prove. So we assume

n—1

x® =" pix® = (B1. fa. B3. ... Pu-2. Bn-1) = (1,0,0,0,...,0) A%,

i=1

Replacing x by x* we have

n—1 n—1 n—1
XD =X gx D =3 " g x4 g1 Yy aix®
i=1 i=2 i=1

=(0,B1,B2,..., Bn—3, Bn—2) + Bn-1(01, 2,3, ..., 02, 1)
=(B1, P2, B3, ..., Bn—2, Bn—1)A
=(1,0,0,0,...,00A. O

Theorem 5. Let A be a plenary train algebra of rank n with defining identity:

n—1
XM = Zaiw(x)w_l’zl_lx(i).
i=1

Let A1, ..., An—1 be the eigenvalues of the matrix A defined in Lemma 4 (the Ay are the nonzero roots of the

associative polynomial x" — Zaixi )- If all the products ;) j are distinct then A satisfies *x —wX)x)?2=0
and A has idempotents.

Proof. Using Lemma 3 and Lemma 4 we get identities
n—1n-1

DO BB (x? - xD)? =0,

i=1 j=1
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where (Bi1, B, Bizs - - - » Bin2, Brn—1) = e1A¥~1 and k is any positive integer. So we have a homoge-
neous system of identities satisfied by the squares (x — x())2. In matrix form this can be written
as

((e1A% 1) e a1 U) =0,

where U is the symmetric matrix such that U;; = (x) — x1))2, and where the angled bracket of two
matrices X, Y stands for (X,Y) = Z,-’j XijYij. Now consider vy, ..., vy_1 eigenvectors corresponding
to the distinct eigenvalues A1, ..., Ap—1 of A, and write e; =Y c;v; as a linear combination of them.
Since ey = e A1 = ZA:-(’]C,-V,- we notice that the c;v; also form a basis of eigenvectors for A, so we

may assume that ¢; =1 for every i. Then
n—1 Th
<< ng.«v,») kv, u>
i=1 i=1

n—1n-—1
< ZZ()\ilj)kviTVj, U>

i=1 j=1

0=((e14%)"e; 4%, U)

Z (A,-)Lj)k((vl-ij + V}-V,’), U>.
1<i<j<n

Since this holds for all k, the Vandermonde determinant says that for each 1 <i < j <n we have

(vivj+ v]T.vi), U)=o0.

Using the symmetry of U,
2((v]v)).U}=o.

Since the v; form a basis for the (n — 1)-dimensional row space, the matrices vl.T vj form a basis for
the space of all (n — 1) x (n — 1) matrices. To verify this, it suffices to show that they are linearly in-
dependent. In fact, if Zrijviij =0 then multiplying by any v on the left we get Zj(zi r,jvkvir)vj.
Since the v; are linearly independent, »_; r,-jvkv,.T =0 for every k, j. Now since the v} form a basis
Y r,-jviT =0, and finally since the viT are linearly independent, ri; = 0 for every i, j.

Finally, this shows that U is orthogonal to a basis for the space of all matrices, so U =0 and
in particular (x) — x(0)2 = 0 for every i, j. Finally, to use Theorem 2 we need to check that A =
> (n —i)a; # 0. We will show that this just means that 1 is not a repeated eigenvalue of A and so it
is part of the hypothesis. We factor the associative polynomial:

n—1 n—1 n—1n—1
X — Z%‘X' — Zai(xn _ Xl) — Zzai(xl<+l _ Xk)
i=1 i=1 i=1 k=i

n—1n-1

=(x-— 1)220{,%".

i=1 k=i
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Evaluating the right factor at x=1 we get

n—1n-1

Z Za, Z(n — ).

i=1 k=i

So A has idempotents by Theorem 2. O
As an illustration we consider some small cases:

Example 6 (n =3). Let A be a plenary train algebra satisfying

x® =ax+ 1- oz)xz.

The nonzero roots of the polynomial x> — (1 — a)x?2 — ax are 1 and —« so by Theorem 5 we can
guarantee that A has an idempotent as long as 1, —a,«? are all different, that is « ¢ {0,1, —1}.
Furthermore, for every x of weight 1, we know an idempotent to be

a—_H(ax—i-xz).

Notice that when « = 0, the formula still works and x2 is an idempotent. When o =1 we do not

find an idempotent in this way but Etherington [2] showed that there are idempotents in this case.
Etherington also showed that when o = —1 there may not be any idempotents.

Example 7 (n =4). Let A be a plenary train algebra satisfying

XD =ax+ B + yx?,

where a + 8+ y = 1. Lets assume that 1, A, i are the nonzero roots of x* — yx3 — x> —ax =0 so

thata =Ap, B=—QAuw+xr+pwn), y =1+ pu+1. Theorem 5 says that A has an idempotent as long as

1,1, (o, A, A2, u? are all distinct, that is Au(A2 — 1)(u2 — DA% — u2)(A — u2) (A% — WG — 1) £ 0.
Furthermore, in this case, we know an idempotent to be

2 3)
3a+2ﬁ+y(ax+(a+ﬁ)x + @+ B+ y)x?).

One may notice again that the given condition is not necessary and to answer the question it

suffices to show that a(o + B)x + a(a + B + ¥)x* + (@ + ) (@ + B + y)x® =0 (see the proof of
Theorem 2). For this we have to solve a linear algebra problem. We need to know whether the vector

(a(e+p) al@+p+y) @+p)a+p+Y))
is in the row space of the following matrix:
ap ay By
ay @+ y) ayB+r? (a+ﬂy)(ﬂ+y )
aB+yH @y +BB+rH) aB+yH@+By +yB+y?) @y +BB+yH)@+By +yB+y)

The coefficients of this matrix are obtained applying Lemma 3 to the train identity and to the higher
order identities from Lemma 4. It turns out that this is the case as long as (8 — 1)(o — 1) # 0. We
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also need that 3o + 28 + y # 0. Finally, in terms of the eigenvalues, the condition is

(3 =1) (> = 1) — 1) #0.
This result was obtained recently by Labra and Suazo [1].

Example 8 (n =5). Let A be a plenary train algebra satisfying

X =ax+ px* +yx® + 1 —a — g —y)x@.
Skipping the details, using Maxima to solve the linear system, we know an idempotent to be

1

2 (3) (C))
— X+ (+ X+ (ax+ B+ V)X +X R
3a+2/3+)/+1( ( 2 ( Fty) )
aslongas (w+y — Dy +af—a—B+1)GBa+26+y +1)#0. In terms of the eigenvalues, the
condition is

(3 =1)(n* = 1)(V2 = 1)t — D — (v — 1) £0.
3. Open problem

One question that remains open is to find precise necessary and sufficient conditions for a plenary
train algebra to have idempotents.
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