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Asymptotic, non-linear solutions for ambipolar diffusion in one dimension
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3Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
4Departamento de Fı́sica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

Accepted 2010 June 22. Received 2010 June 14; in original form 2010 March 21

ABSTRACT
We study the effect of the non-linear process of ambipolar diffusion (joint transport of mag-
netic flux and charged particles relative to neutral particles) on the long-term behaviour of a
non-uniform magnetic field in a one-dimensional geometry. Our main focus is the dissipation
of magnetic energy inside neutron stars (particularly magnetars), but our results have a wider
application, particularly to the interstellar medium and the loss of magnetic flux from col-
lapsing molecular cloud cores. Our system is a weakly ionized plasma in which neutral and
charged particles can be converted into each other through nuclear beta decays (or ionization-
recombination processes). In the ‘weak-coupling’ limit of infrequent inter-particle interactions,
the evolution of the magnetic field is controlled by the beta decay rate and can be described
by a non-linear partial integro-differential equation. In the opposite, ‘strong-coupling’ regime,
the evolution is controlled by the inter-particle collisions and can be modelled through a
non-linear diffusion equation. We show numerically that, in both regimes, ambipolar diffusion
tends to spread out the magnetic flux, but, contrary to the normal Ohmic diffusion, it produces
sharp magnetic-field gradients with associated current sheets around those regions where the
magnetic field is weak.

Key words: diffusion – MHD – plasmas – stars: magnetic field – stars: neutron – ISM:
magnetic fields.

1 IN T RO D U C T I O N

Ambipolar diffusion is the joint drift of charged particles and
the associated magnetic flux with respect to the neutral parti-
cles in a partially ionized plasma. Mestel & Spitzer (1956) first
proposed it in order to explain the loss of magnetic flux from
the dense cores of molecular clouds, required for the forma-
tion of stars, starting an active field of research in this area
(Spitzer 1978; Mouschovias 1991; Galli & Shu 1993). Later, it
was suggested to also play a role in the decay of the magnetic
fields of neutron stars (Jones 1987; Harrison 1991; Goldreich &
Reisenegger 1992, hereafter GR92; Pethick 1992) which became
particularly relevant with the identification of ‘magnetars’, neutron
stars whose main power source appears to be the dissipation of their
magnetic field (Duncan & Thompson 1992; Thompson & Duncan
1996; Arras, Cumming & Thompson 2004).

In a previous paper (Hoyos, Reisenegger & Valdivia 2008, here-
after Paper I), we established a multifluid formalism in which it
is possible to study the long-term evolution of magnetic fields
in neutron stars [see Reisenegger (2009) for a discussion of
the main properties of the magnetic-field equilibria and their

�E-mail: jhhoyos@udem.edu.co (JHH); areisene@astro.puc.cl (AR);
alejo@macul.ciencias.uchile.cl (JAV)

subsequent long-term evolution]. In that work, and following the
ideas developed by GR92, we included the effects of several physi-
cal processes that are also relevant for star formation and protoplane-
tary discs, including ambipolar diffusion, Hall drift (non-dissipative
advection of the magnetic field by the associated electrical current)
and Ohmic diffusion (dissipation of currents through the electrical
resistivity).

Here we continue this study and concentrate our analysis on
the long-term evolution of the magnetic field caused by ambipolar
diffusion aided by beta decays. Following the same philosophy of
Paper I, and as a first approach to the understanding of our general
formalism, we focus on a simplified, one-dimensional configuration
in which the magnetic field points in one Cartesian direction z but
varies only along an orthogonal direction x, i.e. B = B(x, t)ẑ. Such
models have also been considered in several studies of ambipolar
diffusion in the interstellar medium (Mouschovias & Paleologou
1981; Shu 1983; Brandenburg & Zweibel 1994), although some
of the assumptions differ from case to case. In our analysis, we
consider separately two relevant limits, similar in spirit, though not
exactly equivalent to those of Mouschovias & Paleologou (1981),
as follows.

(i) In the weak-coupling limit, there are few collisions between
the particles, and the beta decays proceed slowly. Therefore, the
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particles can reach the diffusive equilibrium easily, but it takes
much longer to reach the chemical equilibrium.

(ii) In the strong-coupling limit, there are many collisions be-
tween the particles, and the beta decays proceed fast, so the (local)
chemical equilibrium is reached much more quickly than the diffu-
sive equilibrium.

For each of these cases, we find that the long-term evolution of
the magnetic field can be modelled by a single equation that gives
the time derivative ∂B/∂t at a given instant t only in terms of the
configuration of the magnetic field at the same instant, B(x, t). This
makes it easy to carry out numerical simulations of the evolution
of some selected non-linear magnetic-field profiles and even find
some exact, analytical solutions.

In Section 2, we briefly review the one-dimensional model of
neutron star magnetic-field evolution introduced in Paper I, paying
particular attention to its characteristic evolutionary time-scales.

In Sections 3 and 4, we obtain the equations for the long-term,
asymptotic magnetic-field evolution promoted by ambipolar diffu-
sion in each of the two opposite regimes mentioned above, and
we make numerical simulations of the evolution of different ini-
tial magnetic-field configurations. We show that, in both cases, the
magnetic flux of a given sign tends to spread out, but singulari-
ties develop at the null points where regions with different signs
meet, as previously found by Brandenburg & Zweibel (1994). In
the weak-coupling case, these singularities correspond to current
sheets that are dissipated by resistive effects, in this way leading
to reconnection. In the strong-coupling case, the singularities have
a somewhat different character (a smoothly diverging current den-
sity) and might lead directly to reconnection even in the case of no
Ohmic resistivity (but see Heitsch & Zweibel 2003a,b). Finally, in
Section 5, we give the main conclusions of our study.

2 O N E - D I M E N S I O NA L M O D E L A N D
EVOLUTIONA RY TIME-SCALES IN
N E U T RO N STA R S

We model the neutron star interior as an electrically neutral and
slightly ionized plasma composed of three mobile, strongly degen-
erate, particle species: neutrons (n), protons (p) and electrons (e).
We account for binary collisions and weak interactions (causing
nuclear beta decays) between the particles and allow for strong in-
teractions between neutrons and protons by writing each of their
chemical potentials as a function of both of their number densities:
μn,p = μn,p(nn, np), while considering the electrons as an ideal,
relativistic Fermi gas, whose chemical potential is a function only
of their number density, μe = μe(ne).

We study a one-dimensional geometry in which the magnetic
field points in one Cartesian direction z, but varies only along an
orthogonal direction x as B(r, t) = B(x, t)ẑ, and assume that all
physical variables vary only along x. Since, in neutron star con-
ditions, the ratio of the magnetic pressure B2/8π to the pressure
of the charged particles is very small, the magnetic force causes
only small perturbations to the hydrostatic equilibrium state of the
non-magnetized star.

These assumptions are generally not true in molecular cloud
cores, where the ionization fraction tends to be extremely low,
whereas the magnetic field can be near equipartition with the neutral
gas pressure. In this sense, our derivation will be valid only for the
case of neutron stars, although we will see that some of the results
agree with those of other authors, obtained under somewhat different

assumptions. A more general treatment appears to be difficult and
not to yield simple results.

For the reasons stated, we consider a non-magnetized, fixed back-
ground system in hydrostatic and chemical equilibrium and intro-
duce small perturbations to the number density of each species i as
ni(x, t) = n0i(x) + δni(x, t), with the subscript zero labelling the
background number densities and |δni(x, t)| � n0i(x). The associ-
ated chemical potential perturbations are given by μi = μ0i + δμi .

The long-term magnetic-field evolution implies small particle
velocities that change over long time-scales, much longer than the
very short dynamical times that are only relevant shortly after the
formation of the star (i.e. sound or Alfvén time-scales). Therefore, at
all times we use a slow-motion approximation in which we neglect
the acceleration terms in the equations of motion for the particles.1

Taking account of all these considerations, the system of non-
linear partial differential equations governing the evolution is (see
Paper I for the derivation)

∂B

∂t
= − ∂

∂x

(
vcB − c2

4πσ0

∂B

∂x

)
, (1)

∂δnB

∂t
= − ∂

∂x
(n0nvn + n0cvc) , (2)

∂δnc

∂t
= − ∂

∂x
(n0cvc) − λ (δμc − δμn) , (3)

where

vn = − 1

αn0n

[
n0nμ0n

∂

∂x

(
δμn

μ0n

)

+ n0cμ0c
∂

∂x

(
δμc

μ0c

)
+ ∂

∂x

(
B2

8π

) ]
(4)

and

vA = − 1

n0nn0cγcn

[
n0cμ0c

∂

∂x

(
δμc

μ0c

)
+ ∂

∂x

(
B2

8π

)]
. (5)

The magnetic-field evolution is given by equation (1), where vc

denotes the velocity of the charged particles (the same for electrons
and protons), vn is the velocity of the neutrons and vA ≡ vc − vn

is the ambipolar diffusion velocity.2 The first term on the right-
hand side of this equation causes an advection of the magnetic
flux with a velocity vc, while the second term describes the Ohmic
diffusion of the field, where σ 0 is the electrical conductivity. In
neutron star core conditions, the electrical conductivity is σ0 ∼
1028 s−1; thus, the evolution of the large-scale magnetic field through
Ohmic diffusion proceeds very slowly, with a time-scale tOhmic ∼
1011 yr, longer than the age of the Universe (Baym, Pethick &
Pines 1969). Qualitatively similar conditions hold in essentially all
astrophysical settings. Therefore, in the rest of this paper, we neglect
the Ohmic term in the magnetic-field evolution equation and focus
only on the magnetic evolution due to the advective term. However,

1This approximation should be roughly true also for star formation and
was indeed assumed by some authors (Shu 1983; Brandenburg & Zweibel
1994), but not by Mouschovias & Paleologou (1981), who dropped the
charged-particle pressure, but kept the inertial terms, and therefore obtained a
differential equation of second rather than first order in time for the magnetic-
field evolution.
2 Strictly speaking, all these are the x components of the respective velocities,
which cause changes in the distributions of particles and magnetic flux. The
charged-particle velocities must also have a y component, responsible for
the current that acts as the source of the magnetic field.
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the time-scale for Ohmic diffusion scales with the square of the
characteristic length of the magnetic-field variations (see Paper I);
thus, the influence of Ohmic dissipation can be important in regions
with strong spatial magnetic-field variations.

The evolution of the particle number density perturbations, for
the different species, is given by equations (2) and (3), where δne =
δnp ≡ δnc is the perturbation of the charged-particle number density
keeping charge neutrality and δnB = δnn + δnc is the perturbation
of the baryon number density. Weak interactions cause beta decays
(conversion of charged particles into neutrons and the opposite)
that tend to reduce deviations from the chemical equilibrium state
between charged particles and neutrons, with a net rate coefficient λ
and δμc ≡ δμe + δμp. The chemical equilibrium is achieved when
δμc = δμn.

Continuing our description, equation (5) shows that the ambipolar
diffusion velocity vA is controlled by the collision rate between
the charged particles and neutrons, which is proportional to the
parameter γcn. This velocity is driven by the Lorentz force but
choked by the charged-particle pressure gradient it produces (GR92;
Pethick 1992).

Regarding the neutrons, we see from the right-hand side of equa-
tion (4) that they move with a velocity vn as long as the system
is not in a state of magneto-hydrostatic equilibrium. In this state,
the Lorentz force is balanced by the pressure gradients of all the
particles (charged particles and neutrons). We also see that the neu-
tron velocity is controlled by the parameter α, whose meaning we
explain in the next paragraph.

Since we are interested in a numerical solution to our equations,
we have to take into account that modelling the true dynamical
time-scales (sound or Alfvén time-scales of milliseconds to sec-
onds) would require a time-step many orders of magnitude shorter
than that required to simulate the long-term evolution, making the
simulation computationally unfeasible. For this reason, in Paper I
we introduced a slow-motion approximation, neglecting the accel-
eration terms and instead introducing a small, artificial, friction-like
force acting on the neutrons (the most abundant species) of the form
−n0nαvn, where the parameter α is chosen in such a way that the
time to reach magneto-hydrostatic equilibrium is long enough for
the numerical code to be able to deal with it (and therefore much
longer than the real dynamical times) but shorter than the long time-
scales over which the magnetic field evolves. We showed in Paper I
that the latter time-scales, which are the astrophysically interesting
ones, are unaffected by the choice of α.

We require the conservation of both the magnetic flux � =∫ d

0 B dx and the baryon number perturbation δNB = ∫ d

0 δnB dx

during the evolution of our system, which spans the segment 0 ≤
x ≤ d . We ensure this through the boundary conditions

vc(x = 0, t) = vc(x = d, t) = 0, (6)

vn(x = 0, t) = vn(x = d, t) = 0, (7)

∂B

∂x
(x = 0, t) = ∂B

∂x
(x = d, t) = 0. (8)

The system of equations (1)–(3) describes the evolution of three
coupled variables: the magnetic field, the charged-particle den-
sity perturbation and the baryon density perturbation. In Paper I,
we estimated the three associated characteristic evolutionary time-
scales of this set of equations corresponding to exponentially decay-
ing eigenmodes in the linear approximation and showed that they

characterize the approach to three successive equilibrium states.
Here we briefly describe the evolutionary stages and summarize the
relevant time-scales with the main goal of establishing the basic
ideas that will be used in our subsequent analysis (see Paper I for
more details about their derivation).

The shortest time corresponds to the approach of the magneto-
hydrostatic equilibrium, controlled by α in our model, as already
explained.

In a longer time, two alternative processes compete as follows.

(i) The particle species move relative to each other, controlled
by the inter-particle collisions, in a tendency to reach a diffusive
equilibrium state in which the fluid forces acting on each species
separately are balanced.

(ii) The weak interactions convert particles from one species into
another, tending towards a chemical equilibrium state.

If the relative motion of charged and neutral particles proceeds
much faster than the conversion from one into another, a diffusive
equilibrium is achieved in the system, characterized by the balance
equations

0 = n0cμ0c
∂

∂x

(
δμc

μ0c

)
+ ∂

∂x

(
B2

8π

)
(9)

and

0 = n0nμ0n
∂

∂x

(
δμn

μ0n

)
. (10)

The inter-particle collision frequency controls the time-scale to
reach the diffusive equilibrium, which is given by Paper I:

tdrag ∼ γcnL
2(

∂μ0n
∂n0B

)
n0c

∼ 4.5 × 10−1 L2
5 T 2

8 yr. (11)

where L5 ≡ L/(105 cm) and T8 ≡ T /(108 K). If the beta decays are
much faster, the chemical equilibrium state δμn = δμc is reached
in a time-scale controlled by the beta decay rate:

tweak ∼ n0c

λn0n

(
∂μ0n
∂n0B

)
n0c

∼ 4.3 × 105 T −6
8 yr. (12)

Thus, we have two relevant limits as follows.

(i) In the weak-coupling limit, tdrag � tweak and the weak inter-
actions operate slowly; therefore, the system relaxes to a diffusive
equilibrium in a time-scale tdrag but remains out of chemical equi-
librium.

(ii) In the opposite, strong-coupling limit, tdrag � tweak, the inter-
particle collisions are very frequent which impedes a fast achieve-
ment of the diffusive equilibrium, while the system can relax to the
chemical equilibrium in the time-scale tweak.

The transition between these limits is achieved when tdrag ∼ tweak.
From equations (11) and (12), we infer that the condition for this
transition is T8 ∼ 5.6L

−1/4
5 , which gives tdrag ∼ tweak ∼ 14L

3/2
5 yr.

Since the density perturbations are assumed to be small, these will
not involve large motions of the particles and therefore not cause a
substantial change in the magnetic flux distribution. Note, however,
that these two equilibria are incompatible with each other as long as
a spatially non-uniform magnetic field is present; therefore, a full
equilibrium will only be reached in a much longer time-scale, on
which the magnetic field is made uniform (in our model) or expelled
from the system (likely more realistic in a true astrophysical setting).
For the determination of this much longer time-scale, on which the
magnetic field does evolve substantially, we again consider the two

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 1730–1741



Ambipolar diffusion in one dimension 1733

opposite regimes discussed above. In the weak-coupling limit, the
system reached the diffusive equilibrium but not the chemical equi-
librium, during the previous stage. During this much longer stage,
the weak interactions slowly convert charged particles into neu-
trons in a tendency to reduce the charged-particle pressure gradient
that counterbalances the magnetic pressure gradient. This causes a
slight deviation from the diffusive equilibrium, producing a joint
transport of the charged particles and the magnetic flux at a small
ambipolar diffusion velocity vA, always keeping the system very
close to diffusive equilibrium. This interplay continues until both
the pressure and magnetic-field gradients disappear, which occurs
in a long time-scale that depends on the magnetic-field strength and
the weak interaction rate:

t
(weak)
ambip ∼ βtweak ∼ 8πn2

0c

λB2
∼ 1.7 × 109B−2

15 T −6
8 yr, (13)

with β ≡ 8πn0cn0n (∂μ0n/∂n0B)n0c
/B2 � 1, which is roughly the

ratio of the charged-particle pressure to the magnetic pressure, and
we defined B15 ≡ B/(1015 G).

In the strong-coupling limit, the relative motion of the charged
particles and neutrons is strongly suppressed by the inter-particle
collisions, which delay the diffusive equilibrium state, while in com-
parison the chemical equilibrium is reached quickly. The deviation
from diffusive equilibrium promotes, as before, a joint motion of
the charged particles and the magnetic flux, with a very small am-
bipolar diffusion velocity vA. This movement yields the diffusive
equilibrium in a very long time-scale controlled by the collision rate
between particles and by the magnetic-field amplitude:

t
(drag)
ambip ∼ βtdrag ∼

8π
(

1 + n0c
n0n

)
n0Bn0cγcnL

2

B2

∼ 1.8 × 103B−2
15 L2

5T
2

8 yr. (14)

Note that at the transition between the strong and weak-coupling
limits (T8 ∼ 5.6L

−1/4
5 ), the ambipolar diffusion time-scales are

of the same order: t
(drag)
ambip ∼ t

(weak)
ambip ∼ 5.5 × 104B−2

15 L
3/2
5 yr. This

value corresponds to the shortest possible ambipolar diffusion time,
since the relevant time-scales increase towards both higher and
lower temperatures. Although the Hall effect is not present in our
one-dimensional calculations, it is important to assess its potential
importance relative to ambipolar diffusion. Consider its time-scale,

tHall ∼ 4πn0eL
2

cB
∼ 3 × 105B−1

15 L2
5 yr, (15)

compared to the minimum ambipolar diffusion time-scale estimated
above. We find that, if B15 < 0.2L−1/2

5 , the Hall drift is likely to play
a dominant role. It might not be important in magnetars, where
B15 > 1, except possibly in reconnection layers, where L5 � 1.

In this paper, we are interested in the details of the evolution of
the magnetic field in the strong and weak-coupling limits. There-
fore, in the next sections we will obtain the differential equations
modelling the evolution of the magnetic field in the time-scales
given by equations (13) and (14).

3 MAG NETIC-FIELD EVOLUTION
IN THE W EAK-COUPLING LIMIT

3.1 Derivation of the asymptotic evolutionary equation

In this section, we derive a single integro-differential equation that
models the magnetic-field evolution in the weak-coupling limit
(tdrag � tweak), in which neutral and charged particles drift eas-
ily with respect to each other, and the main bottleneck is the (slow)

rate at which they can be converted into each other, in order to
decrease the charged-particle pressure gradients that balance the
Lorentz force, impeding the magnetic flux to spread. This limit is
not likely to be relevant in the interstellar medium (Shu 1983), al-
though it roughly corresponds to one of the limits considered by
Mouschovias & Paleologou (1981). In neutron stars, it becomes
important at later stages, once their temperature is low enough.

Hereafter, we take the background properties to be homogeneous,
i.e. the variables with a subscript 0 do not depend on the position.
We assume that the system has already reached the diffusive equi-
librium, which also implies the magneto-hydrostatic equilibrium.
However, since weak interactions are slow, the system may be out
of chemical equilibrium, namely δμn �= δμc. From equation (10),
we infer a spatially uniform distribution of the neutrons:

δμn = g(t), (16)

with g(t) being an arbitrary function that depends only on the time
variable. From equation (9), the diffusive equilibrium of the charged
particles implies

n0cδμc + B2

8π
= f (t). (17)

Since |δnc| � n0c and the time-scale for the evolution is t
(weak)
ambip ∼

L/vc, we can compare the terms in equation (3),∣∣∣∣∂nc

∂t

∣∣∣∣ ∼ δnc

t
(weak)
ambip

� n0cvc

L
∼

∣∣∣∣ ∂

∂x
(n0cvc)

∣∣∣∣ , (18)

so we can neglect the time derivative and write this equation as

∂vc

∂x
= − λ

n0c
(δμc − δμn) . (19)

Integrating this equation between x = 0 and an arbitrary internal
point with coordinate x, we obtain

vc(x, t) = − λ

n0c

∫ x

0
[δμc(x

′, t) − δμn(x ′, t)]dx ′, (20)

where we used the boundary condition vc(0, t) = 0. Replacing
equations (16) and (17) in equation (20) and using the boundary
condition vc(d, t) = 0 to eliminate f (t) and g(t), we obtain

vc(x, t) = − λ

dn2
0c

x(d − x)

(
1

d − x

∫ d

x

B2

8π
dx ′ − 1

x

∫ x

0

B2

8π
dx ′

)
.

(21)

Note that the velocity at any given point is proportional to the pa-
rameter λ controlling the weak interaction rate and to the difference
of the average magnetic pressure to the left and to the right of this
point. This is because, in diffusive equilibrium, a stronger mag-
netic pressure corresponds to a lower density of charged particles,
and the magnetic flux can only spread as the reactions modify the
charged-particle density.

Replacing vc in equation (1), we obtain the integro-differential
equation governing the magnetic-field evolution:

∂B

∂t
= − ∂

∂x
(vcB) = λ

dn2
0c

∂

∂x

×
[
x(d − x)

(
1

d − x

∫ d

x

B2

8π
dx ′ − 1

x

∫ x

0

B2

8π
dx ′

)
B

]
.

(22)

The characteristic time-scale from this equation is the same as
estimated in Paper I. If we scale the position variable x in equa-
tion (22) to the total length of the system d, the time variable to
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tweak
ambip, and the magnetic field to some characteristic magnetic field

(for our subsequent numerical analysis, it is chosen as the maximum
of the initial magnetic-field profile), we can write this equation with
dimensionless variables as

∂B

∂t
= ∂

∂x

[
x(1 − x)

(
1

1 − x

∫ 1

x

B2 dx ′ − 1

x

∫ x

0
B2 dx ′

)
B

]
.

(23)

3.2 Analytical and numerical solutions

Below, we solve equation (23) by using a numerical finite-difference
scheme. However, and with the goal of testing the adequate perfor-
mance of the numerical method, it is desirable to know some ana-
lytical solutions to compare with the numerical results. Following
this philosophy, we try an analytical solution of equation (23) in the
form of a ‘step’ profile, motivated by the fact that we observed it
as a generic asymptotic state in the evolution of some of the initial
profiles that we study in the following paragraphs. Thus, we make
the ansatz

B(x, t) =
{

0 if 0 < x < x1(t),

Bs(t) if x1(t) < x < 1.
(24)

Using the condition of flux conservation, � = Bs(t)(1 − x1(t)) =
constant, and replacing equation (24) in the dimensionless version
of equation (21) evaluated at x = x1, we get

dx1

dt
= −�2 x1

1 − x1
. (25)

Integrating equation (25) yields

t − t0 = − 1

�2

[
ln

(
x1(t)

x1(t0)

)
− (x1(t) − x1(t0))

]
, (26)

where t0 is some reference time. Inverting this equation gives x1(t),
while Bs(t) can be obtained through the condition of flux conserva-
tion.

The step profile equation (24) presents a sharp gradient around
x1(t). Since we are neglecting the Ohmic dissipation, any attempt

that we make to use this step profile as an initial condition in the
finite-difference scheme results in a numerical instability. In order
to overcome this difficulty, we compare in Fig. 1 the analytical
evolution of equation (24) with the finite-difference solution of
equation (23), using as an initial condition a smooth profile,

B(x, 0) = 1

2

[
1 + tanh

(
x − x0

a

)]
, (27)

which is a good approximation to equation (24).
For this comparison, the initial parameters x1(t0 = 0) and

Bs(t = 0) are chosen so that the step profile given by equation (24)
and the smooth profile given by equation (27) share the same initial
magnetic flux. We see from Fig. 1 that, except for the differences
around x1(t), the evolution of both profiles is similar.

Now, we intend to verify whether the asymptotic evolutionary
equation (23) correctly describes the long-term behaviour of the
magnetic field. This requires a comparison of the asymptotic evolu-
tion of the magnetic field as given by the full set of equations (1)–(3)
with the corresponding evolution that arises when using only equa-
tion (23). In Fig. 2, we carry out this comparison for the evolution
of a Gaussian initial magnetic-field profile given by

B(x, 0) = exp
[−s2(x − x0)2

]
. (28)

As an initial condition for the particle densities, we set
δnB(x, 0) = δnc(x, 0) = 0. Note that this comparison is valid
at late times, when this profile has evolved to be consistent with
the diffusive equilibrium. So, we start this comparison from the in-
stant labelled with number (2) in this figure, which corresponds to
t∗ = 20tdrag. We see that the asymptotic behaviour of the magnetic
field [labels (3) and (4) in the figure] calculated from these two meth-
ods is the same. With the purpose of characterizing this asymptotic
behaviour analytically, we construct an analytic ‘box’-type solution
of the form

B(x, t) =

⎧⎪⎨
⎪⎩

0 if 0 < x < x1(t),

Bs(t) if x1(t) < x < 1 − x1(t),

0 if 1 − x1(t) < x < 1.

(29)

Figure 1. The analytic evolution of an initial magnetic step profile of the form given by equation (24) (thin line) and comparison with the finite-difference
evolution of an initial profile given by equation (27) but using equation (23) (thick line). The time scaling in this figure and in the following ones in this regime
is such that t(weak)

ambip = 1 and the time progression is labelled as (1) t = 0, (2) t = 2.45 and (3) t = 8.07. We used the parameters x0 = 0.6, t0 = 0, a = 0.04.
Bs(0) = 1 and x1(0) = 0.6 were chosen so that both profiles share the same magnetic flux.
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Figure 2. The evolution of a Gaussian initial magnetic-field profile given by equation (28) with s = 20, and x0 = 0.5 from the finite-difference solution of
the coupled system of equations (1)–(3) (thick line). In the instant t = 20tdrag [labelled with (2)], this profile has evolved to be consistent with the diffusive
equilibrium. So, from this instant we also follow the evolution given by the numerical finite-difference solution of equation (23) (line with empty squares).
In addition, from the instant t = 50t(weak)

ambip [labelled with (3)], we also compare with the box-type solution given by equation (29) (thin line), where x1 at this
instant was calculated so that all the profiles share the same magnetic flux, using the flux conservation relation � = Bs(1 − 2x1). For this simulation, we set
as an initial condition for the particle densities δnB(x, 0) = δnc(x, 0) = 0 and the parameters: n0c/n0n = 0.04, L/d = 0.08, β = 2.0 and tweak/tdrag ≈ 100.

The labels in the figure represent the instants: (1) t = 0, (2) t = 20tdrag = 0.1, (3) t = 50t(weak)
ambip = 50 and (4) t = 100t(weak)

ambip = 100.

with

dx1

dt
= −�2 x1

1 − 2x1
, (30)

where the magnetic flux is � = Bs(t)(1 − 2x1(t)), and t(x1) is given
by

t − t0 = − 1

�2

[
ln

(
x1(t)

x1(t0)

)
− 2(x1(t) − x1(t0))

]
. (31)

For the instants (3) and (4) in Fig. 2, we show a full line that
represents the solution given by equation (29). We see that this
analytical characterization works well.

In Fig. 3, we show the evolution of a harmonic initial magnetic-
field profile:

B(x, 0) = − cos(πx). (32)

In this figure, we compare the evolution of this profile given by
equation (23) with that given by the full system of coupled equa-
tions (1)–(3). For the latter, the initial conditions for the particle
density perturbations are δnB(x, 0) = δnc(x, 0) = 0. At the instant
labelled with number (2), t∗ = 10tdrag, this initial profile has evolved
to be consistent with the diffusive equilibrium; therefore, from this
instant we also calculate the evolution of the magnetic field through
equation (23). We see in this figure that the asymptotic behaviour of
the magnetic field [instant (4)] calculated from these two methods
is the same, which again verifies the validity of equation (23) to
model the asymptotic evolution of the magnetic field.

In summary, the last results confirm the adequacy of equation (23)
to describe the asymptotic evolution of the magnetic field promoted
by ambipolar diffusion but controlled by beta decays. So, in what
follows we explore the evolution of different magnetic profiles using
only this equation. This also has the advantage that we can increase
the time-step with respect to that needed when solving the full set
of equations (1)–(3) without generating numerical instabilities. In
Figs 4 and 5, we show the evolution of different initial profiles.

From the numerical results, we can infer some generic properties
as follows.

(i) The ambipolar diffusion process tends to spread out the mag-
netic flux and the total magnetic flux is conserved as it is expected
from our boundary conditions.

(ii) Contrary to the normal Ohmic diffusion, in Fig. 5 it is ob-
served that the magnetic field is not smoothed over all the space.
It becomes uniform only over regions whose boundaries are points
where the magnetic field is zero and across which it jumps be-
tween values of the same magnitude, but opposite signs, making
the magnetic pressure B2/(8π) equal on both sides.

(iii) The magnetic field nulls move according to the local values
of the charged-particle velocity, as given by equation (21). This ve-
locity is a continuous function of x, so the flux can be spread out or
compressed, but no reconnection (mutual elimination of opposite
field lines) occurs in the absence of Ohmic dissipation, contrary to
the strong-coupling limit to be studied in the next section. Of course,
the formation of steep gradients makes it possible for Ohmic dissipa-
tion and therefore reconnection to occur in a realistic astrophysical
setting.

4 MAG NETI C-FI ELD EVOLUTI ON IN TH E
STRO NG-COUPLI NG LI MI T

4.1 Derivation of the asymptotic evolutionary equation

In this section, we study the magnetic-field evolution in the opposite
limit of the last section, namely the strong-coupling limit, tdrag �
tweak, in which the conversion from charged to neutral particles and
vice versa is essentially instantaneous, but their relative motion is
impeded by a strong mutual collisional drag force. This limit is
relevant for young, hot neutron stars, as well as in the interstellar
medium (Shu 1983; Brandenburg & Zweibel 1994).
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Figure 3. The evolution of equation (32) from the finite-difference solution of the full coupled system of equations (1)–(3) (full line). Similar to Fig. 2, in the
instant t = 10tdrag [labelled with (2)], this profile has evolved to be consistent with the diffusive equilibrium. So, from this instant we also follow the evolution
given by the numerical finite-difference solution of equation (23) (points). For this simulation, we set again as an initial condition δnB(x, 0) = δnc(x, 0) = 0
and the same background parameters of Fig. 2. We set β = 1.1 and tweak/tdrag ≈ 100. The labels in the figure represent (1) t = 0, (2) t = 10tdrag = 0.090 72,

(3) t = t(weak)
ambip = 1 and (4) t = 5t(weak)

ambip = 5.

Figure 4. Evolution of a double Gaussian profile of the form B(x, 0) = exp[−400(x − 0.2)2] + 0.7 exp[−100(x − 0.8)2], using equation (23). The labels
indicate the time progression for different instants, (1) t = 0, (2) t = 4.0, (3) t = 60.0 and (4) t = 400.0.

In order to study the long-term evolution, we consider that the
system has reached both the magneto-hydrostatic and chemical
equilibria. From equation (4), the magneto-hydrostatic equilibrium
condition implies

n0nδμn + n0cδμc + B2

8π
= h(t), (33)

where h(t) is an arbitrary function depending only on the time
variable. On the other hand, the condition for chemical equilibrium
implies

δμn − δμc = 0. (34)

Combining equations (33) and (34), we obtain

δμc = δμn = 1

n0B

[
h(t) − B2

8π

]
. (35)

As done in equation (18), we can compare the time derivative to
one of the spatial derivatives in equation (2):∣∣∣∣∂δnB

∂t

∣∣∣∣ ∼ δnB

t
(drag)
ambip

� n0cvc

L
∼ n0c

∣∣∣∣∂vc

∂x

∣∣∣∣ . (36)

Thus, we can neglect the time derivative of δnB in comparison with
the spatial derivative term in equation (2) and write

n0n
∂vn

∂x
= −n0c

∂vc

∂x
. (37)

Integrating equation (37) between x = 0 and an inner point x
with the boundary conditions vc(0, t) = vn(0, t) = 0, and using
equation (35), we obtain

vc = − n0n

n0cn
2
0Bγcn

∂

∂x

(
B2

8π

)
. (38)
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Figure 5. Evolution given by equation (23) for the same instants as in Fig. 4, but for an initial profile with one of the Gaussians inverted: B(x, 0) = exp[−400(x −
0.2)2] − 0.7 exp[−100(x − 0.8)2].

We see from equation (38) that the Lorentz force drives the motion
of magnetic flux and charged particles at the velocity vc, which is
controlled by the inter-particle collisions through the factor 1/γcn.
After including equation (38) in equation (1), we obtain the equa-
tion for the magnetic-field evolution as

∂B

∂t
= − ∂

∂x
(vcB) = n0n

8πn0cn
2
0Bγcn

∂

∂x

[
B

∂B2

∂x

]
. (39)

Scaling the time variable to t(drag)
ambip and the position variable to

the total length of the system d, this equation can be written in a
dimensionless form as

∂B

∂t
= ∂

∂x

[
B

∂B2

∂x

]
. (40)

Equation (40) belongs to a group of non-linear diffusion equa-
tions or porous medium equations whose mathematical properties
have been studied by different authors (see e.g. Tuck 1976; Vázquez
2007). Shu (1983) obtained it for ambipolar diffusion in interstellar
gas, in a similar, strong-coupling regime as considered here, but
ignoring the pressure of the charged particles, while allowing for
arbitrarily large density perturbations and using a Lagrangian coor-
dinate system moving with the neutral fluid. It was rederived under
slightly different assumptions by Brandenburg & Zweibel (1994).

4.2 Analytical and numerical solutions

4.2.1 Exact analytical solution

As an analytical solution of equation (40) that will allow us to
validate our numerical results, we follow Tuck (1976) and consider

B(x, t) =
⎧⎨
⎩

0 if |x − x0| > as(t)

Bs(t)

√
1 −

(
x−x0
as(t)

)2
if |x − x0| ≤ as(t).

(41)

This solution is a semi-ellipse in the (x, B) plane, centred at
(x0, 0), with semi-axes as(t) and Bs(t). Replacing equation (41)
in equation (40) and using the flux conservation condition � =
(π/2)Bs(t)as(t) = constant, we obtain the differential equation for
as(t), namely

das

dt
= 8�2

π 2a3
s

, (42)

with the solution

as(t) = as(t
∗)

[
1 + 8B2

s (t∗)

a2
s (t∗)

(t − t∗)

]1/4

, (43)

where t∗ is a reference time.
In Fig. 6, we compare this analytical solution to the corresponding

evolution obtained from the finite-difference numerical integration
of equation (40). We see that there is a good agreement between the
two methods except at the last instant, labelled with (4) in the figure.
This is expected, since at this instant the elliptic part of the profile
has crossed the boundaries of the system, so the analytical solution is
no longer valid. Note also that the latter does not conserve magnetic
flux once the ends of the ellipse have reached the boundaries. We
also see at the instant labelled with (4) how the magnetic field given
by equation (40) is almost homogeneously distributed across the
system, as expected from the magnetic-flux conserving boundary
conditions that we are using for this equation. Thus, the finite-
difference method that we are using to solve equation (40) appears
to be working well.

4.2.2 Numerical explorations

Hereafter, and with the main goal of establishing a comparison, we
follow the evolution of the same initial profiles that we used in the
previous section, where we dealt with the opposite regime.

In Fig. 7, we show the evolution of an initial Gaussian magnetic-
field profile given by equation (28), as given by the full coupled
system of equations (1)–(3) with δnB(x, 0) = δnc(x, 0) = 0. At the
instant (2), t∗ = 10tweak, the system should be very close to chemical
equilibrium. Thus, from this instant onwards, equation (40) should
be valid, so we also follow the evolution of the magnetic field
obtained from the finite-difference solution of this equation. We see
that the asymptotic behaviour of the magnetic field [labels (2) and
(3) in the figure] calculated from these two models is the same. In
addition, for the instants (2) and (3), we show for comparison the
analytical solution (equation 41). We see that this explicit solution
is an adequate description of the asymptotic evolution.

The previous results confirm the adequacy of equation (40) in
describing the asymptotic evolution of the magnetic field promoted
by ambipolar diffusion and controlled by inter-particle collisions.
We now examine the evolution of different magnetic profiles using
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Figure 6. Evolution of an initial ‘elliptic’ profile of equation (41) from equations (42) and (43) (line) and evolution given by the numerical finite-difference
solution of equation (40) (empty squares). The time instants are (1) t = 0, (2) t = 0.02, (3) t = 0.3 and (4) t = 0.9.

Figure 7. Evolution of a Gaussian initial field profile of the form given by equation (28) with s = 6, and x0 = 0.5, from the finite-difference solution of the
coupled system of equations (1)–(3) (line with points). For this simulation, we set as an initial condition for the particle densities δnB(x, 0) = δnc(x, 0) = 0.
In the instant t = 10tweak [labelled with (2)], this profile has evolved to be consistent with the chemical equilibrium. So, from this instant we also follow the
evolution given by the numerical finite-differences solution of equation (40) (thick line) and the analytical solution of equation (41) (line with empty squares)
whose parameters were chosen in a such way as to share the same magnetic flux. We used the parameters β = 1.1, tdrag/tweak ≈ 100. The labels in the figure

represent the instants: (1) t = 0, (2) t = 10tweak and (3) t = t(drag)
ambip = 1. We used the same background parameters n0c/n0n = 0.04.

only this equation. In Figs 8–10, we see the evolution of different
magnetic-field profiles. From these numerical results, we can infer
the following properties.

(i) As in the weak-coupling limit, the ambipolar diffusion pro-
cess acts in a tendency to spread out the magnetic flux. Again, as
expected, the total magnetic flux is conserved.

(ii) At the null points, the magnetic field vanishes continuously,
but with a high (possibly infinite) derivative, as expected from the
example of the solution given by equation (41).

(iii) Contrary to the weak-coupling limit, in Fig. 9, it is observed
that the magnetic flux is not preserved in each of the regions sepa-
rated by the magnetic null points. Therefore, there is a transfer of
magnetic flux through these null points, leading to reconnection of

magnetic-field lines even in the absence of Ohmic diffusion, as will
be discussed further below.

4.2.3 Fixed singularity

In order to understand the formation and behaviour of the singu-
larities at the null points, we first consider a magnetic field with a
finite derivative at a null point x = x0 and follow the evolution of its
derivative p(t) using the ansatz:

B(x, t) = p(t)(x − x0). (44)

The transport velocity,

vc = − ∂

∂x

(
B2

) = −2p2(x − x0), (45)
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Figure 8. Evolution according to equation (40) of an initial field B(x, 0) = exp[−400(x − 0.2)2] + 0.7 exp[−100(x − 0.8)2]. The label numbers show the time
progression for different instants: (1) t = 0, (2) t = 0.3 and (3) t = 3.0.

Figure 9. Evolution according to equation (40) of an initial field B(x, 0) = exp[−400(x − 0.2)2] − 0.7 exp[−100(x − 0.8)2]. The label numbers show the time
progression for different instants: (1) t = 0, (2) t = 0.5 and (3) t = 45.0.

vanishes at the null point as long as p is finite, so there is no re-
connection at the null point in this regime. From equation (40),
the differential equation for p(t) is dp/dt = 4p3, with the solu-
tion p(t) = p(0)/

√
1 − 8p2(0)t, which diverges in a finite time

t∞ = 1/(8p2(0)). Brandenburg & Zweibel (1994) found that this
divergence (which they identified numerically) can lead to a sta-
tionary solution for the magnetic field. We rederive it by noting
that, to have ∂B/∂t = 0 in equation (40), the term in parenthesis on
the right-hand side, which corresponds to (minus) the ‘flux of flux’
(amount of magnetic flux crossing any point x per unit time), must
be uniform in space:

B
∂B2

∂x
= −vcB ≡ −F = constant, (46)

leading to

B(x) =
[
−3

2
F (x − x0)

]1/3

. (47)

The infinite derivative at x = x0 allows F to remain finite at this
point, so there is magnetic flux crossing the singularity and caus-
ing reconnection, without having included Ohmic diffusion in the
model. Of course, this simple solution is not compatible with our
boundary conditions, which were constructed so as to enforce
F = 0 at the boundaries. Therefore, for our numerical solutions,
the reconnection must produce a decrease in the absolute value of
the magnetic flux in each of the regions separated by the singularity
and therefore in the amplitude of the magnetic field.

In order to explore this behaviour, we will study the evolution of
an initial magnetic-field profile of the form

B(x, 0) = cos(πx). (48)

This magnetic-field profile has a null at x = 1/2 and is an odd
function with respect to this point, a property that is preserved by
the evolution according to equation (40). Thus, in particular, the
position of the null point will remain fixed. Based on this fact, we
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Figure 10. Evolution of an initial magnetic field B(x, 0) = cos(πx). The label numbers show the time progression for different instants: (1) t = 0, (2) t = 0.5,
(3) t = 5 and (4) t = 50. The dashed lines represent the evolution as given by equation (40) while the full line is the asymptotic solution given by equation (49).
It follows that the solution of equation (40) converges after an initial transient to equation (49). �+(t) is the positive magnetic flux on the left of the singularity
x = 0.5 (see equation 57) and �+(0) = 1/π.

try a solution of equation (40) by separation of variables in the form

B(x, t) = f (t)g(x), (49)

with f (t) and g(x) satisfying

df

dt
= −Cf 3, (50)

and

d

dx

[
g2 dg

dx

]
= −C

2
g, (51)

where C is a separation constant. The magnetic flux between the
left boundary of the system and the null point at x = 1/2 is

�+(t) =
∫ 1/2

0
B(x, t)dx. (52)

By symmetry, the flux in the other half of the interval will be

�−(t) =
∫ 1

1/2
B(x, t)dx = −�+(t). (53)

If we normalize∫ 1/2

0
g(x)dx = 1, (54)

we will have f (t) = �+(t).
In order to solve equation (51) subject to the boundary conditions

of equation (8), we use the new variable u(x) = g3(x), which must
satisfy the conditions (du/dx)x=0 = (du/dx)x=1 = 0 and u(1/2) =
0. Thus, equation (51) is rewritten as

d2u

dx2
= −3

2
Cu1/3. (55)

Combining equation (55) with equation (54), we obtain the aux-
iliary condition (du/dx)x=1/2 = −3C/2, which indicates that the
magnetic field close to the null point has the shape given by equa-
tion (47). The numerical solution of equation (55) must satisfy
conditions at different points, which can be intricate from the nu-
merical point of view. Thus, we rescale our variables as u = Uv and

x = Xy, where U and X are constants to be determined. This allows
us to write equation (55) as

d2v

dy2
= −v1/3, (56)

which requires C = (2/3)X−2U2/3. The boundary conditions can be
set as v(y = 0) = 1, (dv/dy)y=0 = 0. From the numerical solution
of equation (56), we obtain v(y0) = 0 at y0 = 1.46. Since the null
point of u is at x0 = 1/2, we get X = x0/y 0 = 0.34. Using u = Uv
and the conditions on the first derivatives, (du/dx)x=1/2 = −3C/2
and (dv/dy)y=y0 ≡ p0 = −1.20 (obtained numerically), we get
U = −1/(Xp0)3 = 14.0. Finally, comparing equations (55) and (56)
we obtain C = (32/3)(y4

0/p2) = 33.7, which determines the full
evolution of the magnetic flux in each half of the interval, which is
given according to equation (50) as

�+(t) = �+(0)√
1 + 2C [�+(0)]2 t

→
t→∞

1√
2Ct

. (57)

The flux calculated from the numerical solution of equation (40)
agrees with equation (57) with a percentage error of the order of
0.4 per cent. Equation (57) implies that positive magnetic flux com-
ing from the left of the singularity annihilates with the negative flux
coming from the right. This is reconnection in the absence of Ohmic
resistivity.

In Fig. 10, we observe that the magnetic field as given by the
numerical solution of equation (40) converges after a initial tran-
sient to the field of equation (49) (obtained from the solution of
equation 55). This magnetic-field profile has a strong divergence of
the velocity field at the null point, and we are assuming that the ex-
cess charged particles instantaneously recombine when they reach
this point, which is not realistic even in the ‘strong-coupling limit’,
in which tweak � tdrag. In other words, even if the beta decays can
be considered as instantaneous everywhere else in the system, this
approximation will break down close enough to the singularity. The
behaviour close to the singularity, including both a fast, but finite
recombination rate and a small, but finite Ohmic diffusivity, was
discussed in detail by Heitsch & Zweibel (2003a,b).
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5 C O N C L U S I O N S

We have studied the asymptotic magnetic-field evolution promoted
by ambipolar diffusion in a one-dimensional geometry for two oppo-
site, limiting regimes. In the weak-coupling limit, in which neutral
and charged particles drift easily with respect to each other, the
bottleneck for the evolution is the conversion of one species into
another, which is required in order to eliminate the charged-particle
pressure gradients caused by the magnetic field, which impede its
evolution. In the strong-coupling limit, conversions are easy, but
the inter-particle collisions are the corresponding bottleneck. In
molecular clouds, the second regime appears to be generally rele-
vant (Shu 1983; Brandenburg & Zweibel 1994). Neutron stars in
their hot, early phase will also be in the strong-coupling regime and
evolve to the weak-coupling regime as they cool.

In the weak-coupling limit the magnetic-field evolution is de-
scribed by a non-linear, partial integro-differential equation, while
in the strong-coupling limit this evolution is described by a non-
linear diffusion equation. We made numerical simulations of the
evolution of different initial magnetic-field profiles in each of these
limits and found agreement between our numerical results and some
analytic solutions that can be found for these differential equations.

From our results, we infer that, in both limits, the ambipolar
diffusion process operates in a tendency to spread out the mag-
netic flux, but contrary to the normal Ohmic diffusion this process
asymptotically produces singular points with sharp magnetic-field
gradients. These sharp gradients develop around those points where
the magnetic field is null, and separate regions of magnetic fields
with opposite signs. We observe some generic properties of this
process, as follows.

In the weak-coupling limit, the resulting discontinuities can be
modelled as step solutions (equations 24 and 29). The asymptotic
magnetic field is spatially uniform in each of the regions separated
by these singularities, and its absolute value (and thus the magnetic
pressure) is the same in each region. Ambipolar diffusion by itself
does not cause magnetic flux transfer (and thus reconnection) across
the singularities, but the associated current sheets will easily be
dissipated by Ohmic diffusion, so reconnection will occur in a
realistic system. In the strong-coupling limit, at the singular points
the magnetic field vanishes continuously but with an infinite spatial
derivative. Ambipolar diffusion acts in a tendency to spread out the
magnetic flux, but, contrary to the weak-coupling limit, the magnetic
flux is not preserved in each of the regions separated by the magnetic
null points. Therefore, there is a transfer of magnetic flux through
these null points, i.e. reconnection without Ohmic resistivity (see
Heitsch & Zweibel 2003a,b).

The main limitation in applying the present formalism to realistic
systems (either neutron stars or molecular cloud cores) is the very
restrictive, one-dimensional geometry. An extension to more real-

istic geometries (i.e. axial symmetry) will be attempted in further
work.
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caimiento de campos magnéticos en estrellas de neutrones’ between
Universidad de Medellı́n (Summa Group), Pontificia Universidad
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