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Observation of localized modes at phase slips in two-dimensional photonic lattices
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We study experimentally light localization at phase-slip waveguides and at the intersection of
phase-slips in a two-dimensional (2D) square photonic lattice. Such system allows to observe a
variety of effects, including the existence of spatially localized modes for low powers, the generation
of strongly localized states in the form of discrete bulk and surface solitons, as well as a crossover
between one-dimensional (1D) and 2D localization.

The study of nonlinear dynamics in waveguide arrays
and photonic lattices has attracted a great deal of atten-
tion due to the possibility to observe many novel effects of
nonlinear physics and possible interesting applications in
photonics [1]. In particular, it was shown that discrete
nonlinear photonic systems can support different types
of spatially localized states in the form of discrete soli-
tons [2]. These solitons can be controlled by the insertion
of suitable defects in an array, as was suggested theoreti-
cally [3] and also verified experimentally for arrays of op-
tical waveguides [4]. Defects may provide an additional
physical mechanism for light confinement, and they can
support spatially localized modes, which have been stud-
ied theoretically for different linear [5] and nonlinear [6–
8] models and observed experimentally in 1D [5, 9] and
2D [10] photonic lattices.

Recently, a novel type of nonlinear mode has been in-
troduced [11, 12] at the interface between two spatially
shifted nonlinear waveguide arrays. These defect modes
are closely linked with the phase-slip defects in 2D pho-
tonic crystals [13]. In the presence of a phase-slip, the
distance between two lattice sites located at both sides of
the phase-slip is a non-integer multiple of the lattice con-
stant. As a result, the nonlinear phase-slip defect modes
possess the specific properties of both discrete nonlinear
surface modes and bulk solitons.

In this Letter we study experimentally, for the first
time to our knowledge, light localization in a 2D square
photonic lattice containing one phase-slip defect or an in-
tersection of two phase-slip defects. We observe a variety
of novel effects, including linear modes localized at the
cross intersection of the phase-slips [13], strongly nonlin-
ear localized states in the form of discrete solitons at a
single slip [11], and discrete surface solitons at the lat-
tice edges [12]. We also observe and discuss a crossover
between 1D and 2D localization.

The considered system consists of an array of N × N
nonlinear focussing (Kerr) waveguides, originally form-
ing a square lattice with periodicity a. Breaking the
translational symmetry of the system by altering the dis-
tance between two consecutive rows or columns creates a

FIG. 1: (Color online) Schematics of an intersection of two
different phase slips (H,V 6= a). The case of a single phase
slip corresponds to either H 6= a or V 6= a. Marked waveg-
uides show the excitation points.

phase defect or a cross intersection of two phase-slips (see
Fig. 1). The coupling across the defect in the x-direction
(y-direction) is termed CH(CV ). In the framework of the
couple-mode theory, the evolution equations for the elec-
tric field amplitudes En(z) can be written in the form,

i
dEn

dz
+
∑

m

Cn,mEm + γ|En|
2En = 0 (1)

where En(z) is the electric field (in units of (Watt)1/2)
on waveguide n at distance z (in meters), Cn,m is the
coupling coefficient (in units of 1/meter) between guides
n and m, and γ (in units of 1/(Watt×meter)) is the non-
linear coefficient, defined by γ = ω0n2/cAeff , where ω0 is
the angular frequency of light, n2 is the nonlinear refrac-
tive index of the guide and Aeff is the effective area of
the linear modes. Equation (1) is normalized by defining
a dimensionless distance s ≡ Cz, where C is the cou-
pling between nearest-neighbor guides outside the vicin-
ity of the slip defect, and the dimensionless electric field
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FIG. 2: Power diagrams for the cases: (a) The mode is local-
ized at a cross intersection of two phase slips with V = H =29
µm. (b) Surface mode localized at a single phase slip with
V =25 µm, H = a = 40 µm. Solid lines refer to stable states
while dashed branches refer to the unstable modes.

φn = (γ/C)1/2En. With the above definitions, the con-
served power (in Watts) is given by

∑
n |En|

2 = (C/γ) P ,
where P ≡

∑
n |φn|

2 is the dimensionless power. As was
first shown by Apalkov and Raikh [13], a topological de-
fect created by the intersection of two phase-slips, can

FIG. 3: (Color online) Light diffraction and localization in
a perfect square lattice, for different input powers: (a) 75
kW, (b) 1600 kW, and (c) 2000 kW. Excited waveguides are
marked with white circles.

support a linear localized mode. Looking for station-
ary linear modes (γ = 0) of the system (1) in the form,
φn(s) = φn exp(iβs), we find a linear localized mode at
a fixed value of the propagation constant,

β = CV +
1

CV
+ CH +

1

CH
, (2)

provided CV > 1 and CH > 1. In the nonlinear
case, we follow the recent theoretical results [11, 12] and
demonstrate that nonlinearity can support a variety of lo-
calized modes including the modes which bifurcate from
the symmetric states and describe nonlinear asymmet-
ric localized states. The corresponding bifurcation dia-
gram of low-power branches of localized modes in shown
in Figs. 2(a,b) for bulk and surface modes, respectively.
When the mode power grows, the symmetric mode A de-
scribed in the anti-continuum limit by the pattern (+ +

+ + )
becomes unstable, and it transforms into the asymmet-
ric mode B with the pattern (+ 0

0 0
) corresponding to the

lower bifurcation branch in Fig. 2(a). Similarly, the sur-
face symmetric mode (++ ) bifurcates into the asymmetric

mode (+
0
) above a certain power threshold, as shown in

Fig. 2(b). Whereas in the case of Fig. 2(a), the localized
modes extend toward vanishing powers, a finite threshold
power is required to generate a surface mode in the case
of Fig. 2(b).
For the fabrication, we employ the femtosecond direct-

writing technique [14]. The specific fabrication parame-
ters can be found, e.g., in [15]. Each array is 100 mm
long and consists of 7 × 7 waveguides, as shown in Fig.
1(a). The spacing between the individual lattice sites
is a =40µm except in the phase-slip channels, where
the spacing is decreased. In the experiments, light of
a Ti:sapphire chirped pulse amplification laser system
(RegA, Coherent), with a pulse duration of about 180
fs and a repetition rate of 150 kHz at 800 nm, was cou-
pled into the central guide using a 4 × microscope objec-
tive [numerical aperture (NA) of 0.1], coupled out by a
10 × objective (NA = 0.25), and projected onto a CCD
camera.
First, we study the light propagation in a perfect lat-

tice V = H = a =40µm. Figures 3(a-c) show the ex-
perimental images of the light at the lattice output for
different input powers. In the linear regime [Fig. 3(a)],
we observe strong discrete diffraction but, when the input
power grows, the diffraction is suppressed [Fig. 3(b)], and
the generation of a discrete 2D soliton [16] is observed for
the input power of 2000 kW [Fig. 3(c)].
Next, we consider a symmetric cross-intersection of two

FIG. 4: (Color online) (a) Experimental and (b) Theoretical
results for the generation of a linear localized mode at an in-
tersection of two phase-slip waveguides for V = H =22 µm
and an input power 75 kW [cf. Fig. 3(a)]. Excited waveg-
uides are marked with white circles; phase slips are marked
by dashed lines.

phase-slip waveguides with the parameters V = H =22
µm, and excite one of the waveguides near the cross, as
marked in Fig. 1. Even for a power level as low as 75
kW we observe, in a sharp contrast with the diffraction
pattern of Fig. 3(b), the generation of a linear mode
localized at the phase-slip intersection. Figures 4(a,b)
show both experimental and numerical images of the light
intensity at the output facet that confirm the generation
of a strongly localized state at the phase-slip defect, in
accord with the theory [13]. Because we excite only one
site of the lattice, the resulting four-site mode can not be
generated as a stationary mode, but it is clearly seen how
the light is bound to the phase-slip, which is reproduced
by direct numerical simulations, see Fig. 4(b).
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FIG. 5: (Color online) Experimental images of the light in-
tensity at the output facet showing the generation of (a) a
1D stripe surface soliton for an input power 1700 kW, and
(b) its transformation into a 2D soliton at 2000 kW. The
waveguide parameters are: for H =29 µm, V = a =40 µm.
Excited waveguides are marked with white circles; phase slips
are marked by dashed lines.

For the next series of experiments, we fabricate a single
phase slip and excite one of the central

FIG. 6: (Color online) Experimental images of the output
light intensity showing the generation of (a,b) 2D soliton (H =
V =29µm), and (c,d) generation of a surface soliton at a phase
slip (H =40 µm and V =25 µm). Excited waveguides are
marked with white circles; phase slips are marked by dashed
lines.

waveguides, as shown in Fig. 5(a). For low input
power, we excite one of the linear guided modes of this
phase slip waveguides (not shown), that undergoes sym-
metry breaking for larger powers and transforms into an
asymmetric 1D stripe soliton, as shown in Fig. 5(a) for
1700 kW. Increasing the input power further, we observe
a sharp crossover between 1D and 2D localization and
the generation of a 2D soliton, see Fig. 5(b).

The generation of a 2D asymmetric nonlinear mode at
the intersection of two phase-slips (H = V =29 µm) is
shown in Fig. 6(a,b). Even at relatively large power (1400
kW), the light diffracts across a quarter of the lattice
[Fig. 6(a)], but for higher powers (2500 kW) the mode
becomes localized eventually [Fig. 6(b)].

An example for nonlinear surface mode is presented
in Fig. 6(c,d) for a single phase-slip waveguide, H =40
µm and V =25 µm. For lower powers (75 kW), the light
is repelled by the surface [Fig. 6(c)]. This behavior is
very similar to the light propagation in one-dimensional
waveguide arrays [17]. However, when the input power
exceeds a threshold (2800 kW), we observe the generation
of a localized state at the surface [Fig. 6(d)].

In conclusion, we have studied experimentally the gen-
eration of spatially localized modes at phase-slip waveg-
uides and their intersections. We have generated both
discrete bulk and surface solitons near the lattice struc-
tural defects, in a qualitative agreement with earlier the-
oretical predictions. We have also observed an interplay
between the effectively 1D and 2D dynamics.
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