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On spaces of Conradian group orderings

Cristóbal Rivas

Abstract

We classify C-orderable groups admitting only finitely many C-orderings. We show
that if a C-orderable group has infinitely many C-orderings, then it actually has un-
countably many C-orderings, and none of these is isolated in the space of C-orderings.
As a relevant example, we carefully study the case of Baumslag-Solitar’s group B(1, 2).
We show that B(1, 2) has four C-orderings, each of which is bi-invariant, but its space
of left-orderings is homeomorphic to the Cantor set.

Introduction

One of the starting points of the theory of orderable groups is [7], where O. Hölder
proved that any Archimedean Abelian ordered group is ordered isomorphic to a subgroup
of the additive group of real numbers with the standard ordering. In his seminal work [5],
P. Conrad obtained a condition on left-ordered groups which is equivalent to the fact that
the conclusion of Hölder’s theorem holds ‘locally’ (see (4) below). Since then, these so-called
C-orderings (or Conradian orderings) have played a fundamental role in the theory of left-
orderable groups. (See for instance [11, 17].) Recall that a left-invariant (total) ordering �
on a group G is said to be Conradian if the following four equivalent properties hold (this
equivalence will be referred to as the Conrad Theorem, see [1, 5, 9]):

(1) For all f ≻ id and g ≻ id (for all positive f, g, for short), we have fgn ≻ g for some
n ∈ N.

(2) If 1 ≺ g ≺ f , then g−1fng ≻ f for some n ∈ N = {1, 2, . . .}.

(3) For all positive g ∈ G, the set Sg = {f ∈ G | fn ≺ g, for all n ∈ Z} is a convex
subgroup. (By definition, a subset S ⊂ G is convex if whenever f1 ≺ h ≺ f2 for some f1, f2
in S, we have h ∈ S.)

(4) Given g ∈ G, we denote the maximal (resp. minimal) convex subgroup which does
not contain (resp. contains) g by Gg (resp. Gg). For every g, we have that Gg is normal
in Gg, and there exists a non-decreasing group homomorphism (to be referred to as the
Conrad homomorphism) τ g� : Gg → R whose kernel coincides with Gg. Moreover, this
homomorphism is unique up to multiplication by a positive real number.

Recently, two new approaches to this property have been proposed by A. Navas. On the
one hand, as it was noticed in [8, 13], in (1) and (2) above one may actually take n=2. The
topological counterpart of this is the fact that the space of C-orderings is compact when it is
endowed with a natural topology (see §1.1). This leads, for instance, to a new and short proof
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of the fact that locally indicable groups are C-orderable. (Note that the converse follows
from (4).) On the other hand, the dynamical characterization of the Conradian property of
[13, 15] leads to applications in the study of the topology of space of group orderings, and to
general ‘level structure’ theorems for left-ordered groups. In this work, this dynamical point
of view will be crucial.

Following the first direction above, we focus on the structure of the space of group C-
orderings. In particular, we provide complete answers to questions in [13, Question 3.9] and
[14, §1.3].

It is known that the space of left-orderings of a group is either finite or uncountable
[10, 15]. Although this is no longer true for bi-orderings [3], our first main result shows that
this dichotomy persists for C-orderings.

Theorem A. Let G be a C-orderable group. If G admits infinitely many C-orderings, then
it has uncountably many C-orderings. Moreover, none of these is isolated in the space of
C-orderings.

For the second claim of Theorem A, the space of group left-orderings is endowed with the
projective topology induced from the discrete one on finite sets, and the subset of C-orderings
is endowed with the subspace one (see §1.1 for more details). The space of left-orderings
is (Hausdorff, totally disconnected and) compact, and the subset of C-orderings is closed
therein. In particular, this implies that the second claim of the statement is stronger than
the first.

Our second result concerns groups admitting only finitely many C-orderings, and may
be considered as an analogue of Tararin’s classification of left-orderable groups admitting
finitely many left-orderings [9, Theorem 5.2.1]. For the statement, recall that a series

{id} = G0 ⊳G1 ⊳ . . .⊳Gn−1 ⊳Gn = G

is said to be rational if it is subnormal (i.e., each Gi is normal in Gi+1) and each quotient
Gi+1/Gi is torsion-free rank-1 Abelian.

Theorem B. Let G be a C-orderable group. If G admits finitely many C-orderings, then
G admits a unique (hence normal) rational series. In this series, no quotient Gi+2/Gi is
Abelian. Conversely, if G is a group admitting a normal rational series

{id} = G0 ⊳G1 ⊳ . . .⊳Gn−1 ⊳Gn = G

so that no quotient Gi+2/Gi is Abelian, then the number of C-orderings on G equals 2n.

The proof of Theorem B consists in a non-trivial modification of Tararin’s arguments.
(Note that the statement of Tararin’s theorem is the same as that of Theorem B though
changing ‘C-orderings’ by ‘left-orderings’, and the condition ‘Gi+2/Gi non Abelian’ by ‘Gi+2/Gi

non bi-orderable’.) First, as observed in [14], if a C-orderable group admits finitely many
C-orderings, then it must be solvable. Now the fact that each quotient Gi+1/Gi has rank 1
and no quotient Gi+2/Gi is Abelian is a consequence of the fact that the space of orderings
of higher-rank torsion-free Abelian groups are uncountable (see for example [4, 18]). Finally,
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we use an extra argument involving the Conrad homomorphism to show that, when the
hypotheses are fulfilled, there are only finitely many C-orderings.

Let us point out that Baumslag-Solitar’s group B(1, 2) = 〈a, b | bab−1 = a2〉 satisfies
the conditions of Theorem B. Therefore, its space of C-orderings is finite. Actually, this
space consists of four C-orderings, each of which is bi-invariant (see Proposition 4.1). This
example was the starting point of this work, and we provide a direct short argument for this
particular case in §4.1. We point out, however, that the space of left-orderings of B(1, 2)
is uncountable. (Actually, it is homeomorphic to the Cantor set.) In addition, in §4.1 we
give a complete description of all left-orderings of B(1, 2) which extends to many other
left-orderable metabelian groups (see Theorem 4.2).

This work corroborates a general principle concerning C-orderings. On the one hand,
these are sufficiently rigid in that they allow deducing structure theorems for the underlying
group (e.g., local indicability). However, they are still sufficiently malleable in that, starting
with a C-ordering on a group, one may create very many C-orderings, which turn out to be
different from the original one (see Example 1.1) with the only exception of the pathological
cases described in Theorem B.

1 Preliminaries

1.1 Spaces of group orderings

Given a left-orderable group G (of arbitrary cardinality), we denote the set of all left-
orderings on G by LO(G). This set has a natural topology: a basis of neighborhoods of
� in LO(G) is the family of the sets Ug1,...,gk of all left-orderings �′ on G which coincide
with � on {g1, . . . , gk}, where {g1, . . . , gk} runs over all finite subsets of G. Another basis is
given by the sets Vf1,...,fk of all left-orderings �′ on G such that all the fi are �′-positive,
where {f1, . . . , fk} runs over all finite subsets of �-positive elements of G. Endowed with
this topology, LO(G) is Hausdorff and totally disconnected, and by (an easy application
of) the Tychonov Theorem, it is compact (see for instance [13, §2.1]). The (perhaps empty)
subspaces BO(G) and CO(G) of bi-orderings and C-orderings on G are, respectively, closed
inside LO(G), hence compact.

If G is countable, then this topology is metrizable: given an exhaustion G0 ⊂ G1 ⊂ . . .
of G by finite sets, for different � and �′ , we may define dist(�,�′) = 1/2n, where n is
the first integer such that � and �′ do not coincide on Gn. If G is finitely generated, we
may take Gn as the ball of radius n with respect to a fixed finite system of generators.

Example 1.1. In the case of Conradian orderings, there is a natural way to generate new
C-orderings starting with a given one. This procedure is useful for approximating a given
C-ordering if the series of convex subgroups is long enough (see §2). Let � be a C-ordering,
and let

{id} = Gid ⊂ . . . ⊂ Gg ⊳Gg ⊂ . . . ⊂ G

be the (perhaps infinite) series of �-convex subgroups. Taking any g ∈ G \ {id}, we may
obtain a different C-ordering �g by ‘flipping’ the ordering on the quotient Gg/Gg. More
precisely, given f ∈ G, we define f ≻g id if one of the following (mutually excluding)
conditions holds:
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– f ≻ id and f 6∈ Gg,

– f ≻ id and f ∈ Gg,

– f ≺ id and f ∈ Gg \Gg.

Clearly, this is a total ordering. To see that it is left-invariant, we need to check that
the product of any two �g-positive elements h1, h2 is still �g-positive. This is obvious if
h1 = h2. Now if 1 ≺g h1 ≺g h2 , then it is easy to check that both h1h2 and h2h1 belong
to Gh2 \ Gh2

. Therefore, the �-signs of h1h2 and h2h1 are the same as that of h1, which
implies that h1h2 and h2h1 are �g-positive.

Finally, to see that �g is Conradian, it suffices to show that id ≺g h1 �g h2 implies
h−1
1 h2h1 ≻g id and h−1

2 h1h
2
2 ≻g id . The first inequality follows from h−1

1 h2 �g id and
h1 ≻g id just using the fact that the product of two positive elements is still positive. For
the second inequality, note that h1 and h2 commute modulo Gh2

. Therefore, h−1
2 h1h

2
2Gh2

=
h2Gh2

, which implies that h−1
2 h1h

2
2 ≻g id.

For applications of the technique of the preceding example to the problem of approxima-
tion of group orderings, see [20].

1.2 From ordered representations to Conradian orderings

We begin by recalling an old theorem due to P. Cohn, M. Zaitseva, and P. Conrad (see
[9, Theorem 3.4.1]):

Theorem 1.2. A group G is left-orderable if and only if it embeds in the group of (order-
preserving) automorphisms of a totally ordered set.

Both implications of this theorem are easy. In one direction, note that a left-ordered group
acts on itself by order preserving automorphisms, namely left translations. Conversely, to
create a left-ordering on a group G of automorphisms of a totally ordered set (Ω,≤), we
construct the what is called induced ordering from the action as follows. Fix a well-order
≤∗ on the elements of Ω , and, for every f ∈ G , let wf = min≤∗{w ∈ Ω | f(w) 6= w}. Then
we define an ordering � on G by letting f ≻ id if and only if f(wf) > wf . It is not hard
to check that this order relation is a (total) left-ordering on G.

In what follows, we will need an important definition which was introduced in [15]. Let
G be a group acting by order preserving bijections on a totally ordered space (Ω,≤). A
crossing for the action of G on Ω is a 5-uple (f, g, u, v, w) where f, g (resp. u, v, w) belong
to G (resp. Ω) and satisfy:

i) u < w < v.

ii) For every n ∈ N, we have gnu < v and fnv > u .

iii) There exist M,N in N such that fNv < w < gMu.

The reason why this definition is so important is because it actually characterizes the
C-orderings, as is shown in [15, Theorem 1.4]. We quote the theorem below.

Theorem 1.3. A left-ordering � on G is Conradian if and only if the action of G by left
translations on itself admits no crossing (when taking (Ω,≤) = (G,�)).

4



The following crucial lemma is essentially proved in [13] in the case of countable groups,
but the proof therein rests upon very specific issues about the so-called dynamical realization
of an ordered group. Here we give a general algebraic proof.

Lemma 1.4. If a faithful action of a group G by automorphisms of an ordered set Ω has
no crossing, then any induced ordering on G is Conradian.

Proof. Suppose that the ordering � on G induced from some well-order ≤∗ on Ω is not
Conradian. Then there are �-positive elements f, g in G such that fgn ≺ g, for every n ∈ N.
This easily implies f ≺ g. Let w̄ = min≤∗{wf , wg}. We claim that (fg, fg2, w̄, g(w̄), fg2(w̄))
is a crossing (see Figure 1). Indeed, the inequalities id ≺ f ≺ g imply that w̄ = wg ≤∗ wf

and g(w̄) > w̄. Moreover f(w̄) ≥ w̄ , which together with fgn ≺ g yield w̄ < fg2(w̄) <
g(w̄), hence condition i) of the definition of crossing is satisfied. Note that the preceding
argument actually shows that fgn(w̄) < g(w̄), for all n ∈ N . Thus fg2fg2(w̄) < fg3(w̄) <
g(w̄). A straightforward induction argument shows that (fg2)n(w̄) < g(w̄), for all n ∈ N,
which proves the first part of condition ii). For the second part, from g(w̄) > w̄ and
f(w̄) ≥ w̄ we conclude that w̄ < (fg)n(g(w̄)) . Condition iii) follows because w̄ < fg2(w̄)
implies fg2(w̄) < fg2(fg2(w̄)) = (fg2)2(w̄), and fg2(w̄) < g(w̄) implies (fg)2(g(w̄)) =
fg(fg2(w̄)) < fg(g(w̄)) = fg2(w̄). �
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Figure 1: The crossing

w̄ g(w̄)fg2(w̄)
• ••

fg

fg2

Note that if we let w0 be the first element (w.r.t. ≤∗) of Ω , then the stabilizer of w0

is �-convex. Indeed, if id ≺ g ≺ f , with f(w0) = w0 , then w0 <∗ wf ≤∗ wg, and thus
g(w0) = w0 . Actually, it is not hard to see that the same argument shows the following.

Proposition 1.5. Let Ω be a set endowed with a well-order ≤∗ . If a group G acts faithfully
on Ω preserving a total order on it, then there exists a left-ordering on G for which the
stabilizer GΩ0

of any initial segment Ω0 of Ω (w.r.t. ≤∗) is convex. Moreover, if the action
has no crossing, then this ordering is Conradian.

Example 1.6. A very useful example of an action without crossings is the action by left
translations on the set of left-cosets of any subgroup H which is convex with respect to a
C-ordering � on G. Indeed, it is not hard to see that, due to the convexity of H , the order
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� induces a total order �H on the set of left-cosets G/H . Moreover, �H is G−invariant.
Now suppose that (f, g, uH, vH,wH) is a crossing for the action. Since w1H ≺H w2H
implies w1 ≺ w2 , for all w1, w2 in G, we have that (f, g, u, v, w) is actually a crossing for
the action by left translations of G on itself. Nevertheless, this contradicts Theorem 1.3.

The following is an application of the preceding example. For the statement, we will say
that a subgroup H of a group G is C-relatively convex if there exists a C-ordering on G for
which H is convex.

Lemma 1.7. For every C-orderable group, the intersection of any family of C-relatively
convex subgroups is C-relatively convex.

Proof. We consider the action of G by left multiplications on each coordinate of the set
Ω =

∏

αG/Hα , where (G/Hα, �Hα
) is the (G−invariant ordered) set of left-cosets of the

C-relatively convex subgroup Hα. Putting the (left) lexicographic order on Ω and using
Example 1.6, it is not hard to see that this action has no crossing. Moreover, since {id} is
C-convex, the action is faithful.

Now consider an arbitrary family Ω0 ⊂ {Hα}α of C-relatively convex subgroups of G,
and let ≤∗ be a well-order on Ω for which Ω0 is an initial segment. For the induced ordering
� on G, it follows from Proposition 1.5 that the stabilizer GΩ0

=
⋂

H∈Ω0
H is �-convex.

Moreover, Lemma 1.4 implies that � is a C-ordering, thus concluding the proof. �

We close this section with a simple lemma that we will need later and which may be left
as an exercise to the reader (see also [9, Lemma 5.2.3]).

Lemma 1.8. Let G be a torsion-free Abelian group. Then G admits only finitely many
C-orderings if and only if G has rank 1.

2 Proof of Theorem B

2.1 On groups with finitely many C-orderings

Let G be a C-orderable group admitting only finitely many C-orderings. Obviously, each
of these orderings must be isolated in CO(G). We claim that, in general, if � is an isolated
C-ordering, then the series of �-convex subgroups

{id} = Gid ⊂ . . . ⊂ Gg ⊳Gg ⊂ . . . ⊂ G

is finite. Indeed, let {f1, . . . , fn} ⊂ G be a set of �-positive elements such that Vf1,...,fn

consists only of � . If the series above is infinite, then there exists a g ∈ G so that no fi
belongs to Gg\Gg. This implies that the flipped ordering �g is Conradian and different from
� . However, every fi is still �g-positive (c.f., Example 1.1), which is impossible because
Vf1,...,fn = {�}.

Next let
{id} = G0 ⊳G1 ⊳ . . .⊳Gn = G
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be the series of �-convex subgroups of G. According to the Conrad Theorem, every quotient
Gi/Gi−1 embeds into R, and thus it is Abelian. Since every ordering on such a quotient can
be extended to an ordering on G (similarly as in Example 1.1), the Abelian quotient Gi/Gi−1

has only a finite number of orderings. It now follows from Lemma 1.8 that it must have rank
1. Therefore, the series above is rational.

We now show that this series is unique. Suppose

{id} = H0 ⊳H1 ⊳ . . .⊳Hk = G

is another rational series. Since Hk−1 is C-relatively convex, we conclude that N = Gn−1 ∩
Hk−1 is C−relatively convex by Lemma 1.7. Now G/N is torsion-free Abelian and has
only a finite number of orderings, thus it has rank 1. Since convex groups are isolated, Hk−1

and Gn−1 have the property that xr ∈ Gn−1 (resp. xr ∈ Hk−1) implies x ∈ Gn−1 (resp.
x ∈ Hk−1). This clearly yields Hk−1 = Gn−1. Repeating this argument several times, we
conclude the uniqueness of the rational series, which is hence normal.

Now we claim that no quotient Gi+2/Gi is Abelian. If not, Gi+2/Gi would be a rank-2
Abelian group, and so an infinite number of orderings could be defined on it. But since
every ordering on this quotient can be extended to a C-ordering on G, this would lead to a
contradiction.

2.2 On groups with a normal rational series

In this subsction we prove the converse of Theorem B.

Suppose that G has a normal rational series

{id} = G0 ⊳G1 ⊳ ...⊳Gn = G

such that no quotient Gi+2/Gi is Abelian. Clearly, flipping the orderings on the quotients
Gi+1/Gi we obtain at least 2n many C-orderings on G. We claim that these are the only
possible C-orderings on G. Indeed, let � be a C-ordering on G, and let a ∈ G1 and
b ∈ G2 \ G1 be two non-commuting elements. Denoting the Conrad homomorphism of the
group 〈a, b〉 endowed with the restriction of � by τ, we have τ(a) = τ(bab−1). Since G1

is rank-1 Abelian, we have bab−1 = ar for some rational number r 6= 1. Thus τ(a) = rτ(a),
which implies that τ(a) = 0. Therefore, a << |b| , or in other words an ≺ |b| for every
n ∈ Z , where |b| = max{b−1, b} . Since G2/G1 is rank-1, this actually holds for every b 6= id
in G2 \G1. Thus G1 is convex in G2.

Repeating the argument above, though now with Gi+1/Gi and Gi+2/Gi instead of G1 and
G2, respectively, we see that the rational series we began with is none other than the series
given by the convex subgroups of � . Since each Gi+1/Gi is rank-1 Abelian, if we choose
bi ∈ Gi+1 \Gi for each i = 0, . . . , n− 1, then any C-ordering on G is completely determined
by the signs of these elements. This shows that G admits precisely 2n different C-orderings.

3 Proof of Theorem A

Let G be a group admitting a C-ordering � which is isolated in the space of C-orderings.
As we have seen at the beginning of §2.1, the series of �-convex subgroups must be finite,
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say
{id} = G0 ⊳G1 ⊳ . . .⊳Gn = G.

Proceeding just as in Example 1.1, any ordering on Gi+1/Gi may be extended (preserving
the set of positive elements outside of it) to a C-ordering on G. Hence, each quotient must
be rank-1 Abelian, so the series above is rational. We claim that this series of �-convex
subgroups is unique (hence normal) and that no quotient Gi+2/Gi is Abelian. In fact, if the
series has length 2, then it is normal. Moreover, since no C-ordering on a rank-2 Abelian
group is isolated, we have that G2 is non-Abelian. Then by Theorem B, the series is unique.
In the general case, we will use induction on the length of the series. Suppose that every
group having an isolated C-ordering whose rational series of convex subgroups

{id} = H0 ⊳H1 ⊳ . . .⊳Hk

has length k < n admits a unique (hence normal) rational series and that no quotient
Hi+2/Hi is Abelian. Let

{id} = G0 ⊳ . . .⊳Gn−2 ⊳Gn−1 ⊳Gn = G

be a rational series of length n associated to some isolated C-ordering � on G. Since Gn−1

is normal in G, for every g ∈ G, the conjugate series

{id} = Gg
0 ⊳ . . .⊳Gg

n−2 ⊳Gg
n−1 = Gn−1

is also a rational series for Gn−1. Since this series is associated to a certain isolated C-
ordering, namely the restriction of � to Gn−1, we conclude that it is unique by the induction
hypothesis. Hence the series must coincide with the original one, or in other words Gg

i = Gi.
Therefore, the series for G is normal. Moreover, every quotient Gi+2/Gi is non-Abelian,
because if not then � could be approximated by other C-orderings on G. Thus, by Theorem
B, the rational series for G is unique, and G admits only finitely many C-orderings. This
completes the proof of Theorem A.

We conclude this section with a short discussion on the structure of bi-orderable groups
admitting finitely many C-orderings. To begin with, let us note the following simple

Proposition 3.1. If a group G has a bi-order that is isolated in the space of C-orderings,
then G has finitely many C-orderings, each of which is bi-invariant.

Proof. The fact that G admits only finitely many C-orderings is direct consequence of
Theorem A. Let � be a bi-ordering on G which is isolated in the space of C-orderings, and
let �′ be any other C-ordering on G. According to the proof of Theorem B, the series of
convex subgroups

{id} = G0 ⊳G1 ⊳ . . .⊳Gn = G

is the same for both � and �′. Moreover, �′ is obtained from � by flipping the ordering
on some of the quotients Gi+1/Gi. Since � is bi-invariant, the set of �-positive elements
in Gi+1 \Gi is invariant under conjugacy. Since the flipping procedure interchanges the sets
of positive and negative elements (where negative means non-trivial and non-positive), the
above remains true after flipping. More precisely, the set of �′-positive elements in Gi+1 \Gi
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is invariant under conjugacy. Since this is true for every index i, this shows that �′ is
bi-invariant. �

In spite of the fact that the preceding proposition holds for general n ≥ 1, it only applies
for n = 1, 2.

Proposition 3.2. If a bi-orderable group has finitely many C-orderings, then the number of
C-orderings is two or four.

Proof. Let G be a bi-orderable group having 2n C−orderings for some n ≥ 3, and let

{id} = G0 ⊳G1 ⊳G2 ⊳G3 E . . .EGn = G

be the series of convex subgroups. It is easy to see that given a ∈ G1, there exist b ∈ G2 \G1

and c ∈ G3\G2 such that bab−1 = ar and cbqc−1 = bpw, where w ∈ G1, and r, p/q are positive
rational numbers such that p/q 6= 1. Let t ∈ Q be positive and such that cac−1 = at. We
have

ar
p

= bpwaw−1b−p = (cbqc−1)a(cb−qc−1) = cbqa1/tb−qc−1 = car
q/tc−1 = ar

q

.

Since 0 < r 6= 1, we have that p = q, which contradicts the fact that 1 6= p/q. �

4 Some non-trivial examples

4.1 The Baumslag-Solitar group

In this subsection, we consider the Baumslag-Solitar group B(1, 2) = 〈a, b | bab−1 = a2〉.
We let 〈〈 a〉〉 denote the largest rank-1 Abelian subgroup cointaining a. According to [9,
§5.3], this group admits four bi-orderings which are obtained from the series

{id} ⊳ 〈〈 a〉〉 = aZ[
1

2
] ⊳ 〈a, b〉.

Here Z[1
2
] denotes the set of dyadic rational numbers, that is,

Z

[

1

2

]

=
{ m

2k
| m ∈ Z, k ∈ N

}

.

Below we give a self-contained proof of the fact that, actually, any C-ordering on B(1, 2)
coincides with one of these bi-orderings.

Proposition 4.1. Baumslag-Solitar’s group B(1, 2) admits only four C-orderings.

Proof. Let � be a C-ordering on B(1, 2). We will determine all �-convex subgroups of
B(1, 2). Without lost of generality, we may assume that b ≻ 1 . Otherwise, we could change
� by its ‘opposite’ ordering � (i.e., the one whose positive elements are the inverses of the
positive elements of � ; compare Example 1.1) which has the same convex subgroups.

First we claim that a << b (i.e., an ≺ b for all n ∈ Z). Indeed, if we let τ be the
(unique up to multiplication by a positive real number) Conrad homomorphism, then we
have τ(a) = τ(bab−1) = τ(a2) = 2τ(a) which implies that τ(a) = 0. Hence τ(an) = 0 for all
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n ∈ Z. Since τ is non-trivial and non-decreasing, we must have τ(b) > 0. Again, from the
fact that τ is non-decreasing, we conclude that an ≺ b as asserted.

Next letting Gg ⊂ Gg be the convex jump associated to g ∈ B(1, 2), by property (3) in
the Introduction we have a ∈ Gb 6= B(1, 2). It follows that an arbitrary h = an1bm1 · · · anibmi

is contained in ker(τ) if and only if
∑

k mk = 0. It is easy to check that
∑

k mk = 0 holds if

and only if h ∈ aZ[
1

2
]. This shows that the sequence of �-convex subgroups of B(1, 2) is

{id} = Ga ⊂ Ga = aZ[
1

2
] = Gb ⊂ Gb = B(1, 2).

Since both Gb and Gb/Gb are torsion-free rank-1 Abelian, we have that B(1, 2) admits only
four C-orderings. �

We point out that B(1, 2) admits infinitely many left-orderings. Indeed, let ξ : B(1, 2) →
Homeo+(R) be the isomorphic imbedding given by a : x 7→ x+1 and b : x 7→ 2x. We associate
to each irrational number ε a left-ordering �ε on B(1, 2) whose set of positive elements is
defined by {g ∈ B(1, 2) | ξ(g)(ε) > ε}. (These orderings were introduced by Smirnov in
[19].) When ε is rational, the preceding set defines only a partial ordering. However, in this
case the stabilizer of the point ε is isomorphic to Z, and hence this partial ordering may be
completed to two total left-orderings �+

ε and �−
ε . Here �+

ε (resp. �−
ε ) corresponds to the

limit of �εn for any sequence of irrational numbers converging to ε by the right (resp. left).

Remark that the opposite orderings (i.e., those of the form �ε) can be obtained the
same way as above though now starting with the embedding a : x 7→ x− 1, b : x 7→ 2x (and
changing ε by −ε). Moreover, as ε tends to −∞ or +∞, the associate orderings converge
to bi-orderings. This corroborates a result by Navas (see [13, Proposition 4.1]) according
to which no C-ordering is isolated in the space of left-orderings of a group having infinitely
many left-orderings.

We next give a complete description of the space of left-orderings of B(1, 2).

Theorem 4.2. Besides the four bi-orderings previously described, the space of left-orderings
of B(1, 2) is made up of those of the form �ε for ε /∈ Q, those of the form �+

ε and �−
ε for

ε ∈ Q, and their opposites. In particular, every non Conradian ordering on B(1, 2) can be
realized as an induced ordering coming from an affine action of B(1, 2) on the real line.

To prove this theorem, we will use the ideas involved in the following well-known order-
ability criterion (see [6, Theorem 6.8], [12, §2.2.3], or [13] for further details).

Proposition 4.3. For a countable infinite group G, the following two properties are equiv-
alent:
– G is left-orderable,
– G acts faithfully on the real line by orientation preserving homeomorphisms.

Sketch of proof. The fact that a group of orientation preserving homeomorphisms of the
real line is left-orderable is a direct consequence of Theorem 1.2.

For the converse, we construct what is called the dynamical realization of a left-ordering.
Let � be a left-ordering on G. Fix an enumeration (gi)i≥0 of G, and let t(g0) = 0. We shall
define an order-preserving map t : G → R by induction. Suppose that t(g0), t(g1), . . . , t(gi)
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have been already defined. Then if gi+1 is greater (resp. smaller) than all g0, . . . , gi, we define
t(gi+1) = max{t(g0), . . . , t(gi)}+1 (resp. min{t(g0), . . . , t(gi)}−1). If gi+1 is neither greater
nor smaller than all g0, . . . , gi, then there are gn, gm ∈ {g0, . . . , gi} such that gn ≺ gi+1 ≺ gm
and no gj is between gn, gm for 0 ≤ j ≤ i. Then we put t(gi+1) = (t(gn) + t(gm))/2.

Note that G acts naturally on t(G) by g(t(gi)) = t(ggi). It is not difficult to see that this
action extends continuously to the closure of t(G). Finally, one can extend the action to the
whole real line by declaring the map g to be affine on each interval in the complement of
t(G). �

Remark 4.4. As constructed above, the dynamical realization depends not only on the
left-ordering �, but also on the enumeration (gi)i≥0. Nevertheless, it is not hard to check
that dynamical realizations associated to different enumerations (but the same ordering)
are topologically conjugate.1 Thus, up to topological conjugacy, the dynamical realization
depends only on the ordering � of G.

An important property of dynamical realizations is that they do not admit global fixed
points (i.e., no point is stabilized by the whole group). Another important property is that
g ≻ id if and only if g(t(id)) > t(id), which allows us to recover the left-ordering from the
dynamical realization.

Proof of Theorem 4.2. Given a left-ordering � on B(1, 2) we will consider its dynamical
realization. We have the following two cases:

Case 1. The element a ∈ B(1, 2) is cofinal (that is, for every g1, g2 ∈ B(1, 2), there are
n1, n2 ∈ Z such that an1 ≺ g1 and an2 ≻ g2).

For the next two claims, recall that for any measure µ on a measurable space X and any
measurable function f : X → X , the push-forward measure f∗(µ) is defined by f∗(µ)(A) =
µ(f−1(A)), where A ⊆ X is a measurable subset. Note that f∗(µ) is trivial if and only if µ
is trivial. Moreover, one has (fg)∗(µ) = f∗(g∗(µ)) for all measurable functions f, g.

Claim 1. The subgroup 〈〈 a〉〉 preserves a Radon measure ν (i.e., a measure which is finite on
compact sets) on the real line which is unique up to scalar multiplication and has no atoms.

Since a is cofinal and 〈〈 a〉〉 is rank-1 Abelian, its action on the real line is free (that is,
no point is fixed by any non-trivial element). By Hölder’s theorem (see [6, Theorem 6.10] or
[12, §2.2]), 〈〈 a〉〉 is semi-conjugated to a group of translations. More precisely, there exists a
non-decreasing, continuous, surjective function ϕ : R → R such that, to each g ∈ 〈〈 a〉〉 one
may associate a translation parameter cg so that, for all x ∈ R,

ϕ(g(x)) = ϕ(x) + cg.

Now since the Lebesgue measure Leb on the real line is invariant by translations, the
push-backward measure ν = ϕ∗(Leb) is invariant by 〈〈 a〉〉. (Here ϕ∗(Leb) is defined by
ϕ∗(Leb)(A) = Leb(ϕ(A)).) Since Leb is a Radon measure without atoms, this is also the

1Two actions φ1 : G → Homeo+(R) and φ2 : G → Homeo+(R) are topologically conjugate if there exists
ϕ ∈ Homeo+(R) such that ϕ ◦ φ1(g) = φ2(g) ◦ ϕ for all g ∈ G.
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case for ν. Finally, the uniqueness of ν up to scalar multiple is an easy exercise (see for
instance [12, Proposition 2.2.38]).

Claim 2. For some λ 6= 1, we have b∗(ν) = λν.

Since 〈〈 a〉〉 ⊳ B(1, 2), for any a′ ∈ 〈〈 a〉〉 and all measurable A ⊂ R we must have
b∗(ν)(a

′(A)) = ν(b−1a′(A)) = ν(ā(b−1(A))) = ν(b−1(A)) = b∗(ν)((A)) for some ā ∈ 〈〈 a〉〉.
(Actually, a′ = ā2.) Thus b∗(ν) is a measure that is invariant by 〈〈 a〉〉. The uniqueness of
the 〈〈 a〉〉-invariant measure up to scalar factor yields b∗(ν) = λν for some λ > 0. Assume
for a contradiction that λ equals 1. Then the whole group B(1, 2) preserves ν. Thus there
is a translation number homomorphism τν : B(1, 2) → R defined by

τν(g) =

{

ν([x, g(x)]) if g(x) ≥ x,
−ν([g(x), x]) if g(x) < x.

(one easily checks that this definition does not depend on x ∈ R). The kernel of τν must
contain the commutator subgroup of B(1, 2); since a ∈ B(1, 2)′, this yields τν(a) = 0.
Nevertheless, this is impossible, since –as is easy to see- the kernel of τν coincides with the
set of elements having fixed points on the real line (see for instance [12, §2.2.5]).

By Claims 1 and 2, for each g ∈ B(1, 2) we have g∗(ν) = λg(ν) for some λg > 0. Moreover,
λa = 1 and λb = λ.

Now, for x ∈ R, let F (x) = sgn(x− t(id)) · ν([t(id), x]). (Note that F (t(id)) = 0.) Semi-
conjugating the dynamical realization by F yields a faithful representation A : B(1, 2) →
Homeo+(R) of B(1, 2) in the group of (orientation-preserving) affine homeomorphisms of the
real line. More precisely, for all g ∈ B(1, 2) and all x ∈ R we have

F (g(x)) = Ag(F (x))

where the affine map Ag is given by

Ag(x) =
1

λg

x+
1

λg

ν([t(g−1), t(id)])

(here we use the convention ν([x, y]) = −ν([y, x]) for x > y). For instance, if x > t(id) and
g ∈ B(1, 2) are such that g(x) > t(id), then

F (g(x)) =
1

λg
F (x) +

1

λg
ν([t(g−1), t(id)]).

The action A induces a (perhaps partial) left-ordering �A, namely f ≻A id if and only
if Ag(0) > 0. Clearly, if the orbit under A of 0 is free (that is, for every non-trivial element
g ∈ B(1, 2), we have Ag(0) 6= 0), then �A is total and coincides with � (our original
ordering).

Now assume that the orbit of 0 is not free. (This may arise for example when t(id)
does not belong to the support of ν). In this case, the stabilizer of 0 under the action A
is isomorphic to Z. Therefore, � coincides with either �+

A or �−
A (the definition of �±

A is
similar to the definition of �±

ε given above).

Due to the discussion above, we need to determine all possible embeddings of B(1, 2)
into the affine group.
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Lemma 4.5. Every faithful representation of B(1, 2) in the affine group is given by

a ∼

(

1 α
0 1

)

, b ∼

(

2 β
0 1

)

for some α 6= 0 and β ∈ R.

Proof. One easily checks that a correspondence as above induces a faithful representation.
Conversely, let

a ∼

(

s α
0 1

)

, b ∼

(

t β
0 1

)

be a representation. Then the following equality must hold:

a2 ∼

(

s2 sα + α
0 1

)

=

(

s αt− sβ + β
0 1

)

∼ bab−1.

Thus s = 1, t = 2, and since the representation is faithful, α 6= 0. �

Let α, β be such that Aa(x) = x+ α and Ab(x) = 2x+ β. We claim that if the stabilizer
of 0 under A is trivial –which implies in particular that β 6= 0– , then �A (and hence �)
coincides with �ε if α > 0 (resp. �ε if α < 0), where ε = β/α. Indeed, if α > 0, then for
each g = bnar ∈ B(1, 2) we have Ag(0) = 2nrα + (2n − 1)β. Hence Ag(0) > 0 holds if and
only if

2nβ/α + 2nr > β/α.

Letting ε = β/α, one easily checks that the preceding inequality is equivalent to g ≻ε id.
The claim now follows.

In the case the stabilizer of 0 under A is isomorphic to Z, similar arguments to those
given above show that � coincides with either �+

ε , or �−
ε , or �

+
ε , or �

−

ε , where ε again
equals β/α.

Case 2. The element a ∈ B(1, 2) is not cofinal.

In this case, for the dynamical realization of � , the set of fixed points of a, denoted
Fix(a), is non-empty. We claim that b(Fix(a)) = Fix(a). Indeed, given x ∈ Fix(a), we
have

a(b(x)) = ab(x) = a−1ba(x) = a−1(b(x)) .

Hence a2(b(x)) = b(x), which implies that a(b(x)) = b(x) as asserted. Observe that since
there is no global fixed point for the dynamical realization, we must have b(x) 6= x , for all
x ∈ Fix(a) .

Now suppose that b ≻ id (otherwise, we may consider the opposite ordering), and let
x1 = inf{x∈Fix(a) | x > t(id)}. We claim that b(x1) > x1. Suppose not. Then b(x1) < x1,
but since b(t(id)) = t(b) > t(id), we also have b(x1) > t(id). Therefore, b(x1) is a fixed point
of a situated in (t(id), x1), which is a contradiction.

We now claim that t(b) > x1. Indeed, if not, then we would have b(t(id)) = t(b) < x1.
(Note that t(b) cannot be equal to x1, since x1 is fixed by a, but B(1, 2) acts freely on
t(B(1, 2)).) Since b(x1) > x1, this would yield b−1(x1)∈ (t(id), x1). However, since b−1(x1)
belongs to Fix(a), this contradicts the definition of x1.
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We next claim that b(x−1) ≥ x1, where x−1 = sup{x∈Fix(a) | x < t(id)}. Indeed, since
b(x−1) is a fixed point of a, to show this it is enough to show that b(x−1) > x−1. This can
be easily checked using similar arguments to those above.

We finally claim that 〈〈 a〉〉 is a convex subgroup. First note that, by the definition of
the dynamical realization, for every g ∈ B(1, 2) we have t(g) = g(t(id)). Then, it follows
that for every g ∈ 〈〈 a〉〉, t(g) ∈ (x−1, x1). Now let m ∈ Z and r, s in Z[1

2
] be such that

id ≺ bmar ≺ as. Then we have t(id) < bm(t(ar)) < t(as) < x1. Since b(x−1) ≥ x1, this easily
yields m = 0, that is, bmar ∈ 〈〈 a〉〉.

We have thus proved that 〈〈 a〉〉 is a convex (normal) subgroup of B(1, 2). Since the
quotient B(1, 2)/〈〈 a〉〉 is isomorphic to Z, an almost direct application of the characterization
(4) in the Introduction shows that the ordering � is Conradian. This concludes the proof
of Theorem 4.2. �

Remark 4.6. It follows from Theorem 4.2 that no ordering is isolated in LO(B(1, 2)). Thus
this space is homeomorphic to the Cantor set. Moreover, the natural conjugacy action of
B(1, 2) on LO(B(1, 2) is ‘almost’ transitive. More precisely, for any irrational ε , the orbit
of �ε under B(1, 2) is dense in the subspace Va formed by the orderings for which a is
positive. This easily follows from the fact that, for all g ∈ B(1, 2), we have g(�ε) = �g−1(ε).
The complementary subspace Va−1 of LO(B(1, 2)) is densely covered by the orbit of �ε.

Remark 4.7. The above method of proof also gives a complete classification –up to topo-
logical semiconjugacy– of all actions of B(1, 2) by orientation-preserving homeomorphisms
of the real line (compare [2, 16]). In particular, all these actions come from left-orderings on
the group (compare with the comment before Question 2.3 in [13]).

4.2 Examples of groups with 2n Conradian orderings but infinitely

many left-orderings

The classification of groups having finitely many left-orderings was obtained by Tararin
and appears in [9, §5.2]. An example of a group having precisely 2n orders is Tn = Zn

endowed with the product rule

(bn, . . . , b1) · (b
′
n, . . . , b

′
1) = (bn + b′n, (−1)b

′

nbn−1 + b′n−1 , . . . , (−1)b
′

2b1 + b′1).

A presentation for Tn is
Tn

∼= 〈an, . . . , a1 | Rn〉,

where the set of relations Rn is

ai+1aia
−1
i+1 = a−1

i if i < n, and aiaj = ajai if |i− j| ≥ 2.

A very simple dynamical argument shows that if a group has finitely many left-orderings,
then each of these orderings is Conradian [13, Lemma 3.45]. However, it is natural to
ask whether for each n ≥ 2 there are groups having precisely 2n Conradian orderings but
infinitely many left-orderings. As we have seen in the preceding section, for n = 2 this is
the case of the Bumslag-Solitar group B(1, 2). This holds (with a very similar proof) for
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many other metabelian left-orderable groups, as for example all Baumslag-Solitar’s groups
B(1, ℓ) for ℓ ≥ 2. It turns out that, in order to construct examples for higher n and having
B(1, ℓ) as a quotient by a normal convex subgroup, we need to choose an odd integer ℓ. As
a concrete example, for n ≥ 3 we endow Cn = Z× Z[1

3
]× Zn with the multiplication

(

c,
m

3k
, an, . . . , a1

)

·
(

c′,
m′

3k′
, a′n, . . . , a

′
1

)

=

=
(

c+ c′, 3c
m′

3k′
+

m

3k
, (−1)ma′n + an , (−1)ana′n−1 + an−1 . . . , (−1)a2a′1 + a1

)

.

Note that the product rule is well defined because if m/3k = m̄/3k̄, then (−1)m = (−1)m̄

(it is here where we use the fact that ℓ = 3 is odd).
The group Cn admits the presentation

Cn
∼= 〈c, b, an, . . . , a1 | cbc

−1 = b3 , cai = aic , banb
−1 = a−1

n , bai = aib if i 6= n , Rn〉.

This group satisfies the hypotheses of Theorem B and has exactly 2n+2 Conradian orderings.
However, it has B(1, 3) as a quotient by a normal convex subgroup. Since B(1, 3) admits
uncountably many left-orderings, the same is true for Cn.
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Dep. de Matemáticas, Fac. de Ciencias, Univ. de Chile
Las Palmeras 3425, Ñuñoa, Santiago, Chile
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