
 1 

Finite data-size scaling of clustering in earthquake networks 
 

 

 

Sumiyoshi Abea,b, Denisse Pasténc and Norikazu Suzukid 

 
aDepartment of Physical Engineering, Mie University, Mie 514-8507, Japan 
bInstitut Supérieur des Matériaux et Mécaniques Avancés, 44 F. A. Bartholdi, 

72000 Le Mans, France 
cDepartamento de Física, Facultad de Ciencias, Universidad de Chile, 

Casilla 653, Santiago, Chile 
dCollege of Science and Technology, Nihon University, Chiba 274-8501, Japan 

 

 

 

 

ABSTRACT 

 Earthquake network is known to be of the small-world type. The values of the 

network characteristics, however, depend not only on the cell size (i.e., the scale of 

coarse graining needed for constructing the network) but also on the size of a seismic 

data set. Here, discovery of a scaling law for the clustering coefficient in terms of the 

data size, which is refereed to here as finite data-size scaling, is reported. Its 

universality is shown to be supported by the detailed analysis of the data taken from 

California, Japan and Iran. Effects of setting threshold of magnitude are also discussed. 
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1.  Introduction 

 Seismicity has been attracting continuous interest from the viewpoint of complex 

systems science. Two celebrated classical laws known as the Gutenberg-Richter law [1] 

and Omori law [2] highlight its complexity: the former tells the scaling relation between 

frequency of events and released energies (the logarithm of which is magnitude), and 

the latter states that frequency of aftershocks following a main shock temporally decays 

as a power law, implying a slow relaxation process. Furthermore, recent studies show 

that both statistics of spatial distance between the hypocenters of two successive events 

[3] and statistics of time interval between two successive events [4,5] strongly deviate 

from Poissonian one. In addition, it is also known [6] that an earthquake can be 

triggered by the foregoing one that is more than 1000 km away. Thus, the correlation 

length is divergently large, exhibiting a strong similarity to critical phenomena. 

 These facts allow us to frame the following working hypothesis: two successive 

events are indivisibly correlated at least at the statistical level, no matter how large their 

Euclidean distance is. 

 In spite of the long tradition of seismological research, microscopic dynamics 

governing seismicity is still largely unknown, and therefore, it is of central importance 

to clarify further properties of correlations. In recent works [7], we have introduced the 

concept of earthquake network in order to reveal complexity of seismicity both 

qualitatively and quantitatively. We have proposed a method for constructing a growing 
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stochastic network from a seismic data set. There, a single parameter is contained: it is 

the size of cubic cells to which a geographical region under consideration is divided. 

Earthquake network constructed is a complex network. It has been shown in Refs. [7-9] 

that it is of the small-world [10] and scale-free [11] type, hierarchically organized [12], 

and possesses the assortative mixing property [13]. Its evolution has turned out to 

characterize a main shock in a peculiar manner [14]. In addition, there exists a scaling 

relation between the exponent, , of the power-law connectivity distribution [  

 with k being connectivity] and network spectral density [15]. 

 In more recent works [16,17], we have studied the dependence of the characteristics 

of earthquake network on the cell size. There, we have found that the values of the 

exponent, , of the power-law connectivity distribution and the clustering coefficient 

[10], C, (see Sec. 3) come to take the invariant values 

 

   γ ≈ 1 ,                       (1) 

 

   C ≈ 0.85 ,                      (2) 

 

respectively, if the cell size becomes larger than a certain value, depending on the data 

set. Universality of these values was confirmed by the analysis of three independent 

data sets taken from California, Japan and Iran. On the other hand, in the regimes of the 

small cell size, the value of C in Iran behaves quite differently than those in California 

and Japan [16,17]. An apparent difference between the former two regions and the latter 
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one is in the data size. 

 In this paper, we wish to clarify how the data size affects the dependence of the 

small-world earthquake network on the cell size. Specifically, we focus our attention on 

the behavior of the clustering coefficient of the network. We shall show, by performing 

the detailed analysis of the seismic data taken from California, Japan and Iran, that there 

exists a scaling law in terms of finiteness of the data size, which is referred to here as 

finite data-size scaling. Combined with the result in Eq. (2), this law enables one to 

determine the cell size for a data set in a geographical region under consideration. We 

further discuss the effects of setting threshold of magnitude on the scaling. 

 

2.  Construction of earthquake network: Review 

 To make the present article self-contained, it seems appropriate to devote this section 

to a brief review of the method for constructing earthquake network proposed in Ref. 

[7]. 

 The procedure is as follows. Firstly, we divide a geographical region under 

consideration into cubic cells. Secondly, we identify a cell with a vertex of a network if 

earthquakes with any values of magnitude above a certain detection threshold occurred 

therein. Thirdly, we connect two vertices by an edge, if they are of two successive 

events. If two successive events occur in the same cell, then we attach a tadpole (i.e., a 

self-loop) to that vertex. These edges and tadpoles represent the event-event correlations, 
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in conformity with the working hypothesis mentioned in the preceding section, that is, 

two successive events are statistically correlated no matter how large their Euclidean 

distance is. 

 Using this procedure, we can map a given seismic time series to a growing stochastic 

network, which is an earthquake network that we have been referring to. 

 We make several comments on the procedure. First of all, it contains a single 

parameter: the cell size, L. Once a set of cells is fixed, then we can unambiguously 

define an earthquake network for a seismic data set. We note that an earthquake network 

is a directed network in its nature. Directedness does not matter in statistical analysis of 

connectivity (or degree, i.e., the number of edges attached to the vertex under 

consideration), which is needed for examining the scale-free property. This is because 

the in-degree and out-degree are identical for each vertex except the initial and final 

vertices in analysis. Thus, vertices except the initial and final ones have the 

even-number values of connectivity. An important point is that a full directed 

earthquake network should be reduced to a simple undirected network, when its 

small-world property is examined (see Fig. 1). That is, we have to remove tadpoles and 

replace each multiple edge by a single edge. 

 To practically set up cells and identify a cell for each earthquake, we employ the 

following natural procedure. Let  and  be the minimal and maximal values of 

latitude covered by a data set, respectively. Similarly, let  and  be the minimal 
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and maximal values of longitude. And let  be the sum of the values of latitude of all 

the events divided by the number of events contained in the analysis. The hypocenter of 

the i-th event is denoted by , where ,  and  are the values of 

latitude, longitude and depth, respectively. The north-south distance between  

and  reads , where  is the radius of the Earth. 

On the other hand, the east-west distance is given by . In 

these expressions, all the angles are described in the unit of radian. The depth is simply 

. Now, starting from the point , we divide the region into cubic 

cells with a given value of the cell size, L. Using ,  and , we can identify 

the cell of the i-th event. 

 

3.  Finite data-size scaling of clustering coefficient 

 Now, let us address ourselves to studying the clustering property of earthquake 

network. A network to be considered is a simple network reduced from a full network, 

as mentioned in Sec. 2.  

 The clustering coefficient, C, of a simple network with N vertices is given by [10] 

 

   ,                     (3) 

 

where 
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    (4) 

 

with  being connectivity of the i-th vertex. Let A be the adjacency matrix of a simple 

network. Its element  is 1 (0), if the i-th and j-th vertices are connected 

(unconnected) by an edge, and . Using this matrix,  is written as follows: 

 

   ,                      (5) 

 

where 

 

   ,                      (6) 

 

and  is the maximum value of , which is realized when all the 

neighboring vertices of the i-th vertex are connected each other. 

 The value of the clustering coefficient of a small-world network is much larger than 

that of a completely random network [10]. It is known [7-9] that this is indeed the case 

for earthquake network. 

 Like other characteristics of a network, the clustering coefficient is dimensionless. In 

the case of earthquake network, however, its numerical value depends on the cell size, L, 

of division of a geographical region. Accordingly, the dimensionless cell size should be 

considered instead of L itself. There are two candidates for it: 
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   ,                (7) 

 

   ,                  (8) 

 

where ,  and  are the dimensions of the whole region under 

consideration in the directions of latitude, longitude and depth, respectively. The 

implications of  and  are discussed in Refs. [16,17] in view of the nature of 

seismicity. At first glance,  seems natural. However, there is an empirical fact that in 

California, Japan and Iran, the earthquake networks are quite two-dimensional, since the 

majorities of events occur in the shallow regions there (see the later discussion). 

Therefore, we examine both of them in the present work. 

 The value of the clustering coefficient of earthquake network depends on both the 

dimensionless cell size and the data size, n, which is the number of events contained in 

a data set to be analyzed. That is, 

 
   C = C(lα , n)    ( ).               (9) 

 

In what follows, we shall see that this quantity possesses a remarkable property. 

 The data sets we employ here are those taken from (i) California; 

http://www.data.scec.org, (ii) Japan; http://www.hinet.bosai.go.jp, and (iii) Iran; 

http://irsc.ut.ac.ir/. The periods and the geographical regions covered are as follows: (i) 

between 00:25:8.58 on January 1, 1984 and 23:15:43.75 on December 31, 2006, 

28.00°N–39.41°N latitude, 112.10°W–123.62°W longitude with the maximal depth 
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175.99 km, (ii) between 00:02:29.62 on June 3, 2002 and 23:54:36.21 on August 15, 

2007, 17.96°N–49.31°N latitude, 120.12°E–156.05°E longitude with the maximal depth 

681.00 km, and (iii) between 03:08:11.10 on January 1, 2006 and 18:26:21.90 on 

December 31, 2008, 23.89°N–43.51°N latitude, 41.32°E–68.93°E longitude with the 

maximal depth 36.00 km. Accordingly, the values of  and 

 in Eqs. (7) and (8) are respectively as follows: (i) 617.80 km and 

1157.51 km (ii) 1973.78 km and 3360.26 km and (iii) 583.45 km and 2348.86 km. Since 

these are simply rescaling factors to make cell size dimensionless, we shall commonly 

employ their values throughout the present work even when we remove events from the 

data to change data size. The total numbers of events contained in these periods are (i) 

404106, (ii) 681546, and (iii) 22845. The majorities of events are shallow: 90 % of the 

events are shallower than (i) 13.86 km, (ii) 69.00 km, (iii) 26.60 km. This fact makes it 

meaningful to consider also  in Eq. (8). 

 We have examined the physical property of the clustering coefficient in Eq. (9) for 

these three independent data sets. In Fig. 2, where no threshold is set on the values of 

magnitude (for thresholding, see Section 5), we present the plots of C with respect to 

 for several different values of the data size, n. (We could consider only three 

different values of n for the data in Iran, since the total number of events contained in it 

is quite small, compared to those in California and Japan.) One sees a general tendency 

that, for each value of , the larger the data size is, the larger the value of C is. This is 
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natural, since a larger data tends to make a network closer to a complete one that has the 

maximum value, . Although the clustering coefficient approaches its universal 

value, 0.85, for large cell size in all three regions, the Iranian one behaves differently 

from the other two for small cell size: that is, the universal value is approached slower 

in Iran. Fig. 2 shows that this difference is due to smallness of the data size in Iran (see 

also Ref. [16]). 

 Now, our main discovery is that, as can be seen in Fig. 3, the data collapses are 

nicely realized if the following scaling is made: 

 

    C = C(lα  /  f (n))    ( ),              (10) 

 

where  is a scaling function and  chosen here is of the form 

 

                       (11) 

 

with  and a being constants. Quite remarkably, in Fig. 3, the same fixed values, 

 and  for both  and , are employed for these data collapses 

in all three geographical regions. The law in Eq. (10) describes the finite data-size 

scaling that we have been referring to. 

 

4.  Cell size as scale of coarse graining 

 The scaling law presented in the preceding section allows one to determine the scale 
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of coarse graining (i.e., the cell size) depending on the data size. Fig. 3 shows that the 

clustering coefficient in Eq. (10) takes the invariant value 

 

      ( ),             (12) 

 

if the cell size becomes larger than a certain value, , which fixes the scale of coarse 

graining. In both California and Japan,  is about 0.04, whereas it is roughly 

0.10 in Iran. On the other hand,  is about 0.015 for California and Japan, 

whereas about 0.025 in Iran. Such a numerical discrepancy comes from the size of the 

whole data set. An important point is that the scaling functions in California and Japan 

well coincide with each other. On the other hand, the scaling function in Iran has a 

shape different from them. This implies that the size of the Iranian data is still too small, 

whereas the size of the Californian and Japanese data may already be close to the 

“thermodynamic limit”. 

 Finally, we make a comment on a possible physical interpretation of the saturation of 

the scaling function with respect to the cell size. As the cell size increases, the number 

of vertices decreases, and the network tends to approach a complete graph, i.e., a fully 

linked network, with the maximum value of the clustering coefficient ( ). This 

effect increases the value of C. On the other hand, however, larger cells “swallow” more 

triangular loops attached to them, as can be seen from the nature of C in Eq. (6). 

This effect decreases the value of C. Disappearance of the cell-size dependence of the 
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clustering coefficient can be understood as compensation of these two competing 

effects. 

 

5.  Comment on effects of threshold of magnitude 

 There is yet another possibility of changing data size. It is to set threshold of 

magnitude. In this section, we discuss this issue and show that the finite data-size 

scaling is valid also in this case. 

 Here, we have analyzed only the data sets of California and Japan, since the size of 

the full Iranian data is too small. 

 In Fig. 4, we show how the cell-size dependence of the clustering coefficient is 

altered by thresholding. The trend is quite similar to that in Fig. 2. In fact, as can be seen 

in Fig. 5, the scaling in Eq. (10) turns out to hold well in both California and Japan. The 

value of  in Eq. (11) is 1000 times larger here, i.e., n0 = 1×10
8 . However, quite 

remarkably, the exponent a remains unchanged as , indicating its universality.  

 

6.  Concluding remarks 

 We have studied the clustering structure of earthquake network and examined its 

dependence on the size of a real seismic data. We have discovered that there exists a 

scaling law for the clustering coefficient in terms of the cell size needed for constructing 

a network and the data size. We have ascertained universality of this concept by 
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employing three independent data taken from California, Japan, and Iran. We have 

found that the scaling function associated with the clustering coefficient approaches a 

universal invariant value in Eq. (12), if the cell size becomes larger than a certain value. 

These results, in turn, allow one to fix the cell size with reference to the data size. We 

have also discussed the effects of setting threshold of magnitude on the scaling and have 

found that the exponent [a in Eq. (11)] remains unchanged. 

 We wish to make the following additional comment on unavoidable incompleteness 

of a seismic data set. Naively, one might wonder if the incompleteness changes the 

results obtained here. Regarding this point, it should be noted that a complex network is 

strongly tolerant against “random attacks”, i.e., random removals of vertices [18]. 

Earthquake network does not have the centralities with small values of connectivity. 

Since incompleteness of a data set is not biased (i.e., not due to “intelligent attacks”), 

we can confidently believe robustness of the present results. 

 

Note added. In this work, we have employed the fixed values of the rescaling factors 

(LLATLLONLDEP )
1/3  and (LLATLLON )

1/2  for l 3  and l 2  in Eqs. (7) and (8) for each 

geographical region. When the data size is changed, these values also change, in general. 

Actually, we have examined this point and confirmed that the scaling reported in this 

work is valid even if the above-mentioned values alter according to the change of the 

data size. 
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Figure Captions 
Fig. 1 Schematic descriptions of earthquake networks. (A) Full directed network, and 

   (B) undirected simple network reduced from (A). The dotted lines describe the 

   initial and final events contained in analysis. 

Fig. 2 Plots of the clustering coefficient with respect to (a)  and (b)  for several 

   values of the data size, n. (i) California:  ,  ,   ,  ,  , and   are the first 

   5000, 10000, 50000, 100000, 200000, and 404106 events in the data set, 

   respectively. (ii) Japan:  ,  ,   ,  ,  , and   are the first 5000, 10000,  

   50000, 100000, 200000, and 681546 events in the data set, respectively. 

   (iii) Iran:  ,  , and   are the first 5000, 10000, and 22845 events in the data 

   set, respectively. All quantities are dimensionless. 
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Fig. 3 Collapses of the data in Fig. 2. In all of these three cases, the same fixed 

   values,  and , are employed in Eq. (11). All quantities 

   are dimensionless.  

Fig. 4 Plots of the clustering coefficient with respect to (a)  and (b)  for several 

   values of threshold of magnitude, : that is, the events having magnitude 

    are included in the analyses. No threshold (  ),  1.0 (  ), 

   1.5 (  ), 2.0 (  ), 2.5 (  ) and 3.0 (  ). The corresponding number s of events 

   included are (i) in California, 404106, 334207, 219836, 105653, 39214 and 

   11688, and (ii) in Japan, 681546, 342507, 201117, 114941, 62554 and 30907, 

   respectively. All quantities are dimensionless. 

Fig. 5 Collapses of the data in Fig. 4. In both California and Japan, the same values, 

   n0 = 1×10
8  and , are employed in Eq. (11) for the scaling in the 

   same form as in Eq. (10). Note that the value of a is the same as that in Fig. 3. 

   All quantities are dimensionless. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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