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Based on the one-body particle-antiparticle Dirac theory of electrons, a set of relativistic quantum
fluid equations for a spin half plasma is derived. The particle-antiparticle nature of the relativistic
particles is explicit in this fluid theory, which also includes quantum effects such as spin. The
nonrelativistic limit is shown to be in agreement with previous attempts to develop a spin plasma
theory derived from the Pauli Hamiltonian. Harnessing the formalism to the study of
electromagnetic mode propagation, conceptually new phenomena are revealed; the
particle-antiparticle effects increase the fluid opacity to these waves, while the spin effects tend to
make the fluid more transparent. © 2011 American Institute of Physics. �doi:10.1063/1.3533448�

I. INTRODUCTION

After an extended hiatus following an initial spurt of
activity,1–5 theoretical studies of quantum plasmas have
staged an impressive comeback in the past few years. When
the de Broglie wavelength of the charged particles is compa-
rable to the spatial scales of the system, the quantum nature
of the plasma constituents cannot be ignored and quantum
effects could affect the collective behavior in a profound
way. In this context, a proper quantum treatment may be
crucial. Examples can be found in nanoscale physics,6

astrophysical,7 and high-energy laser8 systems.
Quantum plasmas have been described in many ways.9

First, insights into the dynamics of the fluid models of a
quantum plasma were, however, obtained when the electrons
were assumed to obey the Schrödinger equation, i.e., the
electron spin was neglected. A Madelung decomposition of
the wave function then leads to a one-body fluid theory. This
model has been studied extensively10–13 and quantum correc-
tions to a host of collective motions have been derived,
which include propagating mode solutions,14–18 dusty quan-
tum plasma modes,19,20 instabilities,21,22 nonlinear wave in-
teractions and modulation,23,24 quantum ion-acoustic
waves,25,26 and shock waves,27,28 among others.

The very important next step of including spin in a quan-
tum fluid theory for plasmas was taken recently;29,30 a fluid
theory for spin plasmas is developed from the Pauli Hamil-
tonian and generalizing the Madelung decomposition for the
two component spinor wave function. This nonrelativistic
spin theory produces new effects in, for example, propaga-
tion modes,31 magnetosonic solitons,32 instabilities,33 and
metamaterials.34 All these quantum effects are expected to be
important in low temperature and very dense plasmas. How-
ever, it was recently shown that even for high temperature
plasmas, under specific conditions, quantum features such as
spin cannot be neglected, and they can be significant.35

In the wake of these interesting developments, it is natu-

ral to ask whether a relativistic quantum electron fluid will
display some unusual properties. One has good reasons to
expect so because a unification of quantum mechanics and
relativity fundamentally couples the electron �particle� and
positron �antiparticle� states.

Relativistic quantum plasmas have been investigated, in-
voking a variety of models: �1� covariant treatments that use
Fermi–Dirac statistics and Wigner function techniques to
find dispersion and fluctuations36,37 by constructing kinetic
models from the Dirac equation; and �2� second quantized
quantum electrodynamics models describing a relativistic de-
generate electron Fermi gas38 or a particle-antiparticle
plasma.39 Similar techniques are harnessed to deal with the
decay of photons and plasmons into neutrino pairs.40 Be-
sides, extensive results for magnetized and unmagnetized
relativistic quantum plasmas have been obtained principally
by kinetic covariant methods;41 the results include calculat-
ing the dispersion of transverse and longitudinal modes, and
resonance conditions for fermionic and bosonic plasmas.41,42

All the previously mentioned works have studied the
relativistic quantum plasmas with known quantum electrody-
namics tools. In this paper, we present a novel way to study
this kind of plasmas. We model a relativistic quantum plasma
casting the Dirac equation into a fluid description. This al-
lows us to compare the new phenomena introduced by rela-
tivistic and quantum effects with the classical fluid plasma
descriptions. Thus, for instance, in a relativistic quantum de-
scription, there cannot be a pure electron fluid as there must
always be an appropriate mixture of positrons. Fortunately,
this and other features of relativistic quantum mechanics are
fully contained in the Dirac equation, which will be the start-
ing point to develop our theory for a relativistic quantum
fluid. In order to do so, we will first associate the relativistic
fluidlike variables corresponding to the particle-antiparticle
state with the bilinear covariants of the Dirac theory. This is
done using the fluid description of the Dirac theory devel-
oped by Takabayasi.43 Then, we construct an N-body theory
with a complete set of covariant fluid equations, following
the procedure introduced recently by Marklund and Brodin29a�Electronic mail: fasenjo@levlan.ciencias.uchile.cl.
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for the Pauli equation �nonrelativistic�. This yields the basic
set of fluid dynamical equations of a relativistic quantum
charged plasma made up of particles with spin 1/2. Although
the formalism will apply to any spin half fluid, electron-
positron fluids will be our primary interest.

In Sec. II, we derive, starting from the Dirac equation of
a charged fluid in an electromagnetic field, the basic covari-
ant equations obeyed by the appropriately chosen one-body
fluid variables. In Sec. III, we construct the N-body theory,
leading to the final fluid equations. Then we discuss several
properties of the system and also put the theory in the more
familiar vectorial form �Sec. IV�. In Sec. V, we show that in
the nonrelativistic limit, the systems described in Refs. 29
and 30 are recovered. In Sec. VI, the formalism is applied to
study the propagation of an electromagnetic wave through
this electron-positron plasma. Finally, in Sec. VII, we present
our conclusions.

II. FLUID FORMALISM FOR ONE-BODY PARTICLE-
ANTIPARTICLE STATE

The “fluidization” of Dirac equation, via constructing
observables from bilinear covariants, was first done by
Takabayasi.43–47 We begin by reviewing his work to develop
a better understanding of the meaning of the fluid variables
before we construct the complete N-body plasma theory.

Let us start from the Dirac equations obeyed by the bis-

pinor fields � and �̄=�†�0 immersed in an electromagnetic
field,

i����� − e��A�� − m� = 0, �1�

i���̄�� + e�̄��A� + m�̄ = 0, �2�

where �� are the four by four Dirac matrices, A� is the
electromagnetic four-potential, and �=0,1 ,2 ,3. Throughout
this paper the Greek �Latin� indices run from 0 to 3 �from 1
to 3�, the Minkowski metric is g��=diag�1,−1,−1,−1�, and
definitions e�e / ��� and m�mec /� �where me is the elec-
tron mass and the speed of light has been taken as c=1� will
be used. Notice that the normalized mass is the inverse of the
Compton wavelength. The Dirac equation represents a spin
half particle-antiparticle system. In effect, the wave function
has four components �each of the particle and antiparticle
contributing a two component spinor�, thus accommodating
the inextricable particle-antiparticle coupling characteristic
of relativistic quantum systems.

To construct the fluid description for the Dirac equation,
it is necessary to identify appropriate Lorentz tensors that
behave like familiar fluid observables. The most straightfor-
ward path is to take advantage of the existence of the 16

bilinear covariants of this theory. Let �̄�A� represent the set
of 16 bilinear covariants, where �A can be any of

1̂ ,�5 ,�� ,���5 and ���= �i /2���� ,���. They transform, re-
spectively, as a scalar, a pseudoscalar, a four-vector, a
pseudo-four-vector, and a second rank tensor. The pseudo-
scalar �vector� transforms exactly like a scalar �vector� under
the proper Lorentz group but has opposite parity. Our basic
fluid observables will be constructed as Lorentz covariants.
We will soon find that fluid velocity and the fluid momentum

constructed in the theory are not simply related; their com-
plicated relationship indicates certain deeper aspects of the
theory.

Multiplying Eq. �1� on the left by �̄�A and multiplying
Eq. �2� on the right by �A�, and adding and subtracting the
results yields the starting equations for the current formal-
ism,

i�̄�A����� + i���̄���A� − e�̄�A��A�� + e�̄��A��A�

= 0, �3�

i�̄�A����� − i���̄���A� − e�̄�A��A�� − e�̄��A��A�

− 2m�̄�A� = 0. �4�

The next step is to cast Eqs. �3� and �4� in terms of fluid
variables that, for a fully covariant theory, must be Lorentz
tensors. We begin by finding a suitable expression for “den-
sity;” the total fluid density � must naturally contain both the

scalar 	= �̄� and the pseudoscalar 	̄= i�̄�5� densities. The
positive definite symmetric scalar,

� = �	2 + 	̄2 �5�

seems an obvious choice. Besides, one defines the pseudo-
scalar parameter,


 = tan−1� 	̄

	
	 , �6�

which represents in some sense the “measure” of the
particle-antiparticle mixing inherent in the Dirac theory.

It is the nonzero 
 that destroys, in this model, the con-
ventional direct relationship between fluid velocity and mo-
mentum. We now introduce the following notation. For the

bilinear covariants, we set the vector S�= �̄���, the

pseudovector S̄�= �̄�5���, the tensor M��= �̄����, and the

pseudotensor M̄��= i�̄�5����. New operator derivatives are

defined as ����̄�A��= i��̄�A���−���̄�A�� and ��
� ��̄�A��

=����̄�A��−2eA��̄�A�. Finally, the derived tensorial quan-
tities are denoted as the vector J�= �1 /2m���

�	, the

pseudovector J̄�= �1 /2m���
�	̄, the tensor T�

�= �1 /2m�
��

�S�, the pseudotensor T̄�
�= �1 /2m���

�S̄�, the third rank
tensor N�,

��= �1 /2m���
�M��, and the corresponding

pseudotensor N̄�,
��= �1 /2m���

�M̄��.
With these definitions, we can rewrite Eqs. �3� and �4�

for each bilinear covariant in a succinct and revealing form.
Tedious but straightforward algebra yields

��S� = 0, �7�

��S̄� = − 2m	̄ , �8�

T�
� = 	 , �9�

T̄�
� = 0, �10�
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1

2m
��M�� + J� − S� = 0, �11�

1

2m
��M̄�� − J̄� = 0, �12�

N�,
�� −

1

2m
��	 = 0, �13�

N̄�,
�� −

1

2m
��	 + S̄� = 0, �14�

T�� − T�� =
1

2m

������S̄�, �15�


����T̄�� = M�� −
1

2m
���S� − ��S�� . �16�

However, the fluid features of this set of equations are
still far from clear. To display them in a more usual form, we
define the fluid dynamical four-velocity density,

v� =
1

�
S�, �17�

and in an analogous way, the four-spin density,

w� =
1

�
S̄�, �18�

such that they satisfy the constraints,

v�v� = 1, w�w� = − 1, v�w� = 0. �19�

We define another dynamical variable,

k� =
1

�2 �	J� + 	̄J̄�� , �20�

which satisfies

��k� − ��k� =
− i

2m

����v�w����v���v� − ��w���w��

−
e

m
F��, �21�

with F��=��A�−��A�. The four-vector k� is interpreted as
the four-momentum of the fluid. In terms of these variables,
the set of Eqs. �7�–�16� can be rewritten to obtain what may
be viewed as the system representing the relativistic quantum
fluid,43–46

����v�� = 0, �22�

����w�� = − 2m� sin 
 , �23�

��
w� − 2mk�v� − i
����v�w���v� = − 2m cos 
 , �24�

��
v� − 2mk�w� − i
����v�w���w� = 0, �25�

v��
���v�� − w��

���w�� = ��� − �w���v��v�w� − v�w��

+ 2im�
����v�w�k�, �26�

v���w� = w����v� − ��v�� + ig��
����v�w���
 . �27�

An explanatory remark is in order. Equations �22�–�27�
are really the various �A “moments” of the Dirac equation,
manipulated and expressed in terms of what appears to be
reasonable Lorentz covariant fluid variables. At this stage,
these equations, however complicated, represent only a
single Dirac particle. To conform to the standard notion of
fluid equations, we will eventually have to carry out an ap-
propriate ensemble average. With that promise soon to be
fulfilled, we will continue calling the preceding set as fluid
equations.

As this fluid is charged, we must add the Maxwell equa-
tions to close the system,

��F�� = − e�v�. �28�

The collection of 20 equations, formed by Eqs. �19� and
�21�–�28�, will be called set II. The total number of indepen-
dent equations is 20 because Eqs. �26� and �35� each in-
volves only two linearly independent equations. Set II must
be solved for the 20 variables that describe the relativistic
quantum fluid for one particle-antiparticle state
�� ,
 ,v� ,w� ,k� ,F���.

These fluid equations are covariant and fully quantum
relativistic. Note the strong nonlinearity of these equations
and the huge difference from a traditional fluid theory. Of
course, this is simply due to the deep physical difference
between Dirac theory and “classical” theories. One such dif-
ference is the first-order nature of the Dirac equation, which
leads to the velocity to be defined in a form that does not
have a direct correspondence with the nonrelativistic veloc-
ity.

Set II is just an intermediate step in our quest; it does not
quite show, explicitly and in a revealing form, the evolution
of either four-velocity or four-spin densities. Since the aim is
to construct fluid equations for a relativistic quantum plasma,
we need to put set II in a more appropriate form. It is not
difficult to show that Eqs. �24�–�26� can be solved for

k� = v� cos 
 −
1

2m
��
�v�w� − v�w��

−
i

2m�

��������v�w�� . �29�

All of the previous sets of equations have been obtained
by rewriting the Dirac equation in terms of fluidlike Lorentz
covariant variables. It is also possible to construct another
equivalent set of equations in an alternative and somewhat
more familiar approach by writing the energy-momentum
tensor of the fluid and then using conservation equations to
find the evolution equations for the four-velocity and four-
spin density. The symmetric Dirac Lagrangian,

L = 1
2 �̄�i���� − e��A� − m�� − 1

2 �i���̄�� + e�̄��A�

+ �̄m�� , �30�

yields the Dirac equations �1� and �2�. Note that L=0 on the
solution. The energy-momentum tensor is
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��
� =

�L
������

D�� +
�L

�����̄�
D�

��̄ − ��
�L ,

where D�=��+ ieA�. Using the Lagrangian, it may be shown
that ���=mT��.

Writing T�� and T̄�� in terms of the fluid variables,

T�� = �k�v� −
�

2m
���
w� − i
����v�w���v�� , �31�

T̄�� = �k�w� −
�

2m
���
v� − i
����v�w���w�� , �32�

our final set of equations is

����v�� = 0, �33�

����w�� = − 2m� sin 
 , �34�

v���w� = w����v� − ��v�� + ig��
����v�w���
 , �35�

k� = v� cos 
 −
1

2m
��
�v�w� − v�w��

−
i

2m�

��������v�w�� , �36�

�v���k� = −
e�

m
F��v

� +
1

2m
������
w�

− i�
����v�w���v�� , �37�

����k�w�� = −
e

m
�w�F�� +

1

2m
������
v��

−
i

2m
g��
��������v�w���w�� , �38�


����v
�w���k� =

− i

4m

����
����v�w�v�w����v���v�

− ��w���w�� −
e

2m

����v

�w�F��, �39�

plus Eq. �19� and Maxwell equations �28�. Most of these are
conservation laws. For instance, Eq. �37� is the conservation
of the velocity density,

����� = − e�v�F��,

while Eq. �38� is the conservation equation for the four-spin
density,43

m��T̄�� = − e�w�F��.

Incidentally, Eq. �21� is equivalent to Eqs. �37�–�39�.43

Noticing that Eqs. �35� and �36� correspond to 6 independent
equations, whereas Eqs. �37� and �38� are equivalent to 5
independent equations, it turns out that the set of Eqs. �19�,
�28�, and �33�–�39� yields 20 independent equations for the
20 unknown variables.

III. FLUID FORMALISM FOR N-BODY
PARTICLE-ANTIPARTICLE STATE

Hitherto, we have derived the relativistic quantum fluid
equations for a one-body particle-antiparticle state using the
previous formalism developed in Ref. 43. Now, we focus on
constructing the dynamics of a collection of N such one-body
states. To the best of our knowledge, this is the first deriva-
tion of a many-body relativistic quantum fluid plasma, whose
constituents are Dirac bispinors representing a fully coupled
fermion-antifermion state.

We set out to derive the fluid equations for a relativistic
quantum plasma described by an N-body bispinor wave
function ��r1 ,r1 , . . . ,rN�. Since spin half particles obey
Fermi–Dirac statistics, this N-particle spinor must be written
as a 4N�4N Slater determinant of N one-particle Dirac
states,

��r1,r2, . . . ,rN�

=
1

�N!

�a1

�r1� �a1
�r2� ¯ �a1

�rN�

�a2
�r1� �a2

�r2� ¯ �a2
�rN�

] ] � ]

�aN
�r1� �aN

�r2� ¯ �aN
�rN�


 ,

where each one-particle wave function � j�r� satisfies the
Dirac equation, and the subscripts j=a1 ,a2 , . . . ,aN label the
quantum state in which the Dirac particle resides. This
N-body bispinor satisfies the generalized Dirac equation
H�= i�t�, where H is an N-particle generalization of the
Dirac Hamiltonian and where the Dirac matrices have been
generalized to 4N�4N matrices.48

When there are no particle-particle interactions �no con-
densation, superconductivity, entanglement, etc.�, the
N-particle Dirac equation can be decomposed into N inde-
pendent Dirac equations, where each Dirac particle is de-
scribed by the four-component spinor �� in the quantum
state �.

Fluid equations are obtained by averaging over these
N-particle states. Following the procedure introduced re-
cently in Ref. 29 for the Pauli equation �nonrelativistic�, we
let p� be the probability for a Dirac particle of being in the
state �. The probability will depend on the nature of the
ensemble used, but no explicit expressions for p� are neces-
sary for our calculations. All that we need is the implicit
existence of a representative ensemble. We define the fluid
density n in the fluid rest frame as

n = �
�

p���.

Likewise, the ensemble average of any quantity x�
� may

be defined as

X� = �x�
�
 =

1

n
�
�

p���x�
�.

Thus, the fluid four-velocity is U�= �v�
�
 and the total

spin density is W�= �w�
�
. We also define the rest frame mi-

croscopic four-velocity z�
�=v�

�−U� and the rest frame micro-
scopic spin density s�

�=w�
�−W�, with �z�

�
=0= �s�
�
.
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From now on, the subscript � representing the state of
the Dirac particle will be dropped for notation simplicity. An
ensemble average automatically implies that it is over the
one-particle states. Taking the ensemble average of the set of
Eqs. �19�, �28�, and �33�–�39�, and using Eq. �36� in every
equation, we obtain

���nU�� = 0, �40�

���nW�� = − 2mn�sin 

 , �41�

U���W� = W����U� − ��U�� + ig��
����U�W����



− �v���s�
 + �w����z� − ��z��


+ ig��
������v�s���

 + �z���

W�� , �42�

�cos 

U���W� =
e

m
W�F�� − � i

2m�
g��
��������v�w���w��� + � 1

2m�
������
v� + �w���
�v�w� − v�w��

+ iw�
��������v�w���� − �cos 
z���w�
 − U��cos 
��s�
 + �sin 
w�v���

 , �43�

�cos 

U���U� = −
e

m
F��U� +

1

2m
�v������
�v�w� − v�w���
 +

i

2m
�v����1

�
g��
��������v�w��	�

+ � 1

m�
������
w� − i�
����v�w���v��� − �cos 
z���v�
 − U��cos 
��z�
 + �sin 
v�v���

 , �44�


�����v�w���k�


=
− i

4m

����
�����v�w�v�w����v���v� − ��w���w��


−
e

2m

�����v�w�
F��, �45�

plus the macroscopic Maxwell equations,

��F�� = − enU�. �46�

The group of Eqs. �40�–�46�, a complete, many-particle
description of a covariant relativistic quantum plasma, is the
primary new result of this paper. We can see that this plasma
is highly nonlinear and the terms have an implicit sum over
all the quantum states. The velocity and the four-spin density
appear mixed in the equations, revealing their strong cou-
pling.

We now discuss the current density of Eq. �46� in the
perspective of the nonrelativistic Pauli approach to spin plas-
mas. In nonrelativistic quantum theories for plasmas, the to-
tal current density is composed by the usual current and the
spin magnetization current.34,49

For a Dirac fluid, the current enU� contains these two
current densities in an intrinsic manner. Executing a Gordon
decomposition of the four-velocity,48 it is possible to show
that enU�=Jout

� +Jin
� , where Jout

� is an outer current density
that is equivalent to what is found in the Klein–Gordon
theory, while Jin

� is an internal current density arising from
internal degrees of freedom of the electron, which are related
to the spin and to the Zitterbewegung effect. This internal
current density is given by

Jin
� =

ie�

2m
�����̄������
 . �47�

From here, it is straightforward to obtain an expression
for one of the two terms constituting the spatial components
of the current density given in Eq. �47�, namely,

e�

2m
�0 � � �nWi� , �48�

which, with the definition Si= �� /2�Wi for the spin vector, is
completely equivalent to the expression for the spin magne-
tization current density found, for instance, in Ref. 49. The
other term is a polarization term due to the electric moment
of the internal degrees of freedom.48

The preceding discussion clearly demonstrates that the
definition of the four-velocity and four-current density �46�
automatically contains the relativistic generalization of what
would be the magnetization current density due to a Pauli
spin fluid.

IV. VECTORIAL DESCRIPTION

The set of Eqs. �40�–�45� is manifestly covariant. It is
useful, though, to put it in the standard vectorial notation. We
follow the usual procedure by rewriting the macroscopic
four-velocity as

U� = �� f,� fV� , �49�

where V is the vector-three velocity of the fluid and � f =U0

= �v�
0
 is the average relativistic factor. Using the constraint

�19� and the definition for z�, one readily obtains U�U�=1
− �z�z�
, which, when combined with Eq. �49�, yields

� f = ��1 − �z�z�
�1/2, �50�

where �= �1−V2�−1/2.
The factor � f is, by definition, the average relativistic

factor associated with the N particle fluid. There are two
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contributions to this: one is given by the particle velocities in
the electromagnetic field and the other by random thermal
motion, as given by the pressurelike term �z�z�
. In a typical
hot relativistic fluid theory, the relativistic factor is corrected
by the enthalpy density of the fluid.50 Thus, the thermal cor-
rection in Eq. �50� is related to the enthalpy of the system.

We apply the same procedure to define a macroscopic
vector spin density S,

Sk =
�

2
�wk
 , �51�

and then the macroscopic four-spin density is W�

= �W0 , �2 /��S�, where W0= �w0
. It can be shown that the
four-spin density satisfies

W�W� = − 1 − �s�s�
 .

In addition, the single particle constraint v�w�=0 leads
to the relation U�W�=−�z�s�
 between the macroscopic
four-velocity and the macroscopic four-spin density. Thus, V
and S represent the macroscopic quantities for the velocity
vector and the spin vector of our fluid, respectively. They are
the spatial part of their corresponding relativistic four-
vectors. When the thermal effects vanish, the normalization
conditions and the constraints on the macroquantities are the
same as the ones obeyed by the microquantities �Eq. �19��.

With macroscopic quantities properly defined, we are
able to write our equations in a vectorial form. We shall
display here only the dynamical evolution equations for the
velocity and the spin, although all macroscopic fluid equa-
tions can be written in a similar way. For instance, the con-
tinuity equation �40� becomes

�0�n� f� + � · �n� fV� = 0. �52�

The spatial part of the equation for the evolution of ve-
locity �44� reads as

mn
d

dt
�� fV� = −

en

�cos 


� f�E + V � B�

−
1

�cos 


� · � +

1

�cos 


FQ, �53�

with the operator d /dt=� f�0+� fV ·�. The quantity � is the
relativistic quantum pressure tensor,

�ij = mn�cos 
zizj
 . �54�

In the nonrelativistic quantum limit �
=0�, this tensor
reduces to the one in Ref. 29; it also reduces to the well-
known classical pressure tensor in the appropriate limit. The
term FQ / �cos 

 is the relativistic quantum force. This highly
nonlinear force includes all the relativistic quantum correc-
tions to the fluid dynamics and is given by

FQ
k = − m�0�n�cos 
z0zk
� + mn� 1

�
���� cos 
z��zk� − mn�cos 
z�
���� fV

k� − mnU��cos 
��zk


+
n

2
�v������
�v�wk − vkw���
 +

in

2
�v����1

�

k�������v�w��	� + n� 1

2�
�����k
w� − i�
����v�w��kv���

+ mn�sin 
vkv���

 . �55�

It is expected that macroscopically the largest relativistic quantum effects will be in this quantum force.
The spatial part of Eq. �43� may be written as

n
d

dt
S =

en

m�cos 

��

2
W0E + S � B	 −

�

2m�cos 


� · K +

�

2�cos 


�Q, �56�

where K is the relativistic quantum thermal-spin coupling tensor,

Kij = mn�cos 
zisj
 , �57�

which reduces, in the nonrelativistic limit �
=0�, to its equivalent in Ref. 29. The ��Q / �2�cos 

� term is the relativistic
quantum nonlinear correction to the spin evolution,

�Q
k = − �0�n�cos 
z0sk
� + n� 1

�
���� cos 
z��sk� −

2n

�
�cos 
z�
��Sk − nU��cos 
��sk


+ n�sin 
wkv���

 +
n

2m
� 1

�
������
vk�� +

n

2m
� 1

�
����wk��
�v�w� − v�w���� +

in

2m
� 1

�
���wk
��������v�w����

−
in

2m
� 1

�
gk�
��������v�w���v��� . �58�
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From Eq. �56�, we see that in this relativistic quantum
fluid theory the spin can be coupled with the electric field
through the zero component of the four-vector spin density.
However, this coupling vanishes in the nonrelativistic theory,
where W0=0.

The full set of macroscopic fluid equations is given by
Eqs. �40�–�42�, �45�, �46�, �53�, and �56�. Our model is
deeply different from any other model for quantum fluids. As
in other models, our formalism has a quantum force F� Q in
the momentum equation and also a quantum spin correction
�� Q in the spin density equation. However, the forces F� Q and
�� Q derived here are more complex and general; they explic-
itly display effects that arise from the quantum relativistic
nature of the particles. Besides, the Dirac equation is an
equation for particle-antiparticle states. This is manifested in
a renormalization of the mass and pressure. This is a pure
relativistic quantum effect, and it does not have any classical
counterpart. Related to this is the fact that, whereas in a
nonquantum formalism an electron-positron plasma can be
formulated as a two-fluid theory, in the relativistic quantum
case the same plasma is described by a one-fluid formalism.

V. NONRELATIVISTIC LIMIT OF THE THEORY

It is expected that our relativistic quantum theory pro-
duces the correct quantum nonrelativistic limit epitomized in
the fluid description based on the Pauli theory. The nonrela-
tivistic spin effects in quantum plasmas have been recently
studied; a spin evolution equation has been derived and it has
been shown that the spin affects the evolution of velocity.29,30

A fundamental difference between the relativistic and the
nonrelativistic quantum theory is that in the former theory
the particle velocity defined via Eq. �17� does not reduce to
the nonrelativistic velocity. This phenomenon is related to
the so-called “Zitterbewegung” �see, for example, Ref. 51�
originating in the mixing of the particle and antiparticle
states. The profound consequence is that in relativistic quan-
tum mechanics, the momentum is not “equivalent” to the
velocity.

What is reduced to the nonrelativistic velocity in the
appropriate limit, however, is the four-momentum k� given
by Eq. �20�.29,30,52 Thus, care must be taken in the choice of
variables when one wishes to find the nonrelativistic �NR�
limit of the Dirac fluid equations.

Obtaining the NR limit of our formalism is quite tedious.
However, we will carry out a few illustrative calculations in
order to outline the procedure. It is obvious that the NR will
be characterized by 
=0 �no antiparticles� and vk�1. Using
the definition for k� �Eq. �36�� and given that m�mc /�, we
obtain an expression for the spatial NR velocity,

vi = ki −
1

mc�

i������

�S�

2
	 , �59�

where �Sk /2=−i�wk /2 is the NR definition for the spin den-
sity given in Refs. 29, 30, 52, and 53, and � is the NR
density. Thus, the spatial component of ki reduces to the
nonrelativistic velocity vi defined in Refs. 29, 30, 52, and 53.

We now turn our attention to the entire equation for the
velocity. In the NR limit, all terms on the right hand side of

Eq. �37�, except the relativistic Lorentz force −e�Fi�v�, van-
ish. Using Eq. �59� for the NR velocity, we can split the
relativistic Lorentz force into −e�Fi�k� �the nonrelativistic
Lorentz force�, a divergence, and −�e� /2mc2�Sk�iBk; the lat-
ter is the Pauli spin contribution to the equation of motion.
Carrying out similar manipulations, the NR limit of the
energy-momentum tensor �31� takes the form

��� = m�k�v� − 1
2
�������S��v�. �60�

The last term, after using Eq. �59�, can be written as

�

4mc�
������ −

��

4mc
��S���S�, �61�

plus a divergence. The first term in Eq. �61� represents the
first of two contributions, which make up the Bohm poten-
tial. The other contribution to the Bohm potential appears
because, in the NR limit, the Pauli Lagrangian does not
vanish.52 The second term in Eq. �61� represents the spin-
spin interaction. Then, and following Ref. 52, the one-body
equation of motion �37� can be shown to reproduce the NR
one-body velocity found in Refs. 29, 30, and 52.

We end this section by showing that our theory produces
the correct NR evolution equation for the spin. Since 

=0, w0�1, v0=1 , vi�1, Eq. �38� leads to

dSk

dt
=

e

mc
SiF

ki +
�

2m�

k��� j��S�� jS

�� , �62�

which is the same result as in Refs. 29, 30, and 52.
It is important to notice that the nonrelativistic limit ob-

tained here corresponds to the one-body evolution equations.
The complete plasma theory will emerge upon taking en-
semble averages of these equations.

VI. ELECTROMAGNETIC WAVES IN A DIRAC FLUID

In order to illustrate how quantum relativistic effects
may affect collective plasma motions, we will now apply the
formalism developed in this paper to solve a simple problem.
The idea is to demonstrate qualitative new features that
quantum relativity is capable of bringing to collective plasma
motions. In particular, for the purpose of illustration, we will
study a particular electromagnetic wave propagating in a
relativistic quantum, cold electron-positron plasma, a prob-
lem which has been extensively studied by various authors.54

We start by considering a plasma with constant velocity
V0 and constant density n0. In such a plasma, all electromag-
netic fields are zero. Let the velocity and the density of the
fluid be perturbed to the first order V=V0+V1 and n=n0

+n1, and linearize the plasma equations with respect to these
perturbations. We assume that a transverse electromagnetic
wave, k ·E=0 and k ·B=0, can propagate in the plasma and
satisfies V0 ·V1=0 so that the relativistic Lorentz factor � is
constant. The waves also satisfy k ·V0=0 and V0�B=0.

For the sake of simplicity, we choose E=Eẑ, B=Bx̂,
V0=V0x̂, V1=Vyŷ+Vzẑ, and k=kŷ, although other choices
are possible. From Eq. �53�, the linearized equation of mo-
tion is
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�
�V1

�t
= −

e

me�cos 


E +

�

men0��cos 


FQ. �63�

In Eq. �63�, the relativistic quantum effects directly ap-
pear through the factor �cos 

, which measures the mixing
of the antiparticle states. There are many additional quantum
relativity effects contained in the rather complicated quan-
tum force FQ �see Eq. �55��; however, dealing with all the
richness implicit in FQ is beyond the scope of this study.
Instead, we will attempt to make some very rough but rea-
sonable assumptions in order to extract those parts of the
quantum force FQ relevant for our simple example. The first
approximation is to regard 
 as a constant, being fully aware
that it is a dynamical variable. More precisely, we neglect its
variation on the electromagnetic wave time and space scales.
Besides, neglecting all thermal effects, the quantum force
can be written as

FQ
k =

in

2
�v����1

�

k�������v�w��	�

−
in

2
� 1

�
����
����v�w��kv��� . �64�

Moreover, for the transverse electromagnetic wave con-
sidered, the quantum force of Eq. �63� further simplifies to

�FQ

men0��cos 


=

i

me�cos 


U����− �0�V1 � S�

+ �� � S� −
�

2
�� � W0V1��

+
i�

me�cos 


��0�V1 · �S � � jV1��

− � · �S � � jV1� + W0 � · �V1 � � jV1�� ,

�65�

where S is the macroscopic spin-density vector defined in
Eq. �51�.

We need a similar simplification of Eq. �56� for the spin
vector. We can focus on scale lengths similar to the Larmor
radius30 and neglect all the terms quadratic in w�. Further
assuming that the spin inertia can be neglected for frequen-
cies below cyclotron frequency, the cold plasma solution of
Eq. �56� is

S = −
�

2
� B

�B�
− W0E � B

�B�2 	 , �66�

where we have assumed that the spin will be antiparallel to
the magnetic field in order to minimize the magnetic moment
energy. For the particular case of the transverse electromag-
netic wave considered, the macroscopic spin is S=−�� /2��
��x̂−W0ŷ�.

Substituting this solution in Eq. �65� and linearizing
Eq. �63� on the perturbed variables, the velocity evolution
equation becomes

− i��V1 = −
e

me�cos 


E +

i��

2me�cos 



���2x̂ � V1 − ��� + k�W0�ŷ � V1��

+
i��

2me�cos 


k2��V1 � x̂� · ŷ�ŷ , �67�

which can be solved for Vz, yielding

Vz =
− ie

me���cos 


E�1 + ��2 − k2�� �

2me�cos 

	
2�−1

.

�68�

Substituting Vz in the Maxwell equation ����E
=4�en��tVzẑ−�t

2E, one finds the dispersion relation,

�2 − k2 = �p
2��cos 

2 +

�2

4me
2 ��2 − k2��−1

, �69�

with the plasma frequency defined as

�p
2 =

4�e2n0�	�/��

me

. �70�

This definition is justified because

n0�	�

��
� = �

�

p�	� �71�

is the average of the scalar density, which in the nonrelativ-
istic limit becomes the usual total fluid density.

The quantum relativistic dispersion relation �69� differs
from the standard electromagnetic dispersion relation �2

−k2=�p
2 in two striking ways:

�1� Quantum relativistic effects, through the term
1 / �cos 

2, cause an effective increase in the plasma fre-
quency, thus increasing the plasma opacity. We do not
see � explicitly in this term because 
 was regarded as a
constant, and it is actually a dynamical variable, which
should be found by simultaneously solving the entire
system of fluid equations. To understand the increased
opacity of the plasma, it is useful to remind that a non-
zero 
 �see Eq. �6��, which is a complicated function of
quantities such as the energy of the particles, the fine
structure constant, etc., implies a finite density antipar-
ticle fluid interacting with the particle fluid. For a non-
relativistic plasma �
=0�, there is only the pure electron
fluid �in a neutralizing immobile ion background� but as
the fluid energy increases, the electron fluid becomes
contaminated with a higher and higher fraction of
electron-positron pairs. In the extreme relativistic limit
�
=� /4�, the amplitudes of the scalar and the pseudo-
scalar densities are approximately the same, 1 / �cos 

2

=2 and the dispersion relation becomes

�2 − k2 = 2�p
2,

the classical result for an electron-positron pair plasma.
It is expected but still amazing that the Dirac fluid simu-
lates both the behavior of a classical electron fluid and
that of the classical electron-positron fluid in the two
appropriate limits. The marriage of quantum mechanics
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and special relativity does, indeed, produce unique and
qualitatively deep new results with no analog in either
quantum �but not relativistic� or relativistic �but not
quantum� fluids.

�2� The second effect in Eq. �69�, proportional to �2, is a
more conventional spin dependent quantum effect
�which, to the best of our knowledge, is derived here for
the first time�. Since it tends to increase the denominator
on the right hand side of Eq. �69�, the spin dependent
correction tends to induce plasma transparency, that is,
the opposite of the mixing angle effect discussed above.
For a mildly relativistic system �
=0�, this term goes as
��� /me�2= ��c /��2, where �=2� /� and �c=2�� /me

are the wavelength and the Compton length, respec-
tively. The quantum mechanical induced transparency
effect can be very large for high frequency waves, espe-
cially when the wave has more energy than the electron
rest mass.

The dispersion relation �69� can be readily solved for the
normalized frequency x=� /�p,

x���
2 = y2 +

��cos 

2

2
���1 +

4

��cos 

4 − 1	 �72�

in terms of the parameters y=k /�p and �=4me
2 /�2�p

2. The
frequency x�+� is for the usual electromagnetic branch now
with relativistic quantum corrections. The frequency x�−� rep-
resents a new electromagnetic branch that appears only due
to the relativistic quantum nature of this plasma. This mode
can only propagate when 2y2���cos 

2+��2�cos 

4+4�.
In the �→0 limit, the branch associated with x− disappears.

In Fig. 1, we see the spin effect in electromagnetic
branches x�+� and x�−� of the dispersion relation �72� for dif-
ferent values of � and 
=� /5. The dotted line is the classical
electromagnetic dispersion relation x2=y2+1; the full line is
for x�+� and x�−� of Eq. �72�. When � decreases, the spin effect
increases. In the x�+� branch, the spin effect produces a re-
duction of the effective critical frequency, which produces an
increase of the plasma transparency. When �→0, the wave
becomes a light wave. On the other hand, we see that the
spin effect in the x�−� branch is related to the group of wave
numbers in which the wave does not propagate.

It is easy to see that spin effects are most important when
� is small, i.e., when the quantum energy of plasma waves
related to �p is much larger than the electron rest mass,
which, in turn, may occur, for instance, in very high density
plasmas. The frequency cutoff for the x�+� branch occurs at
an effective critical frequency xc, below which there is no
wave propagation. It can be calculated by setting y=0, which
yields

xc
2 =

1

�cos 

2 + �xc
2/��

, �73�

clearly showing that the first term �related to antiparticle
mixing with classical value equal to Eq. �1� always increases
plasma opacity, while the second one �related to spin� in-
creases plasma transparency.

In Fig. 2, we plot the effective critical frequency xc as a
function of the parameter �, as given by Eq. �73�. The solid
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k�Ωp
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3
Ω�Ωp Ζ � 15

FIG. 1. Spin effect in electromagnetic branches of the dispersion relation
�72� for 
=� /5. The dotted line is the classic electromagnetic dispersion
relation, while the full lines are x�+� and x�−� branches of Eq. �72�. The x�+�
branch propagates from y=0. The x�−� branch propagates from 2y2

=��cos 

2+��2�cos 

4+4�.

10 20 30 40 50
Ζ

0.2

0.4

0.6

0.8

1

1.2

xc

FIG. 2. A plot of the effective critical frequency xc, solution of Eq. �73�, as
a function of � for 
=0 �dashed line� and 
=7� /40 �dotted line�. The solid
line represents the critical frequency for the classical dispersion relation.
When � is large, the dominant effect is opacity. Instead, when � is small,
plasma transparency is enhanced.
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line represents the classical electromagnetic dispersion rela-
tion x2=y2+1 with critical frequency identically equal to
unity. The dashed line corresponds to 
=0, and the dotted
line to 
=7� /40, an arbitrary choice just to illustrate the
effects discussed in this section. For all nonzero 
, xc�1 in
the limit ��1, where the spin effects are negligible. In this
regime, the dominant effect is purely quantum relativistic,
namely, the opacity produced by the electron-positron pair
fraction �the �cos 

 effect�. For the special case 
=0, only
transparency inducing quantum effects pertain. The plasma
tends to be more and more transparent as �→0 and the criti-
cal frequency xc�1. In this regime, the spin effect can over-
whelm the �cos 

 effect, and the net effect is a greater
plasma transparency. Here, the electromagnetic wave asymp-
totically becomes a light wave �electromagnetic wave in
vacuum�.

One must, however, warn the reader that for a classical
plasma, the relativistically induced transparency effect is
somewhat subtle; the kinematic and the thermal motions ex-
ert qualitatively different influences; the relativistic thermal
motion actually decreases the effective plasma frequency �as
do the spin effect mentioned above�, while the directed
plasma motion cannot because the two sides of the disper-
sion relation must be covariant. For a hot quantum relativis-
tic plasma, the dispersion relation for the electromagnetic
wave is modified to

�2 − k2 =
�p

2

�T��cos 

2 +
�2

4me
2 ��2 − k2��

, �74�

where �T is the thermal relativistic factor,50 which can be
related to � f /� of Eq. �50�.

VII. CONCLUSIONS

Starting from the Dirac equation, we have developed a
new fluid formalism for relativistic quantum spin half plas-
mas. The theory is highly nonlinear and much more compli-
cated �as expected� than theories that are either classical rela-
tivistic or quantum but nonrelativistic. New features,
inherent to the Dirac equation, become manifest in the mac-
roscopic fluid equations: the explicit appearance of spin, the
intrinsic particle-antiparticle coupling, and the nontrivial re-
lationship between momentum and velocity are prime ex-
amples. These effects emerge in the theory through new pa-
rameters peculiar to the relativistic quantum mechanics. The
new theory encompasses known theories and can be reduced
to them in appropriate limits.

The new formalism opens a wide new field for investi-
gation. Not only can it be used to calculate relativistic cor-
rections to what may be already known in quantum plasmas,
but the theory must be examined for qualitative new results
that have no analog in the simpler versions. One of the ob-
vious results is that a quantum relativistic electron plasma
can never be just an electron plasma; it must always be an
interacting electron-positron system.

Although the primary objective of this paper was the
development and derivation of the system of equations sat-

isfied by a quantum relativistic fluid, we have also solved a
conceptually important but algebraically simple problem; we
have derived the dispersion relation for an electromagnetic
wave sustained by such a fluid. We find that the electron-
positron coupling, a necessary feature of this system based
on the Dirac equation, produces correction to the usual elec-
tromagnetic modes and introduces a new branch, which does
not have a classical counterpart. Besides, the electron-
positron nature of this fluid tends to increase the plasma
opacity, while the spin effects make the fluid more transpar-
ent. To the best of our knowledge, both these effects are new.
The increase in opacity comes into existence through the
combination of quantum mechanics and special relativity and
is unique to the current system. The spin induced transpar-
ency can become particularly strong when the radiation and
the plasma quanta have energies in excess of the rest mass
energy of the electron.

We expect that this formalism and the results enumer-
ated above will find wide-ranging applications in cosmic
plasmas as well as in plasmas produced by intense laser
beams.
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