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ABSTRACTS

A Statistical Thermodynamics discussion on the nature of

solvatation energy within the continuum approach, is
presented. A full partition of the total solute-solvent
free energy is given. The simple model adopted in the
present work allowed us to show that even in the case where
the solute-solvent interactions are treated by means of
perturbation theory, the physical meaning of each contri bu­
tion to the total energy of the solute-solvent system may be
clearly stated. The results of the statistical analysis are
used to discuss the quantum mechanical treatment of solva­
tion within the reaction field approach.

RESUMEN

En este trabajo, se presenta una discusi6n sobre la
naturaleza fisica de la energia de solvataci6n basada en un
modelo termodinámico estadistico. A partir de él se puede
obtener una partici6n completa de la energia libre total
del sistema soluto-solvente. El modelo simple considerade
para este estudio, permite mcstrar que aún en el caso en que
las interacciones soluto solvente se tratan mediante teoría

de perturbaci6n, el significado físico de cada contribuci6n
a la energia total puede ser establecido claramente. Los
resultados del análisis estadístico se usan come base para
la discusi6n del tratamiento cuántico de la solvataci6n

dentro de la teoría de campo de reacci6n.

INTRODUCTION

The definition of solvation energy in quantum-chemical methods is usually

based on a simpl ified description of the solute-sol vent system. Therefore,
the identification of the solvation energy contribution in the formal
express ion of the total energy of this model system, can be either difficult

or inconsistent with the true nature of solvation process.

Within the discrete or supermolecule (SM) approach for example, where the

solvent is represented by a finite number of molecules, the solvation energy
is equated to the solute-solvent interaction energy. However this identifica­

tion is conceptually erroneous since this calculated energy corresponds to an
enthalphy rather than to a free energy change. The temperature averaging
effects of the liquid state are not explicitely included in this type of
calculation (1-3), and these are the effects which are responsible for the
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entropy variation in the solvation process.

This is not a formal problem. It is particularly confusing when, for
instance, the chemist is confronted with the task of obtaining theoretical
estimates of experimental thermodynamic properties (like pKa), from a SM type
of calculation. It is well known that the relevant quantity in chemical

equilibrium is the free energy change of the system, whereas the actual
calculated property corresponds to an enthalpy change. In spite of the
numerical results, it is clear that such a procedure can be misleading. The
only solution to this problem is to complement the SM approach with simulation
techniques of the liquid state, such as Monte Carlo calculations (4-5).

Another relevant approach for the calculation {)f solvation energies are
the, so called, continuum models. In these models, the solvent is represented
by a dielectric polarizable medium characterized by its dielectric constant
(6-8), and the solute-solvent interaction is described by means of the
reaction field (RF) theory.

The influence of the polarized environment upon the molecular properties
of the solute must be included in the SCF treatment of the system in continuum
type calculations. Thus, the main problem in these models is to define a

physically acceptable Fock operator which ineludes the RF potential due to
the polarized medium. The definition of this operator is strongly related to
a correct interpretation of the solvation energy (9-12). In fact, a
variationally incorrect operator has been used in several papers dealing with
the quantum meehanical treatment of solvent effects (13-14).

In this paper we present a statistical thermodynamic definition of the
solvation energy within a continuum model framework which satisfies the
physical requirements mentioned above. The results obtained through the

statistical analysis will be used to discuss the partition of the total
energy of the solute solvent system. The different contributions to this
energy will be shown to have clearly defined physical meaning in terms of a
simple modelo

Finally, two relevant applications of our calculation are presented.
First, a derivation of the Onsager RF theory and, secondly, a simple manner
of deriving a correct effective Fock operator for the quantum mechanieal
treatment of solvent effects is discussed.

THEORY

a) Definition of the Electrostatic Solvation Energy

We will choose for our preliminary discussion the case of the simplest
possible solute: a monoatomic ion. We will show later that the generalization
to molecular solutes is straightforward.

In the absence of force s other than those of purely electrostatic nature,
we may consider an atomic ion as represented by a rigid sphere, S(O,a), 'where
"a" is the radius of the sphere centered at the origin O. We further assume
that the sphere carries a net charge Qo, uniformly distributed on its surface.
The solvated ion may be represented, within this framework, as the same
sphere inmersed in a continuum dielectric medium characterized by its

macroscopic dielectric constant Em• The solvation energy may be defined as

(1)

where E(Em) and E(EO) are the electrostatic self energy of S(O,a) in the
presence of the polarizable medium and in vacuum, respectively.

The definition of the solvation energy as given in equation (1), contains
two important approximations: i) it neglects the variation of the ionic
radius when ions go from the gas phase to the solution and ii) it does not

94



Bol. SOCo Chil. Quím., Vol. 34, N° 2 (1989)

consider explicitely the energy required to form the cavities for the ions
within the dielectrico These problems can be handled in a rather simple way
if we are only interested in obtaining numerical values of the solvation
energies of atomic ions (15). However. being interested in the physical
interpretation of the solvation energy. we propose to accept this model as a
working hypothesis in order to di scuss the sol vation process in the most
simple framework. We will show later. that the general ideas that we shall
develop in this work are quite independent of the approximations mentioned
above.

The electrostatic sel f energies E(Ern) and E(eo) are gi ven by the work
required to charge the sphere S(O.a) in the presence of the dielectric and in
vacuum respectively (7,8)

(2)

and

(3)

2
1 Qo

E(e ) -
o -"Z eoa

Substi tution of equation 2 and 3 into eq 1. leads to the well known Born
formula for the solvation energy

(4)

2
-1 Qo

El =..,.(1-1/e)-=H(e)so v '" a

where e = em/eo' is the effective dielectric constant of the medium (7)"

b) Calculation of Electrostatic Solute·Solvent Interaction Energy

The basic assumption of the RF theory is that the presence of the charged
species S(O.a) polarizes the medium. This polarization induces the creation,
at the surface of S(O.a). of a polarization charge distribution which we
shall refer as to "polarization charges" (7-9). The polarization charges may
be determined from the electrostatic potential V(e) produced by the solvated
ion and defined by:

(5)
Qo

V(e) =-a"e

Alternatively. we can think of this potential as arlslng from the inter­
actt'on between the source and the polarization charges in vacuum. Qo andQPo (e) respectively,

Qo + QPol(e)
(6) V(e) = --a--
From eqs 5 and 6 the following expression for the polarization charges is
obtained:

(7)

The RF potential

(8)

QPol(e) = -(1 - 1/e) Q
O

is given by /5/.

QPol Qo
VR(e) = -a- = -(1 - 1/d a

VR(e) is the fundamental quantity of the RF theory: it is directly related to
the electrostatic solute-solvent interaction energy E~_s(e) by /16/
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(9)

From eqs (9) and (1) the total energy of the solute-solvent system becomes

(10 )

Equation (10) provides a full partitíon of the total energy of the ion in
solution.

It is easy to recognize from this express ion the first and second term as

being the total energy of the isolated solute, E(e:o), and the solute-solvent
electrostatic energy, El:-S(e:). The third term i n eq (10), -1/2 E1:_S(e:),
does not have an obvious meaning. Furthermore, from eq (9), it is clear that

the identification of the solvation energy with the solute-solvent interaction
energy, an assumption that is used in all SM approaches, is incorrecto

In the following sections a reinterpretation of the energetics of ion
solvation based on thermodynamics relationships is given. Thi s procedure

will allow us to give a physical meaning to the third term in eqn (10).

c) Statistical Thermodynamics Analysis of the Solute·Solvent Interactions. The Independent
Dipoles Approach

In order to give a physical interpretation to each contribution of the
total energy of the solute-solvent system given by eq (10), we will consider
a microscopic model of the polarized dielectric medium. In a first step, and
with the purpose of illustrating the statistical thermodynamic calculation in
the simplest way, we will assume that the solvent may be represented by a set

of N non-interactíng identical dipoles, ¡ik(1 < k < N); with /lIk/ = 11k. Let
further assume that the dipoles are unpolarizable. The interaction of this
system with the jolute will be represented by the set 11k interacting with an

external field Eo• This external electric field could arise, in the most
general case, from any electric moment associated with the charge distribution
of the solute. It is this frame that allows us to generalize our conclusions

from the particular situation where the solute is represented by a net charge
(monoatomic ions) to molecules or molecular ions. Finally, we will assume
that the whole system is coupled to a thermostat at the temperature T.

Let p(O) be the probability density of finding a dipole in the direction

of the solid angle ,o. The probability of finding a dipole forming with to a
salid angle within the element (0,0 + do) is:

( 11) p(O) = p(O) dO

If N is the total number of dipoles, then

(12) p(O) = ~

where n(o)do represents the number of dipoles forming with tQ a sol id angle
within the element (0,0 + do); from the normal izatíon condl tion (Le. the
conservation of the total number of dipoles),

(13) J n(o)do = N

the entropy of the system as a function of p(O) is given by

(14) S = -kN Ip(O)Ln p (O)dO

96



Bol. SOCo Chil. Quím .• Vol. 34, N" 2 (1989)

where k is the Boltzmann constant. Since the independent dipoles model has

been ·assumed. the average potential energy as a function of p(o) becomes

(15) U = J u(o) p(o)do

where u(O) is the potential energy of a dipole oriented in the direction of
the solid angle o.

From Eqs (14) and (15) the Helmholtz free energy F. is given by

(16) F = U - TS = J n(o)u(o)do - kT[NLnN - J n(o)Ln n(o)do]

At equilibrium. óF = O. and therefore

(17) 6F = Jón(o)(u(o) + kT In n(o))do = O

From this condition the angular distribution of dipoles at thermodynamic
equil ibrium is

( 18) n(O) = ~ e-u(O)/kT

with Z. the partition function of the system given by

(19) Z = J e-u(O)/kTdO

Substitution of eq (18) into eq (16) allows us to inmediately verify that

(20) F = -kT LnZ

which is the statistical thermodynamic definition of the Helmholtz free
energy.

We may further try to relate the thermodynamic magnitudes to the electric
properties of the system. We start by writing the explicit form of u(O) (16)

(21) u(o) = - ii· E = -IlE cOS6o o

where 6 is the angle formed by the vectors ii and Eo and where axial symmetry
fs assumed in the system. By introducing the well known change of variables
(16)

(22)

we obtain

(23)

and

(24)

where

11 211 • h( )Z = J J e-acos6sinadad = 411s1n a
o o ~ a

11 21

U = f J e-acos6(_akTcos6) sin6d6dp = -NakTL(a)o o

(25)
L(a) = coth a - í

is the Langevin function (16).
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Within the weak field approximation (which is equivalent to apply first

order perturbation theory), we may develop L(a) in powers of a. By combining
eqs (23) and (20), and neglecting the terms higher than second order, we geti 1 i
(26) F = -NkT(Ln 411+ j) = Fo - 2" NkT j
and

(27)
i

U = -NakT(~) = -NkT;r

where Fo = - TSo' with S9 the entropy corresponding to the perfect disorder(i.e. in the absence of Eo)' By combining eqs (26) and (27) we obtain

1
( 28 ) H = F - Fo = Z U.

On the other hand we have

(29) l>F = l> U - T l>S = U - T l>S

-
with Uo = O, in the absence of Eo• By comparing eqs (28) and (29), we mayconclude that

(30)

and

(31)

F = Fo + U - Tl>S

1 ­
- Tl>S = Z U

Expression 30 is formally comparable to express ion 10. However, the
statistical calculation allowed us to obtain a more precise interpretation of
the different contributions to the total energy of the solute-solvent system
as given in eq (10). First, we may conclude that the quantity 1/2U represents

the free energy variation of the system. In second place, by comparing eqs
(30) and (10), we can see that the third term of expression 10 is related to
the entropy variation of the system (Le. the solvent reorganization energy
around the solute). This second conclusion may be naturally explained within

the simple microscopic model considered, by recognizing that the equilibrium

state of the system results from the competition of two opp.Qsite trends: on
one hand, the trend to the order due to the coupl ing with Eo' which force s
the_dipoles to adopt an ordered configuration (Le. following the direction

of Eo) and, on the other hand, the trend to the disorder due to the coupling
with the thermostat. This argument is also consistent with the fact that the

average orientation of the s~lvent dipoles at termal equilibrium, taking intoaccount the coupling with Eo' is determined by the minimization of a well
defined potential function: the free energy of the system. Furthermore, it
is quite clear from the above calculations that the minimization of the total
energy of the system, neglecting the influence of the temperature (as in the
case of the SM approach), would lead to a situation where al! the solvent

dipoles would be strictly oriented in the direction of !Q. It is the -Tl>S > O
contribution in express ion 30, which causes that the minlmum of F is obtained

for a non vanishing value of the angle 8. Physically, Tl>S < O term represents
the heat transferred to maintain the temperature until the equilibrium state

is attained, under the influence of to'

d) Introduction of the Onsager Reaction Field Theory

The hypothesis of independent dipoles introduced in the previous section,
considerably diminishes the reliability of the model when applied to liquid
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solutions. In this section, we will use a more general approach to show that
the introduction of the interaction between the solvent dipoles, does not
modify the conclusions already obtained.

let us consider a system formed by a reduced number of solute molecules
(I) in interaction with a big number of solvent molecules (S). We further
assume that the I and S systems are in the configurations W and o, respective­
ly. The total energy of the sytem U(w,O) in the configuration (w,o) iswritten as:

(32) U(w,o) = UI(w) + US(o) + UI_S(w,O)

where UI(w) and US(o) are the total energies of the pure solute and pure
solvent respectively in the absence of interaction, and UI-S(W,O), is the
solute-solvent interaction energy. The partition function Z of the whole
system is given by

(33) Z = J e-U(w,O)/kTdwdO

By combining eqs (32) and (33), Z becomes

(34) Z = J e-UI( w)/kT [J e-[US(O) + UI_S(w,O))/kT do]dw

At this stage of the calculation it is convenient to introduce the reduced
partition function Zi(w) of the solute proposed by Barriol (17) given by

(35) J e-[US(O) + UI_S(w,O)]/kTdo = Zi (w) J e-US(O)/kTdO

Wecan introduce a free energy term Fi(w) associated to Zi(w) as

(36)
Fi(w) = -kTlnZi(w)

In order to give a physical meaning to the free energy Fi (w), we will
assume that the system I is "frozen" in the configuration Wo and unpolari­
zable, that is, it conserves its configuration even under the influence of
the system S. The total energy of the system U(wo'o) is then given by:

(37)

and Z may be cast into the form

(38)

(40)

and

(39) F(wo) = UI(wo) - kTln I e-[US(O) + ~-s(wo,o)]/kTdo

From eq (39), it is easy to verify that in the absence of interaction:

Fo(wO) = UI(wO) - kTln I e-US(o)/kTdo

Substracting eqs (40) and (39) we obtain

= -kTln J e-[US(O)+UI_S(wO,O)]/kTdo +(41) óF = F(wo) - Fo(wo)

+ kTln J e-US(o)/kTdo
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F.(w ) = _kTLn<e-L~_S(w,O)/kT >
1 o o

(44)

(45)

In order to make the present calculation comparable to that of the previous

section, the term in brackets in eq (44) is developed in powers of UI_S(w.o).
Neglecting terms higher than second order we obtain (see appendix 1).

where < >0 represents the average value calculated on the basis of the

partition function of the isolated 5(0) system (which formally corresponds to
a first order perturbation calculation). From eqs (43) and (36) we obtain:

The physical meaning of Fi(wo) is now quite clear: it represents the free
energy of insertion of the system I(wo) into the system stO) (18-19). This

"insertion" energy represents the solvation energy of the system I ~ o) by the
system S.

The calculation developed above will be used as the basis to show that the

results obtained within the independent solvent dipoles model may be
generalized to the case where the interaction term is explicitely included.

This is done by putting the quantity Fi(wo) in a more compact form and taking
advantage that the reduced partition function defined in eq (35) may be
rewritten as

óF(wo) represents the free energy variation resulting from the interaction
between the system I (wo) with S(O). In other words, F describes the free

energy variation when the system I(wo) is inserted into the system S.
Furthermore, from eqs (35) and (36) it is also seen that
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APPLICATIONS

(43)

(42)

Expression 45 is equivalent to expression 28 and unequivocally leads to eq

(30). However, eq (45) is more general since it was obtained by assuming a
less restrictive hypothesis on the nature of system S. It is significative
that expression 45, which describes the free energy of insertion of the

system I(wO) into the system S is equivalent to the expression deduced by
Ben-Naim (eq 3-12 of ref (20)) by using a quite different (non-perturbative)
approach.

In summary. we have shown that in the case where the solvent is represented
by non polarizable polar molecules, the magnitude to be minimized is the
total free energy of the solute-solvent system. This result can be extended
to the case where electronic polarization of both the solute and the solvent
is considered.

In order to illustrate the realiability and the usefulness of the given
statistical analysis of the solvation process, two relevant applications will
be discussed.

a) Derivation ofthe Onsager Reaction Field Theory

Let us assume that the I system is represented by a unique unpolarizable

dipole UI and that the solvent is representable by a set of equally
unpolarizable dipoles Ui' The interaction energy UI_S(w,o) may be written as
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(46)

where ES is the electric field created by a set of dipoles of the S system inthe configuration o.

Since the average field created by an uniform and isotropic distribution
of dipoles vanishes (see appendix 1) we have

(47)

In the case where the dipole distribution of the S system is perturbated
by the presence ofii1: , .:the resulting average field < ES(o» does not vanish.
In fact, this average <ES> is nothing but the reaction field. If RS is its
module, then

(48)

(49)

Finally, by using eqn (45), it is found that

1
F i (w) = - "2" 1l1: RS

which is the classical expression of the solvation energy given by the Onsager
reaction field theory (16). Expression 49 is also the starting point for the
quantum chemical calculation of the solvation energy in the self consistent
reaction field (SCRF) model of Tapia (21) and in a variety of cavity models
proposed by other authors (22-24).

b) Quantum Chemical Treatment of Solvent Effects. Derivation of the Effective
Fock Operator.

In the introduction of this paper it has been mentioned that a correct
interpretation of the solvation energy has a large influence in the derivation
of the effecti ve Fock operator for the quantum chemical treatment of sol va­
tion •. It is also worth emphasizing that this problem is particularly relevant
if the solute is a molecule or a molecular ion.

For this type of systems a usual approximation for the solvation energy is
given by a generalization of Born formula (eq 4): the solvation energy of a
molecular solute is built up by a sum of atomic contributions plus the inter­
atomic interaction contributions (25-26). If we adopt such approach, we do
not lose generality by considering the derivation of the Fock operator for
the case of a monoatomic ion. The general ization to molecules is straight­
forward (9).

Let E(1,P) be the total energy of the isolated solute as calculated within
the self consistent field (SCF) approximation. The total energy of this
system in solution E(E,P) may be written as a function of the dielectric
constant of the medium E, and the Mulliken population matrix P, as follows

(50) E(E,P) = E(1,P) + ES(E,P)

where ES is the correction term representing the solvation energy. To derive
the effective Fock operator, F(E,P), for the solute in the presence of the
polarizabe medium, we may adopt a very simple physical picture. Since F(E,P)
represents the average potential acting on each electron of the sol vated
solute we expect it to be the sum of the standard Hartree-Fock potential
F(1,P) of the isolated solute and the reaction field potential VR, due to the
solvento Mathematically,

101



Bol. Soc. Chil. Qufm., Vol. 34, N° 2 (1989)

(51) F(e:,P) dE(e:,P) dE(1 P) dES(e:,P)
-~~- = -[ , + dQA ] = F( 1,P) + VR(e:,P)dQA áQA

In the case where the solute is a molecular system eq (51) holds if the net
charge QAof the ion is replaced by the net charge QA(P) of each atom in the
valence state (the reader interested in a more formal derivation of eq (51)
should consult reference (8).

In order to discuss the relevance of the statistical thermodynamics
analysis in the derivation of F(e: ,P), let us write the solvation energy in
the fol1owing form (see eqs (4), (8), (9»:

(52)

2
1 QA

VR(e:) = -A[1 - - J-.-;­e: a

t •. ~l\"

where A is a parameter which converts ES(e:) into the solute-solvent inter­
action energy (b1) or into the free energy of solvation (A=1/2).

After combining eqs (50), (52) we get

dES(e:) 1 QA
(53) - -;;r¡o¡-- = - 2A[1 - -] - = 2A VR(e:)u~A e: a

We inmediately see that the correction to the Fock operator due to the
solvent equals the reaction field potential only in the case where A = 1/2.
In other words, we obtain a variational1y correct effective Fock operator
only when the orientational polarization energy of the solvent is taken into
account, as shown in the statistical analysis of the solvation process
discussed above.

CONCLUDING REMARKS

The solvation energy in the context of the continuum approach has been
discussed. A partition of the total solute-solvent interaction energy has
been presented. It was shown that the classical electrostatic theory does
not provide a complete interpretation of the different contributions to the
free energy of a solvated system. A statistical thermodynamics discussion of
the solvation process was given. The simple model adopted in the present
work allowed us to show that even in the case where solute-sol vent inter­
actions are treated by means of a perturbational approach, the physical
meaning of each contribution to the total energy of the solute-solvent system
can be clearly identified.

Final1y, in order to test the reliability of the present approach, the
Onsager reaction field theory has been derived. The relevance of the
statistical analysis was also illustrated in the discussion of a correct
derivation of the effective Fock operator required for the quantum mechanical
treatment of solvent effects.
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APPENDlXl

Derivation of Eq (45).

Starting from eq (44):

we may develop the term in bracket in powers of Ut_S(w,o). Neglecting terms
higher than second order we get

The contribution <Ut-S(wo'O»o in eq A-1 vanishes because it represents the
average value of the interaction energy calculated on the basis of the parti­
tion of the S system considered as isolated and therefore homogeneous and
isotropic.

By using the approximation Ln(1+x) = x, for x small, we get

(A-2)

On the other hand, the average value of the interaction potential energy
is given by

J -[Us(o)+Ut_s(wo,O)]/kTe ~_s(wo,fl) dO

(A-3) < Ut_s(wo'o» = J -[Os(o )+Ot_s(wo,o)]/kT
e do

where < > represents the average value in the presence of the interact ion.

After developing the term exp[-Ut_S(wo,O)/kT] in powers of

Ut_S(wo'O) we obtain

1 2
(A-4) <11 S(w ,o) > = - -<U •.S(w ,O) >'1:- o kT ,,- o o

Finally, by combining eqs A-2 and A-4, eq (45) is obtained.
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