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\- A family of upper bounds for the ground-state second-order.. energy, derived from the Perturbation Theory, has beenobtained. The bounds have been evaluated for the static

electric dipole polarizability of the hydrogen atom.
S. Afr. J. Chem., 1982,35,39-41

'n Versameling van boonste perke vir die grondtoestand
tweede-orde energie, wat afgelei is uit die steuringsteorie, is
verkry. Die perke vir die statiese elektriese dipoolpolariseer­
baarheid van die waterstofatoom is geevalueer.
S.-Afr. Tydskr. Chem., 1982,35,39-41
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It is often impossible to obtain the complete set of eigen­
functions of the zero'th-order Hamiltonian, which is

required for the more usual forms of application of the
Perturbation Theory (PT). This, in turn, makes it impossible
to apply exact corrections to the zero'th-order energy of the
system and its wave functions.

This latter situation has led to the publication of many

papers which attempt to approximate these correction
energies. The main interest has been in second-order
corrections.1-3 The different formulations that appear in the
current literature make use of a discrete set of eigen­

functions of Ho' or its eigenvalues.
In this paper we examine the possibility of developing an

alternative formulation. In principIe, this formulation would
allow us to obtain upper bounds for the second-order

perturbation energy, expressed only in terms ofthe ground­
state wave function. These bounds can be improved by

adding a discrete set of excited-state wave functions.

General theory

In the Rayleigh-Schrodinger PT, the ground-state second­
order energy is expressed as

(1)

where V is a perturbation operator, cpg is the eigenfunction
of the zero'th-order Hamiltonian for the ground state, and

Ro is the reduced resolvent, whose spectral resolution is
defined as

(2)

where 02 is the projector associated to the eigenfunction cp2·

From eq. (2), we have

(3)

Let A and B be two arbitrary operators which usually do
not commute. For the inverse of (A - B), we have the
following identity, valid for the so-called right inverse:4
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(7)

n-l

(Eg-Hot1 = ¿(HoY(Eg}-S-1 + (Eg)-n (Ho)n (Eg-Ho)-l. (6)S=O

(12)

'members' which are obtained by varying p. For example, if
we have n = 2 and p = 4, we will say that we are dealing with
the fourth member ofthe second fami1y.

Results and Discussion

.Following our traditional line of investigation, we shall
apply this method to the calculation of lower bounds to the

static electrÍC dipole polarizability (SEDP) of the hydrogen
atom .. The passage, from· the upper bound to E(2) to the

SEDP lower bound, is direct.s In the case of the hydrogen
atom, we have

where ao(IJ,IJ) is the IJ-component of the polarizability
tensor, IJ is the IJ-component of the dipole moment-+
operatorM, and <p2is the eigenfunction ofthe k-state.

We have calculated the scalar polarizability:

(5)

n-l

(A _B}-l = ¿ (A-1BYA-1 + (A _B)-l (BA-1)n,
S=O

with n= 1, 2, 3, .....

This expression is totally different to those found in the

literature.S,6 It can be considered as a generalization of eq.
(A4) ofref. S, or eq. (87) ofref. 6.

If we apply this expansion to operator (Eg- Ho)-l, we
obtain the particular form,

Inserting eq. (6) into eq. (2), and making use of the
spectral decomposition of Ho' we obtain

We can also obtain the same results by employing the

expansion for the left inverse or the symmetric expansion.7

Upper bounds to E(2)

Let us consider the last term of the right-hand side of eq.
(7). It obeys the inequality (see Results and Discussion),

(13)

The results are shown in Table 1 for n = 1,2, and 3. The
indexp in the table refers to eq. (12).

Table 1Lower bounds for the SEDP of the hydrogen

00 (EO) 00

atom¿ k k <O, (8)k=l EO EO - EO
Lower bound (a.u.)

o o k

and we may write the following upper bound to Ro:

p
n=1 n=2n=3

n-l

o4,000 4,000-5,333
Ro < ¿ (HoY(Egts-1 - nOg(Eg)-I. (9)

1 4,138 4,034-5,324S=O 24,162 4,037-5,324
3

4,164 4,037-5,324

We can improve eq. (9) by considering one part of the
rejected term,

(10)
where p means a fmite sumo

Having in mind these considerations, we write the upper
bound to E<2) as

Other lower bounds for the SEDP of the hydrogen atom
reported are 4,125,9 4,000, 4,3162, 4,3800,10.11 and 4,5
a.u.l2 The exact value is 4,5 a.u. We can see that this
method provides good lower bounds for the SEDP with
n= 1 and varyingp. The reasons are that

(í) the results show that the first family has a more rapid
convergence to the exact value; and

(ií) the calculation of matrix elements in the first family is
very easy by comparison with that for the other
families.

The choice of p is determined by the results of the

calculation. When we find that there is no significant change
in the value of two consecutive terms in one family, we
terminate the calculation.

There are two comments in the case oflarge values of n:

(í) In the case of polyelectronic atoms or molecules, the
difficulties that appear in the evaluation of most of the

matrixelements, having the form <1J(Ho)nlJ>, can be

avoi~d by using the rules of commutation between Ho
andM.

(11)

nI <<pgl VI<pg> 12

Eg

I<<pgl VI<p2> 12

Eg-E2
P (EO)n+¿ --.!:

k=1 Eg

We will call the terms obtained in eq. (11) with n= 1 and
varying p, 'the first fami1y', with n=2 and varying p, 'the
second fami1y', and so on. Each family is composed of
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(ti) In the fourth and following families, there. appear
divergent integrals which make the calculations difficult. .

The table reveals that, when the value of n rises, the lower
bounds begin to differ more and more from the experi­
mental values for the polariúlbilities. This should indicate
that the best values for the lower bounds will be obtained
with n = 1 or 2.. Accordingly, the second comment above
becomes a hypothetical problem.

Equation (11) has certain limitations which arise from
inequality (8). It holds only when (E~/Eg) is positive. How­
ever, it is possible to defme a similar expansion to eq. (5),
replacing n by 2n, thereby giving a rigorous sense to the
inequality (8). In the case of the hydrogen atom, this expres­
sion is accurate because the discrete energy spectra contain
only negative values.
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