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Large microalgae, such as diatoms can generate high levels of biomass, unlike small phytoplankton

components in the austral fjords and estuarine systems of Chile. We propose a cell-size-based diversity

index (Husize) measured as chlorophyll-a concentrations (Chl-a) to determine if the relationship between

Husize versus Chl-a results in a hump-shaped distribution considering: (i) the intermediate disturbance

hypothesis, (ii) phytoplankton size colonization strategies, and (iii) predictions of low Husize with high or

low Chl-a levels and peaks in Husize with intermediate Chl-a levels. The functional responses of

phytoplankton are tightly coupled to environmental conditions. Could, then, the relationship between

Husize and Chl-a occur on a particular temporal/spatial scale? Herein, we analyze data from three CIMAR-

Fiordos cruises performed between 2001 and 2002 within areas of different continental influence from

411 to 471S. Phytoplankton samples were taken at different locations and depths, filtered to obtain Chl-a

with and without size-fractionation (420 mm, o11 mm), and then used to calculate Husize. Total Chl-a

(TChl-a) changed by two orders of magnitude between different cruises and areas. The small

phytoplankton fraction (o11 mm) dominated with low TChl-a values (r1 mg m–3), as did the large

phytoplankton fraction (420 mm) with high TChl-a values (Z1 mg m–3). Although other relationships

can be found on smaller scales, we determined unimodal (hump-shaped) relationships through

quadratic quantile regressions between the Husize index and TChl-a and between Husize or TChl-a and the

abiotic factors when considering data from all three cruises and areas. Husize versus TChl-a was driven by

one variable or by different combinations of variables, and according to low–high disturbance level:

high TChl-a and larger size classes predominated in deeper upper mixed layers having higher light

availability, whereas shallower upper mixed layers with lower light availability presented lower TChl-a

and predominantly smaller cell size classes. Thus, the larger temporal/spatial scales used here allowed

us to test the hypothesis of the unimodal expression of phytoplankton patterns in these coastal

ecosystems.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Phytoplankton population sizes and relative abundances of cell
size classes are simultaneously determined by ecological pro-
cesses, such as competition and predation, and by physiological
processes, such as the efficiency of light harvesting or nutrient
acquisition, both influenced by the cell size (Lewis, 1976;
Reynolds, 1997). The rate of cell division and respiration scale
inversely with cell size (Williams, 1964; Banse, 1976; Malone,
1980), and specifically, the nutrient acquisition and the harvesting
of light are intrinsically influenced by cell size (Platt, 1981;
Marañón, 2009), i.e. chlorophyll-specific photosynthetic rates
decrease with an increase in cell size (Taguchi, 1976; Geider
et al., 1996; Montecino and Quiroz, 2000).
ll rights reserved.

: + 56 2 272 7363.

ra Paredes).
The cell size structure of phytoplankton communities is
important at the ecosystem level. This feature generates shifts
in the carbon budget of pelagic trophic webs (González et al.,
2010), affecting ecosystem properties, such as the flow of matter
and energy and biogeochemical cycling (Violle et al., 2007;
Litchman and Klausmeier, 2008), because the fate of phytoplank-
ton production depends heavily of the dominant size fraction
(Kahru and Leeben, 1991; Kiørboe, 1993). In terms of chlorophyll-
a (Chl-a) as a proxy for phytoplankton biomass, meso-eutrophic
ecosystems with Chl-a concentrations 45 mg L–1 are dominated
by microphytoplankton components with a modal cell size
abundance of 10–40 mm (Yentsch and Phinney, 1989; Montecino,
2001; Montecino et al., 2006, 2008). In contrast, pico and
nanophytoplankton components between r2 and 4 mm dom-
inate oligotrophic ecosystems (Malone, 1980; Chisholm, 1992).
Thus, changes in environmental factors (environmental condi-
tions, nutrient concentrations, light availability) or biological
interactions, such as grazing (and mixotrophy) heavily affect the
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cell size (or taxonomic) composition of these assemblages and,
hence, the biomass and Chl-a concentrations of the phytoplankton
community. Here we only studied the non-biological effects.

Overall, the environmental factors can affect phytoplankton
directly or indirectly. (i) Directly, light provides energy and resources
supply materials for growth, reproduction, and survival of cells; and
temperature regulates photosynthesis, respiration, growth, resource
acquisition, and motility (Reynolds, 1997; Montagnes and Franklin,
2001; Litchman and Klausmeier, 2008). (ii) Indirectly, salinity affects
the vertical stratification and, thus, the permanence of microalgae in
the upper water column (Sin and Wetzel, 2002). The availability of
resources, such as the amount of light as well as macronutrients, are
both affected by the depth of the upper mixed layer (Zm), the depth
of euphotic layer (Zeu), and the Zm/Zeu relationship; moreover, the
intrusion of deeper water to the euphotic zone can cause nutrients
to increase (Tremblay et al., 1997).

These abiotic changes affect phytoplankton differently de-
pending on cell size, i.e. in oligotrophic environments, small size
classes are more efficient in the acquisition of limiting nutrients
(Malone, 1980; Litchman and Klausmeier, 2008). In contrast,
given high nutrient concentrations, large phytoplankton generally
achieves higher growth rates than small ones (Laws, 1975). One of
the reasons is that the larger planktonic cells are better adapted to
greater fluctuations in the light climate than the smaller cells
(Bode and Fernández, 1992; Kiørboe, 1993; Gargett and Marra,
2002). However, under stratified conditions, small flagellates will
persist, thanks to their swimming ability and to the sinking of
larger diatoms requiring high turbulence to prevent sedimenta-
tion (Kiørboe, 1993). In contrast, flagellates require low turbu-
lence to avoid physical damage (Cullen et al., 2002). Different
resources do not have a similar limiting effect on microphyto-
plankton taxa because these have different parameters for
characterizing the uptake and assimilation efficiencies of nutri-
ents (Tilman et al., 1982). Therefore, conceptually, the study of
microalgal communities can be approached from the cell size
structure (Chl-a) of phytoplankton, considering that cell size is a
functional trait based on the relationship of sizes with metabolic
processes (e.g., Fenchel, 1974; Peters, 1983). For phytoplankton,
functional groups are defined as groups of organisms that are
related through biogeochemical processes, but not necessarily
through phylogenetic relationships (Iglesias-Rodrı́gues et al.,
2002). Different taxa can have the same or different functions in
ecosystems according to specific traits (e.g., size); cell size is
considered to be a morphological master trait that influences
reproduction, growth, metabolism, resource acquisition, and
predator avoidance (Brown and Maurer, 1986; Litchman et al.,
2007; Litchman and Klausmeier, 2008).

Biological diversity, population size, and cell size are inter-
dependent, and most studies have found unimodal patterns
between species richness and body size or biomass, number of
individuals and body size, or number of individuals and
biovolume (Siemann et al., 1996; Li, 2002; Irigoien et al., 2004;
Marañón, 2009). The availability of an index that includes both
richness (with size classes defined a priori) and abundance within
those classes (equivalent to evenness) would be useful. Here we
applied a size diversity index (Husize) with three-size classes and
the Chl-a content in each class to prove the hypothesis that the
relationship between size diversity (Husize) and the phytoplankton
TChl-a concentration reveals a unimodal (hump-shaped) distribu-
tion, with a peak of Husize when Chl-a concentrations are
intermediate, as the abundances of the different phytoplankton
sizes are more even under an intermediate trophic status
(resource availability).

In particular, one of the many theories explaining species
diversity is the Connell (1978) intermediate disturbance hypoth-
esis (IDH). Grime (1977) defines disturbances as the processes
that determine biomass removal, causing new spaces and, hence,
making new resources available to other individuals (i.e., light
extinction and nutrient limitation, in the case of phytoplankton).
The IDH predicts unimodal biological richness and diversity in
terms of the magnitude of the disruption or the time passed since
the onset of the disruption (Begon et al., 1988; Sommer, 1995).

Phytoplankton colonization strategies vary among size classes,
with small phytoplankters experiencing explosive reproduction
and population growth; and after a disturbance, they are the first
colonizers. Larger phytoplankton cells have slower reproduction
and population growth, but they may outcompete the smaller
phytoplankton cell sizes when resources are sufficient (Sommer,
1981; Grover, 1997; Reynolds, 1997). When the frequency,
intensity, or lag of the disturbance is higher than the phytoplank-
ton generation time or photoacclimation period, small cells
predominate, but given low disturbance, large cells prevail. In
both situations, Husize and probably specific diversity should remain
low. With intermediate levels of disturbance, Husize and specific
diversity should increase due to the coexistence of small,
intermediate, and large microalgae. We chose this conceptual
approach because the study of planktonic diversity and the causal
factors that modulate it are difficult to undertake from an
evolutionary perspective given a three-dimensional environment,
large-scale space, small organisms, and numerous hard-to-identify
species (Peters, 1983; Rodriguez, 1994). However, we can use
phytoplankton cell sizes classes by applying a size index (Husize) to
this morphological trait in order to reduce complexity, thereby
allowing us to describe the changes in these communities (Fenchel,
1974; Brown and Maurer, 1986; Bode and Fernández, 1992;
Rodriguez, 1994; Brown, 1995; Montecino, 2001). Here, we also
considered the IDH – originally employed to explain species
diversity (Connell, 1978) – to relate the diversity of cell sizes
classes (TChl-a) with disturbances generated by changes in
environmental factors that directly or indirectly modifies or affects
the nutrient and light availability. To estimate the unimodal
relationship between Husize with TChl-a and of both TChl-a and
Husize with the environmental factors, we used the quadratic
quantile regression approach (i.e. Scharf et al., 1998, see Section 2).

Explaining the relationship between the phytoplankton structure
and its environment using the functional role of microalgae in
coastal ecosystems constitutes a bridge between community and
ecosystem ecology. In order to detect these relationships, we
considered a large database containing extensive ranges of varia-
bility in phytoplankton size classes, Chl-a, and environmental
factors. We expected the patterns to change with the scale of
observation as with the relationship of phytoplankton species
diversity and productivity of the system (Chase and Leibold, 2002).
The Patagonian fjord and channel system, with its large spatial and
temporal phytoplankton variability (Montecino et al., 2006, 2008),
offers the possibility to relate Husize with TChl-a and these with large-
scale environmental gradients. Given these scales, a macroecological
analysis is appropriate for expressing phytoplankton patterns and
the unimodal relationship between Husize and TChl-a, including the
scale on which it is statistically established. In addition, we want to
determine whether a unimodal relationship exists for both TChl-a
and Husize with the environmental abiotic factors.
2. Methods

2.1. Sampling and ecosystem description

The samples used in this study were obtained in the large
system of fjords and channels in Aysén, Chile (431–471S), a region
characterized by low environmental stability and high spatial and
temporal heterogeneity. These fjords and channels connecting
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low salinity waters with oceanic waters are microbasins with
unique microclimates (Silva et al., 1998; Guzmán and Silva, 2002).
The input of freshwater from rivers, rain, snowfields (June–
August), and glacier melting (September–November) reduces
salinity and increases stratification in the adjacent water column
(Pickard, 1971). These processes also provide nutrients to the
water column (Silva et al., 1997), giving rise to the conditions
necessary for the surface growth and accumulation of phyto-
plankton biomass. Increased aquaculture activities and the
development of urban and industrial zones can also contribute
additional nutrients in some specific areas (Soto et al., 2001;
Buschman et al., 2006), thereby increasing the region’s natural
spatial heterogeneity. This area has high biological productivity,
and the variability of the phytoplankton biomass is tightly
coupled to high variability in cell sizes (Montecino and Pizarro,
2008).

Biological (Chl-a), physical (Zm, Zeu, Zm/Zeu, T, salinity), and
chemical data (Si(OH)4, silicic acid; NO3

–, nitrate; PO4
–, ortophosphate;
Fig. 1. Distribution of sampling stations (bold numbers) from all three CIMAR-Fior

geographical diversity of these stations. The different geographic groups are shown with

Boca del Guafo.
and NO3
–:PO4

– ratio) were obtained during one oceanographic
cruise in austral winter (CIMAR-Fiordos 7–1; July 2001) and two
in austral spring (CIMAR-Fiordos 7–2; November 2001 and
CIMAR-Fiordos 8–2; November 2002) on board the R/V AGOR
Vidal Gormaz in the Aysén Region. These cruises were organized
by the Comité Oceanográfico Nacional (CONA). During the 2001
winter and spring cruises (CF7–1, CF7–2), the sampling stations
were distributed in the centrally situated Moraleda Channel and
the inner fjords and channels. During the 2002 spring cruise
(CF8–2), the sampling stations were located in the area of the
Moraleda Channel and the oceanic channels of Aysén (Fig. 1).

At each sampling station, water column temperature and
salinity were obtained with an SB25 CTD. The collected data were
processed by the Centro Nacional de Datos Hidrográficos y
Oceanográficos de Chile (CENDHOC), part of the Chilean Navy’s
Servicio Hidrográfico y Oceanográfico de la Armada (SHOA).

Downwelling spectral radiation Ed(l) was measured each day
around noon at different wavelengths of the visible light spectrum
dos cruises showing the large spatial scale, different terrestrial influences, and

arrows as examples for fjords, oceanic and inner channels, Moraleda Channel, and
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(411, 442, 489, 555 nm) using a submersible OCI, OCR-200
spectroradiometer (Satlantics). The extinction coefficients Kd(l)
were calculated for the most penetrating wavelengths (489 or
555 nm) (Kirk, 1994) in order to estimate the depth of the
euphotic zone (Zeu(l)).

The upper mixed layer (Im) was determined with the 0.01 psu
m�1 (or 0.1 psu 10 m�1) differences because, in this region,
homothermal water columns are not homogeneous in density
due to abrupt changes in salinity caused by terrigenous fluvial
input, precipitation, and glacial melting (Nelson Silva, pers.
comm.). Also, in simple terms, the ratio between Zm and Zeu(l)
is indicative of the amount of light received by phytoplankton in
Zm (Riley et al., 1949; Sverdrup, 1953). For a cell in the water
column with a small Zeu(l) compared to Zm, light is limiting (high
level of disturbance), whereas the opposite is true when Zeu is
large (but then nutrient resources would also represent a high
level of disturbance). When the depths of Zm and Zeu(l) coincide,
the level of disturbance for the cells is intermediate. Therefore,
the value of Zm/Zeu(l) ranges from 1 if the depths match, to 41
if the Zeu(l) is less than Zm, and o1 if the Zeu(l) is greater than Zm.

2.2. Chlorophyll-a fractions and size diversity

Water samples were taken at three or five depths between the
surface and 50 m by using Niskin bottles (3 L) arranged in a rosette
and considering the thermal structure and the depth of Zeu(l) at each
station. Each discrete sample was prefiltered through a 200 mm
nylon mesh, and three water subsamples (200–500 mL) were filtered
separately using a manifold and a vacuum pump to obtain (i) the
total Chl-a concentration (TChl-a) was only filtered through a 0.7 mm
filter and (ii) the fractions o20 and o11 mm were first sieved by
gravity through the corresponding 20 or 11 mm nylon meshes on top
of glass fiber filters (GF/F Whatman) with a 0.7 mm pore nominal size
(Montecino and Quiroz, 2000). All the filters were stored immedi-
ately in liquid nitrogen until further laboratory analysis (Parsons
et al., 1991; Jeffrey et al., 1997). Pigment determination was done
after solvent extraction (90% acetone) and then quantified in a
fluorometer (10 AU Turner Design). Calibration was done with
standard chlorophyll-a (Sigma, USA). The Chl-a concentration in the
large microphytoplankton fraction (20–200 mm) present in each
sample was obtained by TChl-a minus o20 mm. The Chl-a
concentrations of the small phytoplankton fraction, including small
nanophytoplankton and picophytoplankton, are the result of TChl-a
minus o11 mm. The arbitrary Chl-a concentrations for the inter-
mediate fraction corresponding to large nanophytoplankton (11–
20 mm) were calculated taking the difference of o20 mm minus
o11 mm. The statistical analysis for each sample was considered
using the results of TChl-a concentrations and of the environmental
factors for data of the same time, place, and depth.

Husize was estimated using the Shannon–Wiener index (Spel-
lerberg and Fedor, 2003), in which the TChl-a of each fraction was
used as its abundances according to:

Husize ¼�
X

pi lnpS
i , i¼ 1

where pi is the Chl-a proportion of the size class i of the same
sample and S (taking values¼1–3) is the total number of the size
fractions obtained from the same sample.

2.3. Statistical analyses

Due to heterocedasticity, a non-parametric rank analysis
Kruskal–Wallis test for multiple independent samples was
computed for TChl-a concentrations between cruises (Sokal and
Rohlf, 1981; Statistica, 1997) in order to initially characterize the
temporal heterogeneity of the TChl-a and to be sure that we used
an appropriate time scale to test the hypothesis of unimodality
between Husize and TChl-a. This was necessary because we had
observed homogeneity in mean chlorophyll concentrations or
between measurements of the same station between seasons in
another investigation within the same area (Montecino et al.,
2008). The Pearson correlation was used to test the relationship
between Chl-a of each size fraction and TChl-a. Further, we used
the non-parametric rank analysis Kruskal–Wallis test to obtain
the spatial variation in TChl-a between three different geogra-
phical areas: (1) the eastern fjords and inner channels, (2) Boca
del Guafo and the large, northern Moraleda Channel, and (3) the
western oceanic channels of the archipelago. These areas were
separated according to continental influence, river runoff, and
stratification (Silva et al., 1995; Guzmán and Silva, 2002).
Furthermore, the Meninea Constriction (451300S) has been
described as a transition between terrestrial and oceanic
influences that prevents the passage of deep, cold, saltier waters
into the channels and estuarine area (Silva et al., 1995, 1997).

As above, the temporal and horizontal spatial variability of
Husize was determined by applying the non-parametric rank
analysis Kruskal–Wallis test. The relationship of Husize versus
TChl-a was analyzed separately for each cruise and then for all
cruises together using the Pearson correlation coefficient after
log10 data standardization.

To test the hypothesis about the expected unimodal distribution,
we used quadratic algorithms to estimate the peak of the relation-
ship between Husize with TChl-a and of both TChl-a and Husize with
the environmental factors, since this approach has been used with
several important ecological matters that involve correlations
between variables resulting in polygonal shapes (Li, 2002; Schröder
et al., 2005). Moreover, this is appropriate when all factors that
could be affecting the dependent variable are not measured
(Koenker, 1978; Cade et al., 1999; Knight and Ackerly, 2002;
Schröder et al., 2005), i.e. this would be the case for the effect of
grazing on phytoplankton Husize. Under these circumstances, highly
dispersed data are obtained, generally with a lot of outliers that
may seriously affect the results of regressions based on the ordinary
least squares tests. Furthermore, the upper and lower boundaries of
response variables for the scatter diagrams often change at different
rates due to changes in the independent variables, whereas quantile
regression analyses provide consistent estimates of the upper limits
of the dependent variable (Scharf et al., 1998).

The maximum Husize at intermediate TChl-a was tested for
significance first separately for each cruise and then using the
data from all three cruises through quantile regression analysis
with a quadratic fit for the 10�95 percentiles (Scharf et al., 1998;
Cade et al., 1999; Knight and Ackerly, 2002) with bootstrapping
using the ‘‘quantreg’’ R library software (freely available at
http:/www.R-project.org/).

The correlation curves for these relationships obtained from
the quadratic equation coefficients and the constants given for the
quantile regression analysis were plotted over the data distribu-
tions. This analysis was also used to test the unimodal relation-
ship hypothesis of Husize and TChl-a with environmental factors, as
obtained by the fit of the quadratic least squares (QLS). To reject a
better fit of the data to monotonically increasing or decreasing
lines, we analyzed the respective determination coefficients using
the Line Fitting program with the Table Curve 2D.
3. Results

3.1. Total chlorophyll-a variability

The differences of the mean TChl-a values across all three
cruises CF7–1, CF7–2, and CF8–2 were significant (H¼281.96,

http:/www.R-project.org/


10

10

100

100

1000
C7-1, <11

C7-2, <11

C8-2, <11

C7-1, 11-20

C7-2, 11-20

C8-2, 11-20

0.01
0.01

0.1

0.1

1

1

Total chlorophyll-a (mg m-3)

C7-1, <11

C7-2, <11

C8-2, <11

C7-1, 11-20

C7-2, 11-20

C7-1, >20

C7-2, >20

C8-2, >20

Fr
ac

tio
na

te
d 

ch
lo

ro
ph

yl
l-

a
(m

g 
m

-3
) 

 
Fig. 2. Fractionated versus total chlorophyll-a (mg Chl-a m–3, in log scales).

Results of the Pearson correlations of the different size-fractions with TChl-a:

o11 mm during CF7–1 cruise (r2
¼0.822, N¼106, po0.0001), 420 mm and TChl-a

during CF7–2 cruise (r2
¼0.732, N¼97, po0.0001), and 420 mm during CF8–2

cruise (r2
¼0.865, N¼88, po0.0001).

0.0

0.2

0.4

0.6

0.8

1.0

1.00.0-1.0-2.0 2.0

1.2

Log Chl-a (mg m-3)

H
' si

ze

July 2001
November 2001
November 2002

Fig. 3. Phytoplankton size diversity (Husize) versus log total chlorophyll-a (mg Chl-

a m–3) relationships. July 2001 winter cruise (black squares), November 2001

spring cruise (grey squares) (r2
¼0.0324, N¼107, p¼0.740), November 2002

spring cruise (white squares) (r2
¼0.819, N¼88, po0.0001). Plotted curves are for

selected regression quantile estimates (0.95, 0.50, and 0.10).

M. Alejandra Paredes, V. Montecino / Continental Shelf Research 31 (2011) 272–281276
df¼2, N¼357, po0.0001). Mean TChl-a was higher in November
2002 than in November and July 2001 (Table 1), and the
maximum TChl-a values increased by one order of magnitude
between successive cruises and years (0.4 and 4.4 mg Chl-a m�3

in 2001 and 48.5 mg Chl-a m�3 in 2002). In terms of spatial
variability, the mean TChl-a changed significantly between the
three geographical areas (H¼165.01, df¼2, N¼357, po0.0001;
Table 1) and was highest in the oceanic channels and lowest at
stations with more continental influence. However, the mean
TChl-a was highest in spring 2002, both in the Moraleda Channel
zone and in the oceanic channels.

3.2. Total and size-fractionated chlorophyll-a relationship

The relationship between the size-fractionated Chl-a and TChl-
a showed that, during the CF7–1 winter cruise, the TChl-a was
always o1.0 mg m–3 and the small phytoplankton fraction
(o11 mm) was directly and significantly correlated with TChl-a
(Fig. 2). When the TChl-a increased to 41.0 mg m–3, the large
phytoplankton fraction (420 mm) was correlated with the TChl-a
during both spring cruises, indicating that this size fraction is the
main component of TChl-a (Fig. 2). The small phytoplankton
fraction (o11 mm) was dominant at stations with a stronger
continental influence and the large phytoplankton fraction
(420 mm) was dominant at oceanic stations (not shown).

3.3. Size diversity variability

In this study, the Husize index ranged from 0 to 1.08 and
maximum Husize values were similar during the three cruises
(1.06–1.08), with the lowest average Husize found for the 2002
spring cruise (CF8–2) and significantly different from the 2001
winter and spring cruises (H¼30.74, df¼2, N¼302, po0.001;
Table 1). In space, Husize differed significantly among the three
geographical areas (H¼25.01, df¼2, N¼302, po0.001; Table 1),
being lowest in the oceanic channels.

3.4. Size diversity and total chlorophyll-a relationships

During the 2001 winter cruise (CF7–1), TChl-a was always very
low and no correlation was found with Husize. In the spring of the
same year (CF7–2), no correlation was obtained even though Husize

tended to increase with greater TChl-a. On the contrary, in spring
2002 (CF8–2), when maximum TChl-a was highest, a significant
linear negative relationship was found between Husize and TChl-a
(Fig. 3). Several fittings were used to test our hypothesis and non-
linear adjustments were found. Once all the data were plotted
together, the relationship between Husize and TChl-a was
significant and unimodal in all percentiles analyzed (Fig. 3;
Table 2) when quantile regressions analysis was applied.
Table 1
Total Chl-a (mg Chl-a m–3) and Husize values separated in time for the 2001 and 2002

Average, standard deviation, and number of samples (N) are indicated for the 2001 cruis

showed temporal significant differences among the three cruises (po0.0001) and spa

(po0.0001). For Husize, the temporal and spatial differences were significant for three c

Total Chl-a

Average

Time July 2001; C7-1 0.10

November 2001; C7-2 0.63

November 2002; C8-2 9.63

Space Fjords and inner channels 0.42

Boca del Guafo and Moraleda Channel 3.27

Oceanic channels 7.93
3.5. Relationships between total chlorophyll-a and size diversity

with abiotic factors

Fig. 4 shows the TChl-a unimodal relationship with the abiotic
factors (specifically nitrate, orthophosphate, the NO3

–:PO4
– ratio;

Fig. 4a–c) and with the light proportion in the upper mixed layer
cruises and in space for three different geographical areas of the Aysén Region.

es (CF7–1, CF7–2) and the 2002 (CF8–2) cruise. For TChl-a, the Kruskal–Wallis test

tial significant differences among fjords and channels with oceanic channel areas

ruises (po0.0001).

Husize

St. dev. N Average St. dev. N

0.06 118 0.56 0.27 112

0.67 140 0.59 0.25 109

8.52 107 0.46 0.21 89

0.66 158 0.55 0.25 134

8.49 124 0.59 0.27 107

5.22 83 0.45 0.19 69



Table 2

The significant p-values for the quadratic regressions (from quantile 0.95–0.1) for Husize versus log TChl-a; TChl-a versus orthophosphate, nitrate, NO3
–:PO4

–, and Zm/Zeu(l),

and for Husize versus environmental factors: temperature (T) and silicic acid (Si). po0.05 is the lowest significance considered.

p-values

Quantile H0size/TChl-a TChl-a/PO4
– TChl-a/NO3

– TChl-a/NO3
�:PO4

� TChl-a/Zm/Zeu(l) H0size/T1 H0size/Si(OH)4

0.95 0.005 o0.001 0.001 0.023 0.080 0.166 0.907

0.90 0.015 o0.001 0.003 o0.001 0.002 0.107 0.968

0.85 0.013 o0.001 0.016 o0.001 o0.001 0.104 0.001

0.80 0.001 o0.001 0.008 o0.001 o0.001 0.239 0.002

0.75 o0.001 o0.001 0.043 o0.001 o0.001 0.917 0.178

0.70 o0.001 o0.001 0.071 o0.001 o0.001 0.652 0.120

0.65 o0.001 0.002 0.221 o0.001 o0.001 0.847 0.134

0.60 o0.001 0.003 0.219 o0.001 o0.001 0.996 0.074

0.55 o0.001 0.008 0.328 o0.001 o0.001 0.691 0.122

0.50 o0.001 0.001 0.294 o0.001 o0.001 0.683 0.011

0.45 o0.001 o0.001 0.105 o0.001 o0.001 0.668 0.067

0.40 o0.001 o0.001 0.039 o0.001 o0.001 0.513 0.009

0.35 o0.001 0.001 0.054 o0.001 o0.001 0.582 0.595

0.30 o0.001 0.002 0.007 o0.001 o0.001 0.409 0.578

0.25 o0.001 0.005 0.013 o0.001 0.002 0.275 0.315

0.20 o0.001 0.108 0.023 o0.001 0.092 0.100 0.715

0.15 o0.001 0.015 0.045 o0.001 0.059 0.096 0.942

0.10 0.005 o0.001 0.036 0.001 0.032 0.318 0.590

-2.0
2520151050

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

L
og

 C
hl

-a
 (

m
g 

m
-3

)

-2.0
2.0

0.300.250.200.150.100.050.0

1.51.00.50.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
 L

og
 C

l-
a 

(m
g 

m
-3

)

-2.0

-1.5

151050

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

 L
og

 C
hl

-a
 (

m
g 

 m
-3

)

NO3
- (μM) PO4

- (μM)

NO3
–: PO4

– Zm/Zeu (λ) 

L
og

 C
l-

a 
(m

g 
m

-3
)

Fig. 4. Phytoplankton total chlorophyll-a (mg Chl-a m–3) versus nutrient variability with the quadratic curves of the selected regression quantile estimates (0.95, 0.75,

and 0.10) and the quadratic least squares fit (QLS) corresponding to 50% (solid line): (a) nitrate (y¼–0.0036x2–0.0154x+0.452; r2
¼0.4338), (b) orthophosphate

(y¼–0.9265x2+0.8569x+0.1185; r2
¼0.3407), (c) NO3

–:PO4
– (y¼–0.0257x2+0.2024x+0.2355; r2

¼0.476), and (d) Zm/Zeu(l) (y¼–47.641x2+15.206x–0.288; r2
¼0.3585).
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(Fig. 4d). The maximum value of the Zm/Zeu ratio was o1 because
the euphotic layer was incidentally always larger than the mixed
layer. Even so, TChl-a was greatest when this ratio, which ranged
from 0 to 0.3, showed intermediate values (Fig. 4d).

The distribution of phytoplankton TChl-a (log scale) values
was greatest at intermediate temperatures (around 11 1C, range:
4.7–12.9 1C). Values higher than 1.0 mg m–3 TChl-a were dis-
tributed from 9.7 to 12.5 1C. Salinity indicated only low levels of
TChl-a at minimum values (range: 2.05–33.35 psu). TChl-a was
41.0 mg m–3 at salinities from 14.24 to 33.35 psu (not shown).

An analysis of Husize relationships with abiotic factors revealed
a unimodal relationship with silicic acid in the 80–85 percentiles
(Table 2) and in the 85 and 95 percentiles for temperature (Fig. 5;
Table 2).
4. Discussion

In pelagic, coastal upwelling and in estuarine austral ecosys-
tems, a relationship between phytoplankton Husize and TChl-a has
strong implications for food webs, carbon transfer pathways, and
energy flows. In environments dominated by small phytoplank-
ton, the microbial web is dominant, whereas the classical trophic
chain prevails in areas dominated by large phytoplankton
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(Thingstad and Sakshaug, 1990; Lenz, 1992; Thingstad et al.,
1997; Vargas et al., 2007; Pavés and González, 2008; González
et al., 2010). TChl-a concentrations are commonly used for
estimating the abundance of phytoplankton assemblages based
on the 0.74 allometric coefficient between the Chl-a concentration
of unicellular algal cells and their biomass (Niklas, 1994). Small
cells have generally less pigment than large cells due to
biophysical constraints (Li, 1997). In addition, conservative
carbon-to-chlorophyll-a ratios have been reported for different
taxonomic groups (Sathyendranath et al., 2009), each having its
characteristic size range.

In the study area, although different taxa play very different
roles, and their size ranges may overlap, the dominant size
fraction was significantly correlated with the total phytoplankton:
at low TChl-a values (o1.0 mg m–3), the smaller phytoplankton
fraction was dominant, whereas at 41.0 mg TChl-a m–3, the
microphytoplanktonic fraction was dominant. These results are
consistent with different marine environments and further
confirm that the abundance of TChl-a depends on the dominant
size fraction (Malone, 1980; Agustı́ et al., 1987; Harris et al., 1987;
Yentsch and Phinney; 1989; Chisholm, 1992; Iriarte et al., 1993,
2007; Sin et al., 2000; Irigoien et al., 2004). Moreover, the
proportion of small cells diminishes with increments in the total
phytoplankton biomass, although constant values are maintained
throughout the year (González et al., 1989; Montecino and Quiroz,
2000; Marañón, 2009).

Due to the unusually low levels of TChl-a measured in the
2001 winter cruise and the extremely elevated concentrations of
TChl-a in the 2002 spring cruise, we encountered low Husize values
in both periods. However, in winter 2001, the low mean Husize

values were higher than in spring 2002, probably due to a
different representation of the abundance of the intermediate size
class during the first cruise. Anyhow, in both cases, Husize was
lower on average than in spring 2001. Of the three geographic
areas studied that of Boca del Guafo and Moraleda Channel had
the highest mean Husize, indicating that this intermediate zone was
characterized by the coexistence of all three size components
with their various and different competitive strategies. Distinct
terrigenous influences could modulate in favor of small fraction
cells (probably flagellates) adapted to stratified water columns
with small Zeu(l) or large diatoms thriving in oceanic areas with
large Zeu(l) and Zm, including facultative mixotrophy of some
large flagellates (Czypionka et al., this issue) or grazing. Stratified
conditions, high irradiance, and enrichment processes all lead
towards favorable conditions for the proliferation of intermedi-
ate-sized flagellates (Margalef, 1978; Smayda, 1997), and the
development of harmful algal blooms (HABs). In this system the
impact of HABs should also have an effect on Husize.
In ecosystems, different processes operate on different (and
possibly multiple) spatial and temporal scales to create or
maintain variations in biota and/or habitat (Chapman et al.,
2010). To our knowledge, no records exist for a relationship
between Husize with TChl-a or Husize with environmental variables.
Although reasonable hypotheses about important scales can be
identified for many habitats based on previous studies and local
knowledge, in studies involving sampling, the scale of observation
must be known in advance and should not ‘emerge’ from the data
being measured (Chapman et al., 2010). Thus, prior to evaluating
the consequences of the processes investigated, it is necessary to
determine: (i) the scale on which there is large variability and (ii)
how common patterns are across space and time. In the particular
case of patterns that reflect the phytoplankton abundances and
diversity, we must consider that, although the temporal scales of
the life spans of phytoplankton are on the order of hours to days
(Reynolds, 1988), annual cycles regulate the successional changes
through climatic and hydrological factors (Sommer et al., 1993).

In this study, the relationship between Husize and TChl-a varied
as a result of differences in Chl-a and in the dominant size
fractions between the three cruises. However, when analyzing the
whole data set, a unimodal distribution was obtained. Because
TChl-a and Husize variability depended on the changes in the
environmental conditions (biotic and abiotic) and resources
between different areas and seasons, we considered several
spatial and temporal scales (in this case, more than three degrees
in latitude and extreme seasons) to analyze the data in order to
discover the underlying patterns. These patterns should not
change when adding more data from other areas or times. It is
also possible that a single cruise include all three orders of
magnitude of Chl-a, depending on the intrinsic variability.
Nevertheless, in this study, we were able to define the appropriate
scale for this empirical hump-shaped distribution pattern,
suggesting that the relationship between Husize and TChl-a was
determined for an interseasonal time scale, although other
relationships exist on seasonal or intraseasonal scales, i.e. when
the TChl-a reached high values, Husize decreased linearly with Chl-
a (spring 2002, C8-2, Fig. 3).

These results are consistent with data from the North Sea,
where high phytoplankton abundances occurred with intermedi-
ate biomass (as measured by cell sizes and Chl-a content) and
maximum diversity was found with intermediate phytoplankton
densities (Li and Dickie, 2001; Li, 2002). This indicates that it is
possible for the unimodal pattern to occur in a variety of marine
systems including austral estuaries, fjords, and channels, but only
when samples are collected across the widest possible range of
environmental variability or on smaller scales when the ecosys-
tem evidences large variability over time.

The IDH model of Connell (1978) proposes a hump-shaped
relationship between species richness and the frequency, inten-
sity, and time elapsed after an environmental disturbance. In
ecology, it is common to test this relationship using quadratic
curves describing unimodal relationships (i.e. Molies et al., 2003).
Nonetheless, some relationships are not given exactly this way,
since the mid-point between high and low disturbances is, of
course, an assumption and the responses may be biased in some
cases (Elliott et al., 2001). Although opinions differ as to the use of
theories developed originally for terrestrial ecosystems (Wilson,
1994), these theories have been successfully adapted to phyto-
plankton succession (Reynolds, 1988) and other applications (i.e.
Hewes et al., 2009). We believe that it is possible to use IDH
because we can describe the intensity of the disturbance for the
various phytoplankton size classes considering factors (such as
Zm) that alter the availability of light and nutrients, eventually
causing the removal of phytoplankton. Moreover, it is not highly
important to determine whether the source of the factors is
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internal or external (Sommer et al., 1993). It is sometimes easy to
get confused with the concept of disturbance, using it as an event
that completely destroys life in certain places. However, Connell
(1978) showed that the number of species remaining in coral
populations following a hurricane over an eleven-year period
depended on the intensity of the disturbance. Here, we used the
Shannon–Wiener diversity index because it measures both the
presence and absence of a class and the representation of each
class, and size-fractionated Chl-a because diversity can be
measured as everything that can be classified, including biomass
and chlorophyll concentrations (Margalef, 1958).

On a macroecological scale, orthophosphate, nitrate, and the
NO3

–:PO4
– ratio were associated with TChl-a, also unimodal in

shape, since the highest TChl-a values occurred at some
intermediate level within these nutrient values (0.4–7.0 mM for
nitrate, 0.2–0.8 mM for orthophosphate) and the NO3

–:PO4
– ratio

(2.5–5.0) during the three CIMAR-Fiordos cruises. Temporally, the
causal relationship between TChl-a and nutrients is complex
because the state of the phytoplankton assemblages is a
consequence of the nutrient concentrations prior to sampling
(Alves de Souza et al., 2008).

Husize presented the highest values with intermediate levels of
silicic acid (data not shown); these were not exactly core values
for the gradients. Again, this is not inconsistent with the IDH (see
earlier). The explanation could be that given high silicic acid
availability through soil erosion into estuaries and coastal areas,
we expected the typical spring diatom bloom (mostly from the
larger size fraction), so that the sequence of events of a large
diatom-dominated bloom from late spring/early summer to late
summer would end in a flagellate-dominated bloom (intermedi-
ate-small fraction) as in temperate coastal waters (Margalef,
1978; Officer and Ryther, 1980). Furthermore, in most fjords
areas, good indicators of terrigenous input include non-limiting
silicic acid levels that vary little (Silva and Guzmán (2006); Vargas
et al., this issue). Yet exceptions occur, such as in the Ballena Fjord
in Patagonia located much further south, where insufficient silicic
acid inputs into the fjord prevent diatom proliferations. Conse-
quently, other types of phytoplankton blooms (e.g., small
dinoflagellates) appear in these nitrate-enriched waters (Torres
et al., this issue).

The effects of some controlling factors were not measured in
this study. These include zooplankton grazing pressure (Calbet
and Landry, 2004), which, according to González et al. (2010),
changes between spring and summer in austral Chile. Therefore,
the interpretation of the curves should focus on the upper
percentiles of the response variable, which denote the restrictions
imposed by the evaluated controlling variable (Cade et al., 1999).
In this case, the higher size diversity occurred at intermediate
silicic acid levels, but close to the lowest values, probably because
at that time there was higher grazing pressure on the largest
fraction.

Among the abiotic factors, temperature was significantly
associated with phytoplankton Husize, showing the highest values
at intermediate temperatures (8–9 1C). Nevertheless, the statisti-
cally significant relationship was unimodal only for the 95 and 85
percentiles of the data set. This could be explained by the fact that
below the 85 percentile, Husize is not controlled by temperature
alone.

Stratification strongly affects the fields of light and nutrients in
ocean surface waters.

In the North Sea, the maximum phytoplankton size diversity
was reported at intermediate levels of water column stratification
(Li, 2002). Here, most of sampling stations showed highly
stratified water columns and only the oceanic stations were well
mixed. However, spatially, locations with greater depths of Zm did
not present the highest TChl-a, and those without upper mixed
layers reached only low concentrations of TChl-a with low Husize.
Intermediate values of Zm originated the highest values of TChl-a
and Husize (data not shown). Temporally, the sites with low Zm in
winter 2001 were mostly in areas with a major continental
influence and low TChl-a, presenting low Husize (o0.6 on average).
Those places with deep Zm (Moraleda and oceanic channels) and
high TChl-a also had low Husize. This supports the unimodal
distributions of Zm with TChl-a and Husize, with maximum values
at intermediate depths of Zm.

Although light is limiting and shows significant seasonal
changes at these latitudes, its biological effectiveness is generally
controlled by upper ocean stability (Gargett and Marra, 2002).
Therefore, the Zm/Zeu(l) relationship determines and is indicative
of the amount of light available in the mixing zone and, for this
reason, it is a measure of the variability in environmental
disturbances between different places. Because many coastal
stations do not have an upper mixing zone, the Zm/Zeu(l) index
was only positive for the oceanic stations, inner channels, and
Moraleda Channel. The latter also presented deeper euphotic and
mixed zones, both favorable conditions for the proliferation of
large diatoms with high biomasses and, therefore, low Husize.
However, the attenuation coefficient of light depends on the
absorption of particulate matter (dead and alive) and also of
colored dissolved organic matter (CDOM) (Kirk, 1994; Retamal
et al., 2007, 2008). At stations with major terrestrial and
freshwater influences and in winter, the absorption of radiation
is given mainly by CDOM, unlike at oceanic stations and those
sampled in spring (Pizarro et al., 2005; Montecino et al., 2006).
This would explain why the shallow depth of Zeu(l) coupled to the
shallow high stratification resulted in low phytoplankton TChl-a
and a competitive disadvantage for the large size classes. In
contrast, the latter conditions were optimal for the predominance
of the smaller classes (i.e. phytoflagellates) and, therefore,
resulted in low Husize values.
5. Conclusions
1.
 The Husize index expressed the phytoplankton structure and
revealed a robust phytoplankton pattern on the scale of austral
fjords and channels.
2.
 In the austral fjords and channels of Aysén, the dominant cell
size fraction (size class) was related to TChl-a. Thus, smaller
cells in winter or at stations with continental influence were
predominant at low TChl-a (o1.0 mg m–3), whereas the larger
microphytoplankton fraction was dominant at TChl-a
41.0 mg m–3 in spring and at the more oceanic stations and
oceanic channels. Subsequently, the size composition of
phytoplankton changed both in time and space in relation to
TChl-a.
3.
 In the austral fjords and channels of Aysén, the relationship
between Husize and TChl-a changed seasonally as a result of
differences in the Chl-a concentrations and the dominant size
fractions between cruises. However, this generated a unimodal
distribution only on large spatial and temporal scales given
ample ranges of environmental factors.
4.
 Husize and TChl-a were related to low–high disturbance levels:
high TChl-a and larger size classes predominated in deeper Zm

columns, but with higher light availability, whereas water
columns with shallow Zm and low light availability presented
lower TChl-a and predominantly smaller size classes. The
patterns obtained in these austral fjords and channels of Chile
were related to the high variability of Chl-a, and they
responded to the intrinsic variability of the system on different
scales of observation. Lastly, large temporal/spatial scales
covering the entire range of Husize and TChl-a variability
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allowed unimodal expressions of phytoplankton patterns
according to the IDH model in this system.
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R., Daneri, G., 2007. The relative importance of microbial and classical food
webs in a highly productive coastal upwelling area. Limnol. Oceanogr. 52 (4),
1495–1510.

Vargas, C.A., Martinez, R.A., Martin, V.S., Aguayo, M., Silva, N., Torres, R..
Allochthonous subsidies of organic matter across a lake-river-fjord landscape
in the Chilean Patagonia: implications for marine plankton food webs. Cont.
Shelf Res., this issue.

Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E.,
2007. Let the concept of trait be functional!. Oikos 116 (5), 882–892.

Williams, R.B., 1964. Division rates of salt marsh diatoms in relation to salinity and
cell size. Ecology 45 (4), 877–880.

Wilson, J.B., 1994. The ‘‘intermediate disturbance hypothesis’’ of species
coexistence is based on patch dynamics. N. Z. J. Ecol. 18 (2), 176–181.

Yentsch, C.S., Phinney, D.A., 1989. A bridge between ocean optics and microbial
ecology. Limnol. Oceanogr. 34 (8), 1694–1705.


	Size diversity as an expression of phytoplankton community structure and the identification of its patterns on the scale...
	Introduction
	Methods
	Sampling and ecosystem description
	Chlorophyll-a fractions and size diversity
	Statistical analyses

	Results
	Total chlorophyll-a variability
	Total and size-fractionated chlorophyll-a relationship
	Size diversity variability
	Size diversity and total chlorophyll-a relationships
	Relationships between total chlorophyll-a and size diversity with abiotic factors

	Discussion
	Conclusions
	Acknowledgements
	References




